Sample records for pm10 pollution problem

  1. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity

    PubMed Central

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-01-01

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the “Polluters Pay Principle”, polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss. PMID:26308020

  2. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity.

    PubMed

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-08-21

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the "Polluters Pay Principle", polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss.

  3. Analysis of influential factors on haze pollution in China

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Hong; Jiang, Keshen

    2018-05-01

    This study tests the hypothesis of Environmental Kuznets Curve (EKC) between PM10 concentrations and economic growth and analyzes the influential factors of PM10 concentrations from the economic perspective by using the panel data on the PM10 concentrations of 30 provinces from 2003 to 2015 in China. Results of the regression estimation from the fully modified OLS (FMOLS) method show that a relationship characterized by an inverted U-shaped curve is observed between PM10 concentrations and gross domestic product (GDP) per capita and that an EKC exists in China’s haze pollution problem. PM10 concentrations have the most sensitive response to GDP. The elastic coefficients of the possession of civilian vehicles, urbanization and trade openness are positive values. More importantly, the elastic coefficient of the tertiary industry proportion is less than 0. Increase in the proportion of tertiary industry can effectively alleviate China’s problem on haze pollution. Lastly, relevant countermeasures and suggestions are presented.

  4. Satellite remote sensing of air quality in winter of Lanzhou

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Han, Tao; Jiang, Youyan; Li, Lili; Ren, Shuyuan

    2018-03-01

    Fine particulate matter (aerodynamic diameters of less than 2.5 μm, PM2.5) air pollution has become one of the global environmental problem, endangering the existence of residents living, climate, and public health. Estimation Particulate Matter (aerodynamic diameters of less than 10 μm, PM10) concentration and aerosol absorption was the key point in air quality and climate studies. In this study, we retrieve the Aerosol Optical Depth (AOD) from the Earth Observing System (EOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and PM2.5, PM10 in winter on 2014 and 2015, using Extended Dense Dark Vegetation Algorithm and 6S radiation model to analysis the correlation. The result showed that at the condition of non-considering the influence of primary pollutants, the correlation of two Polynomials between aerosol optical depth and PM2.5 and PM10 was poor; taking the influence of the primary pollutants into consideration, the aerosol optical depth has a good correlation with PM2.5 and PM10. The version of PM10 by aerosol optical depth is higher than that of PM2.5, so the model can be used to realize the high precision inversion of winter PM10 in Lanzhou.

  5. A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in china based on long-term and massive data mining of pollutant concentration

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Zhao, Laijun

    2018-02-01

    China's Beijing-Tianjin-Hebei (BTH) region suffers from the country's worst air pollution. The problem has caused widespread concern both at home and abroad. Based on long-term and massive data mining of PM2.5 and PM10 concentration, we found that these pollutants showed similar variations in four seasons, but the most severe pollution was in winter. Through cluster analysis of the winter daily average concentration (DAC) of the two pollutants, we defined regions with similar variations in pollutant concentrations in winter. For the most polluted cities in BTH, the relationship between correlation coefficients for winter DAC and the distance between cities revealed that PM2.5 has regional, large-scale characteristics, with concentrated outbreaks, whereas PM10 has local, small-scale characteristics, with outbreaks at multiple locations. By selecting the key cities with the strongest linear relationship between the pollutant's DAC of each city and the daily individual air quality index values of the BTH region and through cluster analysis on the correlations between the pollutant DACs of the key cities, we defined regional divisions suitable for Joint Prevention and Control of Atmospheric Pollution (JPCAP) program to control PM2.5 and PM10. Comprehensively considering the degree of influence of regional atmospheric pollution control (RAPC) on air quality in BTH, as well as the elasticity and urgency of RAPC, we defined the control grades of the JPCAP regions. We found both the regions and corresponding control grades were consistent for PM2.5 and PM10. The thinking and methods of atmospheric pollution control we proposed will have broad significance for implementation of RAPC in other regions around the world.

  6. The Characteristics of Air Pollutants during Two Distinct Episodes of Fireworks Burning in a Valley City of North China

    PubMed Central

    Song, Yang; Wan, Xiaoming; Bai, Shuoxin; Guo, Dong; Ren, Ci; Zeng, Yu; Li, Yirui; Li, Xuewen

    2017-01-01

    Background The elevation and dissipation of pollutants after the ignition of fireworks in different functional areas of a valley city were investigated. Methods The Air Quality Index (AQI) as well as inter-day and intra-day concentrations of various air pollutants (PM10, PM2.5, SO2, NO2, CO, O3) were measured during two episodes that took place during Chinese New Year festivities. Results For the special terrain of Jinan, the mean concentrations of pollutants increased sharply within 2–4 h of the firework displays, and concentrations were 4–6 times higher than the usual levels. It took 2–3 d for the pollutants to dissipate to background levels. Compared to Preliminary Eve (more fireworks are ignited on New Year’s Eve, but the amounts of other human activities are also lesser), the primary pollutants PM2.5, PM10, and CO reached higher concentrations on New Year’s Eve, and the highest concentrations of these pollutants were detected in living quarters. All areas suffered from serious pollution problems on New Year’s Eve (rural = urban for PM10, but rural > urban for PM2.5). However, SO2 and NO2 levels were 20%–60% lower in living quarters and industrial areas compared to the levels in these same areas on Preliminary Eve. In contrast to the other pollutants, O3 concentrations fell instead of rising with the firework displays. Conclusion Interactions between firework displays and other human activities caused different change trends of pollutants. PM2.5 and PM10 were the main pollutants, and the rural living quarter had some of the highest pollution levels. PMID:28045925

  7. The Characteristics of Air Pollutants during Two Distinct Episodes of Fireworks Burning in a Valley City of North China.

    PubMed

    Song, Yang; Wan, Xiaoming; Bai, Shuoxin; Guo, Dong; Ren, Ci; Zeng, Yu; Li, Yirui; Li, Xuewen

    2017-01-01

    The elevation and dissipation of pollutants after the ignition of fireworks in different functional areas of a valley city were investigated. The Air Quality Index (AQI) as well as inter-day and intra-day concentrations of various air pollutants (PM10, PM2.5, SO2, NO2, CO, O3) were measured during two episodes that took place during Chinese New Year festivities. For the special terrain of Jinan, the mean concentrations of pollutants increased sharply within 2-4 h of the firework displays, and concentrations were 4-6 times higher than the usual levels. It took 2-3 d for the pollutants to dissipate to background levels. Compared to Preliminary Eve (more fireworks are ignited on New Year's Eve, but the amounts of other human activities are also lesser), the primary pollutants PM2.5, PM10, and CO reached higher concentrations on New Year's Eve, and the highest concentrations of these pollutants were detected in living quarters. All areas suffered from serious pollution problems on New Year's Eve (rural = urban for PM10, but rural > urban for PM2.5). However, SO2 and NO2 levels were 20%-60% lower in living quarters and industrial areas compared to the levels in these same areas on Preliminary Eve. In contrast to the other pollutants, O3 concentrations fell instead of rising with the firework displays. Interactions between firework displays and other human activities caused different change trends of pollutants. PM2.5 and PM10 were the main pollutants, and the rural living quarter had some of the highest pollution levels.

  8. Regression trees modeling and forecasting of PM10 air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Stoimenova, M.; Voynikova, D.; Ivanov, A.; Gocheva-Ilieva, S.; Iliev, I.

    2017-10-01

    Fine particulate matter (PM10) air pollution is a serious problem affecting the health of the population in many Bulgarian cities. As an example, the object of this study is the pollution with PM10 of the town of Pleven, Northern Bulgaria. The measured concentrations of this air pollutant for this city consistently exceeded the permissible limits set by European and national legislation. Based on data for the last 6 years (2011-2016), the analysis shows that this applies both to the daily limit of 50 micrograms per cubic meter and the allowable number of daily concentration exceedances to 35 per year. Also, the average annual concentration of PM10 exceeded the prescribed norm of no more than 40 micrograms per cubic meter. The aim of this work is to build high performance mathematical models for effective prediction and forecasting the level of PM10 pollution. The study was conducted with the powerful flexible data mining technique Classification and Regression Trees (CART). The values of PM10 were fitted with respect to meteorological data such as maximum and minimum air temperature, relative humidity, wind speed and direction and others, as well as with time and autoregressive variables. As a result the obtained CART models demonstrate high predictive ability and fit the actual data with up to 80%. The best models were applied for forecasting the level pollution for 3 to 7 days ahead. An interpretation of the modeling results is presented.

  9. Air pollution in China: Status and spatiotemporal variations.

    PubMed

    Song, Congbo; Wu, Lin; Xie, Yaochen; He, Jianjun; Chen, Xi; Wang, Ting; Lin, Yingchao; Jin, Taosheng; Wang, Anxu; Liu, Yan; Dai, Qili; Liu, Baoshuang; Wang, Ya-Nan; Mao, Hongjun

    2017-08-01

    In recent years, China has experienced severe and persistent air pollution associated with rapid urbanization and climate change. Three years' time series (January 2014 to December 2016) concentrations data of air pollutants including particulate matter (PM 2.5 and PM 10 ) and gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ) from over 1300 national air quality monitoring sites were studied to understand the severity of China's air pollution. In 2014 (2015, 2016), annual population-weighted-average (PWA) values in China were 65.8 (55.0, 50.7) μg m -3 for PM 2.5 , 107.8 (91.1, 85.7) μg m -3 for PM 10 , 54.8 (56.2, 57.2) μg m -3 for O 3 _8 h, 39.6 (33.3, 33.4) μg m -3 for NO 2 , 34.1 (26, 21.9) μg m -3 for SO 2 , 1.2 (1.1, 1.1) mg m -3 for CO, and 0.60 (0.59, 0.58) for PM 2.5 /PM 10 , respectively. In 2014 (2015, 2016), 7% (14%, 19%), 17% (27%, 34%), 51% (67%, 70%) and 88% (97%, 98%) of the population in China lived in areas that meet the level of annual PM 2.5 , PM 10 , NO 2 , and SO 2 standard metrics from Chinese Ambient Air Quality Standards-Grade II. The annual PWA concentrations of PM 2.5 , PM 10 , O 3 _8 h, NO 2 , SO 2 , CO in the Northern China are about 40.4%, 58.9%, 5.9%, 24.6%, 96.7%, and 38.1% higher than those in Southern China, respectively. Though the air quality has been improving recent years, PM 2.5 pollution in wintertime is worsening, especially in the Northern China. The complex air pollution caused by PM and O 3 (the third frequent major pollutant) is an emerging problem that threatens the public health, especially in Chinese mega-city clusters. NOx controls were more beneficial than SO 2 controls for improvement of annual PM air quality in the northern China, central, and southwest regions. Future epidemiologic studies are urgently required to estimate the health impacts associated with multi-pollutants exposure, and revise more scientific air quality index standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    PubMed

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A multi-factor designation method for mapping particulate-pollution control zones in China.

    PubMed

    Qin, Y; Xie, S D

    2011-09-01

    A multi-factor designation method for mapping particulate-pollution control zones was brought out through synthetically considering PM(10) pollution status, PM(10) anthropogenic emissions, fine particle pollution, long-range transport and economic situation. According to this method, China was divided into four different particulate-pollution control regions: PM Suspended Control Region, PM(10) Pollution Control Region, PM(2.5) Pollution Control Region and PM(10) and PM(2.5) Common Control Region, which accounted for 69.55%, 9.66%, 4.67% and 16.13% of China's territory, respectively. The PM(10) and PM(2.5) Common Control Region was mainly distributed in Bohai Region, Yangtze River Delta, Pearl River Delta, eastern of Sichuan province and Chongqing municipality, calling for immediate control of both PM(10) and PM(2.5). Cost-effective control effects can be achieved through concentrating efforts on PM(10) and PM(2.5) Common Control Region to address 60.32% of national PM(10) anthropogenic emissions. Air quality in districts belonging to PM(2.5) Pollution Control Region suggested that Chinese national ambient air quality standard for PM(10) was not strict enough. The result derived from application to China proved that this approach was feasible for mapping pollution control regions for a country with vast territory, complicated pollution characteristics and limited available monitoring data. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Associations between air pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and the Netherlands.

    PubMed

    Fecht, Daniela; Fischer, Paul; Fortunato, Léa; Hoek, Gerard; de Hoogh, Kees; Marra, Marten; Kruize, Hanneke; Vienneau, Danielle; Beelen, Rob; Hansell, Anna

    2015-03-01

    Air pollution levels are generally believed to be higher in deprived areas but associations are complex especially between sensitive population subgroups. We explore air pollution inequalities at national, regional and city level in England and the Netherlands comparing particulate matter (PM10) and nitrogen dioxide (NO2) concentrations and publicly available population characteristics (deprivation, ethnicity, proportion of children and elderly). We saw higher concentrations in the most deprived 20% of neighbourhoods in England (1.5 μg/m(3) higher PM10 and 4.4 μg/m(3) NO2). Concentrations in both countries were higher in neighbourhoods with >20% non-White (England: 3.0 μg/m(3) higher PM10 and 10.1 μg/m(3) NO2; the Netherlands: 1.1 μg/m(3) higher PM10 and 4.5 μg/m(3) NO2) after adjustment for urbanisation and other variables. Associations for some areas differed from the national results. Air pollution inequalities were mainly an urban problem suggesting measures to reduce environmental air pollution inequality should include a focus on city transport. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stochastic univariate and multivariate time series analysis of PM2.5 and PM10 air pollution: A comparative case study for Plovdiv and Asenovgrad, Bulgaria

    NASA Astrophysics Data System (ADS)

    Gocheva-Ilieva, S.; Stoimenova, M.; Ivanov, A.; Voynikova, D.; Iliev, I.

    2016-10-01

    Fine particulate matter PM2.5 and PM10 air pollutants are a serious problem in many urban areas affecting both the health of the population and the environment as a whole. The availability of large data arrays for the levels of these pollutants makes it possible to perform statistical analysis, to obtain relevant information, and to find patterns within the data. Research in this field is particularly topical for a number of Bulgarian cities, European country, where in recent years regulatory air pollution health limits are constantly being exceeded. This paper examines average daily data for air pollution with PM2.5 and PM10, collected by 3 monitoring stations in the cities of Plovdiv and Asenovgrad between 2011 and 2016. The goal is to find and analyze actual relationships in data time series, to build adequate mathematical models, and to develop short-term forecasts. Modeling is carried out by stochastic univariate and multivariate time series analysis, based on Box-Jenkins methodology. The best models are selected following initial transformation of the data and using a set of standard and robust statistical criteria. The Mathematica and SPSS software were used to perform calculations. This examination showed measured concentrations of PM2.5 and PM10 in the region of Plovdiv and Asenovgrad regularly exceed permissible European and national health and safety thresholds. We obtained adequate stochastic models with high statistical fit with the data and good quality forecasting when compared against actual measurements. The mathematical approach applied provides an independent alternative to standard official monitoring and control means for air pollution in urban areas.

  14. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    PubMed Central

    Teng, Bo; Zhang, Xuelei; Yi, Chunhui; Zhang, Yan; Ye, Shufeng; Wang, Yafang; Tong, Daniel Q.; Lu, Binfeng

    2017-01-01

    With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis) in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR) from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms), autumn (October, straw burning) and winter (November to April, coal burning). The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%), 4.9% (95% CI, 0.8%–9.2%), 8.5% (95% CI, −1.8%–19.8%) and 11.1% (95% CI, 5.8%–16.5%) for exposure to each 1-Standard Deviation (1-SD) increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs) of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4). The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations) and the prevalence of respiratory effects (allergic rhinitis) in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to address this increasingly challenging problem. PMID:28241509

  15. Particulate air pollution from combustion and construction in coastal and urban areas of China.

    PubMed

    Chen, Bing; Chen, Jinsheng; Zhao, Jinping; Zhang, Fuwang

    2011-11-01

    In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China.

  16. Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment

    PubMed Central

    Xu, Lin-Yu; Yin, Hao; Xie, Xiao-Dong

    2014-01-01

    Inhalable particulate matter (PM10) is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI) effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). With the correlation between difference vegetation index (DVI) and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144) from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones. PMID:25464132

  17. Outdoor particulate matter (PM) and associated cardiovascular diseases in the Middle East.

    PubMed

    Nasser, Zeina; Salameh, Pascale; Nasser, Wissam; Abou Abbas, Linda; Elias, Elias; Leveque, Alain

    2015-01-01

    Air pollution is a widespread environmental concern. Considerable epidemiological evidence indicates air pollution, particularly particulate matter (PM), as a major risk factor for cardiovascular diseases (CVD) in the developed countries. The main objective of our review is to assess the levels and sources of PM across the Middle East area and to search evidence for the relationship between PM exposure and CVD. An extensive review of the published literature pertaining to the subject (2000-2013) was conducted using PubMed, Medline and Google Scholar databases. We reveal that low utilization of public transport, ageing vehicle fleet and the increasing number of personal cars in the developing countries all contribute to the traffic congestion and aggravate the pollution problem. The annual average values of PM pollutants in the Middle East region are much higher than the World Health Organization 2006 guidelines (PM2.5 = 10 μg/m(3), PM10 = 20 μg/m(3)). We uncover evidence on the association between PM and CVD in 4 Middle East countries: Iran, Kingdom of Saudi Arabia, Qatar and the United Arab Emirates. The findings are in light of the international figures. Ambient PM pollution is considered a potential risk factor for platelet activation and atherosclerosis and has been found to be linked with an increased risk for mortality and hospital admissions due to CVD. This review highlights the importance of developing a strategy to improve air quality and reduce outdoor air pollution in the developing countries, particularly in the Middle East. Future studies should weigh the potential impact of PM on the overall burden of cardiac diseases. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality.

    PubMed

    Escobedo, Francisco J; Wagner, John E; Nowak, David J; De la Maza, Carmen Luz; Rodriguez, Manuel; Crane, Daniel E

    2008-01-01

    Santiago, Chile has the distinction of having among the worst urban air pollution problems in Latin America. As part of an atmospheric pollution reduction plan, the Santiago Regional Metropolitan government defined an environmental policy goal of using urban forests to remove particulate matter less than 10 microm (PM(10)) in the Gran Santiago area. We used cost effectiveness, or the process of establishing costs and selecting least cost alternatives for obtaining a defined policy goal of PM(10) removal, to analyze this policy goal. For this study, we quantified PM(10) removal by Santiago's urban forests based on socioeconomic strata and using field and real-time pollution and climate data via a dry deposition urban forest effects model. Municipal urban forest management costs were estimated using management cost surveys and Chilean Ministry of Planning and Cooperation documents. Results indicate that managing municipal urban forests (trees, shrubs, and grass whose management is under the jurisdiction of Santiago's 36 municipalities) to remove PM(10) was a cost-effective policy for abating PM(10) based on criteria set by the World Bank. In addition, we compared the cost effectiveness of managing municipal urban forests and street trees to other control policies (e.g. alternative fuels) to abate PM(10) in Santiago and determined that municipal urban forest management efficiency was similar to these other air quality improvement measures.

  19. Is smog innocuous? Air pollution and cardiovascular disease.

    PubMed

    Mishra, Sundeep

    Air pollution is a significant environmental and health hazard. Earlier studies had examined the adverse health effects associated with short- and long-term exposure to particulate matter on respiratory disease. However, later studies demonstrated that was actually cardiovascular disease that accounted for majority of mortality. Furthermore, it was not gaseous pollutants like oxides of nitrate, sulfur, carbon mono-oxide or ozone but the particulate matter or PM, of fine or coarse size (PM 2.5 and PM 10 ) which was linearly associated with mortality; PM 2.5 with long term and PM 10 with short term. Several cardiovascular diseases are associated with pollution; acute myocardial infarction, heart failure, cardiac arrhythmias, atherosclerosis and cardiac arrest. The ideal way to address this problem is by adhering to stringent environmental standards of pollutants but some individual steps like choosing to stay indoors (on high pollution days), reducing outdoor air permeation to inside, purifying indoor air using air filters, and also limiting outdoor physical activity near source of air pollution can help. Nutritional anti-oxidants like statins or Mediterranean diet, and aspirin have not been associated with reduced risk but specific nutritional agents like broccoli, cabbage, cauliflower or brussels sprouts, fish oil supplement may help. Use of face-mask has been controversial but may be useful if particulate matter load is higher. Copyright © 2017. Published by Elsevier B.V.

  20. Predictability Analysis of PM10 Concentrations in Budapest

    NASA Astrophysics Data System (ADS)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  1. Particulate matter over a seven year period in urban and rural areas within, proximal and far from mining and power station operations in Greece.

    PubMed

    Triantafyllou, A G; Zoras, S; Evagelopoulos, V

    2006-11-01

    Lignite mining operations and lignite-fired power stations result in major particulate pollution (fly ash and fugitive dust) problems in the areas surrounding these activities. The problem is more complicated, especially, for urban areas located not far from these activities, due to additional contribution from the urban pollution sources. Knowledge of the distribution of airborne particulate matter into size fraction has become an increasing area of focus when examining the effects of particulate pollution. On the other hand, airborne particle concentration measurements are useful in order to assess the air pollution levels based on national and international air quality standards. These measurements are also necessary for developing air pollutants control strategies or for evaluating the effectiveness of these strategies, especially, for long periods. In this study an attempt is made in order to investigate the particle size distribution of fly ash and fugitive dust in a heavy industrialized (mining and power stations operations) area with complex terrain in the northwestern part of Greece. Parallel total suspended particulates (TSP) and particulate matter with an aerodynamic diameter less than 10 microm (PM10) concentrations are analyzed. These measurements gathered from thirteen monitoring stations located in the greater area of interest. Spatial, temporal variation and trend are analyzed over the last seven years. Furthermore, the geographical variation of PM10 - TSP correlation and PM10/TSP ratio are investigated and compared to those in the literature. The analysis has indicated that a complex system of sources and meteorological conditions modulate the particulate pollution of the examined area.

  2. Characterization and dynamics of air pollutants in the Lower Rio Grande Valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mejia-Velazquez, G.M.; Sheya, S.A.; Dworzanski, J.

    1999-07-01

    The Lower Rio Grande Valley (LRGV) has become a region of increasing interest because of its rapid economic development and the increased international border crossing traffic, as well as for its extensive agricultural activities. Over the past few years air pollution problems in the region have been reported by the population. However, very few air quality studies have been performed in the area. In this paper some results of a study to demonstrate the feasibility of a comprehensive (criteria pollutant + VOC/SVOC + PM{sub FINE}) air pollutant dynamics characterization and modeling study in the LRGV are presented and discussed. Themore » study involved both sides of the US/Mexican border and used. A highly mobile monitoring station equipped with a broad array of physical and chemical samplers and sensors was used in the study in two periods in December, 1995 and March,1998. PM10/PM2.5 and NO{sub x} (the latter only in the March 1998 study) concentrations were measured in Reynosa, Rio Bravo and Matamoros, Mexico, as well as Hidalgo, Brownsville and along the Freeway between Brownsville and McAllen on Texas. The photochemical model predicted peak ozone concentrations that reached, and on some days exceeded, air quality standards. The concurrent PM10/PM2.5 study involved both physical (size distributed counting) and time-resolved (2-hourly) organic chemical (VOC/SVOC type PM{sub FINE} adsorbates) characterization methods. Recently completed multivariate data analysis results from a December 1995 study at one of the sites (Hidalgo international bridge) are being presented to illustrate the capabilities of the time-resolved PM{sub FINE} characterization approach. The results of this work show that the LRGV region does not appear to have grave air pollution problems yet. However, with the increase in traffic activities over the next few years, air quality is likely to deteriorate.« less

  3. [Children exposure to PM10 on the way to school: Regulatory impact of speed regulation under 30km/h].

    PubMed

    Prud'homme, J

    2018-03-01

    In Paris, air pollution is now a persistent environmental problem, especially linked to diesel cars in circulation. Exposure of children to air pollution during the journey from home to school, which takes place during peak hours of traffic, is poorly documented. The purpose of this work was to identify spaces less exposed to PM10 pollution. We identified spatial recurrences in the relative distribution of air pollution levels using PM10 geolocated measures taken along a fixed circuit, crossing, among others, a speed regulation zone (<30km/h). Measurements were made eight mornings between 8 and 9 a.m., in April and September 2016 in the 14th district of Paris. We obtained a hierarchical classification of spaces in terms of recurrence of relative levels of PM10 concentration. The cartography of the results revealed that the spaces more exposed to high concentrations were found similarly along main roads, side streets and speed regulation<30km/h) zones. These findings suggest speed regulation is insufficient to reduce individual exposure in city streets. Elements linked to the functional aspects of the street (commercial/residential) were apparently as important as traffic speed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Source apportionment analysis of air pollutants using CMAQ/BFM for national air quality management policy over Republic of Korea.

    NASA Astrophysics Data System (ADS)

    Moon, N.; Kim, S.; Seo, J.; Lee, Y. J.

    2017-12-01

    Recently, the Korean government is focusing on solving air pollution problem such as fine particulate matter and ozone. Korea has high population density and concentrated industrial complex in its limited land space. For better air quality management, it is important to understand source and contribution relation to target pollutant. The air quality analysis representing the mutual contribution among the local regions enables to understand the substantive state of the air quality of a region in association with neighboring regions. Under this background, the source apportionment of PM10, PM2.5, O3, NO2, SO2 using WRF and CMAQ/BFM was analyzed over Korea and BFM was applied to mobile, area and point sources in each local government. The contribution rate from neighboring region showed different pattern for each pollutant. In case of primary pollutants such as NO2, SO2, local source contribution is dominant, on the other hand secondary pollutants case especially O3, contribution from neighboring region is higher than that from source region itself. Local source contribution to PM10 showed 20-25% and the contribution rate to O3 has big difference with different meteorological condition year after year. From this study, we tried to estimate the conversion rate between source (NOx, VOC, SO2, NH3, PMC, PM2.5, CO) and concentration (PM10, PM2.5, O3, NO2, SO2,) by regional group over Korea. The result can contribute to the decision-making process of important national planning related to large-scale industrial developments and energy supply policies (eg., operations of coal-fired power plants and diesel cars) and emission control plan, where many controversies and concerns are currently concentrated among local governments in Korea. With this kind of approach, various environmental and social problems related to air quality can also be identified early so that a sustainable and environmentally sound plan can be established by providing data infrastructures to be utilized by central government agencies, local governments, and even private sectors.

  5. Spatiotemporal patterns of particulate matter (PM) and associations between PM and mortality in Shenzhen, China.

    PubMed

    Zhang, Fengying; Liu, Xiaojian; Zhou, Lei; Yu, Yong; Wang, Li; Lu, Jinmei; Wang, Wuyi; Krafft, Thomas

    2016-03-02

    Most studies on air pollution exposure and its associations with human health in China have focused on the heavily polluted industrial areas and/or mega-cities, and studies on cities with comparatively low air pollutant concentrations are still rare. Only a few studies have attempted to analyse particulate matter (PM) for the vibrant economic centre Shenzhen in the Pearl River Delta. So far no systematic investigation of PM spatiotemporal patterns in Shenzhen has been undertaken and the understanding of pollution exposure in urban agglomerations with comparatively low pollution is still limited. We analyze daily and hourly particulate matter concentrations and all-cause mortality during 2013 in Shenzhen, China. Temporal patterns of PM (PM2.5 and PM10) with aerodynamic diameters of 2.5 (10) μm or less (or less (including particles with a diameter that equals to 2.5 (10) μm) are studied, along with the ratio of PM2.5 to PM10. Spatial distributions of PM10 and PM2.5 are addressed and associations of PM10 or PM2.5 and all-cause mortality are analyzed. Annual average PM10 and PM2.5 concentrations were 61.3 and 39.6 μg/m(3) in 2013. PM2.5 failed to meet the Class 2 annual limit of the National Ambient Air Quality Standard. PM2.5 was the primary air pollutant, with 8.8 % of days having heavy PM2.5 pollution. The daily PM2.5/PM10 ratios were high. Hourly PM2.5 concentrations in the tourist area were lower than downtown throughout the day. PM10 and PM2.5 concentrations were higher in western parts of Shenzhen than in eastern parts. Excess risks in the number of all-cause mortality with a 10 μg/m(3) increase of PM were 0.61 % (95 % confidence interval [CI]: 0.50-0.72) for PM10, and 0.69 % (95 % CI: 0.55-0.83) for PM2.5, respectively. The greatest ERs of PM10 and PM2.5 were in 2-day cumulative measures for the all-cause mortality, 2-day lag for females and the young (0-65 years), and L02 for males and the elder (>65 years). PM2.5 had higher risks on all-cause mortality than PM10. Effects of high PM pollution on mortality were stronger in the elder and male. Our findings provide additional relevant information on air quality monitoring and associations of PM and human health, valuable data for further scientific research in Shenzhen and for the on-going discourse on improving environmental policies.

  6. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China.

    PubMed

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM 2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM 2.5 and PM 10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM 2.5 accumulation; low wind speed and high relative humidity constrained PM 10 accumulation; and short sunshine duration and high wind speed constrained O 3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  7. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    NASA Astrophysics Data System (ADS)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  8. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004.

    PubMed

    Zhang, Minsi; Song, Yu; Cai, Xuhui

    2007-04-15

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 microm (PM(10)), ranging from 141 to 166 microg m(-3) in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM(10) pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM(2.5) pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution.

  9. Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network

    NASA Astrophysics Data System (ADS)

    Balaceanu, Cristina; Iorga, Gabriela

    2010-05-01

    City of Bucharest is the largest and most populated (about 2.8 million inhabitants) city in the Romanian Plain and encounters environmental problems and meteorology typical for several cities in southeastern Europe. City environment includes intense emissions arising from traffic (about 1 million cars per day), five thermo-electrical power-generation stations, that use both natural gas and oil derivatives for power generation and domestic heating, and from industrial sources (more than 800 small and medium plants). In the present work we performed an extensive analysis of the air pollution state for the Bucharest area (inside and outside the city) using filter measurement aerosol data PM10 and PM2.5. Data spanning over first year of continuous sampling (2005) were taken from the city Air Quality Monitoring Network, which consists of eight sampling stations: three industrial and two traffic, one EPA urban background, one suburban and one regional station located outside of Bucharest. The objective was to assess the PM10 recorded levels and their degree of compliance with the EU-legislated air quality standards and to provide a statistical investigation of the factors controlling seasonal and spatial variations of PM levels. PM10 relationships with other measured air pollutants (SO2, CO, NOx) and meteorological parameters (temperature, relative humidity, atmospheric pressure, wind velocity and direction) were investigated by statistical analysis. Back trajectory modeling and wind direction frequency distributions were used to identify the origin of the polluted air masses. Contribution of combustion (slopes) and non-combustion (intercepts) sources to PM10 recorded levels was quantified by linear analysis, for two seasonal periods: cold (15 October-14 April) and warm (15 April-14 October). PM10 and PM2.5 concentrations were compared with corresponding values in other European urban areas. Main conclusions are as follows: Traffic and industrial sites contribute to the PM10 urban background with about 86%; relative contribution of urban background to regional background is about 37%; Relatively low inter-sites correlation coefficients and no significant geographic differences between sites, more or less uniform traffic pattern suggests local sources may play an important role; PM10average and median values systematically exceed the limit value of 50 ?g/m3 at traffic and industrial sites; at background sites the PM10 are below 50?g/m3 but are higher that values at similar sites in Europe; CO and SO2 do not put serious problems relative to their limits values as NOx does; NOx shows a temporal variation with higher values during the cold season; All gaseous pollutants contribute to the PM10 levels but a significant inter-annual variation of this contribution seems not to be observed; Pollution level in Bucharest seems to be higher than in other European cities for traffic, industrial and suburban background sites; regional background in the larger area of Bucharest seems to be similar with the suburban background sites in other European sites. Seven pollution episodes were identified, from which only one in the cold season has been attributed to the long-range transport. During this episode PM10 levels varied between 161-205 ?g/m3 for all sites, the dominant wind direction was NE (10.2%), with an average wind speed of 1.6 m/s. This shows that local pollution sources seem to have more impact on AQ than the long-range transport. Data presented here give an overview of the range of air pollution concentrations to expect under typical meteorological and seasonal conditions in the larger area of Bucharest. Acknowledgements: Dr. Ing. Danut Cociorva, Leader of the Air Quality Control Group-NIRD-ICIM Bucharest, is gratefully acknowledged for his permission to analyse the data. The air mass back trajectories were calculated using HYSPLIT transport and dispersion model: www.arl.noaa.gov/ ready.html. Financial support from ÖAD Austria, Programm WTZ, Project No: RO 02/2009 and from ANCS Romania, Programm PN II, Contract No: 304/27.04.2009 is gratefully acknowledged.

  10. [Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City].

    PubMed

    Zhang, Qiu-Chen; Zhu, Bin; Su, Ji-Feng; Wang, Hong-Lei

    2012-06-01

    In order to compare aerosol water-soluble inorganic species in different air-pollution periods, samples of PM10, PM2.1, PM1.1 and the main water-soluble ions (NH4+, Mg2+, Ca2+, Na+, K+, NO2(-), F(-), NO3(-), Cl(-), SO4(2-)) were measured, which were from 3 air-pollution incidents (continued pollution in October 16-30 of 2009, sandstorm pollution in April 27-30 of 2010, and crop burning pollution in June 14 of 2010. The results show that aerosol pollution of 3 periods is serious. The lowest PM2.1/PM10 is only 0.27, which is from sandstorm pollution period, while the largest is 0. 7 from crop burning pollution period. In continued pollution periods, NO3(-) and SO4(2-) are the dominant ions, and the total anions account for an average of 18.62%, 32.92% and 33.53% of PM10, PM2.1 and PM1.1. Total water-soluble ions only account for 13.36%, 23.72% and 28.54% of PM10, PM2.1 and PM1.1 due to the insoluble species is increased in sandstorm pollution period. The mass concentration of Ca2+ in sandstorm pollution period is higher than the other two pollution periods, and which is mainly in coarse particles with diameter larger than 1 microm. All the ten water-soluble ions are much higher in crop burning pollution especially K+ which is the tracer from crop burning. The peak mass concentrations of NO3(-), SO4(2-) and NH4+ are in 0.43-0.65 microm.

  11. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  12. Survey on air pollution and cardiopulmonary mortality in shiraz from 2011 to 2012: an analytical-descriptive study.

    PubMed

    Dehghani, Mansooreh; Anushiravani, Amir; Hashemi, Hassan; Shamsedini, Narges

    2014-06-01

    Expanding cities with rapid economic development has resulted in increased energy consumption leading to numerous environmental problems for their residents. The aim of this study was to investigate the correlation between air pollution and mortality rate due to cardiovascular and respiratory diseases in Shiraz. This is an analytical cross-sectional study in which the correlation between major air pollutants (including carbon monoxide [CO], sulfur dioxide [SO2], nitrogen dioxide [NO2] and particle matter with a diameter of less than 10 μ [PM10]) and climatic parameters (temperature and relative humidity) with the number of those whom expired from cardiopulmonary disease in Shiraz from March 2011 to January 2012 was investigated. Data regarding the concentration of air pollutants were determined by Shiraz Environmental Organization. Information about climatic parameters was collected from the database of Iran's Meteorological Organization. The number of those expired from cardiopulmonary disease in Shiraz were provided by the Department of Health, Shiraz University of Medical Sciences. We used non-parametric correlation test to analyze the relationship between these parameters. The results demonstrated that in all the recorded data, the average monthly pollutants standard index (PSI) values of PM10 were higher than standard limits, while the average monthly PSI value of NO2 were lower than standard. There was no significant relationship between the number of those expired from cardiopulmonary disease and the air pollutant (P > 0.05). Air pollution can aggravate chronic cardiopulmonary disease. In the current study, one of the most important air pollutants in Shiraz was the PM10 component. Mechanical processes, such as wind blowing from neighboring countries, is the most important parameter increasing PM10 in Shiraz to alarming conditions. The average monthly variation in PSI values of air pollutants such as NO2, CO, and SO2 were lower than standard limits. Moreover, there was no significant correlation between the average monthly variation in PSI of NO2, CO, PM10, and SO2 and the number of those expired from cardiopulmonary disease in Shiraz.

  13. Traffic-related air pollution and hyperactivity/inattention, dyslexia and dyscalculia in adolescents of the German GINIplus and LISAplus birth cohorts.

    PubMed

    Fuertes, Elaine; Standl, Marie; Forns, Joan; Berdel, Dietrich; Garcia-Aymerich, Judith; Markevych, Iana; Schulte-Koerne, Gerd; Sugiri, Dorothea; Schikowski, Tamara; Tiesler, Carla M T; Heinrich, Joachim

    2016-12-01

    Few studies have examined the link between air pollution exposure and behavioural problems and learning disorders during late childhood and adolescence. To determine whether traffic-related air pollution exposure is associated with hyperactivity/inattention, dyslexia and dyscalculia up to age 15years using the German GINIplus and LISAplus birth cohorts (recruitment 1995-1999). Hyperactivity/inattention was assessed using the German parent-completed (10years) and self-completed (15years) Strengths and Difficulties Questionnaire. Responses were categorized into normal versus borderline/abnormal. Parent-reported dyslexia and dyscalculia (yes/no) at age 10 and 15years were defined using parent-completed questionnaires. Individual-level annual average estimates of nitrogen dioxide (NO 2 ), particulate matter (PM) 10 mass, PM 2.5 mass and PM 2.5 absorbance concentrations were assigned to each participant's birth, 10year and 15year home address. Longitudinal associations between the air pollutants and the neurodevelopmental outcomes were assessed using generalized estimation equations, separately for both study areas, and combined in a random-effects meta-analysis. Odds ratios and 95% confidence intervals are given per interquartile range increase in pollutant concentration. The prevalence of abnormal/borderline hyperactivity/inattention scores and parental-reported dyslexia and dyscalculia at 15years of age was 12.9%, 10.5% and 3.4%, respectively, in the combined population (N=4745). In the meta- analysis, hyperactivity/inattention was associated with PM 2.5 mass estimated to the 10 and 15year addresses (1.12 [1.01, 1.23] and 1.11 [1.01, 1.22]) and PM 2.5 absorbance estimated to the 10 and 15year addresses (1.14 [1.05, 1.25] and 1.13 [1.04, 1.23], respectively). We report associations suggesting a potential link between air pollution exposure and hyperactivity/inattention scores, although these findings require replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality

    Treesearch

    Francisco J. Escobedo; John E. Wagner; David J. Nowak; Carmen Luz De la Maza; Manuel Rodriguez; Daniel E. Crane

    2008-01-01

    Santiago, Chile has the distinction of having among the worst urban air pollution problems in Latin America. As part of an atmospheric pollution reduction plan, the Santiago Regional Metropolitan government defined an environmental policy goal of using urban forests to remove particulate matter less than 10 µm (PM10) in the Gran...

  15. Monitoring of cotton dust and health risk assessment in small-scale weaving industry.

    PubMed

    Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar

    2012-08-01

    The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).

  16. Air Pollution and Suicide in 10 Cities in Northeast Asia: A Time-Stratified Case-Crossover Analysis.

    PubMed

    Kim, Yoonhee; Ng, Chris Fook Sheng; Chung, Yeonseung; Kim, Ho; Honda, Yasushi; Guo, Yue Leon; Lim, Youn-Hee; Chen, Bing-Yu; Page, Lisa A; Hashizume, Masahiro

    2018-03-06

    There is growing evidence suggesting an association between air pollution and suicide. However, previous findings varied depending on the type of air pollutant and study location. We examined the association between air pollutants and suicide in 10 large cities in South Korea, Japan, and Taiwan. We used a two-stage meta-analysis. First, we conducted a time-stratified case-crossover analysis to estimate the short-term association between nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter [aerodynamic diameter ≤10μm (PM 10 ), aerodynamic diameter ≤2.5μm (PM 2.5 ), and PM 10–2.5 ] and suicide, adjusted for weather factors, day-of-week, long-term time trends, and season. Then, we conducted a meta-analysis to combine the city-specific effect estimates for NO 2 , SO 2 , and PM 10 across 10 cities and for PM 2.5 and PM 10–2.5 across 3 cities. We first fitted single-pollutant models, followed by two-pollutant models to examine the robustness of the associations. Higher risk of suicide was associated with higher levels of NO 2 , SO 2 , PM 10 , and PM 10–2.5 over multiple days. The combined relative risks (RRs) were 1.019 for NO 2 (95% confidence interval [CI]: 0.999, 1.039), 1.020 for SO 2 (95% CI: 1.005, 1.036), 1.016 for PM 10 (95% CI: 1.004, 1.029), and 1.019 for PM 10–2.5 (95% CI: 1.005, 1.033) per interquartile range (IQR) increase in the 0-1 d average level of each pollutant. We found no evidence of an association for PM 2.5 . Some of the associations, particularly for SO 2 and NO 2 , were attenuated after adjusting for a second pollutant. Our findings suggest that higher levels of air pollution may be associated with suicide, and further research is merited to understand the underlying mechanisms. https://doi.org/10.1289/EHP2223.

  17. Associations between air pollution and mortality in Phoenix, 1995-1997.

    PubMed Central

    Mar, T F; Norris, G A; Koenig, J Q; Larson, T V

    2000-01-01

    We evaluated the association between mortality outcomes in elderly individuals and particulate matter (PM) of varying aerodynamic diameters (in micrometers) [PM(10), PM(2.5), and PM(CF )(PM(10) minus PM(2.5))], and selected particulate and gaseous phase pollutants in Phoenix, Arizona, using 3 years of daily data (1995-1997). Although source apportionment and epidemiologic methods have been previously combined to investigate the effects of air pollution on mortality, this is the first study to use detailed PM composition data in a time-series analysis of mortality. Phoenix is in the arid Southwest and has approximately 1 million residents (9. 7% of the residents are > 65 years of age). PM data were obtained from the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory Platform in central Phoenix. We obtained gaseous pollutant data, specifically carbon monoxide, nitrogen dioxide, ozone, and sulfur dioxide data, from the EPA Aerometric Information Retrieval System Database. We used Poisson regression analysis to evaluate the associations between air pollution and nonaccidental mortality and cardiovascular mortality. Total mortality was significantly associated with CO and NO(2) (p < 0.05) and weakly associated with SO(2), PM(10), and PM(CF) (p < 0. 10). Cardiovascular mortality was significantly associated with CO, NO(2), SO(2), PM(2.5), PM(10), PM(CF) (p < 0.05), and elemental carbon. Factor analysis revealed that both combustion-related pollutants and secondary aerosols (sulfates) were associated with cardiovascular mortality. PMID:10753094

  18. Long-term exposure to air pollution and the risk of suicide death: A population-based cohort study.

    PubMed

    Min, Jin-Young; Kim, Hye-Jin; Min, Kyoung-Bok

    2018-07-01

    Suicide is a major public health problem. Previous studies have reported a significant association between acute exposure to air pollution and suicide; little attention has been paid to the long-term effects of air pollution on risk of suicide. We investigated whether long-term exposure to particulate matter of ≤10μm in diameter (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) would be associated with a greater risk of death by suicide. The study sample comprised 265,749 adults enrolled in the National Health Insurance Service-National Sample Cohort (2002-2013) in South Korea. Suicide death was defined as per ICD-10 code. Data on air pollution exposure used nationwide monitoring data, and individual exposure levels were assigned using geographic information systems. Air pollution exposure was categorized as the interquartile range (IQR) and quartiles. Hazards ratios (HRs) were calculated for the occurrence of suicide death after adjusting for potential covariates. During the study period, 564 (0.2%) subjects died from suicide. Increases in IQR pollutants (7.5μg/m 3 for PM 10 , 11.8ppb for NO 2 , and 0.8ppb for SO 2 ) significantly increased HR for suicide death [PM 10 : HR=3.09 (95% CI: 2.63-3.63); NO 2 : HR=1.33 (95% CI: 1.09-1.64); and SO 2 : HR=1.15 (95% CI: 1.07-1.24)]. Compared with the lowest level of air pollutants (Quartile 1), the risk of suicide significantly increased in the highest quartile level (Quartile 4) for PM 10 (HR=4.03; 95% CI: 2.97-5.47) and SO 2 (HR=1.65; 95% CI: 1.29-2.11) and in the third quartile for NO 2 (HR=1.52; 95% CI: 1.17-1.96). HRs for subjects with a physical or mental disorder were higher than that those for subjects without the disorder. Subjects living in metropolitan areas were more vulnerable to long-term PM 10 exposure than those living in non-metropolitan areas. Long-term exposure to air pollution was associated with a significantly increased risk of suicide death. People having underlying diseases or living in metropolitan areas may be more susceptible to high air pollution exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Multicontaminant air pollution in Chinese cities

    PubMed Central

    Han, Lijian; Zhou, Weiqi; Pickett, Steward TA; Li, Weifeng; Qian, Yuguo

    2018-01-01

    Abstract Objective To investigate multicontaminant air pollution in Chinese cities, to quantify the urban population affected and to explore the relationship between air pollution and urban population size. Methods We obtained data for 155 cities with 276 million inhabitants for 2014 from China's air quality monitoring network on concentrations of fine particulate matter measuring under 2.5 μm (PM2.5), coarse particulate matter measuring 2.5 to 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone (O3). Concentrations were considered as high, if they exceeded World Health Organization (WHO) guideline limits. Findings Overall, 51% (142 million) of the study population was exposed to mean annual multicontaminant concentrations above WHO limits – east China and the megacities were worst affected. High daily levels of four-contaminant mixtures of PM2.5, PM10, SO2 and O3 and PM2.5, PM10, SO2 and NO2 occurred on up to 110 days in 2014 in many cities, mainly in Shandong and Hebei Provinces. High daily levels of PM2.5, PM10 and SO2 occurred on over  146 days in 110 cities, mainly in east and central China. High daily levels of mixtures of PM2.5 and PM10, PM2.5 and SO2, and PM10 and SO2 occurred on over  146 days in 145 cities, mainly in east China. Surprisingly, multicontaminant air pollution was less frequent in cities with populations over 10 million than in smaller cities. Conclusion Multicontaminant air pollution was common in Chinese cities. A shift from single-contaminant to multicontaminant evaluations of the health effects of air pollution is needed. China should implement protective measures during future urbanization. PMID:29695880

  20. Association between air pollution and cardiovascular mortality in Hefei, China: A time-series analysis.

    PubMed

    Zhang, Chao; Ding, Rui; Xiao, Changchun; Xu, Yachun; Cheng, Han; Zhu, Furong; Lei, Ruoqian; Di, Dongsheng; Zhao, Qihong; Cao, Jiyu

    2017-10-01

    In recent years, air pollution has become an alarming problem in China. However, evidence on the effects of air pollution on cardiovascular mortality is still not conclusive to date. This research aimed to assess the short-term effects of air pollution on cardiovascular morbidity in Hefei, China. Data of air pollution, cardiovascular mortality, and meteorological characteristics in Hefei between 2010 and 2015 were collected. Time-series analysis in generalized additive model was applied to evaluate the association between air pollution and daily cardiovascular mortality. During the study period, the annual average concentration of PM 10, SO 2 , and NO 2 was 105.91, 20.58, and 30.93 μg/m 3 , respectively. 21,816 people (including 11,876 man, and 14,494 people over 75 years of age) died of cardiovascular diseases. In single pollutant model, the effects of multi-day exposure were greater than single-day exposure of the air pollution. For every increase of 10 μg/m 3 in SO 2 , NO 2 , and PM 10 levels, CVD mortality increased by 5.26% (95%CI: 3.31%-7.23%), 2.71% (95%CI: 1.23%-4.22%), and 0.68% (95%CI: 0.33%-1.04%) at a lag03, respectively. The multi-pollutant models showed that PM 10 and SO 2 remained associated with CVD mortality, although the effect estimates attenuated. However, the effect of NO 2 on CVD mortality decreased to statistically insignificant. Subgroup analyses further showed that women were more vulnerable than man upon air pollution exposure. These findings showed that air pollution could significantly increase the CVD mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Overall human mortality and morbidity due to exposure to air pollution.

    PubMed

    Samek, Lucyna

    2016-01-01

    Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. ASSOCIATIONS BETWEEN AIR POLLUTION AND MORTALITY IN PHOENIX, 1995-1997

    EPA Science Inventory

    We evaluated the association between mortality outcomes in elderly individuals and particulate matter (PM) of varying aerodynamic diameters (in micrometers) [PM10, PM2.5, and PMCF (PM10 minus PM2.5)], and selected particulate and gaseous phase pollutants in Phoenix, Arizona, us...

  3. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Gallardo, Laura; Osses, Axel E.; Mena-Carrasco, Marcelo A.; Pagowski, Mariusz

    2011-05-01

    This study presents a system to predict high pollution events that develop in connection with enhanced subsidence due to coastal lows, particularly in winter over Santiago de Chile. An accurate forecast of these episodes is of interest since the local government is entitled by law to take actions in advance to prevent public exposure to PM10 concentrations in excess of 150 μg m -3 (24 h running averages). The forecasting system is based on accurately simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate, since during episodes and within the city there is a high correlation (over 0.95) among these pollutants. Thus, by accurately forecasting CO, which behaves closely to a tracer on this scale, a PM estimate can be made without involving aerosol-chemistry modeling. Nevertheless, the very stable nocturnal conditions over steep topography associated with maxima in concentrations are hard to represent in models. Here we propose a forecast system based on the WRF-Chem model with optimum settings, determined through extensive testing, that best describe both meteorological and air quality available measurements. Some of the important configurations choices involve the boundary layer (PBL) scheme, model grid resolution (both vertical and horizontal), meteorological initial and boundary conditions and spatial and temporal distribution of the emissions. A forecast for the 2008 winter is performed showing that this forecasting system is able to perform similarly to the authority decision for PM10 and better than persistence when forecasting PM10 and PM2.5 high pollution episodes. Problems regarding false alarm predictions could be related to different uncertainties in the model such as day to day emission variability, inability of the model to completely resolve the complex topography and inaccuracy in meteorological initial and boundary conditions. Finally, according to our simulations, emissions from previous days dominate episode concentrations, which highlights the need for 48 h forecasts that can be achieved by the system presented here. This is in fact the largest advantage of the proposed system.

  4. Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: analysis of the daylight saving time effect.

    PubMed

    Muñoz, Ricardo C

    2012-06-01

    Daylight saving time (DST) is a common practice in many countries, in which Official Time (OT) is abruptly shifted 1 hour with respect to solar time on two occasions every year (in fall and spring). All anthropogenic emitting processes tied to OT like job and school commuting traffic, abruptly change in this moment their timing with respect to solar time, inducing a sudden shift between emissions and the meteorological factors that control the dispersion and transport of air pollutants. Analyzing 13 years of hourly particulate matter (PM10) concentrations measured in Santiago, Chile, we demonstrate that the DST practice has observable non-trivial effects in the PM10 diurnal cycle. The clearest impact is in the morning peak of PM10 during the fall DST change, which occurs later and has on average a significant smaller magnitude in the days after the DST change as compared to the days before it. This decrease in magnitude is most remarkable because it occurs in a period of the year when overall PM10 concentrations increase due to generally worsening of the dispersion conditions. Results are shown for seven monitoring stations around the city, and for the fall and spring DST changes. They show clearly the interplay of emissions and meteorology in conditioning urban air pollution problems, highlighting the role of the morning and evening transitions of the atmospheric boundary layer in shaping the diurnal pattern of urban air pollutant concentrations.

  5. Assessment, analysis and appraisal of road traffic noise pollution in Rourkela city, India.

    PubMed

    Goswami, Shreerup; Swain, Bijay Kumar; Panda, Santosh Kumar

    2013-09-01

    The problem of road traffic noise pollution has become a concern for both the public and the policy makers. Noise level was assessed in 12 different squares of Rourkela city during different specified times (7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m., 7-10 p.m., 10 p.m.-12 midnight and 4-6 a.m.). Noise descriptors such as L,eq, traffic noise index, noise pollution level, noise climate, Lday, Levening, Lnight and Lden were assessed to reveal the extent of noise pollution due to heavy traffic in this city. The equivalent noise levels of all the 12 squares were found to be much beyond the permissible limit (70dB during day time and 55dB during night time). Appallingly, even the minimum L eq and NPL values were more than 82 dB and 96 dB during day time and 69 dB and 91 dB during night time respectively. Lden values of investigated squares ranged from 83.4 to 86.1 dB and were even more than the day time permissible limit of traffic noise. The prediction model was used in the present study to predict noise pollution level instead of Leq. Comparison of predicted with that of the actual measured data demonstrated that the model used for the prediction has the ability to calibrate the multicomponent traffic noise and yield reliable results close to that by direct measurement. Lastly, it is inferred that the dimension of the traffic generated noise pollution in Rourkela is critical.

  6. Modelling the emissions from ships in ports and their impact on air quality in the metropolitan area of Hamburg

    NASA Astrophysics Data System (ADS)

    Ramacher, Martin; Karl, Matthias; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-04-01

    Exhaust emissions from shipping contribute significantly to the anthropogenic burden of air pollutants such as nitrogen oxides (NOX) and particulate matter (PM). Ships emit not only when sailing on open sea, but also when approaching harbors, during port manoeuvers and at berth to produce electricity and heat for the ship's operations. This affects the population of harbor cities because long-term exposure to PM and NOX has significant effects on human health. The European Union has therefore has set air quality standards for air pollutants. Many port cities have problems meeting these standards. The port of Hamburg with around 10.000 ship calls per year is Germany's largest seaport and Europe's second largest container port. Air quality standard reporting in Hamburg has revealed problems in meeting limits for NO2 and PM10. The amount and contribution of port related ship emissions (38% for NOx and 17% for PM10) to the overall emissions in the metropolitan area in 2005 [BSU Hamburg (2012): Luftreinhalteplan für Hamburg. 1. Fortschreibung 2012] has been modelled with a bottom up approach by using statistical data of ship activities in the harbor, technical vessel information and specific emission algorithms [GAUSS (2008): Quantifizierung von gasförmigen Emissionen durch Maschinenanlagen der Seeschiffart an der deutschen Küste]. However, knowledge about the spatial distribution of the harbor ship emissions over the city area is crucial when it comes to air quality standards and policy decisions to protect human health. Hence, this model study examines the spatial distribution of harbor ship emissions (NOX, PM10) and their deposition in the Hamburg metropolitan area. The transport and chemical transformation of atmospheric pollutants is calculated with the well-established chemistry transport model TAPM (The Air Pollution Model). TAPM is a three-dimensional coupled prognostic meteorological and air pollution model with a condensed chemistry scheme including photochemistry. The model was applied to the Hamburg metropolitan area with a setup of 30 x 30 grid cells of 1 km² each and 30 vertical grid levels from 10 to 8,000 m, for a time period of one year. Emission inventories for traffic, industry, households and ships in 2013 were generated. To investigate the dispersion of ship emissions to air pollution two different model runs for 2013 were performed; one model run including land-based emissions and the ship emissions and a model run just including the land-based emissions. The modelling results were evaluated with air quality data from the monitoring station network of Hamburg (luft.hamburg.de). The results are presented in form of spatial distribution maps for the Hamburg metropolitan area highlighting the pollutants (PM and NOX) originating from harbor residential ships.

  7. Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope CA, I.I.I.

    This study assessed the association between respiratory hospital admissions and PM10 pollution in Utah, Salt Lake, and Cache valleys during April 1985 through March 1989. Utah and Salt Lake valleys had high levels of PM10 pollution that violated both the annual and 24-h standards issued by the Environmental Protection Agency (EPA). Much lower PM10 levels occurred in the Cache Valley. Utah Valley experienced the intermittent operation of its primary source of PM10 pollution: an integrated steel mill. Bronchitis and asthma admissions for preschool-age children were approximately twice as frequent in Utah Valley when the steel mill was operating versus whenmore » it was not. Similar differences were not observed in Salt Lake or Cache valleys. Even though Cache Valley had higher smoking rates and lower temperatures in winter than did Utah Valley, per capita bronchitis and asthma admissions for all ages were approximately twice as high in Utah Valley. During the period when the steel mill was closed, differences in per capita admissions between Utah and Cache valleys narrowed considerably. Regression analysis also demonstrated a statistical association between respiratory hospital admissions and PM10 pollution. The results suggest that PM10 pollution plays a role in the incidence and severity of respiratory disease.« less

  8. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources

    NASA Astrophysics Data System (ADS)

    Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting

    2014-02-01

    Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.

  9. Size-fractionated PM10 monitoring in relation to the contribution of endotoxins in different polluted areas

    NASA Astrophysics Data System (ADS)

    Traversi, D.; Alessandria, L.; Schilirò, T.; Gilli, G.

    2011-07-01

    Particulate pollution is an environmental concern that is widespread and difficult to resolve. Recently various regulatory improvements around the world have been agreed upon to tackle this problem, especially as related to the fine fraction of particulates, which more closely correlates to human health effects than other fractions. The size-fractionation of inhalable particles and their organic composition represent a new area of research that has been poorly explored thus far. Endotoxins are a type of natural organic compound that can be found in particulate matter. They are correlated with Gram-negative bacterial contamination. Health outcomes associated with exposure to these toxins are not specific and often overlap with the health effects of PM (Particulate Matter) exposure, including asthma, bronchitis, acute respiratory distress syndrome and organic dust toxic syndrome. Very little information is available on the endotoxin distribution in different PM10 size fractions. This study examined PM10 size fractions and their endotoxin content. Sampling was conducted at five different locations: one urban, two rural and two rural sites that were highly influenced by large-scale farm animal production facilities. For each location, six different PM10 fractions were evaluated. PM10 sub-fractions were categorised as follows: PM 10-7.2 (1.15-31.30 μg m -3); PM 7.2-3.0 (1.86-30.73 μg m -3); PM 3.0-1.5 (1.74-13.90 μg m -3); PM 1.5-0.95 (0.24-10.57 μg m -3); PM 0.95-0.49 (1.22-14.33 μg m -3) and PM <0.49 (13.15-85.49 μg m -3). The ranges of endotoxin levels determined were: PM 10-7.2 (0.051-5.401 endotoxin units (EU) m -3); PM 7.2-3.0 (0.123-7.801 EU m -3); PM 3.0-1.5 (0.057-1.635 EU m -3); PM 1.5-0.95 (0.040-2.477 EU m -3); PM 0.95-0.49 (0.007-3.159 EU m -3) and PM <0.49 (0.039-3.975 EU m -3). Our results indicated consistency of the PM1 fraction at all of the sites and the predominant presence of endotoxins in the coarse fraction. The observed abatement of the PM10 and endotoxin levels was very high (above 1:10) as little as 50 m from the pollution source. This kind of model is useful to both improve our knowledge about PM10 endotoxin distribution and to evaluate the potential risks for the health of neighbouring populations.

  10. Perception and reality of particulate matter exposure in New York City taxi drivers

    PubMed Central

    Gany, Francesca; Bari, Sehrish; Prasad, Lakshmi; Leng, Jennifer; Lee, Trevor; Thurston, George D; Gordon, Terry; Acharya, Sudha; Zelikoff, Judith T

    2017-01-01

    Background Exposure to fine particulate matter (PM2.5) and black carbon (BC) have been linked to negative health risks, but exposure among professional taxi drivers is unknown. This study measured drivers' knowledge, attitudes, and beliefs (KAB) about air pollution compared to direct measures of exposures. Methods Roadside and in-vehicle levels of PM2.5 and BC were continuously measured over a single shift and compared to central site monitoring. Participants completed an air pollution KAB questionnaire. Results Taxicab PM2.5 and BC concentrations were elevated compared to central monitoring. Average PM2.5 concentrations per 15-minute interval were 4 - 49 μg/m3; 1-minute peaks measured up to 452 μg/m3. BC levels were also elevated; reaching > 10 μg/m3. 56 of 100 drivers surveyed believed they were more exposed than non-drivers; 81 believed air pollution causes health problems. Conclusions Air pollution exposure among drivers likely exceeds EPA recommendations. Future studies should focus on reducing exposures and increasing awareness among taxi drivers. PMID:27168392

  11. Carotid Intima-Media Thickness and Long-Term Exposure to Traffic-Related Air Pollution in Middle-Aged Residents of Taiwan: A Cross-Sectional Study.

    PubMed

    Su, Ta-Chen; Hwang, Juey-Jen; Shen, Yu-Cheng; Chan, Chang-Chuan

    2015-08-01

    Associations between long-term exposure to air pollution and carotid intima-media thickness (CIMT) have inconsistent findings. In this study we aimed to evaluate association between 1-year average exposure to traffic-related air pollution and CIMT in middle-aged adults in Asia. CIMT was measured in Taipei, Taiwan, between 2009 and 2011 in 689 volunteers 35-65 years of age who were recruited as the control subjects of an acute coronary heart disease cohort study. We applied land-use regression models developed by the European Study of Cohorts for Air Pollution Effects (ESCAPE) to estimate each subject's 1-year average exposure to traffic-related air pollutants with particulate matter diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and the absorbance levels of PM2.5 (PM2.5abs), nitrogen dioxide (NO2), and nitrogen oxides (NOx) in the urban environment. One-year average air pollution exposures were 44.21 ± 4.19 μg/m3 for PM10, 27.34 ± 5.12 μg/m3 for PM2.5, and (1.97 ± 0.36) × 10-5/m for PM2.5abs. Multivariate regression analyses showed average percentage increases in maximum left CIMT of 4.23% (95% CI: 0.32, 8.13) per 1.0 × 10-5/m increase in PM2.5abs; 3.72% (95% CI: 0.32, 7.11) per 10-μg/m3 increase in PM10; 2.81% (95% CI: 0.32, 5.31) per 20-μg/m3 increase in NO2; and 0.74% (95% CI: 0.08, 1.41) per 10-μg/m3 increase in NOx. The associations were not evident for right CIMT, and PM2.5 mass concentration was not associated with the outcomes. Long-term exposures to traffic-related air pollution of PM2.5abs, PM10, NO2, and NOx were positively associated with subclinical atherosclerosis in middle-aged adults.

  12. Dynamics of PM2.5 and its Chemical Components During 2015 Spring Festival Period in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wei, J.; Tang, A.; Zheng, A.; Liu, X.

    2016-12-01

    Air pollution especially PM2.5 (particles with aerodynamic diameter smaller than 2.5 µm) pollution is a serious problem in Beijing, a megacity in China. In order to quantify the status of PM2.5 pollution as affected by holiday pollution events, we collected and analyzed in urban Beijing during the 2015 Spring Festival period (from February 9th to March 6th 2015). We divided the Spring Festival period into three types of pollution days: normal, haze and fireworks days. The air quality in fireworks and haze days were both substantially worse than that in normal days. The average mass concentration of PM2.5 in fireworks days was 248.9 μg m-3, which was followed by haze days (199.9 μg m-3), and normal days (90.8 μg m-3). Secondary inorganic ions (SO42-, NO3- and NH4+) were enriched in haze days, while the ions of PM2.5 in fireworks days showed high Cl- and K+, but low NO3- and NH4+. Ratios of NO3- /SO42-, SO42-/K+ and Cl- /K+ effective distinguish the characteristics of PM2.5 between fireworks events and haze days. Ion balance calculations indicate that the acidity of PM2.5 from fireworks days was higher than those from haze and normal days. Al, Ca, Fe, and S were the dominant elements in normal days. The concentrations of As, Ba, Cd, Cr, Cu, Pb, S, Se and Zn in haze days were 2.1-10.4 times higher than that in normal days. But fireworks days caused increases in the concentrations of typical fireworks elements Al, Mg, S, Ba, Cu, Pb, Sr, and Zn. It is obvious that the levels of these pollution elements during fireworks days were 1.6-18.6 times higher than that in haze days. A method using EF has been found that fireworks elements (EF>10 in fireworks days, significantly higher than haze days) were made up of Ba, Cr, Cu, Mg, Pb, S, Si, Zn, and common anthropogenic pollution elements (EF>10 in all three sections), such as As, Cd, Cu, Pb, S, Sb, Zn, which would be mainly originated from anthropogenic sources. Therefore reducing anthropogenic reactive N and other pollutants emissions is crucial to tackle PM2.5 pollution in Beijing during traditional festival period.

  13. Associations of short-term exposure to air pollution with respiratory hospital admissions in Arak, Iran.

    PubMed

    Vahedian, Mostafa; Khanjani, Narges; Mirzaee, Moghaddameh; Koolivand, Ali

    2017-01-01

    Ambient air pollution, is one of the most frequently stated environmental problems. Many epidemiological studies have documented adverse health effects for ambient air pollution. This study aimed to investigate the association between ambient air pollution and respiratory hospital admissions. In this ecological time series study data about air pollutant concentrations including CO, NO 2 , O 3 , PM 2.5 , PM 10 and SO 2 and, respiratory hospital admissions in the urban population of Arak, from January 1st 2010 to December 31st 2015; were inquired, from the Arak Department of Environment, and two major hospitals, respectively. Meteorological data were inquired for the same period as well. Time-series regression analysis with a distributed lag model, controlled for seasonality long-time trends, weather and day of the week, was used for data analysis. Every 10 μg/m 3 increase in NO 2 , and PM 10 and every 1 mg/m 3 increase in CO at lag 0 corresponded to a RR = 1.032 (95%CI, 1.003-1.06), RR = 1.01 (95%CI, 1.004-1.017) and RR = 1.09 (95%CI, 1.04-1.14), increase in respiratory disease hospitalizations, respectively. Males and the elderly were found to be more susceptible than females and other age groups to air pollutants in regard to respiratory disease admissions. The results of this study showed that outdoor air pollutants significantly increase respiratory hospital admissions; especially among the men and elders in Arak.

  14. Acute health effects of PM10 pollution on symptomatic and asymptomatic children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C.A. 3d.; Dockery, D.W.

    1992-05-01

    This study assessed the association between daily changes in respiratory health and respirable particulate pollution (PM10) in Utah Valley during the winter of 1990-1991. During the study period, 24-h PM10 concentrations ranged from 7 to 251 micrograms/m3. Participants included symptomatic and asymptomatic samples of fifth- and sixth-grade students. Relatively small but statistically significant (p less than 0.01) negative associations between peak expiratory flow (PEF) and PM10 were observed for both the symptomatic and asymptomatic samples. The association was strongest for the symptomatic children. Large associations between the incidence of respiratory symptoms, especially cough, and PM10 pollution were also observed formore » both samples. Again the association was strongest for the symptomatic sample. Immediate and delayed PM10 effects were observed. Respiratory symptoms and PEF changes were more closely associated with 5-day moving-average PM10 levels than with concurrent-day levels. These associations were also observed at PM10 levels below the 24-h standard of 150 micrograms/m3. This study indicates that both symptomatic and asymptomatic children may suffer acute health effects of respirable particulate pollution, with symptomatic children suffering the most.« less

  15. Enhancement in secondary particulate matter production due to mountain trapping

    NASA Astrophysics Data System (ADS)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be originated from the PRD and transported back resulting in significant increase of secondary PM concentration, and provides new insight into PM production and transport mechanism in the PRD.

  16. Particulate pollution -- a biological dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrack, D.

    Human epidemiological data from multiple studies on USA. and European populations have been reviewed extensively. The consensus supports a weak association between PM-10 particulate matter and cardio-pulmonary morbidity and mortality. It is consistent with factors in the particles comprising PM-10 causing the biological effects. PM-10 is treated as a precisely defined entity, which it is not! Ambient PM-10 particles have multiple sources, sizes 10m m, chemistry and surface area. The medical and biological effects are seen with the inhalation of a multi-media matrix of pollutants, often at elevated levels, a medical and biological problem. This paper addresses this biology, predominantlymore » determined by size and sources of PM reflecting particle chemistry and surface area, describing one mechanism by which inhaled fine particles provoke heart muscle dysfunction. Combustion-PM-2.5m m (C-PM-2.5) reach the alveoli with 70% + retention and are engulfed by pulmonary alveolar macrophages. These particles trigger chain reactions that lead to cardio-pulmonary morbidity. Their structure includes high absorptive capacity carbon, transition metal plaques, and silica components. PAH`s (Polyaromatic hydrocarbons) and other potentially toxic chemicals are extensively absorbed on them and are piggy-backed into macrophages without dilution by blood. PM-2.5`s trace amounts of soluble transition metal salts are important in the molecular and biological events leading to heart damage. Animal inhalation studies of C-PM-2.5 cause little cellular reaction in normal lungs. In lungs already irritated by other agents, C-PM-2.5 inhalation greatly aggravates the inflammatory response. The soluble transition-metals (Fe Salts) are the effector. The data are impressive and provides a robust scientific basis for more stringent regulations of ambient C-PM-2.5.« less

  17. Characteristics of Atmospheric Pollutants Distribution and Removal Effect of Rainfall on Atmospheric Pollutants in Mining Cities

    NASA Astrophysics Data System (ADS)

    Wen-feng, Tang; You-biao, Hu

    2018-05-01

    This paper studies the characteristics of atmospheric pollutant (SO2, NO2, PM2.5 and PM10) and the effects of rainfall on the removal of atmospheric pollutants. The results show atmospheric pollutants concentration vary in different seasons and functional area: atmospheric pollutants concentration in summer and autumn is lower than that in winter and spring; the concentration of SO2 and NO2 in coal-chemical industry areas and light industrial areas is higher, the concentration difference of PM2.5 and PM10 in different functional areas is very small, the removal efficiency of rainfall on atmospheric pollutant is gradually improved with the increasing of daily rainfall, rainfall intensity and rainfall duration, the ability of rainfall to remove pollutants tends to be stable after daily rainfall and rainfall intensity exceeds 30mm and 20mm/h respectively, the effect of rainfall on the removal of PM2.5 was slightly worse than the effect of rainfall on other atmospheric pollutants, the rainfall duration should be 60min, 60min and 80min respectively when the effect of rainfall on NO2, PM10 and SO2 tends to be stable.

  18. Air pollution problem in the Mexico City metropolitan zone: Photochemical pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, H.B.; Alvarez, P.S.; Echeverria, R.S.

    1997-12-31

    Mexico City Metropolitan Zone (MCMZ) represents an example of a megacity where the air pollution problem has reached an important evolution in a very short time, causing a risk in the health of a population of more than 20 million inhabitants. The atmospheric pollution problem in the MCMZ, began several decades ago, but it increased drastically in the middle of the 80`s. It is important to recognize that in the 60`s, 70`s and the first half of the 80`s the main pollutants were sulfur dioxide and total suspended particles. However since the second half of the 80`s until now, ozonemore » is the most important air pollutant besides of the suspended particles (PM{sub 10}) and other toxic pollutants (1--8). The purpose of this paper is to discuss the evolution of the ozone atmospheric pollution problem in the MCMZ, as well as to analyze the results of several implemented air pollution control strategies.« less

  19. A Time-Series Study of the Effect of Air Pollution on Outpatient Visits for Acne Vulgaris in Beijing.

    PubMed

    Liu, Wei; Pan, Xiaochuan; Vierkötter, Andrea; Guo, Qun; Wang, Xuying; Wang, Qiaowei; Seité, Sophie; Moyal, Dominique; Schikowski, Tamara; Krutmann, Jean

    2018-01-01

    There is increasing evidence that exposure to air pollutants, including particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2), might aggravate preexisting skin diseases such as eczema and urticaria. Here we investigated if a possible link exists between air pollution and acne vulgaris. We assessed the association between ambient air pollutant concentrations and the number of visits of patients for acne vulgaris to a dermatological outpatient clinic in Beijing, China, from April 1, 2012 to April 30, 2014. In this time period, 59,325 outpatient visits were recorded because of acne vulgaris. Daily air pollution parameters for PM10, PM2.5, SO2, and NO2 were obtained from the Beijing Municipal Environmental Monitoring Center. Increased concentrations of ambient PM2.5, PM10, and NO2 were significantly associated with increased numbers of outpatient visits for acne vulgaris over the 2 years. These effects could be observed for NO2 in a single-pollutant model and for PM2.5, PM10, and NO2 in 2-pollutant models, which are closer to real-life exposure. Of note, these effects were specific because they were not observed for increased SO2 concentrations, which even showed negative correlations in all test models. This study provides indirect evidence for a link between acne vulgaris and air pollution. © 2018 S. Karger AG, Basel.

  20. Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden

    PubMed Central

    Johansson, Christer; Forsberg, Bertil

    2011-01-01

    Background: Although serious health effects associated with particulate matter (PM) with aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5; fine fraction) are documented in many studies, the effects of coarse PM (PM2.5–10) are still under debate. Objective: In this study, we estimated the effects of short-term exposure of PM2.5–10 on daily mortality in Stockholm, Sweden. Method: We collected data on daily mortality for the years 2000 through 2008. Concentrations of PM10, PM2.5, ozone, and carbon monoxide were measured simultaneously in central Stockholm. We used additive Poisson regression models to examine the association between daily mortality and PM2.5–10 on the day of death and the day before. Effect estimates were adjusted for other pollutants (two-pollutant models) during different seasons. Results: We estimated a 1.68% increase [95% confidence interval (CI): 0.20%, 3.15%] in daily mortality per 10-μg/m3 increase in PM2.5–10 (single-pollutant model). The association with PM2.5–10 was stronger for November through May, when road dust is most important (1.69% increase; 95% CI: 0.21%, 3.17%), compared with the rest of the year (1.31% increase; 95% CI: –2.08%, 4.70%), although the difference was not statistically significant. When adjusted for other pollutants, particularly PM2.5, the effect estimates per 10 μg/m3 for PM2.5–10 decreased slightly but were still higher than corresponding effect estimates for PM2.5. Conclusions: Our analysis shows an increase in daily mortality associated with elevated urban background levels of PM2.5–10. Regulation of PM2.5–10 should be considered, along with actions to specifically reduce PM2.5–10 emissions, especially road dust suspension, in cities. PMID:22182596

  1. The contribution of socioeconomic factors to PM2.5 pollution in urban China.

    PubMed

    Jiang, Peng; Yang, Jun; Huang, Conghong; Liu, Huakui

    2018-02-01

    PM 2.5 pollution poses severe health risks to urban residents in low and middle-income countries. Existing studies have shown that the problem is affected by multiple socioeconomic factors. However, the relative contribution of these factors is not well understood, which sometimes leads to controversial controlling measures. In this study, we quantified the relative contribution of different socioeconomic factors, including the city size, industrial activities, and residents' activities, to PM 2.5 pollution in urban China between 2014 and 2015 by using structural equation model (SEM). Our results showed that industrial activities contributed more to PM 2.5 pollution than other factors. The city size and residents' activities also had significant impacts on PM 2.5 pollution. The combined influence of all socioeconomic factors could explain between 44% and 48% of variation in PM 2.5 pollution, which indicated the existence of influences from other factors such as weather conditions and outside sources of pollutants. Findings from our study can contribute to a more comprehensive understanding of the socioeconomic causes of PM 2.5 pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Burden of mortality and years of life lost due to ambient PM10 pollution in Wuhan, China.

    PubMed

    Zhang, Yunquan; Peng, Minjin; Yu, Chuanhua; Zhang, Lan

    2017-11-01

    Ambient particulate matter (PM) has been mainly linked with mortality and morbidity when assessing PM-associated health effects. Up-to-date epidemiologic evidence is very sparse regarding the relation between PM and years of life lost (YLL). The present study aimed to estimate the burden of YLL and mortality due to ambient PM pollution. Individual records of all registered deaths and daily data on PM 10 and meteorology during 2009-2012 were obtained in Wuhan, central China. Using a time-series study design, we applied generalized additive model to assess the short-term association of 10-μg/m 3 increase in PM 10 with daily YLL and mortality, adjusting for long-term trend and seasonality, mean temperature, relative humidity, public holiday, and day of the week. A linear-no-threshold dose-response association was observed between daily ambient PM 10 and mortality outcomes. PM 10 pollution along lag 0-1 days was found to be mostly strongly associated with mortality and YLL. The effects of PM 10 on cause-specific mortality and YLL showed generally similar seasonal patterns, with stronger associations consistently occurring in winter and/or autumn. Compared with males and younger persons, females and the elderly suffered more significantly from both increased YLL and mortality due to ambient PM 10 pollution. Stratified analyses by education level (0-6 and 7 + years) demonstrated great mortality impact on both subgroups, whereas only low-educated persons were strongly affected by PM 10 -associated burden of YLL. Our study confirmed that short-term PM 10 exposure was linearly associated with significant increases in both mortality incidence and years of life lost. Given the non-threshold adverse effects on mortality burden, the on-going efforts to reduce particulate air pollution would substantially benefit public health in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Association between Ambient Air Pollution and Emergency Room Visits for Respiratory Diseases in Spring Dust Storm Season in Lanzhou, China

    PubMed Central

    Ma, Yuxia; Xiao, Bingshuang; Liu, Chang; Zhao, Yuxin; Zheng, Xiaodong

    2016-01-01

    Background: Air pollution has become a major global public health problem. A number of studies have confirmed the association between air pollutants and emergency room (ER) visits for respiratory diseases in developed countries and some Asian countries, but little evidence has been seen in Western China. This study aims to concentrate on this region. Methods: A time-series analysis was used to examine the specific effects of major air pollutants (PM10, SO2 and NO2) on ER visits for respiratory diseases from 2007 to 2011 in the severely polluted city of Lanzhou. We examined the effects of air pollutants for stratified groups by age and gender, accounting for the modifying effect of dust storms in spring to test the possible interaction. Results: Significant associations were found between outdoor air pollution concentrations and respiratory diseases, as expressed by daily ER visits in Lanzhou in the spring dust season. The association between air pollution and ER visits appeared to be more evident on dust days than non-dust days. Relative risks (RRs) and 95% CIs per 10 µg/m3 increase in 3-day PM10 (L3), 5-day SO2 (L5), and the average of current and previous 2-day NO2 (L01) were 1.140 (1.071–1.214), 1.080 (0.967–1.205), and 1.298 (1.158–1.454), respectively, on dust days. More significant associations between PM10, SO2 and NO2 and ER visits were found on dust days for elderly females, elderly males and adult males, respectively. Conclusions: This study strengthens the evidence of dust-exacerbated ER visits for respiratory diseases in Lanzhou. PMID:27338430

  4. Association between Ambient Air Pollution and Emergency Room Visits for Respiratory Diseases in Spring Dust Storm Season in Lanzhou, China.

    PubMed

    Ma, Yuxia; Xiao, Bingshuang; Liu, Chang; Zhao, Yuxin; Zheng, Xiaodong

    2016-06-21

    Air pollution has become a major global public health problem. A number of studies have confirmed the association between air pollutants and emergency room (ER) visits for respiratory diseases in developed countries and some Asian countries, but little evidence has been seen in Western China. This study aims to concentrate on this region. A time-series analysis was used to examine the specific effects of major air pollutants (PM10, SO₂ and NO₂) on ER visits for respiratory diseases from 2007 to 2011 in the severely polluted city of Lanzhou. We examined the effects of air pollutants for stratified groups by age and gender, accounting for the modifying effect of dust storms in spring to test the possible interaction. Significant associations were found between outdoor air pollution concentrations and respiratory diseases, as expressed by daily ER visits in Lanzhou in the spring dust season. The association between air pollution and ER visits appeared to be more evident on dust days than non-dust days. Relative risks (RRs) and 95% CIs per 10 µg/m³ increase in 3-day PM10 (L3), 5-day SO₂ (L5), and the average of current and previous 2-day NO₂ (L01) were 1.140 (1.071-1.214), 1.080 (0.967-1.205), and 1.298 (1.158-1.454), respectively, on dust days. More significant associations between PM10, SO₂ and NO₂ and ER visits were found on dust days for elderly females, elderly males and adult males, respectively. This study strengthens the evidence of dust-exacerbated ER visits for respiratory diseases in Lanzhou.

  5. The mechanisms of air pollution and particulate matter in cardiovascular diseases.

    PubMed

    Fiordelisi, Antonella; Piscitelli, Prisco; Trimarco, Bruno; Coscioni, Enrico; Iaccarino, Guido; Sorriento, Daniela

    2017-05-01

    Clinical and epidemiological studies demonstrate that short- and long-term exposure to air pollution increases mortality due to respiratory and cardiovascular diseases. Given the increased industrialization and the increased sources of pollutants (i.e., cars exhaust emissions, cigarette smoke, industry emissions, burning of fossil fuels, incineration of garbage), air pollution has become a key public health issue to solve. Among pollutants, the particulate matter (PM) is a mixture of solid and liquid particles which differently affects human health depending on their size (i.e., PM 10 with a diameter <10 μm reach the lung and PM 2.5 with a diameter <2.5 μm penetrate deeper into the lung). In particular, the acute exposure to PM 10 and PM 2.5 increases the rate of cardiovascular deaths. Thus, appropriate interventions to reduce air pollution may promote great benefits to public health by reducing the risk of cardiovascular diseases. Several biological mechanisms have been identified to date which could be responsible for PM-dependent adverse cardiovascular outcomes. Indeed, the exposure to PM 10 and PM 2.5 induces sustained oxidative stress and inflammation. PM 2.5 is also able to increase autonomic nervous system activation. Some potential therapeutic approaches have been tested both in pre-clinical and clinical studies, based on the intake of antioxidants from dietary or by pharmacological administration. Studies are still in progress to increase the knowledge of PM activation of intracellular pathways and propose new strategies of intervention.

  6. Particulate matter exposure increases JC polyomavirus replication in the human host.

    PubMed

    Dolci, Maria; Favero, Chiara; Bollati, Valentina; Campo, Laura; Cattaneo, Andrea; Bonzini, Matteo; Villani, Sonia; Ticozzi, Rosalia; Ferrante, Pasquale; Delbue, Serena

    2018-05-29

    Human polyomaviruses (HPyVs) asymptomatically infect the human population during childhood and establish latency in the host. Viral reactivation and urinary excretion can occur when the immune system is impaired. Exposure to particulate air pollution, including the PM 10 /PM 2.5 components, is a public health problem and has been linked to several disorders. Studies assessing the relationship between PM 10 /PM 2.5 exposure and viral replication are lacking. To investigate the relationship between HPyVs viruria and PM 10 /PM 2.5 exposures. Individual environmental exposure was assessed in 50 healthy adult volunteers using a chemical transport model (CTM) with a municipality resolution for daily PM 10 and monitoring stations data for daily PM 2.5 exposures. For each subject, a urine sample was collected, and HPyVs (JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and HPyV9) loads were determined. Zero-inflated negative binomial (ZINB) regression was used to model the count data, as it contained excessive zeros. Covariates were chosen by stepwise selection. HPyVs DNA was detected in 54% (median:87.6*10 5 copies/ml) of the urine samples. JCPyV was the prevalent (48%, (median viral load:126*10 5 copies/ml). Considering the load of the most frequently measured HPyVs, JCPyV, in the count-part of the ZINB model, every unitary in PM measured 2 days before urine collection (PM Day -2) was associated with an increase in JCPyV load (PM 10 : +4.0%, p-value = 0.002; PM 2.5 : +3.6%, p-value = 0.005). In the zero-part, the significant predictor was the PM 10 measured 5 days before urine collection (+3%, p-value = 0.03). The environmental levels of PM 10 /PM 2.5 increase the JCPyV viruria. Our findings emphasize the need for studies assessing the influence of air pollution exposure on the risk of viral reactivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. [Observation on atmospheric pollution in Xianghe during Beijing 2008 Olympic Games].

    PubMed

    Pan, Yue-Peng; Wang, Yue-Si; Hu, Bo; Liu, Quan; Wang, Ying-Hong; Nan, Wei-Dong

    2010-01-01

    There is a concern that much of the atmospheric pollution experienced in Beijing is regional in nature and not attributable to local sources. The objective of this study is to examine the contribution of sources outside Beijing to atmospheric pollution levels during Beijing 2008 Olympic Games. The observations of SO2, NO(x), O3, PM2.5 and PM10 were conducted from June 1 to September 30, 2008 in Xianghe, a rural site about 70 km southeast of Beijing. Sources and transportation of atmospheric pollution during the experiment were discussed with surface meteorology data and backward trajectories calculated using HYSPLIT model. The results showed that the daily average maximum (mean +/- standard deviation) concentrations of SO2, NO(x), O3, PM2.5, and PM10 during observation reached 84.4(13.4 +/- 15.2), 43.3 (15.9 +/- 9.1), 230 (82 +/- 38), 184 (76 +/- 42) and 248 (113 +/- 52) microg x m(-3), respectively. In particular, during the pollution episodes from July 20 to August 12, the hourly average concentration of O3 exceeded the National Ambient Air Quality Standard II for 46 h (9%), and the daily average concentration of PM10 exceeded the Standard for 11 d (46%); PM2.5 exceeded the US EPA Standard for 18 d (75%). The daily average concentrations of SO2, NO(x), O3, PM2.5 and PM10 decreased from 27.7, 18.6, 96, 90, 127 microg x m(-3) in June-July to 5.8, 13.2, 80, 60, 106 microg x m(-3) during Olympic Games (August-September), respectively. The typical diurnal variations of NO(x), PM2.5 and PM10 were similar, peaking at 07:00 and 20:00, while the maximum of O3 occurred between 14:00 to 16:00 local time. The findings also suggested that the atmospheric pollution in Xianghe is related to local emission, regional transport as well as the meteorological conditions. Northerly wind and precipitation are favorable for diffusion and wet deposition of pollutants, while sustained south flows make the atmospheric pollution more serious. The lead-lag correlation analysis during the pollution episodes from July 20 to August 12 showed that there are about 6-10 h (0.57 < r < 0.65, p = 0.01) of hourly average PM2.5 in Beijing lagging Xianghe, reaching the maximum at 8 h, which indicates that the real-time atmospheric PM2.5 database of Xianghe might provides early warning for the Beijing PM2.5 pollution events.

  8. Ambient particulate matter air pollution associated with acute respiratory distress syndrome in Guangzhou, China.

    PubMed

    Lin, Hualiang; Tao, Jun; Kan, Haidong; Qian, Zhengmin; Chen, Ailan; Du, Yaodong; Liu, Tao; Zhang, Yonghui; Qi, Yongqing; Ye, Jianjun; Li, Shuangming; Li, Wanglin; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Stamatakis, Katherine A; Chen, Xinyu; Ma, Wenjun

    2018-04-30

    Limited evidence exists concerning the impact of particulate pollution on acute respiratory distress syndrome (ARDS). We examined the effects of particulate pollution on emergency ambulance dispatches (EAD) for ARDS in Guangzhou, China. Daily air pollution concentrations for PM 10 , PM 2.5 , and PM 1 , as well as PM 2.5 chemical compositions, were available from a central air monitoring station. The association between incident ARDS and air pollution on the concurrent and previous 5 days was estimated by an over-dispersed Poisson generalized additive model controlling for meteorological factors, temporal trends, public holidays and day of the week. We identified a total of 17,002 EADs for ARDS during the study period. There were significant associations between concentrations of PM 10 , PM 2.5 , PM 1, and ARDS; corresponding excess risk (ER) for an interquartile range IQR increase in 1-day lagged concentration was 5.45% [95% confidence interval (CI): 1.70%, 9.33%] for PM 10 (45.4 μg/m 3 ), 4.71% (95% CI: 1.09%, 8.46%) for PM 2.5 (31.5 μg/m 3 ), and 4.45% (95% CI: 0.81%, 8.23%) for PM 1 (28.8 μg/m 3 ), respectively. For PM 2.5 chemical compositions, we found that OC, EC, sulfate and ammonium were significantly associated with ARDS. The observed effects remained even after adjusting for potentially confounding factors. This study suggests that PM 10 , PM 2.5, and PM 1 , as well as chemical constituents from combustion and secondary aerosols might be important triggers of ARDS in Guangzhou.

  9. Long-term exposure to ambient air pollution and incidence of brain tumor: the European Study of Cohorts for Air Pollution Effects (ESCAPE)

    PubMed Central

    Pedersen, Marie; Weinmayr, Gudrun; Stafoggia, Massimo; Galassi, Claudia; Jørgensen, Jeanette T; Sommar, Johan N; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Aasvang, Gunn Marit; Schwarze, Per; Pyko, Andrei; Pershagen, Göran; Korek, Michal; Faire, Ulf De; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T; Poulsen, Aslak H; Tjønneland, Anne; Bräuner, Elvira Vaclavik; Peeters, Petra H; Bueno-de-Mesquita, Bas; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2018-01-01

    Abstract Background Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5–10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89–3.14 per 10–5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38–2.71 per 10–5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors. Conclusion We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors. PMID:29016987

  10. Health Impacts and Economic Costs of Air Pollution in the Metropolitan Area of Skopje.

    PubMed

    Martinez, Gerardo Sanchez; Spadaro, Joseph V; Chapizanis, Dimitris; Kendrovski, Vladimir; Kochubovski, Mihail; Mudu, Pierpaolo

    2018-03-29

    Urban outdoor air pollution, especially particulate matter, remains a major environmental health problem in Skopje, the capital of the former Yugoslav Republic of Macedonia. Despite the documented high levels of pollution in the city, the published evidence on its health impacts is as yet scarce. we obtained, cleaned, and validated Particulate Matter (PM) concentration data from five air quality monitoring stations in the Skopje metropolitan area, applied relevant concentration-response functions, and evaluated health impacts against two theoretical policy scenarios. We then calculated the burden of disease attributable to PM and calculated the societal cost due to attributable mortality. In 2012, long-term exposure to PM 2.5 (49.2 μg/m³) caused an estimated 1199 premature deaths (CI95% 821-1519). The social cost of the predicted premature mortality in 2012 due to air pollution was estimated at between 570 and 1470 million euros. Moreover, PM 2.5 was also estimated to be responsible for 547 hospital admissions (CI95% 104-977) from cardiovascular diseases, and 937 admissions (CI95% 937-1869) for respiratory disease that year. Reducing PM 2.5 levels to the EU limit (25 μg/m³) could have averted an estimated 45% of PM-attributable mortality, while achieving the WHO Air Quality Guidelines (10 μg/m³) could have averted an estimated 77% of PM-attributable mortality. Both scenarios would also attain significant reductions in attributable respiratory and cardiovascular hospital admissions. Besides its health impacts in terms of increased premature mortality and hospitalizations, air pollution entails significant economic costs to the population of Skopje. Reductions in PM 2.5 concentrations could provide substantial health and economic gains to the city.

  11. [Particle pollution effects on the risk of cardiovascular diseases].

    PubMed

    Massamba, V K; Coppieters, Y; Mercier, G; Collart, P; Levêque, A

    2014-02-01

    The effects of air pollution on health are quite well-documented and the influence of particulate pollution on morbidity and mortality from myocardial infarction and stroke is increasingly evident. The objective of this literature review is to identify and synthesize articles on the impact of air pollution by PM10 and PM2.5 of myocardial infarction and stroke. A total of 14 studies were reported on the effects of PM10 and five on the effects of PM2.5. Nine out of 14 studies for PM10 and two studies of five for PM2.5 have found a significant association with myocardial infarction and/or stroke. Particle composition according to location, study period and population must be considered in interpreting the results on the health effects of air pollution. The integration of these elements is important for decision making in tune with social and economic conditions specific to each environment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Investigation of air pollutants in rural nursery school - a case study

    NASA Astrophysics Data System (ADS)

    Mainka, Anna; Zajusz-Zubek, Elwira; Kozielska, Barbara; Brągoszewska, Ewa

    2018-01-01

    Children's exposure to air pollutants is an important public health challenge. Indoor air quality (IAQ) in nursery school is believed to be different from elementary school. Moreover, younger children are more vulnerable to air pollution than higher grade children because they spend more time indoors, and their immune systems and bodies are less mature. The purpose of this study was to evaluate the indoor air quality (IAQ) at naturally ventilated rural nursery schools located in Upper Silesia, Poland. We investigated the concentrations of volatile organic compounds (VOCs), particulate matter (PM), bacterial and fungal bioaerosols, as well as carbon dioxide (CO2) concentrations in younger and older children's classrooms during the winter and spring seasons. The concentration of the investigated pollutants in indoor environments was higher than those in outdoor air. The results indicate the problem of elevated concentrations of PM2.5 and PM10 inside the examined classrooms, as well as that of high levels of CO2 exceeding 1,000 ppm in relation to outdoor air. The characteristics of PM and CO2 levels were significantly different, both in terms of classroom occupation (younger or older children) and of season (winter or spring).

  13. The impact of airborne particulate matter on pediatric hospital admissions for pneumonia among children in Jinan, China: A case-crossover study.

    PubMed

    Lv, Chenguang; Wang, Xianfeng; Pang, Na; Wang, Lanzhong; Wang, Yuping; Xu, Tengfei; Zhang, Yu; Zhou, Tianran; Li, Wei

    2017-06-01

    This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM 2.5 ) and ≤10 µm (PM 10 ) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM 2.5 concentrations the day before hospital admission and elevated PM 10 concentrations 2 days before hospital admission. An increment of 10 μg/m 3 in PM 2.5 and PM 10 was correlated with a 6% (95% CI 1.02--1.10) and 4% (95% CI 1.00-1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM 2.5 and PM 10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.

  14. The Use of Protein-Protein Interactions for the Analysis of the Associations between PM2.5 and Some Diseases.

    PubMed

    Zhang, Qing; Zhang, Pei-Wei; Cai, Yu-Dong

    2016-01-01

    Nowadays, pollution levels are rapidly increasing all over the world. One of the most important pollutants is PM2.5. It is known that the pollution environment may cause several problems, such as greenhouse effect and acid rain. Among them, the most important problem is that pollutants can induce a number of serious diseases. Some studies have reported that PM2.5 is an important etiologic factor for lung cancer. In this study, we extensively investigate the associations between PM2.5 and 22 disease classes recommended by Goh et al., such as respiratory diseases, cardiovascular diseases, and gastrointestinal diseases. The protein-protein interactions were used to measure the linkage between disease genes and genes that have been reported to be modulated by PM2.5. The results suggest that some diseases, such as diseases related to ear, nose, and throat and gastrointestinal, nutritional, renal, and cardiovascular diseases, are influenced by PM2.5 and some evidences were provided to confirm our results. For example, a total of 18 genes related to cardiovascular diseases are identified to be closely related to PM2.5, and cardiovascular disease relevant gene DSP is significantly related to PM2.5 gene JUP.

  15. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  16. [Hazard assessment of the impact of high temperature and air pollution on public health in Moscow].

    PubMed

    Revich, B A; Shaposhnikov, D A; Avaliani, S L; Rubinshtein, K G; Emelina, S V; Shiriaev, M V; Semutnikova, E G; Zakharova, P V; Kislova, O Iu

    2015-01-01

    In the article there are considered the main problems of assessing public health risks of the combined effects of high temperatures and air pollution with the account taken of the consequences of abnormally hot weather observed in summer 2010 in Moscow and without equals in the history of meteorological measurements in the city. The daily average concentrations of fine suspended particles matter (PM10) in the city during peatland fires from 4 to 9 August are emphasized to be within the range of 431-906 μ/m3, being 7.2-15.1 times the Russian maximum permissible concentration (MPCs) (60 μ/m3). The anomalous heat and high levels of air pollution in this period were shown to cause a significant increase in excess mortality among the population of Moscow. There was established the relative gain in mortality from all natural causes per 10 μg/m3 increase in daily average concentrations of PM10 and ozone, which was respectively: 0.47% (95%; CI: 0.31-0.63) and 0.41% (95%; CI: 0.31-1.13). On the base of the statistical analysis of daily mortality rates, meteorological indices, the concentrations of PM10 and ozone there was developed marking scale for the risk assessment of these indices accordingly to 4 gradings--low (permissible), warning, alert, and a hazard level. There has been substantiated the importance of the introduction of the system for the early alert for hazard weather events and the unified rating scale for the hazard of high air temperatures and high levels of air pollution with PM10 and ozone, which allows to take timely measures for the protection of the public health.

  17. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China.

    PubMed

    Xu, Meimei; Guo, Yuming; Zhang, Yajuan; Westerdahl, Dane; Mo, Yunzheng; Liang, Fengchao; Pan, Xiaochuan

    2014-12-12

    Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal analysis approach. We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during 2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287 township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the effects of averaged PM10 concentration as well. The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3. Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95% confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger response to PM10 exposure. Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.

  18. The role of air pollution on ST-elevation myocardial infarction: a narrative mini review.

    PubMed

    Shahrbaf, Mohammad Amin; Mahjoob, Mohammad Parsa; Khaheshi, Isa; Akbarzadeh, Mohammad Ali; Barkhordari, Elham; Naderian, Mohammadreza; Tajrishi, Farbod Zahed

    2018-06-22

    ST-elevation myocardial infarction (STEMI) is one of the potential causes of death worldwide. In spite of substantial advances in its diagnosis and treatment, STEMI is still considered as a major public health dilemma in developed and particularly developing countries. One of the triggering factors of STEMI is supposed to be air pollutants like gaseous pollutants including, sulfur dioxide, nitric dioxide, carbon monoxide, ozone and particulate matters (PM) including, PM under 2.5 µm (PM 2.5 ) and PM under 10 µm (PM 10 ). Air pollution can trigger STEMI with various mechanisms such as increasing inflammatory factors and changing the heart rate or blood viscosity. In this article, we aimed to explore research in the field and discuss the relationship between air pollution and STEMI.

  19. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-06

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health.

  20. Air pollution exposure, cause-specific deaths and hospitalizations in a highly polluted Italian region.

    PubMed

    Carugno, Michele; Consonni, Dario; Randi, Giorgia; Catelan, Dolores; Grisotto, Laura; Bertazzi, Pier Alberto; Biggeri, Annibale; Baccini, Michela

    2016-05-01

    The Lombardy region in northern Italy ranks among the most air polluted areas of Europe. Previous studies showed air pollution short-term effects on all-cause mortality. We examine here the effects of particulate matter with aerodynamic diameter ≤10µm (PM10) and nitrogen dioxide (NO2) exposure on deaths and hospitalizations from specific causes, including cardiac, cerebrovascular and respiratory diseases. We considered air pollution, mortality and hospitalization data for a non-opportunistic sample of 18 highly polluted and most densely populated areas of the region in the years 2003-2006. We obtained area-specific effect estimates for PM10 and NO2 from a Poisson regression model on the daily number of total deaths or cause-specific hospitalizations and then combined them in a Bayesian random-effects meta-analysis. For cause-specific mortality, we applied a case-crossover analysis. Age- and season-specific analyses were also performed. Effect estimates were expressed as percent variation in mortality or hospitalizations associated with a 10µg/m(3) increase in PM10 or NO2 concentration. Natural mortality was positively associated with both pollutants (0.30%, 90% Credibility Interval [CrI]: -0.31; 0.78 for PM10; 0.70%, 90%CrI: 0.10; 1.27 for NO2). Cardiovascular deaths showed a higher percent variation in association with NO2 (1.12%, 90% Confidence Interval [CI]: 0.14; 2.11), while the percent variation for respiratory mortality was highest in association with PM10 (1.64%, 90%CI: 0.35; 2.93). The effect of both pollutants was more evident in the summer season. Air pollution was also associated to hospitalizations, the highest variations being 0.77% (90%CrI: 0.22; 1.43) for PM10 and respiratory diseases, and 1.70% (90%CrI: 0.39; 2.84) for NO2 and cerebrovascular diseases. The effect of PM10 on respiratory hospital admissions appeared to increase with age. For both pollutants, effects on cerebrovascular hospitalizations were more evident in subjects aged less than 75 years. Our study provided a sound characterization of air pollution exposure and its potential effects on human health in the most polluted, and also most populated and productive, Italian region, further documenting the need for effective public health policies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Association between PM10 and respiratory hospital admissions in different seasons in heavily polluted Lanzhou City.

    PubMed

    An, Xingqin; Yan, Tao; Mi, Shengquan; Sun, Zhaobin; Hou, Qing

    2015-01-01

    Exposure-response relationship between particulate matter less than 10 μm in diameter (PM10) and human health in different seasons from 2001 to 2005 was examined based on hospital admissions data of respiratory system diseases from four major hospitals in Lanzhou, China. To quantify associations of respiratory system diseases with multiple air pollutants and meteorological conditions, a semiparametric generalized additive model was used in the authors' study by implementing daily ambient sulfur dioxide, nitrogen dioxide, and PM10 data collected from the Lanzhou Environmental Monitoring Station and daily meteorological data from Lanzhou Meteorological Bureau. Results showed that daily averaged PM10 increased per interquartile range the hospital admissions number of respiratory diseases by 3.3% in spring, 1.4% in summer, 3.6% in autumn, and 4.0% in winter from a single-pollutant model, or 3.1%, 1.4%, 3.0%, and 4.0% from a multi-pollutant model, respectively. The effect of PM10 on respiratory hospital admissions was lowest in summer and highest in winter. The relative risks of PM10 on female or the elderly (≥ 65 yrs.) were higher, showing a stronger association of PM10 with respiratory diseases in female and elderly groups than in males and people younger than 65.

  2. Evaluation of ground-based particulate matter in association with measurements from space

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Yoshida, Akihito; Sano, Itaru; Mukai, Sonoyo

    2017-10-01

    Air pollution is problem of deep concern to human health. In Japan, the air pollution levels experienced during the recent period of rapid economic growth have been reduced. However, fine particulate matter (PM2.5) has not yet reached the environmental standards at many monitoring stations. The Japanese environmental quality standard for PM2.5 that was ratified in 2009 lags about four decades behind other air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, photochemical oxidants, and suspended particulate matter. Recently, trans-national air pollutants have been observed to cause high concentrations of PM2.5 in Japan. To obtain wide distribution of PM2.5, the satellite based PM2.5 products are extremely useful. We investigate PM2.5 concentrations measured using ground samplers in Japan and the satellite based PM2.5 products, taking into consideration various geographical and weather conditions.

  3. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    PubMed

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  4. [Indoor air pollution by fine particulate matter in the homes of newborns].

    PubMed

    Barría, René Mauricio; Calvo, Mario; Pino, Paulina

    Air pollution by particulate matter (PM) is a major public health problem. In Chile, the study has focused on outdoor air and PM 10 , rather than indoor air and PM 2.5 . Because newborns and infants spend most of their time at home, it is necessary to evaluate the exposure to indoor air pollution in this susceptible population. To determine concentration of PM 2.5 in the homes of newborns and identify the emission sources of the pollutants. The PM 2.5 concentration ([PM 2.5 ]) was collected over a 24hour period in 207 households. Baseline sociodemographic information and environmental factors (heating, ventilation, smoking and house cleaning), were collected. The median [PM 2.5 ] was 107.5μg/m 3 . Family history of asthma was associated with lower [PM 2.5 ] (P=.0495). Homes without heating showed a lower median [PM 2.5 ], 58.6μg/m 3 , while those using firewood, kerosene, and electricity ranged between 112.5 and 114.9, and coal users' homes reached 162.9μg/m 3 . Wood using homes had significant differences (P=.0164) in median [PM 2.5 ] whether the stove had complete combustion (98.2μg/m 3 ) vs. incomplete (112.6μg/m 3 ), or a salamander stove (140.6μg/m 3 ). Cigarette smoking was reported in 8.7% of the households, but was not associated with the [PM 2.5 ]. Ventilation was associated with a higher median [PM 2.5 ] (120.6 vs. 99.1μg/m 3 , P=.0039). We found homes with high [PM 2.5 ]. Residential wood consumption was almost universal, and it is associated with the [PM 2.5 ]. Natural ventilation increased MP 2.5 , probably due to infiltration from outside. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Air quality in Delhi during the Commonwealth Games

    NASA Astrophysics Data System (ADS)

    Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.

    2014-10-01

    Air quality during the Commonwealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ~ 10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ~ 25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5, and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ~ 25% for BC and PM to ~ 60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.

  6. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project.

    PubMed

    Andersen, Zorana J; Stafoggia, Massimo; Weinmayr, Gudrun; Pedersen, Marie; Galassi, Claudia; Jørgensen, Jeanette T; Oudin, Anna; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Aasvang, Gunn Marit; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Plusquin, Michelle; Key, Timothy J; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Fournier, Agnes; Boutron-Ruault, Marie-Christine; Baglietto, Laura; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2017-10-13

    Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM 2.5 , PM 10 , and PM coarse , respectively); PM 2.5 absorbance; nitrogen oxides (NO 2 and NO x ); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM 2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m 3 }, PM 10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m 3 ], PM coarse [1.20 (95% CI: 0.96, 1.49 per 5 μg/m 3 ], and NO 2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m 3 ], and a statistically significant association with NO x [1.04 (95% CI: 1.00, 1.08) per 20 μg/m 3 , p =0.04]. We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742.

  7. Vertical PM10 Characteristics and their Relation with Tropospheric Meteorology over Hong Kong

    NASA Astrophysics Data System (ADS)

    Hei Tong, Cheuk

    2016-04-01

    Small particulates or PM10, those with aerodynamic diameters less than 10 mm, can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Hong Kong receives significant concentration of cross-boundary particulates but at the same time produce domestic pollutants which altogether contribute to the total pollution problem. Recent research interest is paying more attention on the vertical characteristic of PM in the lower atmosphere as possible correlations exist along different altitude. Besides, there exists potential relationship between PM concentration aloft and the high-level weather condition. Yet, most studies focus only up to around 200 meters above sea level due to the proposed significance and the lack of technology. Undoubtedly, this is not enough in investigating the relation between vertical atmospheric profile and PM vertical characteristics. New technology development has allowed measuring PM concentration along the vertical atmospheric profile up to tropopause. This measurement relies on the Atmospheric Light Detection and Ranging (LiDAR) which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols. The research involves (1) study of the seasonal vertical PM10 characteristics in five studying site of Hong Kong covering urban, suburban and rural area; (2) the relationship of the PM10 characteristics with meteorological parameters; (3) the vertical PM10 characteristics under the approach of tropical cyclones. A portable Micro Pulse Lidar (MPL) is adopted to collect PM data aloft while surface PM data is collected from ground stations. High-level meteorology data is received from Hong Kong Observatory. Statistical analyses are operated to investigate the correlation between weather conditions and PM concentration along the vertical profile. The research study is divided in phrases. The ultimate goal of the study is to develop models simulating high-level PM concentration under different meteorological conditions and predict the impacts under global and urban climate change. Keywords: PM10; High level meteorology; Seasonal variations; Tropical cyclone; Hong Kong; LiDAR

  8. Traffic-related air quality trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, Pedro José; de Fátima Andrade, María.; de Miranda, Regina Maura

    2015-06-01

    The urban population of South America has grown at 1.05%/yr, greater urbanization increasing problems related to air pollution. In most large cities in South America, there has been no continuous long-term measurement of regulated pollutants. One exception is São Paulo, Brazil, where an air quality monitoring network has been in place since the 1970s. In this paper, we used an air quality-based approach to determine pollutant trends for emissions of carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), and coarse particulate matter (PM10), mostly from mobile sources, in the Metropolitan Region of São Paulo for the 2000-2013 period. Mobile sources included light-duty vehicles (LDVs, comprising gasoline- or ethanol-powered cars and motorcycles) and heavy-duty vehicles (HDVs, comprising diesel-powered trucks and buses). Pollutant concentrations for mobile source emissions were measured and correlated with fuel sales by the emission factors. Over the 2000-2013 period, concentrations of NOx, CO, and PM10 decreased by 0.65, 0.37, and 0.71% month-1, respectively, whereas sales of gasoline, ethanol, and diesel increased by 0.26, 1.96, and 0.38% month-1, respectively. LDVs were the major mobile source of CO, whereas LDVs were the major source of NOx and PM10. Increases in fuel sales and in the corresponding traffic volume were partially offset by decreases in pollutant concentrations. Between 2000 and 2013, there was a sharp (-5 ppb month-1) decrease in the concentrations of LDV-emitted CO, together with (less dramatic) decreases in the concentrations of HDV-emitted NOx and PM10 (-0.25 and -0.09 ppb month-1, respectively). Variability was greater for HDV-emitted NOx and PM10 (R = -0.47 and -0.41, respectively) than for LDV-emitted CO (R = -0.72). We draw the following conclusions: the observed concentrations of LDV-emitted CO decreased at a sharper rate than did those of HDV-emitted NOx and PM10; mobile source contributions to O3 formation varied significantly, LDVs making a greater contribution during the 2000-2008 period, whereas HDVs made a greater contribution during the 2009-2013 period, and decreases in NOx emissions resulted in increases in O3 observations.

  9. [A Meta analysis on the associations between air pollution and respiratory mortality in China].

    PubMed

    Liu, Changjing; Huang, Fei; Yang, Zhizhou; Sun, Zhaorui; Huang, Changbao; Liu, Hongmei; Shao, Danbing; Zhang, Wei; Ren, Yi; Tang, Wenjie; Han, Xiaoqin; Nie, Shinan

    2015-08-01

    To analyze the associations between air pollution and adverse health outcomes on respiratory diseases and to estimate the short-term effects of air pollutions [Particulate matter with particle size below 10 microns (PM(10)), PM(10) particulate matter with particle size below 2.5 microns (PM(2.5)), nitrogen dioxide (NO₂), sulphur dioxide (SO₂) and ozone (O₃)] on respiratory mortality in China. Data related to the epidemiological studies on the associations between air pollution and adverse health outcomes of respiratory diseases that published from 1989 through 2014 in China, were collected by systematically searching databases of PubMed, SpringerLink, Embase, Medline, CNKI, CBM and VIP in different provinces of China. Short-term effects between (PM(10), PM(2.5), NO₂, SO₂, O₃) and respiratory mortality were analyzed by Meta-analysis method, and estimations were pooled by random or fixed effect models, using the Stata 12.0 software. A total of 157 papers related to the associations between air pollution and adverse health outcomes of respiratory diseases in China were published, which covered 79.4% of all the provinces in China. Results from the Meta-analysis showed that a 10 µg/m³ increase in PM10, PM(2.5), NO₂, SO₂, and O₃was associated with mortality rates as 0.50% (95% CI: 0-0.90%), 0.50% (95% CI: 0.30%-0.70%), 1.39% (95% CI: 0.90%-1.78%), 1.00% (95% CI: 0.40%-1.59%) and 0.10% (95% CI: -1.21%-1.39%) in respiratory tracts, respectively. No publication bias was found among these studies. There seemed positive associations existed between PM(10)/PM(2.5)/NO₂/SO₂and respiratory mortality in China that the relationship called for further attention on air pollution and adverse health outcomes of the respiratory diseases.

  10. Assessment of health benefits related to air quality improvement strategies in urban areas: An Impact Pathway Approach.

    PubMed

    Silveira, Carlos; Roebeling, Peter; Lopes, Myriam; Ferreira, Joana; Costa, Solange; Teixeira, João P; Borrego, Carlos; Miranda, Ana I

    2016-12-01

    Air pollution is, increasingly, a concern to our society given the threats to human health and the environment. Concerted actions to improve air quality have been taken at different levels, such as through the development of Air Quality Plans (AQPs). However, air quality impacts associated with the implementation of abatement measures included in AQPs are often neglected. In order to identify the major gaps and strengths in current knowledge, a literature review has been performed on existing methodologies to estimate air pollution-related health impacts and subsequent external costs. Based on this review, the Impact Pathway Approach was adopted and applied within the context of the MAPLIA research project to assess the health impacts and benefits (or avoided external costs) derived from improvements in air quality. Seven emission abatement scenarios, based on individual and combined abatement measures, were tested for the major activity sectors (traffic, residential and industrial combustion and production processes) of a Portuguese urban area (Grande Porto) with severe particular matter (PM10) air pollution problems. Results revealed a strong positive correlation between population density and health benefits obtained from the assessed reduction scenarios. As a consequence, potential health benefits from reduction scenarios are largest in densely populated areas with high anthropic activity and, thus, where air pollution problems are most alarming. Implementation of all measures resulted in a reduction in PM10 emissions by almost 8%, improving air quality by about 1% and contributing to a benefit of 8.8 million €/year for the entire study domain. The introduction of PM10 reduction technologies in industrial units was the most beneficial abatement measure. This study intends to contribute to policy support for decision-making on air quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China.

    PubMed

    Qiu, Hang; Tan, Kun; Long, Feiyu; Wang, Liya; Yu, Haiyan; Deng, Ren; Long, Hu; Zhang, Yanlong; Pan, Jingping

    2018-03-11

    Evidence on the burden of chronic obstructive pulmonary disease (COPD) morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM) with aerodynamic diameter <10 μm (PM 10 ) and <2.5 μm (PM 2.5 ), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO) and ozone (O₃)) with risk of hospital admissions (HAs) for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM) with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM 2.5 , PM 10 and SO₂) and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years) and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19%) and 14.72% (95% CI: 10.38%, 19.06%) of COPD HAs were attributable to PM 2.5 and PM 10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO₂ on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  12. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal.

    PubMed

    Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen

    2018-03-15

    Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diameter<10μm) in summer 2016 at four locations in Chitwan, Nepal, and investigate its association with meteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  13. High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique

    NASA Astrophysics Data System (ADS)

    Xiao, Lu; Lang, Yichao; Christakos, George

    2018-01-01

    With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.

  14. A dynamic processes study of PM retention by trees under different wind conditions.

    PubMed

    Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan

    2018-02-01

    Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring].

    PubMed

    Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui

    2013-09-01

    To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were secondary particles dust, industry dust and vehicle emissions (49.82%) and construction dust (33.71%). The main characteristic pollution element was Pb(57.340 (5.004-241.559) µg/m(3)).Enrichment factors of Zn, Pb, As and Cd in PM2.5 were higher than those in PM10 both in Beijing and Urumqi. The major sources of the atmospheric particles PM10 and PM2.5 in Beijing were cement dust from construction sites and sand dust from soil; while the major sources of those in Urumqi were pollution by smoke and sand dust from burning coal. The major sources of the atmospheric particles PM10 in Qingdao were cement dust from construction sites; however, the major sources of PM2.5 there were secondary particles dust, industry dust and vehicle emissions. According to our study, the heavy metal elements were likely to gather in PM2.5.

  16. Effect of Exhaust- and Nonexhaust-Related Components of Particulate Matter on Long-Term Survival After Stroke.

    PubMed

    Desikan, Anita; Crichton, Siobhan; Hoang, Uy; Barratt, Benjamin; Beevers, Sean D; Kelly, Frank J; Wolfe, Charles D A

    2016-12-01

    Outdoor air pollution represents a potentially modifiable risk factor for stroke. We examined the link between ambient pollution and mortality up to 5 years poststroke, especially for pollutants associated with vehicle exhaust. Data from the South London Stroke Register, a population-based register covering an urban, multiethnic population, were used. Hazard ratios (HR) for a 1 interquartile range increase in particulate matter <2.5 µm diameter (PM 2.5 ) and PM <10 µm (PM 10 ) were estimated poststroke using Cox regression, overall and broken down into exhaust and nonexhaust components. Analysis was stratified for ischemic and hemorrhagic strokes and was further broken down by Oxford Community Stroke Project classification. The hazard of death associated with PM 2.5 up to 5 years after stroke was significantly elevated (P=0.006) for all strokes (HR=1.28; 95% confidence interval [CI], 1.08-1.53) and ischemic strokes (HR, 1.32; 95% CI, 1.08-1.62). Within ischemic subtypes, PM 2.5 pollution increased mortality risk for total anterior circulation infarcts by 2-fold (HR, 2.01; 95% CI, 1.17-3.48; P=0.012) and by 78% for lacunar infarcts (HR, 1.78; 95% CI, 1.18-2.66; P=0.006). PM 10 pollution was associated with 45% increased mortality risk for lacunar infarct strokes (HR, 1.45; 95% CI, 1.06-2.00; P=0.022). Separating PM 2.5 and PM 10 into exhaust and nonexhaust components did not show increased mortality. Exposure to certain outdoor PM pollution, particularly PM 2.5 , increased mortality risk poststroke up to 5 years after the initial stroke. © 2016 American Heart Association, Inc.

  17. Emissions reduction policies and recent trends in Southern California's ambient air quality.

    PubMed

    Lurmann, Fred; Avol, Ed; Gilliland, Frank

    2015-03-01

    To assess accountability and effectiveness of air regulatory policies, we reviewed more than 20 years of monitoring data, emissions estimates, and regulatory policies across several southern California communities participating in a long-term study of children's health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, were generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. For many cities facing the challenge of reducing air pollution to meet health-based standards, the emission control policies and pollution reduction programs adopted in southern California should serve as an example of the potential success of aggressive, comprehensive, and integrated approaches. Policies targeting on-road mobile emissions were the single most important element for observed improvements in the Los Angeles region. However, overall program success was the result of a much broader approach designed to achieve emission reductions across all major pollutants and emissions categories.

  18. A Review of Recent Advances in Research on PM2.5 in China

    PubMed Central

    Zou, Jiale; Yang, Wei; Li, Chun-Qing

    2018-01-01

    PM2.5 pollution has become a severe problem in China due to rapid industrialization and high energy consumption. It can cause increases in the incidence of various respiratory diseases and resident mortality rates, as well as increase in the energy consumption in heating, ventilation, and air conditioning (HVAC) systems due to the need for air purification. This paper reviews and studies the sources of indoor and outdoor PM2.5, the impact of PM2.5 pollution on atmospheric visibility, occupational health, and occupants’ behaviors. This paper also presents current pollution status in China, the relationship between indoor and outdoor PM2.5, and control of indoor PM2.5, and finally presents analysis and suggestions for future research. PMID:29498704

  19. A Review of Recent Advances in Research on PM2.5 in China.

    PubMed

    Lin, Yaolin; Zou, Jiale; Yang, Wei; Li, Chun-Qing

    2018-03-02

    PM 2.5 pollution has become a severe problem in China due to rapid industrialization and high energy consumption. It can cause increases in the incidence of various respiratory diseases and resident mortality rates, as well as increase in the energy consumption in heating, ventilation, and air conditioning (HVAC) systems due to the need for air purification. This paper reviews and studies the sources of indoor and outdoor PM 2.5 , the impact of PM 2.5 pollution on atmospheric visibility, occupational health, and occupants' behaviors. This paper also presents current pollution status in China, the relationship between indoor and outdoor PM 2.5 , and control of indoor PM 2.5 , and finally presents analysis and suggestions for future research.

  20. Air Pollution Particulate Matter Alters Antimycobacterial Respiratory Epithelium Innate Immunity

    PubMed Central

    Rivas-Santiago, César E.; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J.; Ohman Strickland, Pamela; Chow, Judith C.; Watson, John G.; Torres, Martha

    2015-01-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. PMID:25847963

  1. Improving Air Pollution Modeling Over The Po Valley Using Saharan Dust Transport Forecasts

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Nickovic, S.; Alpert, P.

    2012-04-01

    Our study shows that Saharan dust can contribute significantly to PM10 concentrations in the Po Valley. This dust contribution should be taken into account when estimating the exceedance of pollution limits. The DREAM dust model has been used for several years for producing operational dust forecasts at Tel-Aviv University, Israel. DREAM has been producing daily forecasts of 3-D distribution of dust concentrations over the Mediterranean region, Middle East, Europe, and over the Atlantic Ocean (http://wind.tau.ac.il/dust8/dust.html). In the current study, DREAM dust forecasts were used to give better model estimates of the contribution of Saharan dust to PM10 concentration over the Po Valley, in Northern Italy. This was carried out by the integration of daily Saharan dust forecasts into a mesoscale Transport Chemical Aerosol Model (TCAM). The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. Our study of TCAM and DREAM integration was carried out for the period May 15 - June 30, 2007, when four significant dust events were observed. The integrated TCAM-DREAM model performance was evaluated by comparing PM10 measurements with modeled PM10 concentrations. First, Saharan dust impact on TCAM performance was analyzed at eleven remote PM10 sites which had the lowest level of air pollution (PM10 ≤ 14 μg/m3) over the period under consideration. For those remote sites, the observed high PM10 concentrations during dust events stood prominently on the background of low PM10 concentrations. At the remote sites, such a strong deviation from the background level can not be attributed to anthropogenic aerosol emissions because of their distance from anthropogenic sources. The observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. During all dust events under consideration, the integrated TCAM-DREAM model produced more accurate PM10 concentrations than the base TCAM model. Then, a comparison between modeled concentrations and PM10 measurements was carried out at 230 PM10 monitoring sites, distributed within the model domain. This model-vs.-measurement comparison showed that the integrated TCAM -DREAM model more accurately reproduced PM10 concentrations than the base TCAM model, both in term of correlation and mean error. Our results are of importance to countries which have to pay a penalty for exceeding the pollution limit. By extracting dust contribution from PM10 measurements, these countries could show lower rates of man-made pollution.

  2. Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China).

    PubMed

    Yang, Yong; Christakos, George

    2015-11-17

    China experiences severe particulate matter (PM) pollution problems closely linked to its rapid economic growth. Advancing the understanding and characterization of spatiotemporal air pollution distribution is an area where improved quantitative methods are of great benefit to risk assessment and environmental policy. This work uses the Bayesian maximum entropy (BME) method to assess the space-time variability of PM2.5 concentrations and predict their distribution in the Shandong province, China. Daily PM2.5 concentrations obtained at air quality monitoring sites during 2014 were used. On the basis of the space-time PM2.5 distributions generated by BME, we performed three kinds of querying analysis to reveal the main distribution features. The results showed that the entire region of interest is seriously polluted (BME maps identified heavy pollution clusters during 2014). Quantitative characterization of pollution severity included both pollution level and duration. The number of days during which regional PM2.5 exceeded 75, 115, 150, and 250 μg m(-3) varied: 43-253, 13-128, 4-66, and 0-15 days, respectively. The PM2.5 pattern exhibited an increasing trend from east to west, with the western part of Shandong being a heavily polluted area (PM2.5 exceeded 150 μg m(-3) during long time periods). Pollution was much more serious during winter than during other seasons. Site indicators of PM2.5 pollution intensity and space-time variation were used to assess regional uncertainties and risks with their interpretation depending on the pollutant threshold. The observed PM2.5 concentrations exceeding a specified threshold increased almost linearly with increasing threshold value, whereas the relative probability of excess pollution decreased sharply with increasing threshold.

  3. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    PubMed Central

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276

  4. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs.

    PubMed

    Yin, Hao; Pizzol, Massimo; Xu, Linyu

    2017-07-01

    Some cities in China are facing serious air pollution problems including high concentrations of particles, SO 2 and NO x . Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society. The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both the value of statistical life (VSL) and the amended human capital (AHC) approach were applied for external costs estimation, which could provide the upper and lower bound of the external costs due to PM2.5. To fully understand the uncertainty levels, the external cost distribution was determined via Monte Carlo simulation based on the uncertainty of the parameters such as PM2.5 concentration, exposure-response coefficients, and economic cost per case. The results showed that the external costs were equivalent to around 0.3% (AHC, China's guideline: C 0  = 35 μg/m 3 ) to 0.9% (VSL, WHO guideline: C 0  = 10 μg/m 3 ) of regional GDP depending on the valuation method and on the assumed baseline PM2.5 concentration (C 0 ). Among all the health impacts, the economic loss due to premature deaths accounted for more than 80% of the overall external costs. The results of this study could help policymakers prioritizing the PM2.5 pollution control interventions and internalize the external costs through the application of economic policy instruments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece.

    PubMed

    Protonotarios, V; Petsas, N; Moutsatsou, A

    2002-11-01

    The present work focuses on the characterization of air quality and the identification of pollutant origin at a former mining site in the city of Lavrion, Greece. A historical metallurgy complex is reused for establishing the Lavrion Technology and Cultural Park (LTCP). A serious problem with this is the severe soil contamination that resulted from intensive mining and metallurgical activities that has taken place in the greater area for the past 3,000 years. Among other consequences, surface-polluted depositions, rich in heavy and toxic metals, are loose and easily wind-eroded, resulting in transportation of particulate matter (PM) in the surrounding atmosphere. On the other hand, there are a number of industries relatively close to the site that are potential sources of PM air pollution. The current study deals with the collection and analysis of PM10 samples with respect to their concentration in heavy metals, such as Pb, Cd, Cu, Fe, Zn, Mn, Cr, and Ni. Though not a heavy metal, As also is included. Furthermore, the source of these elements is verified using statistical correlation and by calculating enrichment factors (EFs), considering that some substances are certainly of contaminated soil origin. Results show that PM10 and element concentrations are relatively low during winter but significantly increase during summer. Fe, Pb, Zn, Mn, and Cu may be considered of contaminated soil origin, while As, Ni, Cd, and Cr are very much enriched with respect to contaminated soil, indicating another possible source attributed to the adjacent industrial plants.

  6. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    PubMed

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS). Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009. 414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model. At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at workplace associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD. Ambient air pollution is correlated with AECOPD hospitalizations spatially. A 10 μg/m(3) increase of PM10 at workplace was associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD in Jinan, 2009. As a spatial data processing tool, GIS has novel and great potential on air pollutants exposure assessment and spatial analysis in AECOPD research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Association between Air Pollution and Outpatient and Inpatient Visits in Shenzhen, China

    PubMed Central

    Liu, Yachuan; Chen, Shanen; Xu, Jian; Liu, Xiaojian; Wu, Yongsheng; Zhou, Lin; Cheng, Jinquan; Ma, Hanwu; Zheng, Jing; Lin, Denan; Zhang, Li; Chen, Lili

    2018-01-01

    Nowadays, air pollution is a severe environmental problem in China. To investigate the effects of ambient air pollution on health, a time series analysis of daily outpatient and inpatient visits in 2015 were conducted in Shenzhen (China). Generalized additive model was employed to analyze associations between six air pollutants (namely SO2, CO, NO2, O3, PM10, and PM2.5) and daily outpatient and inpatient visits after adjusting confounding meteorological factors, time and day of the week effects. Significant associations between air pollutants and two types of hospital visits were observed. The estimated increase in overall outpatient visits associated with each 10 µg/m3 increase in air pollutant concentration ranged from 0.48% (O3 at lag 2) to 11.48% (SO2 with 2-day moving average); for overall inpatient visits ranged from 0.73% (O3 at lag 7) to 17.13% (SO2 with 8-day moving average). Our results also suggested a heterogeneity of the health effects across different outcomes and in different populations. The findings in present study indicate that even in Shenzhen, a less polluted area in China, significant associations exist between air pollution and daily number of overall outpatient and inpatient visits. PMID:29360738

  8. Effect of Air Pollution on Menstrual Cycle Length-A Prognostic Factor of Women's Reproductive Health.

    PubMed

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-07-20

    Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.

  9. Short-Term Effects of the Particulate Pollutants Contained in Saharan Dust on the Visits of Children to the Emergency Department due to Asthmatic Conditions in Guadeloupe (French Archipelago of the Caribbean)

    PubMed Central

    Cadelis, Gilbert; Tourres, Rachel; Molinie, Jack

    2014-01-01

    Background The prevalence of asthma in children is a significant phenomenon in the Caribbean. Among the etiologic factors aggravating asthma in children, environmental pollution is one of the main causes. In Guadeloupe, pollution is primarily transported by Saharan dust including inhalable particles. Methods This study assesses, over one year (2011), the short-term effects of pollutants referred to as PM10 (PM10: particulate matter <10 µm) and PM2.5–10 (PM2.5–10: particulate matter >2.5 µm and <10 µm) contained in Saharan dust, on the visits of children aged between 5 and 15 years for asthma in the health emergency department of the main medical facility of the archipelago of Guadeloupe. A time-stratified case-crossover model was applied and the data were analysed by a conditional logistic regression for all of the children but also for sub-groups corresponding to different age classes and genders. Results The visits for asthma concerned 836 children including 514 boys and 322 girls. The Saharan dust has affected 15% of the days of the study (337 days) and involved an increase in the average daily concentrations of PM10 (49.7 µg/m3 vs. 19.2 µg/m3) and PM 2.5–10 (36.2 µg/m3 vs. 10.3 µg/m3) compared to days without dust. The excess risk percentages (IR%) for visits related to asthma in children aged between 5 and 15 years on days with dust compared to days without dust were, for PM10, ((IR %: 9.1% (CI95%, 7.1%–11.1%) versus 1.1%(CI95%, −5.9%–4.6%)) and for PM2.5–10 (IR%: 4.5%(CI95%, 2.5%–6.5%) versus 1.6% (CI95%, −1.1%–3.4%). There was no statistical difference in the IR% for periods with Saharan dust among different age group of children and between boys and girls for PM10 and PM2.5–10. Conclusion The PM10 and PM2.5–10 pollutants contained in the Saharan dust increased the risk of visiting the health emergency department for children with asthma in Guadeloupe during the study period. PMID:24603899

  10. Ambient fine and coarse particulate matter pollution and respiratory morbidity in Dongguan, China.

    PubMed

    Zhao, Yiju; Wang, Shengyong; Lang, Lingling; Huang, Caiyan; Ma, Wenjun; Lin, Hualiang

    2017-03-01

    We estimated the short-term effects of particulate matter (PM) pollution with aerodynamic diameters ≤2.5 μm (PM 2.5 ) and between 2.5 and 10 μm (PM c ) on hospital outpatient visits due to overall and specific respiratory diseases, as well as the associated morbidity burden in Dongguan, a subtropical city in South China. A time-series model with quasi-Poisson link was used to examine the association between PM pollution and morbidities from respiratory diseases, COPD, asthma and pneumonia in Dongguan during 2013-2015. We further estimated the morbidity burden (population attributable fraction and attributable morbidity) due to ambient PM pollution. A total of 44,801 hospital outpatient visits for respiratory diseases were recorded during the study period. Both PM 2.5 and PM c were found to be significantly associated with morbidity of overall respiratory diseases, COPD, and asthma. An IQR (interquartile range) increase in PM 2.5 at lag 03 day was associated with 15.41% (95% CI: 10.99%, 20.01%) increase in respiratory morbidity, and each IQR increase in PM c at lag 03 corresponded to 7.24% (95% CI: 4.25%, 10.32%) increase in respiratory morbidity. We did not find significant effects of PM 2.5 and PM c on pneumonia. Using WHO's guideline (25 μg/m 3 ) as reference concentration, about 8.32% (95% CI: 5.90%, 10.86%) of respiratory morbidity (3727, 95% CI: 2642, 4867, in morbidity number) were estimated to be attributed to PM 2.5 , and 0.86% (95% CI: 0.50%, 1.23%) of respiratory morbidity, representing 385 (95% CI: 225, 551) hospital outpatient visits, could be attributed to coarse particulate pollutant. Our study suggests that both fine and coarse particulate pollutants are an important trigger of hospital outpatient visits for respiratory diseases, and account for substantial respiratory morbidity in Dongguan, China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec.

    PubMed

    Gourdji, Shannon

    2018-05-28

    In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen

    2017-11-01

    Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air pollutants. Thus, this pattern is quite favorable for the accumulation of pollutants in the YRD, resulting in higher regional mean PM10 (116.5 ± 66.9 µg m-3), PM2.5 (75.9 ± 49.9 µg m-3), and AOD (0.74) values. Moreover, this pattern is also responsible for the occurrence of most large-scale regional PM2.5 (70.4 %) and PM10 (78.3 %) pollution episodes. High wind speed and clean marine air masses may also play important roles in the mitigation of pollution in the YRD. Especially when the clean marine air masses account for a large proportion of all trajectories (i.e., when the YRD is affected by the cyclonic system or oceanic circulation), the air in the YRD has a lesser chance of being polluted. The observed correlation between weather patterns and particle pollution can provide valuable insight into making decisions about pollution control and mitigation strategies.

  13. C-reactive protein (CRP) and long-term air pollution with a focus on ultrafine particles.

    PubMed

    Pilz, Veronika; Wolf, Kathrin; Breitner, Susanne; Rückerl, Regina; Koenig, Wolfgang; Rathmann, Wolfgang; Cyrys, Josef; Peters, Annette; Schneider, Alexandra

    2018-04-01

    Long-term exposure to ambient air pollution contributes to the global burden of disease by particularly affecting cardiovascular (CV) causes of death. We investigated the association between particle number concentration (PNC), a marker for ultrafine particles, and other air pollutants and high sensitivity C-reactive protein (hs-CRP) as a potential link between air pollution and CV disease. We cross-sectionally analysed data from the second follow up (2013 and 2014) of the German KORA baseline survey which was conducted in 1999-2001. Residential long-term exposure to PNC and various other size fractions of particulate matter (PM 10 with size of <10 μm in aerodynamic diameter, PM coarse 2.5-10 μm or PM 2.5  < 2.5 μm, respectively), soot (PM 2.5 abs: absorbance of PM 2.5 ), nitrogen oxides (nitrogen dioxide NO 2 or oxides NO x , respectively) and ozone (O 3 ) were estimated by land-use regression models. Associations between annual air pollution concentrations and hs-CRP were modeled in 2252 participants using linear regression models adjusted for several confounders. Potential effect-modifiers were examined by interaction terms and two-pollutant models were calculated for pollutants with Spearman inter-correlation <0.70. Single pollutant models for PNC, PM 10 , PM coarse , PM 2.5 abs, NO 2 and NO x showed positive but non-significant associations with hs-CRP. For PNC, an interquartile range (2000 particles/cm 3 ) increase was associated with a 3.6% (95% CI: -0.9%, 8.3%) increase in hs-CRP. A null association was found for PM 2.5 . Effect estimates were higher for women, non-obese participants, for participants without diabetes and without a history of cardiovascular disease whereas ex-smokers showed lower estimates compared to smokers or non-smokers. For O 3 , the dose-response function suggested a non-linear relationship. In two-pollutant models, adjustment for PM 2.5 strengthened the effect estimates for PNC and PM 10 (6.3% increase per 2000 particles/cm 3 [95% CI: 0.4%; 12.5%] and 7.3% per 16.5 μg/m 3 [95% CI: 0.4%; 14.8%], respectively). This study adds to a scarce but growing body of literature showing associations between long-term exposure to ultrafine particles and hs-CRP, one of the most intensely studied blood biomarkers for cardiovascular health. Our results highlight the role of ultrafine particles within the complex mixture of ambient air pollution and their inflammatory potential. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Visualizing the intercity correlation of PM2.5 time series in the Beijing-Tianjin-Hebei region using ground-based air quality monitoring data.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Wu, Jiansheng; Liu, Yonghong

    2018-01-01

    The Beijing-Tianjin-Hebei area faces a severe fine particulate matter (PM2.5) problem. To date, considerable progress has been made toward understanding the PM2.5 problem, including spatial-temporal characterization, driving factors, and health effects. However, little research has been done on the dynamic interactions and relationships between PM2.5 concentrations in different cities in this area. To address the research gap, this study discovered a phenomenon of time-lagged intercity correlations of PM2.5 time series and proposed a visualization framework based on this phenomenon to visualize the interaction in PM2.5 concentrations between cities. The visualizations produced using the framework show that there are significant time-lagged correlations between the PM2.5 time series in different cities in this area. The visualizations also show that the correlations are more significant in colder months and between cities that are closer, and that there are seasonal changes in the temporal order of the correlated PM2.5 time series. Further analysis suggests that the time-lagged intercity correlations of PM2.5 time series are most likely due to synoptic meteorological variations. We argue that the visualizations demonstrate the interactions of air pollution between cities in the Beijing-Tianjin-Hebei area and the significant effect of synoptic meteorological conditions on PM2.5 pollution. The visualization framework could help determine the pathway of regional transportation of air pollution and may also be useful in delineating the area of interaction of PM2.5 pollution for impact analysis.

  15. Visualizing the intercity correlation of PM2.5 time series in the Beijing-Tianjin-Hebei region using ground-based air quality monitoring data

    PubMed Central

    Li, Weifeng; Wu, Jiansheng; Liu, Yonghong

    2018-01-01

    The Beijing-Tianjin-Hebei area faces a severe fine particulate matter (PM2.5) problem. To date, considerable progress has been made toward understanding the PM2.5 problem, including spatial-temporal characterization, driving factors, and health effects. However, little research has been done on the dynamic interactions and relationships between PM2.5 concentrations in different cities in this area. To address the research gap, this study discovered a phenomenon of time-lagged intercity correlations of PM2.5 time series and proposed a visualization framework based on this phenomenon to visualize the interaction in PM2.5 concentrations between cities. The visualizations produced using the framework show that there are significant time-lagged correlations between the PM2.5 time series in different cities in this area. The visualizations also show that the correlations are more significant in colder months and between cities that are closer, and that there are seasonal changes in the temporal order of the correlated PM2.5 time series. Further analysis suggests that the time-lagged intercity correlations of PM2.5 time series are most likely due to synoptic meteorological variations. We argue that the visualizations demonstrate the interactions of air pollution between cities in the Beijing-Tianjin-Hebei area and the significant effect of synoptic meteorological conditions on PM2.5 pollution. The visualization framework could help determine the pathway of regional transportation of air pollution and may also be useful in delineating the area of interaction of PM2.5 pollution for impact analysis. PMID:29438417

  16. Selective Collection of Airborne Particulate Matter

    DOE PAGES

    Cheng, Meng -Dawn

    2018-01-01

    Here, airborne particulate matter (PM) or aerosol particles or simply aerosol are ubiquitous in the environment. They originate from natural processes such as wind erosion, road dust, forest fire, ocean spray and volcanic eruption, and man-made sources consuming fossil fuels resulting from utility power generation and transportation, and numerous industrial processes. Aerosols affect our daily life in many ways; PM reduces visibility in many polluted metropolitan areas, adversely impact human health and local air quality around the world. Aerosol alters cloud cycles and change atmospheric radiation balance. Changes in daily mortality associated with particulate air pollution were typically estimated atmore » approximately 0.5–1.5% per 10 µg m –3 increase in PM10 concentrations. Laden et al. (2006) found “an increase in overall mortality associated with each 10 µg m –3 increase in PM2.5 concentration either as the overall mean (rate ratio [RR], 1.16; 95% confidence interval [CI], 1.07–1.26) or as exposure in the year of death (RR, 1.14; 95% CI, 1.06–1.22). PM2.5 exposure was associated with lung cancer (RR, 1.27; 95% CI, 0.96–1.69) and cardiovascular deaths (RR, 1.28; 95% CI, 1.13–1.44). Improved overall mortality was associated with decreased mean PM 2.5 (10 µg m –3) between periods (RR, 0.73; 95% CI, 0.57–0.95)”. Aerosol particles also play an important role in source identification and apportionment. Since the PM problem is associated with many facets of societal issues such as energy production and economic development, making progress on reducing the effects of PM will require integrated strategies that bring together scientists, engineers and decision makers from different disciplines to consider tradeoffs.« less

  17. Selective Collection of Airborne Particulate Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Meng -Dawn

    Here, airborne particulate matter (PM) or aerosol particles or simply aerosol are ubiquitous in the environment. They originate from natural processes such as wind erosion, road dust, forest fire, ocean spray and volcanic eruption, and man-made sources consuming fossil fuels resulting from utility power generation and transportation, and numerous industrial processes. Aerosols affect our daily life in many ways; PM reduces visibility in many polluted metropolitan areas, adversely impact human health and local air quality around the world. Aerosol alters cloud cycles and change atmospheric radiation balance. Changes in daily mortality associated with particulate air pollution were typically estimated atmore » approximately 0.5–1.5% per 10 µg m –3 increase in PM10 concentrations. Laden et al. (2006) found “an increase in overall mortality associated with each 10 µg m –3 increase in PM2.5 concentration either as the overall mean (rate ratio [RR], 1.16; 95% confidence interval [CI], 1.07–1.26) or as exposure in the year of death (RR, 1.14; 95% CI, 1.06–1.22). PM2.5 exposure was associated with lung cancer (RR, 1.27; 95% CI, 0.96–1.69) and cardiovascular deaths (RR, 1.28; 95% CI, 1.13–1.44). Improved overall mortality was associated with decreased mean PM 2.5 (10 µg m –3) between periods (RR, 0.73; 95% CI, 0.57–0.95)”. Aerosol particles also play an important role in source identification and apportionment. Since the PM problem is associated with many facets of societal issues such as energy production and economic development, making progress on reducing the effects of PM will require integrated strategies that bring together scientists, engineers and decision makers from different disciplines to consider tradeoffs.« less

  18. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects.

  19. Motor transport related harmful PM2.5 and PM10: from onroad measurements to the modelling of air pollution by neural network approach on street and urban level

    NASA Astrophysics Data System (ADS)

    Lozhkina, O.; Lozhkin, V.; Nevmerzhitsky, N.; Tarkhov, D.; Vasilyev, A.

    2016-11-01

    The level of PM10 and PM2.5 concentrations in the air on seven roads in St. Petersburg, Russia, were investigated using gravimetry and nephelometry measurement techniques in 2013-2015. The effects of meteorological conditions (temperature, relative humidity, wind direction, and speed) and the intensity of traffic flows on the results of the measurements were also evaluated. On the base of the measurements, there was developed a neural network modelling approach that allowed to quantify exhaust / non-exhaust PM10 and PM 2.5 emissions and carry out numerical investigations of air pollution by transport related PM2.5 and PM10 on street and urban level in St. Petersburg.

  20. Particulate air pollution and health inequalities: a Europe-wide ecological analysis.

    PubMed

    Richardson, Elizabeth A; Pearce, Jamie; Tunstall, Helena; Mitchell, Richard; Shortt, Niamh K

    2013-07-16

    Environmental disparities may underlie the unequal distribution of health across socioeconomic groups. However, this assertion has not been tested across a range of countries: an important knowledge gap for a transboundary health issue such as air pollution. We consider whether populations of low-income European regions were a) exposed to disproportionately high levels of particulate air pollution (PM10) and/or b) disproportionately susceptible to pollution-related mortality effects. Europe-wide gridded PM10 and population distribution data were used to calculate population-weighted average PM10 concentrations for 268 sub-national regions (NUTS level 2 regions) for the period 2004-2008. The data were mapped, and patterning by mean household income was assessed statistically. Ordinary least squares regression was used to model the association between PM10 and cause-specific mortality, after adjusting for regional-level household income and smoking rates. Air quality improved for most regions between 2004 and 2008, although large differences between Eastern and Western regions persisted. Across Europe, PM10 was correlated with low household income but this association primarily reflected East-West inequalities and was not found when Eastern or Western Europe regions were considered separately. Notably, some of the most polluted regions in Western Europe were also among the richest. PM10 was more strongly associated with plausibly-related mortality outcomes in Eastern than Western Europe, presumably because of higher ambient concentrations. Populations of lower-income regions appeared more susceptible to the effects of PM10, but only for circulatory disease mortality in Eastern Europe and male respiratory mortality in Western Europe. Income-related inequalities in exposure to ambient PM10 may contribute to Europe-wide mortality inequalities, and to those in Eastern but not Western European regions. We found some evidence that lower-income regions were more susceptible to the health effects of PM10.

  1. Particulate air pollution and health inequalities: a Europe-wide ecological analysis

    PubMed Central

    2013-01-01

    Background Environmental disparities may underlie the unequal distribution of health across socioeconomic groups. However, this assertion has not been tested across a range of countries: an important knowledge gap for a transboundary health issue such as air pollution. We consider whether populations of low-income European regions were a) exposed to disproportionately high levels of particulate air pollution (PM10) and/or b) disproportionately susceptible to pollution-related mortality effects. Methods Europe-wide gridded PM10 and population distribution data were used to calculate population-weighted average PM10 concentrations for 268 sub-national regions (NUTS level 2 regions) for the period 2004–2008. The data were mapped, and patterning by mean household income was assessed statistically. Ordinary least squares regression was used to model the association between PM10 and cause-specific mortality, after adjusting for regional-level household income and smoking rates. Results Air quality improved for most regions between 2004 and 2008, although large differences between Eastern and Western regions persisted. Across Europe, PM10 was correlated with low household income but this association primarily reflected East–West inequalities and was not found when Eastern or Western Europe regions were considered separately. Notably, some of the most polluted regions in Western Europe were also among the richest. PM10 was more strongly associated with plausibly-related mortality outcomes in Eastern than Western Europe, presumably because of higher ambient concentrations. Populations of lower-income regions appeared more susceptible to the effects of PM10, but only for circulatory disease mortality in Eastern Europe and male respiratory mortality in Western Europe. Conclusions Income-related inequalities in exposure to ambient PM10 may contribute to Europe-wide mortality inequalities, and to those in Eastern but not Western European regions. We found some evidence that lower-income regions were more susceptible to the health effects of PM10. PMID:23866049

  2. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  3. Association between exposure to ambient air pollution and renal function in Korean adults.

    PubMed

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  < 0.05). In the full covariate model, interquartile range increases in the annual mean concentrations of PM 10 and NO 2 were associated with decreases in eGFR levels of 0.46 (95% CI = - 0.87, - 0.04) and 0.85 (95% CI = - 1.40, - 0.30), respectively. Three of the ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p  < 0.0001), but all significant associations disappeared after adjusting for covariates (all p  > 0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  4. Pollution of PM10 in an underground enclosed loading dock in Malaysia

    NASA Astrophysics Data System (ADS)

    Abualqumboz, M. S.; Mohammed, N. I.; Malakahmad, A.; Nazif, A. N.; Albattniji, A. T.

    2016-06-01

    The enclosed nature of underground loading docks results in accumulation of motor vehicles emissions. Thus, concentration of numerous harmful air pollutants including PM10 particles can increase and reach dangerous levels. This paper aims to study short-term and long-term exposure of PM10 particles inside an underground loading dock located in Malaysia. In addition, the correlation with indoor temperature, relative humidity and vehicles flow will be measured. The concentrations of PM10 were measured for three consecutive weeks using the real-time air quality monitoring instrument AQM60. Series of statistical tests and multiple linear regression analysis were applied on the data using SPSS software and MATLAB R2013a. The results illustrated that PM10 daily average concentration was in compliance with the Malaysian guideline of 150 µg/m3. Actually, 95% of instantaneous PM10 concentration readings were below 75 μg/m3. In addition, significant correlation were found between PM10 concentration and indoor temperature, relative humidity and the previous concentration. The multiple R and R2 were 0.91 and 0.83, respectively. PM10 concentration was also correlated with motor vehicles flow. In conclusion, health effects of long-term exposure to small repetitive doses of air pollutant inside underground facilities should be studied and appropriate control measures need to be implemented.

  5. Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications.

    PubMed

    Mao, Mao; Zhang, Xiaolin; Yin, Yan

    2018-05-28

    The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The results in this paper provide basic knowledge for pollution status of three cities along Chinese Yangtze River and are conductive to mitigating future negative air quality levels.

  6. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity.

    PubMed

    Rivas-Santiago, César E; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J; Ohman Strickland, Pamela; Chow, Judith C; Watson, John G; Torres, Martha; Schwander, Stephan

    2015-06-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    PubMed

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  8. A simple method for the detection of PM2.5 air pollutions using MODIS data

    NASA Astrophysics Data System (ADS)

    Kato, Yoshinobu

    2016-05-01

    In recent years, PM2.5 air pollution is a social and transboundary environmental issue with the rapid economic growth in many countries. As PM2.5 is small and includes various ingredients, the detection of PM2.5 air pollutions by using satellite data is difficult compared with the detection of dust and sandstorms. In this paper, we examine various images (i.e., single-band images, band-difference images, RGB composite color images) to find a good method for detecting PM2.5 air pollutions by using MODIS data. A good method for the detection of PM2.5 air pollution is {R, G, B = band10, band9, T11}, where T11 is the brightness temperature of band31. In this composite color image, PM2.5 air pollutions are represented by light purple or pink color. This proposed method is simpler than the method by Nagatani et al. (2013), and is useful to grasp the distribution of PM2.5 air pollutions in the wide area (e.g., from China and India to Japan). By comparing AVI image with the image by proposed method, DSS and PM2.5 air pollutions can be classified.

  9. North Atlantic Oscillation and pollutants variability in Europe: model analysis and measurements intercomparison

    NASA Astrophysics Data System (ADS)

    Pausata, F.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; Cavalli, F.; Dentener, F. J.

    2013-12-01

    Ozone pollution and particulate matter (PM) represent a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, PM is of main concern during winter. Both pollutants can be influenced nt only by local scale processes but also by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone and PM concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980-2005, that with regard to ozone the North Atlantic Oscillation (NAO) does affect surface ozone concentrations - on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe - during all seasons except fall. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period. With regard to PM, our study shows that in winter the NAO modulates surface PM concentrations accounting in average up to 30% of the total PM variability. During positive NAO phases, positive PM anomalies occur over southern Europe, and negative anomalies in central-northern Europe. A positve shift of the NAO mean states, hence, leads to an increase in cardiac and resipratory morbidity related to PM exposure in the Mediterranean countries with up to over 5000 more deaths per 20 million people for a 2000 emission inventory.

  10. Spatiotemporal evolution of the remotely sensed global continental PM2.5 concentration from 2000-2014 based on Bayesian statistics.

    PubMed

    Li, Junming; Wang, Nannan; Wang, Jinfeng; Li, Honglin

    2018-07-01

    PM 2.5 pollution is threatening human health and quality of life, especially in some densely populated regions of Asia and Africa. This paper used remotely sensed annual mean PM 2.5 concentrations to explore the spatiotemporal evolution of global continental PM 2.5 pollution from 2000 to 2014. The work employed an improved Bayesian space-time hierarchy model combined with a multiscale homogeneous subdivision method. The statistical results quantitatively demonstrated a 'high-value increasing and low-value decreasing' trend. Areas with annual PM 2.5 concentrations of more than 70μg/m 3 and less than 10μg/m 3 expanded, while areas with of an annual PM 2.5 concentrations of 10-25μg/m 3 shrank. The most heavily PM 2.5 -polluted areas were located in northwest Africa, where the PM 2.5 pollution level was 12.0 times higher than the average global continental level; parts of China represented the second most PM 2.5 -polluted areas, followed by northern India and Saudi Arabia and Iraq in the Middle East region. Nearly all (96.50%) of the highly PM 2.5 -polluted area (hot spots) had an increasing local trend, while 68.98% of the lightly PM 2.5 -polluted areas (cold spots) had a decreasing local trend. In contrast, 22.82% of the cold spot areas exhibited an increasing local trend. Moreover, the spatiotemporal variation in the health risk from exposure to PM 2.5 over the global continents was also investigated. Four areas, India, eastern and southern China, western Africa and central Europe, had high health risks from PM 2.5 exposure. Northern India, northeastern Pakistan, and mid-eastern China had not only the highest risk but also a significant increasing trend; the areas of high PM 2.5 pollution risk are thus expanding, and the number of affected people is increasing. Northern and central Africa, the Arabian Peninsula, the Middle East, western Russia and central Europe also exhibited increasing PM 2.5 pollution health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluating strategies to reduce urban air pollution

    NASA Astrophysics Data System (ADS)

    Duque, L.; Relvas, H.; Silveira, C.; Ferreira, J.; Monteiro, A.; Gama, C.; Rafael, S.; Freitas, S.; Borrego, C.; Miranda, A. I.

    2016-02-01

    During the last years, specific air quality problems have been detected in the urban area of Porto (Portugal). Both PM10 and NO2 limit values have been surpassed in several air quality monitoring stations and, following the European legislation requirements, Air Quality Plans were designed and implemented to reduce those levels. In this sense, measures to decrease PM10 and NO2 emissions have been selected, these mainly related to the traffic sector, but also regarding the industrial and residential combustion sectors. The main objective of this study is to investigate the efficiency of these reduction measures with regard to the improvement of PM10 and NO2 concentration levels over the Porto urban region using a numerical modelling tool - The Air Pollution Model (TAPM). TAPM was applied over the study region, for a simulation domain of 80 × 80 km2 with a spatial resolution of 1 × 1 km2. The entire year of 2012 was simulated and set as the base year for the analysis of the impacts of the selected measures. Taking into account the main activity sectors, four main scenarios have been defined and simulated, with focus on: (1) hybrid cars; (2) a Low Emission Zone (LEZ); (3) fireplaces and (4) industry. The modelling results indicate that measures to reduce PM10 should be focused on residential combustion (fireplaces) and industrial activity and for NO2 the strategy should be based on the traffic sector. The implementation of all the defined scenarios will allow a total maximum reduction of 4.5% on the levels of both pollutants.

  12. Urban airborne matter in central and southern Chile: Effects of meteorological conditions on fine and coarse particulate matter

    NASA Astrophysics Data System (ADS)

    Yáñez, Marco A.; Baettig, Ricardo; Cornejo, Jorge; Zamudio, Francisco; Guajardo, Jorge; Fica, Rodrigo

    2017-07-01

    Air pollution is one of the major global environmental problems affecting human health and life quality. Many cities of Chile are heavily polluted with PM2.5 and PM10, mainly in the cold season, and there is little understanding of how the variation in particle matter differs between cities and how this is affected by the meteorological conditions. The objective of this study was to assess the effect of meteorological variables on respirable particulate matter (PM) of the main cities in the central-south valley of Chile during the cold season (May to August) between 2014 and 2016. We used hourly PM2.5 and PMcoarse (PM10- PM2.5) information along with wind speed, temperature and relative humidity, and other variables derived from meteorological parameters. Generalized additive models (GAMs) were fitted for each of the eight cities selected, covering a latitudinal range of 929 km, from Santiago to Osorno. Great variation in PM was found between cities during the cold months, and that variation exhibited a marked latitudinal pattern. Overall, the more northerly cities tended to be less polluted in PM2.5 and more polluted in PMcoarse than the more southerly cities, and vice versa. The results show that other derived variables from meteorology were better related with PM than the use of traditional daily means. The main variables selected with regard to PM2.5 content were mean wind speed and minimum temperature (negative relationship). Otherwise, the main variables selected with regard to PMcoarse content were mean wind speed (negative), and the daily range in temperature (positive). Variables derived from relative humidity contributed differently to the models, having a higher effect on PMcoarse than PM2.5, and exhibiting both negative and positive effects. For the different cities the deviance explained by the GAMs ranged from 37.6 to 79.1% for PM2.5 and from 18.5 to 63.7% for PMcoarse. The percentage of deviance explained by the models for PM2.5 exhibited a latitudinal pattern, which was not observed in PMcoarse. This highlights the greater predictability of PM2.5 according to meteorological parameters in the cities to the south. Southern cities located spatially close to one another had similar patterns in both the selected variables for the models and the trends. The meteorological factor influencing the cities had a major impact on PM concentrations. The findings of this study may aid understanding of PM variation across the country, in the way of improving forecasting models.

  13. The Public Health and Air Pollution in Asia (PAPA) Project: estimating the mortality effects of particulate matter in Bangkok, Thailand.

    PubMed

    Vichit-Vadakan, Nuntavarn; Vajanapoom, Nitaya; Ostro, Bart

    2008-09-01

    Air pollution data in Bangkok, Thailand, indicate that levels of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) are significantly higher than in most cities in North America and Western Europe, where the health effects of PM(10) are well documented. However, the pollution mix, seasonality, and demographics are different from those in developed Western countries. It is important, therefore, to determine whether the large metropolitan area of Bangkok is subject to similar effects of PM(10). This study was designed to investigate the mortality risk from air pollution in Bangkok, Thailand. The study period extended from 1999 to 2003, for which the Ministry of Public Health provided the mortality data. Measures of air pollution were derived from air monitoring stations, and information on temperature and relative humidity was obtained from the weather station in central Bangkok. The statistical analysis followed the common protocol for the multicity PAPA (Public Health and Air Pollution Project in Asia) project in using a natural cubic spline model with smooths of time and weather. The excess risk for non-accidental mortality was 1.3% [95% confidence interval (CI), 0.8-1.7] per 10 microg/m(3) of PM(10), with higher excess risks for cardiovascular and above age 65 mortality of 1.9% (95% CI, 0.8-3.0) and 1.5% (95% CI, 0.9-2.1), respectively. In addition, the effects from PM(10) appear to be consistent in multipollutant models. The results suggest strong associations between several different mortality outcomes and PM(10). In many cases, the effect estimates were higher than those typically reported in Western industrialized nations.

  14. Monitoring of air pollution levels related to Charilaos Trikoupis Bridge.

    PubMed

    Sarigiannis, D A; Handakas, E J; Kermenidou, M; Zarkadas, I; Gotti, A; Charisiadis, P; Makris, K; Manousakas, M; Eleftheriadis, K; Karakitsios, S P

    2017-12-31

    Charilaos Trikoupis bridge is the longest cable bridge in Europe that connects Western Greece with the rest of the country. In this study, six air pollution monitoring campaigns (including major regulated air pollutants) were carried out from 2013 to 2015 at both sides of the bridge, located in the urban areas of Rio and Antirrio respectively. Pollution data were statistically analyzed and air quality was characterized using US and European air quality indices. From the overall campaign, it was found that air pollution levels were below the respective regulatory thresholds, but once at the site of Antirrio (26.4 and 52.2μg/m 3 for PM 2.5 and ΡΜ 10 , respectively) during the 2nd winter period. Daily average PM 10 and PM 2.5 levels from two monitoring sites were well correlated to gaseous pollutant (CO, NO, NO 2 , NO x and SO 2 ) levels, meteorological parameters and factor scores from Positive Matrix Factorization during the 3-year period. Moreover, the elemental composition of PM 10 and PM 2.5 was used for source apportionment. That analysis revealed that major emission sources were sulfates, mineral dust, biomass burning, sea salt, traffic and shipping emissions for PM 10 and PM 2.5 , for both Rio and Antirrio. Seasonal variation indicates that sulfates, mineral dust and traffic emissions increased during the warm season of the year, while biomass burning become the dominant during the cold season. Overall, the contribution of the Charilaos Trikoupis bridge to the vicinity air pollution is very low. This is the result of the relatively low daily traffic volume (~10,000 vehicles per day), the respective traffic fleet composition (~81% of the traffic fleet are private vehicles) and the speed limit (80km/h) which does not favor traffic emissions. In addition, the strong and frequent winds further contribute to the rapid dispersion of the emitted pollutants. Copyright © 2017. Published by Elsevier B.V.

  15. Spatio-temporal characteristics of PM10 concentration across Malaysia

    NASA Astrophysics Data System (ADS)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin T.; Mansor, Haslina

    The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August-September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10-20 days quasi-biweekly (QBW) and 30-60 days lower frequency (LF) band of the intra-seasonal timescales. These intra-seasonal fluctuations show strong seasonality with the largest fraction of variance occurring during the boreal summer and the weakest variance during the winter. Generally, the LF intra-seasonal oscillation is stronger compared to the QBW intra-seasonal band.

  16. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model

    NASA Astrophysics Data System (ADS)

    Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad

    2016-09-01

    Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.

  17. Air quality in Delhi during the CommonWealth Games

    NASA Astrophysics Data System (ADS)

    Marrapu, P.; Cheng, Y.; Beig, G.; Sahu, S.; Srinivas, R.; Carmichael, G. R.

    2014-04-01

    Air quality during The CommonWealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the Games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 μg m-3, respectively. Black carbon (BC) accounted for ∼10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ∼25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by: 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5 and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change. The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ∼25% for BC and PM to ∼60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.

  18. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project

    PubMed Central

    Stafoggia, Massimo; Weinmayr, Gudrun; Pedersen, Marie; Galassi, Claudia; Jørgensen, Jeanette T.; Oudin, Anna; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Marit Aasvang, Gunn; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L.; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T.; Tjønneland, Anne; Peeters, Petra H.; Bueno-de-Mesquita, Bas; Plusquin, Michelle; Key, Timothy J.; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Fournier, Agnes; Boutron-Ruault, Marie-Christine; Baglietto, Laura; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2017-01-01

    Background: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. Objective: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. Methods: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts - Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse [1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04]. Conclusions: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742 PMID:29033383

  19. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  20. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  1. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  2. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  3. Effects of Coarse Particulate Matter on Emergency Hospital Admissions for Respiratory Diseases: A Time-Series Analysis in Hong Kong

    PubMed Central

    Qiu, Hong; Tian, Linwei; Wang, Xiaorong; Tse, Lap Ah; Tam, Wilson; Wong, Tze Wai

    2012-01-01

    Background: Many epidemiological studies have linked daily counts of hospital admissions to particulate matter (PM) with an aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5), but relatively few have investigated the relationship of hospital admissions with coarse PM (PMc; 2.5–10 μm aerodynamic diameter). Objectives: We conducted this study to estimate the health effects of PMc on emergency hospital admissions for respiratory diseases in Hong Kong after controlling for PM2.5 and gaseous pollutants. Methods: We conducted a time-series analysis of associations between daily emergency hospital admissions for respiratory diseases in Hong Kong from January 2000 to December 2005 and daily PM2.5 and PMc concentrations. We estimated PMc concentrations by subtracting PM2.5 from PM10 measurements. We used generalized additive models to examine the relationship between PMc (single- and multiday lagged exposures) and hospital admissions adjusted for time trends, weather conditions, influenza outbreaks, PM2.5, and gaseous pollutants (nitrogen dioxide, sulfur dioxide, and ozone). Results: A 10.9-μg/m3 (interquartile range) increase in the 4-day moving average concentration of PMc was associated with a 1.94% (95% confidence interval: 1.24%, 2.64%) increase in emergency hospital admissions for respiratory diseases that was attenuated but still significant after controlling for PM2.5. Adjusting for gaseous pollutants and altering models assumptions had little influence on PMc effect estimates. Conclusion: PMc was associated with emergency hospital admissions for respiratory diseases in Hong Kong independent of PM2.5 and gaseous pollutants. Further research is needed to evaluate health effects of different components of PMc. PMID:22266709

  4. The association between air pollution and mortality in Thailand

    PubMed Central

    Guo, Yuming; Li, Shanshan; Tawatsupa, Benjawan; Punnasiri, Kornwipa; Jaakkola, Jouni J. K.; Williams, Gail

    2014-01-01

    Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter <10 μm in aerodynamic diameter (PM10), sulphur dioxide (SO2), and ozone (O3)} on mortality. We found that all air pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 μg/m3 in PM10, 10 ppb in O3, 1 ppb in SO2 were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O3 air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution. PMID:24981315

  5. The association between air pollution and mortality in Thailand.

    PubMed

    Guo, Yuming; Li, Shanshan; Tawatsupa, Benjawan; Punnasiri, Kornwipa; Jaakkola, Jouni J K; Williams, Gail

    2014-07-01

    Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter <10 μm in aerodynamic diameter (PM10), sulphur dioxide (SO₂), and ozone (O₃)} on mortality. We found that all air pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 μg/m(3) in PM10, 10 ppb in O₃, 1 ppb in SO₂ were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O₃ air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution.

  6. Assessment of different route choice on commuters' exposure to air pollution in Taipei, Taiwan.

    PubMed

    Li, Hsien-Chih; Chiueh, Pei-Te; Liu, Shi-Ping; Huang, Yu-Yang

    2017-01-01

    The purposes of this study are to develop a healthy commute map indicating cleanest route in Taipei metropolitan area for any given journey and to evaluate the pollutant doses exposed in different commuting modes. In Taiwan, there are more than 13.6 million motorcycles and 7.7 million vehicles among the 23 million people. Exposure to traffic-related air pollutants can thus cause adverse health effects. Moreover, increasing the level of physical activity during commuting and longer distances will result in inhalation of more polluted air. In this study, we utilized air pollution monitoring data (CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ) from Taiwan EPA's air quality monitoring stations in Taipei metropolitan area to estimate each pollutant exposure while commuting by different modes (motorcycling, bicycling, and walking). Spatial interpolation methods such as inverse distance weighting (IDW) were used to estimate each pollutant's distribution in Taipei metropolitan area. Three routes were selected to represent the variety of different daily commuting pathways. The cleanest route choice was based upon Dijkstra's algorithm to find the lowest cumulative pollutant exposure. The IDW interpolated values of CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ranged from 0.42-2.2 (ppm), 2.6-4.8 (ppb), 17.8-42.9 (ppb), 32.4-65.6 (μg/m 3 ), and 14.2-38.9 (μg/m 3 ), respectively. To compare with the IDW results, concentration of particulate matter (PM 10 , PM 2.5 , and PM 1 ) along the motorcycle route was measured in real time. In conclusion, the results showed that the shortest commuting route for motorcyclists resulted in a much higher cumulative dose (PM 2.5 3340.8 μg/m 3 ) than the cleanest route (PM 2.5 912.5 μg/m 3 ). The mobile personal monitoring indicated that the motorcyclists inhaled significant high pollutants during commuting as a result of high-concentration exposure and short-duration peaks. The study could effectively present less polluted commuting routes for citizen health benefits.

  7. Characteristics and source distribution of air pollution in winter in Qingdao, eastern China.

    PubMed

    Li, Lingyu; Yan, Dongyun; Xu, Shaohui; Huang, Mingli; Wang, Xiaoxia; Xie, Shaodong

    2017-05-01

    To characterize air pollution and determine its source distribution in Qingdao, Shandong Province, we analyzed hourly national air quality monitoring network data of normal pollutants at nine sites from 1 November 2015 to 31 January 2016. The average hourly concentrations of particulate matter <2.5 μm (PM 2.5 ) and <10 μm (PM 10 ), SO 2 , NO 2 , 8-h O 3 , and CO in Qingdao were 83, 129, 39, 41, and 41 μg m -3 , and 1.243 mg m -3 , respectively. During the polluted period, 19-26 December 2015, 29 December 2015 to 4 January 2016, and 14-17 January 2016, the mean 24-h PM 2.5 concentration was 168 μg m -3 with maximum of 311 μg m -3 . PM 2.5 was the main pollutant to contribute to the pollution during the above time. Heavier pollution and higher contributions of secondary formation to PM 2.5 concentration were observed in December and January. Pollution pathways and source distribution were investigated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analyses. A cluster from the west, originating in Shanxi, southern Hebei, and west Shandong Provinces, accounted for 44.1% of the total air masses, had a mean PM 2.5 concentration of 134.9 μg m -3 and 73.9% trajectories polluted. This area contributed the most to PM 2.5 and PM 10 levels, >160 and 300 μg m -3 , respectively. In addition, primary crustal aerosols from desert of Inner Mongolia, and coarse and fine marine aerosols from the Yellow Sea contributed to ambient PM. The ambient pollutant concentrations in Qingdao in winter could be attributed to local primary emissions (e.g., coal combustion, vehicular, domestic and industrial emissions), secondary formation, and long distance transmission of emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Short-Term Effect of Coarse Particles on Daily Mortality Rate in A Tropical City, Kaohsiung, Taiwan.

    PubMed

    Tsai, Shang-Shyue; Weng, Yi-Hao; Chiu, Ya-Wen; Yang, Chun-Yuh

    2015-01-01

    Many studies examined the short-term effects of air pollution on frequency of daily mortality over the past two decades. However, information on the relationship between exposure to levels of coarse particles (PM(2.5-10)) and daily mortality rate is relatively sparse due to limited availability of monitoring data and findings are inconsistent. This study was undertaken to determine whether an association exists between PM(2.5-10) levels and rate of daily mortality in Kaohsiung, Taiwan, a large industrial city with a tropical climate. Daily mortality rate, air pollution parameters, and weather data for Kaohsiung were obtained for the period 2006-2008. The relative risk (RR) of daily mortality occurrence was estimated using a time-stratified case-crossover approach, controlling for (1) weather variables, (2) day of the week, (3) seasonality, and (4) long-term time trends. For the single-pollutant model without adjustment for other pollutants, PM(2.5-10) exposure levels showed significant correlation with total mortality rate both on warm and cool days, with an interquartile range increase associated with a 14% (95% CI = 5-23%) and 12% (95% CI = 5-20%) rise in number of total deaths, respectively. In two-pollutant models, PM(2.5-10) exerted significant influence on total mortality frequency after inclusion of sulfur dioxide (SO(2)) on warm days. On cool days, PM(2.5-10) induced significant elevation in total mortality rate when SO(2) or ozone (O(3)) was added in the regression model. There was no apparent indication of an association between PM(2.5-10) exposure and deaths attributed to respiratory and circulatory diseases. This study provided evidence of correlation between short-term exposure to PM(2.5-10) and increased risk of death for all causes.

  9. Follow-up of the air pollution and the human male-to-female ratio analysis in São Paulo, Brazil: a times series study

    PubMed Central

    Miraglia, Simone Georges El Khouri; Veras, Mariana Matera; Amato-Lourenço, Luis Fernando; Rodrigues-Silva, Fernando; Saldiva, Paulo Hilário Nascimento

    2013-01-01

    Objectives In order to assess if ambient air pollution in urban areas could be related to alterations in male/female ratio this study objectives to evaluate changes in ambient particulate matter (PM10) concentrations after implementation of pollution control programmes in São Paulo city and the secondary sex ratio (SRR). Design and methods A time series study was conducted. São Paulo’s districts were stratified according to the PM10 concentrations levels and were used as a marker of overall air pollution. The male ratio was chosen to represent the secondary sex ratio (SSR=total male birth/total births). The SSR data from each area was analysed according to the time variation and PM10 concentration areas using descriptive statistics. The strength association between annual average of PM10 concentration and SSR was performed through exponential regression, and it was adopted as a statistical significance level of p<0.05. Results The exponential regression showed a negative and significant association between PM10 and SSR. SSR varied from 51.4% to 50.7% in São Paulo in the analysed period (2000–2007). Considering the PM10 average concentration in São Paulo city of 44.72 μg/m3 in the study period, the SSR decline reached almost 4.37%, equivalent to 30 934 less male births. Conclusions Ambient levels of PM10 are negatively associated with changes in the SSR. Therefore, we can speculate that higher levels of particulate pollution could be related to increased rates of female births. PMID:23892420

  10. Socioeconomic and urban-rural differentials in exposure to air pollution and mortality burden in England.

    PubMed

    Milojevic, Ai; Niedzwiedz, Claire L; Pearce, Jamie; Milner, James; MacKenzie, Ian A; Doherty, Ruth M; Wilkinson, Paul

    2017-10-06

    Socioeconomically disadvantaged populations often have higher exposures to particulate air pollution, which can be expected to contribute to differentials in life expectancy. We examined socioeconomic differentials in exposure and air pollution-related mortality relating to larger scale (5 km resolution) variations in background concentrations of selected pollutants across England. Ozone and particulate matter (sub-divided into PM 10 , PM 2.5 , PM 2.5-10 , primary, nitrate and sulphate PM 2.5 ) were simulated at 5 km horizontal resolution using an atmospheric chemistry transport model (EMEP4UK). Annual mean concentrations of these pollutants were assigned to all 1,202,578 residential postcodes in England, which were classified by urban-rural status and socioeconomic deprivation based on the income and employment domains of the 2010 English Index of Multiple Deprivation for the Lower-level Super Output Area of residence. We used life table methods to estimate PM 2.5 -attributable life years (LYs) lost in both relative and absolute terms. Concentrations of the most particulate fractions, but not of nitrate PM 2.5 or ozone, were modestly higher in areas of greater socioeconomic deprivation. Relationships between pollution level and socioeconomic deprivation were non-linear and varied by urban-rural status. The pattern of PM 2.5 concentrations made only a small contribution to the steep socioeconomic gradient in LYs lost due to PM 2.5 per 10 3 population, which primarily was driven by the steep socioeconomic gradient in underlying mortality rates. In rural areas, the absolute burden of air pollution-related LYs lost was lowest in the most deprived deciles. Air pollution shows modest socioeconomic patterning at 5 km resolution in England, but absolute attributable mortality burdens are strongly related to area-level deprivation because of underlying mortality rates. Measures that cause a general reduction in background concentrations of air pollution may modestly help narrow socioeconomic differences in health.

  11. EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE- MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

    EPA Science Inventory

    Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...

  12. The relation between air pollution and respiratory deaths in Tehran, Iran- using generalized additive models.

    PubMed

    Dehghan, Azizallah; Khanjani, Narges; Bahrampour, Abbas; Goudarzi, Gholamreza; Yunesian, Masoud

    2018-03-20

    Some epidemiological evidence has shown a relation between ambient air pollution and adverse health outcomes. The aim of this study was to investigate the effect of air pollution on mortality from respiratory diseases in Tehran, Iran. In this ecological study, air pollution data was inquired from the Tehran Province Environmental Protection Agency and the Tehran Air Quality Control Company. Meteorological data was collected from the Tehran Meteorology Organization and mortality data from the Tehran Cemetery Mortality Registration. Generalized Additive Models (GAM) was used for data analysis with different lags, up to 15 days. A 10-unit increase in all pollutants except CO (1-unit) was used to compute the Relative Risk of deaths. During 2005 until 2014, 37,967 respiratory deaths occurred in Tehran in which 21,913 (57.7%) were male. The strongest relationship between NO 2 and PM 10 and respiratory death was seen on the same day (lag 0), and was respectively (RR = 1.04, 95% CI: 1.02-1.07) and (RR = 1.03, 95% CI: 1.02-1.04). O 3 and PM 2.5 had the strongest relationship with respiratory deaths on lag 2 and 1 respectively, and the RR was equal to 1.03, 95% CI: 1.01-1.05 and 1.06, 95% CI: 1.02-1.10 respectively. NO 2 , O 3 , PM 10 and PM 2.5 also showed significant relations with respiratory deaths in the older age groups. The findings of this study showed that O 3 , NO 2 , PM 10 and PM 2.5 air pollutants were related to respiratory deaths in Tehran. Reducing ambient air pollution can save lives in Tehran.

  13. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring.

    PubMed

    Rai, Prabhat Kumar

    2016-07-01

    Air pollution is one of the serious problems world is facing in recent Anthropocene era of rapid industrialization and urbanization. Specifically particulate matter (PM) pollution represents a threat to both the environment and human health. The changed ambient environment due to the PM pollutant in urban areas has exerted a profound influence on the morphological, biochemical and physiological status of plants and its responses. Taking into account the characteristics of the vegetation (wide distribution, greater contact area etc.) it turns out to be an effective indicator of the overall impact of PM pollution and harmful effects of PM pollution on vegetation have been reviewed in the present paper, covering an extensive span of 1960 to March 2016. The present review critically describes the impact of PM pollution and its constituents (e.g. heavy metals and poly-aromatic hydrocarbons) on the morphological attributes such as leaf area, leaf number, stomata structure, flowering, growth and reproduction as well as biochemical parameters such as pigment content, enzymes, ascorbic acid, protein, sugar and physiological aspect such as pH and Relative water content. Further, the paper provides a brief overview on the impact of PM on biodiversity and climate change. Moreover, the review emphasizes the genotoxic impacts of PM on plants. Finally, on the basis of such studies tolerant plants as potent biomonitors with high Air Pollution Tolerance Index (APTI) and Air Pollution Index (API) can be screened and may be recommended for green belt development. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China.

    PubMed

    Zhou, Yi; Li, Lianshui; Hu, Lei

    2017-10-19

    Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM 10 ) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO₂, NO₂, PM 10 , annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures.

  15. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China

    PubMed Central

    Zhou, Yi; Li, Lianshui; Hu, Lei

    2017-01-01

    Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM10) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO2, NO2, PM10, annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures. PMID:29048397

  16. Exposure of Particulate Matters PM10 and PM2.5 to Pregnant Ladies during First Trimester and its Impact on Adverse Birth Outcomes in Delhi, India

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Goyal, P.

    2015-12-01

    The incessant exposure to criteria air pollutants at different level of concentrations is associated with adverse birth outcomes. The present study advocates the importance of the early period of pregnancy (first trimester) for association between growth in term of small gestational age (SGA) and birth weight (BW) with PM2.5 and PM10 for megacity Delhi. The association of PM10 and PM2.5 average concentration, SGA, pre term birth (PTB) and lower birth weight (LBW < 2500g or 5.5 pounds) outcomes have been investigated among 1749 live births in a large hospital during the year 2012 New Delhi, India. The air pollutants PM2.5 and PM10 have been used in single pollutant logistic regression models to estimate odds ratios (OR) for these outcomes. Growth in term of SGA is associated with PM2.5 levels (OR = 0.99, confidence interval (CI) = 0.99 - 1.0) and PM10 levels (OR= 0.99, CI= 0.99 - 1.001) in the first trimester of pregnancy. Birth weight outcome in terms of lower birth weight (LBW) has been found to be significantly associated with PM2.5 (OR= 0.99, CI = 0.98 - 1.00) exposure in the first trimester. A very significant decrease of 0.1% has been observed in growth of infant in terms of SGA with per 10 mg/m3 increase in PM2.5. Also, 0.1 % statistically significant adverse association of BW in terms of LBW has been found with per 10 mg/m3 increased vulnerability of PM2.5 during first trimester of gestation.

  17. Health Impact Assessment of Air Pollution in São Paulo, Brazil.

    PubMed

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-07-11

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5) and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO) standards of PM2.5 (10 μg/m³), São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years' gain) and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m³, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population.

  18. Air Pollution and Lung Function in Dutch Children: A Comparison of Exposure Estimates and Associations Based on Land Use Regression and Dispersion Exposure Modeling Approaches

    PubMed Central

    Gehring, Ulrike; Hoek, Gerard; Keuken, Menno; Jonkers, Sander; Beelen, Rob; Eeftens, Marloes; Postma, Dirkje S.; Brunekreef, Bert

    2015-01-01

    Background There is limited knowledge about the extent to which estimates of air pollution effects on health are affected by the choice for a specific exposure model. Objectives We aimed to evaluate the correlation between long-term air pollution exposure estimates using two commonly used exposure modeling techniques [dispersion and land use regression (LUR) models] and, in addition, to compare the estimates of the association between long-term exposure to air pollution and lung function in children using these exposure modeling techniques. Methods We used data of 1,058 participants of a Dutch birth cohort study with measured forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF) measurements at 8 years of age. For each child, annual average outdoor air pollution exposure [nitrogen dioxide (NO2), mass concentration of particulate matter with diameters ≤ 2.5 and ≤ 10 μm (PM2.5, PM10), and PM2.5 soot] was estimated for the current addresses of the participants by a dispersion and a LUR model. Associations between exposures to air pollution and lung function parameters were estimated using linear regression analysis with confounder adjustment. Results Correlations between LUR- and dispersion-modeled pollution concentrations were high for NO2, PM2.5, and PM2.5 soot (R = 0.86–0.90) but low for PM10 (R = 0.57). Associations with lung function were similar for air pollutant exposures estimated using LUR and dispersion modeling, except for associations of PM2.5 with FEV1 and FVC, which were stronger but less precise for exposures based on LUR compared with dispersion model. Conclusions Predictions from LUR and dispersion models correlated very well for PM2.5, NO2, and PM2.5 soot but not for PM10. Health effect estimates did not depend on the type of model used to estimate exposure in a population of Dutch children. Citation Wang M, Gehring U, Hoek G, Keuken M, Jonkers S, Beelen R, Eeftens M, Postma DS, Brunekreef B. 2015. Air pollution and lung function in Dutch children: a comparison of exposure estimates and associations based on land use regression and dispersion exposure modeling approaches. Environ Health Perspect 123:847–851; http://dx.doi.org/10.1289/ehp.1408541 PMID:25839747

  19. Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health

    PubMed Central

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-01-01

    Air pollution can influence women’s reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM10, SO2, CO, and NOx) to represent a source-related mixture. PM10 and SO2 assessed separately negatively affected the length of the luteal phase after standardization (b = −0.02; p = 0.03; b = −0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = −0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NOx assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women. PMID:28726748

  20. Association between Air Pollution and Emergency Room Visits for Atrial Fibrillation.

    PubMed

    Solimini, Angelo G; Renzi, Matteo

    2017-06-20

    Despite the large prevalence in the population, possible factors responsible for the induction of atrial fibrillation (AF) events in susceptible individuals remain incompletely understood. We investigated the association between air pollution levels and emergency department admissions for AF in Rome. We conducted a 14 years' time-series study to evaluate the association between the daily levels of air pollution (particulate matter, PM 10 and PM 2.5 , and nitrogen dioxide, NO₂) and the daily count of emergency accesses for AF (ICD-9 code: 427.31). We applied an over-dispersed conditional Poisson model to analyze the associations at different lags after controlling for time, influenza epidemics, holiday periods, temperature, and relative humidity. Additionally, we evaluated bi-pollutant models by including the other pollutant and the influence of several effect modifiers such as personal characteristics and pre-existing medical conditions. In the period of study, 79,892 individuals were admitted to the emergency departments of Rome hospitals because of AF (on average, 15.6 patients per day: min = 1, max = 36). Air pollution levels were associated with increased AF emergency visits within 24 h of exposure. Effect estimates ranged between 1.4% (0.7-2.3) for a 10 µg/m³ increase of PM 10 to 3% (1.4-4.7) for a 10 µg/m³ increase of PM 2.5 at lag 0-1 day. Those effects were higher in patients ≥75 years for all pollutants, male patients for PM 10 , and female patients for NO₂. The presence of previous cardiovascular conditions, but not other effect modifiers, increase the pollution effects by 5-8% depending on the lag. This study found evidence that air pollution is associated with AF emergency visits in the short term.

  1. Association between Air Pollution and Emergency Room Visits for Atrial Fibrillation

    PubMed Central

    Solimini, Angelo G.; Renzi, Matteo

    2017-01-01

    Despite the large prevalence in the population, possible factors responsible for the induction of atrial fibrillation (AF) events in susceptible individuals remain incompletely understood. We investigated the association between air pollution levels and emergency department admissions for AF in Rome. We conducted a 14 years’ time-series study to evaluate the association between the daily levels of air pollution (particulate matter, PM10 and PM2.5, and nitrogen dioxide, NO2) and the daily count of emergency accesses for AF (ICD-9 code: 427.31). We applied an over-dispersed conditional Poisson model to analyze the associations at different lags after controlling for time, influenza epidemics, holiday periods, temperature, and relative humidity. Additionally, we evaluated bi-pollutant models by including the other pollutant and the influence of several effect modifiers such as personal characteristics and pre-existing medical conditions. In the period of study, 79,892 individuals were admitted to the emergency departments of Rome hospitals because of AF (on average, 15.6 patients per day: min = 1, max = 36). Air pollution levels were associated with increased AF emergency visits within 24 h of exposure. Effect estimates ranged between 1.4% (0.7–2.3) for a 10 µg/m3 increase of PM10 to 3% (1.4–4.7) for a 10 µg/m3 increase of PM2.5 at lag 0–1 day. Those effects were higher in patients ≥75 years for all pollutants, male patients for PM10, and female patients for NO2. The presence of previous cardiovascular conditions, but not other effect modifiers, increase the pollution effects by 5–8% depending on the lag. This study found evidence that air pollution is associated with AF emergency visits in the short term. PMID:28632149

  2. Particulate matter pollutants and risk of type 2 diabetes: a time for concern?

    PubMed

    Esposito, Katherine; Petrizzo, Michela; Maiorino, Maria Ida; Bellastella, Giuseppe; Giugliano, Dario

    2016-01-01

    The World Health Organization estimates that worldwide in 2012 around 7 million deaths occurred prematurely due to air pollution, which is now the world's largest single environmental health risk. The higher premature mortality associated with air pollution is due to exposure to small particulate matter of 10 microns (PM10) or less in diameter. Exposure to air pollution has also been suggested as a contributing to diabetes incidence and progression. There are a number of possible biological pathways linking air pollutants to diabetes, including endothelial dysfunction, dysregulation of the visceral adipose tissue through inflammation, hepatic insulin resistance, elevated hemoglobin A1c level, elevated blood pressure, and alterations in autonomic tone, which may increase insulin resistance. The risk of future diabetes associated with exposure to 10 μg/m(3) increase of PM2.5 has been quantified in the range of 10 to 27%; the risk of diabetes mortality associated with PM2.5 appears to be quite lower, around 1% for each increment exposure of 10 μg/m(3) of both PM2.5 and PM10. Limitations of the current epidemiological evidence include the complex mixture of pollutants, the different design of the studies, the limited data available for non Western populations, and the lack of demonstration that improvement of air quality is associated with a decrease incidence of type 2 diabetes. Although the most sources of outdoor air pollution are well beyond the control of individuals, people should be informed that there are means to reduce the burden of air pollutants on diabetes risk, including avoidance of passive smoking, adoption of an healthy diet, and increasing leisure-time physical activity.

  3. To Investigate the Effects of Air Pollution (PM10 and SO2) on the Respiratory Diseases Asthma and Chronic Obstructive Pulmonary Disease.

    PubMed

    Saygın, Mustafa; Gonca, Taner; Öztürk, Önder; Has, Mehmet; Çalışkan, Sadettin; Has, Zehra Güliz; Akkaya, Ahmet

    2017-04-01

    Effects of air pollution parameters of sulfur dioxide (SO2) and particulate matter (PM10) values on the respiratory system were investigated. Data of SO 2 and PM10 were obtained daily for air pollution and classified into two groups: Group I (2006-2007), coal burning years and Group II (2008-2009), natural gas+ coal burning. Groups I and II were divided into two subgroups according to the months of combustion as combustible (November-April) and noncombustible (May-October). The number of patients with asthma and chronic obstructive pulmonary disorder (COPD) was recorded between 2006 and 2009. There was no statistically significant difference between Groups I and II for PM10 and SO 2 (p>0.05). Within the years, the values of SO 2 and PM10 were statistically different between the groups defined by month (p<0.01). The number of patients in the combustible and noncombustible subgroups were found to be different for every 4 years, and the numbers of patients with COPD or asthma were not changed through the years. There was a strong correlation between PM10 and COPD (r=0.59, p<0.01) and a weak correlation between PM10 and asthma (r=0.25, p>0.05). A correlation was found between SO 2 and COPD (p<0.01) but not between SO 2 and asthma (p>0.05). The number of visits for COPD and asthma was statistically different between combustible and noncombustible subgroups (X2:58.61, p=0.000; X2:34.55, p=0.000, respectively). The r2 values for SO 2 and PM10 for COPD patients were 17% and 24%, respectively, in contrast to 8% and 5%, respectivley for asthma patients. Air pollution is known to increase respiratory disease occurrences. With decrease in the usage of solid fuel, air pollution could be reduced and may be effective in preventing respiratory diseases.

  4. Effect of environmental air pollution on cardiovascular diseases.

    PubMed

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  5. [Simulation of air pollution characteristics and estimates of environmental capacity in Zibo City].

    PubMed

    Xue, Wen-Bo; Wang, Jin-Nan; Yang, Jin-Tian; Lei, Yu; Yan, Li; He, Jin-Yu; Han, Bao-Ping

    2013-04-01

    To develop a new pattern of air pollution control that is based on the integration of "concentration control, total amount control, and quality control", and in the context of developing national (2011-2015 air pollution control plan for key areas) and (Environmental protection plan of Zibo municipality for the "12th Five-Year Plan" period), a simulation of atmospheric dispersion of air pollutants in Zibo City and its peripheral areas is carried out by employing CALPUFF model, and the atmospheric environmental capacity of SO2, NO(x) and PM10 is estimated based on the results of model simulation and using multi-objective linear programming optimization. The results indicates that the air pollution in Zibo City is significantly related to the pollution sources outside of Zibo City, which contributes to the annual average concentration of SO2, NO2 and PM10 in Zibo City by 26.34%, 21.23%, and 14.58% respectively. There is a notable interaction between districts and counties of Zibo municipality, in which the contribution of SO2, NO(x) and PM10 emissions in surrounding counties and districts to the annual average concentrations of SO2, NO2 and PM10 in downtown area are 35.96%, 43.17%, and 17.69% respectively. There is a great variation in spatial sensitivity of air pollutant emission, and the environmental impact of unit pollutant emissions from Zhoucun, Huantai, Zhangdian and Zichuan is greater than that released from other districts/counties. To meet the requirement of (Ambient air quality standard) (GB 3095-2012), the environmental capacities of SO2, NO(x) and PM10 of Zibo City are only 8.03 x 10(4) t, 19.16 x 10(4) t and 3.21 x 10(4) t, respectively. Therefore, it is imperative to implement regional air pollution joint control in Shandong peninsula in order to ensure the achievement of air quality standard in Zibo City.

  6. The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam.

    PubMed

    Luong, Ly M T; Phung, Dung; Sly, Peter D; Morawska, Lidia; Thai, Phong K

    2017-02-01

    While the effects of ambient air pollution on health have been studied extensively in many developed countries, few studies have been conducted in Vietnam, where the population is exposed to high levels of airborne particulate matter. The aim of our study was to examine the short-term effects of PM 10 , PM 2.5 , and PM 1 on respiratory admissions among young children in Hanoi. Data on daily admissions from the Vietnam National Hospital of Paediatrics and daily records of PM 10 , PM 2.5 , PM 1 and other confounding factors as NO 2 , SO 2 , CO, O 3 and temperature were collected from September 2010 to September 2011. A time-stratified case-crossover design with individual lag model was applied to evaluate the associations between particulate air pollution and respiratory admissions. Significant effects on daily hospital admissions for respiratory disease were found for PM 10 , PM 2.5 and PM 1 . An increase in 10μg/m 3 of PM 10 , PM 2.5 or PM 1 was associated with an increase in risk of admission of 1.4%, 2.2% or 2.5% on the same day of exposure, respectively. No significant difference between the effects on males and females was found in the study. The study demonstrated that infants and young children in Hanoi are at increased risk of respiratory admissions due to the high level of airborne particles in the city's ambient air. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Assessment of population exposure to particulate matter pollution in Chongqing, China.

    PubMed

    Wang, Shuxiao; Zhao, Yu; Chen, Gangcai; Wang, Fei; Aunan, Kristin; Hao, Jiming

    2008-05-01

    To determine the population exposure to PM(10) in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM(10) concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM(10) were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 microg/m(3), respectively, in winter, summer and as the annual average. Indoor PM(10) level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM(10) exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.

  8. Ambient Air Pollution and Daily Outpatient Visits for Cardiac Arrhythmia in Shanghai, China

    PubMed Central

    Zhao, Ang; Chen, Renjie; Kuang, Xingya; Kan, Haidong

    2014-01-01

    Background Cardiac arrhythmias are cardiac rhythm disorders that comprise an important public health problem. Few prior studies have examined the association between ambient air pollution and arrhythmias in general populations in mainland China. Methods We performed a time-series analysis to investigate the short-term association between air pollution (particulate matter with an aerodynamic diameter less than 10 µm [PM10], sulfur dioxide [SO2], and nitrogen dioxide [NO2]) and outpatient visits for arrhythmia in Shanghai, China. We applied the over-dispersed Poisson generalized additive model to analyze the associations after control for seasonality, day of the week, and weather conditions. We then stratified the analyses by age, gender, and season. Results We identified a total of 56 940 outpatient visits for cardiac arrhythmia. A 10-µg/m3 increase in the present-day concentrations of PM10, SO2, and NO2 corresponded to increases of 0.56% (95% CI 0.42%, 0.70%), 2.07% (95% CI 1.49%, 2.64%), and 2.90% (95% CI 2.53%, 3.27%), respectively, in outpatient arrhythmia visits. The associations were stronger in older people (aged ≥65 years) and in females. This study provides the first evidence that ambient air pollution is significantly associated with increased risk of cardiac arrhythmia in mainland China. Conclusions Our analyses provide evidence that the current air pollution levels have an adverse effect on cardiovascular health and strengthened the rationale for further limiting air pollution levels in the city. PMID:24835409

  9. Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies.

    PubMed

    de Hoogh, Kees; Korek, Michal; Vienneau, Danielle; Keuken, Menno; Kukkonen, Jaakko; Nieuwenhuijsen, Mark J; Badaloni, Chiara; Beelen, Rob; Bolignano, Andrea; Cesaroni, Giulia; Pradas, Marta Cirach; Cyrys, Josef; Douros, John; Eeftens, Marloes; Forastiere, Francesco; Forsberg, Bertil; Fuks, Kateryna; Gehring, Ulrike; Gryparis, Alexandros; Gulliver, John; Hansell, Anna L; Hoffmann, Barbara; Johansson, Christer; Jonkers, Sander; Kangas, Leena; Katsouyanni, Klea; Künzli, Nino; Lanki, Timo; Memmesheimer, Michael; Moussiopoulos, Nicolas; Modig, Lars; Pershagen, Göran; Probst-Hensch, Nicole; Schindler, Christian; Schikowski, Tamara; Sugiri, Dorothee; Teixidó, Oriol; Tsai, Ming-Yi; Yli-Tuomi, Tarja; Brunekreef, Bert; Hoek, Gerard; Bellander, Tom

    2014-12-01

    Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China.

    PubMed

    Shen, Guo F; Yuan, Si Y; Xie, Yu N; Xia, Si J; Li, Li; Yao, Yu K; Qiao, Yue Z; Zhang, Jie; Zhao, Qiu Y; Ding, Ai J; Li, Bin; Wu, Hai S

    2014-01-01

    The deteriorating air quality in eastern China including the Yangtze River Delta is attracting growing public concern. In this study, we measured the ambient PM10 and fine PM2.5 in the mega-city, Nanjing at four different times. The 24-h average PM2.5 and PM10 mass concentrations were 0.033-0.234 and 0.042-0.328 mg/m(3), respectively. The daily PM10 and PM2.5 concentrations were 2.9 (2.7-3.2, at 95% confidence interval) and 4.2 (3.8-4.6) times the WHO air quality guidelines of 0.025 mg/m(3) for PM2.5 and 0.050 mg/m(3) for PM10, respectively, which indicated serious air pollution in the city. There was no obvious weekend effect. The highest PM10 pollution occurred in the wintertime, with higher PM2.5 loadings in the winter and summer. PM2.5 was correlated significantly with PM10 and the average mass fraction of PM2.5 in PM10 was about 72.5%. This fraction varied during different sampling periods, with the lowest PM2.5 fraction in the spring but minor differences among the other three seasons.

  11. Emissions Reduction Policies and Recent Trends in Southern California’s Ambient Air Quality

    PubMed Central

    Lurmann, Fred; Gilliland, Frank

    2017-01-01

    To assess accountability and effectiveness of air regulatory policies, we reviewed over 20 years of monitoring data, emissions estimates, and regulatory policies across several Southern California communities participating in a long-term study of children’s health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower-pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, was generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. PMID:25947128

  12. Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

    PubMed

    Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W

    2013-07-01

    Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.

  13. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing-Tianjin-Hebei area

    NASA Astrophysics Data System (ADS)

    He, Jianjun; Gong, Sunling; Liu, Hongli; An, Xingqin; Yu, Ye; Zhao, Suping; Wu, Lin; Song, Congbo; Zhou, Chunhong; Wang, Jie; Yin, Chengmei; Yu, Lijuan

    2017-12-01

    To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province—an area called Jing-Jin-Ji (JJJ, hereinafter)—in December 2013-16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m-3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013-16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.

  14. Multiple linear regression and regression with time series error models in forecasting PM10 concentrations in Peninsular Malaysia.

    PubMed

    Ng, Kar Yong; Awang, Norhashidah

    2018-01-06

    Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.

  15. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Tian, Hezhong; Cheng, Ke; Lu, Long; Zheng, Mei; Wang, Shuxiao; Hao, Jiming; Wang, Kun; Hua, Shenbing; Zhu, Chuanyong; Wang, Yong

    2015-04-01

    Airborne particles in urban Beijing during haze days and normal days were collected and analyzed in the autumn and winter seasons to reveal the chemical characteristics variations of air pollution. The air quality in haze days was substantially worse than that in normal days. Both the relatively low wind speed and high relative humidity were in favor of the accumulation of pollution species and new formation of secondary PM2.5 in the atmosphere. Elevated concentrations of elements and water-soluble inorganic ions were found on haze days for both PM10 and PM2.5. Particularly, the crustal element, such as Fe, in both PM10 and PM2.5 were substantially higher in autumn normal days and winter haze days than those in autumn haze days and winter normal days, indicating that the abundance of Fe in autumn haze days mainly be originated from crustal dust while in winter haze days it might be primarily emitted from anthropogenic sources (iron and steel smelting) instead of road dust. Secondary ion species (SO42-, NO3-, NH4+) in particles were generated much more during haze episodes, and contributed a higher proportion in PM2.5 than in PM10 during the two sampling periods. Moreover, HYSPLIT model was used to explain the possible transport of airborne particles from distant sources. By comparing with south-type trajectory, west-type trajectory entrained larger amounts of primary crustal pollutants, while, south-type trajectory was comprised of a higher mass of anthropogenic pollution species. The results of back trajectory analysis indicated that the elevated concentration of aerosol and its chemical components during haze days might be caused by the integrated effects of accumulation under stagnant meteorological condition and the transport emissions of pollutants from anthropogenic sources surrounding Beijing city.

  16. Short-term exposure to air pollutants increases the risk of ST elevation myocardial infarction and of infarct-related ventricular arrhythmias and mortality.

    PubMed

    Bañeras, Jordi; Ferreira-González, Ignacio; Marsal, Josep Ramon; Barrabés, José A; Ribera, Aida; Lidón, Rosa Maria; Domingo, Enric; Martí, Gerard; García-Dorado, David

    2018-01-01

    The relation between STEMI and air pollution (AP) is scant. We aimed to investigate the short term association between AP and the incidence of STEMI, and STEMI-related ventricular arrhythmias (VA) and mortality. The study was carried out in the area of Barcelona from January 2010 to December 2011. Daily STEMI rates and incidence of STEMI-related VA and mortality were obtained prospectively. The corresponding daily levels of the main pollutants were recorded as well as the atmospheric variables. Three cohorts were defined in order to minimize exposure bias. The magnitude of association was estimated using a time-series design and was adjusted according to atmospheric variables. The daily rate of hospital admissions for STEMI was associated with increases in PM 2.5, PM 10, lead and NO2 concentrations. VA incidence and mortality were associated with increases in PM 2.5 and PM 10 concentrations. In the most specific cohort, BCN (Barcelona) Attended & Resident, STEMI incidence was associated with increases in PM 2.5 (1.009% per 10μg/m 3 ) and PM 10 concentrations (1.005% per 10μg/m 3 ). VA was associated with increases in PM 2.5 (1.021%) and PM 10 (1.015%) and mortality was associated with increases in PM 2.5 (1.083%) and PM 10 (1.045%). Short-term exposure to high levels of PM 2.5 and PM 10 is associated with increased daily STEMI admissions and STEMI-related VA and mortality. Exposure to high levels of lead and NO2 is associated with increased daily STEMI admissions, and NO2 with higher mortality in STEMI patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16-20, 2008

    NASA Astrophysics Data System (ADS)

    Lee, Seungmin; Ho, Chang-Hoi; Lee, Yun Gon; Choi, Hyoung-Jin; Song, Chang-Keun

    2013-10-01

    This study examines the extraordinarily long-lasting episode of high concentrations of particulate matter with diameter <10 μm (PM10) in Seoul, Korea over the period October 16-20, 2008. The concentration of PM10 increased up to 197.2 μg m-3 and continually stayed above the daily environmental control standard value (100 μg m-3) for the period. Satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed pronounced transport of aerosols from China to the Korean peninsula prior to the high-PM10 episode. The updraft of air pollutants from the source region in China, transport by westerlies, and subsequent descent to Seoul metropolitan regions are examined in the context of horizontal and vertical airflows. The connection between PM10 concentration over the Chinese source region and the Seoul target area is verified by wind back trajectory analysis. The meteorological conditions favorable for maintenance of the high PM10 levels are investigated through the analysis of weather maps and low-level stability. In this high-PM10 episode, the stagnant high-pressure system over Korea may play a decisive role in the descent and accumulation of air pollutants. The influence of transboundary air pollutants from China on the air quality in Korea and relevant meteorological environment found in the present study will provide a theoretical underpinning to potential cooperation between East Asian countries in monitoring and controlling atmospheric conditions.

  18. Evaluation of the temporal variations of air quality in Taipei City, Taiwan, from 1994 to 2003.

    PubMed

    Chang, Shuenn-Chin; Lee, Chung-Te

    2008-03-01

    Data collected from the five air-quality monitoring stations established by the Taiwan Environmental Protection Administration in Taipei City from 1994 to 2003 are analyzed to assess the temporal variations of air quality. Principal component analysis (PCA) is adopted to convert the original measuring pollutants into fewer independent components through linear combinations while still retaining the majority of the variance of the original data set. Two principal components (PCs) are retained together explaining 82.73% of the total variance. PC1, which represents primary pollutants such as CO, NO(x), and SO(2), shows an obvious decrease over the last 10 years. PC2, which represents secondary pollutants such as ozone, displays a yearly increase over the time period when a reduction of primary pollutants is obvious. In order to track down the control measures put forth by the authorities, 47 days of high PM(10) concentrations caused by transboundary transport have been eliminated in analyzing the long-term trend of PM(10) in Taipei City. The temporal variations over the past 10 years show that the moderate peak in O(3) demonstrates a significant upward trend even when the local primary pollutants have been well under control. Monthly variations of PC scores demonstrate that primary pollution is significant from January to April, while ozone increases from April to August. The results of the yearly variations of PC scores show that PM(10) has gradually shifted from a strong correlation with PC1 during the early years to become more related to PC2 in recent years. This implies that after a reduction of primary pollutants, the proportion of secondary aerosols in PM(10) may increase. Thus, reducing the precursor concentrations of secondary aerosols will be an effective way to lower PM(10) concentrations.

  19. Air pollution and fasting blood glucose: A longitudinal study in China.

    PubMed

    Chen, Linping; Zhou, Yong; Li, Shanshan; Williams, Gail; Kan, Haidong; Marks, Guy B; Morawska, Lidia; Abramson, Michael J; Chen, Shuohua; Yao, Taicheng; Qin, Tianbang; Wu, Shouling; Guo, Yuming

    2016-01-15

    Limited studies have examined the associations between air pollutants [particles with diameters of 10 μm or less (PM10), sulphur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days' average of concentrations, a 100 μg/m(3) increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95% CI: 0.15-0.19), 0.53 mmol/L (95% CI: 0.42-0.65), and 0.11 mmol/L (95% CI: 0.07-0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.

    PubMed

    Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang

    2018-03-27

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  1. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    PubMed Central

    Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang

    2018-01-01

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626

  2. Effect of chimneys on indoor air concentrations of PM 10 and benzo[a]pyrene in Xuan Wei, China

    NASA Astrophysics Data System (ADS)

    Tian, Linwei; Lan, Qing; Yang, Dong; He, Xingzhou; Yu, Ignatius T. S.; Hammond, S. Katharine

    This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM 10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM 10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.

  3. Ambient Air Pollution and Out-of-Hospital Cardiac Arrest in Beijing, China

    PubMed Central

    Xia, Ruixue; Zhou, Guopeng; Zhu, Tong; Li, Xueying; Wang, Guangfa

    2017-01-01

    Air pollutants are associated with cardiovascular death; however, there is limited evidence of the effects of different pollutants on out-of-hospital cardiac arrests (OHCAs) in Beijing, China. We aimed to investigate the associations of OHCAs with the air pollutants PM2.5–10 (coarse particulate matter), PM2.5 (particles ≤2.5 μm in aerodynamic diameter), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) between 2013 and 2015 using a time-stratified case-crossover study design. We obtained health data from the nationwide emergency medical service database; 4720 OHCA cases of cardiac origin were identified. After adjusting for relative humidity and temperature, the highest odds ratios of OHCA for a 10 μg/m3 increase in PM2.5 were observed at Lag Day 1 (1.07; 95% confidence interval (CI): 1.04–1.10), with strong associations with advanced age (aged ≥70 years) (1.09; 95% CI: 1.05–1.13) and stroke history (1.11; 95% CI: 1.06–1.16). PM2.5–10 and NO2 also showed significant associations with OHCAs, whereas SO2, CO, and O3 had no effects. After simultaneously adjusting for NO2 and SO2 in a multi-pollutant model, PM2.5 remained significant. The effects of PM2.5 in the single-pollutant models for cases with hypertension, respiratory disorders, diabetes mellitus, and heart disease were higher than those for cases without these complications; however, the differences were not statistically significant. The results support that elevated PM2.5 exposure contributes to triggering OHCA, especially in those who are advanced in age and have a history of stroke. PMID:28420118

  4. The impact of PM2.5 on the human respiratory system.

    PubMed

    Xing, Yu-Fei; Xu, Yue-Hua; Shi, Min-Hua; Lian, Yi-Xin

    2016-01-01

    Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health.

  5. Cardiovascular effects of air pollution

    PubMed Central

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2018-01-01

    Summary Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM10), fine particles (PM2.5) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10 μg/m3 increase in long-term exposure to PM2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. PMID:28735838

  6. Cardiovascular effects of air pollution.

    PubMed

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2017-11-01

    Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM 10 ), fine particles (PM 2.5 ) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10μg/m 3 increase in long-term exposure to PM 2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM 2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Disability-adjusted life years and economic cost assessment of the health effects related to PM2.5 and PM10 pollution in Mumbai and Delhi, in India from 1991 to 2015.

    PubMed

    Maji, Kamal Jyoti; Dikshit, Anil Kumar; Deshpande, Ashok

    2017-02-01

    Particulate air pollution is becoming a serious public health concern in urban cities in India due to air pollution-related health effects associated with disability-adjusted life years (DALYs) and economic loss. To obtain the quantitative result of health impact of particulate matter (PM) in most populated Mumbai City and most polluted Delhi City in India, an epidemiology-based exposure-response function has been used to calculate the attributable number of mortality and morbidity cases from 1991 to 2015 in a 5-year interval and the subsequent DALYs, and economic cost is estimated of the health damage based on unit values of the health outcomes. Here, we report the attributable number of mortality due to PM 10 in Mumbai and Delhi increased to 32,014 and 48,651 in 2015 compared with 19,291 and 19,716 in year 1995. And annual average mortality due to PM 2.5 in Mumbai and Delhi was 10,880 and 10,900. Premature cerebrovascular disease (CEV), ischemic heart disease (IHD), and chronic obstructive pulmonary disease (COPD) causes are about 35.3, 33.3, and 22.9% of PM 2.5 -attributable mortalities. Total DALYs due to PM10 increased from 0.34 million to 0.51 million in Mumbai and 0.34 million to 0.75 million in Delhi from average year 1995 to 2015. Among all health outcomes, mortality and chronic bronchitis shared about 95% of the total DALYs. Due to PM 10 , the estimated total economic cost at constant price year 2005 US$ increased from 2680.87 million to 4269.60 million for Mumbai City and 2714.10 million to 6394.74 million for Delhi City, from 1995 to 2015, and the total amount accounting about 1.01% of India's gross domestic product (GDP). A crucial presumption is that in 2030, PM 10 levels would have to decline by 44% (Mumbai) and 67% (Delhi) absolutely to maintain the same health outcomes in year 2015 levels. The results will help policy makers from pollution control board for further cost-benefit analyses of air pollution management programs in Mumbai and Delhi.

  8. Association between long-term exposure to air pollution and mortality in France: A 25-year follow-up study.

    PubMed

    Bentayeb, Malek; Wagner, Verene; Stempfelet, Morgane; Zins, Marie; Goldberg, Marcel; Pascal, Mathilde; Larrieu, Sophie; Beaudeau, Pascal; Cassadou, Sylvie; Eilstein, Daniel; Filleul, Laurent; Le Tertre, Alain; Medina, Sylvia; Pascal, Laurence; Prouvost, Helene; Quénel, Philippe; Zeghnoun, Abdelkrim; Lefranc, Agnes

    2015-12-01

    Long-term exposure to air pollution (AP) has been shown to have an impact on mortality in numerous countries, but since 2005 no data exists for France. We analyzed the association between long-term exposure to air pollution and mortality at the individual level in a large French cohort followed from 1989 to 2013. The study sample consisted of 20,327 adults working at the French national electricity and gas company EDF-GDF. Annual exposure to PM10, PM10–2.5, PM2.5, NO2, O3, SO2, and benzene was assessed for the place of residence of participants using a chemistry-transport model and taking residential history into account. Hazard ratios were estimated using a Cox proportional-hazards regression model, adjusted for selected individual and contextual risk factors. Hazard ratios were computed for an interquartile range (IQR) increase in air pollutant concentrations. The cohort recorded 1967 non-accidental deaths. Long-term exposures to b aseline PM2.5, PM10-25, NO2 and benzene were associated with an increase in non-accidental mortality (Hazard Ratio, HR = 1.09; 95% CI: 0.99, 1.20 per 5.9 μg/m3, PM10-25; HR=1.09; 95% CI: 1.04, 1.15 per 2.2 μg/m3, NO2: HR=1.14; 95% CI: 0.99, 1.31 per 19.3 μg/m3 and benzene: HR=1.10; 95% CI: 1.00, 1.22 per 1.7 μg/m3).The strongest association was found for PM10: HR = 1.14; 95% CI: 1.05, 1.25 per 7.8 μg/m3. PM10, PM10-25 and SO2 were associated with non-accidental mortality when using time varying exposure. No significant associations were observed between air pollution and cardiovascular and respiratory mortality. Long-term exposure to fine particles, nitrogen dioxide, sulfur dioxide and benzene is associated with an increased risk of non-accidental mortality in France. Our results strengthen existing evidence that outdoor air pollution is a significant environmental risk factor for mortality. Due to the limited sample size and the nature of our study (occupational), further investigations are needed in France with a larger representative population sample.

  9. PM(10) episodes in Greece: Local sources versus long-range transport-observations and model simulations.

    PubMed

    Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros

    2017-01-01

    Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM 10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM 10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM 10 pollution episodes (EEs) as days during which PM 10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM 10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83 μg/m 3 , whereas during LSI it varied from 14 to 67 μg/m 3 . This paper examines the occurrence and nature of extreme PM 10 pollution episodes (EEs) in Greece during a 3-yr period (2009-2011). Fourteen EEs were found of 49 days total duration, classified into two main categories: Local Source Impact (53%) and African Dust Impact (47%). All the above extreme PM 10 air pollution episodes were the result of specific synoptic prevailing conditions. Specific information on the linkages between the synoptic weather patterns and PM 10 concentrations could be used in the development of weather/health-warning system to alert the public that a synoptic episode is imminent.

  10. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China.

    PubMed

    Qiu, Xionghui; Duan, Lei; Gao, Jian; Wang, Shulan; Chai, Fahe; Hu, Jun; Zhang, Jingqiao; Yun, Yaru

    2016-02-01

    To elucidate the air pollution characteristics of northern China, airborne PM10 (atmospheric dynamic equivalent diameter ≤ 10 μm) and PM2.5 (atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas (Yuzhong County, Xigu District and Chengguan District) of Lanzhou, and their chemical composition (elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM10 (369.48 μg/m(3)) and PM2.5 (295.42 μg/m(3)) were detected in Xigu District in the winter, the lowest concentration of PM2.5 (53.15 μg/m(3)) was observed in Yuzhong District in the fall and PM10 (89.60 μg/m(3)) in Xigu District in the fall. The overall average OC/EC (organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA (the sum of sulfate, nitrate, ammonium, SNA) in PM2.5 in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM2.5 and PM10 in Yuzhong County was generally lower than that at other sites in all seasons (0.24-0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization (PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou. Copyright © 2015. Published by Elsevier B.V.

  11. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2011-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and also highlights a cross-disciplinary need in both measurement and modeling to study the regional environmental, weather and climate problems in East China.

  12. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2013-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and also highlights a cross-disciplinary need in both measurement and modeling to study the regional environmental, weather and climate problems in East China.

  13. Assessment of indoor and outdoor particulate air pollution at an urban background site in Iran.

    PubMed

    Mohammadyan, Mahmoud; Ghoochani, Mahboobeh; Kloog, Itai; Abdul-Wahab, Sabah Ahmed; Yetilmezsoy, Kaan; Heibati, Behzad; Godri Pollitt, Krystal J

    2017-05-01

    The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM 1.0 ), 2.5 μm (PM 2.5 ), and 10 μm (PM 10 ) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM 10 (50.1 ± 32.1 μg/m 3 ) and outdoor PM 10 concentrations (46.5 ± 26.0 μg/m 3 ), indoor PM 2.5 (22.6 ± 17.4 μg/m 3 ) and outdoor PM 2.5 concentration (22.2 ± 15.4 μg/m 3 ), or indoor PM 1.0 (14.5 ± 13.4 μg/m 3 ) and outdoor mean PM 1.0 concentrations (14.2 ± 12.3 μg/m 3 ). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.

  14. Air pollution and cardiovascular mortality with over 25years follow-up: A combined analysis of two British cohorts.

    PubMed

    Dehbi, Hakim-Moulay; Blangiardo, Marta; Gulliver, John; Fecht, Daniela; de Hoogh, Kees; Al-Kanaani, Zaina; Tillin, Therese; Hardy, Rebecca; Chaturvedi, Nish; Hansell, Anna L

    2017-02-01

    Adverse effects of air pollution on cardiovascular disease (CVD) mortality are well established. There are comparatively fewer studies in Europe, and in the UK particularly, than in North America. We examined associations in two British cohorts with >25years of follow-up. Annual average NO 2 , SO 2 and black smoke (BS) air pollution exposure estimates for 1991 were obtained from land use regression models using contemporaneous monitoring data. From the European Study of Cohorts and Air Pollution (ESCAPE), air pollution estimates in 2010-11 were obtained for NO 2 , NO x , PM 10 , PM coarse and PM 2.5 . The exposure estimates were assigned to place of residence 1989 for participants in a national birth cohort born in 1946, the MRC National Study of Health and Development (NSHD), and an adult multi-ethnic London cohort, Southall and Brent Revisited (SABRE) recruited 1988-91. The combined median follow-up was 26years. Single-pollutant competing risk models were employed, adjusting for individual risk factors. Elevated non-significant hazard ratios for CVD mortality were seen with 1991 BS and SO 2 and with ESCAPE PM 10 and PM 2.5 in fully adjusted linear models. Per 10μg/m 3 increase HRs were 1.11 [95% CI: 0.76-1.61] for BS, 1.05 [95% CI: 0.91-1.22] for SO 2 , 1.16 [95% CI: 0.70-1.92] for PM 10 and 1.30 [95% CI: 0.39-4.34] for PM 2.5 , with largest effects seen in the fourth quartile of BS and PM 2.5 compared to the first with HR 1.24 [95% CI: 0.91-1.61] and 1.21 [95% CI: 0.88-1.66] respectively. There were no consistent associations with other ESCAPE pollutants, or with 1991 NO 2 . Modelling using Cox regression led to similar results. Our results support a detrimental long-term effect for air pollutants on cardiovascular mortality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Effect of air pollution and racism on ethnic differences in respiratory health among adolescents living in an urban environment☆

    PubMed Central

    Astell-Burt, Thomas; Maynard, Maria J.; Lenguerrand, Erik; Whitrow, Melissa J.; Molaodi, Oarabile R.; Harding, Seeromanie

    2013-01-01

    Recent studies suggest that stress can amplify the harm of air pollution. We examined whether experience of racism and exposure to particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm (PM2.5 and PM10) had a synergistic influence on ethnic differences in asthma and lung function across adolescence. Analyses using multilevel models showed lower forced expiratory volume (FEV1), forced vital capacity (FVC) and lower rates of asthma among some ethnic minorities compared to Whites, but higher exposure to PM2.5, PM10 and racism. Racism appeared to amplify the relationship between asthma and air pollution for all ethnic groups, but did not explain ethnic differences in respiratory health. PMID:23933797

  16. Source apportionment of speciated PM10 in the United Kingdom in 2008: Episodes and annual averages

    NASA Astrophysics Data System (ADS)

    Redington, A. L.; Witham, C. S.; Hort, M. C.

    2016-11-01

    The Lagrangian atmospheric dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment), has been used to simulate the formation and transport of PM10 over North-West Europe in 2008. The model has been evaluated against UK measurement data and been shown to adequately represent the observed PM10 at rural and urban sites on a daily basis. The Lagrangian nature of the model allows information on the origin of pollutants (and hence their secondary products) to be retained to allow attribution of pollutants at receptor sites back to their sources. This source apportionment technique has been employed to determine whether the different components of the modelled PM10 have originated from UK, shipping, European (excluding the UK) or background sources. For the first time this has been done to evaluate the composition during periods of elevated PM10 as well as the annual average composition. The episode data were determined by selecting the model data for each hour when the corresponding measurement data was >50 μg/m3. All the modelled sites show an increase in European pollution contribution and a decrease in the background contribution in the episode case compared to the annual average. The European contribution is greatest in southern and eastern parts of the UK and decreases moving northwards and westwards. Analysis of the speciated attribution data over the selected sites reveals that for 2008, as an annual average, the top three contributors to total PM10 are UK primary PM10 (17-25%), UK origin nitrate aerosol (18-21%) and background PM10 (11-16%). Under episode conditions the top three contributors to modelled PM10 are UK origin nitrate aerosol (12-33%), European origin nitrate aerosol (11-19%) and UK primary PM10 (12-18%).

  17. Temporal Variation of Ambient PM10 Concentration within an Urban-Industrial Environment

    NASA Astrophysics Data System (ADS)

    Wong, Yoon-Keaw; Noor, Norazian Mohamed; Izzah Mohamad Hashim, Nur

    2018-03-01

    PM10 concentration in the ambient air has been reported to be the main pollutant affecting human health, particularly in the urban areas. This research is conducted to study the variation of PM10 concentration at the three urban-industrial areas in Malaysia, namely Shah Alam, Kuala Terengganu and Melaka. In addition, the association and correlation between PM10 concentration and other air pollutants will be distinguished. Five years interval dataset (2008-2012) consisting of PM10, SOX, NOX and O3 concentrations and other weather parameters such as wind speed, humidity and temperature were obtained from Department of Environment, Malaysia. Shah Alam shows the highest average of PM10 concentration with the value of 62.76 μg/m3 in June, whereas for Kuala Terengganu was 59.29 μg/m3 in February and 46.61 μg/m3 in August for Melaka. Two peaks were observed from the time series plot using the averaged monthly PM10 concentration. First peak occurs when PM10 concentration rises from January to February and the second peak is reached in June and remain high for the next two consecutive months for Shah Alam and Kuala Terengganu. Meanwhile the second peak for Melaka is only achieved in August as a result of the transboundary of smoke from forest fires in the Sumatra region during dry season from May to September. Both of the pollutants can be sourced from rapid industrial activities at Shah Alam. PM10 concentration is strongly correlated with carbon monoxide concentration in Kuala Terengganu and Melaka with value of r2 = 0.1725 and 0.2744 respectively. High carbon monoxide and PM10 concentration are associated with burning of fossil fuel from increased number of vehicles at these areas.

  18. High resolution exposure modelling of heat and air pollution and the impact on mortality.

    PubMed

    Willers, Saskia M; Jonker, Marcel F; Klok, Lisette; Keuken, Menno P; Odink, Jennie; van den Elshout, Sef; Sabel, Clive E; Mackenbach, Johan P; Burdorf, Alex

    2016-01-01

    Elevated temperature and air pollution have been associated with increased mortality. Exposure to heat and air pollution, as well as the density of vulnerable groups varies within cities. The objective was to investigate the extent of neighbourhood differences in mortality risk due to heat and air pollution in a city with a temperate maritime climate. A case-crossover design was used to study associations between heat, air pollution and mortality. Different thermal indicators and air pollutants (PM10, NO2, O3) were reconstructed at high spatial resolution to improve exposure classification. Daily exposures were linked to individual mortality cases over a 15year period. Significant interaction between maximum air temperature (Tamax) and PM10 was observed. During "summer smog" days (Tamax>25°C and PM10>50μg/m(3)), the mortality risk at lag 2 was 7% higher compared to the reference (Tamax 15°C and PM10 15μg/m(3)). Persons above age 85 living alone were at highest risk. We found significant synergistic effects of high temperatures and air pollution on mortality. Single living elderly were the most vulnerable group. Due to spatial differences in temperature and air pollution, mortality risks varied substantially between neighbourhoods, with a difference up to 7%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Association between air pollution and daily mortality and hospital admission due to ischaemic heart diseases in Hong Kong

    NASA Astrophysics Data System (ADS)

    Tam, Wilson Wai San; Wong, Tze Wai; Wong, Andromeda H. S.

    2015-11-01

    Ischaemic heart disease (IHD) is one of the leading causes of death worldwide. The effects of air pollution on IHD mortalities have been widely reported. Fewer studies focus on IHD morbidities and PM2.5, especially in Asia. To explore the associations between short-term exposure to air pollution and morbidities and mortalities from IHD, we conducted a time series study using a generalized additive model that regressed the daily numbers of IHD mortalities and hospital admissions on daily mean concentrations of the following air pollutants: nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter less than 10 μm (PM10), particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5), ozone (O3), and sulfur dioxide (SO2). The relative risks (RR) of IHD deaths and hospital admissions per 10 μg/m3 increase in the concentration of each air pollutant were derived in single pollutant models. Multipollutant models were also constructed to estimate their RRs controlling for other pollutants. Significant RRs were observed for all five air pollutants, ranging from 1.008 to 1.032 per 10 μg/m3 increase in air pollutant concentrations for IHD mortality and from 1.006 to 1.021 per 10 μg/m3 for hospital admissions for IHD. In the multipollutant model, only NO2 remained significant for IHD mortality while SO2 and PM2.5 was significantly associated with hospital admissions. This study provides additional evidence that mortalities and hospital admissions for IHD are significantly associated with air pollution. However, we cannot attribute these health effects to a specific air pollutant, owing to high collinearity between some air pollutants.

  20. Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain).

    PubMed

    López, J M; Callén, M S; Murillo, R; García, T; Navarro, M V; de la Cruz, M T; Mastral, A M

    2005-09-01

    An assessment of the air quality of Zaragoza (Spain) was performed by determining the trace element content in airborne PM10 in a sampling campaign from July 2001 to July 2002. Samples were collected in a heavy traffic area with a high volume air sampler provided with a PM10 cutoff inlet. The levels of 16 elements (Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) were quantified after collecting the PM10 on Teflon-coated glass fiber filters (GFF). Regarding the PM10, 32% exceedance of the proposed PM10 daily limit was obtained, some of them corresponding to summer and autumn periods. The limit values of toxic trace elements from US-EPA, WHO, and EC were not exceeded, considering Zaragoza as a moderately polluted city under the current air quality guidelines. The contribution of anthropogenic sources to atmospheric elemental levels was reflected by the high values of enrichment factors for Zn, Pb, and Cu compared to the average crustal composition. Statistical analyses also determined the contribution of different sources to the PM10, finding that vehicle traffic and anthropogenic emissions related to combustion and industrial processes were the main pollutant sources as well as natural sources associated with transport of dust from Africa for specific dates. Regarding the influence of meteorological conditions on PM10 and trace elements concentrations, it was found that calm weather conditions with low wind speed favor the PM10 collection and the pollution for trace elements, suggesting the influence of local sources.

  1. Investigation of air pollution of Shanghai subway stations in ventilation seasons in terms of PM2.5 and PM10.

    PubMed

    Guo, Erbao; Shen, Henggen; He, Lei; Zhang, Jiawen

    2017-07-01

    In November 2015, the PM 2.5 and PM 10 particulate matter (PM) levels in platforms, station halls, and rail areas of the Shangcheng and Jiashan Road Station were monitored to investigate air pollution in the Shanghai subway system. The results revealed that in subway stations, PM 2.5 and PM 10 concentrations were significantly higher than those in outdoor environments. In addition, particle concentrations in the platforms exceeded maximum levels that domestic safety standards allowed. Particularly on clear days, PM 2.5 and PM 10 concentrations in platforms were significantly higher than maximum standards levels. Owing to the piston effect, consistent time-varying trends were exhibited by PM 2.5 concentrations in platforms, station halls, and rail areas. Platform particle concentrations were higher than the amount in station halls, and they were higher on clear days than on rainy days. The time-varying trends of PM 10 and PM 2.5 concentrations in platforms and station halls were similar to each other. Activities within the station led to most of the inhalable particles within the station area. The mass concentration ratios of PM 2.5 and PM 10 in platforms were within 0.65-0.93, and fine particles were the dominant components.

  2. The cumulative effect of air pollutants on the acute exacerbation of COPD in Shanghai, China.

    PubMed

    Sun, Xian Wen; Chen, Pei Li; Ren, Lei; Lin, Ying Ni; Zhou, Jian Ping; Ni, Lei; Li, Qing Yun

    2018-05-01

    Epidemiologic studies have shown the effect of air pollutants on acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, little is known regarding the dose-response relationship. This study aimed to investigate the cumulative effect of air pollutants on AECOPD. We collected 101 patients with AECOPD from November 2010 through August 2011 in Shanghai. Multiple logistic regression was used to estimate associations between air pollutants and AECOPD. Poisson regression was then applied to determine the cumulative effect of air pollutants including particulate matter 10 (PM10), PM2.5, nitrogen dioxide (NO 2 ), sulphur dioxide (SO 2 ) and ozone (O 3 ) on AECOPD, of which the seasonal variation was further explored. The monthly episodes of AECOPD were associated with the concentrations of PM2.5 (r=0.884, p<0.05) and NO 2 (r=0.763, p<0.05). The cutoff value of PM2.5 and NO 2 for predicting AECOPD was 83.0μg/m 3 and 53.5μg/m 3 , respectively. It showed that per 10μg/m 3 increment in PM2.5 increased the relative risks (RR) for AECOPD was 1.09 with 3days cumulative effect in cold season, whereas 7days in warm season. The RR for AECOPD for per 10μg/m 3 increment in NO 2 was 1.07, with a 5-day cumulative effect without seasonal variation. High consecutive levels of PM2.5 and NO 2 increase the risk of developing AECOPD. Cumulative effect of PM2.5 and NO 2 appears before the exacerbation onset. These gradations were more evident in the PM2.5 during different seasons. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. “Air pollution in Delhi: Its Magnitude and Effects on Health”

    PubMed Central

    Rizwan, SA; Nongkynrih, Baridalyne; Gupta, Sanjeev Kumar

    2013-01-01

    Air pollution is responsible for many health problems in the urban areas. Of late, the air pollution status in Delhi has undergone many changes in terms of the levels of pollutants and the control measures taken to reduce them. This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μg/m3. Vehicular emissions and industrial activities were found to be associated with indoor as well as outdoor air pollution in Delhi. Studies on air pollution and mortality from Delhi found that all-natural-cause mortality and morbidity increased with increased air pollution. Delhi has taken several steps to reduce the level of air pollution in the city during the last 10 years. However, more still needs to be done to further reduce the levels of air pollution. PMID:23559696

  4. Ozone, NO2 and PM10 are associated with the occurrence of multiple sclerosis relapses. Evidence from seasonal multi-pollutant analyses.

    PubMed

    Jeanjean, Maxime; Bind, Marie-Abele; Roux, Jonathan; Ongagna, Jean-Claude; de Sèze, Jérôme; Bard, Denis; Leray, Emmanuelle

    2018-05-01

    Triggers of multiple sclerosis (MS) relapses are essentially unknown. PM 10 exposure has recently been associated with an increased risk of relapses. We further explore the short-term associations between PM 10 , NO 2 , benzene (C 6 H 6 ), O 3 , and CO exposures, and the odds of MS relapses' occurrence. Using a case-crossover design, we studied 424 MS patients living in the Strasbourg area, France between 2000 and 2009 (1783 relapses in total). Control days were chosen to be ± 35 days relative to the case (relapse) day. Exposure was modeled through ADMS-Urban software at the census block scale. We consider single-pollutant and multi-pollutant conditional logistic regression models coupled with a distributed-lag linear structure, stratified by season ("hot" vs. "cold"), and adjusted for meteorological parameters, pollen count, influenza-like epidemics, and holidays. The single-pollutant analyses indicated: 1) significant associations between MS relapse incidence and exposures to NO 2 , PM 10 , and O 3 , and 2) seasonality in these associations. For instance, an interquartile range increase in NO 2 (lags 0-3) and PM 10 exposure were associated with MS relapse incidence (OR = 1.08; 95%CI: [1.03-1.14] and OR = 1.06; 95%CI: [1.01-1.11], respectively) during the "cold" season (i.e., October-March). We also observed an association with O 3 and MS relapse incidence during "hot" season (OR = 1.16; 95%CI: [1.07-1.25]). C 6 H 6 and CO were not significantly related to MS relapse incidence. However, using multi-pollutant models, only O 3 remained significantly associated with the odds of relapse triggering during "hot" season. We observed significant single-pollution associations between the occurrence of MS relapses and exposures to NO 2 , O 3 and PM 10 , only O 3 remained significantly associated with occurrence of MS relapses in the multi-pollutant model. Copyright © 2018. Published by Elsevier Inc.

  5. Particulate air pollution and mortality in 38 of China's largest cities: time series analysis.

    PubMed

    Yin, Peng; He, Guojun; Fan, Maoyong; Chiu, Kowk Yan; Fan, Maorong; Liu, Chang; Xue, An; Liu, Tong; Pan, Yuhang; Mu, Quan; Zhou, Maigeng

    2017-03-14

    Objectives  To estimate the short term effect of particulate air pollution (particle diameter <10 μm, or PM 10 ) on mortality and explore the heterogeneity of particulate air pollution effects in major cities in China. Design  Generalised linear models with different lag structures using time series data. Setting  38 of the largest cities in 27 provinces of China (combined population >200 million). Participants  350 638 deaths (200 912 in males, 149 726 in females) recorded in 38 city districts by the Disease Surveillance Point System of the Chinese Center for Disease Control and Prevention from 1 January 2010 to 29 June 2013. Main outcome measure  Daily numbers of deaths from all causes, cardiorespiratory diseases, and non-cardiorespiratory diseases and among different demographic groups were used to estimate the associations between particulate air pollution and mortality. Results  A 10 µg/m 3 change in concurrent day PM 10 concentrations was associated with a 0.44% (95% confidence interval 0.30% to 0.58%) increase in daily number of deaths. Previous day and two day lagged PM 10 levels decreased in magnitude by one third and two thirds but remained statistically significantly associated with increased mortality. The estimate for the effect of PM 10 on deaths from cardiorespiratory diseases was 0.62% (0.43% to 0.81%) per 10 µg/m 3 compared with 0.26% (0.09% to 0.42%) for other cause mortality. Exposure to PM 10 had a greater impact on females than on males. Adults aged 60 and over were more vulnerable to particulate air pollution at high levels than those aged less than 60. The PM 10 effect varied across different cities and marginally decreased in cities with higher PM 10 concentrations. Conclusion  Particulate air pollution has a greater impact on deaths from cardiorespiratory diseases than it does on other cause mortality. People aged 60 or more have a higher risk of death from particulate air pollution than people aged less than 60. The estimates of the effect varied across cities and covered a wide range of domain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Trends in atmospheric particulate matter in Dhaka, Bangladesh, and the vicinity.

    PubMed

    Rana, Md Masud; Sulaiman, Norela; Sivertsen, Bjarne; Khan, Md Firoz; Nasreen, Sabera

    2016-09-01

    Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (WHO) guideline value. Higher pollution and great contribution of PM2.5 most of the time were associated with the north-westerly wind. Winter (November to January) was found as the most polluted season in this area, when average PM10 concentrations in Dhaka, Gazipur, and Narayanganj were 257.1, 240.3, and 327.4 μg m(-3), respectively. Pollution levels during wet season (May-October) were, although found legitimate as per the national standards of Bangladesh, exceeded WHO guideline value in 50 % of the days of that season. Trans-boundary source identifications using concentration-weighted trajectory method revealed that the sources in the eastern Indian region bordering Bangladesh, in the north-eastern Indian region bordering Nepal and in Nepal and its neighboring areas had high probability of contributing to the PM pollutions at Gazipur station.

  7. Air pollution attributable postneonatal infant mortality in U.S. metropolitan areas: a risk assessment study

    PubMed Central

    Kaiser, Reinhard; Romieu, Isabelle; Medina, Sylvia; Schwartz, Joel; Krzyzanowski, Michal; Künzli, Nino

    2004-01-01

    Background The impact of outdoor air pollution on infant mortality has not been quantified. Methods Based on exposure-response functions from a U.S. cohort study, we assessed the attributable risk of postneonatal infant mortality in 23 U.S. metropolitan areas related to particulate matter <10 μm in diameter (PM10) as a surrogate of total air pollution. Results The estimated proportion of all cause mortality, sudden infant death syndrome (normal birth weight infants only) and respiratory disease mortality (normal birth weight) attributable to PM10 above a chosen reference value of 12.0 μg/m3 PM10 was 6% (95% confidence interval 3–11%), 16% (95% confidence interval 9–23%) and 24% (95% confidence interval 7–44%), respectively. The expected number of infant deaths per year in the selected areas was 106 (95% confidence interval 53–185), 79 (95% confidence interval 46–111) and 15 (95% confidence interval 5–27), respectively. Approximately 75% of cases were from areas where the current levels are at or below the new U.S. PM2.5 standard of 15 μg/m3 (equivalent to 25 μg/m3 PM10). In a country where infant mortality rates and air pollution levels are relatively low, ambient air pollution as measured by particulate matter contributes to a substantial fraction of infant death, especially for those due to sudden infant death syndrome and respiratory disease. Even if all counties would comply to the new PM2.5 standard, the majority of the estimated burden would remain. Conclusion Given the inherent limitations of risk assessments, further studies are needed to support and quantify the relationship between infant mortality and air pollution. PMID:15128459

  8. Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts.

    PubMed

    Pedersen, Marie; Stafoggia, Massimo; Weinmayr, Gudrun; Andersen, Zorana J; Galassi, Claudia; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Eriksen, Kirsten T; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Vermeulen, Roel; Eeftens, Marloes; Plusquin, Michelle; Key, Timothy J; Jaensch, Andrea; Nagel, Gabriele; Concin, Hans; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Cesaroni, Giulia; Forastiere, Francesco; Tamayo, Ibon; Amiano, Pilar; Dorronsoro, Miren; Stayner, Leslie T; Kogevinas, Manolis; Nieuwenhuijsen, Mark J; Sokhi, Ranjeet; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2018-01-01

    Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. To evaluate the association between long-term exposure to ambient air pollution and BC incidence. We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N=303431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO 2 and NO x ), particulate matter (PM) with diameter <10μm (PM 10 ), <2.5μm (PM 2.5 ), between 2.5 and 10μm (PM 2.5-10 ), PM 2.5 absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project. We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRs) for BC incidence. During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-μg/m 3 increase in NO 2 and 5-μg/m 3 increase in PM 2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure. There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  9. Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015.

    PubMed

    Çapraz, Özkan; Deniz, Ali; Doğan, Nida

    2017-08-01

    We examined the associations between the daily variations of air pollutants and hospital admissions for respiratory diseases in İstanbul, the largest city of Turkey. A time series analysis of counts of daily hospital admissions and outdoor air pollutants was performed using single-pollutant Poisson generalized linear model (GLM) while controlling for time trends and meteorological factors over a 3-year period (2013-2015) at different time lags (0-9 days). Effects of the pollutants (Excess Risk, ER) on current-day (lag 0) hospital admissions to the first ten days (lag 9) were determined. Data on hospital admissions, daily mean concentrations of air pollutants of PM 10 , PM 2.5 and NO 2 and daily mean concentrations of temperature and humidity of İstanbul were used in the study. The analysis was conducted among people of all ages, but also focused on different sexes and different age groups including children (0-14 years), adults (35-44 years) and elderly (≥65 years). We found significant associations between air pollution and respiratory related hospital admissions in the city. Our findings showed that the relative magnitude of risks for an association of the pollutants with the total respiratory hospital admissions was in the order of: PM 2.5 , NO 2 , and PM 10 . The highest association of each pollutant with total hospital admission was observed with PM 2.5 at lag 4 (ER = 1.50; 95% CI = 1.09-1.99), NO 2 at lag 4 (ER = 1.27; 95% CI = 1.02-1.53) and PM 10 at lag 0 (ER = 0.61; 95% CI = 0.33-0.89) for an increase of 10 μg/m3 in concentrations of the pollutants. In conclusion, our study showed that short-term exposure to air pollution was positively associated with increased respiratory hospital admissions in İstanbul during 2013-2015. As the first air pollution hospital admission study using GLM in İstanbul, these findings may have implications for local environmental and social policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A multicentre study of air pollution exposure and childhood asthma prevalence: the ESCAPE project.

    PubMed

    Mölter, Anna; Simpson, Angela; Berdel, Dietrich; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; de Jongste, Johan; de Vocht, Frank; Fuertes, Elaine; Gehring, Ulrike; Gruzieva, Olena; Heinrich, Joachim; Hoek, Gerard; Hoffmann, Barbara; Klümper, Claudia; Korek, Michal; Kuhlbusch, Thomas A J; Lindley, Sarah; Postma, Dirkje; Tischer, Christina; Wijga, Alet; Pershagen, Göran; Agius, Raymond

    2015-03-01

    The aim of this study was to determine the effect of six traffic-related air pollution metrics (nitrogen dioxide, nitrogen oxides, particulate matter with an aerodynamic diameter <10 μm (PM10), PM2.5, coarse particulate matter and PM2.5 absorbance) on childhood asthma and wheeze prevalence in five European birth cohorts: MAAS (England, UK), BAMSE (Sweden), PIAMA (the Netherlands), GINI and LISA (both Germany, divided into north and south areas). Land-use regression models were developed for each study area and used to estimate outdoor air pollution exposure at the home address of each child. Information on asthma and current wheeze prevalence at the ages of 4-5 and 8-10 years was collected using validated questionnaires. Multiple logistic regression was used to analyse the association between pollutant exposure and asthma within each cohort. Random-effects meta-analyses were used to combine effect estimates from individual cohorts. The meta-analyses showed no significant association between asthma prevalence and air pollution exposure (e.g. adjusted OR (95%CI) for asthma at age 8-10 years and exposure at the birth address (n=10377): 1.10 (0.81-1.49) per 10 μg · m(-3) nitrogen dioxide; 0.88 (0.63-1.24) per 10 μg · m(-3) PM10; 1.23 (0.78-1.95) per 5 μg · m(-3) PM2.5). This result was consistently found in initial crude models, adjusted models and further sensitivity analyses. This study found no significant association between air pollution exposure and childhood asthma prevalence in five European birth cohorts. Copyright ©ERS 2015.

  11. The role of perceived air pollution and health risk perception in health symptoms and disease: a population-based study combined with modelled levels of PM10.

    PubMed

    Orru, Kati; Nordin, Steven; Harzia, Hedi; Orru, Hans

    2018-07-01

    Adverse health impact of air pollution on health may not only be associated with the level of exposure, but rather mediated by perception of the pollution and by top-down processing (e.g. beliefs of the exposure being hazardous), especially in areas with relatively low levels of pollutants. The aim of this study was to test a model that describes interrelations between air pollution (particles < 10 [Formula: see text]m, PM 10 ), perceived pollution, health risk perception, health symptoms and diseases. A population-based questionnaire study was conducted among 1000 Estonian residents (sample was stratified by age, sex, and geographical location) about health risk perception and coping. The PM 10 levels were modelled in 1 × 1 km grids using a Eulerian air quality dispersion model. Respondents were ascribed their annual mean PM 10 exposure according to their home address. Path analysis was performed to test the validity of the model. The data refute the model proposing that exposure level significantly influences symptoms and disease. Instead, the perceived exposure influences symptoms and the effect of perceived exposure on disease is mediated by health risk perception. This relationship is more pronounced in large cities compared to smaller towns or rural areas. Perceived pollution and health risk perception, in particular in large cities, play important roles in understanding and predicting environmentally induced symptoms and diseases at relatively low levels of air pollution.

  12. Traffic-related air pollution, particulate matter, and autism.

    PubMed

    Volk, Heather E; Lurmann, Fred; Penfold, Bryan; Hertz-Picciotto, Irva; McConnell, Rob

    2013-01-01

    Autism is a heterogeneous disorder with genetic and environmental factors likely contributing to its origins. Examination of hazardous pollutants has suggested the importance of air toxics in the etiology of autism, yet little research has examined its association with local levels of air pollution using residence-specific exposure assignments. To examine the relationship between traffic-related air pollution, air quality, and autism. This population-based case-control study includes data obtained from children with autism and control children with typical development who were enrolled in the Childhood Autism Risks from Genetics and the Environment study in California. The mother's address from the birth certificate and addresses reported from a residential history questionnaire were used to estimate exposure for each trimester of pregnancy and first year of life. Traffic-related air pollution was assigned to each location using a line-source air-quality dispersion model. Regional air pollutant measures were based on the Environmental Protection Agency's Air Quality System data. Logistic regression models compared estimated and measured pollutant levels for children with autism and for control children with typical development. Case-control study from California. A total of 279 children with autism and a total of 245 control children with typical development. Crude and multivariable adjusted odds ratios (AORs) for autism. Children with autism were more likely to live at residences that had the highest quartile of exposure to traffic-related air pollution, during gestation (AOR, 1.98 [95% CI, 1.20-3.31]) and during the first year of life (AOR, 3.10 [95% CI, 1.76-5.57]), compared with control children. Regional exposure measures of nitrogen dioxide and particulate matter less than 2.5 and 10 μm in diameter (PM2.5 and PM10) were also associated with autism during gestation (exposure to nitrogen dioxide: AOR, 1.81 [95% CI, 1.37-3.09]; exposure to PM2.5: AOR, 2.08 [95% CI, 1.93-2.25]; exposure to PM10: AOR, 2.17 [95% CI, 1.49-3.16) and during the first year of life (exposure to nitrogen dioxide: AOR, 2.06 [95% CI, 1.37-3.09]; exposure to PM2.5: AOR, 2.12 [95% CI, 1.45-3.10]; exposure to PM10: AOR, 2.14 [95% CI, 1.46-3.12]). All regional pollutant estimates were scaled to twice the standard deviation of the distribution for all pregnancy estimates. Exposure to traffic-related air pollution, nitrogen dioxide, PM2.5, and PM10 during pregnancy and during the first year of life was associated with autism. Further epidemiological and toxicological examinations of likely biological pathways will help determine whether these associations are causal.

  13. Effects of prenatal exposure to air pollution on preeclampsia in Shenzhen, China.

    PubMed

    Wang, Qiong; Zhang, Huanhuan; Liang, Qianhong; Knibbs, Luke D; Ren, Meng; Li, Changchang; Bao, Junzhe; Wang, Suhan; He, Yiling; Zhu, Lei; Wang, Xuemei; Zhao, Qingguo; Huang, Cunrui

    2018-06-01

    The impact of ambient air pollution on pregnant women is a concern in China. However, little is known about the association between air pollution and preeclampsia and the potential modifying effects of meteorological conditions have not been assessed. This study aimed to assess the effects of prenatal exposure to air pollution on preeclampsia, and to explore whether temperature and humidity modify the effects. We performed a retrospective cohort study based on 1.21 million singleton births from the birth registration system in Shenzhen, China, between 2005 and 2012. Daily average measurements of particulate matter <10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), air temperature (T), and dew point (T d ) were collected. Logistic regression models were performed to estimate associations between air pollution and preeclampsia during the first and second trimesters, and during the entire pregnancy. In each time window, we observed a positive gradient of increasing preeclampsia risk with increasing quartiles of PM 10 and SO 2 exposure. When stratified by T and T d in three categories (<5th, 5th -95th, and >95th percentile), we found a significant interaction between PM 10 and T d on preeclampsia; the adverse effects of PM 10 increased with T d . During the entire pregnancy, there was a null association between PM 10 and preeclampsia under T d  < 5th percentile. Preeclampsia risk increased by 23% (95% CI: 19-26%) when 5th < T d  < 95th percentile, and by 34% (16-55%) when T d  > 95th percentile. We also found that air pollution effects on preeclampsia in autumn/winter seasons were stronger than those in the spring/summer. This is the first study to address modifying effects of meteorological factors on the association between air pollution and preeclampsia. Findings indicate that prenatal exposure to PM 10 and SO 2 increase preeclampsia risk in Shenzhen, China, and the effects could be modified by humidity. Pregnant women should limit air pollution exposure, particularly during humid periods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan

    NASA Astrophysics Data System (ADS)

    Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.

    2018-04-01

    Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).

  15. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    NASA Astrophysics Data System (ADS)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then applied to future predictions of annual [PM10] and future canopy cover scenarios for London. The contribution of each canopy type subjected to the different atmospheric [PM10] of the 33 London boroughs now and in the future will be discussed. Implementing these findings into a decision support system (DSS) for sustainable urban planning will also be discussed.

  16. Dust pollution from agriculture

    USDA-ARS?s Scientific Manuscript database

    Fine dust particles emitted from agricultural facilities, lands and operations are considered pollutants when they affect public health and welfare. These particles, with a diameter of less than or equal to 2.5 µm (PM2.5) and less than or equal to 10 µm (PM10), are regulated by government agencies. ...

  17. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms.

    PubMed

    Yadav, Ravi; Sahu, L K; Beig, G; Tripathi, Nidhi; Jaaffrey, S N A

    2017-06-01

    Continuous measurements of PM 2.5 , PM 10 and CO were conducted at an urban site of Udaipur in India from April 2011 to March 2012. The annual mean concentrations of PM 2.5, PM 10 and CO were 42 ± 17 μg m -3 , 114 ± 31 μg m -3 and 343 ± 136 ppbv, respectively. Concentrations of both particulate and CO showed high values during winter/pre-monsoon (dry) period and lowest in the monsoon season (wet). Local anthropogenic emission and long-range transport from open biomass burning sources along with favourable synoptic meteorology led to elevated levels of pollutants in the dry season. However, higher values of PM 10 /PM 2.5 ratio during pre-monsoon season were caused by the episodes of dust storm. In the monsoon season, flow of cleaner air, rainfall and negligible emissions from biomass burning resulted in the lowest levels of pollutants. The concentrations of PM 2.5 , PM 10 and CO showed highest values during morning and evening rush hours, while lowest in the afternoon hours. In winter season, reductions of PM 2.5, CO and PM 10 during weekends were highest of 15%, 13% and 9%, respectively. In each season, the highest PM 2.5 /PM 10 ratio coincided with the highest concentrations of pollutants (CO and NO X ) indicating predominant emissions from anthropogenic sources. Exceptionally high concentrations of PM 10 during the episode of dust storm were due to transport from the Arabian Peninsula and Thar Desert. Up to ∼32% enhancements of PM 10 were observed during strong dust storms. Relatively low levels of O 3 and NO x during the storm periods indicate the role of heterogeneous removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Composition and Sources of Fine and Coarse Particles Collected during 2002–2010 in Boston, MA

    PubMed Central

    Masri, Shahir; Kang, Choong-Min; Koutrakis, Petros

    2016-01-01

    Identifying the sources, composition, and temporal variability of fine (PM2.5) and coarse (PM2.5-10) particles is a crucial component in understanding PM toxicity and establishing proper PM regulations. In this study, a Harvard Impactor was used to collect daily integrated fine and coarse particle samples every third day for nine years at a single site in Boston, MA. A total of 1,960 filters were analyzed for elements, black carbon (BC), and total PM mass. Positive Matrix Factorization (PMF) was used to identify source types and quantify their contributions to ambient PM2.5 and PM2.5-10. BC and 17 elements were identified as the main constituents in our samples. Results showed that BC, S, and Pb were associated exclusively with the fine particle mode, while 84% of V and 79% of Ni were associated with this mode. Elements mostly found in the coarse mode, over 80%, included Ca, Mn (road dust), and Cl (sea salt). PMF identified six source types for PM2.5 and three source types for PM2.5-10. Source types for PM2.5 included regional pollution, motor vehicles, sea salt, crustal/road dust, oil combustion, and wood burning. Regional pollution contributed the most, accounting for 48% of total PM2.5 mass, followed by motor vehicles (21%) and wood burning (19%). Source types for PM2.5-10 included crustal/road dust (62%), motor vehicles (22%), and sea salt (16%). A linear decrease in PM concentrations with time was observed for both fine (−5.2%/yr) and coarse (−3.6%/yr) particles. The fine-mode trend was mostly related to oil combustion and regional pollution contributions. Average PM2.5 concentrations peaked in summer (10.4 μg/m3) while PM2.5-10 concentrations were lower and demonstrated little seasonal variability. The findings of this study show that PM25 is decreasing more sharply than PM2.5-10 over time. This suggests the increasing importance of PM2.5-10 and traffic-related sources for PM exposure and future policies. PMID:25947125

  19. Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities.

    PubMed

    Hebbern, Christopher; Cakmak, Sabit

    2015-09-01

    Pollution levels and the effect of air pollution on human health can be modified by synoptic weather type and aeroallergens. We investigated the effect modification of aeroallergens on the association between CO, O3, NO2, SO2, PM10, PM2.5 and asthma hospitalisation rates in seven synoptic weather types. We developed single air pollutant models, adjusted for the effect of aeroallergens and stratified by synoptic weather type, and pooled relative risk estimates for asthma hospitalisation in ten Canadian cities. Aeroallergens significantly modified the relative risk in 19 pollutant-weather type combinations, reducing the size and variance for each single pollutant model. However, aeroallergens did not significantly modify relative risk for any pollutant in the DT or MT weather types, or for PM10 in any weather type. Thus, there is a modifying effect of aeroallergens on the association between CO, O3, NO2, SO2, PM2.5 and asthma hospitalisations that differs under specific synoptic weather types. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Left ventricular function in relation to chronic residential air pollution in a general population

    PubMed Central

    Yang, Wen-Yi; Zhang, Zhen-Yu; Thijs, Lutgarde; Bijnens, Esmée M; Janssen, Bram G; Vanpoucke, Charlotte; Lefebvre, Wouter; Cauwenberghs, Nicholas; Wei, Fang-Fei; Luttun, Aernout; Verhamme, Peter; Van Hecke, Etienne; Kuznetsova, Tatiana; D’hooge, Jan; Nawrot, Tim S

    2017-01-01

    Background In view of the increasing heart failure epidemic and awareness of the adverse impact of environmental pollution on human health, we investigated the association of left ventricular structure and function with air pollutants in a general population. Methods In 671 randomly recruited Flemish (51.7% women; mean age, 50.4 years) we echocardiographically assessed left ventricular systolic strain and strain rate and the early and late peak velocities of transmitral blood flow and mitral annular movement (2005−2009). Using subject-level data, left ventricular function was cross-sectionally correlated with residential long-term exposure to air pollutants, including black carbon, PM2.5, PM10 (particulate matter) and nitrogen dioxide (NO2), while accounting for clustering by residential address and confounders. Results Annual exposures to black carbon, PM2.5, PM10 and NO2 averaged 1.19, 13.0, 17.7, and 16.8 µg/m3. Systolic left ventricular function was worse (p ≤ 0.027) with higher black carbon, PM2.5, PM10 and NO2 with association sizes per interquartile interval increment ranging from −0.339 to −0.458% for longitudinal strain and from −0.033 to −0.049 s−1 for longitudinal strain rate. Mitral E and a′ peak velocities were lower (p ≤ 0.021) with higher black carbon, PM2.5 and PM10 with association sizes ranging from −1.727 to −1.947 cm/s and from −0.175 to −0.235 cm/s, respectively. In the geographic analysis, the systolic longitudinal strain sided with gradients in air pollution. The path analysis identified systemic inflammation as a possible mediator of associations with black carbon. Conclusions Long-term low-level air pollution is associated with subclinical impairment of left ventricular performance and might be a risk factor for heart failure. PMID:28617090

  1. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people.

  2. Ambient Air Pollution Exposures and Risk of Parkinson Disease

    PubMed Central

    Liu, Rui; Young, Michael T.; Chen, Jiu-Chiuan; Kaufman, Joel D.; Chen, Honglei

    2016-01-01

    Background: Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). Objective: We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. Methods: Our nested case–control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995–1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. Results: We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. Conclusions: Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient air pollution exposures and risk of Parkinson disease. Environ Health Perspect 124:1759–1765; http://dx.doi.org/10.1289/EHP135 PMID:27285422

  3. Ambient Air Pollution Exposures and Risk of Parkinson Disease.

    PubMed

    Liu, Rui; Young, Michael T; Chen, Jiu-Chiuan; Kaufman, Joel D; Chen, Honglei

    2016-11-01

    Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. Our nested case-control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995-1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient air pollution exposures and risk of Parkinson disease. Environ Health Perspect 124:1759-1765; http://dx.doi.org/10.1289/EHP135.

  4. A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants

    NASA Astrophysics Data System (ADS)

    Cairncross, Eugene K.; John, Juanette; Zunckel, Mark

    Communication of the complex relationship between air pollutant exposure and ill health is essential to an air pollution information system. We propose a novel air pollution index (API) system based on the relative risk of the well-established increased daily mortality associated with short-term exposure to common air pollutants: particulate matter (PM 10, PM 2.5), sulphur dioxide, ozone, nitrogen dioxide and carbon monoxide. To construct our index system, the total incremental daily mortality risk of exposure to these pollutants was associated with an index value ranging from 0 to 10. The index scale is linear with respect to incremental risk. The index is open ended, although, for convenience, an index of 10 is assigned for exposures yielding indices ⩾10. To illustrate the application of this API system, a set of published relative risk factors are used to calculate sub-index values for each pollutant, in the range of air pollutant concentrations commonly experienced in urban areas. To account for the reality of ubiquitous simultaneous exposure to a mixture of the common air pollutants, the final API is the sum of the normalised values of the individual indices for PM 10, PM 2.5, sulphur dioxide, ozone, nitrogen dioxide and carbon monoxide. This establishes a self-consistent index system where a given index value corresponds to the same daily mortality risk associated with the combined exposure to the common air pollutants. To facilitate health-risk communication, index values are colour coded and associated with broad health-risk descriptors. The utility of the proposed API is illustrated by applying it to monitored ambient concentration data for the City of Cape Town, South Africa.

  5. Air pollution and Parkinson's disease - evidence and future directions.

    PubMed

    Palacios, Natalia

    2017-12-20

    Parkinson's disease (PD) is a neurodegenerative disease of unknown etiology that is thought to be caused by a complex combination of environmental and/or genetic factors. Air pollution exposure is linked to numerous adverse effects on human health, including brain inflammation and oxidative stress, processes that are believed to contribute to the development and progression of PD. This review provides an overview of recent advances in the epidemiology of air pollution and PD, including evidence of the effects of various pollutants (ozone, PM10, PM2.5, PM2.5-10, NOx, NO2, CO, traffic air pollution, second-hand smoking) on PD risk. Based on this evidence, promising opportunities for future research are outlined, including: (1) studies of smaller particle sizes that cross the blood-brain barrier, (2) studies of the effects of air pollution on PD mortality and/or progression; (3) studies of interactions of air pollution with gene environment and other environmental factors.

  6. Integrating Saharan dust forecasts into a regional chemical transport model: a case study over Northern Italy.

    PubMed

    Carnevale, C; Finzi, G; Pisoni, E; Volta, M; Kishcha, P; Alpert, P

    2012-02-15

    The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. To improve air pollution modeling, 3D dust fields, produced by means of the DREAM dust forecasts, were integrated as boundary conditions into the mesoscale 3D deterministic Transport Chemical Aerosol Model (TCAM). A case study of the TCAM and DREAM integration was implemented over Northern Italy for the period May 15-June 30, 2007. First, the Saharan dust impact on PM10 concentration was analyzed for eleven remote PM10 sites with the lowest level of air pollution. These remote sites are the most sensitive to Saharan dust intrusions into Northern Italy, because of the absence of intensive industrial pollution. At these remote sites, the observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. Comparisons between modeled PM10 concentrations and measurements at 230 PM10 sites in Northern Italy, showed that the integrated TCAM-DREAM model more accurately reproduced PM10 concentration than the base TCAM model, both in terms of correlation and mean error. Specifically, the correlation median increased from 0.40 to 0.65, while the normalized mean absolute error median dropped from 0.5 to 0.4. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM samples. Some of the day to night difference may have been caused also by differing wind directions transporting air masses from different emission sources during the day and the night. The present findings indicate the important role of the local particle sources and atmospheric processes on the health related toxicological properties of the PM. The varying toxicological responses evoked by the PM samples showed the importance of examining various particle sizes. Especially the detected considerable toxicological activity by PM0.2 size range suggests they're attributable to combustion sources, new particle formation and atmospheric processes.

  8. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study

    PubMed Central

    Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross

    2017-01-01

    Abstract Objective To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design Retrospective population based cohort study. Setting Greater London and surrounding counties up to the M25 motorway (2317 km2), UK, from 2006 to 2010. Participants 540 365 singleton term live births. Main outcome measures Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results Average air pollutant exposures across pregnancy were 41 μg/m3 nitrogen dioxide (NO2), 73 μg/m3 nitrogen oxides (NOx), 14 μg/m3 particulate matter with aerodynamic diameter <2.5 μm (PM2.5), 23 μg/m3 particulate matter with aerodynamic diameter <10 μm (PM10), and 32 μg/m3 ozone (O3). Average daytime (LAeq,16hr) and night-time (Lnight) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO2, NOx, PM2.5, PM10, and source specific PM2.5 from traffic exhaust (PM2.5 traffic exhaust) and traffic non-exhaust (brake or tyre wear and resuspension) (PM2.5 traffic non-exhaust) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM2.5 traffic exhaust and PM2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM2.5>13.8 μg/m3during pregnancy. Conclusions The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on birth weight outcomes. PMID:29208602

  9. Meteorological controls on atmospheric particulate pollution during hazard reduction burns

    NASA Astrophysics Data System (ADS)

    Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo

    2018-05-01

    Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates < 2.5 µm in diameter) and quantify differences in their behaviours between HRB days when PM2.5 remained low versus HRB days when PM2.5 was high. Generalised additive mixed models were applied to continuous meteorological and PM2.5 observations for 2011-2016 at four sites across Sydney. The results show that planetary boundary layer height (PBLH) and total cloud cover were the most consistent predictors of elevated PM2.5 during HRBs. During HRB days with low pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.

  10. Analysis of Factors Influencing PM2.5 in Beijing: A Microcosmic and Dynamic Perspective for Sustainable Development

    NASA Astrophysics Data System (ADS)

    Wang, Yani; Wang, Jun; Tao, Guiping

    2017-12-01

    Haze pollution has become a hot issue concerned with the process of modernization and one serious problem requiring urgent solution, especially in Beijing. PM2.5 is the main reason causing haze and its harm. Although there has been research centering on factors affecting PM2.5, little attention has been devoted to the microcosmic and dynamic effects on it. Vector auto-regression (VAR) mode is applied in this study to explore the interaction between PM2.5, PM10, SO2, CO and NO2. Results of Granger causality tests tell that there exists causal relationship between PM10, SO2, CO, NO2 and PM2.5. Impulse response functions (IRFs) show that the response of PM2.5 to a shock in CO is positive and large in the short period, while the reaction of PM2.5 to a shock in SO2 increases over time. Meanwhile, variance decomposition indicate that PM2.5 is more closely related to CO in the short term while SO2’ influence accounts for a higher proportion in the long run. The findings provide a novel perspective to analyze the factors influencing PM2.5 dynamically and contribute to a better understanding of haze and its relationship with sustainable development.

  11. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide.

    PubMed

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-07-08

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  12. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide

    PubMed Central

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-01-01

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children. PMID:26184249

  13. [Association between ambient PM(l0)/PM(2.5) concentration and outpatient department visits due to respiratory disease in a hospital in Jinan, 2013-2015: a time series analysis].

    PubMed

    Zhao, M J; Geng, X Y; Cui, L L; Zhou, J W; Zhang, J

    2017-03-10

    Objective: To estimate the influence of the ambient PM(l0) and PM(2.5) pollution on the hospital outpatient department visit due to respiratory diseases in local residents in Jinan quantitatively. Methods: Time serial analysis using generalized addictive model (GAM) was conducted. After controlling the confounding factors, such as long term trend, weekly pattern and meteorological factors, considering lag effect and the influence of other air pollutants, the excess relative risks of daily hospital visits associated with increased ambient PM(10) and PM(2.5) levels were estimated by fitting a Poisson regression model. Results: A 10 μg/m(3) increase of PM(10) and PM(2.5) levels was associated with an increase of 0.36%(95 %CI : 0.30%-0.43%) and 0.50%(95 %CI : 0.30%-0.70%) respectively for hospital visits due to respiratory diseases. Lag effect of 6 days was strongest, the excess relative risks were 0.65% (95 % CI : 0.58% -0.71% ) and 0.54% (95 % CI : 0.42%-0.67%) respectively. When NO(2) concentration was introduced, the daily hospital visits due to respiratory disease increased by 0.83% as a 10 μg/m(3) increase of PM(10) concentration (95 % CI : 0.76%-0.91%). Conclusion: The ambient PM(l0) and PM(2.5) pollution was positively associated with daily hospital visits due to respiratory disease in Jinan, and ambient NO(2) concentration would have the synergistic effect.

  14. Addition of PM2.5 into the National Ambient Air Quality Standards of China and the Contribution to Air Pollution Control: The Case Study of Wuhan, China

    PubMed Central

    You, Mingqing

    2014-01-01

    PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly. PMID:24982994

  15. Effect of air pollution and racism on ethnic differences in respiratory health among adolescents living in an urban environment.

    PubMed

    Astell-Burt, Thomas; Maynard, Maria J; Lenguerrand, Erik; Whitrow, Melissa J; Molaodi, Oarabile R; Harding, Seeromanie

    2013-09-01

    Recent studies suggest that stress can amplify the harm of air pollution. We examined whether experience of racism and exposure to particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm (PM2.5 and PM10) had a synergistic influence on ethnic differences in asthma and lung function across adolescence. Analyses using multilevel models showed lower forced expiratory volume (FEV1), forced vital capacity (FVC) and lower rates of asthma among some ethnic minorities compared to Whites, but higher exposure to PM2.5, PM10 and racism. Racism appeared to amplify the relationship between asthma and air pollution for all ethnic groups, but did not explain ethnic differences in respiratory health. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Association of Changes in Air Quality With Bronchitic Symptoms in Children in California, 1993-2012.

    PubMed

    Berhane, Kiros; Chang, Chih-Chieh; McConnell, Rob; Gauderman, W James; Avol, Edward; Rapapport, Ed; Urman, Robert; Lurmann, Fred; Gilliland, Frank

    2016-04-12

    Childhood bronchitic symptoms are significant public and clinical health problems that produce a substantial burden of disease. Ambient air pollutants are important determinants of bronchitis occurrence. To determine whether improvements in ambient air quality in Southern California were associated with reductions in bronchitic symptoms in children. A longitudinal study involving 4602 children (age range, 5-18 years) from 3 cohorts was conducted during the 1993-2001, 1996-2004, and 2003-2012 years in 8 Southern California communities. A multilevel logistic model was used to estimate the association of changes in pollution levels with bronchitic symptoms. Average concentrations of nitrogen dioxide, ozone, particulate matter with an aerodynamic diameter of less than 10 µm (PM10) and less than 2.5 µm (PM2.5). Annual age-specific prevalence of bronchitic symptoms during the previous 12 months based on the parent's or child's report of a daily cough for 3 months in a row, congestion or phlegm other than when accompanied by a cold, or bronchitis. The 3 cohorts included a total of 4602 children (mean age at baseline, 8.0 years; 2268 girls [49.3%]; 2081 Hispanic white [45.2%]) who had data from 2 or more annual questionnaires. Among these children, 892 (19.4%) had asthma at age 10 years. For nitrogen dioxide, the odds ratio (OR) for bronchitic symptoms among children with asthma at age 10 years was 0.79 (95% CI, 0.67-0.94) for a median reduction of 4.9 ppb, with absolute decrease in prevalence of 10.1%. For ozone, the OR was 0.66 (95% CI, 0.50-0.86) for a median reduction of 3.6 ppb, with an absolute decrease in prevalence of 16.3%. For PM10, the OR was 0.61 (95% CI, 0.48-0.78) for a median reduction of 5.8 µg/m3, with an absolute decrease in prevalence of 18.7%. For PM2.5, the OR was 0.68 (95% CI, 0.53-0.86) for a median reduction of 6.8 µg/m3, with absolute decrease in prevalence of 15.4%. Among children without asthma (n = 3710), the ORs were 0.84 (95% CI, 0.76-0.92) for nitrogen dioxide; 0.85 (95% CI, 0.74-0.97) for ozone, 0.80 (95% CI, 0.70-0.92) for PM10, and 0.79 (95% CI, 0.69-0.91) for PM2.5; with absolute decrease in prevalence of 1.8% for nitrogen dioxide, 1.7% for ozone, 2.2% for PM10, and 2.3% for PM2.5. The associations were similar or slightly stronger at age 15 years. Decreases in ambient pollution levels were associated with statistically significant decreases in bronchitic symptoms in children. Although the study design does not establish causality, the findings support potential benefit of air pollution reduction on asthma control.

  17. Co-Mitigation of Ozone and PM2.5 Pollution over the Beijing-Tianjin-Hebei Region

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xiang, S.; Yi, K.; Tao, W.

    2017-12-01

    With the rapid industrialization and urbanization, emissions of air pollutants in China were increasing rapidly during the past few decades, causing severe particulate matter and ozone pollution in many megacities. Facing these knotty environmental problems, China has released a series of pollution control policies to mitigate air pollution emissions and optimize energy supplement structure. Consequently, fine particulate matters (PM2.5) decrease recently. However, the concentrations of ambient ozone have been increasing, especially during summer time and over megacities. In this study, we focus on the opposite trends of ozone and PM2.5 over the Beijing-Tianjin-Hebei region. We use the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate and analyze the best emission reduction strategies, and adopt the Empirical Kinetics Modeling Approach (EKMA) to depict the influences of mitigating NOx and VOCs. We also incorporate the abatement costs for NOx and VOCs in our analysis to explore the most cost-effective mitigation strategies for both ozone and PM2.5.

  18. Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis.

    PubMed

    Cai, Yuanyuan; Zhang, Bo; Ke, Weixia; Feng, Baixiang; Lin, Hualiang; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Tao, Jun; Yang, Zuyao; Ma, Wenjun; Liu, Tao

    2016-07-01

    Hypertension is a major disease of burden worldwide. Previous studies have indicated that air pollution might be a risk factor for hypertension, but the results were controversial. To fill this gap, we performed a meta-analysis of epidemiological studies to investigate the associations of short-term and long-term exposure to ambient air pollutants with hypertension. We searched all of the studies published before September 1, 2015, on the associations of ozone (O3), carbon monoxide (CO), nitrogen oxide (NO2 and NOX), sulfur dioxide (SO2), and particulate matter (PM10 and PM2.5) with hypertension in the English electronic databases. A pooled odds ratio (OR) for hypertension in association with each 10 μg/m(3) increase in air pollutant was calculated by a random-effects model (for studies with significant heterogeneity) or a fixed-effect model (for studies without significant heterogeneity). A total of 17 studies examining the effects of short-term (n=6) and long-term exposure (n=11) to air pollutants were identified. Short-term exposure to SO2 (OR=1.046, 95% confidence interval [CI]: 1.012-1.081), PM2.5 (OR=1.069, 95% CI: 1.003-1.141), and PM10 (OR=1.024, 95% CI: 1.016-1.032) were significantly associated with hypertension. Long-term exposure (a 10 μg/m(3) increase) to NO2 (OR=1.034, 95% CI: 1.005-1.063) and PM10 (OR=1.054, 95% CI: 1.036-1.072) had significant associations with hypertension. Exposure to other ambient air pollutants (short-term exposure to NO2, O3, and CO and long-term exposure to NOx, PM2.5, and SO2) also had positive relationships with hypertension, but lacked statistical significance. Our results suggest that short-term or long-term exposure to some air pollutants may increase the risk of hypertension. © 2016 American Heart Association, Inc.

  19. Indoor air quality of low and middle income urban households in Durban, South Africa.

    PubMed

    Jafta, Nkosana; Barregard, Lars; Jeena, Prakash M; Naidoo, Rajen N

    2017-07-01

    Elevated levels of indoor air pollutants may cause cardiopulmonary disease such as lower respiratory infection, chronic obstructive lung disease and lung cancer, but the association with tuberculosis (TB) is unclear. So far the risk estimates of TB infection or/and disease due to indoor air pollution (IAP) exposure are based on self-reported exposures rather than direct measurements of IAP, and these exposures have not been validated. The aim of this paper was to characterize and develop predictive models for concentrations of three air pollutants (PM 10 , NO 2 and SO 2 ) in homes of children participating in a childhood TB study. Children younger than 15 years living within the eThekwini Municipality in South Africa were recruited for a childhood TB case control study. The homes of these children (n=246) were assessed using a walkthrough checklist, and in 114 of them monitoring of three indoor pollutants was also performed (sampling period: 24h for PM 10 , and 2-3 weeks for NO 2 and SO 2 ). Linear regression models were used to predict PM 10 and NO 2 concentrations from household characteristics, and these models were validated using leave out one cross validation (LOOCV). SO 2 concentrations were not modeled as concentrations were very low. Mean indoor concentrations of PM 10 (n=105) , NO 2 (n=82) and SO 2 (n=82) were 64μg/m 3 (range 6.6-241); 19μg/m 3 (range 4.5-55) and 0.6μg/m 3 (range 0.005-3.4) respectively with the distributions for all three pollutants being skewed to the right. Spearman correlations showed weak positive correlations between the three pollutants. The largest contributors to the PM 10 predictive model were type of housing structure (formal or informal), number of smokers in the household, and type of primary fuel used in the household. The NO 2 predictive model was influenced mostly by the primary fuel type and by distance from the major roadway. The coefficients of determination (R 2 ) for the models were 0.41 for PM 10 and 0.31 for NO 2 . Spearman correlations were significant between measured vs. predicted PM 10 and NO 2 with coefficients of 0.66 and 0.55 respectively. Indoor PM 10 levels were relatively high in these households. Both PM 10 and NO 2 can be modeled with a reasonable validity and these predictive models can decrease the necessary number of direct measurements that are expensive and time consuming. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE).

    PubMed

    Nagel, Gabriele; Stafoggia, Massimo; Pedersen, Marie; Andersen, Zorana J; Galassi, Claudia; Munkenast, Jule; Jaensch, Andrea; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Vermeulen, Roel; Eeftens, Marloes; Plusquin, Michelle; Key, Timothy J; Concin, Hans; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Cesaroni, Giulia; Forastiere, Francesco; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole; Weinmayr, Gudrun

    2018-04-26

    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-use regression models for particulate matter (PM) below 10 µm (PM 10 ), below 2.5 µm (PM 2.5 ), between 2.5 and 10 µm (PM coarse ), PM 2.5 absorbance and nitrogen oxides (NO 2 and NO X ) as well as approximated by traffic indicators. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. During average follow-up of 14.1 years of 305 551 individuals, 744 incident cases of gastric cancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5 µg/m 3 of PM 2.5 was 1.38 (95%-CI 0.99;1.92) for gastric and 1.05 (95%-CI 0.62;1.77) for UADT cancers. No associations were found for any of the other exposures considered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influence markedly the effect estimate for PM 2.5 and gastric cancer. Higher estimated risks of gastric cancer associated with PM 2.5 was found in men (HR 1.98 (1.30;3.01)) as compared to women (HR 0.85 (0.5;1.45)). This large multicentre cohort study shows an association between long-term exposure to PM 2.5 and gastric cancer, but not UADT cancers, suggesting that air pollution may contribute to gastric cancer risk. This article is protected by copyright. All rights reserved. © 2018 UICC.

  1. Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Yin, Qian; Tong, Shilu; Ren, Zhoupeng; Hu, Maogui; Zhang, Hongrui

    2017-11-01

    Although many studies examined the effects of fine particulate matter (PM2.5) on the deaths of cardiovascular disease (CVD) and respiratory disease (RD), few research has paid attention to the effects of prolonged continuous exposure to high PM2.5 pollution. This study estimated the excess risks (ER) of CVD and RD mortalities associated with prolonged continuous exposure to high PM2.5 pollution for the whole population and specific subsociodemographic groups in Beijing, which is the capital city of China with over 20 million residents and having severe PM2.5 pollution problems. Our results suggested that when high PM2.5 pollution occurred continuously, at various thresholds and durations, the adverse effects on CVD and RD mortalities varied significantly. The CVD mortality risks in association with prolonged continuous high PM2.5 pollution exposure were more serious for single individuals (including unmarried, divorced, and widowed), illiterate and outdoor workers than for other specific subsociodemographic groups. When the daily PM2.5 concentration higher than 105 μg/m3 consecutively occurs, at the ninth day, the ERs of CVD death for single individuals, illiterate and outdoor workers groups reached to 45% (95% CI: 22, 71), 51% (95% CI: 28, 79) and 53% (95% CI: 29, 82) respectively. On the other hand, prolonged continuous high PM2.5 pollution level appeared to contribute a higher proportion of RD deaths among illiterate and outdoor workers, but less significant for the other specific subsociodemographic groups. When the duration with daily PM2.5 pollution higher than 115 μg/m3 reached to six days, the ERs for outdoor workers and illiterate attributed to prolonged continuous PM2.5 pollution exposure increased 36% (95% CI: 5, 76) and 49% (95% CI: 16, 91) respectively.

  2. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013-2016.

    PubMed

    Zhou, Xi; Zhang, Tingjun; Li, Zhongqin; Tao, Yan; Wang, Feiteng; Zhang, Xin; Xu, Chunhai; Ma, Shan; Huang, Ju

    2018-05-01

    Airborne pollutant characteristics, potential sources, and variation trends of cause are investigated based on the hourly air concentrations of gaseous pollutants and particulate matter from 2013 to 2016 in Lanzhou. The mean concentration of SO 2 , NO 2 , CO, 8-hO 3 , PM 2.5 , and PM 10 was 25.2 ± 16.0 μg m -3 , 46.5 ± 21.1 μg m -3 , 1.3 ± 0.7 mg m -3 , 77.8 ± 45.5 μg m -3 , 58.7 ± 32.9 μg m -3 , and 131.1 ± 86.2 μg m -3 , respectively. The concentrations of SO 2 , PM 10 , and PM 2.5 present decreasing trends while NO 2 , CO, and O 3 present increasing trends. PM is the most frequent major pollutants with much higher value than standard limit. However, NO 2 pollution had obvious trends to reach the limit and was more serious in Lanzhou compared with other Chinese cities. Relationship between air pollutants and meteorological parameters suggested that lower primary pollutants were associated with higher wind speed from north and west. Modeled back trajectory demonstrated that the transport of air masses from the Hexi Corridor and Inner Mongolia was responsible for the high concentrations of the air pollutants in wintertime, and high PM 10 level in springtime was related to long-range transport of dust from desert areas of the Sinkiang and the Central Asia. Effects of local pollutant emissions and meteorological condition were preliminary analyzed. Improvement of air quality might be related to the decreasing of pollutant emissions due to strict emissions controls, and the contribution of meteorological condition was not explicit and should be further investigated.

  3. Association between Ambient Air Pollution and Hospital Emergency Admissions for Respiratory and Cardiovascular Diseases in Beijing: a Time Series Study.

    PubMed

    Zhang, Ying; Wang, Shi Gong; Ma, Yu Xia; Shang, Ke Zheng; Cheng, Yi Fan; Li, Xu; Ning, Gui Cai; Zhao, Wen Jing; Li, Nai Rong

    2015-05-01

    To investigate the association between ambient air pollution and hospital emergency admissions in Beijing. In this study, a semi-parametric generalized additive model (GAM) was used to evaluate the specific influences of air pollutants (PM10, SO2, and NO2) on hospital emergency admissions with different lag structures from 2009 to 2011, the sex and age specific influences of air pollution and the modifying effect of seasons on air pollution to analyze the possible interaction. It was found that a 10 μg/m3 increase in concentration of PM10 at lag 03 day, SO2 and NO2 at lag 0 day were associated with an increase of 0.88%, 0.76%, and 1.82% respectively in overall emergency admissions. A 10 μg/m3 increase in concentration of PM10, SO2 and NO2 at lag 5 day were associated with an increase of 1.39%, 1.56%, and 1.18% respectively in cardiovascular disease emergency admissions. For lag 02, a 10 μg/m3 increase in concentration of PM10, SO2 and NO2 were associated with 1.72%, 1.34%, and 2.57% increases respectively in respiratory disease emergency admissions. This study further confirmed that short-term exposure to ambient air pollution was associated with increased risk of hospital emergency admissions in Beijing. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Cross-sectional associations between air pollution and chronic bronchitis: an ESCAPE meta-analysis across five cohorts.

    PubMed

    Cai, Yutong; Schikowski, Tamara; Adam, Martin; Buschka, Anna; Carsin, Anne-Elie; Jacquemin, Benedicte; Marcon, Alessandro; Sanchez, Margaux; Vierkötter, Andrea; Al-Kanaani, Zaina; Beelen, Rob; Birk, Matthias; Brunekreef, Bert; Cirach, Marta; Clavel-Chapelon, Françoise; Declercq, Christophe; de Hoogh, Kees; de Nazelle, Audrey; Ducret-Stich, Regina E; Valeria Ferretti, Virginia; Forsberg, Bertil; Gerbase, Margaret W; Hardy, Rebecca; Heinrich, Joachim; Hoek, Gerard; Jarvis, Debbie; Keidel, Dirk; Kuh, Diana; Nieuwenhuijsen, Mark J; Ragettli, Martina S; Ranzi, Andrea; Rochat, Thierry; Schindler, Christian; Sugiri, Dorothea; Temam, Sofia; Tsai, Ming-Yi; Varraso, Raphaëlle; Kauffmann, Francine; Krämer, Ursula; Sunyer, Jordi; Künzli, Nino; Probst-Hensch, Nicole; Hansell, Anna L

    2014-11-01

    This study aimed to assess associations of outdoor air pollution on prevalence of chronic bronchitis symptoms in adults in five cohort studies (Asthma-E3N, ECRHS, NSHD, SALIA, SAPALDIA) participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. Annual average particulate matter (PM(10), PM(2.5), PM(absorbance), PM(coarse)), NO(2), nitrogen oxides (NO(x)) and road traffic measures modelled from ESCAPE measurement campaigns 2008-2011 were assigned to home address at most recent assessments (1998-2011). Symptoms examined were chronic bronchitis (cough and phlegm for ≥3 months of the year for ≥2 years), chronic cough (with/without phlegm) and chronic phlegm (with/without cough). Cohort-specific cross-sectional multivariable logistic regression analyses were conducted using common confounder sets (age, sex, smoking, interview season, education), followed by meta-analysis. 15 279 and 10 537 participants respectively were included in the main NO(2) and PM analyses at assessments in 1998-2011. Overall, there were no statistically significant associations with any air pollutant or traffic exposure. Sensitivity analyses including in asthmatics only, females only or using back-extrapolated NO(2) and PM10 for assessments in 1985-2002 (ECRHS, NSHD, SALIA, SAPALDIA) did not alter conclusions. In never-smokers, all associations were positive, but reached statistical significance only for chronic phlegm with PM(coarse) OR 1.31 (1.05 to 1.64) per 5 µg/m(3) increase and PM(10) with similar effect size. Sensitivity analyses of older cohorts showed increased risk of chronic cough with PM(2.5abs) (black carbon) exposures. Results do not show consistent associations between chronic bronchitis symptoms and current traffic-related air pollution in adult European populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. The Impact of Air Pollution, Including Asian Sand Dust, on Respiratory Symptoms and Health-related Quality of Life in Outpatients With Chronic Respiratory Disease in Korea: A Panel Study.

    PubMed

    Nakao, Motoyuki; Ishihara, Yoko; Kim, Cheol-Hong; Hyun, In-Gyu

    2018-05-01

    Air pollution is a growing concern in Korea because of transboundary air pollution from mainland China. A panel study was conducted to clarify the effects of air pollution on respiratory symptoms and health-related quality of life (HR-QoL) in outpatients with and without chronic obstructive pulmonary disease (COPD) in Korea. Patients filled out a questionnaire including self-reported HR-QoL in February and were followed up in May and July. The study was conducted from 2013 to 2015, with different participants each year. Air quality parameters were applied in a generalized estimating equation as independent variables to predict factors affecting HR-QoL. Lower physical fitness scores were associated with Asian sand dust events. Daily activity scores were worse when there were high concentrations of particulate matter (PM) less than 10 μm in diameter (PM 10 ). Lower social functioning scores were associated with high PM less than 2.5 μm in diameter and nitrogen dioxide (NO 2 ) concentrations. High NO 2 concentrations also showed a significant association with mental health scores. Weather-related cough was prevalent when PM 10 , NO 2 , or ozone (O 3 ) concentrations were high, regardless of COPD severity. High PM 10 concentrations were associated with worsened wheezing, particularly in COPD patients. The results suggest that PM, NO 2 , and O 3 cause respiratory symptoms leading to HR-QoL deterioration. While some adverse effects of air pollution appeared to occur regardless of COPD, others occurred more often and more intensely in COPD patients. The public sector, therefore, needs to consider tailoring air pollution countermeasures to people with different conditions to minimize adverse health effects.

  6. Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran.

    PubMed

    Khaniabadi, Yusef Omidi; Daryanoosh, Mohammad; Sicard, Pierre; Takdastan, Afshin; Hopke, Philip K; Esmaeili, Shirin; De Marco, Alessandra; Rashidi, Rajab

    2018-04-18

    This study was conducted to quantify, by an approach proposed by the World Health Organization (WHO), the daily hospital admissions for chronic obstructive pulmonary disease (COPD) related to exposure to particulate matter (PM 10 ) and oxidants such as ozone (O 3 ), sulfur dioxide (SO 2 ), and nitrogen dioxide (NO 2 ) in a heavily polluted city in Iran. For the health impact assessment, in terms of COPD, the current published relative risk (RR) and baseline incidence (BI) values, suggested by the WHO, and the 1-h O 3 concentrations and daily PM 10 , NO 2 , and SO 2 concentrations were compiled. The results showed that 5.9, 4.1, 1.2, and 1.9% of the COPD daily hospitalizations in 2011 and 6.6, 1.9, 2.3, and 2.1% in 2012 were attributed to PM 10 , O 3 , SO 2 , and NO 2 concentrations exceeding 10 μg/m 3 , respectively. This study indicates that air quality and the high air pollutant levels have an effect on COPD morbidity. Air pollution is associated with visits to emergency services and hospital admissions. A lower relative risk can be achieved if some stringent control strategies for reducing air pollutants or emission precursors are implemented.

  7. Indicators reflecting local and transboundary sources of PM2.5 and PMCOARSE in Rome - Impacts in air quality

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-10-01

    The keystone of this paper was to calculate and interpret indicators reflecting sources and air quality impacts of PM2.5 and PMCOARSE (PM10-PM2.5) in Rome (Italy), focusing on potential exogenous influences. A backward atmospheric trajectory cluster analysis was implemented. The likelihood of daily PM10 exceedances was studied in conjunction with atmospheric patterns, whereas a Potential Source Contribution Function (PSCF) based on air mass residence time was deployed on a grid of a 0.5° × 0.5° resolution. Higher PM2.5 concentrations were associated with short/medium range airflows originated from Balkan Peninsula, whereas potential PMCOARSE sources were localized across the Mediterranean and coastal North Africa, due to dust and sea spray transportation. According to the outcome of a daily Pollution Index (PI), a slightly increased degradation of air quality is induced due to the additional quantity of exogenous PM but nevertheless, average levels of PI in all trajectory clusters belong in the low pollution category. Gaseous and particulate pollutants were also elaborated by a Principal Component Analysis (PCA), which produced 4 components: [Traffic], [photochemical], [residential] and [Secondary Coarse Aerosol], reflecting local sources of air pollution. PM2.5 levels were strongly associated with traffic, whereas PMCOARSE were produced autonomously by secondary sources.

  8. The Global Contribution of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis

    PubMed Central

    Song, Qingkun; Christiani, David C.; Wang, Xiaorong; Ren, Jun

    2014-01-01

    Objective: This study aimed to investigate the quantitative effects of outdoor air pollution, represented by 10 µg/m3 increment of PM10, on chronic obstructive pulmonary disease in China, United States and European Union through systematic review and meta-analysis. Methods: Publications in English and Chinese from PubMed and EMBASE were selected. The Cochrane Review Handbook of Generic Inverse Variance was used to synthesize the pooled effects on incidence, prevalence, mortality and hospital admission. Results: Outdoor air pollution contributed to higher incidence and prevalence of COPD. Short-term exposure was associated with COPD mortality increased by 6%, 1% and 1% in the European Union, the United States and China, respectively (p < 0.05). Chronic PM exposure produced a 10% increase in mortality. In a short-term exposure to 10 µg/m3 PM10 increment COPD mortality was elevated by 1% in China (p < 0.05) and hospital admission enrollment was increased by 1% in China, 2% in United States and 1% in European Union (p < 0.05). Conclusions: Outdoor air pollution contributes to the increasing burdens of COPD.10 µg/m3 increase of PM10 produced significant condition of COPD death and exacerbation in China, United States and European Union. Controlling air pollution will have substantial benefit to COPD morbidity and mortality. PMID:25405599

  9. [Study of relationship between atmospheric fine particulate matter concentration and one grade a tertiary hospital emergency room visits during 2012 and 2013 in Beijing].

    PubMed

    Wang, Xuying; Li, Guoxing; Jin, Xiaobin; Mu, Jing; Pan, Jie; Liang, Fengchao; Tian, Lin; Chen, Shi; Guo, Qun; Dong, Wentan; Pan, Xiaochuan

    2016-01-01

    To explore the concentration-response relationship between ambient concentration of PM2.5 and daily total hospital emergency room visits in Beijing during 2012 and 2013. This study also examined the effects of ambient PM2.5 during heavy polluted days on emergency room visits compared with the light polluted days. We collected the daily meteorological factors monitoring data and concentrations of air pollutants in Beijing during October 1, 2012 to December 31, 2013. We also collected the daily emergency room visits from a tertiary hospital in Beijing in the same time period. Generalized additive model was fitted to estimate the association between the ambient PM2.5 and the hospital emergency room visits, by using the smooth function to adjust long term trend of time, public holidays and day of week. In addition, constrained piecewise linear function was then used to estimate the excess risk for different segment of concentration-response function. The annual average concentration of PM2.5 was 90.9 µg/m(3) during October 1, 2012 and December 31, 2013. There were total 64 260 cases for total emergency room visits, of which respiratory disease had 9 849 cases and cardiovascular disease had 11 168 cases. PM2.5 was positive related with PM10, NO2 and SO2. The corresponding correlation coefficients were 0.87, 0.78 and 0.62, respectively (P<0.05). And PM2.5 was positively related with relative humidity, with correlation coefficient 0.45 (P<0.05). But PM2.5 was negatively related with mean temperature (r=-0.17, P< 0.05) and wind speed (- 0.32, P<0.05). In the single polluted model, after adjusting the effects of temperature, relative humidity and wind, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits was 0.25% (95% CI: 0.07-0.43). In the two-pollutant model PM2.5+SO2 and PM2.5+NO2, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits were 1.07% (95%CI:0.83-1.30) and 0.56% (95%CI: 0.32-0.80) respectively, which were higher than the effect in single pollutant model. Average concentration of ambient particulate matters (PM2.5) was 204.16 µg/m(3) during heavy pollution, higher than control period (85.24 µg/m(3)). When PM2.5 as the primary air pollutants during heavy polluted days, we observed a significant increase in emergency room visits, and the odd ratios was 1.16 (95% CI:1.09-1.22). There were positive correlation between high concentration of ambient particulate matters (PM2.5) and increasing daily emergency room visits. Especially during the heavy polluted days, the effects of elevated concentration of PM2.5 on hospital emergency room visits were much larger.

  10. A modeling study of coarse particulate matter pollution in Beijing: regional source contributions and control implications for the 2008 summer Olympics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litao Wang; Jiming Hao; Kebin He

    In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed formore » the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions. 44 refs., 6 figs., 3 tabs.« less

  11. Influence of walking route choice on primary school children's exposure to air pollution--A proof of concept study using simulation.

    PubMed

    Mölter, Anna; Lindley, Sarah

    2015-10-15

    This study developed a walking network for the Greater Manchester area (UK). The walking network allows routes to be calculated either based on the shortest duration or based on the lowest cumulative nitrogen dioxide (NO2) or particulate matter (PM10) exposure. The aim of this study was to analyse the costs and benefits of faster routes versus lower pollution exposure for walking routes to primary schools. Random samples of primary schools and residential addresses were used to generate 100,000 hypothetical school routes. For 60% (59,992) and 40% (40,460) an alternative low NO2 and PM10 route was found, respectively. The median change in travel time (NO2: 4.5s, PM10: 0.5s) and average route exposure (NO2: -0.40 μg/m(3), PM10: -0.03 μg/m(3)) was small. However, quantile regression analysis indicated that for 50% of routes a 1% increase in travel time was associated with a 1.5% decrease in NO2 and PM10 exposure. The results of this study suggest that the relative decrease in pollution exposure on low pollution routes tends to be greater than the relative increase in route length. This supports the idea that a route planning tool identifying less polluted routes to primary schools could help deliver potential health benefits for children. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Tillage and straw management affect PM10 emission potential in subarctic Alaska

    USDA-ARS?s Scientific Manuscript database

    Emission of PM10 (particulates =10 um in diameter regulated by many nations as an air pollutant) from agricultural soils can impact regional air quality. Little information exists that describes the potential for PM10 and airborne dust emissions from subarctic soils or agricultural soils subject to ...

  13. Traffic-related immissions and their impact on historic buildings and monuments

    NASA Astrophysics Data System (ADS)

    Auras, M.; Beer, S.; Bundschuh, P.; Eichhorn, J.; Mach, M.; Scheuvens, D.; Schorling, M.; von Schumann, J.; Snethlage, R.; Weinbruch, S.

    2012-04-01

    Air quality in Germany has improved essentially over the last decades. Because the concentrations of sulfur dioxide were reduced by more than 90% between 1990 and 2007 acid rain no longer seems to play a relevant role in the weathering of natural stone facades of historic buildings. But in the surroundings of urban traffic hot spots high emissions of nitrogen oxides and fine particulate matter (PM10) are observed. Therefore the question arises whether these airborne pollutants bear a potential for future damage of natural stone and other construction materials. In an interdisciplinary research program different approaches were pursued to evaluate the damage potential of today's traffic-induced immissions by exemplarily investigating two German cities, Mainz and Munich. First calculations of average weathering rates for the stones concerned were made using the dose-response functions of the MULTI ASSESS program and the immission data from survey stations at traffic hot spots and at housing areas. Than the distribution of traffic-induced immissions (NO2 and PM10) in the surrounding areas of major traffic pathways was calculated for both cities with the simulation program WINkfz. The resulting maps of mean pollutant concentrations were superimposed to inventory maps of historical monuments to allow the identification of monuments with high pollution loads. Additionally different classes of natural stones were distinguished regarding their chemical reactivity. Two prominent monuments with high traffic-induced pollution loads were selected for small scale simulations of pollutant immissions with the simulation program MISKAM. The dispersion of pollutants to different directions and building heights were calculated and the influence of broadleaf trees in the surrounding of the buildings was evaluated (summer versus winter situation). PM10 measurements were carried out at different building heights of the two buildings. Collection of PM10 dust and single-particle analyses by ESEM permits the classification of PM10 particles and the identification and quantification of the traffic-induced part of total PM10.

  14. Differentiating the effects of characteristics of PM pollution on mortality from ischemic and hemorrhagic strokes.

    PubMed

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Zeng, Weilin; Xiao, Jianpeng; Guo, Lingchuan; Li, Xing; Xu, Yanjun; Ma, Wenjun

    2016-03-01

    Though increasing evidence supports significant association between particulate matter (PM) air pollution and stroke, it remains unclear what characteristics, such as particle size and chemical constituents, are responsible for this association. A time-series model with quasi-Poisson function was applied to assess the association of PM pollution with different particle sizes and chemical constituents with mortalities from ischemic and hemorrhagic strokes in Guangzhou, China, we controlled for potential confounding factors in the model, such as temporal trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant association between stroke mortality and various PM fractions, such as PM10, PM2.5 and PM1, with generally larger magnitudes for smaller particles. For the PM2.5 chemical constituents, we found that organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium were significantly associated with stroke mortality. The analysis for specific types of stroke suggested that it was hemorrhagic stroke, rather than ischemic stroke, that was significantly associated with PM pollution. Our study shows that various PM pollution fractions are associated with stroke mortality, and constituents primarily from combustion and secondary aerosols might be the harmful components of PM2.5 in Guangzhou, and this study suggests that PM pollution is more relevant to hemorrhagic stroke in the study area, however, more studies are warranted due to the underlying limitations of this study. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: Implications for exposure assessment and siting schools in urban areas

    NASA Astrophysics Data System (ADS)

    Raysoni, Amit U.; Stock, Thomas H.; Sarnat, Jeremy A.; Montoya Sosa, Teresa; Ebelt Sarnat, Stefanie; Holguin, Fernando; Greenwald, Roby; Johnson, Brent; Li, Wen-Whai

    2013-12-01

    Children spend substantial amount of time within school microenvironments; therefore, assessing school-based exposures is essential for characterizing and preventing children's health risks to air pollutants. Indeed, the importance of characterizing children's exposures in schools is recognized by the US Environmental Protection Agency's recent initiative to promote outdoor air monitoring networks near schools. As part of a health effects study investigating the impact of traffic-related air pollution on asthmatic children along the US-Mexico border, this research examines children's exposures to, and spatio-temporal heterogeneity in concentrations of, traffic-related air pollutants at four elementary schools in El Paso, Texas. Three schools were located in an area of high traffic density and one school in an area of low traffic density. Paired indoor and outdoor concentrations of 48-h fine and coarse particulate matter (PM2.5 and PM10-2.5), 48-h black carbon (BC), 96-h nitrogen dioxide (NO2), and 96-h volatile organic compounds (VOCs) were measured for 13 weeks at each school. Outdoor concentrations of PM, NO2, BC, and BTEX (benzene, toluene, ethylbenzene, m,p-xylene, o-xylene) compounds were similar among the three schools in the high-traffic zone in contrast to the school in the low-traffic zone. Results from this study and previous studies in this region corroborate the fact that PM pollution in El Paso is dominated by coarse PM (PM10-2.5) and fine fraction (PM2.5) accounts for only 25-30% of the total PM mass in PM10. BTEX species and BC are better surrogates for traffic air pollution in this region. Correlation analyses indicate a range of association between indoor and outdoor pollutant concentrations due to uncontrollable factors like student foot traffic and varying building and ventilation configurations across the four schools. Results suggest the need of micro-scale monitoring for children's exposure assessment, which may not be adequately characterized by the measurements from a centralized monitoring site.

  16. Maternal air pollution exposure and preterm birth in Wuxi, China: Effect modification by maternal age.

    PubMed

    Han, Yingying; Jiang, Panhua; Dong, Tianyu; Ding, Xinliang; Chen, Ting; Villanger, Gro Dehli; Aase, Heidi; Huang, Lu; Xia, Yankai

    2018-08-15

    Numerous studies have investigated prenatal air pollution and shown that air pollutants have adverse effect on birth outcomes. However, which trimester was the most sensitive and whether the effect was related to maternal age is still ambiguous. This study aims to explore the association between maternal air pollution exposure during pregnancy and preterm birth, and if this relationship is modified by maternal age. In this retrospective cohort study, we examine the causal relationship of prenatal exposure to air pollutants including particulate matters, which are less than 10 µm (PM 10 ), and ozone (O 3 ), which is one of the gaseous pollutants, on preterm birth by gestational age. A total of 6693 pregnant women were recruited from Wuxi Maternal and Child Health Care Hospital. The participants were dichotomized into child-bearing age group (< 35 years old) and advanced age group (> = 35 years old) in order to analyze the effect modification by maternal age. Logistic and linear regression models were performed to assess the risk for preterm birth (gestational age < 37 weeks) caused by prenatal air pollution exposure. With adjustment for covariates, the highest level of PM 10 exposure significantly increased the risk of preterm birth by 1.42-fold (95% CI: 1.10, 1.85) compared those with the lowest level in the second trimester. Trimester-specific PM 10 exposure was positively associated with gestational age, whereas O 3 exposure was associated with gestational age in the early pregnancy. When stratified by maternal age, PM 10 exposure was significantly associated with an increased risk of preterm birth only in the advanced age group during pregnancy (OR:2.15, 95% CI: 1.13, 4.07). The results suggested that PM 10 exposure associated with preterm birth was modified by advanced maternal age (OR interaction = 2.00, 95% CI: 1.02, 3.91, P interaction = 0.032). Prenatal air pollution exposure would increase risk of preterm birth and reduced gestational age. Thus, more attention should be paid to the effects of ambient air pollution exposure on preterm birth especially in pregnant women with advanced maternal age. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Fine particulate pollution and asthma exacerbations.

    PubMed

    Bouazza, Naïm; Foissac, Frantz; Urien, Saik; Guedj, Romain; Carbajal, Ricardo; Tréluyer, Jean-Marc; Chappuy, Hélène

    2017-12-19

    As the results from epidemiological studies about the impact of outdoor air pollution on asthma in children are heterogeneous, our objective was to investigate the association between asthma exacerbation in children and exposure to air pollutants. A database of 1 264 585 paediatric visits during the 2010-2015 period to the emergency rooms from 20 emergency departments (EDs) of 'Assistance Publique Hôpitaux de Paris (APHP)', the largest hospital group in Europe, was used. A total of 47 107 visits were classified as asthma exacerbations. Concentration of air pollutants (nitrogen dioxide, ozone, fine particulate matter (PM) with an aerodynamic diameter smaller than 10  µm (PM 10 ) and 2.5 µm (PM 2.5 )), as well as meteorological data, evolution of respiratory syncytial virus infection and pollen exposition, were collected on an hourly or daily basis for the same period using institutional databases. To assess the association between air pollution and asthma, mixed-effects quasi-Poisson regression modelling was performed. The only compound independently associated with ED visits for asthma was PM 2.5 (P<10 -4 ). The association between asthma exacerbation and PM 2.5 was not linear, and a sigmoid function described the relationshipsatisfactorily. PM 2.5 concentration, which gives half the maximum effect, was estimated at 13.5 µg/m 3 . We found an association between daily asthma exacerbation in paediatric visits to the ED and fine particulate air pollutants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis.

    PubMed

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO₂, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m(-3) increase in NO₂ exposure was associated with lower levels of FEV₁ (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 μg·m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV₁ (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. Copyright ©ERS 2015.

  19. The PM2.5 threshold for aerosol extinction in the Beijing megacity

    NASA Astrophysics Data System (ADS)

    Kong, Lingbin; Xin, Jinyuan; Liu, Zirui; Zhang, Kequan; Tang, Guiqian; Zhang, Wenyu; Wang, Yuesi

    2017-10-01

    Particulate pollution has remained at a high level in the megacity of Beijing in the past decade. The PM2.5, PM10, aerosol optical depth (AOD), Angstrom exponent(α), and PM2.5/PM10 ratio (the proportion of PM2.5 in PM10) in Beijing were 70±6 μg m-3, 128±6 μg m-3, 0.57 ± 0.05, 1.10 ± 0.08, 45 ± 4%, respectively, from 2005 to 2014. The annual means of PM concentration, AOD, α, and PM2.5/PM10 ratio decreased slightly during this decade, meanwhile PM concentration increased in the winter. Furthermore, we found there were thresholds of PM2.5 concentration for aerosol extinction. When the PM concentration was lower than a certain threshold, AOD decreased quickly with the decline of PM concentration. To make the improvement of the particle pollution more noticeable, the PM concentration should be controlled under the threshold. The annual averaged threshold is 63 μg m-3, and the threshold values reached the maximum of 74 μg m-3 in spring, ranged from 54 to 56 μg m-3 in the three other seasons. The threshold values ranged from 55 to 77 μg m-3 under other relevant factors, including air masses directions and relative humidity.

  20. Particulate air pollution and mortality in a cohort of Chinese men.

    PubMed

    Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong

    2014-03-01

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990-1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM10, were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM10 and mortality from cardiopulmonary diseases; each 10 μg/m(3) PM10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Air Pollution and Glucose Metabolism: An Analysis in Non-Diabetic Participants of the Heinz Nixdorf Recall Study.

    PubMed

    Lucht, Sarah A; Hennig, Frauke; Matthiessen, Clara; Ohlwein, Simone; Icks, Andrea; Moebus, Susanne; Jöckel, Karl-Heinz; Jakobs, Hermann; Hoffmann, Barbara

    2018-04-03

    Despite the importance of understanding the connection between air pollution exposure and diabetes, studies investigating links between air pollution and glucose metabolism in nondiabetic adults are limited. We aimed to estimate the association of medium-term air pollution exposures with blood glucose and glycated hemoglobin A1c (HbA1c) among nondiabetics. This study included observations from nondiabetic participants (n obs =7,108) of the population-based Heinz Nixdorf Recall study at baseline (2000–2003) and follow-up examination (2006–2008). Daily fine particulate matter (aerodynamic diameter≤2.5 μm, PM 2.5 ; aerodynamic diameter≤10 μm, PM 10 ), accumulation mode particle number (PN AM ), and nitrogen dioxide (NO 2 ) exposures were estimated at participants’ residences using the spatiotemporal European Air Pollution Dispersion (EURAD) chemistry transport model. We evaluated the associations between medium-term air pollution exposures (28- and 91-d means) and glucose metabolism measures using mixed linear regression and adjusting for season, meteorology, and personal characteristics. A range of other exposure windows (1-, 2-, 3-, 7-, 14-, 45-, 60-, 75-, 105-, 120-, and 182-d means) were also evaluated to identify potentially relevant biological windows. We observed positive associations between PM 2.5 and PN AM exposures and blood glucose levels [e.g., 28-d PM 2.5 : 0.91 mg/dL (95% CI: 0.38, 1.44) per 5.7 μg/m 3 ]. PM 2.5 , PM 10 , and PN AM exposures were positively associated with HbA1c [e.g., 91-d PM 2.5 : 0.07 p.p. (95% CI: 0.04, 0.10) per 4.0 μg/m 3 ]. Mean exposures during longer exposure windows (75- to 105-d) were most strongly associated with HbA1c, whereas 7- to 45-d exposures were most strongly associated with blood glucose. NO 2 exposure was not associated with blood glucose or with HbA1c. Medium-term PM and PN AM exposures were positively associated with glucose measures in nondiabetic adults. These findings indicate that reducing ambient air pollution levels may decrease the risk of diabetes. https://doi.org/10.1289/EHP2561.

  2. Long term assessment of air quality from a background station on the Malaysian Peninsula.

    PubMed

    Latif, Mohd Talib; Dominick, Doreena; Ahamad, Fatimah; Khan, Md Firoz; Juneng, Liew; Hamzah, Firdaus Mohamad; Nadzir, Mohd Shahrul Mohd

    2014-06-01

    Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Association of PM2.5 with sleep-disordered breathing from a population-based study in Northern Taiwan urban areas.

    PubMed

    Shen, Yen-Ling; Liu, Wen-Te; Lee, Kang-Yun; Chuang, Hsiao-Chi; Chen, Hua-Wei; Chuang, Kai-Jen

    2018-02-01

    Recent studies suggest that exposure to air pollution might be associated with severity of sleep-disordered breathing (SDB). However, the association between air pollution exposure, especially particulate matter with aerodynamic diameters <= 2.5 μm (PM 2.5 ), and SDB is still unclear. We collected 4312 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of particulate matter with aerodynamic diameters <=10 μm (PM 10 ), PM 2.5 , nitrogen dioxide (NO 2 ), ozone (O 3 ) and sulfur dioxide (SO 2 ) with apnea-hypopnea index (AHI) and oxygen desaturation index (ODI) were investigated by generalized additive models. We found that an interquartile range (IQR) increase in 1-year mean PM 2.5 (3.4 μg/m 3 ) and NO 2 (2.7 ppb) was associated with a 4.7% and 3.6% increase in AHI, respectively. We also observed the association of an IQR increase in 1-year mean PM 2.5 with a 2.5% increase in ODI. The similar pattern was found in the association of daily mean PM 2.5 exposure with increased AHI. Moreover, participants showed significant AHI and ODI responses to air pollution levels in spring and winter. We concluded that exposure to PM 2.5 was associated with SDB. Effects of air pollution on AHI and ODI were significant in spring and winter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX), carbon monoxide (CO...) Source-specific emission tests; (ii) Mass balance calculations; (iii) Published, verifiable emission...

  5. Estimating the acute effects of fine and coarse particle pollution on stroke mortality of in six Chinese subtropical cities.

    PubMed

    Wang, Xiaojie; Qian, Zhengmin; Wang, Xiaojie; Hong, Hua; Yang, Yin; Xu, Yanjun; Xu, Xiaojun; Yao, Zhenjiang; Zhang, Lingli; Rolling, Craig A; Schootman, Mario; Liu, Tao; Xiao, Jianpeng; Li, Xing; Zeng, Weilin; Ma, Wenjun; Lin, Hualiang

    2018-05-08

    While increasing evidence suggested that PM 2.5 is the most harmful fraction of the particle pollutants, the health effects of coarse particles (PM 10-2.5 ) have been inconclusive, especially on cerebrovascular diseases, we thus evaluated the effects of PM 10 , PM 2.5 , and PM 10-2.5 on stroke mortality in six Chinese subtropical cities using generalized additive models. We also conducted random-effects meta-analyses to estimate the overall effects across the six cities. We found that PM 10 , PM 2.5 , and PM 10-2.5 were significantly associated with stroke mortality. Each 10 μg/m 3 increase of PM 10 , PM 2.5 and PM 10-2.5 (lag03) was associated with an increase of 1.88% (95% CI: 1.37%, 2.39%), 3.07% (95% CI: 2.35%, 3.79%), and 5.72% (95% CI: 3.82%, 7.65%) in overall stroke mortality. Using the World Health Organization's guideline as reference concentration, we estimated that 3.21% (95% CI: 1.65%, 3.01%) of stroke mortality (corresponding to 1743 stroke mortalities, 95% CI: 896, 1633) were attributed to PM 10 , 5.57% (95% CI: 0.50%, 1.23%) stroke mortality (3019, 95% CI: 2286, 3777) were attributed to PM 2.5 , and 2.02% (95% CI: 1.85%, 3.08%) of stroke mortality (1097, 95% CI: 1005, 1673) could be attributed to PM 10-2.5 . Our analysis indicates that both PM 2.5 and PM 10-2.5 are important risk factors of stroke mortality and should be considered in the prevention and control of stroke in the study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Gestational exposure to urban air pollution related to a decrease in cord blood vitamin d levels.

    PubMed

    Baïz, Nour; Dargent-Molina, Patricia; Wark, John D; Souberbielle, Jean-Claude; Slama, Rémy; Annesi-Maesano, Isabella

    2012-11-01

    Vitamin D deficiency has been implicated in the increased risk of several diseases. Exposure to air pollution has been suggested as a contributor to vitamin D deficiency. However, studies that have examined the effects of air pollution on vitamin D status are few and have never focused on prenatal life as an exposure window. Our aim was to investigate the associations between gestational exposure to urban air pollutants and 25-hydroxyvitamin D [25(OH)D] cord blood serum level in 375 mother-child pairs of the EDEN birth cohort. The Atmospheric Dispersion Modelling System (ADMS-Urban) pollution model, a validated dispersion model combining data on traffic conditions, topography, meteorology, and background pollution, was used to assess the concentrations of two major urban pollutants, particulate matter less than 10 μm in diameter (PM(10)) and nitrogen dioxide (NO(2)), at the mother's home address during pregnancy. Cord blood samples were collected at birth and were analyzed for levels of 25(OH)D. Maternal exposure to ambient urban levels of NO(2) and PM(10) during the whole pregnancy was a strong predictor of low vitamin D status in newborns. After adjustment, log-transformed 25(OH)D decreased by 0.15 U (P = 0.05) and 0.41 U (P = 0.04) for a 10-μg/m(3) increase in NO(2) and PM(10) pregnancy levels, respectively. The association was strongest for third-trimester exposures (P = 0.0003 and P = 0.004 for NO(2) and PM(10), respectively). Gestational exposure to ambient urban air pollution, especially during late pregnancy, may contribute to lower vitamin D levels in offspring. This could affect the child's risk of developing diseases later in life.

  7. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study.

    PubMed

    Dong, Guang-Hui; Zhang, Pengfei; Sun, Baijun; Zhang, Liwen; Chen, Xi; Ma, Nannan; Yu, Fei; Guo, Huimin; Huang, Hui; Lee, Yungling Leo; Tang, Naijun; Chen, Jie

    2012-01-01

    In China, both the levels and patterns of outdoor air pollution have altered dramatically with the rapid economic development and urbanization over the past two decades. However, few studies have investigated the association of outdoor air pollution with respiratory mortality, especially in the high pollution range. We conducted a retrospective cohort study of 9,941 residents aged ≥35 years old in Shenyang, China, to examine the association between outdoor air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10)), sulfur dioxide (SO(2)) and nitrogen dioxide (NO(2))] and mortality using 12 years of data. We applied extended Cox proportional hazards modeling with time-dependent covariates to respiratory mortality. Analyses were also stratified by age, sex, educational level, smoking status, personal income, occupational exposure and body mass index (BMI) to examine the association of air pollution with mortality. We found significant associations between PM(10) and NO(2) levels and respiratory disease mortality. Our analysis found a relative risk of 1.67 [95% confidence interval (CI) 1.60-1.74] and 2.97 (95% CI 2.69-3.27) for respiratory mortality per 10 µg/m(3) increase in PM(10) and NO(2), respectively. The effects of air pollution were more apparent in women than in men. Age, sex, educational level, smoking status, personal income, occupational exposure, BMI and exercise frequency influenced the relationship between outdoor PM(10) and NO(2) and mortality. For SO(2), only smoking, little regular exercise and BMI above 18.5 influenced the relationship with mortality. These data contribute to the scientific literature on the long-term effects of air pollution for the high-exposure settings typical in developing countries. Copyright © 2011 S. Karger AG, Basel.

  8. Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong

    PubMed Central

    Wong, T. W.; Lau, T. S.; Yu, T. S.; Neller, A.; Wong, S. L.; Tam, W.; Pang, S. W.

    1999-01-01

    OBJECTIVE: To investigate short term effects of concentrations of pollutants in ambient air on hospital admissions for cardiovascular and respiratory diseases in Hong Kong. METHODS: Retrospective ecological study. A Poisson regression was performed of concentrations of daily air pollutant on daily counts of emergency hospital admissions in 12 major hospitals. The effects of time trend, season, and other cyclical factors, temperature, and humidity were accounted for. Autocorrelation and overdispersion were corrected. Daily concentrations of nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), and particulate matter < 10 microns in aerodynamic diameter (PM10) were obtained from seven air monitoring stations in Hong Kong in 1994 and 1995. Relative risks (RR) of respiratory and cardiovascular disease admissions (for an increase of 10 micrograms/m3 in concentration of air pollutant) were calculated. RESULTS: Significant associations were found between hospital admissions for all respiratory diseases, all cardiovascular diseases, chronic obstructive pulmonary diseases, and heart failure and the concentrations of all four pollutants. Admissions for asthma, pneumonia, and influenza were significantly associated with NO2, O3, and PM10. Relative risk (RR) for admissions for respiratory disease for the four pollutants ranged from 1.013 (for SO2) to 1.022 (for O3), and for admissions for cardiovascular disease, from 1.006 (for PM10) to 1.016 (for SO2). Those aged > or = 65 years were at higher risk. Significant positive interactions were detected between NO2, O3, and PM10, and between O3 and winter months. CONCLUSIONS: Adverse health effects are evident at current ambient concentrations of air pollutants. Further reduction in air pollution is necessary to protect the health of the community, especially that of the high risk group.   PMID:10658547

  9. Acute Effects of Ambient Particulate Matter on Mortality in Europe and North America: Results from the APHENA Study

    PubMed Central

    Samoli, Evangelia; Peng, Roger; Ramsay, Tim; Pipikou, Marina; Touloumi, Giota; Dominici, Francesca; Burnett, Rick; Cohen, Aaron; Krewski, Daniel; Samet, Jon; Katsouyanni, Klea

    2008-01-01

    Background The APHENA (Air Pollution and Health: A Combined European and North American Approach) study is a collaborative analysis of multicity time-series data on the effect of air pollution on population health, bringing together data from the European APHEA (Air Pollution and Health: A European Approach) and U.S. NMMAPS (National Morbidity, Mortality and Air Pollution Study) projects, along with Canadian data. Objectives The main objective of APHENA was to assess the coherence of the findings of the multicity studies carried out in Europe and North America, when analyzed with a common protocol, and to explore sources of possible heterogeneity. We present APHENA results on the effects of particulate matter (PM) ≤ 10 μm in aerodynamic diameter (PM10) on the daily number of deaths for all ages and for those < 75 and ≥ 75 years of age. We explored the impact of potential environmental and socioeconomic factors that may modify this association. Methods In the first stage of a two-stage analysis, we used Poisson regression models, with natural and penalized splines, to adjust for seasonality, with various degrees of freedom. In the second stage, we used meta-regression approaches to combine time-series results across cites and to assess effect modification by selected ecologic covariates. Results Air pollution risk estimates were relatively robust to different modeling approaches. Risk estimates from Europe and United States were similar, but those from Canada were substantially higher. The combined effect of PM10 on all-cause mortality across all ages for cities with daily air pollution data ranged from 0.2% to 0.6% for a 10-μg/m3 increase in ambient PM10 concentration. Effect modification by other pollutants and climatic variables differed in Europe and the United States. In both of these regions, a higher proportion of older people and higher unemployment were associated with increased air pollution risk. Conclusions Estimates of the increased mortality associated with PM air pollution based on the APHENA study were generally comparable with results of previous reports. Overall, risk estimates were similar in Europe and in the United States but higher in Canada. However, PM10 effect modification patterns were somewhat different in Europe and the United States. PMID:19057700

  10. Ambient air pollution and preterm birth: A prospective birth cohort study in Wuhan, China.

    PubMed

    Qian, Zhengmin; Liang, Shengwen; Yang, Shaoping; Trevathan, Edwin; Huang, Zhen; Yang, Rong; Wang, Jing; Hu, Ke; Zhang, Yiming; Vaughn, Michael; Shen, Longjiao; Liu, Wenjin; Li, Pu; Ward, Patrick; Yang, Li; Zhang, Wei; Chen, Wei; Dong, Guanghui; Zheng, Tongzhang; Xu, Shunqing; Zhang, Bin

    2016-03-01

    Although studies in western countries suggest that ambient air pollution is positively associated with adverse pregnancy outcomes, the upper levels of pollutant exposures have been relatively low, thus eroding confidence in the conclusions. Meanwhile, in Asia, where upper levels of exposure have been greater, there have been limited studies of the association between air pollution and adverse pregnancy outcomes. The primary objective was to evaluate whether high levels of pollution, including particulate matter pollution with a mass median aerodynamic diameter of less than 2.5 μm (PM2.5) and 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) are related to increased occurrence of preterm birth (PTB). We conducted a population-based study in Wuhan, China in a cohort of 95,911 live births during a two-year period from 2011 to 2013. The exposure was estimated based on daily mean concentrations of pollutants estimated using the pollutants' measurements from the nine closest monitors. Logistic regressions were performed to determine the relationships between exposure to each of the pollutants during different pregnancy periods and PTB while controlling for key covariates. We found 3% (OR=1.03; 95% CI: 1.02, 1.05), 2% (OR=1.02; 95% CI: 1.02, 1.03), 15% (OR=1.15; 95% CI: 1.11, 1.19), and 5% (OR=1.05; 95% CI: 1.02, 1.07) increases in risk of PTB with each 5-μg/m(3) increase in PM2.5 and PM10 concentrations, 100-μg/m(3) increase in CO concentrations, and 10-μg/m(3) increase in O3 concentrations, respectively. There was negligible evidence for associations for SO2 and NO2. The effects from two-pollutant models were similar to the estimated effects from single pollutant models. No critical exposure windows were identified consistently: the strongest effect for PTB was found in the second trimester for PM2.5, PM10, and CO, but for SO2 it was in the first trimester, second month, and third month. For NO2 it was in the first trimester and second month, and for O3, the third trimester. Findings reveal an association between air pollutants and PTB. However, more toxicological studies and prospective cohort studies with improved exposure assessments are needed to establish causality related to specific pollutants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Fractal Analysis of Air Pollutant Concentrations

    NASA Astrophysics Data System (ADS)

    Cortina-Januchs, M. G.; Barrón-Adame, J. M.; Vega-Corona, A.; Andina, D.

    2010-05-01

    Air pollution poses significant threats to human health and the environment throughout the developed and developing countries. This work focuses on fractal analysis of pollutant concentration in Salamanca, Mexico. The city of Salamanca has been catalogued as one of the most polluted cities in Mexico. The main causes of pollution in this city are fixed emission sources, such as chemical industry and electricity generation. Sulphur Dioxide (SO2) and Particulate Matter less than 10 micrometer in diameter (PM10) are the most important pollutants in this region. Air pollutant concentrations were investigated by applying the box counting method in time series obtained of the Automatic Environmental Monitoring Network (AEMN). One year of time series of hourly average concentrations were analyzed in order to characterize the temporal structures of SO2 and PM10.

  12. Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data

    NASA Astrophysics Data System (ADS)

    Ni, X. Y.; Huang, H.; Du, W. P.

    2017-02-01

    The PM2.5 problem is proving to be a major public crisis and is of great public-concern requiring an urgent response. Information about, and prediction of PM2.5 from the perspective of atmospheric dynamic theory is still limited due to the complexity of the formation and development of PM2.5. In this paper, we attempted to realize the relevance analysis and short-term prediction of PM2.5 concentrations in Beijing, China, using multi-source data mining. A correlation analysis model of PM2.5 to physical data (meteorological data, including regional average rainfall, daily mean temperature, average relative humidity, average wind speed, maximum wind speed, and other pollutant concentration data, including CO, NO2, SO2, PM10) and social media data (microblog data) was proposed, based on the Multivariate Statistical Analysis method. The study found that during these factors, the value of average wind speed, the concentrations of CO, NO2, PM10, and the daily number of microblog entries with key words 'Beijing; Air pollution' show high mathematical correlation with PM2.5 concentrations. The correlation analysis was further studied based on a big data's machine learning model- Back Propagation Neural Network (hereinafter referred to as BPNN) model. It was found that the BPNN method performs better in correlation mining. Finally, an Autoregressive Integrated Moving Average (hereinafter referred to as ARIMA) Time Series model was applied in this paper to explore the prediction of PM2.5 in the short-term time series. The predicted results were in good agreement with the observed data. This study is useful for helping realize real-time monitoring, analysis and pre-warning of PM2.5 and it also helps to broaden the application of big data and the multi-source data mining methods.

  13. Public-health impact of outdoor air pollution for 2(nd) air pollution management policy in Seoul metropolitan area, Korea.

    PubMed

    Leem, Jong Han; Kim, Soon Tae; Kim, Hwan Cheol

    2015-01-01

    Air pollution contributes to mortality and morbidity. We estimated the impact of outdoor air pollution on public health in Seoul metropolitan area, Korea. Attributable cases of morbidity and mortality were estimated. Epidemiology-based exposure-response functions for a 10 μg/m3 increase in particulate matter (PM2.5 and PM10) were used to quantify the effects of air pollution. Cases attributable to air pollution were estimated for mortality (adults ≥ 30 years), respiratory and cardiovascular hospital admissions (all ages), chronic bronchitis (all ages), and acute bronchitis episodes (≤18 years). Environmental exposure (PM2.5 and PM10) was modeled for each 3 km × 3 km. In 2010, air pollution caused 15.9% of total mortality or approximately 15,346 attributable cases per year. Particulate air pollution also accounted for: 12,511 hospitalized cases of respiratory disease; 20,490 new cases of chronic bronchitis (adults); 278,346 episodes of acute bronchitis (children). After performing the 2(nd) Seoul metropolitan air pollution management plan, the reducible death number associated with air pollution is 14,915 cases per year in 2024. We can reduce 57.9% of death associated with air pollution. This assessment estimates the public-health impacts of current patterns of air pollution. Although individual health risks of air pollution are relatively small, the public-health consequences are remarkable. Particulate air pollution remains a key target for public-health action in the Seoul metropolitan area. Our results, which have also been used for economic valuation, should guide decisions on the assessment of environmental health-policy options.

  14. Emissions Inventory of Anthropogenic PM2.5 and PM10 in Mega city, Delhi, India for Air Quality Forecasting during CWG- 2010

    NASA Astrophysics Data System (ADS)

    Sahu, S.; Beig, G.; Schultz, M.; Parkhi, N.; Stein, O.

    2012-04-01

    The mega city of Delhi is the second largest urban agglomeration in India with 16.7 mio. inhabitants. Delhi has the highest per capita power consumption of electricity in India and the demand has risen by more than 50% during the last decade. Emissions from commercial, power, domestic and industrial sectors have strongly increased causing more and more environmental problems due to air pollution and its adverse impacts on human health. Particulate matter (PM) of size less than 2.5-micron (PM2.5) and 10 micron (PM10) have emerged as primary pollutants of concern due to their adverse impact on human health. As part of the System of Air quality Forecasting and Research (SAFAR) project developed for air quality forecasting during the Commonwealth Games (CWG) - 2010, a high resolution Emission Inventory (EI) of PM10 and PM2.5 has been developed for the metropolitan city Delhi for the year 2010. The comprehensive inventory involves detailed activity data and has been developed for a domain of 70km×65km with a 1.67km×1.67km resolution covering Delhi and its surrounding region (i.e. National Capital Region (NCR)). In creating this inventory, Geographical Information System (GIS) based techniques were used for the first time in India. The major sectors considered are, transport, thermal power plants, industries, residential and commercial cooking along with windblown road dust which is found to play a major role for the megacity environment. Extensive surveys were conducted among the Delhi slum dwellers (Jhuggi) in order to obtain more robust estimates for the activity data related to domestic cooking and heating. Total emissions of PM10 and PM2.5 including wind blown dust over the study area are found to be 236 Gg/yr and 94 Gg/yr respectively. About half of the PM10 emissions stem from windblown road dust. The new emission inventory has been used for regional air quality forecasts in the Delhi region during the Commonwealth games (SAFAR project), and they will soon be tested in simulations of the global atmospheric composition in the framework of the European MACC project which provided the chemical boundary conditions to the regional air quality forecasts in 2010.

  15. Multi-criteria analysis for PM10 planning

    NASA Astrophysics Data System (ADS)

    Pisoni, Enrico; Carnevale, Claudio; Volta, Marialuisa

    To implement sound air quality policies, Regulatory Agencies require tools to evaluate outcomes and costs associated to different emission reduction strategies. These tools are even more useful when considering atmospheric PM10 concentrations due to the complex nonlinear processes that affect production and accumulation of the secondary fraction of this pollutant. The approaches presented in the literature (Integrated Assessment Modeling) are mainly cost-benefit and cost-effective analysis. In this work, the formulation of a multi-objective problem to control particulate matter is proposed. The methodology defines: (a) the control objectives (the air quality indicator and the emission reduction cost functions); (b) the decision variables (precursor emission reductions); (c) the problem constraints (maximum feasible technology reductions). The cause-effect relations between air quality indicators and decision variables are identified tuning nonlinear source-receptor models. The multi-objective problem solution provides to the decision maker a set of not-dominated scenarios representing the efficient trade-off between the air quality benefit and the internal costs (emission reduction technology costs). The methodology has been implemented for Northern Italy, often affected by high long-term exposure to PM10. The source-receptor models used in the multi-objective analysis are identified processing long-term simulations of GAMES multiphase modeling system, performed in the framework of CAFE-Citydelta project.

  16. Is physical activity a modifier of the association between air pollution and arterial stiffness in older adults: The SAPALDIA cohort study.

    PubMed

    Endes, Simon; Schaffner, Emmanuel; Caviezel, Seraina; Dratva, Julia; Stolz, Daiana; Schindler, Christian; Künzli, Nino; Schmidt-Trucksäss, Arno; Probst-Hensch, Nicole

    2017-08-01

    Air pollution and insufficient physical activity have been associated with inflammation and oxidative stress, molecular mechanisms linked to arterial stiffness and cardiovascular disease. There are no studies on how physical activity modifies the association between air pollution and arterial stiffness. We examined whether the adverse cardiovascular effects of air pollution were modified by individual physical activity levels in 2823 adults aged 50-81 years from the well-characterized Swiss Cohort Study on Air Pollution and Lung and Heart Diseases (SAPALDIA). We assessed arterial stiffness as the brachial-ankle pulse wave velocity (baPWV [m/s]) with an oscillometric device. We administered a self-reported physical activity questionnaire to classify each subject's physical activity level. Air pollution exposure was estimated by the annual average individual home outdoor PM 10 and PM 2.5 (particulate matter <10μm and <2.5μm in diameter, respectively) and NO 2 (nitrogen dioxide) exposure estimated for the year preceding the survey. Exposure estimates for ultrafine particles calculated as particle number concentration (PNC) and lung deposited surface area (LDSA) were available for a subsample (N=1353). We used mixed effects logistic regression models to regress increased arterial stiffness (baPWV≥14.4m/s) on air pollution exposure and physical activity while adjusting for relevant confounders. We found evidence that the association of air pollution exposure with baPWV was different between inactive and active participants. The probability of having increased baPWV was significantly higher with higher PM 10 , PM 2.5 , NO 2 , PNC and LDSA exposure in inactive, but not in physically active participants. We found some evidence of an interaction between physical activity and ambient air pollution exposure for PM 10 , PM 2.5 and NO 2 (p interaction =0.06, 0.09, and 0.04, respectively), but not PNC and LDSA (p interaction =0.32 and 0.35). Our study provides some indication that physical activity may protect against the adverse vascular effects of air pollution in low pollution settings. Additional research in large prospective cohorts is needed to assess whether the observed effect modification translates to high pollution settings in mega-cities of middle and low-income countries. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Ambient air pollution exposure and blood pressure changes during pregnancy

    PubMed Central

    Lee, Pei-Chen; Talbott, Evelyn O.; Roberts, James M.; Catov, Janet M.; Bilonick, Richard A.; Stone, Roslyn A.; Sharma, Ravi K.; Ritz, Beate

    2013-01-01

    Background Maternal exposure to ambient air pollution has been associated with adverse birth outcomes such as preterm delivery. However, only one study to date has linked air pollution to blood pressure changes during pregnancy, a period of dramatic cardiovascular function changes. Objectives We examined whether maternal exposures to criteria air pollutants, including particles of less than 10 µm (PM10) or 2.5 µm diameter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), in each trimester of pregnancy are associated with magnitude of rise of blood pressure between the first 20 weeks of gestation and late pregnancy in a prospectively followed cohort of 1684 pregnant women in Allegheny County, PA. Methods Air pollution measures for maternal ZIP code areas were derived using Kriging interpolation. Using logistic regression analysis, we evaluated the associations between air pollution exposures and blood pressure changes between the first 20 weeks of gestation and late pregnancy. Results First trimester PM10 and ozone exposures were associated with blood pressure changes between the first 20 weeks of gestation and late pregnancy, most strongly in non-smokers. Per interquartile increases in first trimester PM10 and O3 concentrations were associated with mean increases in systolic blood pressure of 1.88 mmHg (95% CI = 0.84 to 2.93) and 1.84 (95% CI = 1.05 to 4.63), respectively, and in diastolic blood pressure of 0.63 mmHg (95% CI= −0.50 to 1.76) and 1.13 (95% CI= −0.46 to 2.71) in non-smokers. Conclusions Our novel finding suggests that first trimester PM10 and O3 air pollution exposures increase blood pressure in the later stages of pregnancy. These changes may play a role in mediating the relationships between air pollution and adverse birth outcomes. PMID:22835955

  18. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    PubMed

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter < 10 μm (PM 10 ), which were verified by experimental results. The results revealed poor air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  19. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    NASA Astrophysics Data System (ADS)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  20. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaolu; Zheng, Wenfeng; Yin, Lirong; Yin, Zhengtong; Song, Lihong; Tian, Xia

    2017-08-01

    With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5), particulate matter with size 10 micrometers or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NOx), are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables). The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  1. Air pollution and activation of mobile medical team for out-of-hospital cardiac arrest.

    PubMed

    Pradeau, Catherine; Rondeau, Virginie; Lévèque, Emilie; Guernion, Pierre-Yves; Tentillier, Eric; Thicoipé, Michel; Brochard, Patrick

    2015-03-01

    The association between air pollution exposure and cardiovascular events is well established, and the effect of short-term exposure on out-of-hospital cardiac arrest (OHCA) has received some attention. The effect of air pollution exposure and the activation of mobile intensive care units (MICUs) for cardiac arrest have never been studied. We analyzed associations between air pollutants and MICU activation for OHCA. This is a retrospective study including 4558 patients with OHCA and MICU activation from 2007 to 2012. A time-stratified case crossover design was used. Particulate matter (PM) of median aerodynamic diameter less than 2.5 μm (PM2.5), less than 10 μm, and ozone were the 3 main pollutants used to determine the effects of pollution exposure on the event. A daily average increase of 27.6 μg/m(3) in ozone was associated with an increase of MICU activation for OHCA the following day (odds ratio [OR], 1.13; 95% confidence interval [CI], 1.03-1.22). For women, a daily average increase of 27.6 μg/m(3) in ozone was associated with an increase of MICU activation for OHCA the following day (OR, 1.19; 95% CI, 1.01-1.37). An hourly average increase of 10.5 μg/m(3) in PM2.5 was associated with an increase of MICU activation for OHCA in the current hour (OR, 1.11; 95% CI, 1.02-1.19). For men, an increase in PM2.5 was associated with an increase in MICU activation for OHCA the current hour (OR, 1.10; 95% CI, 1.01-1.20). No association was found with PM of median aerodynamic diameter less than 10 μm. An association was found between air pollution and MICU activation for OHCA (ozone and PM2.5). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A county-level estimate of PM2.5 related chronic mortality risk in China based on multi-model exposure data.

    PubMed

    Wang, Qing; Wang, Jiaonan; He, Mike Z; Kinney, Patrick L; Li, Tiantian

    2018-01-01

    Ambient fine particulate matter (PM 2.5 ) pollution is currently a serious environmental problem in China, but evidence of health effects with higher resolution and spatial coverage is insufficient. This study aims to provide a better overall understanding of long-term mortality effects of PM 2.5 pollution in China and a county-level spatial map for estimating PM 2.5 related premature deaths of the entire country. Using four sets of satellite-derived PM 2.5 concentration data and the integrated exposure-response model which has been employed by the Global Burden of Disease (GBD) to estimate global mortality of ambient and household air pollution in 2010, we estimated PM 2.5 related premature mortality for five endpoints across China in 2010. Premature deaths attributed to PM 2.5 nationwide amounted to 1.27million in total, and 119,167, 83,976, 390,266, 670,906 for adult chronic obstructive pulmonary disease, lung cancer, ischemic heart disease, and stroke, respectively; 3995 deaths for acute lower respiratory infections were estimated in children under the age of 5. About half of the premature deaths were from counties with annual average PM 2.5 concentrations above 63.61μg/m 3 , which cover 16.97% of the Chinese territory. These counties were largely located in the Beijing-Tianjin-Hebei region and the North China Plain. High population density and high pollution areas exhibited the highest health risks attributed to air pollution. On a per capita basis, the highest values were mostly located in heavily polluted industrial regions. PM 2.5 -attributable health risk is closely associated with high population density and high levels of pollution in China. Further estimates using long-term historical exposure data and concentration-response (C-R) relationships should be completed in the future to investigate longer-term trends in the effects of PM 2.5 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ozone, NO2 and PM10 are associated with the occurrence of multiple sclerosis relapses. Evidence from seasonal multi-pollutant analyses

    PubMed Central

    Jeanjean, Maxime; Bind, Marie-Abele; Roux, Jonathan; Ongagna, Jean-Claude; de Sèze, Jérôme; Bard, Denis; Leray, Emmanuelle

    2018-01-01

    Background Triggers of multiple sclerosis (MS) relapses are essentially unknown. PM10 exposure has recently been associated with an increased risk of relapses. Objectives We further explore the short-term associations between PM10, NO2, benzene (C6H6), O3, and CO exposures, and the odds of MS relapses’ occurrence. Methods Using a case-crossover design, we studied 424 MS patients living in the Strasbourg area, France between 2000 and 2009 (1783 relapses in total). Control days were chosen to be±35 days relative to the case (relapse) day. Exposure was modeled through ADMS-Urban software at the census block scale. We consider single-pollutant and multi-pollutant conditional logistic regression models coupled with a distributed-lag linear structure, stratified by season (“hot” vs. “cold”), and adjusted for meteorological parameters, pollen count, influenza-like epidemics, and holidays. Results The single-pollutant analyses indicated: 1) significant associations between MS relapse incidence and exposures to NO2, PM10, and O3, and 2) seasonality in these associations. For instance, an interquartile range increase in NO2 (lags 0–3) and PM10 exposure were associated with MS relapse incidence (OR = 1.08; 95%CI: [1.03–1.14] and OR = 1.06; 95%CI: [1.01–1.11], respectively) during the “cold” season (i.e., October-March). We also observed an association with O3 and MS relapse incidence during “hot” season (OR = 1.16; 95%CI: [1.07–1.25]). C6H6 and CO were not significantly related to MS relapse incidence. However, using multi-pollutant models, only O3 remained significantly associated with the odds of relapse triggering during “hot” season. Conclusion We observed significant single-pollution associations between the occurrence of MS relapses and exposures to NO2, O3 and PM10, only O3 remained significantly associated with occurrence of MS relapses in the multi-pollutant model. PMID:29426027

  4. PM10 Air Pollution and Acute Hospital Admissions for Cardiovascular and Respiratory Causes in Ostrava.

    PubMed

    Tomášková, Hana; Tomášek, Ivan; Šlachtová, Hana; Polaufová, Pavla; Šplíchalová, Anna; Michalík, Jiří; Feltl, David; Lux, Jaroslav; Marsová, Marie

    2016-12-01

    The city of Ostrava and its surroundings belong to the most long-therm polluted areas in the Czech Republic and Europe. For identification of health risk, the World Health Organization recommends a theoretical estimation of increased short-term PM 10 concentrations effect on hospital admissions for cardiac complaints based on a 0.6% increase per 10 µg.m -3 PM 10 and 1.14% increase for respiratory causes. The goal of the present study is to verify the percentage increase of morbidity due to cardiovascular and respiratory causes, as per WHO recommendations for health risk assessment, in the population of Ostrava. The input data include data on PM 10 air pollution, meteorological data, the absolute number of hospital admissions for acute cardiovascular and respiratory diseases in the period 2010-2012. To examine the association between air pollution and health outcomes the time series Poisson regression adjusted for covariates was used. A significant relationship was found between the cardiovascular hospital admissions (percentage increase of 1.24% per 10 µg.m -3 ) and values of PM 10 less than 150 µg.m -3 in the basic model, although after adjustment for other factors, this relationship was no longer significant. A significant relationship was also observed for respiratory causes of hospital admissions in the basic model. Contrary to cardiovascular hospitalization, the relationship between respiratory hospital admissions and PM 10 values below 150 µg.m -3 (percentage increase of 1.52%) remained statistically significant after adjustment for other factors. The observed significant relationship between hospital admissions for respiratory causes was consistent with the results of large European and American studies. Copyright© by the National Institute of Public Health, Prague 2016

  5. Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques.

    PubMed

    Yatera, Kazuhiro; Hsieh, Joanne; Hogg, James C; Tranfield, Erin; Suzuki, Hisashi; Shih, Chih-Horng; Behzad, Ali R; Vincent, Renaud; van Eeden, Stephan F

    2008-02-01

    Epidemiologic studies have shown an association between exposure to ambient particulate air pollution <10 microm in diameter (PM(10)) and increased cardiovascular morbidity and mortality. We previously showed that PM(10) exposure causes progression of atherosclerosis in coronary arteries. We postulate that the recruitment of monocytes from the circulation into atherosclerotic lesions is a key step in this PM(10)-induced acceleration of atherosclerosis. The study objective was to quantify the recruitment of circulating monocytes into vessel walls and the progression of atherosclerotic plaques induced by exposure to PM(10). Female Watanabe heritable hyperlipidemic rabbits, which naturally develop systemic atherosclerosis, were exposed to PM(10) (EHC-93) or vehicle by intratracheal instillation twice a week for 4 wk. Monocytes, labeled with 5-bromo-2'-deoxyuridine (BrdU) in donors, were transfused to recipient rabbits as whole blood, and the recruitment of BrdU-labeled cells into vessel walls and plaques in recipients was measured by quantitative histological methodology. Exposure to PM(10) caused progression of atherosclerotic lesions in thoracic and abdominal aorta. It also decreased circulating monocyte counts, decreased circulating monocytes expressing high levels of CD31 (platelet endothelial cell adhesion molecule-1) and CD49d (very late antigen-4 alpha-chain), and increased expression of CD54 (ICAM-1) and CD106 (VCAM-1) in plaques. Exposure to PM(10) increased the number of BrdU-labeled monocytes adherent to endothelium over plaques and increased the migration of BrdU-labeled monocytes into plaques and smooth muscle underneath plaques. We conclude that exposure to ambient air pollution particles promotes the recruitment of circulating monocytes into atherosclerotic plaques and speculate that this is a critically important step in the PM(10)-induced progression of atherosclerosis.

  6. Air Pollution Control Policies in China: A Retrospective and Prospects.

    PubMed

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-12-09

    With China's significant role on pollution emissions and related health damage, deep and up-to-date understanding of China's air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006-2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO₂) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM 2.5 ) and ground level ozone (O₃) emerged and worsened; (3) After the winter-long PM 2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  7. Air Pollution Control Policies in China: A Retrospective and Prospects

    PubMed Central

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5) and ground level ozone (O3) emerged and worsened; (3) After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions. PMID:27941665

  8. Associations between respiratory illness and PM{sub 10} air pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, A.H.; Gordian, M.E.; Morris, S.S.

    In this study, the association between daily morbidity and respirable particulate pollution (i.e., particles with a mass median aerodynamic diameter of {le} 10 microns [PM{sub 10}]) was evaluated in the general population of Anchorage, Alaska. Using insurance claims data for state employees and their dependents who lived in Anchorage, Alaska, the authors determined the number of medical visits for asthma, bronchitis, and upper respiratory infections. The number of visits were related to the level of particulate pollution in ambient air measured at air-monitoring sites. 17 refs., 2 figs., 4 tabs.

  9. Spatial assessment of air quality patterns in Malaysia using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin

    2012-12-01

    This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.

  10. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study

    PubMed Central

    Morakinyo, Oyewale Mayowa; Adebowale, Ayo Stephen; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley

    2017-01-01

    Objective To assess the health risks associated with exposure to particulate matter (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3). Design The study is an ecological study that used the year 2014 hourly ambient pollution data. Setting The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. Data and method Estimate of possible health risks from exposure to airborne PM10, SO2, NO2, CO and O3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. Outcome measures Presence or absence of adverse health effects from exposure to airborne pollutants. Results Average annual ambient concentration of PM10, NO2 and SO2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m3, respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m3 for PM10, NO2 and SO2, respectively. Exposure to an hour's concentration of NO2, SO2, CO and O3, an 8-hour concentration of CO and O3, and a 24-hour concentration of PM10, NO2 and SO2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM10, NO2 and SO2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. Conclusions Long-term chronic exposure to airborne PM10, NO2 and SO2 pollutants may result in health risks among the study population. PMID:28289048

  11. PM levels in urban area of Bejaia

    NASA Astrophysics Data System (ADS)

    Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2017-04-01

    Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.

  12. Dietary habits and the short-term effects of air pollution on mortality in the Chinese population in Hong Kong.

    PubMed

    Ou, Chun-Quan; Wong, Chit-Ming; Ho, Sai-Yin; Schooling, Mary; Yang, Lin; Hedley, Anthony J; Lam, Tai-Hing

    2012-03-01

    Both diet and air pollution are associated with mortality risks. However, no epidemiological study has examined the potential interaction between diet and air pollution on mortality. We assessed their interaction on an additive scale. We analysed the data on daily concentrations of ambient air pollutants (PM(10), NO(2), SO(2) and O(3)) and a total of 23 484 deaths in 1998 in Hong Kong. A standardised questionnaire was used in all four death registries to collect food frequency data from proxy respondents while waiting for the registration to be completed. We fitted a linear odds ratio model and estimated excess relative risk due to the interaction (ERRI) between air pollution and regular consumption (at least once per week) of each food item to measure departure from additivity of effects on mortality. We observed consistently negative ERRI between all of the four pollutants and regular consumption of vegetables, fruits and soy. The effects of PM(10), NO(2) and O(3) were significant smaller in the subjects who regularly consumed fruits than those who never or seldom consumed such food. The effect modification of soy consumption on PM(10), NO(2) and SO(2) associated mortality was also found statistically significant. However, regular consumption of dairy products was associated with significant increased effects of PM(10) and NO(2). This study provides insight into dietary habit as one of the modifiers of health effects of air pollution. Our findings merit further studies to characterise the influence of diet on air pollution-related health and elucidate the underlying mechanisms.

  13. Air pollution and cardiovascular and respiratory disease: Rationale and methodology of CAPACITY study.

    PubMed

    Rabiei, Katayoun; Hosseini, Sayed Mohsen; Sadeghi, Erfan; Jafari-Koshki, Tohid; Rahimi, Mojtaba; Shishehforoush, Mansour; Lahijanzadeh, Ahmadreza; Sadeghian, Babak; Moazam, Elham; Mohebi, Mohammad Bagher; Ezatian, Victoria; Sarrafzadegan, Nizal

    2017-11-01

    Considering the high level of air pollution and its impact on health, we aimed to study the correlation of air pollution with hospitalization and mortality of cardiovascular (CVD) and respiratory diseases (ResD) (CAPACITY) to determine the effects of air pollutants on CVD and ResD hospitalizations and deaths in Isfahan, Iran. Hourly levels of air pollutants including particulate matter (PM), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), information of CVD and ResD admissions and death certificate were obtained respectively from Department of Environment (DOE), Iran, hospitals and cemetery. Time series and case-crossover model were used to find the impact of air pollutants. This paper only summarizes the descriptive findings of the CAPACITY study. The total number of hospitalized patients were 23781 in 2010 and 22485 in 2011. The most frequent cause of hospitalization and death was ischemic heart diseases in both years. While the mean annual levels of O3, CO, and PM10 were lower in 2011 than in 2010, NO2 and SO2 levels higher in 2011. In both years, PM10 was similarly increased during last month of fall, late spring and early summer. In 2011, the PM2.5 and PM10 monthly trend of change were similar. The CAPACITY study is one of the few large-scale studies that evaluated the effects of air pollutants on a variety of CVD and ResD in a large city of Iran. This study can provide many findings that could clarify the effects of these pollutants on the incidence and burden of both disease groups.

  14. Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach.

    PubMed

    Miri, Mohammad; Derakhshan, Zahra; Allahabadi, Ahmad; Ahmadi, Ehsan; Oliveri Conti, Gea; Ferrante, Margherita; Aval, Hamideh Ebrahimi

    2016-11-01

    In the past two decades, epidemiological studies have shown that air pollution is one of the causes of morbidity and mortality. In this study the effect of PM10, PM2.5, NO2, SO2 and O3 pollutants on human health among the inhabitants of Mashhad has been evaluated. To evaluate the health effects due to air pollution, the AirQ model software 3.3.2, developed by WHO European Centre for Environment and Health, was used. The daily data related to the pollutants listed above has been used for the short term health effects (total mortality, cardiovascular and respiratory mortality, hospitalization due to cardiovascular and respiratory diseases, chronic obstructive pulmonary disease and acute myocardial infarction). PM2.5 had the most health effects on Mashhad inhabitants. With increasing in each 10μg/m3, relative risk rate of pollutant concentration for total mortality due to PM10, PM2.5, SO 2 , NO 2 and O 3 was increased of 0.6%, 1.5%, 0.4%, 0.3% and 0.46% respectively and, the attributable proportion of total mortality attributed to these pollutants was respectively equal to 4.24%, 4.57%, 0.99%, 2.21%, 2.08%, and 1.61% (CI 95%) of the total mortality (correct for the non-accident) occurred in the year of study. The results of this study have a good compatibly with other studies conducted on the effects of air pollution on humans. The AirQ software model can be used in decision-makings as a useful and easy tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Air pollution and cardiovascular and respiratory disease: Rationale and methodology of CAPACITY study

    PubMed Central

    Rabiei, Katayoun; Hosseini, Sayed Mohsen; Sadeghi, Erfan; Jafari-Koshki, Tohid; Rahimi, Mojtaba; Shishehforoush, Mansour; Lahijanzadeh, Ahmadreza; Sadeghian, Babak; Moazam, Elham; Mohebi, Mohammad Bagher; Ezatian, Victoria; Sarrafzadegan, Nizal

    2017-01-01

    BACKGROUND Considering the high level of air pollution and its impact on health, we aimed to study the correlation of air pollution with hospitalization and mortality of cardiovascular (CVD) and respiratory diseases (ResD) (CAPACITY) to determine the effects of air pollutants on CVD and ResD hospitalizations and deaths in Isfahan, Iran. METHODS Hourly levels of air pollutants including particulate matter (PM), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), information of CVD and ResD admissions and death certificate were obtained respectively from Department of Environment (DOE), Iran, hospitals and cemetery. Time series and case-crossover model were used to find the impact of air pollutants. This paper only summarizes the descriptive findings of the CAPACITY study. RESULTS The total number of hospitalized patients were 23781 in 2010 and 22485 in 2011. The most frequent cause of hospitalization and death was ischemic heart diseases in both years. While the mean annual levels of O3, CO, and PM10 were lower in 2011 than in 2010, NO2 and SO2 levels higher in 2011. In both years, PM10 was similarly increased during last month of fall, late spring and early summer. In 2011, the PM2.5 and PM10 monthly trend of change were similar. CONCLUSION The CAPACITY study is one of the few large-scale studies that evaluated the effects of air pollutants on a variety of CVD and ResD in a large city of Iran. This study can provide many findings that could clarify the effects of these pollutants on the incidence and burden of both disease groups. PMID:29643921

  16. Association between air pollution and upper respiratory tract infection in hospital outpatients aged 0-14 years in Hefei, China: a time series study.

    PubMed

    Li, Y R; Xiao, C C; Li, J; Tang, J; Geng, X Y; Cui, L J; Zhai, J X

    2018-03-01

    To investigate the association between air pollution and upper respiratory tract infection (URTI) in children aged 0-14 years in Hefei, China in 2014-2015. An ecological method (i.e. generalised additive model [GAM]) was used to explore the effects of air pollutants on paediatric hospital outpatients with URTI. GAM was used to evaluate the lag effects (including lag0 to lag6, lag01 and lag06) between daily changes in particulate matter (PM 10 ), fine particulate matter (PM 2.5 ), sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), ozone (O 3 ) and carbon monoxide (CO) and the number of hospital outpatients with URTI in 2014-2015, after controlling for the confounding effects of long-term trends, seasonality, day of the week, public holidays and meteorological factors. PM 10 , PM 2.5 , SO 2 , NO 2 and CO in the single-pollutant models had significant positive effects on the number of paediatric hospital outpatients with URTI. It was found that per 10 μg/m 3 increasing in concentrations of PM 10 at lag3, PM 2.5 , SO 2 , NO 2 and CO at lag06 were associated with an increase of Excess risk (ER) with 0.15% (95% CI: 0.07%∼0.23%), 0.38% (95% CI: 0.17%∼0.60%), 2.92% (95% CI: 1.88%∼3.97%), 4.47% (95% CI: 3.69%∼5.25%) and 0.05% (95% CI: 0.02%∼0.08%), respectively. Only NO 2 remained significantly positively associated with the number of hospital outpatients with URTI in the full-pollutant models, and ERs were 4.72% (95% CI = 3.76%-5.69%) and 4.70% (95% CI = 3.76%-5.65%) per 10 μg/m 3 increase in NO 2 in Model 1 (including PM10, SO 2 , NO 2 , O 3 and CO) and Model 2 (including PM 2.5 , SO 2 , NO 2 , O 3 and CO), respectively. This study showed that short-term exposure to air pollution was associated with increased risk of URTI among paediatric hospital outpatients aged 0-14 years in Hefei. NO 2 was the major air pollutant affecting the daily number of paediatric hospital outpatients with URTI. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. [Oxidative stress, lung function and exposure to air pollutants in Mexican schoolchildren with and without asthma].

    PubMed

    Romero-Calderón, Ana Teresa; Moreno-Macías, Hortensia; Manrique-Moreno, Joel David Francisco; Riojas-Rodríguez, Horacio; Torres-Ramos, Yessica Dorín; Montoya-Estrada, Araceli; Hicks-Gómez, Juan José; Linares-Segovia, Benigno; Cárdenas, Beatriz; Bárcenas, Claudia; Barraza-Villarreal, Albino

    2017-01-01

    To assess the association between the air pollutants exposure on markers of oxidative stress and lung function in schoolchildren with and without asthma from Salamanca and Leon Guanajuato, Mexico. We realized determinations of oxidative stress biomarkers and lung function tests in 314 schoolchildren. Information of air pollutants (O3, SO2, CO, PM2.5 and PM10) were obtained from monitoring stations and multiple linear regression models were run to assess the association. An increase of 0.09 pmol in conjugated dienes was observed by exposure to PM10 lag 1 in asthmatics from Salamanca (p<0.05). The exposure to O3 during the same day increased the concentration of Lipohydroperoxides in 4.38 nmol in asthmatics of Salamanca, as well as in 2.31 nmol by exposure to PM10 lag 2 (p<0.05). The forced vital capacity decreased by 138 and 203 ml in children without asthma, respectively, due to exposure to carbon monoxide (p<0.05). Exposure to air pollutants increase oxidative stress and decreased lung function in schoolchildren, with and without asthma.

  18. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    PubMed

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter <10 μm (PM10) on mortality were modified by temperature. The effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged <65 years. In those aged ≥65 years, the highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on very hot days and not on extremely hot days (daily mean temperature: 95-99th percentile). There were strong harmful effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Association between air pollutants and dementia risk in the elderly.

    PubMed

    Wu, Yun-Chun; Lin, Yuan-Chien; Yu, Hwa-Lung; Chen, Jen-Hau; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Yen-Ching

    2015-06-01

    The aging rate in Taiwan is the second highest in the world. As the population ages quickly, the prevalence of dementia increases rapidly. There are some studies that have explored the association between air pollution and cognitive decline, but the association between air pollution and dementia has not been directly evaluated. This was a case-control study comprising 249 Alzheimer's disease (AD) patients, 125 vascular dementia (VaD) patients, and 497 controls from three teaching hospitals in northern Taiwan from 2007 to 2010. Data of particulate matter <10 μm in diameter (PM10) and ozone were obtained from the Taiwan Environmental Protection Administration for 12 and 14 years, respectively. Blood samples were collected to determine the apolipoprotein E (APOE) ɛ4 haplotype. Bayesian maximum entropy was used to estimate the individual exposure level of air pollutants, which was then tertiled for analysis. Conditional logistic regression models were used to estimate adjusted odds ratios (AORs) and 95% confidence intervals between the association of PM10 and ozone exposure with AD and VaD risk. The highest tertile of PM10 (≥49.23 μg/m(3)) or ozone (≥21.56 ppb) exposure was associated with increased AD risk (highest vs. lowest tertile of PM10: AOR = 4.17; highest vs. lowest tertile of ozone: AOR = 2.00). Similar finding was observed for VaD. The association with AD and VaD risk remained for the highest tertile PM10 exposure after stratification by APOE ɛ4 status and gender. Long-term exposure to the highest tertile of PM10 or ozone was significantly associated with an increased risk of AD and VaD.

  20. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    PubMed

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Geographic variation in Chinese children' forced vital capacity and its association with long-term exposure to local PM10: a national cross-sectional study.

    PubMed

    Wang, Hai-Jun; Li, Qin; Guo, Yuming; Song, Jie-Yun; Wang, Zhiqiang; Ma, Jun

    2017-10-01

    The purpose of this study was to estimate the association between Chinese children's forced vital capacity (FVC) and particulate matter with aerodynamic diameter ≤10 μm (PM 10 ). The FVC data of 71,763 children aged 7 to 18 was collected from 2010 Chinese National Survey on Students' Construction and Health (CNSSCH). The local annual average concentration of PM 10 , relative humidity, ambient temperature, and other air pollutant data of 30 cities was collected from China Meteorological Administration and Ministry of Environment Protection of China. Then, we used generalized additive model (GAM) to estimate the association between children's FVC and PM 10 . The obvious geographic variation in FVC was found in children of 30 Chinese cities ranging from 1647 ml in Xining to 2571 ml in Beijing. The annual average concentration of PM 10 was also different, ranging from 40 μg/m 3 in Haikou to 155 μg/m 3 in Lanzhou. After adjusted individual characteristics, socioeconomic conditions, ambient temperature, relative humidity, and other air pollutants (e.g., NO 2 and SO 2 ) in the generalized additive model, we found that the increase of PM 10 was associated with decrease of FVC in Chinese children. A 10-μg/m 3 increase of PM 10 was associated with 1.33-ml decrease in FVC (95% confidence interval: -2.18 to -0.47). We also found a larger effect estimate of PM 10 on FVC in boys than that in girls. Consistent associations were found in both physically inactive and active children. The increase of PM 10 was associated with decrease of children's FVC. We should develop proper public health policy to protect children's respiratory health during growth and development in polluted areas.

  2. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.

    PubMed

    Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang

    2017-10-01

    A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (<100MW), which accounted for ~60% of total unit numbers, had less coal consumption but higher emission rates compared to medium (≥100MW and <300MW) and large units (≥300MW). Main factors affecting SO 2 , NO x , PM 2.5 and PM 10 emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic-Mediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components

    NASA Astrophysics Data System (ADS)

    Pérez, Noemí; Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Bhatia, Ravinder; Spiro, Baruch; Hanvey, Melanie

    2010-07-01

    We report on ambient atmospheric aerosols present at sea during the Atlantic-Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM 10, PM 2.5, and PM 1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM 10 levels <10 μg m -3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM 10 daily mean levels averaged 40-60 μg m -3 (30-40 μg m -3 PM 2.5; c. 20 μg m -3 PM 1), peaking briefly to >120 μg m -3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM 1/PM 10 ratios ranged from very low during desert dust intrusions (0.3-0.4) to very high during anthropogenic pollution plume events (0.8-1).

  4. Temporal variability of air-pollutants over Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Ghedira, H.; Ben Romdhane, H.; Beegum S, N.

    2013-12-01

    Air quality, the measure of the concentrations of gaseous pollutants and size or number of particulate matter, is one of the most important problems worldwide and has strong implications on human health, ecosystems, as well as regional and global climate. The levels of air pollutants such as sulphur dioxide (SO2), particulate matters (PM10, PM2.5), Ozone (O3), Nitrogen dioxide (NO2), Carbon monoxide (CO), etc. show an alarming increase in urban cities across the world and in many cases, the concentrations have grown well above the World Health Organization's guidelines for ambient air-quality standards. Here, we present the periodic fluctuations observed in the concentrations of air pollutants such as SO2, NO2, O3, CO, H2S, NMHC (Non methane Hydro Carbon) and VOC (volatile organic compounds) based on the measurements collected during the period 2008-2010 at Masdar City, Abu Dhabi (24.42oN, 54.61oE, 7m MSL). The measurements were carried out using an Air Quality Monitoring System (AQM60). All these pollutant species showed statistical periodic: diurnal, monthly, seasonal and annual variations. Diurnally, all the species, except ozone, depicted an afternoon low and nighttime/early morning high, attributed to the dynamics of the local atmospheric boundary layer. Whereas, an opposite pattern with daytime high and nighttime low was observed for O3, as the species is formed in the troposphere by catalytic photochemical reactions of NOx with CO, CH4 and other VOCs. Seasonally, the pollutants depicted higher values during summer and relatively lower values during winter, associated with changes in synoptic airmass types and/or removal processes. Concentrations of all the gaseous pollutants are within the National Ambient Air Quality Standards (NAAQS) throughout the year, whereas the PM10 often exceeded the limits, especially during dust storm episodes.

  5. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

    PubMed Central

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994

  6. "APEC blue"--The effects and implications of joint pollution prevention and control program.

    PubMed

    Wang, Hongbo; Zhao, Laijun; Xie, Yujing; Hu, Qingmi

    2016-05-15

    To ensure good air quality in Beijing during Asia-Pacific Economic Cooperation (APEC) China 2014, Beijing and its neighboring five provinces and the associated cities were combined under the Joint Prevention and Control of Atmospheric Pollution (JPCAP) program, which implemented rigorous cooperative emission reduction measures. The program was a unique and large-scale artificial experiment that showed that such measures can achieve excellent results, and it led to the popular "APEC blue" catchphrase (i.e., Beijing's skies became blue as pollution levels decreased). This artificial experiment provided the means to effectively conduct JPCAP strategies in the future. Accordingly, our research focused on the characteristics of the six primary pollutants in Beijing. We found that the JPCAP measures directly reduced concentrations of all pollutants except O3. Through correlation analysis, we found that the band distribution of the cities with strong correlations in PM2.5 and PM10 concentrations was affected by wind conditions. Therefore, JPCAP measures should account for specific seasonal and climatic conditions. Based on cluster analysis using the results from the correlation analysis, we divided 13 cities within a 300-km radius of Beijing into different groups according to the similarity of their PM2.5 and PM10 correlation coefficients. For JPCAP measures relevant to PM2.5 and PM10, we found differences in the degrees of collaboration among cities. Therefore, depending upon the pollutant type, the JPCAP strategy should account for the cities involved, the scope of the core area, and the optimal cities to involve in the collaborative efforts based on cost-effectiveness and collaborative difficulty among the involved cities. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China.

    PubMed

    Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu

    2015-12-01

    Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m(3) in PM2.5 concentration in the lowest temperature range (-9.7∼2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38∼2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m(3) in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92∼3.33 %) in the highest level (23.50∼31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7∼2.6 °C): for an increase of 10 μg/m(3) in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46∼2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.

  8. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu

    2015-12-01

    Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m3 in PM2.5 concentration in the lowest temperature range (-9.7˜2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38˜2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m3 in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92˜3.33 %) in the highest level (23.50˜31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7˜2.6 °C): for an increase of 10 μg/m3 in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46˜2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.

  9. Exposure to ambient PM10 and NO2 and the incidence of attention-deficit hyperactivity disorder in childhood.

    PubMed

    Min, Jin-Young; Min, Kyoung-Bok

    2017-02-01

    Epidemiological studies have implicated air pollution in the causation of neurodevelopmental disorders, including attention-deficit hyperactivity disorder (ADHD), but definitive evidence of this linkage is lacking. We examined the association between cumulative exposure to air pollutants from birth to diagnosis, particularly particulate matter of <10μm (PM 10 ) and nitric dioxide (NO 2 ), and childhood ADHD. We used the National Health Insurance Service-National Sample Cohort (2002-2012), a population-wide health insurance claims dataset. A total of 8936 infants (age 0) born between January 2002 and December 2002 were followed-up for a 10-year period (2003-2012). ADHD was defined as per ICD-10 code F90.0. Exposure levels of PM 10 and NO 2 were extrapolated using geographic information systems and collated with the subjects' administrative district code, and individual exposure levels assigned. Hazard ratios (HRs) were calculated for the development of ADHD, after adjusting for gender, metropolitan area, income, and history of diseases. During the study period, ADHD occurred in 314 subjects (3.5%). With the increase in 1μg/m 3 of air pollutants, the HRs of childhood ADHD were 1.18 (95% CI: 1.15-1.21) in case of PM 10 and 1.03 (95% CI: 1.02-1.04) in case of NO 2 . Compared with infants with the lowest tertile of PM 10 or NO 2 exposure, those with the highest tertile of PM 10 (HR=3.88; 95% CI: 2.87-5.23) or NO 2 (HR=2.10; 95% CI, 1.54-2.85) exposure had a 2 to 3 fold increased risk for ADHD. Exposure to PM 10 and NO 2 was associated with the incidence of ADHD in childhood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Desert dust outbreaks and respiratory morbidity in Athens, Greece.

    PubMed

    Trianti, Stavroula-Myrto; Samoli, Evangelia; Rodopoulou, Sophia; Katsouyanni, Klea; Papiris, Spyros A; Karakatsani, Anna

    2017-07-01

    Ambient particulate matter (PM) has an adverse effect on respiratory morbidity. Desert dust outbreaks contribute to increased PM levels but the toxicity of desert dust mixed with anthropogenic pollutants needs clarification. We identified 132 days with desert dust episodes and 177 matched days by day of the week, season, temperature and humidity between 2001 and 2006 in Athens, Greece. We collected data on regulated pollutants and daily emergency outpatient visits and admissions for respiratory causes. We applied Poisson regression models adjusting for confounding effects of seasonality, meteorology, holidays and influenza epidemics. We evaluated the sensitivity of our results to co-pollutant exposures and effect modification by age and sex. A 10 μg/m 3 increase in PM 10 concentration was associated with 1.95% (95% confidence interval (CI): 0.02%, 3.91%) increase in respiratory emergency room visits. No significant interaction with desert dust episodes was observed. Compared with non-dust days, there was a 47% (95% CI: 29%, 68%) increase in visits in dust days not adjusting for PM 10 . Desert dust days were associated with higher numbers of emergency room visits for asthma, chronic obstructive pulmonary disease and respiratory infections with increases of 38%, 57% and 60%, respectively (p < 0.001 for all comparisons). Analyses of respiratory hospital admissions provided similar results. PM 10 effects decreased when adjusting for desert dust days and were further confounded by co-pollutants. Desert dust episode days are associated with higher respiratory emergency room visits and hospital admissions. This effect is insufficiently explained by increased PM 10 levels.

  11. The interactive effects between high temperature and air pollution on mortality: A time-series analysis in Hefei, China.

    PubMed

    Qin, Rennie Xinrui; Xiao, Changchun; Zhu, Yibin; Li, Jing; Yang, Jun; Gu, Shaohua; Xia, Junrui; Su, Bin; Liu, Qiyong; Woodward, Alistair

    2017-01-01

    Recent evidence suggests that there may be an interaction between air pollution and heat on mortality, which is pertinent in the context of global climate change. We sought to examine this interaction in Hefei, a hot and polluted Chinese city. We conducted time-series analyses using daily mortality, air pollutant concentration (including particulate matter with aerodynamic diameter <10μm (PM 10 ), sulphur dioxide (SO 2 ) and nitrogen dioxide (NO 2 )), and temperature data from 2008 to 2014. We applied quasi-Poisson regression models with natural cubic splines and examined the interactive effects using temperature-stratified models. Subgroup analyses were conducted by age, gender, and educational levels. We observed consistently stronger associations between air pollutants and mortality at high temperatures than at medium temperatures. These differences were statistically significant for the associations between PM 10 and non-accidental mortality and between all pollutants studied and respiratory mortality. Mean percentage increases in non-accidental mortality per 10μg/m 3 at high temperatures were 2.40% (95% confidence interval: 0.64 to 4.20) for PM 10 , 7.77% (0.60 to 15.00) for SO 2 , and 6.83% (-1.37 to 15.08) for NO 2 . The estimates for PM 10 were 3.40% (0.96 to 5.90) in females and 4.21% (1.44 to 7.05) in the illiterate, marking them as more vulnerable. No clear trend was identified by age. We observed an interaction between air pollutants and high temperature on mortality in Hefei, which was stronger in females and the illiterate. This may be due to differences in behaviours affecting personal exposure to high temperatures and has potential policy implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Uneven distribution of inorganic pollutants in marine air originating from ocean-going ships.

    PubMed

    Bencs, László; Horemans, Benjamin; Buczyńska, Anna Jolanta; Van Grieken, René

    2017-03-01

    The distribution of mass, water-soluble inorganic salts and mineral elements of size-segregated aerosols (PM 1 , PM 2.5-1 and PM 10-2.5 ), precursor gaseous pollutants, black carbon, and nanoparticles (10-300 nm size range) at the Southern Bight of the North Sea has been studied. The concentrations of air pollutants peaked over shipping lanes, open-water anchorage areas and frequently navigated waters, due to the presence of mobile emission sources. A considerable decrease in air pollutant levels was seen when diverting from these marine areas towards remote or coastal banks. These findings showed the rapid dispersion of pollutants in the marine air. The nano-aerosol count, originating from ocean-going ships, peaked at lower average aerodynamic diameters (e.g., ≈28 nm) than those, observed from low-displacement vessels (45-50 nm, e.g., for fishing boats). The average diameter of nano-PM depended also on weather conditions, e.g., it was higher (≈50 nm) in air of higher humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Size distribution, directional source contributions and pollution status of PM from Chengdu, China during a long-term sampling campaign.

    PubMed

    Shi, Guo-Liang; Tian, Ying-Ze; Ma, Tong; Song, Dan-Lin; Zhou, Lai-Dong; Han, Bo; Feng, Yin-Chang; Russell, Armistead G

    2017-06-01

    Long-term and synchronous monitoring of PM 10 and PM 2.5 was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way). Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-3way) to PM 10 , and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM 2.5 . Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PM 10 , and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM 2.5 . The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM 10 (12.7%) and PM 2.5 (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PM 10 (9.8%) and secondary nitrate & secondary organic carbon from ENE for PM 2.5 (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and to develop effective pollution control strategies. Copyright © 2016. Published by Elsevier B.V.

  14. Indoor air quality in schools and its relationship with children's respiratory symptoms

    NASA Astrophysics Data System (ADS)

    Madureira, Joana; Paciência, Inês; Rufo, João; Ramos, Elisabete; Barros, Henrique; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo

    2015-10-01

    A cross-sectional survey was conducted to characterize the indoor air quality (IAQ) in schools and its relationship with children's respiratory symptoms. Concentrations of volatile organic compounds (VOC), aldehydes, PM2.5, PM10, carbon dioxide, bacteria and fungi were assessed in 73 classrooms from 20 public primary schools located in Porto, Portugal. Children who attended the selected classrooms (n = 1134) were evaluated by a standardised health questionnaire completed by the legal guardians; spirometry and exhaled nitric oxide tests. The results indicated that no classrooms presented individual VOC pollutant concentrations higher than the WHO IAQ guidelines or by INDEX recommendations; while PM2.5, PM10 and bacteria levels exceeded the WHO air quality guidelines or national limit values. High levels of total VOC, acetaldehyde, PM2.5 and PM10 were associated with higher odds of wheezing in children. Thus, indoor air pollutants, some even at low exposure levels, were related with the development of respiratory symptoms. The results pointed out that it is crucial to take into account the unique characteristics of the public primary schools, to develop appropriate control strategies in order to reduce the exposure to indoor air pollutants and, therefore, to minimize the adverse health effects.

  15. Does air pollution trigger suicide? A case-crossover analysis of suicide deaths over the life span.

    PubMed

    Casas, Lidia; Cox, Bianca; Bauwelinck, Mariska; Nemery, Benoit; Deboosere, Patrick; Nawrot, Tim Steve

    2017-11-01

    In addition to underlying health disorders and socio-economic or community factors, air pollution may trigger suicide mortality. This study evaluates the association between short-term variation in air pollution and 10 years of suicide mortality in Belgium. In a bidirectional time-stratified case-crossover design, 20,533 suicide deaths registered between January 1st 2002 and December 31st 2011 were matched by temperature with control days from the same month and year. We used municipality-level air pollution [particulate matter (PM 10 ) and O 3 concentrations] data and meteorology data. We applied conditional logistic regression models adjusted for duration of sunshine and day of the week to obtain odds ratios (OR) and their 95% CI for an increase of 10 µg/m 3 in pollutant concentrations over different lag periods (lag 0, 0-1, 0-2, 0-3, 0-4, 0-5, and 0-6 days). Effect modification by season and age was investigated by including interaction terms. We observed significant associations of PM 10 and O 3 with suicide during summer (OR ranging from 1.02 to 1.07, p-values <0.05). For O 3 , significant associations were also observed during spring and autumn. Age significantly modified the associations with PM 10 , with statistically significant associations observed only among 5-14 year old children (lag 0-6: OR = 1.45; 95% CI: 1.03-2.04) and ≥85 years old (e.g. lag 0-4: OR = 1.17; 95% CI: 1.06-1.29). Recent increases in outdoor air pollutants such as PM 10 or O 3 can trigger suicide, particularly during warm periods, even at concentrations below the European thresholds. Furthermore, PM 10 may have strong trigger effects among children and elderly population.

  16. Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea.

    PubMed

    Ryou, Hyoung Gon; Heo, Jongbae; Kim, Sun-Young

    2018-09-01

    Studies of source apportionment (SA) for particulate matter (PM) air pollution have enhanced understanding of dominant pollution sources and quantification of their contribution. Although there have been many SA studies in South Korea over the last two decades, few studies provided an integrated understanding of PM sources nationwide. The aim of this study was to summarize findings of PM SA studies of South Korea and to explore study characteristics. We selected studies that estimated sources of PM 10 and PM 2.5 performed for 2000-2017 in South Korea using Positive Matrix Factorization and Chemical Mass Balance. We reclassified the original PM sources identified in each study into seven categories: motor vehicle, secondary aerosol, soil dust, biomass/field burning, combustion/industry, natural source, and others. These seven source categories were summarized by using frequency and contribution across four regions, defined by northwest, west, southeast, and southwest regions, by PM 10 and PM 2.5 . We also computed the population-weighted mean contribution of each source category. In addition, we compared study features including sampling design, sampling and lab analysis methods, chemical components, and the inclusion of Asian dust days. In the 21 selected studies, all six PM 10 studies identified motor vehicle, soil dust, and combustion/industry, while all 15 PM 2.5 studies identified motor vehicle and soil dust. Different from the frequency, secondary aerosol produced a large contribution to both PM 10 and PM 2.5 . Motor vehicle contributed highly to both, whereas the contribution of combustion/industry was high for PM 10 . The population-weighted mean contribution was the highest for the motor vehicle and secondary aerosol sources for both PM10 and PM2.5. However, these results were based on different subsets of chemical speciation data collected at a single sampling site, commonly in metropolitan areas, with short overlap and measured by different lab analysis methods. We found that motor vehicle and secondary aerosol were the most common and influential sources for PM in South Korea. Our study, however, suggested a caution to understand SA findings from heterogeneous study features for study designs and input data. Copyright © 2018. Published by Elsevier Ltd.

  17. [Pollution characteristics and health risk assessment of heavy metals in PM(2.5) in Lanzhou].

    PubMed

    Wei, Q Z; Li, S; Jia, Q; Luo, B; Su, L M; Liu, Q; Yuan, X R; Wang, Y H; Ruan, Y; Niu, J P

    2018-06-06

    Objective: To understand the pollution characteristics and assess the pollution health risks of heavy metals in atmospheric PM(2.5) in Lanzhou. Methods: According to the regional characteristics of air pollution and industrial distribution characteristics in Lanzhou, atmospheric PM(2.5) was sampled monthly in Chengguan and Xigu Districts from January, 2015 to December, 2016. Detected the concentration of PM(2.5) and 12 kinds of elements (Sb, Al, As, Be, Cd, Cr, Hg, Pb, Mn, Ni, Se and Tl) by weighing method and inductively coupled plasma mass spectrometry. Enrichment factor and geo-accumulation index were used to describe the pollution characteristics, while health risk assessment was conducted using the recommended United States Environmental Protection Agency (USA EPA) model. The health risks of non-carcinogens were evaluated by non-cancer hazard quotient (HQ), the non-carcinogenic risk was considered to be negligible when HQ<1, HQ>1 meant a health risk. With a single contaminant cancer Risk value to evaluate the health risks of carcinogens, when the Risk value between 10(-6) to10(-4) as an acceptable level. Results: The daily average concentrations of PM(2.5) was 83.0 μg/m(3), 77.0 μg/m(3) in Chengguan and Xigu Districts, respectively, during the sampling periods, and the concentration of PM(2.5) in winter/spring was higher than summer/fall in both districts. The concentration of Al in PM(2.5) was the highest and other elements in descending order: Pb, Mn, As, Sb/Cd, Tl in both districts. Enrichment factor results showed that Al and Mn were mainly affected by natural factors, the rest of five elements were all typical man-made pollution elements and according to geo-accumulation index pollution level of Cd was the strongest in the winter. The results of health risk assessment showed that Mn had the highest non-cancer risks (HQ>1) and affected the health of the children seriously. HQ reached up to 2.44 and 1.79 in Chengguan and Xigu Districts, respectively. Pb, As, Sb, Cd had slight health impact (HQ<1), could be negligible. The cancer risks range of As, Cr were 6.33×10(-6) to 6.46×10(-5) between the acceptable level of risk (10(-6) to 10(-4)), which indicated that As and Cd had potential cancer-risks. Conclusions: The pollution level of atmospheric PM(2.5) and the heavy metals in it was still grim;the non-cancer risks caused by multiple metals on children deserved attention. Although the cancer risks of As and Cd were between the acceptable level of risk, the potential cancer risk still shall not be ignored.

  18. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    USDA-ARS?s Scientific Manuscript database

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  19. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China.

    PubMed

    Fang, Die; Wang, Qin'geng; Li, Huiming; Yu, Yiyong; Lu, Yan; Qian, Xin

    2016-11-01

    Ambient fine particulate matter (PM2.5) pollution is currently a most severe and worrisome environmental problem in China. However, current knowledge of the health effects of this pollution is insufficient. This study aims to provide an overall understanding regarding the long-term mortality effects of current PM2.5 pollution in China and the potential health benefits of realizing the goals stipulated in the ongoing action plan of Air Pollution Prevention and Control (APPC) and the targets suggested by the WHO. Three typical causes and all-cause of PM2.5-related mortality were considered. The log-linear exposure-response function was adopted, and a meta-analysis was used to determine the exposure-response coefficients, based on newly available data in China and abroad. In the 74 leading cities of China, approximately 32% of the reported deaths, with a mortality rate of 1.9‰, were associated with PM2.5 in 2013, in which deaths from cardiovascular, respiratory and lung-cancer causes accounted for 20% of the reported deaths, with a mortality rate of 1.2‰. The regional difference is remarkable for the mortalities and proportions of the different causes. If the PM2.5 concentration goals of the APPC plan, the first interim and the guideline targets of the WHO could be achieved, the PM2.5-related all-cause mortality would be reduced by 25%, 64% and 95%, respectively, compared with that of 2013. PM2.5 pollution in China has incurred great health risks that are even worse than those of tobacco smoking. The health benefits of the APPC plan could be outstanding, although there is still great potential to improve future air quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma

    PubMed Central

    Jacquemin, Bénédicte; Kauffmann, Francine; Pin, Isabelle; Le Moual, Nicole; Bousquet, Jean; Gormand, Frédéric; Just, Jocelyne; Nadif, Rachel; Pison, Christophe; Vervloet, Daniel; Künzli, Nino; Siroux, Valérie

    2012-01-01

    Background The associations between exposure to air pollution and asthma control are not well known. The objective is to assess the association between long term exposure to NO2, O3 and PM10 and asthma control in the EGEA2 study (2003–2007). Methods Modeled outdoor NO2, O3 and PM10 estimates were linked to each residential address using the 4-km grid air pollutant surface developed by the French Institute of Environment for 2004. Asthma control was assessed in 481 subjects with current asthma using a multidimensional approach following the 2006–2009 GINA guidelines. Multinomial and ordinal logistic regressions were conducted adjusted on sex, age, BMI, education, smoking and use of inhaled corticosteroids. The association between air pollution and the three domains of asthma control (symptoms, exacerbations and lung function) was assessed. Odds Ratios (ORs) are reported per Inter Quartile Range (IQR). Results Median concentrations (μg.m−3) were 32(IQR 25–38) for NO2 (n=465), 46(41–52) for O3 and 21(18–21) for PM10 (n=481). In total, 44%, 29% and 27% had controlled, partly-controlled and uncontrolled asthma. The ordinal ORs for O3 and PM10 with asthma control were 1.69(95%CI 1.22–2.34) and 1.35(95%CI 1.13–1.64) respectively. When including both pollutants in the same model, both associations persisted. Associations were not modified by sex, smoking status, use of inhaled corticosteroids, atopy, season of examination or BMI. Both pollutants were associated with each of the three main domains of control. Conclusions The results suggest that long-term exposure to PM10 and O3 is associated with uncontrolled asthma in adults, defined by symptoms, exacerbations and lung function. Abstract Word count: 250 Key words: air pollution, asthma, asthma control PMID:21690606

  1. Exposure to Ambient Air Pollution and the Risk of Inflammatory Bowel Disease: A European Nested Case-Control Study.

    PubMed

    Opstelten, Jorrit L; Beelen, Rob M J; Leenders, Max; Hoek, Gerard; Brunekreef, Bert; van Schaik, Fiona D M; Siersema, Peter D; Eriksen, Kirsten T; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Boutron-Ruault, Marie-Christine; Carbonnel, Franck; de Hoogh, Kees; Key, Timothy J; Luben, Robert; Chan, Simon S M; Hart, Andrew R; Bueno-de-Mesquita, H Bas; Oldenburg, Bas

    2016-10-01

    Industrialization has been linked to the etiology of inflammatory bowel disease (IBD). We investigated the association between air pollution exposure and IBD. The European Prospective Investigation into Cancer and Nutrition cohort was used to identify cases with Crohn's disease (CD) (n = 38) and ulcerative colitis (UC) (n = 104) and controls (n = 568) from Denmark, France, the Netherlands, and the UK, matched for center, gender, age, and date of recruitment. Air pollution data were obtained from the European Study of Cohorts for Air Pollution Effects. Residential exposure was assessed with land-use regression models for particulate matter with diameters of <10 μm (PM10), <2.5 μm (PM2.5), and between 2.5 and 10 μm (PMcoarse), soot (PM2.5 absorbance), nitrogen oxides, and two traffic indicators. Conditional logistic regression analyses were performed to calculate odds ratios (ORs) with 95 % confidence intervals (CIs). Although air pollution was not significantly associated with CD or UC separately, the associations were mostly similar. Individuals with IBD were less likely to have higher exposure levels of PM2.5 and PM10, with ORs of 0.24 (95 % CI 0.07-0.81) per 5 μg/m(3) and 0.25 (95 % CI 0.08-0.78) per 10 μg/m(3), respectively. There was an inverse but nonsignificant association for PMcoarse. A higher nearby traffic load was positively associated with IBD [OR 1.60 (95 % CI 1.04-2.46) per 4,000,000 motor vehicles × m per day]. Other air pollutants were positively but not significantly associated with IBD. Exposure to air pollution was not found to be consistently associated with IBD.

  2. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  3. A critical review of the ESCAPE project for estimating long-term health effects of air pollution.

    PubMed

    Lipfert, Frederick W

    2017-02-01

    The European Study of Cohorts for Air Pollution Effects (ESCAPE) is a13-nation study of long-term health effects of air pollution based on subjects pooled from up to 22 cohorts that were intended for other purposes. Twenty-five papers have been published on associations of various health endpoints with long-term exposures to NOx, NO2, traffic indicators, PM10, PM2.5 and PM constituents including absorbance (elemental carbon). Seven additional ESCAPE papers found moderate correlations (R2=0.3-0.8) between measured air quality and estimates based on land-use regression that were used; personal exposures were not considered. I found no project summaries or comparisons across papers; here I conflate the 25 ESCAPE findings in the context of other recent European epidemiology studies. Because one ESCAPE cohort contributed about half of the subjects, I consider it and the other 18 cohorts separately to compare their contributions to the combined risk estimates. I emphasize PM2.5 and confirm the published hazard ratio of 1.14 (1.04-1.26) per 10μg/m3 for all-cause mortality. The ESCAPE papers found 16 statistically significant (p<0.05) risks among the125 pollutant-endpoint combinations; 4 each for PM2.5 and PM10, 1 for PM absorbance, 5 for NO2, and 2 for traffic. No PM constituent was consistently significant. No significant associations were reported for cardiovascular mortality; low birthrate was significant for all pollutants except PM absorbance. Based on associations with PM2.5, I find large differences between all-cause death estimates and the sum of specific-cause death estimates. Scatterplots of PM2.5 mortality risks by cause show no consistency across the 18 cohorts, ostensibly because of the relatively few subjects. Overall, I find the ESCAPE project inconclusive and I question whether the efforts required to estimate exposures for small cohorts were worthwhile. I suggest that detailed studies of the large cohort using historical exposures and additional cardiovascular risk factors might be productive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Investigation of the Air Quality Change Effect on Gnss Signals

    NASA Astrophysics Data System (ADS)

    Gurbuz, G.; Gormus, K. S.; Altan, U.

    2017-11-01

    Air pollution is the most important environmental problem in Zonguldak city center. Since bituminous coal is used for domestic heating in houses and generating electricity in thermal power plants, particulate matter (PM10) is the leading air pollutant. Previous studies have shown that the water vapor in the troposphere is responsible for the tropospheric zenith delay in Global Navigation Satellite System (GNSS) measurements. In this study, data obtained from the ZONG GNSS station from Türkiye Ulusal Sabit GNSS Ağı (TUSAGA-Active network) in the central district of Zonguldak province, processed with GIPSY-OASIS II and GAMIT/GlobK software using the VMF1 mapping function, which is developed previously and considered to be the most accurate model. The resulting values were examined separately in terms of software. The meteorological parameters obtained from the Turkish State Meteorological Service and the air pollution values obtained from the Ministry of Environment and Urban Planning were analyzed and the zenith delay values were compared. When wet zenith delays of different days with different amounts of PM10 concentrations were examined in succession and under the same meteorological conditions, differences in the range of 20-40 mm on ZTD were observed.

  5. Prenatal and Childhood Traffic-Related Air Pollution Exposure and Childhood Executive Function and Behavior

    PubMed Central

    Harris, Maria H.; Gold, Diane R.; Rifas-Shiman, Sheryl L.; Melly, Steven J.; Zanobetti, Antonella; Coull, Brent A.; Schwartz, Joel D.; Gryparis, Alexandros; Kloog, Itai; Koutrakis, Petros; Bellinger, David C.; Belfort, Mandy B.; Webster, Thomas F.; White, Roberta F.; Sagiv, Sharon K.; Oken, Emily

    2016-01-01

    Background Traffic-related air pollution exposure may influence brain development and function and thus be related to neurobehavioral problems in children, but little is known about windows of susceptibility. Aims Examine associations of gestational and childhood exposure to traffic-related pollution with executive function and behavior problems in children. Methods We studied associations of pre- and postnatal pollution exposures with neurobehavioral outcomes in 1,212 children in the Project Viva pre-birth cohort followed to mid-childhood (median age 7.7 years). Parents and classroom teachers completed the Behavior Rating Inventory of Executive Function (BRIEF), and the Strengths and Difficulties Questionnaire (SDQ). Using validated spatiotemporal models, we estimated exposure to black carbon (BC) and fine particulate matter (PM2.5) in the third trimester of pregnancy, from birth to 3 years, from birth to 6 years, and in the year before behavioral ratings. We also measured residential distance to major roadways and near-residence traffic density at birth and in mid-childhood. We estimated associations of BC, PM2.5, and other traffic exposure measures with BRIEF and SDQ scores, adjusted for potential confounders. Results Higher childhood BC exposure was associated with higher teacher-rated BRIEF Behavioral Regulation Index (BRI) scores, indicating greater problems: 1.0 points (95% confidence interval (CI): 0.0, 2.1) per interquartile range (IQR) increase in birth-age 6 BC, and 1.7 points (95% CI: 0.6, 2.8) for BC in the year prior to behavioral ratings. Mid-childhood residential traffic density was also associated with BRI score (0.6, 95% CI: 0.1, 1.1). Birth-age 3 BC was not associated with BRIEF or SDQ scores. Third trimester BC exposure was not associated with teacher-rated BRI scores (−0.2, 95% CI: −1.1, 0.8), and predicted lower scores (fewer problems) on the BRIEF Metacognition Index (−1.2, 95% CI: −2.2, −0.2) and SDQ total difficulties (−0.9, 95% CI: −1.4, −0.4). PM2.5 exposure was associated with teacher-rated BRIEF and SDQ scores in minimally adjusted models but associations attenuated with covariate adjustment. None of the parent-rated outcomes suggested adverse effects of greater pollution exposure at any time point. Conclusions Children with higher mid-childhood exposure to BC and greater near-residence traffic density in mid-childhood had greater problems with behavioral regulation as assessed by classroom teachers, but not as assessed by parents. Prenatal and early childhood exposure to traffic-related pollution did not predict greater executive function or behavior problems; third trimester BC was associated with lower scores (representing fewer problems) on measures of metacognition and behavioral problems. PMID:27350569

  6. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior.

    PubMed

    Harris, Maria H; Gold, Diane R; Rifas-Shiman, Sheryl L; Melly, Steven J; Zanobetti, Antonella; Coull, Brent A; Schwartz, Joel D; Gryparis, Alexandros; Kloog, Itai; Koutrakis, Petros; Bellinger, David C; Belfort, Mandy B; Webster, Thomas F; White, Roberta F; Sagiv, Sharon K; Oken, Emily

    Traffic-related air pollution exposure may influence brain development and function and thus be related to neurobehavioral problems in children, but little is known about windows of susceptibility. Examine associations of gestational and childhood exposure to traffic-related pollution with executive function and behavior problems in children. We studied associations of pre- and postnatal pollution exposures with neurobehavioral outcomes in 1212 children in the Project Viva pre-birth cohort followed to mid-childhood (median age 7.7years). Parents and classroom teachers completed the Behavior Rating Inventory of Executive Function (BRIEF) and the Strengths and Difficulties Questionnaire (SDQ). Using validated spatiotemporal models, we estimated exposure to black carbon (BC) and fine particulate matter (PM 2.5 ) in the third trimester of pregnancy, from birth to 3years, from birth to 6years, and in the year before behavioral ratings. We also measured residential distance to major roadways and near-residence traffic density at birth and in mid-childhood. We estimated associations of BC, PM 2.5 , and other traffic exposure measures with BRIEF and SDQ scores, adjusted for potential confounders. Higher childhood BC exposure was associated with higher teacher-rated BRIEF Behavioral Regulation Index (BRI) scores, indicating greater problems: 1.0 points (95% confidence interval (CI): 0.0, 2.1) per interquartile range (IQR) increase in birth-age 6BC, and 1.7 points (95% CI: 0.6, 2.8) for BC in the year prior to behavioral ratings. Mid-childhood residential traffic density was also associated with BRI score (0.6, 95% CI: 0.1, 1.1). Birth-age 3BC was not associated with BRIEF or SDQ scores. Third trimester BC exposure was not associated with teacher-rated BRI scores (-0.2, 95% CI: -1.1, 0.8), and predicted lower scores (fewer problems) on the BRIEF Metacognition Index (-1.2, 95% CI: -2.2, -0.2) and SDQ total difficulties (-0.9, 95% CI: -1.4, -0.4). PM 2.5 exposure was associated with teacher-rated BRIEF and SDQ scores in minimally adjusted models but associations attenuated with covariate adjustment. None of the parent-rated outcomes suggested adverse effects of greater pollution exposure at any time point. Children with higher mid-childhood exposure to BC and greater near-residence traffic density in mid-childhood had greater problems with behavioral regulation as assessed by classroom teachers, but not as assessed by parents. Prenatal and early childhood exposure to traffic-related pollution did not predict greater executive function or behavior problems; third trimester BC was associated with lower scores (representing fewer problems) on measures of metacognition and behavioral problems. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. In vivo and in vitro proinflammatory effects of particulate air pollution (PM10).

    PubMed Central

    Li, X Y; Gilmour, P S; Donaldson, K; MacNee, W

    1997-01-01

    Epidemiologic studies have reported associations between fine particulate air pollution, especially particles less than 10 mm in diameter (PM10), and the development of exacerbations of asthma and chronic obstructive pulmonary disease. However, the mechanism is unknown. We tested our hypothesis that PM10 induces oxidant stress, causing inflammation and injury to airway epithelium. We assessed the effects of intratracheal instillation of PM10 in rat lungs. The influx of inflammatory cells was measured in bronchoalveolar lavage (BAL). Airspace epithelial permeability was assessed as total protein in bronchoalveolar lavage fluid (BALF) in vivo. The oxidant properties of PM10 were determined by their ability to cause changes in reduced glutathione (GSH) and oxidized glutathione (GSSG). We also compared the effects of PM10 with those of fine (CB) and ultrafine (ufCB) carbon black particles. Six hours after intratracheal instillation of PM10, we noted an influx of neutrophils (up to 15% of total BAL cells) in the alveolar space, increased epithelial permeability, an increase in total protein in BALF from 0.39 +/- 0.01 to 0.62 +/- 0.01 mg/ml (mean +/- SEM) and increased lactate dehydrogenase concentrations in BALF. An even greater inflammatory response was observed after intratracheal instillation of ufCB, but not after CB instillation. PM10 had oxidant activity in vivo, as shown by decreased GSH in BALF (from 0.36 +/- 0.05 to 0.25 +/- 0.01 nmol/ml) after instillation. BAL leukocytes from rats treated with PM10 produced greater amounts of nitric oxide, measured as nitrite (control 3.07 +/- 0.33, treated 4.45 +/- 0.23 mM/1 x 10(6) cells) and tumor necrosis factor alpha (control 21.0 +/- 3.1, treated 179.2 +/- 29.4 unit/1 x 10(6) cells) in culture than BAL leukocytes obtained from control animals. These studies provide evidence that PM10 has free radical activity and causes lung inflammation and epithelial injury. These data support our hypothesis concerning the mechanism for the adverse effects of particulate air pollution on patients with airway diseases. PMID:9400738

  8. Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis.

    PubMed

    Sesé, Lucile; Nunes, Hilario; Cottin, Vincent; Sanyal, Shreosi; Didier, Morgane; Carton, Zohra; Israel-Biet, Dominique; Crestani, Bruno; Cadranel, Jacques; Wallaert, Benoit; Tazi, Abdellatif; Maître, Bernard; Prévot, Grégoire; Marchand-Adam, Sylvain; Guillot-Dudoret, Stéphanie; Nardi, Annelyse; Dury, Sandra; Giraud, Violaine; Gondouin, Anne; Juvin, Karine; Borie, Raphael; Wislez, Marie; Valeyre, Dominique; Annesi-Maesano, Isabella

    2018-02-01

    Idiopathic pulmonary fibrosis (IPF) has an unpredictable course corresponding to various profiles: stability, physiological disease progression and rapid decline. A minority of patients experience acute exacerbations (AEs). A recent study suggested that ozone and nitrogen dioxide might contribute to the occurrence of AE. We hypothesised that outdoor air pollution might influence the natural history of IPF. Patients were selected from the French cohort COhorte FIbrose (COFI), a national multicentre longitudinal prospective cohort of IPF (n=192). Air pollutant levels were assigned to each patient from the air quality monitoring station closest to the patient's geocoded residence. Cox proportional hazards model was used to evaluate the impact of air pollution on AE, disease progression and death. Onset of AEs was significantly associated with an increased mean level of ozone in the six preceding weeks, with an HR of 1.47 (95% CI 1.13 to 1.92) per 10 µg/m 3 (p=0.005). Cumulative levels of exposure to particulate matter PM 10 and PM 2.5 were above WHO recommendations in 34% and 100% of patients, respectively. Mortality was significantly associated with increased levels of exposure to PM 10 (HR=2.01, 95% CI 1.07 to 3.77) per 10 µg/m 3 (p=0.03), and PM 2.5 (HR=7.93, 95% CI 2.93 to 21.33) per 10 µg/m 3 (p<0.001). This study suggests that air pollution has a negative impact on IPF outcomes, corroborating the role of ozone on AEs and establishing, for the first time, the potential role of long-term exposure to PM 10 and PM 2.5 on overall mortality. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by characteristics of Ho Chi Minh City's rapidly urbanizing landscape, resulted in systematically higher PM exposures among the poor.

  10. Air pollution and emergency room visits for asthma in Santa Clara County, California.

    PubMed Central

    Lipsett, M; Hurley, S; Ostro, B

    1997-01-01

    During the winters of 1986-1987 through 1991-1992, rainfall throughout much of Northern California was subnormal, resulting in intermittent accumulation of air pollution, much of which was attributable to residential wood combustion (RWC). This investigation examined whether there was a relationship between ambient air pollution in Santa Clara County, California and emergency room visits for asthma during the winters of 1988-1989 through 1991-1992. Emergency room (ER) records from three acute-care hospitals were abstracted to compile daily visits for asthma and a control diagnosis (gastroenteritis) for 3-month periods during each winter. Air monitoring data included daily coefficient of haze (COH) and every-other-day particulate matter with aerodynamic diameter equal to or less than 10 microns (PM10, 24-hr average), as well as hourly nitrogen dioxide and ozone concentrations. Daily COH measurements were used to predict values for missing days of PM10 to develop a complete PM10 time series. Daily data were also obtained for temperature, precipitation, and relative humidity. In time-series analyses using Poisson regression, consistent relationships were found between ER visits for asthma and PM10. Same-day nitrogen dioxide concentrations were also associated with asthma ER visits, while ozone was not. Because there was a significant interaction between PM10 and minimum temperature in this data set, estimates of relative risks (RRs) for PM10-associated asthma ER visits were temperature-dependent. A 60 micrograms/m3 change in PM10 (2-day lag) corresponded to RRs of 1.43 (95% CI = 1.18-1.69) at 20 degrees F, representing the low end of the temperature distribution, 1.27 (95% CI = 1.13-1.42) at 30 degrees F, and 1.11 (95% CI = 1.03-1.19) at 41 degrees F, the mean of the observed minimum temperature. ER visits for gastroenteritis were not significantly associated with any pollutant variable. Several sensitivity analyses, including the use of robust regressions and of nonparametric methods for fitting time trends and temperature effects in the data, supported these findings. These results demonstrate an association between ambient wintertime PM10 and exacerbations of asthma in an area where one of the principal sources of PM10 is RWC. Images Figure 1. PMID:9105797

  11. Distribution of dust during two dust storms in Iceland

    NASA Astrophysics Data System (ADS)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  12. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California.

    PubMed

    Delamater, Paul L; Finley, Andrew O; Banerjee, Sudipto

    2012-05-15

    There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)), particulate matter<10 μm (PM(10)), particulate matter<2.5 μm (PM(2.5)), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO(2), were significant and positively correlated with asthma hospitalizations. PM(2.5) also had a positive, significant association with asthma hospitalizations. PM(10), relative humidity, and maximum temperature produced mixed results, whereas O(3) was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO(2), and PM(2.5). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees.

    PubMed

    Dadvand, Payam; Ostro, Bart; Figueras, Francesc; Foraster, Maria; Basagaña, Xavier; Valentín, Antònia; Martinez, David; Beelen, Rob; Cirach, Marta; Hoek, Gerard; Jerrett, Michael; Brunekreef, Bert; Nieuwenhuijsen, Mark J

    2014-07-01

    Maternal residential proximity to roads has been associated with adverse pregnancy outcomes. However, there is no study investigating mediators or buffering effects of road-adjacent trees on this association. We investigated the association between mothers' residential proximity to major roads and term low birth weight (LBW), while exploring possible mediating roles of air pollution (PM(2.5), PM(2.5-10), PM(10), PM(2.5) absorbance, nitrogen dioxide, and nitrogen oxides), heat, and noise and buffering effect of road-adjacent trees on this association. This cohort study was based on 6438 singleton term births in Barcelona, Spain (2001-2005). Road proximity was measured as both continuous distance to and living within 200 m from a major road. We assessed individual exposures to air pollution, noise, and heat using, respectively, temporally adjusted land-use regression models, annual averages of 24-hour noise levels across 50 m and 250 m, and average of satellite-derived land-surface temperature in a 50-m buffer around each residential address. We used vegetation continuous fields to abstract tree coverage in a 200-m buffer around major roads. Living within 200 m of major roads was associated with a 46% increase in term LBW risk; an interquartile range increase in heat exposure with an 18% increase; and third-trimester exposure to PM(2.5), PM(2.5-10), and PM10 with 24%, 25%, and 26% increases, respectively. Air pollution and heat exposures together explained about one-third of the association between residential proximity to major roads and term LBW. Our observations on the buffering of this association by road-adjacent trees were not consistent between our 2 measures of proximity to major roads. An increased risk of term LBW associated with proximity to major roads was partly mediated by air pollution and heat exposures.

  14. Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter.

    PubMed

    Carter, Ellison; Norris, Christina; Dionisio, Kathie L; Balakrishnan, Kalpana; Checkley, William; Clark, Maggie L; Ghosh, Santu; Jack, Darby W; Kinney, Patrick L; Marshall, Julian D; Naeher, Luke P; Peel, Jennifer L; Sambandam, Sankar; Schauer, James J; Smith, Kirk R; Wylie, Blair J; Baumgartner, Jill

    2017-07-28

    Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM 2.5 ) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate measure of PM 2.5 in studies of household air pollution. The goal was to evaluate the validity of exposure to CO as a surrogate of exposure to PM 2.5 in studies of household air pollution and the consistency of the PM 2.5 -CO relationship across different study settings and conditions. We conducted a systematic review of studies with exposure and/or cooking area PM 2.5 and CO measurements and assembled 2,048 PM 2.5 and CO measurements from a subset of studies (18 cooking area studies and 9 personal exposure studies) retained in the systematic review. We conducted pooled multivariate analyses of PM 2.5 -CO associations, evaluating fuels, urbanicity, season, study, and CO methods as covariates and effect modifiers. We retained 61 of 70 studies for review, representing 27 countries. Reported PM 2.5 -CO correlations ( r ) were lower for personal exposure (range: 0.22-0.97; median=0.57) than for cooking areas (range: 0.10-0.96; median=0.71). In the pooled analyses of personal exposure and cooking area concentrations, the variation in ln(CO) explained 13% and 48% of the variation in ln(PM 2.5 ), respectively. Our results suggest that exposure to CO is not a consistently valid surrogate measure of exposure to PM 2.5 . Studies measuring CO exposure as a surrogate measure of PM exposure should conduct local validation studies for different stove/fuel types and seasons. https://doi.org/10.1289/EHP767.

  15. Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter

    PubMed Central

    Carter, Ellison; Norris, Christina; Dionisio, Kathie L.; Balakrishnan, Kalpana; Checkley, William; Clark, Maggie L.; Ghosh, Santu; Jack, Darby W.; Kinney, Patrick L.; Marshall, Julian D.; Naeher, Luke P.; Peel, Jennifer L.; Sambandam, Sankar; Schauer, James J.; Smith, Kirk R.; Wylie, Blair J.

    2017-01-01

    Background: Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM2.5) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate measure of PM2.5 in studies of household air pollution. Objective: The goal was to evaluate the validity of exposure to CO as a surrogate of exposure to PM2.5 in studies of household air pollution and the consistency of the PM2.5–CO relationship across different study settings and conditions. Methods: We conducted a systematic review of studies with exposure and/or cooking area PM2.5 and CO measurements and assembled 2,048 PM2.5 and CO measurements from a subset of studies (18 cooking area studies and 9 personal exposure studies) retained in the systematic review. We conducted pooled multivariate analyses of PM2.5–CO associations, evaluating fuels, urbanicity, season, study, and CO methods as covariates and effect modifiers. Results: We retained 61 of 70 studies for review, representing 27 countries. Reported PM2.5–CO correlations (r) were lower for personal exposure (range: 0.22–0.97; median=0.57) than for cooking areas (range: 0.10–0.96; median=0.71). In the pooled analyses of personal exposure and cooking area concentrations, the variation in ln(CO) explained 13% and 48% of the variation in ln(PM2.5), respectively. Conclusions: Our results suggest that exposure to CO is not a consistently valid surrogate measure of exposure to PM2.5. Studies measuring CO exposure as a surrogate measure of PM exposure should conduct local validation studies for different stove/fuel types and seasons. https://doi.org/10.1289/EHP767 PMID:28886596

  16. Air pollution, health and social deprivation: A fine-scale risk assessment.

    PubMed

    Morelli, Xavier; Rieux, Camille; Cyrys, Josef; Forsberg, Bertil; Slama, Rémy

    2016-05-01

    Risk assessment studies often ignore within-city variations of air pollutants. Our objective was to quantify the risk associated with fine particulate matter (PM2.5) exposure in 2 urban areas using fine-scale air pollution modeling and to characterize how this risk varied according to social deprivation. In Grenoble and Lyon areas (0.4 and 1.2 million inhabitants, respectively) in 2012, PM2.5 exposure was estimated on a 10×10m grid by coupling a dispersion model to population density. Outcomes were mortality, lung cancer and term low birth weight incidences. Cases attributable to air pollution were estimated overall and stratifying areas according to the European Deprivation Index (EDI), taking 10µg/m(3) yearly average as reference (counterfactual) level. Estimations were repeated assuming spatial homogeneity of air pollutants within urban area. Median PM2.5 levels were 18.1 and 19.6μg/m(3) in Grenoble and Lyon urban areas, respectively, corresponding to 114 (5.1% of total, 95% confidence interval, CI, 3.2-7.0%) and 491 non-accidental deaths (6.0% of total, 95% CI 3.7-8.3%) attributable to long-term exposure to PM2.5, respectively. Attributable term low birth weight cases represented 23.6% of total cases (9.0-37.1%) in Grenoble and 27.6% of cases (10.7-42.6%) in Lyon. In Grenoble, 6.8% of incident lung cancer cases were attributable to air pollution (95% CI 3.1-10.1%). Risk was lower by 8 to 20% when estimating exposure through background stations. Risk was highest in neighborhoods with intermediate to higher social deprivation. Risk assessment studies relying on background stations to estimate air pollution levels may underestimate the attributable risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos

    2011-09-01

    Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.

  18. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.

    PubMed

    Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung

    2015-04-15

    Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Seasonal analysis of the short-term effects of air pollution on daily mortality in Northeast Asia.

    PubMed

    Kim, Satbyul Estella; Honda, Yasushi; Hashizume, Masahiro; Kan, Haidong; Lim, Youn-Hee; Lee, Hyewon; Kim, Clara Tammy; Yi, Seung-Muk; Kim, Ho

    2017-01-15

    The constituents and concentrations of pollutants, individual exposures, and biologic responses to air pollution may vary by season and meteorological conditions. However, evidence regarding seasonality of the acute effects of air pollution on mortality is limited and inconsistent. Herein, we examined seasonal patterns in the short-term associations of particulate matter (PM) smaller than 10μm (PM 10 ) with daily mortality in 29 cities of three northeast Asian countries. Stratified time-series models were used to determine whether season altered the effect of PM 10 on mortality. This effect was first quantified within each season and at each location using a time-series model, after which city-specific estimates were pooled using a hierarchical Bayesian model. In all data sets, 3,675,348 non-accidental deaths were registered from 1993 to 2009. In Japan, a 10μg/m 3 increase in PM 10 was significantly associated with increases in non-accidental mortality of 0.44% (95% confidence interval [CI]: 0.03%, 0.8%) in spring and 0.42% (0.02%, 0.82%) in fall. In South Korea, a 10μg/m 3 increase in PM 10 was significantly associated with increases in non-accidental mortality of 0.51% (0.01%, 1.01%) in summer and 0.45% (0.03%, 0.87%) in fall, in cardiovascular disease mortality of 0.96% (0.29%, 1.63%) in fall, and in respiratory disease mortality of 1.57% (0.40%, 2.75%) in fall. In China, a 10μg/m 3 increase in PM 10 was associated with increases in non-accidental mortality of 0.33% (0.01%, 0.66%) in summer and 0.41% (0.09%, 0.73%) in winter, in cardiovascular disease mortality of 0.41% (0.08%, 0.74%) in spring and 0.33% (0.02%, 0.64%) in winter, and in respiratory diseases mortality of 0.78% (0.27%, 1.30%) in winter. Our analyses suggest that the acute effect of particulate air pollution could vary seasonally and geographically. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Modelling the long-range transport of secondary PM 10 to the UK

    NASA Astrophysics Data System (ADS)

    Malcolm, A. L.; Derwent, R. G.; Maryon, R. H.

    The fine fraction of airborne particulate matter (PM 10) is known to be harmful to human health. In order to establish how current air quality standards can best be met now and in the future, it is necessary to understand the cause of PM 10 episodes. The UK Met Office's dispersion model, NAME, has been used to model hourly concentrations of sulphate aerosol for 1996 at a number of UK locations. The model output has been compared with measured values of PM 10 or sulphate aerosol at these sites and used to provide attribution information. In particular two large PM 10 episodes in March and July 1996 have been studied. The March episode has been shown to be the result of imported pollution from outside the UK, whereas the July case was dominated by UK emissions. This work highlights the need to consider trans-boundary pollution when setting air quality standards and when making policy decisions on emissions.

  1. Exceedance of PM10 and ozone concentration limits in Germany - Spatial variability and influence of climate

    NASA Astrophysics Data System (ADS)

    Heidenreich, Majana; Bernhofer, Christian

    2014-05-01

    High concentrations of particulate matter (PM) and ground-level ozone (O3) have negative impacts on human health, e.g., increased risk of respiratory disease, and the environment. European Union (EU) air policy and air quality standards led to continuously reduced air pollution problems in recent decades. Nevertheless, the limit values for PM10 (particles with diameter of 10 micrometers or less) and ozone - defined by the directive 2008/50/EC of the European Parliament - are still exceeded frequently. Poor air quality and the exceedance of limits result mainly from the combination of high emissions and unfavourable weather conditions. Datasets from German monitoring stations are used to describe the spatial and temporal variability of the exceedance of concentration limits for PM10 and ozone for the federal states of Germany. Time series are analysed for the period 2000-2012 for PM10 and for the period 1990-2012 for ozone. Furthermore, the influence of weather patterns on the exceedance of concentration limits on a regional scale was investigated. Here, the "objective weather types" of the German Weather Service were used. As expected, for most regions anticyclonic weather types (with a negative cyclonality index for the two levels 950 and 500 hPa) show a high frequency on exeedance days, both for PM10 and ozone. The results could contribute to estimate the future exceedance frequency of concentration limits and to develop possible countermeasures.

  2. 4 years of PM10 pollution in Poland - observations and modelling

    NASA Astrophysics Data System (ADS)

    Durka, Pawel; Struzewska, Joanna; Kaminski, Jacek W.

    2017-04-01

    Poor air quality is a health issue in Poland, especially during winter. In central and northern part of the country, the primary source is low-level domestic emissions. In larger cities and agglomerations traffic emissions are also an issue. Quantification of the contribution of transboundary pollution sources is still an open issue. Analyses of 60 episodes for the period 2013-2016 with high PM10 concentrations were carried out under a contract from the Chief Inspectorate of Environmental Protection in Poland. Analyses of synoptic conditions and calculation of back trajectories were undertaken. A tropospheric chemistry model GEM-AQ was run at 10km resolution to calculate contributions from surface, line and point sources. We will present trajectories for different types of episodes, maps with contributions for specific emission sources and transboundary pollution. Also, mean distribution of PM10 concentrations during episodes will be shown.

  3. Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children.

    PubMed

    Cong, Xiaowei; Xu, Xijin; Xu, Long; Li, Minghui; Xu, Cheng; Qin, Qilin; Huo, Xia

    2018-06-01

    Air pollution is a risk factor for cardiovascular disease (CVD), and cardiovascular regulatory changes in childhood contribute to the development and progression of cardiovascular events at older ages. The aim of the study was to investigate the effect of air pollutant exposure on the child sympatho-adrenomedullary (SAM) system, which plays a vital role in regulating and controlling the cardiovascular system. Two plasma biomarkers (plasma epinephrine and norepinephrine) of SAM activity and heart rate were measured in preschool children (n = 228) living in Guiyu, and native (n = 104) and non-native children (n = 91) living in a reference area (Haojiang) for >1 year. Air pollution data, over the 4-months before the health examination, was also collected. Environmental PM 2.5 , PM 10 , SO 2 , NO 2 and CO, plasma norepinephrine and heart rate of the e-waste recycling area were significantly higher than for the non-e-waste recycling area. However, there was no difference in plasma norepinephrine and heart rate between native children living in the non-e-waste recycling area and non-native children living in the non-e-waste recycling area. PM 2.5 , PM 10 , SO 2 and NO 2 data, over the 30-day and the 4-month average of pollution before the health examination, showed a positive association with plasma norepinephrine level. PM 2.5 , PM 10 , SO 2 , NO 2 and CO concentrations, over the 24 h of the day of the health examination, the 3 previous 24-hour periods before the health examination, and the 24 h after the health examination, were related to increase in heart rate. At the same time, plasma norepinephrine and heart rate on children in the high air pollution level group (≤50-m radius of family-run workshops) were higher than those in the low air pollution level group. Our results suggest that air pollution exposure in e-waste recycling areas could result in an increase in heart rate and plasma norepinephrine, implying e-waste air pollutant exposure impairs the SAM system in children. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

    PubMed Central

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang

    2016-01-01

    Objective To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. Design A time-series study using regional death registry between 2009 and 2010. Setting 8 districts in a large metropolitan area in Northern China. Participants 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Main outcome measures Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. Results The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (−1.09 to 4.28 vs −1.08 to 3.93) and the PCs-based model (−2.23 to 4.07 vs −2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, −1.12 to 4.85 versus −1.11 versus 4.83. Conclusions The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. PMID:27531727

  5. Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Park, Duckshin; Oh, Miseok; Yoon, Younghun; Park, Eunyoung; Lee, Kiyoung

    2012-03-01

    Monitoring the air quality in subway passenger cabins is important because of the large number of passengers and potentially high levels of air pollution. This report characterized PM10 levels in subway cabins in Seoul, Korea, and identified PM10 sources using elemental analysis and receptor modeling. PM10 levels in subway cabins were continuously measured using a light scattering monitor during rush and non-rush hours. A total of 41 measurements were taken during rush and non-rush hours, and the measurements were repeated in all four seasons. Filter samples were also collected for elemental composition analysis. Major PM10 sources were identified using positive matrix factorization (PMF). The in-cabin PM10 concentrations were the highest in the winter at 152.8 μg m-3 during rush hours and 90.2 μg m-3 during non-rush hours. While PM10 levels were higher during rush hours than during non-rush hours in three seasons (excluding summer), these levels were not associated with number of passenger. Elemental analysis showed that the PM10 was composed of 52.5% inorganic elements, 10.2% anions, and 37.3% other. Fe was the most abundant element and significantly correlated (p < 0.01) with Mn (r = 0.97), Ti (r = 0.91), Cr (r = 0.88), Ni (r = 0.89), and Cu (r = 0.88). Fe, Mn, Cr, and Cu are indicators of railroad-related PM10 sources. The PM10 sources characterized by PMF were soil and road dust sources (27.2%), railroad-related sources (47.6%), secondary nitrate sources (16.2%), and a chlorine factor mixed with a secondary sulfate source (9.1%). Overall, railroad-related sources contributed the most PM10 to subway cabin air.

  6. Is long-term particulate matter and nitrogen dioxide air pollution associated with incident monoclonal gammopathy of undetermined significance (MGUS)? An analysis of the Heinz Nixdorf Recall study.

    PubMed

    Orban, Ester; Arendt, Marina; Hennig, Frauke; Lucht, Sarah; Eisele, Lewin; Jakobs, Hermann; Dürig, Jan; Hoffmann, Barbara; Jöckel, Karl-Heinz; Moebus, Susanne

    2017-11-01

    Exposure to air pollution activates the innate immune system and influences the adaptive immune system in experimental settings. We investigated the association of residential long-term exposure to particulate matter (PM) and NO 2 air pollution with monoclonal gammopathy of undetermined significance (MGUS) as a marker of adaptive immune system activation. We used data from the baseline (2000-2003), 5-year (2006-2008) and 10-year (2011-2015) follow-up examinations of the German Heinz Nixdorf Recall cohort study of 4814 participants (45-75years). Residential exposure to PM size fractions and NO 2 was estimated by land-use regression (ESCAPE-LUR, annual mean 2008/2009) and dispersion chemistry transport models (EURAD-CTM, 3-year mean at baseline). We used logistic regression to estimate the effects of air pollutants on incident MGUS, adjusting for age, sex, education, smoking status, physical activity, and BMI. As a non-linear approach, we looked at quartiles (2-4) of the air pollutants in comparison to quartile 1. Of the 3949 participants with complete data, 100 developed MGUS during the 10-year follow-up. In the main model, only PM coarse was associated with incident MGUS (OR per IQR (1.9μg/m 3 ): 1.32, 95% CI 1.04-1.67). We further found positive associations between PM size fractions estimated by ESCAPE-LUR and incident MGUS by quartiles of exposure (OR Q4 vs Q1: PM 2.5 2.03 (1.08-3.80); PM 10 1.97 (1.05-3.67); PM coarse 1.98 (1.09-3.60)). Our results indicate that an association between long-term exposure to PM and MGUS may exist. Further epidemiologic studies are needed to corroborate this possible link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Does the Short-Term Effect of Air Pollution Influence the Incidence of Spontaneous Intracerebral Hemorrhage in Different Patient Groups? Big Data Analysis in Taiwan.

    PubMed

    Chien, Ting-Ying; Ting, Hsien-Wei; Chan, Chien-Lung; Yang, Nan-Ping; Pan, Ren-Hao; Lai, K Robert; Hung, Su-In

    2017-12-10

    Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that the occurrence of sICH is related to air pollution. This study used big data analysis to explore the impact of air pollution on the risk of sICH in patients of differing age and geographic location. 39,053 cases were included in this study; 14,041 in the Taipei region (Taipei City and New Taipei City), 5537 in Taoyuan City, 7654 in Taichung City, 4739 in Tainan City, and 7082 in Kaohsiung City. The results of correlation analysis indicated that there were two pollutants groups, the CO and NO₂ group and the PM 2.5 and PM 10 group. Furthermore, variations in the correlations of sICH with air pollutants were identified in different age groups. The co-factors of the influence of air pollutants in the different age groups were explored using regression analysis. This study integrated Taiwan National Health Insurance data and air pollution data to explore the risk factors of sICH using big data analytics. We found that PM 2.5 and PM 10 are very important risk factors for sICH, and age is an important modulating factor that allows air pollutants to influence the incidence of sICH.

  8. Does the Short-Term Effect of Air Pollution Influence the Incidence of Spontaneous Intracerebral Hemorrhage in Different Patient Groups? Big Data Analysis in Taiwan

    PubMed Central

    Chien, Ting-Ying; Ting, Hsien-Wei; Chan, Chien-Lung; Lai, K. Robert; Hung, Su-In

    2017-01-01

    Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that the occurrence of sICH is related to air pollution. This study used big data analysis to explore the impact of air pollution on the risk of sICH in patients of differing age and geographic location. 39,053 cases were included in this study; 14,041 in the Taipei region (Taipei City and New Taipei City), 5537 in Taoyuan City, 7654 in Taichung City, 4739 in Tainan City, and 7082 in Kaohsiung City. The results of correlation analysis indicated that there were two pollutants groups, the CO and NO2 group and the PM2.5 and PM10 group. Furthermore, variations in the correlations of sICH with air pollutants were identified in different age groups. The co-factors of the influence of air pollutants in the different age groups were explored using regression analysis. This study integrated Taiwan National Health Insurance data and air pollution data to explore the risk factors of sICH using big data analytics. We found that PM2.5 and PM10 are very important risk factors for sICH, and age is an important modulating factor that allows air pollutants to influence the incidence of sICH. PMID:29232865

  9. Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia

    PubMed Central

    2014-01-01

    Background Air pollution is a major health challenge worldwide and has previously been strongly associated with adverse reproductive health. This study aimed to examine the association between spontaneous abortion and seasonal variation of air pollutants in Ulaanbaatar, Mongolia. Methods Monthly average O3, SO2, NO2, CO, PM10 and PM2.5 levels were measured at Mongolian Government Air Quality Monitoring stations. The medical records of 1219 women admitted to the hospital due to spontaneous abortion between 2009–2011 were examined retrospectively. Fetal deaths per calendar month from January-December, 2011 were counted and correlated with mean monthly levels of various air pollutants by means of regression analysis. Results Regression of ambient pollutants against fetal death as a dose–response toxicity curve revealed very strong dose–response correlations for SO2 r > 0.9 (p < 0.001) while similarly strongly significant correlation coefficients were found for NO2 (r > 0.8), CO (r > 0.9), PM10 (r > 0.9) and PM2.5 (r > 0.8), (p < 0.001), indicating a strong correlation between air pollution and decreased fetal wellbeing. Conclusion The present study identified alarmingly strong statistical correlations between ambient air pollutants and spontaneous abortion. Further studies need to be done to examine possible correlations between personal exposure to air pollutants and pregnancy loss. PMID:24758249

  10. Diagnosis of Dust- and Pollution- Impacted PM10, PM2.5, and PM1 Aerosols Observed at Gosan Climate Observatory

    NASA Astrophysics Data System (ADS)

    Shang, X.; Lee, M.; LIM, S.; Gustafsson, O.; Lee, G.; Chang, L.

    2017-12-01

    In East Asia, dust is prevalent and used to be mixed with various pollutants during transportation, causing a large uncertainty in estimating the climate forcing of aerosol and difficulty in making environmental policy. In order to diagnose the influence of dust particles on aerosol, we conducted a long-term measurement of PM10, PM2.5 and PM1 for mass, water-soluble ions, and carbonaceous compounds at Gosan Climate Observatory, South Korea from August 2007 to February 2012. The result of principle component analysis reveals that anthropogenic, typical soil dust, and saline dust impact explain 46 %, 16 %, and 9 % of the total variance for all samples, respectively. The mode analysis of mass distributions provides the criteria to distinguish these principle factors. The anthropogenic impact was most pronounced in PM1 and diagnosed by the PM1 mass higher than mean+σ. If PM10 mass was greater than mean+σ, it was highly likely to be affected by typical soil dust. This criterion is also applicable for PM2.5 mass, which was enhanced by both haze and dust particles, though. In the present study, saline dust was recognized by relatively high concentrations of Na and Cl ions in PM1.0. However, their existence was not manifested by increased mass in any of three PM types.

  11. Effects of Urban Landscape Pattern on PM2.5 Pollution--A Beijing Case Study.

    PubMed

    Wu, Jiansheng; Xie, Wudan; Li, Weifeng; Li, Jiacheng

    2015-01-01

    PM2.5 refers to particulate matter (PM) in air that is less than 2.5 μm in aerodynamic diameter, which has negative effects on air quality and human health. PM2.5 is the main pollutant source in haze occurring in Beijing, and it also has caused many problems in other cities. Previous studies have focused mostly on the relationship between land use and air quality, but less research has specifically explored the effects of urban landscape patterns on PM2.5. This study considered the rapidly growing and heavily polluted Beijing, China. To better understand the impact of urban landscape pattern on PM2.5 pollution, five landscape metrics including PLAND, PD, ED, SHEI, and CONTAG were applied in the study. Further, other data, such as street networks, population density, and elevation considered as factors influencing PM2.5, were obtained through RS and GIS. By means of correlation analysis and stepwise multiple regression, the effects of landscape pattern on PM2.5 concentration was explored. The results showed that (1) at class-level, vegetation and water were significant landscape components in reducing PM2.5 concentration, while cropland played a special role in PM2.5 concentration; (2) landscape configuration (ED and PD) features at class-level had obvious effects on particulate matter; and (3) at the landscape-level, the evenness (SHEI) and fragmentation (CONTAG) of the whole landscape related closely with PM2.5 concentration. Results of this study could expand our understanding of the role of urban landscape pattern on PM2.5 and provide useful information for urban planning.

  12. PM 0,5 and Health effects in an extreme pollution episode

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, K. N.; Nastos, P. T.; Gialouris, A.; Zontanos, M.; Saratsiotis, D.; Mavroidakos, J.; Khan, U.; Tissera, W. A.

    2009-04-01

    The mega cities' pollution problem during the last two decades, occupied the whole European scientific community, Asia and the U.S.A. The atmosphere remains suffocating due to rapid industrial development and the ever increasing traffic. Registered health problems are numerous and dramatic in all ages groups, but particularly in infants, old people and patients suffering chronic diseases. After 1980 many governments applied restrictions to maintain a clearer atmosphere. Particulate matters are everywhere, they are inhaled, they enter the lungs, migrate through the blood stream and finally, they deposit in several organs which leads to severe consequences. Wind remains the only restraining factor of PM concentrations, but this is not the desired solution. The issue of atmospheric pollution and its influence on health are both the main aim of this study, which consists of monitoring and mapping PM 0.5 in six areas of Athens and examining the relation of the quantity inhaled by pedestrians and number of health incidents during an acute pollution episode in GAA in November 2008.In this empirical model, values of PM inhaled by humans at a height of two metres above ground are shown as number/ litre and μg/m3. In fact, a lot of patients appeared in the city's hospital emergency centres needing assistance. Most of them exhibit the PM symptomatology which includes: dyspnea, dry cough, lacrimation, headache, arrhythmias. This symptoms are firstly by K.N.Grigoropoulos et al. 2008 (Fresenious Environment Bulletin issue b September 2008.pp 1426-1431) Although this situation is already widely known to everyone, governments continue to ignore it systematically. The time is probably right for the European Community to apply restrictions on PM1.

  13. Spatial variation of PM elemental composition between and within 20 European study areas--Results of the ESCAPE project.

    PubMed

    Tsai, Ming-Yi; Hoek, Gerard; Eeftens, Marloes; de Hoogh, Kees; Beelen, Rob; Beregszászi, Timea; Cesaroni, Giulia; Cirach, Marta; Cyrys, Josef; De Nazelle, Audrey; de Vocht, Frank; Ducret-Stich, Regina; Eriksen, Kirsten; Galassi, Claudia; Gražuleviciene, Regina; Gražulevicius, Tomas; Grivas, Georgios; Gryparis, Alexandros; Heinrich, Joachim; Hoffmann, Barbara; Iakovides, Minas; Keuken, Menno; Krämer, Ursula; Künzli, Nino; Lanki, Timo; Madsen, Christian; Meliefste, Kees; Merritt, Anne-Sophie; Mölter, Anna; Mosler, Gioia; Nieuwenhuijsen, Mark J; Pershagen, Göran; Phuleria, Harish; Quass, Ulrich; Ranzi, Andrea; Schaffner, Emmanuel; Sokhi, Ranjeet; Stempfelet, Morgane; Stephanou, Euripides; Sugiri, Dorothea; Taimisto, Pekka; Tewis, Marjan; Udvardy, Orsolya; Wang, Meng; Brunekreef, Bert

    2015-11-01

    An increasing number of epidemiological studies suggest that adverse health effects of air pollution may be related to particulate matter (PM) composition, particularly trace metals. However, we lack comprehensive data on the spatial distribution of these elements. We measured PM2.5 and PM10 in twenty study areas across Europe in three seasonal two-week periods over a year using Harvard impactors and standardized protocols. In each area, we selected street (ST), urban (UB) and regional background (RB) sites (totaling 20) to characterize local spatial variability. Elemental composition was determined by energy-dispersive X-ray fluorescence analysis of all PM2.5 and PM10 filters. We selected a priori eight (Cu, Fe, K, Ni, S, Si, V, Zn) well-detected elements of health interest, which also roughly represented different sources including traffic, industry, ports, and wood burning. PM elemental composition varied greatly across Europe, indicating different regional influences. Average street to urban background ratios ranged from 0.90 (V) to 1.60 (Cu) for PM2.5 and from 0.93 (V) to 2.28 (Cu) for PM10. Our selected PM elements were variably correlated with the main pollutants (PM2.5, PM10, PM2.5 absorbance, NO2 and NOx) across Europe: in general, Cu and Fe in all size fractions were highly correlated (Pearson correlations above 0.75); Si and Zn in the coarse fractions were modestly correlated (between 0.5 and 0.75); and the remaining elements in the various size fractions had lower correlations (around 0.5 or below). This variability in correlation demonstrated the distinctly different spatial distributions of most of the elements. Variability of PM10_Cu and Fe was mostly due to within-study area differences (67% and 64% of overall variance, respectively) versus between-study area and exceeded that of most other traffic-related pollutants, including NO2 and soot, signaling the importance of non-tailpipe (e.g., brake wear) emissions in PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A panel study of airborne particulate matter concentration and impaired cardiopulmonary function in young adults by two different exposure measurement

    NASA Astrophysics Data System (ADS)

    Hu, Li-Wen; Qian, Zhengmin (Min); Bloom, Michael S.; Nelson, Erik J.; Liu, Echu; Han, Bin; Zhang, Nan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Komppula, Mika; Leskinen, Ari; Hirvonen, Maija-Riitta; Roponen, Marjut; Jalava, Pasi; Bai, Zhipeng; Dong, Guang-Hui

    2018-05-01

    This study sought to clarify the correlation of individual exposure measurements and PM2.5 measurements collected at regulatory monitoring sites in short-term panel study settings. To achieve this goal, 30 young, healthy adult participants were assigned to three groups with 4 samplers in each group to collect individual exposures during four weekends in March 2016. Participants also completed cardiopulmonary function tests during the same periods. For comparison, ambient air pollution data were obtained from the Air Pollution Surveillance Network in Guangzhou, China. The 8-h ambient pollutant averages and group sampler concentrations were used as separate indicators of air pollution exposure. Results showed that the 8-h mean concentration of personal PM2.5 exposure was 65.09 ± 22.18 μg/m3, which was 24.34 μg/m3 statistically higher than the ambient concentrations over the same period (p < 0.05). However, these concentrations were strongly correlated (Spearman's r = 0.937, p < 0.01). Separate mixed-effect models were fit for ambient and personal exposures to estimate their associations with cardiopulmonary outcomes. Higher PM2.5 and PM10 exposures were related to lower lung function of maximal mid-expiratory flow (MMEF). A 10 μg/m3 higher PM was associated with 0.11 L/S to 0.52 L/S lower MMEF. No effects on cardiovascular function were found. In conclusion, personal PM2.5 exposure might be higher than ambient concentrations. Young, healthy adults in urban areas may experience reduced lung function (lower MMEF), even after just 8 h of exposure to PM2.5 and PM10.

  15. Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey.

    PubMed

    Strak, Maciej; Janssen, Nicole; Beelen, Rob; Schmitz, Oliver; Vaartjes, Ilonca; Karssenberg, Derek; van den Brink, Carolien; Bots, Michiel L; Dijst, Martin; Brunekreef, Bert; Hoek, Gerard

    2017-11-01

    The evidence from observational epidemiological studies of a link between long-term air pollution exposure and diabetes prevalence and incidence is currently mixed. Some studies found the strongest associations of diabetes with fine particles, other studies with nitrogen dioxide and some studies found no associations. Our aim was to investigate associations between long-term exposure to multiple air pollutants and diabetes prevalence in a large national survey in the Netherlands. We performed a cross-sectional analysis using the 2012 Dutch national health survey to investigate the associations between the 2009 annual average concentrations of multiple air pollutants (PM 10 , PM 2.5 , PM 10-2.5 , PM 2.5 absorbance, OP DTT , OP ESR and NO 2 ) and diabetes prevalence, among 289,703 adults. Air pollution exposure was assessed by land use regression models. Diabetes was defined based on a combined measure of self-reported physician diagnosis and medication prescription from an external database. Using logistic regression, we adjusted for potential confounders, including neighborhood- and individual socio-economic status and lifestyle-related risk factors such as smoking habits, alcohol consumption, physical activity and BMI. After adjustment for potential confounders, all pollutants (except PM 2.5 ) were associated with diabetes prevalence. In two-pollutant models, NO 2 and OP DTT remained associated with increased diabetes prevalence. For NO 2 and OP DTT , single-pollutant ORs per interquartile range were 1.07 (95% CI: 1.05, 1.09) and 1.08 (95% CI: 1.05, 1.10), respectively. Stratified analysis showed no consistent effect modification by any of the included known diabetes risk factors. Long-term residential air pollution exposure was associated with diabetes prevalence in a large health survey in the Netherlands, strengthening the evidence of air pollution being an important diabetes risk factor. Most consistent associations were observed for NO 2 and oxidative potential of PM 2.5 measured by the DTT assay. The finding of an association with the oxidative potential of fine particles but not with PM 2.5 , suggests that particle composition may be important for a potential effect on diabetes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. THE LONG-TERM DYNAMICS OF RACIAL/ETHNIC INEQUALITY IN NEIGHBORHOOD AIR POLLUTION EXPOSURE, 1990-2009.

    PubMed

    Kravitz-Wirtz, Nicole; Crowder, Kyle; Hajat, Anjum; Sass, Victoria

    2016-01-01

    Research examining racial/ethnic disparities in pollution exposure often relies on cross-sectional data. These analyses are largely insensitive to exposure trends and rarely account for broader contextual dynamics. To provide a more comprehensive assessment of racial-environmental inequality over time, we combine the 1990 to 2009 waves of the Panel Study of Income Dynamics (PSID) with spatially- and temporally-resolved measures of nitrogen dioxide (NO 2 ) and particulate matter (PM 2.5 and PM 10 ) in respondents' neighborhoods, as well as census data on the characteristics of respondents' metropolitan areas. Results based on multilevel repeated measures models indicate that Blacks and Latinos are, on average, more likely to be exposed to higher levels of NO 2 , PM 2.5 , and PM 10 than Whites. Despite nationwide declines in levels of pollution over time, racial and ethnic disparities persist and cannot be fully explained by individual-, household-, or metropolitan-level factors.

  17. Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016

    NASA Astrophysics Data System (ADS)

    Zhong, Junting; Zhang, Xiaoye; Dong, Yunsheng; Wang, Yaqiang; Liu, Cheng; Wang, Jizhi; Zhang, Yangmei; Che, Haochi

    2018-01-01

    In January 2013, February 2014, December 2015 and December 2016 to 10 January 2017, 12 persistent heavy aerosol pollution episodes (HPEs) occurred in Beijing, which received special attention from the public. During the HPEs, the precise cause of PM2.5 explosive growth (mass concentration at least doubled in several hours to 10 h) is uncertain. Here, we analyzed and estimated relative contributions of boundary-layer meteorological factors to such growth, using ground and vertical meteorological data. Beijing HPEs are generally characterized by the transport stage (TS), whose aerosol pollution formation is primarily caused by pollutants transported from the south of Beijing, and the cumulative stage (CS), in which the cumulative explosive growth of PM2.5 mass is dominated by stable atmospheric stratification characteristics of southerly slight or calm winds, near-ground anomalous inversion, and moisture accumulation. During the CSs, observed southerly weak winds facilitate local pollutant accumulation by minimizing horizontal pollutant diffusion. Established by TSs, elevated PM2.5 levels scatter more solar radiation back to space to reduce near-ground temperature, which very likely causes anomalous inversion. This surface cooling by PM2.5 decreases near-ground saturation vapor pressure and increases relative humidity significantly; the inversion subsequently reduces vertical turbulent diffusion and boundary-layer height to trap pollutants and accumulate water vapor. Appreciable near-ground moisture accumulation (relative humidity > 80 %) would further enhance aerosol hygroscopic growth and accelerate liquid-phase and heterogeneous reactions, in which incompletely quantified chemical mechanisms need more investigation. The positive meteorological feedback noted on PM2.5 mass explains over 70 % of cumulative explosive growth.

  18. Emission characteristics of harmful air pollutants from cremators in Beijing, China

    PubMed Central

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of “odor” in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators. PMID:29718907

  19. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    PubMed

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators.

  20. Association between air pollution and hospital admission: Case study at three monitoring stations in Malaysia

    NASA Astrophysics Data System (ADS)

    Zahari, Marina; Zin@Ibrahim, Wan Zawiah Wan; Ismail, Noriszura; Ni, Tan Hui

    2014-06-01

    The relationships between the exposure of pollutants towards hospitalized admission and mortality have been identified in several studies on Asian cities such as Taipei, Bangkok and Tokyo. In Malaysia, evidence on the health risks associated with exposure to pollutants is limited. In this study, daily time-series data were analysed to estimate risks of cardiovascular and respiratory hospitalized admissions associated with particulate matter ≤ 10 μm (PM10), carbon monoxide (CO), nitrogen dioxide, sulphur dioxide, and ozone concentrations in Klang Valley during 2004-2009. Daily counts of hospital admissions for cardiovascular and respiratory outcomes were obtained from eleven hospitals while pollutants data were taken from several air quality monitoring stations located nearest to the hospitals. These data were fitted with Generalised Additive Poisson regression models. Additionally, temperature, humidity, and time data were also included to allow for potential effect of weather and time-varying influences on hospital admissions. CO showed the most significant (P < 0.05) relationship to cardiovascular admissions. An increment of 1 ppm in CO predicted an increase of 4% to 20% in cardiovascular admissions. Respiratory admissions were associated with PM10, which had about 1% increase in risk of admission per 10 ug/m3 increment in PM10. Exposure to CO and PM10 increases the risk of hospitalization for cardiovascular and respiratory illnesses in Klang Valley, Malaysia.

  1. Identification of PM10 air pollution origins at a rural background site

    NASA Astrophysics Data System (ADS)

    Reizer, Magdalena; Orza, José A. G.

    2018-01-01

    Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.

  2. [Improvement of Air Quality During APEC in Beijing in 2014].

    PubMed

    Cheng, Nian-liang; Li, Yun-ting; Zhang, Da-wei; Chen, Tian; Li, Ling-jun; Li, Jin; Jiang, Lei

    2016-01-15

    Variations of air quality, meteorological conditions and the effect of pollution control measures on particle matter concentrations in Beijing were all analyzed during APEC (from 1st to 12th in November) in 2014 based on the atmospheric pollutant monitoring data, monitoring components of PM2.5, meteorological and remote sensing data and CMB model. The results showed that the average concentrations of PM2.5, PM10, SO2, NO2 were 43,62,8,46 [g.m respectively during APEC and the average concentrations of PM2.5, PM10, SO2, NO2 were decreased by 45%, 43%, 64% and 31% compared to those in the same period of the last 5 years (PM2. was the average of the last 2 years); the concentrations of PM25 at different sites were decreased by 27.4%-35.5%; the concentrations of PM2.5 in the center of city and northern mountainous areas were the lowest, which dropped by 30%-45% compared to those in the same period of the last 5 years while in the southern area the decrement was below 25%; the main component SO4(2-), the substance of the crust, and NO3- were decreased by 50%, 76%, 35% respectively compared to those in the same period in 2013 and the chemical mass balance (CMB) model analysis results indicated that contributions of coal boiler, dust, motor vehicle were 2%, 7%, 30% respectively during APEC; air pollution control measures (coal, dust and traffic management) had a significant effect on reducing pollutant emissions and the pollutant emissions control reduced the concentration peak and delayed the accumulation speed.

  3. Traffic Related Air Quality Trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, P.; Andrade, M. D. F.

    2014-12-01

    An air quality based approach is used to determine pollutant-trends of carbon monoxide (CO), nitrogen oxides (NOX), ozone (O3) and particle matter (PM10) mostly from road transport sources in the Metropolitan Region of São Paulo (MRSP) for the years 2000-2013. Road transport sources included flex (gasoline and ethanol) cars and motorcycles and diesel trucks and buses. Air pollutant concentrations for the transport sources were measured and related with the fuel sales by the emission factors (EFs) expressed in grams of pollutant per kilometer driven or unit of fuel consumed. Over the 14- year time period, pollutant concentrations of NOX, CO and PM10 decreased by 0.65, 0.37 and 0.71% month-1, respectively. Oppossitely during this time, fuel sales of gasoline, ethanol and diesel increased by 0.26, 1.96 and 0.38% month-1. Flex engines are the prevalent road source of CO, oppositely to diesel ones which appear to be the major source of NOX and PM10. Decrease in air pollutants are partially offset by the increment of fuel sales and related transport activity. For CO, there have been steep decreases in pollutant concentrations (rate of -5 parts per billion, ppb, month-1) for gasoline and ethanol engines between 2000 and 2013. Similarly, diesel related NOX and PM10 concentrations decreased but at slower time rates (-0.25 and -0.09 ppb month-1). Rates uncertainties are larger for diesel pollutants (coefficient of determination R of -0.47 and -0.41) than for gasoline and ethanol related CO (R equal to -0.72). This paper led to the following conclusions: (1) concentrations of gasoline and ethanol related CO, estimated by air quality network measurements, decreased at steeper rate than diesel pollutants NOX and PM10, (2) transport source contributions to the O3 formation differ significantly through the time period focus of this work, with higher contributions coming from gasoline and ethanol engines at the beinning of the reviewed period (2000-2007) and from diesel engines at the end (2008-2013).

  4. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies.

    PubMed

    Nhung, Nguyen Thi Trang; Amini, Heresh; Schindler, Christian; Kutlar Joss, Meltem; Dien, Tran Minh; Probst-Hensch, Nicole; Perez, Laura; Künzli, Nino

    2017-11-01

    Ambient air pollution has been associated with respiratory diseases in children. However, its effects on pediatric pneumonia have not been meta-analyzed. We conducted a systematic review and meta-analysis of the short-term association between ambient air pollution and hospitalization of children due to pneumonia. We searched the Web of Science and PubMed for indexed publications up to January 2017. Pollutant-specific excess risk percentage (ER%) and confidence intervals (CI) were estimated using random effect models for particulate matter (PM) with diameter ≤ 10 (PM 10 ) and ≤2.5 μm (PM 2.5 ), sulfur dioxide (SO 2 ), ozone (O 3 ), nitrogen dioxide (NO 2 ), and carbon monoxide (CO). Results were further stratified by subgroups (children under five, emergency visits versus hospital admissions, income level of study location, and exposure period). Seventeen studies were included in the meta-analysis. The ER% per 10 μg/m 3 increase of pollutants was 1.5% (95% CI: 0.6%-2.4%) for PM 10 and 1.8% (95% CI: 0.5%-3.1%) for PM 2.5 . The corresponding values per 10 ppb increment of gaseous pollutants were 2.9% (95% CI: 0.4%-5.3%) for SO 2 , 1.7% (95% CI: 0.5%-2.8%) for O 3 , and 1.4% (95% CI: 0.4%-2.4%) for NO 2 . ER% per 1000 ppb increment of CO was 0.9% (95% CI: 0.0%-1.9%). Associations were not substantially different between subgroups. This meta-analysis shows a positive association between daily levels of ambient air pollution markers and hospitalization of children due to pneumonia. However, lack of studies from low-and middle-income countries limits the quantitative generalizability given that susceptibilities to the adverse effects of air pollution may be different in those populations. The meta-regression in our analysis further demonstrated a strong effect of country income level on heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Pollution characteristics of PCBs in electronic waste dismantling areas of Zhejiang province].

    PubMed

    Wang, Xiaofeng; Lou, Xiaoming; Han, Guangen; Shen, Haitao; Ding, Gangqiang

    2011-09-01

    To study the pollution level and distribution pattern of polychlorinated biphenyls (PCBs) in the environment media in electronic waste dismantling area of Zhejiang province. Water, soil and PM10 were sampled in electronic waste dismantling areas. The contents, distribution characteristics and toxic equivalents (TEQs) of PCBs in local environment were evaluated by ultra-trace detection methods. The PCBs contents of water, soil and PM10 in Luqiao and Zhenhai, the relatively high polluted areas, were higher than those in Longyou, the control area. The dominant PCBs detected from the environment in Luqiao were hexa-CBs (PCB138 and PCB153), while penta-CBs were dominant in Zhenhai and Longyou. TEQs in electronic waste recycling area were higher than those in control areas. The TEQs of PCBs in water and soil were the highest in Zhenhai, while the TEQs of PM10 were the highest in Luqiao. The local environment has been polluted by PCBs emitted from electronic waste recycling. PCBs pollution monitoring in electronic waste recycling area should be strengthened to prevent PCBs-induced health effects.

  6. Effect of long-term exposure to ambient particulate matter on prevalence of type 2 diabetes and hypertension in Iranian adults: an ecologic study.

    PubMed

    Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Malek, Mojtaba; Valojerdi, Ameneh Ebrahim; Mirzadeh, Mohanad; Samavat, Tahereh; Hezaveh, Alireza Mahdavi; Hodjatzadeh, Alieh; Khamseh, Mohammad Ebrahim

    2018-01-01

    Air pollution is considered as an environmental risk to health worldwide. Current evidence is mostly from Western populations exposed to lower levels of pollutants. This study was to explore the association of type 2 diabetes (T2D) and hypertension prevalence with exposure to high levels of air pollution in Iranian adults. The air pollution data were obtained from the air quality monitoring stations of five large cities in Iran from 2006 to 2011. The air quality monitoring stations could only detect ambient particulate matter_10 (PM 10 ) during the study period; therefore, the average PM 10 concentration was considered for comparison. We grouped the cities as group 1 (Tehran, Shiraz) with PM 10 concentration < 100 μg/m 3 , and group 2 (Kermanshah, Ahwaz, Esfahan) with PM 10 concentration > 100 μg/m 3 . Data from the Surveillance of Risk Factors of Non-Communicable Disease (SuRFNCD) study were used to calculate the prevalence of T2D and hypertension. We assessed the association between air pollution and the prevalence of T2D using logistic regression models. Odds ratios (ORs) with 95% CI for each outcome were calculated after adjusting for age, sex, BMI, physical activity, and other covariates. The 5-year average of PM 10 concentration was higher in group 2 (120.15 ± 6.81 μg/m 3 ) compared to group 1 (83.95 ± 7.81 μg/m 3 ). The prevalence of T2D in group 2 was 13.8%, while it was 10.7% in group 1 (p = 0.01), OR = 1.32 (95% CI 1.03-1.69). Similarly, hypertension was more prevalent in group 2 (15.7 vs. 11.9%, p = 0.005, OR = 1.55, 95% CI 1.20-1.99). PM 10 is associated with higher prevalence of T2D and hypertension in Iranian adults.

  7. Health impact assessment of air pollution in Valladolid, Spain

    PubMed Central

    Cárdaba Arranz, Mario; Muñoz Moreno, María Fe; Armentia Medina, Alicia; Alonso Capitán, Margarita; Carreras Vaquer, Fernando; Almaraz Gómez, Ana

    2014-01-01

    Objective To estimate the attributable and targeted avoidable deaths (ADs; TADs) of outdoor air pollution by ambient particulate matter (PM10), PM2.5 and O3 according to specific WHO methodology. Design Health impact assessment. Setting City of Valladolid, Spain (around 300 000 residents). Data sources Demographics; mortality; pollutant concentrations collected 1999–2008. Main outcome measures Attributable fractions; ADs and TADs per year for 1999–2008. Results Higher TADs estimates (shown here) were obtained when assuming as ‘target’ concentrations WHO Air Quality Guidelines instead of Directive 2008/50/EC. ADs are considered relative to pollutant background levels. All-cause mortality associated to PM10 (all ages): 52 ADs (95% CI 39 to 64); 31 TADs (95% CI 24 to 39).All-cause mortality associated to PM10 (<5 years): 0 ADs (95% CI 0 to 1); 0 TADs (95% CI 0 to 1). All-cause mortality associated to PM2.5 (>30 years): 326 ADs (95% CI 217 to 422); 231 TADs (95% CI 153 to 301). Cardiopulmonary and lung cancer mortality associated to PM2.5 (>30 years): ▸ Cardiopulmonary: 186 ADs (95% CI 74 to 280); 94 TADs (95% CI 36 to 148). ▸ Lung cancer : 51 ADs (95% CI 21 to 73); 27 TADs (95% CI 10 to 41).All-cause, respiratory and cardiovascular mortality associated to O3 (all ages): ▸ All-cause: 52ADs (95% CI 25 to 77) ; 31 TADs (95% CI 15 to 45). ▸ Respiratory: 5ADs (95% CI −2 to 13) ; 3 TADs (95% CI −1 to 8). ▸ Cardiovascular: 30 ADs (95% CI 8 to 51) ; 17 TADs (95% CI 5 to 30). Negative estimates which should be read as zero were obtained when pollutant concentrations were below counterfactuals or assumed risk coefficients were below one. Conclusions Our estimates suggest a not negligible negative impact on mortality of outdoor air pollution. The implementation of WHO methodology provides critical information to distinguish an improvement range in air pollution control. PMID:25326212

  8. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study.

    PubMed

    Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross; Toledano, Mireille B

    2017-12-05

    Objective  To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design  Retrospective population based cohort study. Setting  Greater London and surrounding counties up to the M25 motorway (2317 km 2 ), UK, from 2006 to 2010. Participants  540 365 singleton term live births. Main outcome measures  Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results  Average air pollutant exposures across pregnancy were 41 μg/m 3 nitrogen dioxide (NO 2 ), 73 μg/m 3 nitrogen oxides (NO x ), 14 μg/m 3 particulate matter with aerodynamic diameter <2.5 μm (PM 2.5 ), 23 μg/m 3 particulate matter with aerodynamic diameter <10 μm (PM 10 ), and 32 μg/m 3 ozone (O 3 ). Average daytime (L Aeq,16hr ) and night-time (L night ) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO 2 , NO x , PM 2.5 , PM 10 , and source specific PM 2.5 from traffic exhaust (PM 2.5 traffic exhaust ) and traffic non-exhaust (brake or tyre wear and resuspension) (PM 2.5 traffic non-exhaust ) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM 2.5 traffic exhaust and PM 2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM 2.5 >13.8 μg/m 3 during pregnancy. Conclusions  The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on birth weight outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. The use of total susceptibility in the analysis of long term PM10 (PM2.5) collected at Hungarian air quality monitoring stations

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János

    2013-04-01

    Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the first, indicating that a sizable part of the magnetic grains is coming from nearby capitals rather than from more distant sources. We found no correlation between magnetic susceptibility and toxic metals. On the other hand the weaker vehicle traffic during week-ends, especially on Sundays is evident in the total susceptibilities, although it is also seen as a tendency in the mass of the pollutants and in the mass susceptibilities. While the generally used mass susceptibility seems to be useful as an indication for the heaviness of vehicle traffic in the area of the studied monitoring stations, it is a total failure for expressing correctly seasonal variations. The reason is that much more non-magnetic than magnetic pollutants are produced during heating season, especially by household heating with coal and wood. The consequence is that in the total susceptibility the higher production of the magnetic particles during heating season is evident, while in the mass susceptibility the trend is opposite, i.e. the magnetic pollution seems to be less intensive during heating season than otherwise. Acknowledgement: This work was financially supported by the Hungarian Scientific Research Fund (project no. OTKA K 75395).

  10. Variation in characteristics of ambient particulate matter at eight locations in the Netherlands - The RAPTES project

    NASA Astrophysics Data System (ADS)

    Strak, Maciej; Steenhof, Maaike; Godri, Krystal J.; Gosens, Ilse; Mudway, Ian S.; Cassee, Flemming R.; Lebret, Erik; Brunekreef, Bert; Kelly, Frank J.; Harrison, Roy M.; Hoek, Gerard; Janssen, Nicole A. H.

    2011-08-01

    Numerous epidemiological studies have shown health effects related to short- and long-term exposure to elevated levels of ambient particulate matter (PM). It is not clear however which specific characteristics (e.g., size, components) or sources of PM are responsible for the observed effects. The aim of RAPTES (Risk of Airborne Particles: a Toxicological-Epidemiological hybrid Study) was to investigate which specific physical, chemical or oxidative characteristics of ambient PM are associated with adverse effects of PM on health. This was done by performing experimental exposure of human volunteers to air pollution at several real-world settings that had high contrast and low correlation between several PM characteristics. For this goal, eight sites in the Netherlands that differed in local PM emission sources were chosen for extensive air pollution characterization. Measurement sites included an underground train station, three different road traffic sites, an animal farm, a sea harbor, a site located in the vicinity of steelworks, and an urban background site. Five- to six-hours average concentration measurements at each site were made between June 2007 and October 2009. We measured PM 10, PM 2.5, particle number concentration (PNC), oxidative potential of PM, absorbance, endotoxin content, as well as elemental and chemical composition of PM, and gaseous pollutants concentrations. This paper presents a detailed characterization of particulate air pollution at the sampling sites. We found significant differences in all PM characteristics between the sites. The underground train station, compared to each outdoor location, had substantially higher concentrations of nearly all PM characteristics. The average PM 10 and PM 2.5 mass concentrations at the underground train station were 394 μg m -3 and 137 μg m -3, respectively, which was 14.1 and 7.6 times higher than the urban background. The sum of the concentrations of trace metals in fine and coarse PM was nearly 20 times above the outdoor levels. Elemental carbon (EC) was elevated at the underground site in the fine but also in the coarse mode, in contrast to the traffic sites where EC was predominantly found in fine PM. The highest concentrations and contrasts in PNC were at the traffic sites (between 45,000 and 80,000 particles cm -3), which was several times higher than measured at any other site. Correlations of PNC with metals, PM 10, PM 2.5 and absorbance were low to moderate, while correlations between PM 10, PM 2.5 and the metals Cu and Fe were high. After excluding the underground train station data, correlations between PM10, EC and metals decreased whereas the correlation between PNC and EC increased. We conclude that we were able to successfully identify and characterize real-world situations with very different particle characteristics. High contrast and low correlations between PM characteristics, as well as consistency of these differences across sampling campaigns, provide a good basis for identifying health relevant PM characteristics in the upcoming analysis.

  11. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study.

    PubMed

    Morakinyo, Oyewale Mayowa; Adebowale, Ayo Stephen; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley

    2017-03-13

    To assess the health risks associated with exposure to particulate matter (PM 10 ), sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), carbon monoxide (CO) and ozone (O 3 ). The study is an ecological study that used the year 2014 hourly ambient pollution data. The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. Estimate of possible health risks from exposure to airborne PM 10 , SO 2 , NO 2 , CO and O 3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. Presence or absence of adverse health effects from exposure to airborne pollutants. Average annual ambient concentration of PM 10 , NO 2 and SO 2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m 3 , respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m 3 for PM 10 , NO 2 and SO 2 , respectively. Exposure to an hour's concentration of NO 2 , SO 2 , CO and O 3 , an 8-hour concentration of CO and O 3 , and a 24-hour concentration of PM 10 , NO 2 and SO 2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM 10 , NO 2 and SO 2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. Long-term chronic exposure to airborne PM 10 , NO 2 and SO 2 pollutants may result in health risks among the study population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

    PubMed Central

    Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao

    2015-01-01

    Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104

  13. Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Noriho; Hayashi, Shizu; Gosselink, John

    2007-12-01

    Exposure to ambient air pollution particles with a diameter of < 10 {mu}m (PM{sub 10}) has been associated with increased cardiopulmonary morbidity and mortality. We have shown that human bronchial epithelial cells (HBECs) exposed to PM{sub 10} produce pro-inflammatory mediators that contribute to a local and systemic inflammatory response. Changes in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) have been demonstrated to regulate several functions of the airway epithelium including the production of pro-inflammatory mediators. The aim of the present study was to determine the nature and mechanism of calcium responses induced by PM{sub 10} in HBECs and its relationship tomore » cytokine synthesis. Methods: Primary HBECs were exposed to urban air pollution particles (EHC-93) and [Ca{sup 2+}]{sub i} responses were measured using the fluoroprobe (Fura-2). Cytokine levels were measured at mRNA and protein levels using real-time PCR and ELISA. Results: PM{sub 10} increased [Ca{sup 2+}]{sub i} in a dose-dependent manner. This calcium response was reduced by blocking the influx of calcium into cells (i.e. calcium-free medium, NiCl{sub 2}, LaCl{sub 3}). PM{sub 10} also decreased the activity of calcium pumps. PM{sub 10} increased the production of IL-1{beta}, IL-8, GM-CSF and LIF. Preincubation with intracellular calcium chelator (BAPTA-AM) attenuated IL-1{beta} and IL-8 production, but not GM-CSF and LIF production. Conclusion: We conclude that exposure to PM{sub 10} induces an increase in cytosolic calcium and cytokine production in bronchial epithelial cells. Our results also suggest that PM{sub 10} induces the production of pro-inflammatory mediators via either intracellular calcium-dependent (IL-1{beta}, IL-8) or -independent (GM-CSF, LIF) pathways.« less

  14. Health risk assessment of China's main air pollutants.

    PubMed

    Sun, Jian; Zhou, Tiancai

    2017-02-20

    With the rapid development of China's economy, air pollution has attracted public concern because of its harmful effects on health. The source apportioning of air pollution, the spatial distribution characteristics, and the relationship between atmospheric contamination, and the risk of exposure were explored. The in situ daily concentrations of the principal air pollutants (PM 2.5 , PM 10 , SO 2 , NO 2 , CO and O 3 ) were obtained from 188 main cities with many continuous air-monitoring stations across China (2014 and 2015). The results indicate positive correlations between PM 2.5 and SO 2 (R 2  = 0.395/0.404, P < 0.0001), CO (R 2  = 0.187/0.365, P < 0.0001), and NO 2 (R 2  = 0.447/0.533, P < 0.0001), but weak correlations with O 3 (P > 0.05) for both 2014 and 2015. Additionally, a significant relationship between SO 2 , NO 2, and CO was discovered using regression analysis (P < 0.0001), indicating that the origin of air pollutants is likely to be vehicle exhaust, coal consumption, and biomass open-burning. For the spatial pattern of air pollutants, we found that the highest concentration of SO 2 , NO 2, and CO were mainly distributed in north China (Beijing-Tianjin-Hebei regions), Shandong, Shanxi and Henan provinces, part of Xinjiang and central Inner Mongolia (2014 and 2015). The highest concentration and risk of PM 2.5 was observed in the Beijing-Tianjin-Hebei economic belts, and Shandong, Henan, Shanxi, Hubei and Anhui provinces. Nevertheless, the highest concentration of O 3 was irregularly distributed in most areas of China. A high-risk distribution of PM 10 , SO 2 and NO 2 was also observed in these regions, with the high risk of PM 10 and NO 2 observed in the Hebei and Shandong province, and high-risk of PM 10 in Urumchi. The high-risk of NO 2 distributed in Beijing-Yangtze River Delta region-Pearl River Delta region-central. Although atmospheric contamination slightly improved in 2015 compared to 2014, humanity faces the challenge of reducing the environmental and public health effects of air pollution by altering the present mode of growth to achieve sustainable social and economic development.

  15. Lacrimal Cytokines Assessment in Subjects Exposed to Different Levels of Ambient Air Pollution in a Large Metropolitan Area

    PubMed Central

    Matsuda, Monique; Bonatti, Rodolfo; Marquezini, Mônica V.; Garcia, Maria L. B.; Santos, Ubiratan P.; Braga, Alfésio L. F.; Alves, Milton R.

    2015-01-01

    Background Air pollution is one of the most environmental health concerns in the world and has serious impact on human health, particularly in the mucous membranes of the respiratory tract and eyes. However, ocular hazardous effects to air pollutants are scarcely found in the literature. Design Panel study to evaluate the effect of different levels of ambient air pollution on lacrimal film cytokine levels of outdoor workers from a large metropolitan area. Methods Thirty healthy male workers, among them nineteen professionals who work on streets (taxi drivers and traffic controllers, high pollutants exposure, Group 1) and eleven workers of a Forest Institute (Group 2, lower pollutants exposure compared to group 1) were evaluated twice, 15 days apart. Exposure to ambient PM2.5 (particulate matter equal or smaller than 2.5 μm) was 24 hour individually collected and the collection of tears was performed to measure interleukins (IL) 2, 4, 5 and 10 and interferon gamma (IFN-γ) levels. Data from both groups were compared using Student’s t test or Mann- Whitney test for cytokines. Individual PM2.5 levels were categorized in tertiles (lower, middle and upper) and compared using one-way ANOVA. Relationship between PM2.5 and cytokine levels was evaluated using generalized estimating equations (GEE). Results PM2.5 levels in the three categories differed significantly (lower: ≤22 μg/m3; middle: 23–37.5 μg/m3; upper: >37.5 μg/m3; p<0.001). The subjects from the two groups were distributed unevenly in the lower category (Group 1 = 8%; Group 2 = 92%), the middle category (Group 1 = 89%; Group 2 = 11%) and the upper category (Group 1 = 100%). A significant relationship was found between IL-5 and IL-10 and PM2.5 levels of the group 1, with an average decrease of 1.65 pg/mL of IL-5 level and of 0.78 pg/mL of IL-10 level in tear samples for each increment of 50 μg/m3 of PM2.5 (p = 0.01 and p = 0.003, respectively). Conclusion High levels of PM2.5 exposure is associated with decrease of IL-5 and IL-10 levels suggesting a possible modulatory action of ambient air pollution on ocular surface immune response. PMID:26588473

  16. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    NASA Astrophysics Data System (ADS)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors' knowledge, no other studies reported such high number concentration of ultrafine refractory particles under ambient conditions. Inverse modeling of emission factors of refractory particle number size distributions revealed that diesel-fed public utility Jeepneys, commonly used for public transportation, are responsible for 94% of total roadside emitted refractory particle mass. The observed results showed that the majority of urban pollution in Metro Manila is dominated by carbonaceous aerosol. This suggests that PM10 or PM2.5 metrics do not fully describe possible health related effects in this kind of urban environments. Extremely high concentrations of ultrafine particles have been and will continue to induce adverse health related effects, because of their potential toxicity. We imply that in megacities, where the major fraction of particulates originates from the transport sector, PM10 or PM2.5 mass concentration should be complemented by legislative measurements of equivalent black carbon mass concentration.

  17. Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: Role of local meteorology and long-range transport

    NASA Astrophysics Data System (ADS)

    Mahapatra, P. S.; Sinha, P. R.; Boopathy, R.; Das, T.; Mohanty, S.; Sahu, S. C.; Gurjar, B. R.

    2018-01-01

    Measurement of particulate matter (PM) over an urban site with relatively high concentration of aerosol particles is critically important owing to its adverse health, environmental and climate impact. Here we present a 3 years' worth of measurements (January 2012 to December 2014) of PM2.5 (aerodynamic diameter of less than 2.5 μm) and PM10 (aerodynamic diameter of less than 10 μm) along with meteorological parameters and seasonal variations at Bhubaneswar an urban-coastal site, in eastern India. The concentrations of PM were determined gravimetrically from the filter samples of PM2.5 and PM10. It revealed remarkable seasonal variations with winter values (55.0 ± 23.4 μg/m3; 147.3 ± 42.4 μg/m3 for PM2.5 and PM10, respectively) about 3.5 times higher than that in pre-monsoon (15.7 ± 6.2 μg/m3; 41.8 ± 15.3 μg/m3). PM2.5 and PM10 were well correlated while PM2.5/PM10 ratios were found to be 0.38 and 0.32 during winter and pre-monsoon, indicating the predominance of coarse particles, mainly originating from long range transport of pollutants from northern and western parts of India and parts of west Asia as well. Concentration weighted trajectory (CWT) analysis revealed the IGP and North Western Odisha as the most potential sources of PM2.5 and PM10 during winter. The PM concentrations at Bhubaneswar were comparable with those at other coastal sites of India reported in the literature, but were lower than few polluted urban sites in India and Asia. Empirical model reproduced the observed seasonal variation of PM2.5 and PM10 very well over Bhubaneswar.

  18. Residential Air Pollution and Associations with Wheeze and Shortness of Breath in Adults: A Combined Analysis of Cross-Sectional Data from Two Large European Cohorts.

    PubMed

    Doiron, Dany; de Hoogh, Kees; Probst-Hensch, Nicole; Mbatchou, Stéphane; Eeftens, Marloes; Cai, Yutong; Schindler, Christian; Fortier, Isabel; Hodgson, Susan; Gaye, Amadou; Stolk, Ronald; Hansell, Anna

    2017-09-29

    Research examining associations between air pollution exposure and respiratory symptoms in adults has generally been inconclusive. This may be related in part to sample size issues, which also preclude analysis in potentially vulnerable subgroups. We estimated associations between air pollution exposures and the prevalence of wheeze and shortness of breath using harmonized baseline data from two very large European cohorts, Lifelines (2006-2013) and UK Biobank (2006-2010). Our aim was also to determine whether the relationship between air pollution and respiratory symptom prevalence differed between individuals with different characteristics. Cross-sectional analyses explored associations between prevalence of self-reported wheeze and shortness of breath and annual mean particulate matter with aerodynamic diameter <2.5μm, 2.5-10μm, and <10μm (PM2.5, PMcoarse, and PM10, respectively) and nitrogen dioxide (NO2) concentrations at place of residence using logistic regression. Subgroup analyses and tests for interaction were performed for age, sex, smoking status, household income, obesity status, and asthma status. All PM exposures were associated with respiratory symptoms based on single-pollutant models, with the largest associations seen for PM2.5 with prevalence of wheezing {odds ratio (OR)=1.16 per 5μg/m³ [95% confidence interval (CI): 1.11, 1.21]} and shortness of breath [OR=1.61 per 5μg/m³ (95% CI: 1.45, 1.78)]. The association between shortness of breath and a 5-μg/m³ increment in PM2.5 was significantly higher for individuals from lower-[OR=1.73 (95% CI: 1.52, 1.97)] versus higher-income households [OR=1.31 (95% CI: 1.11, 1.55); p-interaction=0.005), whereas the association between PM2.5 and wheeze was limited to lower-income participants [OR=1.30 (95% CI: 1.22, 1.38) vs. OR=1.02; (95% CI: 0.96, 1.08); p-interaction<0.001]. Exposure to NO2 also showed positive associations with wheeze and shortness of breath. Exposure to PM and NO2 air pollution was associated with the prevalence of wheeze and shortness of breath in this large study, with stronger associations between PM2.5 and both outcomes among lower- versus higher-income participants. https://doi.org/10.1289/EHP1353.

  19. Air pollution and the incidence of ischaemic and haemorrhagic stroke in the South London Stroke Register: a case-cross-over analysis.

    PubMed

    Butland, B K; Atkinson, R W; Crichton, S; Barratt, B; Beevers, S; Spiridou, A; Hoang, U; Kelly, F J; Wolfe, C D

    2017-07-01

    Few European studies investigating associations between short-term exposure to air pollution and incident stroke have considered stroke subtypes. Using information from the South London Stroke Register for 2005-2012, we investigated associations between daily concentrations of gaseous and particulate air pollutants and incident stroke subtypes in an ethnically diverse area of London, UK. Modelled daily pollutant concentrations based on a combination of measurements and dispersion modelling were linked at postcode level to incident stroke events stratified by haemorrhagic and ischaemic subtypes. The data were analysed using a time-stratified case-cross-over approach. Conditional logistic regression models included natural cubic splines for daily mean temperature and daily mean relative humidity, a binary term for public holidays and a sine-cosine annual cycle. Of primary interest were same day mean concentrations of particulate matter <2.5 and <10 µm in diameter (PM 2.5 , PM 10 ), ozone (O 3 ), nitrogen dioxide (NO 2 ) and NO 2 +nitrogen oxide (NO X ). Our analysis was based on 1758 incident strokes (1311 were ischaemic and 256 were haemorrhagic). We found no evidence of an association between all stroke or ischaemic stroke and same day exposure to PM 2.5 , PM 10 , O 3 , NO 2 or NO X . For haemorrhagic stroke, we found a negative association with PM 10 suggestive of a 14.6% (95% CI 0.7% to 26.5%) fall in risk per 10 µg/m 3 increase in pollutant. Using data from the South London Stroke Register, we found no evidence of a positive association between outdoor air pollution and incident stroke or its subtypes. These results, though in contrast to recent meta-analyses, are not inconsistent with the mixed findings of other UK studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma.

    PubMed

    Jacquemin, Bénédicte; Kauffmann, Francine; Pin, Isabelle; Le Moual, Nicole; Bousquet, Jean; Gormand, Frédéric; Just, Jocelyne; Nadif, Rachel; Pison, Christophe; Vervloet, Daniel; Künzli, Nino; Siroux, Valérie

    2012-09-01

    The associations between exposure to air pollution and asthma control are not well known. The objective of this study was to assess the association between long-term exposure to NO(2), O(3) and PM(10) and asthma control in the follow-up of the Epidemiological study on the Genetics and Environment of Asthma (EGEA2) (2003-2007). Modelled outdoor NO(2), O(3) and PM(10) estimates were linked to each residential address using the 4 km grid air pollutant surface developed by the French Institute of Environment in 2004. Asthma control was assessed in 481 subjects with current asthma using a multidimensional approach following the 2006-2009 Global Initiative for Asthma guidelines. Multinomial and ordinal logistic regressions were conducted adjusted for sex, age, body mass index, education, smoking and use of inhaled corticosteroids. The association between air pollution and the three domains of asthma control (symptoms, exacerbations and lung function) was assessed. ORs are reported per IQR. Median concentrations (in micrograms per cubic metre) were 32 (IQR 25-38) for NO(2) (n=465), 46 (41-52) for O(3) and 21 (18-21) for PM(10) (n=481). In total, 44%, 29% and 27% had controlled, partly controlled and uncontrolled asthma, respectively. The ordinal ORs for O(3) and PM(10) with asthma control were 1.69 (95% CI 1.22 to 2.34) and 1.35 (95% CI 1.13 to 1.64), respectively. When including both pollutants in the same model, both associations persisted. Associations were not modified by sex, smoking status, use of inhaled corticosteroids, atopy, season of examination or body mass index. Both pollutants were associated with each of the three main domains of control. The results suggest that long-term exposure to PM(10) and O(3) is associated with uncontrolled asthma in adults, defined by symptoms, exacerbations and lung function.

  1. Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Chang, Shuenn-Chin; Lin, Neng-Huei; Wang, Jia-Lin; Sheu, Guey-Rong; Chang, You-Jia; Lee, Chung-Te

    2013-10-01

    Aerosol observations were conducted at Dongsha Island in two batches from 19 to 23 March and 10 to 19 April 2010. Dongsha Island is located in a remote area over the northern South China Sea (SCS), distantly surrounded by southern China, Taiwan, the Philippines, and the Indochinese Peninsula. During the study period, the average PM10 and PM2.5 mass concentrations were 26.5 ± 19.4 and 12.6 ± 6.0 μg m-3, respectively. In particular, a daily PM10 concentration of 94.1 μg m-3 caused by a yellow-dust event originating from the Asian Continent was recorded on 21 March. Other than this event, the PM2.5 and PM10-2.5 daily levels were 7.1 ± 1.2 and 12.6 ± 5.0 μg m-3, respectively, on days without pollution from anthropogenic sources in the surrounding areas. Water-soluble ions (WSIs) were the predominant components that accounted for 58.7% ± 10.5% and 51.1% ± 7.2% of the PM10 and PM2.5 mass. The second most abundant component was carbonaceous content, which accounted for 9.5% ± 4.7% and 17.5% ± 5.3% of PM10 and PM2.5, respectively. SO42- was the most abundant PM2.5 WSI, whereas the Na+ and Cl- pair was the most abundant PM10-2.5 WSI. Based on the U.S. IMPROVE protocol, the resolved carbonaceous fractions were mainly distributed in PM2.5 and influenced by coal combustion, mobile vehicles, and biomass burning. Most of the resolved WSIs in particles were in the liquid phase due to the humid environment around the northern SCS.

  2. US EPA Nonattainment Areas and Designations-PM10 (1987 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layer: PM10 Nonattainment Areas (1987 NAAQS). Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1987PM10/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The metho

  3. Adverse effect of outdoor air pollution on cardiorespiratory fitness in Chinese children

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Chan, Emily Y. Y.; Zhu, Yingjia; Wong, Tze Wai

    2013-01-01

    Little is known about the health impact of air pollution on children's cardiovascular health. A cross-sectional study was conducted and data was analysed in 2048 Chinese schoolchildren (aged 8-10 years) in three districts of Hong Kong to examine the association between exposure to outdoor air pollution and cardiorespiratory fitness. Annual means of ambient PM10, SO2, NO2 and O3 from 1996 to 2003 were used to estimate individual exposure of the subjects. Cardiorespiratory fitness was measured for maximal oxygen uptake (VO2max), predicted by the multistage fitness test (MFT). Height and weight were measured and other potential confounders were collected with questionnaires. Analysis of covariance was performed to estimate the impact of air pollution on complete speed in the MFT and predicted VO2max. The results showed that children in high-pollution district had significantly lower complete speed and predicted VO2max compared to those in low- and moderate-pollution districts. Complete speed and predicted VO2max was estimated to reduce 0.327 km h-1 and 1.53 ml kg-1 min-1 per 10 μg m-3 increase in PM10 annual mean respectively, with those in girls being greater than in boys. Being physically active could not significantly result in improved cardiorespiratory fitness in polluted districts. The adverse effect seems to be independent of short-term exposure to air pollution. We concluded that long-term exposure to higher outdoor air pollution levels was negatively associated with cardiorespiratory fitness in Chinese schoolchildren, especially for girls. PM10 is the most relevant pollutant of the adverse effect. Elevated cardiorespiratory fitness observed in physically activate children could be negated by increased amount of inhaled pollutants during exercise.

  4. Hourly peak concentration measuring the PM2.5-mortality association: Results from six cities in the Pearl River Delta study

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Ratnapradipa, Kendra; Wang, Xiaojie; Zhang, Yonghui; Xu, Yanjun; Yao, Zhenjiang; Dong, Guanghui; Liu, Tao; Clark, Jessica; Dick, Rebecca; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Qian, Zhengmin (Min); Ma, Wenjun

    2017-07-01

    Compared with daily mean concentration of air pollution, hourly peak concentration may be more directly relevant to the acute health effects due to the high concentration levels, however, few have analyzed the acute mortality effects of hourly peak levels of air pollution. We examined the associations of hourly peak concentration of fine particulate matter air pollution (PM2.5) with mortality in six cities in Pearl River Delta, China. We used generalized additive Poisson models to examine the associations with adjustment for potential confounders in each city. We further applied random-effects meta-analyses to estimate the regional overall effects. We further estimated the mortality burden attributable to hourly peak and daily mean PM2.5. We observed significant associations between hourly peak PM2.5 and mortality. Each 10 μg/m3 increase in 4-day averaged (lag03) hourly peak PM2.5 corresponded to a 0.9% [95% confidence interval (CI): 0.7%, 1.1%] increase in total mortality, 1.2% (95% CI: 1.0%, 1.5%) in cardiovascular mortality, and 0.7% (95% CI: 0.2%, 1.1%) in respiratory mortality. We observed a greater mortality burden using hourly peak PM2.5 than daily mean PM2.5, with an estimated 12915 (95% CI: 9922, 15949) premature deaths attributable to hourly peak PM2.5, and 7951 (95% CI: 5067, 10890) to daily mean PM2.5 in the Pearl River Delta (PRD) region during the study period. This study suggests that hourly peak PM2.5 might be one important risk factor of mortality in PRD region of China; the finding provides important information for future air pollution management and epidemiological studies.

  5. [Time-series analysis of ambient PM₁₀ pollution on residential mortality in Beijing].

    PubMed

    Xue, Jiang-li; Wang, Qi; Cai, Yue; Zhou, Mai-geng

    2012-05-01

    To explore the short-term impact of ambient PM(10) on daily non-accidental death, cardiovascular and respiratory death of residents in Beijing. Mortality data of residents in Beijing during 2006 to 2009 were obtained from public health surveillance and information service center of Chinese Center for Disease Control and Prevention, contemporaneous data of average daily air concentration of PM(10), SO(2), NO(2) were obtained from Beijing Environment Protection Bureau (year 2005 - 2006) and public website of Beijing environmental protection (year 2007 - 2009), respectively, contemporaneous meteorological data were obtained from china meteorological data sharing service system. Generalized addictive model (GAM) of time serial analysis was applied. In additional to the control of confounding factors such as long-term trend, day of the week effect, meteorological factors, lag effect and the effects of other atmospheric pollutants were also analyzed. During year 2006 to 2009, the number of average daily non-accidental death, respiratory disease caused death, cardiovascular and cerebrovascular diseases caused death among Beijing residents were 140.1, 15.0, 65.8, respectively;contemporaneous medians of average daily air concentration of PM(10), SO(2), NO(2) were 123.0, 26.0, 58.0 µg/m(3), respectively;contemporaneous average atmosphere pressure, temperature and relative humidity were 10.1 kPa, 13.5°C and 51.9%, respectively. An exposure-response relationship between exposure to ambient PM(10) and increased daily death number was found as every 10 µg/m(3) increase in daily average concentration of PM(10), there was a 0.1267% (95%CI: 0.0824% - 0.1710%) increase in daily non-accidental death of residents, 0.1365% (95%CI: 0.0010% - 0.2720%) increase in respiratory death and 0.1239% (95%CI: 0.0589% - 0.1889%) increase in cardiovascular death. Ambient PM(10) had greatest influence on daily non-accidental and cardiovascular death of the same day, while its greatest influence on respiratory death occurred 5 days later. The ambient PM(10) pollution increased daily non-accidental, respiratory disease caused, cardiovascular and cerebrovascular diseases caused deaths among residents in Beijing, and lag effect existed as for the effect of ambient PM(10) pollution on respiratory disease caused death.

  6. An Assessment of Air Quality in the Surrounding Holy Places of Mecca, Saudi Arabia during Hajj

    NASA Astrophysics Data System (ADS)

    Khwaja, H. A.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Khatib, F.; Zeb, J.; Blake, D. R.

    2014-12-01

    The associations of exposure to air pollution and adverse human health effects have been demonstrated in many epidemiologic studies. Hajj, an annual pilgrimage of Islam, draws millions of pilgrims from more than 200 countries for religious rituals in Mecca, Saudi Arabia. The city is surrounded by mountains with a population of 1.7 million, which gets doubles or even more during Hajj. The city centers on the Grand Mosque (Masjid Al-haram), connected with the network of tunnels. Main Hajj pilgrimage route for five days extends 20 km to the east and includes "Mina", "Arafat", and "Muzdalifah". A detailed study was conducted in Mecca, its tunnels, and surrounding holy places during Hajj (October 13-17, 2013). Spatial and temporal variations in total suspended particulate (TSP), PM10 , PM7 , PM2.5 , PM1 , ozone (O3), and black carbon (BC) levels along the route were recorded using portable monitors and GPS to assess the status of air quality. This is the first study to elucidate the exposure to air pollutants among pilgrims. Extremely high levels of all pollutants were observed during the intensive measuring periods. For example, the PM7 , PM2.5 , O3, and BC concentrations of up to 9,433 µg/m3, 484 µg/m3, 444 ppb, and 468 µg/m3, respectively, were observed. Results of this investigation revealed that most routes had on average exceeded the World Health Organization (WHO) standards for PM10 and PM2.5 . The reasons for the high air pollutants concentrations are most probably high volume of traffic, construction work, re-suspension of particles, and geographical conditions (arid regions). The pilgrim's longer trip duration lead to their highest whole trip exposure to air pollutants, which indicate that they are possibly subject to higher health risk. Better understanding of air pollution exposure and their determinants in the environments will contribute to the development of more appropriate exposure reductive strategies and have significant public health meanings.

  7. The possible association between exposure to air pollution and the risk for congenital malformations.

    PubMed

    Farhi, Adel; Boyko, Valentina; Almagor, Jonatan; Benenson, Itzhak; Segre, Enrico; Rudich, Yinon; Stern, Eli; Lerner-Geva, Liat

    2014-11-01

    Over the last decade, there is growing evidence that exposure to air pollution may be associated with increased risk for congenital malformations. To evaluate the possible association between exposures to air pollution during pregnancy and congenital malformations among infants born following spontaneously conceived (SC) pregnancies and assisted reproductive technology (ART) pregnancies. This is an historical cohort study comprising 216,730 infants: 207,825 SC infants and 8905 ART conceived infants, during the periods 1997-2004. Air pollution data including sulfur dioxide (SO2), particulate matter <10 µm (PM10), nitrogen oxides (NOx) and ozone (O3) were obtained from air monitoring stations database for the study period. Using a geographic information system (GIS) and the Kriging procedure, exposure to air pollution during the first trimester and the entire pregnancy was assessed for each woman according to her residential location. Logistic regression models with generalized estimating equation (GEE) approach were used to evaluate the adjusted risk for congenital malformations. In the study cohort increased concentrations of PM10 and NOx pollutants in the entire pregnancy were associated with slightly increased risk for congenital malformations: OR 1.06(95% CI, 1.01-1.11) for 10 µg/m(3) increase in PM10 and OR 1.03(95% CI, 1.01-1.04) for 10 ppb increase in NOx. Specific malformations were evident in the circulatory system (for PM10 and NOx exposure) and genital organs (for NOx exposure). SO2 and O3 pollutants were not significantly associated with increased risk for congenital malformations. In the ART group higher concentrations of SO2 and O3 in entire pregnancy were associated (although not significantly) with an increased risk for congenital malformations: OR 1.06(95% CI, 0.96-1.17) for 1 ppb increase in SO2 and OR 1.15(95% CI, 0.69-1.91) for 10 ppb increase in O3. Exposure to higher levels of PM10 and NOx during pregnancy was associated with an increased risk for congenital malformations. Specific malformations were evident in the circulatory system and genital organs. Among ART pregnancies possible adverse association of SO2 and O3 exposure was also observed. Further studies are warranted, including more accurate exposure assessment and a larger sample size for ART pregnancies, in order to confirm these findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Identifying the most hazardous synoptic meteorological conditions for Winter UK PM10 exceedences

    NASA Astrophysics Data System (ADS)

    Webber, Chris; Dacre, Helen; Collins, Bill; Masato, Giacomo

    2016-04-01

    Summary We investigate the relationship between synoptic scale meteorological variability and local scale pollution concentrations within the UK. Synoptic conditions representative of atmospheric blocking highlighted significant increases in UK PM10 concentration ([PM10]), with the probability of exceeding harmful [PM10] limits also increased. Once relationships had been diagnosed, The Met Office Unified Model (UM) was used to replicate these relationships, using idealised source regions of PM10. This helped to determine the PM10 source regions most influential throughout UK PM10 exceedance events and to test whether the model was capable of capturing the relationships between UK PM10 and atmospheric blocking. Finally, a time slice simulation for 2050-2060 helped to answer the question whether PM10 exceedance events are more likely to occur within a changing climate. Introduction Atmospheric blocking events are well understood to lead to conditions, conducive to pollution events within the UK. Literature shows that synoptic conditions with the ability to deflect the Northwest Atlantic storm track from the UK, often lead to the highest UK pollution concentrations. Rossby wave breaking (RWB) has been identified as a mechanism, which results in atmospheric blocking and its relationship with UK [PM10] is explored using metrics designed in Masato, et al., 2013. Climate simulations facilitated by the Met Office UM, enable these relationships between RWB and PM10 to be found within the model. Subsequently the frequency of events that lead to hazardous PM10 concentrations ([PM10]) in a future climate, can be determined, within a climate simulation. An understanding of the impact, meteorology has on UK [PM10] within a changing climate, will help inform policy makers, regarding the importance of limiting PM10 emissions, ensuring safe air quality in the future. Methodology and Results Three Blocking metrics were used to subset RWB into four categories. These RWB categories were all shown to increase UK [PM10] and to increase the probability of exceeding a UK [PM10] threshold, when they occurred within constrained regions. Further analysis highlighted that Omega Block events lead to the greatest probability of exceeding hazardous UK [PM10] limits. These events facilitated the advection of European PM10, while also providing stagnant conditions over the UK, facilitating PM10 accumulation. The Met Office UM was used and nudged to ERA-Interim Reanalysis wind and temperature fields, to replicate the relationships found using observed UK [PM10]. Inert tracers were implemented into the model to replicate UK PM10 source regions throughout Europe. The modelled tracers were seen to correlate well with observed [PM10] and Figure 1 highlights the correlations between a RWB metric and observed (a) and modelled (b) [PM10]. A further free running model simulation highlighted the deficiency of the Met Office UM in capturing RWB frequency, with a reduction over the Northwest Atlantic/ European region. A final time slice simulation was undertaken for the period 2050-2060, using Representative Concentration Pathway 8.5, which attempted to determine the change in frequency of UK PM10 exceedance events, due to changing meteorology, in a future climate. Conclusions RWB has been shown to increase UK [PM10] and to lead to greater probabilities of exceeding a harmful [PM10] threshold. Omega block events have been determined the most hazardous RWB subset and this is due to a combination of European advection and UK stagnation. Simulations within the Met Office UM were undertaken and the relationships seen between observed UK [PM10] and RWB were replicated within the model, using inert tracers. Finally, time slice simulations were undertaken, determining the change in frequency of UK [PM10] exceedance events within a changing climate. References Masato, G., Hoskins, B. J., Woolings, T., 2013; Wave-breaking Characteristics of Northern Hemisphere Winter Blocking: A Two-Dimensional Approach. J. Climate, 26, 4535-4549.

  9. Long term observations of PM2.5-associated PAHs: Comparisons between normal and episode days

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Li, Xiao; Jiang, Nan; Zhang, Wenkai; Zhang, Ruiqin; Tang, Xiaoyan

    2015-03-01

    The pollution characteristic of fine particular matter (PM2.5) and associated polycyclic aromatic hydrocarbons (PAHs) are currently drawing a great deal of interest because of their influence on environment and health. In this study, PM2.5 was collected from 2011 to 2013 (n = 188) in a suburban area of Zhengzhou, China. 16-PAHs were analyzed to determine the concentration, seasonal variation and potential sources during normal days and episode events. The total mass of 16 PAHs and PM2.5 were in the range of 7-961 ng m-3 and 55-697 μg m-3, with a 3-year average of 174 ng m-3 and 194 μg m-3 respectively. Winter is most polluted for both PM2.5 and PAHs. Average PAH and PM2.5 concentrations during three episode events are 454 ng m-3 and 453 μg m-3, respectively, much higher than values during normal days (299 ng m-3 and 180 μg m-3, respectively). Ratios of Σ16PAH/PM2.5 varied with seasons and concentrations of PM2.5, but showed a negative correlation with PM2.5 concentrations during episode events. The dominant components of PAHs are Benzo[b]fluoranthene, Chrysene, Fluoranthene, and Benzo[k]fluoranthene, Benz[a]anthracene, Pyrene, Indeno(1,2,3-cd)pyrene and their total concentrations vary from 27 to 342 ng m-3, accounting for 58-82% (average = 73%) of 16 PAHs. The Benzo[a]pyrene (Bap) concentration obtained was 9.4 ng m-3 (3-year average), exceeding nearly one order of magnitude of ambient air BaP standard (annual average: 1.0 ng m-3) in China. Diagnose ratios and Positive Matrix Factorization results show that coal combustion, vehicles, coking plant, and biomass burning are main sources for PAHs in this area. The high concentrations of PM2.5 and PAHs, especially during episode events, reflected a potential health problem for nearby public and the necessity of air pollution control for both stationary and mobile sources.

  10. Main air pollutants and myocardial infarction: a systematic review and meta-analysis.

    PubMed

    Mustafic, Hazrije; Jabre, Patricia; Caussin, Christophe; Murad, Mohammad H; Escolano, Sylvie; Tafflet, Muriel; Périer, Marie-Cécile; Marijon, Eloi; Vernerey, Dewi; Empana, Jean-Philippe; Jouven, Xavier

    2012-02-15

    Short-term exposure to high levels of air pollution may trigger myocardial infarction (MI), but this association remains unclear. To assess and quantify the association between short-term exposure to major air pollutants (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter ≤10 μm [PM(10)] and ≤2.5 μm [PM(2.5)] in diameter) on MI risk. EMBASE, Ovid MEDLINE in-process and other nonindexed citations, and Ovid MEDLINE (between 1948 and November 28, 2011), and EBM Reviews-Cochrane Central Register of Controlled Trials and EBM Reviews-Cochrane Database of Systematic Reviews (between 2005 and November 28, 2011) were searched for a combination of keywords related to the type of exposure (air pollution, ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, PM(10), and PM(2.5)) and to the type of outcome (MI, heart attack, acute coronary syndrome). Two independent reviewers selected studies of any study design and in any language, using original data and investigating the association between short-term exposure (for up to 7 days) to 1 or more air pollutants and subsequent MI risk. Selection was performed from abstracts and titles and pursued by reviewing the full text of potentially eligible studies. Descriptive and quantitative information was extracted from each selected study. Using a random effects model, relative risks (RRs) and 95% CIs were calculated for each increment of 10 μg/m(3) in pollutant concentration, with the exception of carbon monoxide, for which an increase of 1 mg/m(3) was considered. After a detailed screening of 117 studies, 34 studies were identified. All the main air pollutants, with the exception of ozone, were significantly associated with an increase in MI risk (carbon monoxide: 1.048; 95% CI, 1.026-1.070; nitrogen dioxide: 1.011; 95% CI, 1.006-1.016; sulfur dioxide: 1.010; 95% CI, 1.003-1.017; PM(10): 1.006; 95% CI, 1.002-1.009; and PM(2.5): 1.025; 95% CI, 1.015-1.036). For ozone, the RR was 1.003 (95% CI, 0.997-1.010; P = .36). Subgroup analyses provided results comparable with those of the overall analyses. Population attributable fractions ranged between 0.6% and 4.5%, depending on the air pollutant. All the main air pollutants, with the exception of ozone, were significantly associated with a near-term increase in MI risk.

  11. Exposure and toxicity assessment of ultrafine particles from nearby traffic in urban air in seoul, Korea.

    PubMed

    Yang, Ji-Yeon; Kim, Jin-Yong; Jang, Ji-Young; Lee, Gun-Woo; Kim, Soo-Hwan; Shin, Dong-Chun; Lim, Young-Wook

    2013-01-01

    We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with PM10 and PM2.5 inlets. The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to 3.2 µm. The mass concentrations of the metals in fine particles (0.1 to 1.8 µm) accounted for 45.6 to 80.4% of the mass concentrations of metals in PM10. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the PM10 mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. We found that exposure to PM2.5 and PM10 from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the PM2.5 treatment were higher than those with PM10. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.

  12. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia.

    PubMed

    Allen, Ryan W; Gombojav, Enkhjargal; Barkhasragchaa, Baldorj; Byambaa, Tsogtbaatar; Lkhasuren, Oyuntogos; Amram, Ofer; Takaro, Tim K; Janes, Craig R

    2013-03-01

    Epidemiologic studies have consistently reported associations between outdoor fine particulate matter (PM 2.5 ) air pollution and adverse health effects. Although Asia bears the majority of the public health burden from air pollution, few epidemiologic studies have been conducted outside of North America and Europe due in part to challenges in population exposure assessment. We assessed the feasibility of two current exposure assessment techniques, land use regression (LUR) modeling and mobile monitoring, and estimated the mortality attributable to air pollution in Ulaanbaatar, Mongolia. We developed LUR models for predicting wintertime spatial patterns of NO 2 and SO 2 based on 2-week passive Ogawa measurements at 37 locations and freely available geographic predictors. The models explained 74% and 78% of the variance in NO 2 and SO 2 , respectively. Land cover characteristics derived from satellite images were useful predictors of both pollutants. Mobile PM 2.5 monitoring with an integrating nephelometer also showed promise, capturing substantial spatial variation in PM 2.5 concentrations. The spatial patterns in SO 2 and PM, seasonal and diurnal patterns in PM 2.5 , and high wintertime PM 2.5 /PM 10 ratios were consistent with a major impact from coal and wood combustion in the city's low-income traditional housing (ger) areas. The annual average concentration of PM 2.5 measured at a centrally located government monitoring site was 75 μg/m 3 or more than seven times the World Health Organization's PM 2.5 air quality guideline, driven by a wintertime average concentration of 148 μg/m 3 . PM 2.5 concentrations measured in a traditional housing area were higher, with a wintertime mean PM 2.5 concentration of 250 μg/m 3 . We conservatively estimated that 29% (95% CI, 12-43%) of cardiopulmonary deaths and 40% (95% CI, 17-56%) of lung cancer deaths in the city are attributable to outdoor air pollution. These deaths correspond to nearly 10% of the city's total mortality, with estimates ranging to more than 13% of mortality under less conservative model assumptions. LUR models and mobile monitoring can be successfully implemented in developing country cities, thus cost-effectively improving exposure assessment for epidemiology and risk assessment. Air pollution represents a major threat to public health in Ulaanbaatar, Mongolia, and reducing home heating emissions in traditional housing areas should be the primary focus of air pollution control efforts.

  13. Spatial/Temporal Variations of Elemental Carbon, Organic Carbon, and Trace Elements in PM10 and the Impact of Land-Use Patterns on Community Air Pollution in Paterson, NJ

    PubMed Central

    Yu, Chang Ho; Fan, Zhi-Hua; Meng, Qingyu; Zhu, Xianlei; Korn, Leo; Bonanno, Linda J.

    2014-01-01

    An urban community PM10 (particulate matter ≤ 10 μm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of the variability in concentration by land-use type only. PMID:21751583

  14. Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China.

    PubMed

    Chen, Yuan; Xie, Shao-Dong

    2014-03-01

    To track the chemical characteristics and formation mechanism of biomass burning pollution, the hourly variations of meteorological factors and pollutant concentrations during a heavy pollution on 18-21 May, 2012 in Chengdu are presented in this study. The episode was the heaviest and most long-lasting pollution event in the historical record of Chengdu caused by a combination of stagnant dispersion conditions and enhanced PM2.5 emission from intensive biomass burning, with peak values surpassing 500 μg m(-3). The event was characterized by three nighttime peaks, relating to the burning practice and decreased boundary layer height at night. The prevailing northeasterly wind during nighttime preferentially brought more pollutants to the urban regions from northern suburbs of Chengdu, where dense fire spots were observed. Due to the obstruction of hilly topography and weak wind speed, minor regional features were reflected from the PM10 variations in nearby cities, whereas the long-distance transport of the plume impacted extensive regions in northern and eastern China. Carbon monoxide (CO) concentrations increased by more than 200%, while exceptionally high PM2.5 levels of 190.1 and 268.4 μg m(-3) on 17 May and 18 May, were observed and showed high correlation with CO (r=0.75). The relative contribution of biomass burning smoke to organic carbon was estimated from OC/EC ratios (organic carbon/elemental carbon) and elevated to 81.3% during the episode, indicating a significant impact on urban aerosol levels. The occurrence of high PM2.5/PM10 ratios (>0.80) and K(+)/EC ratios (>1.0), along with the increased carbonaceous concentrations and their fraction in PM2.5 (>40%) and high OC/EC ratios (about 8), could be used as immediate indicators for biomass burning pollution in cities. In addition, the heavy pollution involved a mixture of anthropogenic sources, reflected from the high SOR and NOR values and increases in the EFs (enrichment factors) of Mo, Zn, Cd, and Pb. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10.

    PubMed

    Badyda, Artur; Gayer, Anna; Czechowski, Piotr Oskar; Majewski, Grzegorz; Dąbrowiecki, Piotr

    2016-11-22

    It is essential in pulmonary disease research to take into account traffic-related air pollutant exposure among urban inhabitants. In our study, 4985 people were examined for spirometric parameters in the presented research which was conducted in the years 2008-2012. The research group was divided into urban and rural residents. Traffic density, traffic structure and velocity, as well as concentrations of selected air pollutants (CO, NO₂ and PM 10 ) were measured at selected areas. Among people who live in the city, lower percentages of predicted values of spirometric parameters were noticed in comparison to residents of rural areas. Taking into account that the difference in the five-year mean concentration of PM 10 in the considered city and rural areas was over 17 μg/m³, each increase of PM 10 by 10 μg/m³ is associated with the decline in FEV₁ (forced expiratory volume during the first second of expiration) by 1.68%. These findings demonstrate that traffic-related air pollutants may have a significant influence on the decline of pulmonary function and the growing rate of respiratory diseases.

  16. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10

    PubMed Central

    Badyda, Artur; Gayer, Anna; Czechowski, Piotr Oskar; Majewski, Grzegorz; Dąbrowiecki, Piotr

    2016-01-01

    It is essential in pulmonary disease research to take into account traffic-related air pollutant exposure among urban inhabitants. In our study, 4985 people were examined for spirometric parameters in the presented research which was conducted in the years 2008–2012. The research group was divided into urban and rural residents. Traffic density, traffic structure and velocity, as well as concentrations of selected air pollutants (CO, NO2 and PM10) were measured at selected areas. Among people who live in the city, lower percentages of predicted values of spirometric parameters were noticed in comparison to residents of rural areas. Taking into account that the difference in the five-year mean concentration of PM10 in the considered city and rural areas was over 17 μg/m3, each increase of PM10 by 10 μg/m3 is associated with the decline in FEV1 (forced expiratory volume during the first second of expiration) by 1.68%. These findings demonstrate that traffic-related air pollutants may have a significant influence on the decline of pulmonary function and the growing rate of respiratory diseases. PMID:27879677

  17. The fine and coarse particulate matter at four major Mediterranean cities: local and regional sources

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2013-11-01

    Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations, the results were weaker in Marseille and particularly in Rome, probably due to their greater distance from Northwest Africa, in comparison to Madrid and Lisbon. Dust intrusions from the Sahara desert and transportation of Mediterranean/Atlantic sea spray, were characterized as primary regional sources of exogenous PM10 in all four cities. Continental trajectories from the industrialized northern Italy affected PM10 levels particularly in Marseille and Rome, due to their more eastern geographical position.

  18. The association between daily concentrations of air pollution and visits to a psychiatric emergency unit: a case-crossover study.

    PubMed

    Oudin, Anna; Åström, Daniel Oudin; Asplund, Peter; Steingrimsson, Steinn; Szabo, Zoltan; Carlsen, Hanne Krage

    2018-01-10

    Air pollution is one of the leading causes of mortality and morbidity worldwide. Experimental studies, and a few epidemiological studies, suggest that air pollution may cause acute exacerbation of psychiatric disorders, and even increase the rate of suicide attempts, but epidemiological studies on air pollution in association with psychiatric disorders are still few. Our aim was to investigate associations between daily fluctuations in air pollution concentrations and the daily number of visits to a psychiatric emergency unit. Data from Sahlgrenska University Hospital, Gothenburg, Sweden, on the daily number of visits to the Psychiatric emergency unit were combined with daily data on monitored concentrations of respirable particulate matter(PM 10 ), ozone(O 3 ), nitrogen dioxides(NO 2 ) and temperature between 1st July 2012 and 31st December 2016. We used a case-crossover design to analyze data with conditional Poisson regression models allowing for over-dispersion. We stratified data on season. Visits increased with increasing PM 10 levels during the warmer season (April to September) in both single-pollutant and two-pollutant models. For example, an increase of 3.6% (95% Confidence Interval, CI, 0.4-7.0%) was observed with a 10 μg/m3 increase in PM 10 adjusted for NO 2 . In the three-pollutant models (adjusting for NO 2 and O 3 simultaneously) the increase was 3.3% (95% CI, -0.2-6.9). There were no clear associations between the outcome and NO 2 , O 3 , or PM 10 during the colder season (October to March). Ambient air particle concentrations were associated with the number of visits to the Psychiatric emergency unit in the warm season. The results were only borderline statistically significant in the fully adjusted (three-pollutant) models in this small study. The observation could be interpreted as indicative of air pollution as either exacerbating an underlying psychiatric disorder, or increasing mental distress, even in areas with comparatively low levels of air pollution. In combination with the severe impact of psychiatric disorders and mental distress on society and individuals, our results are a strong warrant for future research in this area.

  19. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts.

    PubMed

    Guxens, Mònica; Garcia-Esteban, Raquel; Giorgis-Allemand, Lise; Forns, Joan; Badaloni, Chiara; Ballester, Ferran; Beelen, Rob; Cesaroni, Giulia; Chatzi, Leda; de Agostini, Maria; de Nazelle, Audrey; Eeftens, Marloes; Fernandez, Mariana F; Fernández-Somoano, Ana; Forastiere, Francesco; Gehring, Ulrike; Ghassabian, Akhgar; Heude, Barbara; Jaddoe, Vincent W V; Klümper, Claudia; Kogevinas, Manolis; Krämer, Ursula; Larroque, Béatrice; Lertxundi, Aitana; Lertxuni, Nerea; Murcia, Mario; Navel, Vladislav; Nieuwenhuijsen, Mark; Porta, Daniela; Ramos, Rosa; Roumeliotaki, Theano; Slama, Rémy; Sørensen, Mette; Stephanou, Euripides G; Sugiri, Dorothea; Tardón, Adonina; Tiemeier, Henning; Tiesler, Carla M T; Verhulst, Frank C; Vrijkotte, Tanja; Wilhelm, Michael; Brunekreef, Bert; Pershagen, Göran; Sunyer, Jordi

    2014-09-01

    Accumulating evidence from laboratory animal and human studies suggests that air pollution exposure during pregnancy affects cognitive and psychomotor development in childhood. We analyzed data from 6 European population-based birth cohorts-GENERATION R (The Netherlands), DUISBURG (Germany), EDEN (France), GASPII (Italy), RHEA (Greece), and INMA (Spain)-that recruited mother-infant pairs from 1997 to 2008. Air pollution levels-nitrogen oxides (NO2, NOx) in all regions and particulate matter (PM) with diameters of <2.5, <10, and 2.5-10 μm (PM2.5, PM10, and PMcoarse, respectively) and PM2.5 absorbance in a subgroup-at birth addresses were estimated by land-use regression models, based on monitoring campaigns performed primarily between 2008 and 2011. Levels were back-extrapolated to exact pregnancy periods using background monitoring sites. Cognitive and psychomotor development was assessed between 1 and 6 years of age. Adjusted region-specific effect estimates were combined using random-effects meta-analysis. A total of 9482 children were included. Air pollution exposure during pregnancy, particularly NO2, was associated with reduced psychomotor development (global psychomotor development score decreased by 0.68 points [95% confidence interval = -1.25 to -0.11] per increase of 10 μg/m in NO2). Similar trends were observed in most regions. No associations were found between any air pollutant and cognitive development. Air pollution exposure during pregnancy, particularly NO2 (for which motorized traffic is a major source), was associated with delayed psychomotor development during childhood. Due to the widespread nature of air pollution exposure, the public health impact of the small changes observed at an individual level could be considerable.

  20. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort.

    PubMed

    Lipsett, Michael J; Ostro, Bart D; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Jerrett, Michael; Smith, Daniel F; Garcia, Cynthia; Chang, Ellen T; Bernstein, Leslie

    2011-10-01

    Several studies have linked long-term exposure to particulate air pollution with increased cardiopulmonary mortality; only two have also examined incident circulatory disease. To examine associations of individualized long-term exposures to particulate and gaseous air pollution with incident myocardial infarction and stroke, as well as all-cause and cause specific mortality. We estimated long-term residential air pollution exposure for more than 100,000 participants in the California Teachers Study, a prospective cohort of female public school professionals.We linked geocoded residential addresses with inverse distance-weighted monthly pollutant surfaces for two measures of particulate matter and for several gaseous pollutants. We examined associations between exposure to these pollutants and risks of incident myocardial infarction and stroke, and of all-cause and cause-specific mortality, using Cox proportional hazards models. We found elevated hazard ratios linking long-term exposure to particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5), scaled to an increment of 10 μg/m3 with mortality from ischemic heart disease (IHD) (1.20; 95% confidence interval [CI], 1.02-1.41) and, particularly among postmenopausal women, incident stroke (1.19; 95% CI, 1.02-1.38). Long-term exposure to particulate matter less than 10 μm in aerodynamic diameter (PM10) was associated with elevated risks for IHD mortality (1.06; 95% CI, 0.99-1.14) and incident stroke (1.06; 95% CI, 1.00-1.13), while exposure to nitrogen oxides was associated with elevated risks for IHD and all cardiovascular mortality. This study provides evidence linking long-term exposure to PM2.5 and PM10 with increased risks of incident stroke as well as IHD mortality; exposure to nitrogen oxides was also related to death from cardiovascular diseases.

  1. [Variation of atmospheric pollutants in Qinhuangdao City].

    PubMed

    Liu, Lu-Ning; Shen, Yu-Xuan; Xin, Jin-Yuan; Ji, Dong-Sheng; Wang, Yue-Si

    2013-06-01

    To illuminate the air pollution situation of the tourist city of Qinhuangdao, the atmospheric pollutants were measured from autumn 2009 to summer 2010. The results showed that the mean average concentration of NO, NO2, SO2, O3 and PM10 during the observation period reached (18 +/- 18), (45 +/- 18), (42 +/- 46), (44 +/- 25) and (128 +/- 77) microg x m(-3), respectively. The particulate matter pollution was serious, and the rate of the annual mean value exceeded the National Ambient Air Quality Standard II by 28%. The average daily concentration and average max hourly O3 concentration were (64 +/- 21)microg x m(-3) and (126 +/- 42) microg x m(-3) in summer, and the air masses from the southern ocean aggravated the O3 pollution. The concentrations of NO(x) SO2 and PM10 in the heating period were 1.5, 4.9 and 1.5 times more than those in the period without heating and the daily average concentration of SO2 and PM10 exceeded the National Ambient Air Quality Standard II by 53% and 11% in the heating period, respectively. The superimposition effect of regional transport in the Beijing-Tianjin-Hebei region and industrial area surrounding the Bohai Bay and local harbor emission led to an increase of 17% (NO(x)), 27% (SO2) and 12% (PM10), resulting in average concentrations of up to (100 +/- 49), (110 +/- 84) and (215 +/- 108) microg x m(-3) in winter. The winds from northern inland and southern ocean can effectively remove the air pollutants.

  2. On large-scale transport of dust storms and anthropogenic dust-falls over east Asia observed in central Korea in 2009

    NASA Astrophysics Data System (ADS)

    Chung, Y. S.; Kim, Hak-Sung; Chun, Youngsin

    2014-05-01

    Dust air pollution has been routinely monitored in central Korea for the last two decades. In 2009, there were eight typical episodes of significant dust loadings in the air: four were caused by dust storms from deserts in Mongolia and Northern China, while the remaining were typical cases of anthropogenic air pollution masses arriving from the Yellow Sea and East China. These natural dust loadings occurred with cool northwesterly airflows in the forward side of an intense anticyclone coming from Mongolia and Siberia. The mean concentrations of the four natural dustfall cases for TSP, PM10 and PM2.5 were 632, 480 and 100 μg m-3, respectively. In contrast, the anthropogenic dust-pollution episodes occurred with the warm westerly and southwesterly airflows in the rear side of an anticyclone. This produced a favorable atmospheric and chemical condition for the build-up of anthropogenic dust air pollution in the Yellow Sea. The mean concentrations of the four anthropogenic dust loadings for TSP, PM10 and PM2.5 were 224, 187 and 137 μg m-3, respectively. The contents of fine dust loadings of PM2.5 were comparatively high in the cases of anthropogenic air pollution. High atmospheric concentrations of fine particles in the atmosphere cause poor visibility and constitute a health hazard. Satellite observations clearly showed the movement of dust-pollution masses from Mongolia and Northern China and from the Yellow Sea and East China that caused these dust pollution episodes in Korea.

  3. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China

    PubMed Central

    Kan, Haidong; London, Stephanie J.; Chen, Guohai; Zhang, Yunhui; Song, Guixiang; Zhao, Naiqing; Jiang, Lili; Chen, Bingheng

    2007-01-01

    The findings on health effects of ambient fine particles (PM2.5) and coarse particles (PM10-2.5) remain inconsistent. In China, PM2.5 and PM10-2.5 are not the criteria air pollutants, and their monitoring data are scarce. There have been no epidemiological studies of health effects of PM2.5 and PM10-2.5 simultaneously in China. We conducted a time series study to examine the acute effects of PM2.5 and PM10-2.5 on daily mortality in Shanghai, China from Mar. 4, 2004 to Dec. 31, 2005. We used the generalized additive model (GAM) with penalized splines to analyze the mortality, air pollution and covariate data. The average concentrations of PM2.5 and PM10-2.5 were 56.4µg/m3 and 52.3µg/m3 in our study period, and PM2.5 constituted around 53.0% of the PM10 mass. Compared with the Global Air Quality Guidelines set by World Health Organization (10µg/m3 for annual mean) and U.S. National Ambient Air Quality Standards (15µg/m3 for annual mean), the PM2.5 level in Shanghai was much higher. We found that PM2.5 was associated with the death rates from all causes and from cardio-respiratory diseases in Shanghai. We did not find a significant effect of PM10-2.5 on mortality outcomes. A10µg/m3 increase in the 2-day moving average (lag01) concentration of PM2.5 corresponded to 0.36% (95%CI 0.11%, 0.61%), 0.41% (95% CI 0.01%, 0.82%) and 0.95% (95% CI 0.16%, 1.73%) increase of total, cardiovascular and respiratory mortality. For PM10-2.5, the effects were attenuated and less precise. Our analyses provide the first statistically significant evidence in China that PM2.5 has an adverse effect on population health and strengthen the rationale for further limiting levels of PM2.5 in outdoor air in Shanghai. PMID:17229464

  4. Research on the Emission Inventory of Major Air Pollutants in 2012 for the Sichuan City Cluster in China

    NASA Astrophysics Data System (ADS)

    Qian, J.; He, Q.

    2014-12-01

    This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang, Meishan and Ziyang, industry sources had a relatively high contribution ratio to the PM2.5 pollution, accounting for about 35%, 33%, 38% and 24% respectively.

  5. Chronic effects of air pollution on lung function after lung transplantation in the Systems prediction of Chronic Lung Allograft Dysfunction (SysCLAD) study.

    PubMed

    Benmerad, Meriem; Slama, Rémy; Botturi, Karine; Claustre, Johanna; Roux, Antoine; Sage, Edouard; Reynaud-Gaubert, Martine; Gomez, Carine; Kessler, Romain; Brugière, Olivier; Mornex, Jean-François; Mussot, Sacha; Dahan, Marcel; Boussaud, Véronique; Danner-Boucher, Isabelle; Dromer, Claire; Knoop, Christiane; Auffray, Annick; Lepeule, Johanna; Malherbe, Laure; Meleux, Frederik; Nicod, Laurent; Magnan, Antoine; Pison, Christophe; Siroux, Valérie

    2017-01-01

    An irreversible loss in lung function limits the long-term success in lung transplantation. We evaluated the role of chronic exposure to ambient air pollution on lung function levels in lung transplant recipients (LTRs).The lung function of 520 LTRs from the Cohort in Lung Transplantation (COLT) study was measured every 6 months. The levels of air pollutants (nitrogen dioxide (NO 2 ), particulate matter with an aerodynamic cut-off diameter of x µm (PM x ) and ozone (O 3 )) at the patients' home address were averaged in the 12 months before each spirometry test. The effects of air pollutants on forced expiratory volume in 1 s (FEV 1 ) and forced vital capacity (FVC) in % predicted were estimated using mixed linear regressions. We assessed the effect modification of macrolide antibiotics in this relationship.Increased 12-month levels of pollutants were associated with lower levels of FVC % pred (-2.56%, 95% CI -3.86--1.25 for 5 µg·m -3 of PM 10 ; -0.75%, 95% CI -1.38--0.12 for 2 µg·m -3 of PM 2.5 and -2.58%, 95% CI -4.63--0.53 for 10 µg·m -3 of NO 2 ). In patients not taking macrolides, the deleterious association between PM and FVC tended to be stronger and PM 10 was associated with lower FEV 1 Our study suggests a deleterious effect of chronic exposure to air pollutants on lung function levels in LTRs, which might be modified with macrolides. Copyright ©ERS 2017.

  6. Ambient air pollution and birth weight in full-term infants in Atlanta, 1994-2004.

    PubMed

    Darrow, Lyndsey A; Klein, Mitchel; Strickland, Matthew J; Mulholland, James A; Tolbert, Paige E

    2011-05-01

    An emerging body of evidence suggests that ambient levels of air pollution during pregnancy are associated with fetal growth. We examined relationships between birth weight and temporal variation in ambient levels of carbon monoxide, nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone, particulate matter ≤ 10 μm in diameter (PM₁₀), ≤ 2.5 μm (PM(2.5)), 2.5 to 10 µm (PM(2.5-10)), and PM(2.5) chemical component measurements for 406,627 full-term births occurring between 1994 and 2004 in five central counties of metropolitan Atlanta. We assessed relationships between birth weight and pollutant concentrations during each infant's first month of gestation and third trimester, as well as in each month of pregnancy using distributed lag models. We also conducted capture-area analyses limited to mothers residing within 4 miles (6.4 km) of each air quality monitoring station. In the five-county analysis, ambient levels of NO₂, SO₂, PM(2.5) elemental carbon, and PM(2.5) water-soluble metals during the third trimester were significantly associated with small reductions in birth weight (-4 to -16 g per interquartile range increase in pollutant concentrations). Third-trimester estimates were generally higher in Hispanic and non-Hispanic black infants relative to non-Hispanic white infants. Distributed lag models were also suggestive of associations between air pollutant concentrations in late pregnancy and reduced birth weight. The capture-area analyses provided little support for the associations observed in the five-county analysis. Results provide some support for an effect of ambient air pollution in late pregnancy on birth weight in full-term infants.

  7. Non-linear increase of respiratory diseases and their costs under severe air pollution.

    PubMed

    Shen, Ying; Wu, Yiyun; Chen, Guangdi; Van Grinsven, Hans J M; Wang, Xiaofeng; Gu, Baojing; Lou, Xiaoming

    2017-05-01

    China is experiencing severe and persistent air pollution, with concentrations of fine particulate matters (PM 2.5 ) reaching unprecedentedly high levels in many cities. Quantifying the detrimental effects on health and their costs derived from high PM 2.5 levels is crucial because of the unsolved challenges to mitigate air pollution in the following decades. Using the daily monitoring data on PM 2.5 concentrations and clinic visits, we found a non-linear increase of respiratory diseases, but not for other diseases (e.g., digestive diseases) under severe air pollution. We found an increase of respiratory diseases by 1% for each 10 μg m -3 increase in PM 2.5 when the annual average daily PM 2.5 concentration was less than 50 μg m -3 ; while this ratio was doubled (around 2%) with the daily PM 2.5 concentration larger than 50 μg m -3 . Under severe air pollution (PM 2.5 concentration >150 μg m -3 ), the respiratory diseases increased by over 50% compared to that in clean days. Children are more sensitive to the severe air pollution. The increase of clinic visits, especially for adults, was observed mainly in bigger (>500 beds) hospitals. Re-allocating medical resources (e.g., doctors) from big hospitals to community hospitals can benefit the respiratory patients due to air pollution. The total medical cost of clinic visits of respiratory diseases derived from PM 2.5 pollution was estimated at 17.2-57.0 billion Yuan in 2014 in China, accounting for 0.5-1.6% of national total health expenditure. Because these medical costs only represent a small part of total health cost derived from air pollution, the reduction of associated health costs would be an important co-benefit of implementation of air pollution preventive strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills

    NASA Astrophysics Data System (ADS)

    Rupakheti, Dipesh; Adhikary, Bhupesh; Siva Praveen, Puppala; Rupakheti, Maheswar; Kang, Shichang; Singh Mahata, Khadak; Naja, Manish; Zhang, Qianggong; Panday, Arnico Kumar; Lawrence, Mark G.

    2017-09-01

    Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of 3 months (April-June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley - Atmospheric Brown Clouds). The main objective of this work is to understand and document the level of air pollution, diurnal characteristics and influence of open burning on air quality in Lumbini. The hourly average concentrations during the entire measurement campaign ranged as follows: BC was 0.3-30.0 µg m-3, PM1 was 3.6-197.6 µg m-3, PM2. 5 was 6.1-272.2 µg m-3, PM10 was 10.5-604.0 µg m-3, O3 was 1.0-118.1 ppbv and CO was 125.0-1430.0 ppbv. These levels are comparable to other very heavily polluted sites in South Asia. Higher fraction of coarse-mode PM was found as compared to other nearby sites in the Indo-Gangetic Plain region. The ΔBC / ΔCO ratio obtained in Lumbini indicated considerable contributions of emissions from both residential and transportation sectors. The 24 h average PM2. 5 and PM10 concentrations exceeded the WHO guideline very frequently (94 and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants to understand the pollutant transport pathways. The model estimated values were ˜ 1. 5 to 5 times lower than the observed concentrations for CO and PM10, respectively. Model-simulated regionally tagged CO tracers showed that the majority of CO came from the upwind region of Ganges Valley. Model performance needs significant improvement in simulating aerosols in the region. Given the high air pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.

  9. Assessment of Particulate Matter Levels in Vulnerable Communities in North Charleston, South Carolina prior to Port Expansion

    PubMed Central

    Svendsen, Erik R; Reynolds, Scott; Ogunsakin, Olalekan A; Williams, Edith M; Fraser-Rahim, Herb; Zhang, Hongmei; Wilson, Sacoby M

    2014-01-01

    INTRODUCTION The Port of Charleston, one of the busiest US ports, currently operates five terminals. The fifth terminal is being planned for expansion to accommodate container ships from the proposed Panama Canal expansion. Such expansion is expected to increase traffic within local vulnerable North Charleston neck communities by at least 7,000 diesel truck trips per day, more than a 70% increase from the present average rate of 10,000 trucks per day. Our objective was to measure the current particulate matter (PM) concentrations in North Charleston communities as a baseline to contrast against future air pollution after the proposed port expansion. METHODS Saturation study was performed to determine spatial variability of PM in local Charleston neck communities. In addition, the temporal trends in particulate air pollution within the region were determined across several decades. With the BGI sampler, PM samples were collected for 24 hours comparable to the federal reference method protocol. Gravimetric analysis of the PM filter samples was conducted following EPA protocol. RESULTS The range of the PM10 annual average across the region from 1982 to 2006 was 17.0–55.0 μg/m3. On only two occasions were the records of PM10 averaged above the 50.0 μg/m3 national standard. In the case of PM2.5, the annual average for 1999–2006 ranged from 11.0 to 13.5 μg/m3 and no annual average exceeded the 15.0 μg/m3 PM2.5 annual standard. CONCLUSIONS Although ambient PM levels have fallen in the Charleston region since the 1960s due to aggressive monitoring by the stakeholders against air pollution, local air pollution sources within the North Charleston neck communities have consistently contributed to the PM levels in the region for several decades. This baseline assessment of ambient PM will allow for comparisons with future assessments to ascertain the impact of the increased truck and port traffic on PM concentrations. PMID:24653648

  10. PM2.5 levels, chemical composition and health risk assessment in Xinxiang, a seriously air-polluted city in North China.

    PubMed

    Feng, Jinglan; Yu, Hao; Liu, Shuhui; Su, Xianfa; Li, Yi; Pan, Yuepeng; Sun, Jianhui

    2017-10-01

    Seventeen PM 2.5 samples were collected at Xinxiang during winter in 2014. Nine water-soluble ions, 19 trace elements and eight fractions of carbonaceous species in PM 2.5 were analyzed. PM 2.5 concentrations and elements species during different periods with different pollution situations were compared. The threat of heavy metals in PM 2.5 was assessed using incremental lifetime cancer risk. During the whole period, serious regional haze pollution persisted, and the averaged concentration of PM 2.5 was 168.5 μg m -3 , with 88.2 % of the daily samples exhibiting higher PM 2.5 concentrations than the national air quality standard II. The high NO 3 - /SO 4 2- ratio suggested that vehicular exhaust made an important contribution to atmospheric pollution. All of organic carbon and elemental carbon ratios in this study were above 2.0 for PM 2.5 , which might reflect the combined contributions from coal combustion, motor vehicle exhaust and biomass burning. Mean 96-h backward trajectory clusters indicated that more serious air pollution occurred when air masses transported from the Hebei, Shanxi and Zhengzhou. The concentrations of the water-soluble ions and trace elements on haze days were 2 and 1.8 times of those on clear days. The heavy metals in PM 2.5 might not cause non-cancerous health issues by exposure through the human respiratory system. However, lifetime cancer risks of heavy metals obviously exceeded the threshold (10 -6 ) and might have a cancer risk for residents in Xinxiang. This study provided detailed composition data and comprehensive analysis of PM 2.5 during the serious haze pollution period and their potential impact on human health in Xinxiang.

  11. Air pollution and respiratory health among diabetic and non-diabetic subjects in Pune, India-results from the Wellcome Trust Genetic Study.

    PubMed

    Khafaie, Morteza Abdullatif; Salvi, Sundeep Santosh; Yajnik, Chittaranjan Sakerlal; Ojha, Ajay; Khafaie, Behzad; Gore, Sharad Damodar

    2017-06-01

    Diabetics may be more vulnerable to the harmful effects of ambient air pollutants than healthy individuals. But, the risk factors that lead to susceptibility to air pollution in diabetics have not yet been identified. We examined the effect of exposure to ambient PM 10 on chronic symptoms and the pulmonary function tests (PFT) in diabetic and non-diabetic subjects. Also, to investigate possible determinants of susceptibility, we recruited 400 type 2 diabetic and 465 healthy subjects who were investigated for chronic respiratory symptoms (CRSs) and then underwent measurement of forced vital capacity (FVC) and forced expiratory volume 1 (FEV1) according to standard protocol. Percent predicted FEV1 and FVC (FEV1% and FVC%, respectively) for each subject were calculated. Particulate matter (PM 10 ) concentrations at residence place of subjects were estimated using AERMOD dispersion model. The association between PM 10 and CRSs was explored using logistic regression. We also used linear regression models controlling for potential confounders to study the association between chronic exposure to PM 10 and FEV1% and FVC%. Prevalence of current wheezing, allergy symptom, chest tightness, FEV1/FVC <70%, and physician-diagnosed asthma and COPD was significantly higher among diabetic subjects than non-diabetics. There was no significant difference between percent predicted value of PFT among diabetic and non-diabetic subjects (P < 0.05). We estimated that 1 SD increase in PM 10 concentration was associated with a greater risk of having dyspnea by 1.50-fold (95% CI, 1.12-2.01). Higher exposure to PM 10 concentration was also significantly associated with lower FVC%. The size of effect for 1 SD μg/m 3 (=98.38) increase in PM 10 concentration was 3.71% (95% CI, 0.48-4.99) decrease in FVC%. In addition, we indicated that strength of these associations was higher in overweight, smoker, and aged persons. We demonstrated a possible contribution of air pollution to reduced lung function independent of diabetes status. This study suggests that decline in exposure may significantly reduce disease manifestation as dyspnea and impaired lung function. We conduct that higher BMI, smoking, and older age were associated with higher levels of air pollution effects.

  12. The effect of ambient air pollution during early pregnancy on fetal ultrasonic measurements during mid-pregnancy.

    PubMed

    Hansen, Craig A; Barnett, Adrian G; Pritchard, Gary

    2008-03-01

    Over the past decade there has been mounting evidence that ambient air pollution during pregnancy influences fetal growth. This study was designed to examine possible associations between fetal ultrasonic measurements collected from 15,623 scans (13-26 weeks gestation) and ambient air pollution during early pregnancy. We calculated mothers' average monthly exposures over the first 4 months of pregnancy for the following pollutants: particulate matter < 10 microm aerodynamic diameter (PM10), ozone, nitrogen dioxide, and sulfur dioxide. We examined associations with fetal femur length (FL), biparietal diameter (BPD), head circumference (HC), and abdominal circumference (AC). Final analyses included scans from only those women within 2 km of an air pollution monitoring site. We controlled for long-term trend, season, temperature, gestation, mother's age, socioeconomic status, and fetal sex. A reduction in fetal AC was associated with O3 during days 31-60 [-1.42 mm; 95% confidence interval (CI), -2.74 to -0.09], SO2 during days 61-90 (-1.67 mm; 95% CI, -2.94 to -0.40), and PM10 during days 91-120 (-0.78 mm; 95% CI, -1.49 to -0.08). Other results showed a reduction in BPD (-0.68 mm; 95% CI, -1.09 to -0.27) associated with SO2 during days 0-30, a reduction in HC (-1.02 mm; 95% CI, -1.78 to -0.26) associated with PM10 during days 91-120, and a reduction in FL associated with PM10 during days 0-30 (-0.28 mm; 95% CI, -0.48 to -0.08) and 91-120 (-0.23; 95% CI, -0.42 to -0.04). We found strong effects of ambient air pollution on ultrasound measures. Future research, including more individually detailed data, is needed to confirm our results.

  13. Insights into PM10 sources in Houston, Texas: Role of petroleum refineries in enriching lanthanoid metals during episodic emission events

    NASA Astrophysics Data System (ADS)

    Bozlaker, Ayşe; Buzcu-Güven, Birnur; Fraser, Matthew P.; Chellam, Shankararaman

    2013-04-01

    Petroleum refineries may emit large quantities of pollutants during non-routine operations that include start-ups and shutdowns, planned maintenance, and unplanned equipment failures. The Texas Commission on Environmental Quality (TCEQ) tracks such events by requiring industries to self-report estimates of these emissions because they often have a detrimental impact on local air quality and potentially, public health. An inventory of non-routine episodic emission events is available via TCEQ's website. However, there is on-going concern that such episodic emissions are sometimes under-reported or even not cataloged. Herein, we present concentrations of 42 main group, transition, and lanthanoid elements in 114 time-resolved (3 or 6 h) samples collected over a 1-month period. We also develop strategies to identify aerosol sources using elemental tracers and compare source apportionment (performed by positive matrix factorization) based on ambient measurements to inventoried non-routine emission events. Through interpretation of key marker elements, five sources impacting concentrations of metals in PM10 were identified and calculated to contribute 73% of the measured PM10 mass. On average, primary emissions from fluidized-bed catalytic cracking (FCC) units negligibly contributed to apportioned PM10 mass. However, 35 samples were identified as impacted by transient PM10 emissions from FCC units because of elevated levels of lanthanoid metals and their ratios. Only 31 of these 35 samples coincided with self-reported non-routine emission events. Further, roughly half of the emission event self-reports detailed only emissions of gaseous pollutants. Based on this, we posit that not all PM10 emission events are reported and even self-reported emission events are incomplete - those that only catalog gaseous pollutants may also include unreported PM emissions.

  14. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES)

    PubMed Central

    Chen, Renjie; Peng, Roger D.; Meng, Xia; Zhou, Zhijun; Chen, Bingheng; Kan, Haidong

    2013-01-01

    Epidemiological findings concerning the seasonal variation in the acute effect of particulate matter (PM) are inconsistent. We investigated the seasonality in the association between PM with an aerodynamic diameter of less than 10 μm (PM10) and daily mortality in 17 Chinese cities. We fitted the “main” time-series model after adjustment for time-varying confounders using smooth functions with natural splines. We established a “seasonal” model to obtain the season-specific effect estimates of PM10, and a “harmonic” model to show the seasonal pattern that allows PM10 effects to vary smoothly with the day in a year. At the national level, a 10 μg/m3 increase in the two-day moving average concentrations (lag 01) of PM10 was associated with 0.45% [95% posterior interval (PI), 0.15% to 0.76%], 0.17% (95% PI, −0.09% to 0.43%), 0.55% (95% PI, 0.15% to 0.96%) and 0.25% (95%PI, −0.05% to 0.56%) increases in total mortality for winter, spring, summer and fall, respectively. For the smoothly-varying plots of seasonality, we identified a two-peak pattern in winter and summer. The observed seasonal pattern was generally insensitive to model specifications. Our analyses suggest that the acute effect of particulate air pollution could vary by seasons with the largest effect in winter and summer in China. To our knowledge, this is the first multicity study in developing countries to analyze the seasonal variations of PM-related health effects. PMID:23500824

  15. Multi-criteria Analysis of Air Pollution with SO(2) and PM(10) in Urban Area Around the Copper Smelter in Bor, Serbia.

    PubMed

    Nikolić, Djordje; Milošević, Novica; Mihajlović, Ivan; Zivković, Zivan; Tasić, Viša; Kovačević, Renata; Petrović, Nevenka

    2010-02-01

    This work presents the results of 4 years long monitoring of concentrations of SO(2) gas and PM(10) in the urban area around the copper smelter in Bor. The contents of heavy metals Pb, Cd, Cu, Ni, and As in PM(10) were determined and obtained values were compared to the limit values provided in EU Directives. Manifold excess concentrations of all the components in the atmosphere of the urban area of the townsite Bor were registered. Through application of a multi-criteria analysis by using PROMETHEE/GAIA method, the zones were ranked according to the level of pollution.

  16. Numerical study on seasonal variations of gaseous pollutants and particulate matters in Hong Kong/Pearl River Delta Region

    NASA Astrophysics Data System (ADS)

    Kwok, Roger Hiu Fung

    Air pollution in Hong Kong (HK) causes problems in visibility and public health, which are worsening over past few years. Out of particulate matters (PM) inhalable into respiratory system, 30% is contributed by sulfate (SO4), 40% by organic carbon (OC), and 10% by elemental carbon (EC). A meso-scale numerical modeling system CMAQ is devised to simulate the air quality in January (winter), April (spring), July (summer) and October (autumn) 2004, driven by meteorology simulated by MM5 and emission sources in China including Hong Kong. Observational and measurement data from Hong Kong Environmental Protection Department Air Quality network are compared with the model results. With respect to pollutant concentration level, model-observation agreement is reasonably well, especially in PM species sulfate, organic carbon (OC) and elemental carbon (EC); and gaseous species SO2, NOx and ozone. In terms of PM composition, the model agrees with the measurement in fractions of sulfate, OC and EC. Higher PM level in autumn and winter is associated with northeasterly winds due to continental outflow. To further investigate emission sources contributing to HK, a source apportioning method called Tagged Species Source Apportionment (TSSA) algorithm is applied to study contributions to level of SO4, SO2 and EC in HK. It is found that while sources beyond PRD are observed in entire HK during January and October 2004, emitting sectors are different among western HK, downtown area, and the east countryside. Specifically, power plants and vehicles from HK and Shenzhen affect the western new towns, while power plants, vehicles and ships within HK determine the downtown pollutants' level. The countryside is mainly influenced by sources beyond PRD.

  17. [Air pollution and mortality in twenty-five Italian cities: results of the EpiAir2 Project].

    PubMed

    Alessandrini, Ester Rita; Faustini, Annunziata; Chiusolo, Monica; Stafoggia, Massimo; Gandini, Martina; Demaria, Moreno; Antonelli, Antonello; Arena, Pasquale; Biggeri, Annibale; Canova, Cristina; Casale, Giovanna; Cernigliaro, Achille; Garrone, Elsa; Gherardi, Bianca; Gianicolo, Emilio Antonio Luca; Giannini, Simone; Iuzzolino, Claudia; Lauriola, Paolo; Mariottini, Mauro; Pasetto, Paolo; Randi, Giorgia; Ranzi, Andrea; Santoro, Michele; Selle, Vittorio; Serinelli, Maria; Stivanello, Elisa; Tominz, Riccardo; Vigotti, Maria Angela; Zauli-Sajani, Stefano; Forastiere, Francesco; Cadum, Ennio

    2013-01-01

    this study aims at presenting the results from the Italian EpiaAir2 Project on the short-term effects of air pollution on adult population (35+ years old) in 25 Italian cities. the short-term effects of air pollution on resident people died in their city were analysed adopting the time series approach. The association between increases in 10µg/m(3) in PM10, PM2.5, NO2 and O3 air concentration and natural, cardiac, cerebrovascular and respiratory mortality was studied. City-specific Poisson models were fitted to estimate the association of daily concentrations of pollutants with daily counts of deaths. The analysis took into account temporal and meteorological factors to control for potential confounding effect. Pooled estimates have been derived from random effects meta-analysis, evaluating the presence of heterogeneity in the city specific results. it was analysed 422,723 deaths in the 25 cities of the project among people aged 35 years or more, resident in each city during the period 2006-2010. daily counts of natural, cardiac, cerebrovascular, and respiratory mortality, obtained from the registries of each city. Demographic information were obtained by record linkage procedure with the civil registry of each city. mean number of deaths for natural causes ranged from 513 in Rovigo to 20,959 in Rome. About 25% of deaths are due to cardiac diseases, 10% to cerebrovascular diseases, and 7% to respiratory diseases. It was found an immediate effect of PM10 on natural mortality (0.51%; 95%CI 0.16-0.86; lag 0-1). More relevant and prolonged effects (lag 0-5) have been found for PM2.5 (0.78%; 95%CI 0.12-1.46) and NO2 (1.10%; 95%CI 0.63-1.58). Increases in cardiac mortality are associated with PM10 (0.93%; 95%CI 0.16-1.70) and PM2.5 (1.25%; 95%CI 0.17-2.34), while for respiratory mortality exposure to NO2 has an important role (1.67%; 95%CI 0.23-3.13; lag 2-5), as well as PM10 (1.41%; 95%CI - 0.23;+3.08). Results are strongly homogeneous among cities, except for respiratory mortality. No effect has been found for cerebrovascular mortality and weak evidence of association has been observed between ozone and mortality. a clear increase in mortality associated to air pollutants was observed. More important are the effects of NO2 (on natural mortality), mostly associated with traffic emissions, and of PM2.5 (on cardiac and respiratory mortality). Nitrogen dioxide shows an independent effect from the particulate matter, as observed in the bi-pollutant models.

  18. External contribution to urban air pollution.

    PubMed

    Grima, Ramon; Micallef, Alfred; Colls, Jeremy J

    2002-02-01

    Elevated particulate matter concentrations in urban locations have normally been associated with local traffic emissions. Recently it has been suggested that such episodes are influenced to a high degree by PM10 sources external to urban areas. To further corroborate this hypothesis, linear regression was sought between PM10 concentrations measured at eight urban sites in the U.K., with particulate sulphate concentration measured at two rural sites, for the years 1993-1997. Analysis of the slopes, intercepts and correlation coefficients indicate a possible relationship between urban PM10 and rural sulphate concentrations. The influences of wind direction and of the distance of the urban from the rural sites on the values of the three statistical parameters are also explored. The value of linear regression as an analysis tool in such cases is discussed and it is shown that an analysis of the sign of the rate of change of the urban PM10 and rural sulphate concentrations provides a more realistic method of correlation. The results indicate a major influence on urban PM10 concentrations from the eastern side of the United Kingdom. Linear correlation was also sought using PM10 data from nine urban sites in London and nearby rural Rochester. Analysis of the magnitude of the gradients and intercepts together with episode correlation analysis between the two sites showed the effect of transported PM10 on the local London concentrations. This article also presents methods to estimate the influence of rural and urban PM10 sources on urban PM10 concentrations and to obtain a rough estimate of the transboundary contribution to urban air pollution from the PM10 concentration data of the urban site.

  19. Air pollutants and atmospheric pressure increased risk of ED visit for spontaneous pneumothorax.

    PubMed

    Park, Joo Hyung; Lee, Sun Hwa; Yun, Seong Jong; Ryu, Seokyong; Choi, Seung Woon; Kim, Hye Jin; Kang, Tae Kyung; Oh, Sung Chan; Cho, Suk Jin

    2018-04-14

    To investigate the impact of short-term exposure to air pollutants and meteorological variation on ED visits for primary spontaneous pneumothorax (PSP). We retrospectively identified PSP cases that presented at the ED of our tertiary center between January 2015 and September 2016. We classified the days into three types: no PSP day (0 case/day), sporadic days (1-2 cases/day), and cluster days (PSP, ≥3 cases/day). Association between the daily incidence of PSP with air pollutants and meteorological data were determined using Poisson generalized-linear-model to calculate incidence rate ratio (IRRs) and the use of time-series (lag-1 [the cumulative air pollution level on the previous day of PSP], lag-2 [two days ago], and lag-3 [three days ago]). Using multivariate logistic regression analysis, O 3 (p = 0.010), NO 2 (p = 0.047), particulate matters (PM) 10 (p = 0.021), and PM 2.5 (p = 0.008) were significant factors of PSP occurrence. When the concentration of O 3 , NO 2 , PM 10 , and PM 2.5 were increased, PSP IRRs increased approximately 15, 16, 3, and 5-fold, respectively. With the time-series analyses, atmospheric pressure in lag-3 was significantly lower and in lag-2, was significantly higher in PSP days compared with no PSP days. Among air pollutant concentrations, O 3 in lag-1 (p = 0.017) and lag-2 (p = 0.038), NO 2 in lag-1 (p = 0.015) and lag-2 (p = 0.009), PM 10 in lag-1 (p = 0.012), and PM 2.5 in lag-1 (p = 0.021) and lag-2 (p = 0.032) were significantly different between no PSP and PSP days. Increased concentrations of air pollutants and abrupt change in atmospheric pressure were significantly associated with increased IRR of PSP. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins.

    PubMed

    Bijnens, Esmée M; Derom, Catherine; Gielen, Marij; Winckelmans, Ellen; Fierens, Frans; Vlietinck, Robert; Zeegers, Maurice P; Nawrot, Tim S

    2016-07-01

    Several studies in singletons have shown that maternal exposure to ambient air pollutants is associated with restricted fetal growth. About half of twins have low birth weight compared with six percent in singletons. So far, no studies have investigated maternal air pollution exposure in association with birth weight and small for gestational age in twins. We examined 4760 twins of the East Flanders Prospective Twins Survey (2002-2013), to study the association between in utero exposure to air pollution with birth weight and small for gestational age. Maternal particulate air pollution (PM10) and nitric dioxide (NO2) exposure was estimated using a spatial temporal interpolation method over various time windows during pregnancy. In the total group of twins, we observed that higher PM10 and NO2 exposure during the third trimester was significantly associated with a lower birth weight and higher risk of small for gestational age. However, the association was driven by moderate to late preterm twins (32-36 weeks of gestation). In these twins born between 32 and 36 weeks of gestation, birth weight decreased by 40.2g (95% CI: -69.0 to -11.3; p=0.006) and by 27.3g (95% CI: -52.9 to -1.7; p=0.04) in association for each 10µg/m³ increment in PM10 and NO2 concentration during the third trimester. The corresponding odds ratio for small for gestational age were 1.68 (95% CI: 1.27-2.33; p=0.0003) and 1.51 (95% CI: 1.18-1.95; p=0.001) for PM10 or NO2, respectively. No associations between air pollution and birth weight or small for gestational age were observed among term born twins. Finally, in all twins, we found that for each 10µg/m³ increase in PM10 during the last month of pregnancy the within-pair birth weight difference increased by 19.6g (95% CI: 3.7-35.4; p=0.02). Assuming causality, an achievement of a 10µg/m³ decrease of particulate air pollution may account for a reduction by 40% in small for gestational age, in twins born moderate to late preterm. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Satellite Remote Sensing of Severe Haze Pollution over Eastern China on June, 2012

    NASA Astrophysics Data System (ADS)

    Christopher, S. A.; Feng, N.; Guo, Y.; Hong, S.

    2012-12-01

    Severe yellow haze hit a vast portion of Eastern China during the second week on June, 2012, as large area in Hubei, Henan, Hunan, Jiangsu, Anhui, Jiangxi, Shandong, Zhejiang provinces and Shanghai city were covered by lingering haze. This massive haze conditions caused considerable inconvenience to people's daily lives. Previous global air quality studies have also shown that Eastern China is one of regions with highest fine particulate matter (PM2.5) concentrations around the world. In this study, we estimate spatial and temporal variations of PM2.5 concentrations using satellite observations of this severe haze pollution on June, 2012. Satellite derived Aerosol Optical Thickness (AOT), sites measured hourly PM2.5 and meteorological fields from surface are statistically correlated based on a multiple regression model. We also explore the utility of higher spatial resolution aerosol retrieval from MODIS. Both satellite-derived and in-situ values have peak daily mean concentrations of approximately 400 μg m-3 on June 12th, 2012 in the City of Wuhan, which is nearly 10 times of the primary standard of PM2.5 concentration of China's "Ambient Air Quality Standards" (35 μg m-3). Cities in the Eastern China, e.g. Nanjing, Hangzhou and Nanchang, have also witnessed similar peak values, along with heavy smog during the same period. Satellite observations in this case study demonstrate that the transport of smoke plumes can be one of the main drivers of regional haze pollution over Eastern China. Comparing to the U.S., current limited ground-based stations is one of the biggest problem to develop the PM2.5 monitoring program over China. Our results may suggest the potential of combining satellite remote sensing with atmospheric model to map the PM2.5 spatial concentration over the nationwide level, which can further accelerate the construction of PM2.5 monitoring network over China.

  2. Air pollution and public health: emerging hazards and improved understanding of risk.

    PubMed

    Kelly, Frank J; Fussell, Julia C

    2015-08-01

    Despite past improvements in air quality, very large parts of the population in urban areas breathe air that does not meet European standards let alone the health-based World Health Organisation Air Quality Guidelines. Over the last 10 years, there has been a substantial increase in findings that particulate matter (PM) air pollution is not only exerting a greater impact on established health endpoints, but is also associated with a broader number of disease outcomes. Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration-response function. Having firmly established this significant public health problem, there has been an enormous effort to identify what it is in ambient PM that affects health and to understand the underlying biological basis of toxicity by identifying mechanistic pathways-information that in turn will inform policy makers how best to legislate for cleaner air. Another intervention in moving towards a healthier environment depends upon the achieving the right public attitude and behaviour by the use of optimal air pollution monitoring, forecasting and reporting that exploits increasingly sophisticated information systems. Improving air quality is a considerable but not an intractable challenge. Translating the correct scientific evidence into bold, realistic and effective policies undisputedly has the potential to reduce air pollution so that it no longer poses a damaging and costly toll on public health.

  3. Fibrin clot structure is affected by levels of particulate air pollution exposure in patients with venous thrombosis.

    PubMed

    Pan, Xiaoxi; Gong, Yun Yun; Martinelli, Ida; Angelici, Laura; Favero, Chiara; Bertazzi, Pier Alberto; Mannucci, Pier M; Ariëns, Robert A S; Routledge, Michael N

    2016-01-01

    Particulate air pollution is a risk factor for cardiovascular diseases and thrombosis. Long-term exposure to particulate matter with a diameter<10μm (PM10) has been associated with an increased risk of venous thrombosis. The aim of this study was to investigate whether or not particulate air pollution alters fibrin clot structure and thus modulates thrombosis risk. We investigated fibrin polymerization by turbidity (maximum absorbance mOD), clot structure by confocal microscopy (fibre number per μm) and fibrin pore size by permeability (Ks×10(-10)cm(2)) in 103 patients with deep vein thrombosis and 121 healthy controls, for whom levels of air pollution exposure had been recorded. Exposure groups were defined by mean PM10 concentrations over the 730days before the event. We found a higher average number of fibres per clot area in patients than controls, but no difference in Ks or fibre thickness. When the two groups were divided into high or low exposure to PM10, a significantly denser fibrin clot network structure with thicker fibres (higher maximum absorbance, p<0.05), decreased permeability (lower Ks value, p<0.05) and higher average fibre numbers per clot area (p<0.05) was observed in patients in the high exposure group compared to those with low exposure. There were no significant differences in fibrin clot structure between the two exposure levels in healthy subjects. PM10 levels are associated with altered fibrin clot structure in patients with deep vein thrombosis but not in controls, suggesting that air pollution may trigger differences in fibrin clot structure only in patients predisposed to thrombotic disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Interactions of atmospheric gases and aerosols with the monsoon dynamics over the Sudano-Guinean region during AMMA

    NASA Astrophysics Data System (ADS)

    Deroubaix, Adrien; Flamant, Cyrille; Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Turquety, Solène; Briant, Régis; Khvorostyanov, Dmitry; Crumeyrolle, Suzanne

    2018-01-01

    Carbon monoxide, CO, and fine atmospheric particulate matter, PM2.5, are analyzed over the Guinean Gulf coastal region using the WRF-CHIMERE modeling system and observations during the beginning of the monsoon 2006 (from May to July), corresponding to the Africa Multidisciplinary Monsoon Analysis (AMMA) campaign period. Along the Guinean Gulf coast, the contribution of long-range pollution transport to CO or PM2.5 concentrations is important. The contribution of desert dust PM2.5 concentration decreases from ˜ 38 % in May to ˜ 5 % in July. The contribution of biomass burning PM2.5 concentration from Central Africa increases from ˜ 10 % in May to ˜ 52 % in July. The anthropogenic contribution is ˜ 30 % for CO and ˜ 10 % for PM2.5 during the whole period. When focusing only on anthropogenic pollution, frequent northward transport events from the coast to the Sahel are associated with periods of low wind and no precipitation. In June, anthropogenic PM2.5 and CO concentrations are higher than in May or July over the Guinean coastal region. Air mass dynamics concentrate pollutants emitted in the Sahel due to a meridional atmospheric cell. Moreover, a part of the pollution emitted remotely at the coast is transported and accumulated over the Sahel. Focusing the analysis on the period 8-15 June, anthropogenic pollutants emitted along the coastline are exported toward the north especially at the beginning of the night (18:00 to 00:00 UTC) with the establishment of the nocturnal low level jet. Plumes originating from different cities are mixed for some hours at the coast, leading to high pollution concentration, because of specific disturbed meteorological conditions.

  5. A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran.

    PubMed

    Geravandi, Sahar; Sicard, Pierre; Khaniabadi, Yusef Omidi; De Marco, Alessandra; Ghomeishi, Ali; Goudarzi, Gholamreza; Mahboubi, Mohammad; Yari, Ahmad Reza; Dobaradaran, Sina; Hassani, Ghasem; Mohammadi, Mohammad Javad; Sadeghi, Shahram

    2017-08-01

    During the last century, most of people around the world moved from communicable to non-communicable diseases, mainly due to air pollution. Air pollutants and dust storm increase risk of morbidity, for cardiovascular and respiratory diseases, and increase the number of deaths. The city of Ahvaz is considered as the focal point of air pollution and dust storm in Iran. The aim of this study was to determine the number of Hospital Admission Respiratory Disease (HARD) including asthma attacks, acute bronchitis and chronic obstructive pulmonary disease attributed to PM 10 by a descriptive study during normal and dust event days in Ahvaz during the time period 2010-2012. The hourly PM 10 data was collected from the Iranian Environmental Protection Agency and Razi hospital. The annual PM 10 mean concentrations reached 282, 288 and 278 μg/m 3 in 2010, 2011 and 2012, respectively. The number of HARD attributed to PM 10 was 1438, 1945 and 1393 people, respectively, and the highest number of daily admissions was attributed to the highest daily PM 10 concentration in Ahvaz. The average number of daily HARD during dusty days was higher than normal days, and a significant positive correlation, between the number of hospital admissions and dusty days, was found. Dust had significant impact on HARD in Ahvaz.

  6. Temperature-related mortality estimates after accounting for the cumulative effects of air pollution in an urban area.

    PubMed

    Stanišić Stojić, Svetlana; Stanišić, Nemanja; Stojić, Andreja

    2016-07-11

    To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.

  7. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    PubMed

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  8. Assessment of long-term measurements of particulate matter and gaseous pollutants in South-East Mediterranean

    NASA Astrophysics Data System (ADS)

    Mouzourides, Petros; Kumar, Prashant; Neophytou, Marina K.-A.

    2015-04-01

    This work examines long-term measurements of major criteria pollutants concentrations in an urban station in South-Eastern Mediterranean, in Nicosia - Cyprus, which is susceptible both to transboundary air pollution transport from Sahara-dust events as well as to evaporative transport of sea-sprays. The work investigates in particular the role of such multi-scale contributions in the urban air quality measurements, which are important considerations in the assessment of the effectiveness of any mitigation policies implemented by regulatory authorities. Attention is drawn in the regional-scale component of the particulate matter concentrations (PM10; ≤10 μm in diameter) and its contribution in the local measurements. Hourly averaged data of CO, NOx and PM10 concentrations as well as of meteorological parameters were collected from the Air Quality Monitoring Station (AQMS) of the University of Cyprus over a period of more than 5 years (2008-13) and were analysed. Scanning Electron Microscope (SEM) was used to identify chemical characteristics of PM10 and to attribute it to possible sources. A total of 321 days over the entire period were found to exceed the daily limit value of 50 μg/m3 for PM10 concentrations which corresponds to ∼19% of the actual monitored time. Numerical simulations using the Dust REgional Atmospheric Model from Barcelona Supercomputing Center (BSC/DREAM) gave a strong indication that PM10 exceedances were associated with the high regional background dust concentrations during westerly winds. It was also found that despite the implementation of tighter regulations for vehicular and industrial emissions in Europe, the monthly average concentration values of criteria pollutants do not exhibit any falling trend.

  9. Short-Term Mortality Rates during a Decade of Improved Air Quality in Erfurt, Germany

    PubMed Central

    Breitner, Susanne; Stölzel, Matthias; Cyrys, Josef; Pitz, Mike; Wölke, Gabriele; Kreyling, Wolfgang; Küchenhoff, Helmut; Heinrich, Joachim; Wichmann, H.-Erich; Peters, Annette

    2009-01-01

    Background Numerous studies have shown associations between ambient air pollution and daily mortality. Objectives Our goal was to investigate the association of ambient air pollution and daily mortality in Erfurt, Germany, over a 10.5-year period after the German unification, when air quality improved. Methods We obtained daily mortality counts and data on mass concentrations of particulate matter (PM) < 10 μm in aerodynamic diameter (PM10), gaseous pollutants, and meteorology in Erfurt between October 1991 and March 2002. We obtained ultrafine particle number concentrations (UFP) and mass concentrations of PM < 2.5 μm in aerodynamic diameter (PM2.5) from September 1995 to March 2002. We analyzed the data using semiparametric Poisson regression models adjusting for trend, seasonality, influenza epidemics, day of the week, and meteorology. We evaluated cumulative associations between air pollution and mortality using polynomial distributed lag (PDL) models and multiday moving averages of air pollutants. We evaluated changes in the associations over time in time-varying coefficient models. Results Air pollution concentrations decreased over the study period. Cumulative exposure to UFP was associated with increased mortality. An interquartile range (IQR) increase in the 15-day cumulative mean UFP of 7,649 cm−3 was associated with a relative risk (RR) of 1.060 [95% confidence interval (CI), 1.008–1.114] for PDL models and an RR/IQR of 1.055 (95% CI, 1.011–1.101) for moving averages. RRs decreased from the mid-1990s to the late 1990s. Conclusion Results indicate an elevated mortality risk from short-term exposure to UFP. They further suggest that RRs for short-term associations of air pollution decreased as pollution control measures were implemented in Eastern Germany. PMID:19337521

  10. Linkage of the Third National Health and Nutrition Examination Survey to air quality data.

    PubMed

    Kravets, Nataliya; Parker, Jennifer D

    2008-11-01

    This report describes the linked data file obtained as a result of combining air pollution data and National Health and Nutrition Examination Survey (NHANES) III data. Average annual air pollution exposures to particulate matter consisting of particles smaller than 10 micrometers in diameter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were created for NHANES III examined persons by averaging values from monitors within a 5-, 10-, 15-, and 20-mile radius from the block-group centroid of their residence and in the county of their residence. Percentage records geocoded to block-group level, percentage records linked to air pollution, and distributions of exposure values were estimated for the total sample and various demographic groups. The percentages of respondents who were assigned countywide air pollution values ranges from a low of 43 percent in the case of NO2 data to a high of 68 percent in the case of PM10 data. Among the pollutants considered, PM10 data provides the best coverage. Of all the metrics created, the highest coverage is achieved by averaging readings of monitors located within a 20-mile distance from the centroid of respondents' block groups. Among the demographic variables analyzed, differences in air pollution coverage and exposure levels occur most often among groups defined by race and Hispanic origin, region, and county level of urbanization. However, differences among groups depend on the pollutant and geographic linkage method. The linked dataset provides researchers with opportunities to investigate the relationship between air pollution and various health outcomes.

  11. Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 With an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City

    PubMed Central

    Zúñiga, Julio; Tarajia, Musharaf; Herrera, Víctor; Urriola, Wilfredo; Gómez, Beatriz; Motta, Jorge

    2016-01-01

    Abstract In recent years, Panama has experienced a marked economic growth, and this, in turn, has been associated with rapid urban development and degradation of air quality. This study is the first evaluation done in Panama on the association between air pollution and mortality. Our objective was to assess the possible association between monthly levels of PM10, O3, and NO2, and cardiovascular, respiratory, and diabetes mortality, as well as the seasonal variation of mortality in Panama City, Panama. The study was conducted in Panama City, using air pollution data from January 2003 to December 2013. We utilized a Poisson regression model based on generalized linear models, to evaluate the association between PM10, NO2, and O3 exposure and mortality from diabetes, cardiovascular, and respiratory diseases. The sample size for PM10, NO2, and O2 was 132, 132, and 108 monthly averages, respectively. We found that levels of PM10, O3, and NO2 were associated with increases in cardiovascular, respiratory, and diabetes mortality. For PM10 levels ≥ 40 μg/m3, we found an increase in cardiovascular mortality of 9.7% (CI 5.8–13.6%), and an increase of 12.6% (CI 0.2–24.2%) in respiratory mortality. For O3 levels ≥ 20 μg/m3 we found an increase of 32.4% (IC 14.6–52.9) in respiratory mortality, after a 2-month lag period following exposure in the 65 to <74 year-old age group. For NO2 levels ≥20 μg/m3 we found an increase in respiratory mortality of 11.2% (IC 1.9–21.3), after a 2-month lag period following exposure among those aged between 65 and <74 years. There could be an association between the air pollution in Panama City and an increase in cardiovascular, respiratory, and diabetes mortality. This study confirms the urgent need to improve the measurement frequency of air pollutants in Panama. PMID:26765444

  12. Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 With an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: A 2003 to 2013 Data Analysis.

    PubMed

    Zúñiga, Julio; Tarajia, Musharaf; Herrera, Víctor; Urriola, Wilfredo; Gómez, Beatriz; Motta, Jorge

    2016-01-01

    In recent years, Panama has experienced a marked economic growth, and this, in turn, has been associated with rapid urban development and degradation of air quality. This study is the first evaluation done in Panama on the association between air pollution and mortality. Our objective was to assess the possible association between monthly levels of PM10, O3, and NO2, and cardiovascular, respiratory, and diabetes mortality, as well as the seasonal variation of mortality in Panama City, Panama.The study was conducted in Panama City, using air pollution data from January 2003 to December 2013. We utilized a Poisson regression model based on generalized linear models, to evaluate the association between PM10, NO2, and O3 exposure and mortality from diabetes, cardiovascular, and respiratory diseases. The sample size for PM10, NO2, and O2 was 132, 132, and 108 monthly averages, respectively.We found that levels of PM10, O3, and NO2 were associated with increases in cardiovascular, respiratory, and diabetes mortality. For PM10 levels ≥ 40 μg/m3, we found an increase in cardiovascular mortality of 9.7% (CI 5.8-13.6%), and an increase of 12.6% (CI 0.2-24.2%) in respiratory mortality. For O3 levels ≥ 20 μg/m3 we found an increase of 32.4% (IC 14.6-52.9) in respiratory mortality, after a 2-month lag period following exposure in the 65 to <74 year-old age group. For NO2 levels ≥20 μg/m3 we found an increase in respiratory mortality of 11.2% (IC 1.9-21.3), after a 2-month lag period following exposure among those aged between 65 and <74 years.There could be an association between the air pollution in Panama City and an increase in cardiovascular, respiratory, and diabetes mortality. This study confirms the urgent need to improve the measurement frequency of air pollutants in Panama.

  13. Synoptic and climatological analysis of atmospheric circulation impacts on particulate matter pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Fan, S.

    2016-12-01

    This study investigated the particulate matter characteristics within different circulation types (CTs) in the megacity of Shanghai during the period 2001-2015, and provided a quantitative evaluation of atmospheric circulation influences on PM10 pollution across a wide range of spatial and temporal scales, from local to region and daily to interannual. Ten CTs were identified over the Asian-Pacific region by objective Lamb Weather Type approach and each resulting CT was characterized with distinct local meteorology and air mass source. The PM10 loadings in the CTs associated with continental westerly flow were significant higher than that in the CTs linked to marine easterly air masses. Regional backgrounds that transported by the synoptic flows were more responsible for the distinct PM10 levels in different CTs. The locally-produced PM10 generally stabilized in range of 20-25 μg m-3, but enhanced to 41.2 μg m-3 in case of anticyclone type. There were distinct PM10 trends in different CTs (ranged from -3.74 to -0.28 μg m-3 yr-1), indicating the different background trends. Overall, the PM10 concentrations have decreased (-2.33 μg m-3 yr-1) in the studied period and the estimated locally-produced trend (-0.79 μg m-3 yr-1) accounted for 33.9% of overall downward trend. The occurrence frequency presented an increase (0.15 % yr-1) for anticyclone type, but a decrease (-0.10 % yr-1) for the type N associated with invasion of cold air. The 15-yr frequency change of atmospheric circulation induced an increase in PM­10 level (0.17 μg m-3) in Shanghai. On the contrary, controls on the pollutant emission had always positive effects and hence should be always encouraged.

  14. Optimized circulation and weather type classifications relating large-scale atmospheric conditions to local PM10 concentrations in Bavaria

    NASA Astrophysics Data System (ADS)

    Weitnauer, C.; Beck, C.; Jacobeit, J.

    2013-12-01

    In the last decades the critical increase of the emission of air pollutants like nitrogen dioxide, sulfur oxides and particulate matter especially in urban areas has become a problem for the environment as well as human health. Several studies confirm a risk of high concentration episodes of particulate matter with an aerodynamic diameter < 10 μm (PM10) for the respiratory tract or cardiovascular diseases. Furthermore it is known that local meteorological and large scale atmospheric conditions are important influencing factors on local PM10 concentrations. With climate changing rapidly, these connections need to be better understood in order to provide estimates of climate change related consequences for air quality management purposes. For quantifying the link between large-scale atmospheric conditions and local PM10 concentrations circulation- and weather type classifications are used in a number of studies by using different statistical approaches. Thus far only few systematic attempts have been made to modify consisting or to develop new weather- and circulation type classifications in order to improve their ability to resolve local PM10 concentrations. In this contribution existing weather- and circulation type classifications, performed on daily 2.5 x 2.5 gridded parameters of the NCEP/NCAR reanalysis data set, are optimized with regard to their discriminative power for local PM10 concentrations at 49 Bavarian measurement sites for the period 1980 to 2011. Most of the PM10 stations are situated in urban areas covering urban background, traffic and industry related pollution regimes. The range of regimes is extended by a few rural background stations. To characterize the correspondence between the PM10 measurements of the different stations by spatial patterns, a regionalization by an s-mode principal component analysis is realized on the high-pass filtered data. The optimization of the circulation- and weather types is implemented using two representative classification approaches, a k-means cluster analysis and an objective version of the Grosswetter types. They have been run with varying spatial and temporal settings as well as modified numbers of classes. As an evaluation metric for their performance several skill scores are used. Taking into account the outcome further attempts towards the optimization of circulation type classifications are made. These are varying meteorological input parameters (e.g. geopotential height, zonal and meridional wind, specific humidity, temperature) on several pressure levels (1000, 850 and 500 hPa) and combinations of these variables. All classification variants are again evaluated. Based on these analyses it is further intended to develop robust downscaling models for estimating possible future - climate change induced - variations of local PM10 concentrations in Bavaria from scenario runs of global CMIP5 climate models.

  15. Satellite and in-situ monitoring of urban air pollution in relation with children's asthma

    NASA Astrophysics Data System (ADS)

    Dida, Mariana R.; Zoran, Maria A.

    2013-10-01

    Urban air pollution and especially aerosols have significant negative health effects on urban population, of which children are most exposed for the rapid increase of asthma disease. An allergic reaction to different allergens is a major contributor to asthma in urban children, but new research suggests that the allergies are just one part of a more complex story. Very early exposure to certain components of air pollution can increase the risk of developing of different allergies by age 7. The epidemiological research on the mutagenic effects of airborne particulate matter pointed their capability to reach deep lung regions, being vehicles of toxic substances. The current study presents a spatio-temporal analysis of the aerosol concentrations in relation with meteorological parameters in two size fractions (PM10 and PM2.5) and possible health effects in Bucharest metropolitan area. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data of particle matter PM2.5 and PM10 concentrations have been used to qualitatively assess distribution of aerosols in the greater metropolitan are of Bucharest comparative with some other little towns in Romania during 2010- 2011 period. It was found that PM2.5 and PM10 aerosols exhibit their highest concentration mostly in the central part of the towns, mainly due to road traffic as well as in the industrialized parts outside of city's centre. Pediatric asthma can be managed through medications prescribed by a healthcare provider, but the most important aspect is to avoid urban locations with high air pollution concentrations of air particles and allergens.

  16. Respiratory disease associated with community air pollution and a steel mill, Utah Valley.

    PubMed Central

    Pope, C A

    1989-01-01

    This study assessed the association between hospital admissions and fine particulate pollution (PM10) in Utah Valley during the period April 1985-February 1988. This time period included the closure and reopening of the local steel mill, the primary source of PM10. An association between elevated PM10 levels and hospital admissions for pneumonia, pleurisy, bronchitis, and asthma was observed. During months when 24-hour PM10 levels exceeded 150 micrograms/m3, average admissions for children nearly tripled; in adults, the increase in admissions was 44 per cent. During months with mean PM10 levels greater than or equal to 50 micrograms/m3 average admissions for children and adults increased by 89 and 47 per cent, respectively. During the winter months when the steel mill was open, PM10 levels were nearly double the levels experienced during the winter months when the mill was closed. This occurred even though relatively stagnant air was experienced during the winter the mill was closed. Children's admissions were two to three times higher during the winters when the mill was open compared to when it was closed. Regression analysis also revealed that PM10 levels were strongly correlated with hospital admissions. They were more strongly correlated with children's admissions than with adult admissions and were more strongly correlated with admissions for bronchitis and asthma than with admissions for pneumonia and pleurisy. PMID:2495741

  17. Low levels of air pollution induce changes of lung function in a panel of schoolchildren.

    PubMed

    Moshammer, H; Hutter, H-P; Hauck, H; Neuberger, M

    2006-06-01

    In search of sensitive screening parameters for assessing acute effects of ambient air pollutants in young schoolchildren, the impact of 8-h average air pollution before lung function testing was investigated by oscillatory measurements of resistance and spirometry with flow-volume loops. At a central elementary school in Linz, the capital of Upper Austria, 163 children aged 7-10 yrs underwent repeated examinations at the same time of day during 1 school year, yielding a total of 11-12 lung function tests per child. Associations to mass concentrations of particulate matter and nitrogen dioxide (NO(2)) measured continuously at a nearby monitoring station were tested, applying the Generalised Estimating Equations model. Reductions per 10 microg.m(-3) (both for particles and for NO(2)) were in the magnitude of 1% for most lung function parameters. The most sensitive indicator for acute effects of combustion-related pollutants was a change in maximal expiratory flow in small airways. NO(2) at concentrations below current standards reduced (in the multipollutant model) the forced expiratory volume in one second by 1.01%, maximal instantaneous forced flow when 50% of the forced vital capacity remains to be exhaled (MEF(50%)) by 1.99% and MEF(25%) by 1.96%. Peripheral resistance increased by 1.03% per 10 microg.m(-3) of particulate matter with a 50% cut-off aerodynamic diameter of 2.5 mum (PM(2.5)). Resistance is less influenced by the child's cooperation and should be utilised more often in environmental epidemiology when screening for early signs of small airway dysfunction from urban air pollution, but cannot replace the measurement of MEF(50%) and MEF(25%). In the basic model, the reduction of these parameters per 10 microg.m(-3) was highest for NO(2), followed by PM(1), PM(2.5) and PM(10), while exposure to coarse dust (PM(10)-PM(2.5)) did not change end-expiratory flow significantly. All acute effects of urban air pollution found on the lung function of healthy pupils were evident at levels below current European limit values for nitrogen dioxide. Thus, planned reduction of nitrogen dioxide emission (Euro 5; vehicles that comply with the emission limits as defined in Directive 99/96/EC) of 20% in 2010 would seem to be insufficient.

  18. Inflammation response and cytotoxic effects in human THP-1 cells of size-fractionated PM10 extracts in a polluted urban site.

    PubMed

    Schilirò, T; Alessandria, L; Bonetta, S; Carraro, E; Gilli, G

    2016-02-01

    To contribute to a greater characterization of the airborne particulate matter's toxicity, size-fractionated PM10 was sampled during different seasons in a polluted urban site in Torino, a northern Italian city. Three main size fractions (PM10 - 3 μm; PM3 - 0.95 μm; PM < 0.95 μm) extracts (organic and aqueous) were assayed with THP-1 cells to evaluate their effects on cell proliferation, LDH activity, TNFα, IL-8 and CYP1A1 expression. The mean PM10 concentrations were statistically different in summer and in winter and the finest fraction PM<0.95 was always higher than the others. Size-fractionated PM10 extracts, sampled in an urban traffic meteorological-chemical station produced size-related toxicological effects in relation to season and particles extraction. The PM summer extracts induced a significant release of LDH compared to winter and produced a size-related effect, with higher values measured with PM10-3. Exposure to size-fractionated PM10 extracts did not induce significant expression of TNFα. IL-8 expression was influenced by exposure to size-fractionated PM10 extracts and statistically significant differences were found between kind of extracts for both seasons. The mean fold increases in CYP1A1 expression were statistically different in summer and in winter; winter fraction extracts produced a size-related effect, in particular for organic samples with higher values measured with PM<0.95 extracts. Our results confirm that the only measure of PM can be misleading for the assessment of air quality moreover we support efforts toward identifying potential effect-based tools (e.g. in vitro test) that could be used in the context of the different monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels

    NASA Astrophysics Data System (ADS)

    Sosa, Beatriz S.; Porta, Andrés; Colman Lerner, Jorge Esteban; Banda Noriega, Roxana; Massolo, Laura

    2017-07-01

    WHO (2012) reports that chronic exposure to air pollutants, including particulate matter (PM), causes the death of 7 million people, constituting the most important environmental risk for health in the world. IARC classifies contaminated outdoor air as carcinogenic, Group 1 category. However, in our countries there are few studies regarding air pollution levels and possible associated effects on public health. The current study determined PM and associated polycyclic aromatic hydrocarbons (PAHs) levels in outdoor air, identified their possible emission sources and analysed health risks in the city of Tandil (Argentina). PM10 and PM2.5 samples were collected using a low volume sampler (MiniVol TAS) in three areas: city centre, industrial and residential. Concentrations were determined by gravimetric methods and the content of the US EPA 16 priority PAHs was found by high performance liquid chromatography (HPLC). Description of the main emission sources and selection of monitoring sites resulted from spatial analysis and the IVE (International Vehicle Emissions) model was used in the characterisation of the traffic flow. Median values of 35.7 μgm-3 and 9.6 μgm-3 in PM10 and PM2.5 respectively and characteristic profiles were found for each area. Local values PAHs associated to PM10 and PM2.5, in general, were lower than 10ngm-3. The estimated Unit Risk for the three areas exceeds US EPA standards (9 × 10-5). The number of deaths attributable to short term exposure to outdoor PM10 was 4 cases in children under 5 years of age, and 21 cases in total population, for a relative risk of 1.037.

  20. European Community emission inventory report 1990-2007 : under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP)

    DOT National Transportation Integrated Search

    2009-08-01

    The main air pollutant emission trends in the period 19902007 for NOX, CO, NMVOCs, SOX, NH3, PM10 and PM2.5 by country, and aggregated for the EU-27 are described in this report. Due to various gaps in the underlying data reported by Member States...

  1. [Environmental pollution, climate variability and climate change: a review of health impacts on the Peruvian population].

    PubMed

    Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air.

  2. A preliminary assessment of PM(10) and TSP concentrations in Tuticorin, India.

    PubMed

    Sivaramasundaram, K; Muthusubramanian, P

    2010-06-01

    The respirable particulate matter (RPM; PM(10)) and total suspended particulate matter (TSP) concentrations in ambient air in Tuticorin, India, were preliminarily estimated. Statistical analyses on so-generated database were performed to infer frequency distributions and to identify dominant meteorological factor affecting the pollution levels. Both the RPM and TSP levels were well below the permissible limits set by the US Environmental Protection Agency. As expected, lognormal distribution always fit the data during the study period. However, fit with the normal was also acceptable except for very few seasons. The RPM concentrations ranged between 20.9 and 198.2 mug/m(3), while the TSP concentrations varied from 51.5 to 333.3 mug/m(3) during the study period. There was a better correlation between PM(10-100) and TSP concentrations than that of PM(10) (RPM) and TSP concentrations, but the correlation of RPM fraction was also acceptable. It was found that wind speed was the most important meteorological factor affecting the concentrations of the pollutants of present interest. Significant seasonal variations in the pollutant concentrations of present interest were found at 5% significance level except for TSP concentrations in the year 2006.

  3. Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California.

    PubMed

    Meng, Ying-Ying; Rull, Rudolph P; Wilhelm, Michelle; Lombardi, Christina; Balmes, John; Ritz, Beate

    2010-02-01

    The San Joaquin Valley (SJV) in California ranks among the worst in the USA in terms of air quality, and its residents report some of the highest rates of asthma symptoms and asthma-related emergency department (ED) visits and hospitalisations in California. Using California Health Interview Survey data, the authors examined associations between air pollution and asthma morbidity in this region. Eligible subjects were SJV residents (2001 California Health Interview Survey) who reported physician-diagnosed asthma (n=1502, 14.6%). The authors considered two outcomes indicative of uncontrolled asthma: (1) daily or weekly asthma symptoms and (2) asthma-related ED visits or hospitalisation in the past year. Based on residential zip code, subjects were assigned annual average concentrations of ozone, PM(10) and PM(2.5) for the 1-year period prior to the interview date from their closest government air monitoring station within an 8 km (5 miles) radius. Adjusting for age, gender, race/ethnicity, poverty level and insurance status, the authors observed increased odds of experiencing daily or weekly asthma symptoms for ozone, PM(10) and PM(2.5) (OR(ozone) 1.23, 95% CI 0.94 to 1.60 per 10 ppb; OR(PM10) 1.29, 95% CI 1.05 to 1.57 per 10 microg/m(3); and OR(PM2.5) 1.82; 95% CI 1.11 to 2.98 per 10 microg/m(3)). The authors also observed increased odds of asthma-related ED visits or hospitalisations for ozone (OR 1.49, 95% CI 1.05 to 2.11 per 10 ppb) and a 29% increase in odds for PM(10) (OR 1.29, 95% CI 0.99 to 1.69 per 10 microg/m(3)). Overall, these findings suggest that individuals with asthma living in areas of the SJV with high ozone and particulate pollution levels are more likely to have frequent asthma symptoms and asthma-related ED visits and hospitalisations.

  4. Human health risk characterization of petroleum coke calcining facility emissions.

    PubMed

    Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D

    2015-12-01

    Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Associations between short-term exposure to particulate matter and ultrafine particles and myocardial infarction in Augsburg, Germany.

    PubMed

    Wolf, Kathrin; Schneider, Alexandra; Breitner, Susanne; Meisinger, Christa; Heier, Margit; Cyrys, Josef; Kuch, Bernhard; von Scheidt, Wolfgang; Peters, Annette

    2015-08-01

    Short-term exposure to increased particulate matter (PM) concentration has been reported to trigger myocardial infarction (MI). However, the association with ultrafine particles remains unclear. We aimed to assess the effects of short-term air pollution and especially ultrafine particles on registry-based MI events and coronary deaths in the area of Augsburg, Germany. Between 1995 and 2009, the MONICA/KORA myocardial infarction registry recorded 15,417 cases of MI and coronary deaths. Concentrations of PM<10μm (PM10), PM<2.5μm (PM2.5), particle number concentration (PNC) as indicator for ultrafine particles, and meteorological parameters were measured in the study region. Quasi-Poisson regression adjusting for time trend, temperature, season, and weekday was used to estimate immediate, delayed and cumulative effects of air pollutants on the occurrence of MI. The daily numbers of total MI, nonfatal and fatal events as well as incident and recurrent events were analysed. We observed a 1.3% risk increase (95%-confidence interval: [-0.9%; 3.6%]) for all events and a 4.4% [-0.4%; 9.4%] risk increase for recurrent events per 24.3μg/m(3) increase in same day PM10 concentrations. Nonfatal events indicated a risk increase of 3.1% [-0.1%; 6.5%] with previous day PM10. No association was seen for PM2.5 which was only available from 1999 on. PNC showed a risk increase of 6.0% [0.6%; 11.7%] for recurrent events per 5529 particles/cm(3) increase in 5-day average PNC. Our results suggested an association between short-term PM10 concentration and numbers of MI, especially for nonfatal and recurrent events. For ultrafine particles, risk increases were notably high for recurrent events. Thus, persons who already suffered a MI seemed to be more susceptible to air pollution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Ambient Air Pollution and Newborn Size and Adiposity at Birth: Differences by Maternal Ethnicity (the Born in Bradford Study Cohort).

    PubMed

    Schembari, Anna; de Hoogh, Kees; Pedersen, Marie; Dadvand, Payam; Martinez, David; Hoek, Gerard; Petherick, Emily S; Wright, John; Nieuwenhuijsen, Mark J

    2015-11-01

    Exposure to ambient air pollution has been associated with reduced size of newborns; however, the modifying effect of maternal ethnicity remains little explored among South Asians. We investigated ethnic differences in the association between ambient air pollution and newborn's size. Pregnant women were recruited between 2007 and 2010 for the Born in Bradford cohort study, in England. Exposures to particulate matter (≤ 10 μm, PM10; ≤ 2.5 μm, PM2.5), PM2.5 absorbance, and nitrogen oxides (NOx, NO2) were estimated using land-use regressions models. Using multivariate linear regression models, we evaluated effect modification by maternal ethnicity ("white British" or "Pakistani origin," self-reported) on the associations of air pollution and birth weight, head circumference, and triceps and subscapular skinfold thickness. A 5-μg/m3 increase in mean third trimester PM2.5 was associated with significantly lower birth weight and smaller head circumference in children of white British mothers (-43 g; 95% CI: -76, -10 and -0.28 cm; 95% CI: -0.39, -0.17, respectively), but not in children of Pakistani origin (9 g; 95% CI: -17, 35 and -0.08 cm; 95% CI: -0.17, 0.01, respectively) (p(int) = 0.03 and < 0.001). In contrast, PM2.5 was associated with significantly larger triceps and subscapular skinfold thicknesses in children of Pakistani origin (0.17 mm; 95% CI: 0.08, 0.25 and 0.21 mm; 95% CI: 0.12, 0.29, respectively), but not in white British children (-0.02 mm; 95% CI: -0.14, 0.01 and 0.06 mm; 95% CI: -0.06, 0.18, respectively) (p(int) = 0.06 and 0.11). Patterns of associations for PM10 and PM2.5 absorbance according to ethnicity were similar to those for PM2.5, but associations of the outcomes with NO2 and NOx were mostly nonsignificant in both ethnic groups. Our results suggest that associations of ambient PM exposures with newborn size and adiposity differ between white British and Pakistani origin infants. Schembari A, de Hoogh K, Pedersen M, Dadvand P, Martinez D, Hoek G, Petherick ES, Wright J, Nieuwenhuijsen MJ. 2015. Ambient air pollution and newborn size and adiposity at birth: differences by maternal ethnicity (the Born in Bradford study cohort). Environ Health Perspect 123:1208-1215; http://dx.doi.org/10.1289/ehp.1408675.

  7. Ambient Air Pollution and Newborn Size and Adiposity at Birth: Differences by Maternal Ethnicity (the Born in Bradford Study Cohort)

    PubMed Central

    de Hoogh, Kees; Pedersen, Marie; Dadvand, Payam; Martinez, David; Hoek, Gerard; Petherick, Emily S.; Wright, John; Nieuwenhuijsen, Mark J.

    2015-01-01

    Background Exposure to ambient air pollution has been associated with reduced size of newborns; however, the modifying effect of maternal ethnicity remains little explored among South Asians. Objectives We investigated ethnic differences in the association between ambient air pollution and newborn’s size. Method Pregnant women were recruited between 2007 and 2010 for the Born in Bradford cohort study, in England. Exposures to particulate matter (≤ 10 μm, PM10; ≤ 2.5 μm, PM2.5), PM2.5 absorbance, and nitrogen oxides (NOx, NO2) were estimated using land-use regressions models. Using multivariate linear regression models, we evaluated effect modification by maternal ethnicity (“white British” or “Pakistani origin,” self-reported) on the associations of air pollution and birth weight, head circumference, and triceps and subscapular skinfold thickness. Results A 5-μg/m3 increase in mean third trimester PM2.5 was associated with significantly lower birth weight and smaller head circumference in children of white British mothers (–43 g; 95% CI: –76, –10 and –0.28 cm; 95% CI: –0.39, –0.17, respectively), but not in children of Pakistani origin (9 g; 95% CI: –17, 35 and –0.08 cm; 95% CI: –0.17, 0.01, respectively) (pint = 0.03 and < 0.001). In contrast, PM2.5 was associated with significantly larger triceps and subscapular skinfold thicknesses in children of Pakistani origin (0.17 mm; 95% CI: 0.08, 0.25 and 0.21 mm; 95% CI: 0.12, 0.29, respectively), but not in white British children (–0.02 mm; 95% CI: –0.14, 0.01 and 0.06 mm; 95% CI: –0.06, 0.18, respectively) (pint = 0.06 and 0.11). Patterns of associations for PM10 and PM2.5 absorbance according to ethnicity were similar to those for PM2.5, but associations of the outcomes with NO2 and NOx were mostly nonsignificant in both ethnic groups. Conclusions Our results suggest that associations of ambient PM exposures with newborn size and adiposity differ between white British and Pakistani origin infants. Citation Schembari A, de Hoogh K, Pedersen M, Dadvand P, Martinez D, Hoek G, Petherick ES, Wright J, Nieuwenhuijsen MJ. 2015. Ambient air pollution and newborn size and adiposity at birth: differences by maternal ethnicity (the Born in Bradford study cohort). Environ Health Perspect 123:1208–1215; http://dx.doi.org/10.1289/ehp.1408675 PMID:25978617

  8. Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico.

    PubMed

    Rodopoulou, Sophia; Chalbot, Marie-Cecile; Samoli, Evangelia; Dubois, David W; San Filippo, Bruce D; Kavouras, Ilias G

    2014-02-01

    Doña Ana County in New Mexico regularly experiences severe air pollution episodes associated with windblown dust and fires. Residents of Hispanic/Latino origin constitute the largest population group in the region. We investigated the associations of ambient particulate matter and ozone with hospital emergency room and admissions for respiratory and cardiovascular visits in adults. We used trajectories regression analysis to determine the local and regional components of particle mass and ozone. We applied Poisson generalized models to analyze hospital emergency room visits and admissions adjusted for pollutant levels, humidity, temperature and temporal and seasonal effects. We found that the sources within 500km of the study area accounted for most of particle mass and ozone concentrations. Sources in Southeast Texas, Baja California and Southwest US were the most important regional contributors. Increases of cardiovascular emergency room visits were estimated for PM10 (3.1% (95% CI: -0.5 to 6.8)) and PM10-2.5 (2.8% (95% CI: -0.2 to 5.9)) for all adults during the warm period (April-September). When high PM10 (>150μg/m(3)) mass concentrations were excluded, strong effects for respiratory emergency room visits for both PM10 (3.2% (95% CI: 0.5-6.0)) and PM2.5 (5.2% (95% CI: -0.5 to 11.3)) were computed. Our analysis indicated effects of PM10, PM2.5 and O3 on emergency room visits during the April-September period in a region impacted by windblown dust and wildfires. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score.

    PubMed

    Eze, Ikenna C; Imboden, Medea; Kumar, Ashish; von Eckardstein, Arnold; Stolz, Daiana; Gerbase, Margaret W; Künzli, Nino; Pons, Marco; Kronenberg, Florian; Schindler, Christian; Probst-Hensch, Nicole

    2016-09-01

    Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a genetic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested asthma case-control study design. AP was estimated as 10-year mean residential particulate matter <10μm (PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic regressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status. Diabetes prevalence was 4.6% and mean exposure to PM10 was 22μg/m(3). Odds of diabetes increased by 8% (95% confidence interval: 2, 14%) per T2D risk allele and by 35% (-8, 97%) per 10μg/m(3) exposure to PM10. We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction=1.10 (1.01, 1.20)], associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)]. Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction=1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P<0.05). Our results suggest that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity. These results need confirmation in diabetes cohort consortia. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The role of meteorology on different sized aerosol fractions (PM₁₀, PM₂.₅, PM₂.₅-₁₀).

    PubMed

    Pateraki, St; Asimakopoulos, D N; Flocas, H A; Maggos, Th; Vasilakos, Ch

    2012-03-01

    The scope of the present study is to assess the influence of meteorology on different diameter particles (PM(10), PM(2.5), PM(2.5-10)) during a 53 months long experimental campaign at an urban Mediterranean area. Except for the investigation of the wind, temperature and relative humidity role, day by day synoptic conditions were classified over the Attica peninsula in order to explore as well, the role of the synoptic scale atmospheric circulation. The strong dependence of the aerosols character on their various sources, not only explain the different diameter particles behavior and their differentiation with the inorganic pollutants but also highlights the need for an effective emission policy. High PM(10) and PM(2.5-10) concentrations found to be closely related to the southwesterly regime, suggesting long range transport from the 'polluted' south sector while the general prevalence of the secondary particles generation revealed the health hazard. PM(2.5) showed a weaker correlation than the bigger particles with both the circulation patterns and the parameters' fluctuations. Temporal pollutants variations were clearly governed by the emissions patterns while the low wind speed was not necessarily a good indicator of high concentration levels. Finally it was found that only during the open/close anticyclonic days and the southwesterly wind regime the morning levels were continuously higher than those of the night. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Short term association between ambient air pollution and mortality and modification by temperature in five Indian cities

    NASA Astrophysics Data System (ADS)

    Dholakia, Hem H.; Bhadra, Dhiman; Garg, Amit

    2014-12-01

    Indian cities are among the most polluted areas globally, yet assessments of short term mortality impacts due to pollution have been limited. Furthermore, studies examining temperature - pollution interactions on mortality are largely absent. Addressing this gap remains important in providing research evidence to better link health outcomes and air quality standards for India. Daily all-cause mortality, temperature, humidity and particulate matter less than 10 microns (PM10) data were collected for five cities - Ahmedabad, Bangalore, Hyderabad, Mumbai and Shimla spanning 2005-2012. Poisson regression models were developed to study short term impacts of PM10 as well as temperature - pollution interactions on daily all-cause mortality. We find that excess risk of mortality associated with a 10 μg/m3 PM10 increase is highest for Shimla (1.36%, 95% CI = -0.38%-3.1%) and the least for Ahmedabad (0.16%, 95% CI = -0.31%-0.62%). The corresponding values for Bangalore, Hyderabad and Mumbai are 0.22% (-0.04%-0.49%), 0.85% (0.06%-1.63%) and 0.2% (0.1%-0.3%) respectively. The relative health benefits of reducing pollution are higher for cleaner cities (Shimla) as opposed to dirtier cities (Mumbai). Overall we find that temperature and pollution interactions do not significantly impact mortality for the cities studied. This is one of the first multi-city studies that assess heterogeneity of air pollution impacts and possible modification due to temperature in Indian cities that are spread across climatic regions and topographies. Our findings highlight the need for pursuing stringent pollution control policies in Indian cities to minimize health impacts.

  12. Short-term effect of ambient air pollution on COPD mortality in four Chinese cities

    NASA Astrophysics Data System (ADS)

    Meng, Xia; Wang, Cuicui; Cao, Dachun; Wong, Chit-Ming; Kan, Haidong

    2013-10-01

    Ambient air pollution has been associated with increased mortality and morbidity; however, few studies have examined the short-term effect of air pollution specifically on chronic obstructive pulmonary disease (COPD), which is an important cause of mortality and morbidity world wide. In this analysis, we examined the associations between daily air pollution levels [particulate matter less than 10 microns in aerodynamic diameter (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2)] and COPD mortality in four Chinese cities. We used Poisson regression models with natural spline smoothing functions to adjust for long-term and seasonal trends of COPD mortality, as well as other time-varying covariates. We did a meta-analysis to obtain the 4-city average estimates. Air pollution (PM10, SO2, and NO2) was found to be associated with increased risk of COPD mortality in these four cities. Using the random-effects model, an increase of 10 μg m-3 of 2-day moving average concentrations of PM10, SO2 and NO2 corresponded to a 0.78% (95% CI, 0.13-1.42), 1.30% (95% CI, 0.61-1.99), and 1.78% (95% CI, 1.10-2.46) increase of COPD mortality, respectively. The concentration-response curves indicated linear associations without threshold. Only NO2 remained significant in the multi-pollutant models. To our knowledge, this is the first multi-city study in Asian developing region to report the short-term effect of air pollution on COPD mortality. Our results contribute to very limited data on the effects of air pollution on COPD mortality for high exposure settings typical in developing countries.

  13. Spatial variation of multiple air pollutants and their potential contributions to all-cause, respiratory, and cardiovascular mortality across China in 2015-2016

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Lin, Yun; Su, Qiong; Cheng, Liqiu

    2017-11-01

    Association of serious air pollution with adverse health effects in China has become a matter of public concern. However, many of studies that focused on a single air pollutant or a single city in China have rarely reflected the overall potential contribution of air pollution to unfavorable health outcomes. Therefore, our study estimated the spatial variation of particulate matter (PM2.5 and PM10) and gaseous pollutants (SO2, NO2, CO, and O3). Moreover, an additive approach was conducted to evaluate their overall potential contributions to mortality across China in 2015-2016 using the exposure-response coefficients. The results showed that cities with relatively high PM2.5 and PM10 concentrations were mainly distributed in the North China Plain (NCP). The average annual PM2.5 and PM10 concentrations in the NCP was 75.0 ± 14.7 and 131.2 ± 21.6 μg m-3. The potential contributions of six air pollutants ranged from 6.5% (95% confidence interval (CI): 5.4-7.5%) to 25.7% (95% CI: 22.2-28.9%) in all-cause mortality, from 6.5% (95% CI: 4.7-8.3%) to 24.9% (95% CI: 18.6-30.9%) in respiratory mortality, and from 7.0% (95% CI: 5.3-8.6%) to 29.5% (95% CI: 24.3-34.5%) in cardiovascular mortality. Many cities with high potential contributions of the multiple air pollutants were in the NCP. NCP had the average potential contribution of 20.0% (95% CI: 17.2-22.6%) in all-cause mortality, 19.5% (95% CI: 14.5-24.3%) in respiratory mortality, and 23.0% (95% CI: 18.8-27.0%) in cardiovascular mortality. Besides, the Taklimakan Desert (TD) also had high potential contribution of 19.9% (95% CI: 17.1-22.4%) in all-cause mortality, 19.5% (95% CI: 14.3-24.3%) in respiratory mortality, and 23.5% (95% CI: 19.2-27.5%) in cardiovascular mortality.

  14. Online monitoring of water-soluble ionic composition of PM10 during early summer over Lanzhou City.

    PubMed

    Fan, Jin; Yue, Xiaoying; Jing, Yi; Chen, Qiang; Wang, Shigong

    2014-02-01

    Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 microg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.

  15. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China)

    PubMed Central

    Zhang, Wei-Kang; Wang, Bing; Niu, Xiang

    2015-01-01

    Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2). The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily. PMID:26287227

  16. Evaluation of short-term mortality attributable to particulate matter pollution in Spain.

    PubMed

    Ortiz, Cristina; Linares, Cristina; Carmona, Rocio; Díaz, Julio

    2017-05-01

    According to the WHO, 3 million deaths are attributable to air pollution due to particulate matter (PM) world-wide. However, there are no specific updated studies which calculate short-term PM-related cause specific mortality in Spain. The objective is to quantify the relative risks (RRs) and attributable risks (ARs) of daily mortality associated with PM 10 concentrations, registered in Spanish provinces and to calculate the number of PM-related deaths. We calculated daily mortality due to natural (ICD-10: A00 R99), circulatory (ICD-10: I00 I99) and respiratory causes (ICD-10: J00 J99) for each province across the period 2000-2009. Mean daily concentrations of PM 10 , NO 2 and O 3 was used. For the estimate of RRs and ARs, we used generalised linear models with a Poisson link. A meta-analysis was used to estimate RRs and ARs in the provinces with statically significant results. The overall RRs obtained for these provinces, corresponding to increases of 10 μ g/m 3 in PM 10 concentrations were 1.009 (95% CI: 1.006 1011) for natural, 1.026 (95% CI: 1.019 1033) for respiratory, and 1.009 (95% CI: 1.006 1012) for circulatory-cause mortality. This amounted to an annual overall total of 2683 deaths (95% CI: 852 4354) due to natural, 651 (95% CI: 359 1026) due to respiratory, and 556 (95% CI: 116 1012) due to circulatory causes, with 90% of this mortality lying below the WHO guideline values. This study provides an updated estimate of the effect had by this type of pollutant on causes of mortality, and constitutes an important basis for reinforcing public health measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Study of temporal variation in ambient air quality during Diwali festival in India.

    PubMed

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter < or =10 microm (PM(10)), SO(2), and NO(2)] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  18. Particulate matter is associated with sputum culture conversion in patients with culture-positive tuberculosis.

    PubMed

    Chen, Kuan-Yuan; Chuang, Kai-Jen; Liu, Hui-Chiao; Lee, Kang-Yun; Feng, Po-Hao; Su, Chien-Ling; Lin, Chii-Lan; Lee, Chun-Nin; Chuang, Hsiao-Chi

    2016-01-01

    Emerging risk factors for tuberculosis (TB) infection, such as air pollution, play a significant role at both the individual and population levels. However, the association between air pollution and TB remains unclear. The objective of this study was to examine the association between outdoor air pollution and sputum culture conversion in TB patients. In the present study, 389 subjects were recruited from a hospital in Taiwan from 2010 to 2012: 144 controls with non-TB-related pulmonary diseases with negative sputum cultures and 245 culture-positive TB subjects. We observed that a 1 μg/m(3) increase in particulate matter of ≤10 μm in aerodynamic diameter (PM10) resulted in 4% higher odds of TB (odds ratio =1.04, 95% confidence interval =1.01-1.08, P<0.05). The chest X-ray grading of TB subjects was correlated to 1 year levels of PM10 (R (2)=0.94, P<0.05). However, there were no associations of pulmonary cavitation or treatment success rate with PM10. In subjects with TB-positive cultures, annual exposure to ≥50 μg/m(3) PM10 was associated with an increase in the time required for sputum culture conversion (hazard ratio =1.28, 95% confidence interval: 1.07-1.84, P<0.05). In conclusion, chronic exposure to ≥50 μg/m(3) PM10 may prolong the sputum culture conversion of TB patients with sputum-positive cultures.

  19. Air pollution by particulate matter PM10 may trigger multiple sclerosis relapses.

    PubMed

    Roux, Jonathan; Bard, Denis; Le Pabic, Estelle; Segala, Claire; Reis, Jacques; Ongagna, Jean-Claude; de Sèze, Jérôme; Leray, Emmanuelle

    2017-07-01

    Seasonal variation of relapses in multiple sclerosis (MS) suggests that season-dependent factors, such as ambient air pollution, may trigger them. However, only few studies have considered possible role of air pollutants as relapse's risk factor. We investigated the effect of particulate matter of aerodynamic diameter smaller than 10µm (PM 10 ) on MS relapses. In total, 536 relapsing MS patients from Strasbourg city (France) were included, accounting for 2052 relapses over 2000-2009 period. A case-crossover design was used with cases defined as the days of relapse and controls being selected in the same patient at plus and minus 35 days. Different lags from 0 to 30 days were considered. Conditional logistic regressions, adjusted on meteorological parameters, school and public holidays, were used and exposure was considered first as a quantitative variable and second, as a binary variable. The natural logarithm of the average PM 10 concentration lagged from 1 to 3 days before relapse onset was significantly associated with relapse risk (OR =1.40 [95% confidence interval 1.08-1.81]) in cold season. Consistent results were observed when considering PM 10 as a binary variable, even if not significant. With an appropriate study design and robust ascertainment of neurological events and exposure, the present study highlights the effect of PM 10 on the risk of relapse in MS patients, probably through oxidative stress mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. FUZZY COMPUTATIONAL MODELS TO EVALUATE THE EFFECTS OF AIR POLLUTION ON CHILDREN.

    PubMed

    David, Gleise Silva; Rizol, Paloma Maria Silva Rocha; Nascimento, Luiz Fernando Costa

    2018-01-01

    To build a fuzzy computational model to estimate the number of hospitalizations of children aged up to 10 years due to respiratory conditions based on pollutants and climatic factors in the city of São José do Rio Preto, Brazil. A computational model was constructed using the fuzzy logic. The model has 4 inputs, each with 2 membership functions generating 16 rules, and the output with 5 pertinence functions, based on the Mamdani's method, to estimate the association between the pollutants and the number of hospitalizations. Data from hospitalizations, from 2011-2013, were obtained in DATASUS - and the pollutants Particulate Matter (PM10) and Nitrogen Dioxide (NO2), wind speed and temperature were obtained by the Environmental Company of São Paulo State (Cetesb). A total of 1,161 children were hospitalized in the period and the mean of pollutants was 36 and 51 µg/m3 - PM10 and NO2, respectively. The best values of the Pearson correlation (0.34) and accuracy measured by the Receiver Operating Characteristic (ROC) curve (NO2 - 96.7% and PM10 - 90.4%) were for hospitalizations on the same day of exposure. The model was effective in predicting the number of hospitalizations of children and could be used as a tool in the hospital management of the studied region.

  1. Case study of PM pollution in playgrounds in Istanbul

    NASA Astrophysics Data System (ADS)

    Ozdemir, Huseyin; Mertoglu, Bulent; Demir, Goksel; Deniz, Ali; Toros, Hüseyin

    2012-05-01

    In a world where at least 50% of the population is living in urban environments, air pollution and specifically particulate matter (PM) have become one of the most critical issues for human health. Children are more susceptible than adults to air pollution and its adverse effects because they inhale and retain larger amounts of air pollutants per unit of body weight. In this study, PM pollution, particularly PM10 and PM2.5, at selected playgrounds were investigated in Istanbul city. Istanbul is a megacity of over 15 million inhabitants, and on-road traffic is increasing rapidly (over 3 million vehicles on the road). To estimate the effect of traffic emissions on children, the location of the playgrounds were selected according to traffic density. Measurements were carried out at five different playgrounds throughout the city in 2009. Field results show that the values of PM10 and PM2.5 have reached critical limits at the playgrounds close to the main roads, especially at P-1. Thus, we focused on this location and investigated a source other than traffic emissions. One of the episode days has been observed on 5-7 March 2009. Evaluations of meteorological events are very important to determine air pollution sources and their long-range transport. Therefore, the Weather Research and Forecasting model (WRF) was used to simulate and forecast meteorological parameters and the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) applied to investigate long-range transport. According to the WRF model outputs, there was a low-pressure system over Geneva gulf on the 500-hPa level, and its core had been located over Britain on 5 March 2009 00UTC. The system had been sweeping dust from the Sahara Desert and carrying the air particles over Istanbul. Similarly, backward HYSPLIT analysis showed that air particles had moved through Istanbul from Northern Africa.

  2. Near-road enhancement and solubility of fine and coarse ...

    EPA Pesticide Factsheets

    Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physical/chemical properties of PM in the near-road environment. To investigate the spatial profile and water solubility of elemental PM species near a major roadway, filter-based measurements of fine (PM2.5) and coarse (PM10-2.5) PM were simultaneously collected at multiple distances (10 m, 100 m, and 300 m) from Interstate I-96 in Detroit, Michigan during September–November 2010. Filters were extracted in water, followed by a hot acid extraction, and analyzed by magnetic sector field high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) to quantify water-soluble and acid-soluble trace elements for each PM size fraction. PM2.5 and PM10-2.5 species measured in the near-road samples included elements associated with traffic activity, local industrial sources, and regional pollution. Metals indicative of brake wear (Ba, Cu) were dramatically enriched near the roadway during downwind conditions (factor of 5 concentration increase), with the largest increase within 100 m of the roadway. Moderate near-roadway increases were observed for crustal elements and other traffic-related PM (Fe, Ca), and the lowest increases observed for regional PM species (S). Water solubility varied

  3. Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

    PubMed

    Qian, Zhengmin; He, Qingci; Lin, Hung-Mo; Kong, Lingli; Zhou, Dunjin; Liang, Shengwen; Zhu, Zhichao; Liao, Duanping; Liu, Wenshan; Bentley, Christy M; Dan, Jijun; Wang, Beiwei; Yang, Niannian; Xu, Shuangqing; Gong, Jie; Wei, Hongming; Sun, Huilin; Qin, Zudian

    2010-11-01

    Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. Wuhan is called an "oven city" in China because of its extremely hot summers (the average daily temperature in July is 37.2 degrees C and maximum daily temperature often exceeds 40 degrees C). Approximately 4.5 million residents live in the core city area of 201 km2, where air pollution levels are higher and ranges are wider than the levels in most cities studied in the published literature. We obtained daily mean levels of PM10, SO2, and NO2 concentrations from five fixed-site air monitoring stations operated by the Wuhan Environmental Monitoring Center (WEMC). O3 data were obtained from two stations, and 8-hour averages, from 10:00 to 18:00, were used. Daily mortality data were obtained from the Wuhan Centres for Disease Prevention and Control (WCDC) during the study period of July 1, 2000, to June 30, 2004. To achieve the first aim, we used a regression of the logarithm of daily counts of mortality due to all natural causes and cause-specific mortality on the daily mean concentrations of the four pollutants while controlling for weather, temporal factors, and other important covariates with generalized additive models (GAMs). We derived pollutant effect estimations for 0-day, 1-day, 2-day, 3-day, and 4-day lagged exposure levels, and the averages of 0-day and 1-day lags (lag 0-1 day) and of 0-day, 1-day, 2-day, and 3-day lags (lag 0-3 days) before the event of death. In addition, we used individual-level data (e.g., age and sex) to classify subgroups in stratified analyses. Furthermore, we explored the nonlinear shapes ("thresholds") of the exposure-response relations. To achieve the second aim, we tested the hypothesis that extremely high temperature modifies the associations between air pollution and daily mortality. We developed three corresponding weather indicators: "extremely hot," "extremely cold," and "normal temperatures." The estimates were obtained from the models for the main effects and for the pollutant-temperature interaction for each pollutant and each cause of mortality. To achieve the third aim, we conducted an additional analysis. We examined the concordance rates and kappa statistics between the ICD-9-coded mortality data and the ICD-10-coded mortality data for the year 2002. We also compared the magnitudes of the estimated effects resulting from the use of the two types of ICD-coded mortality data. In general, the largest pollutant effects were observed at lag 0-1 day. Therefore, for this report, we focused on the results obtained from the lag 0-1 models. We observed consistent associations between PM10 and mortality: every 10-microg/m3 increase in PM10 daily concentration at lag 0-1 day produced a statistically significant association with an increase in mortality due to all natural causes (0.43%; 95% confidence interval [CI], 0.24 to 0.62), CVD (0.57%; 95% CI, 0.31 to 0.84), stroke (0.57%; 95% CI, 0.25 to 0.88), CARD (0.49%; 95% CI, 0.04 to 0.94), RD (0.87%; 95% CI, 0.34 to 1.41), CP (0.52%; 95% CI, 0.27 to 0.77), and non-CP (0.30%; 95% CI, 0.05 to 0.54). In general, these effects were stronger in females than in males and were also stronger among the elderly (> or = 65 years) than among the young. The results of sensitivity testing over the range of exposures from 24.8 to 477.8 microg/m3 also suggest the appropriateness of assuming a linear relation between daily mortality and PM10. Among the gaseous pollutants, we also observed statistically significant associations of mortality with NO, and SO2, and that the estimated effects of these two pollutants were stronger than the PM10 effects. The patterns of NO2 and SO2 associations were similar to those of PM10 in terms of sex, age, and linearity. O3 was not associated with mortality. In the analysis of the effect modification of extremely high temperature on the association between air pollution and daily mortality, only the interaction of PM10 with temperature was statistically significant. Specifically, the interaction terms were statistically significant for mortality due to all natural (P = 0.014), CVD (P = 0.007), and CP (P = 0.014) causes. Across the three temperature groups, the strongest PM10 effects occurred mainly on days with extremely high temperatures for mortality due to all natural (2.20%; 95% CI, 0.74 to 3.68), CVD (3.28%; 95% CI, 1.24 to 5.37), and CP (3.02%; 95% CI, 1.03 to 5.04) causes. The weakest effects occurred at normal temperature days, with the effects on days with low temperatures in the middle. To assess the uncertainty of the effect estimates caused by the change from ICD-9-coded mortality data to ICD-10-coded mortality data, we compared the two sets of data and found high concordance rates (> 99.3%) and kappa statistics close to 1.0 (> 0.98). All effect estimates showed very little change. All statistically significant levels of the estimated effects remained unchanged. In conclusion, the findings for the aims from the current study are consistent with those in most previous studies of air pollution and mortality. The small differences between mortality effects for deaths coded using ICD-9 and ICD-10 show that the change in coding had a minimal impact on our study. Few published papers have reported synergistic effects of extremely high temperatures and air pollution on mortality, and further studies are needed. Establishing causal links between heat, PM10, and mortality will require further toxicologic and cohort studies.

  4. Decomposing the profile of PM in two low polluted German cities--mapping of air mass residence time, focusing on potential long range transport impacts.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-07-01

    This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters.

    PubMed

    Son, Yeongkwon; Osornio-Vargas, Álvaro R; O'Neill, Marie S; Hystad, Perry; Texcalac-Sangrador, José L; Ohman-Strickland, Pamela; Meng, Qingyu; Schwander, Stephan

    2018-05-17

    The Mexico City Metropolitan Area (MCMA) is one of the largest and most populated urban environments in the world and experiences high air pollution levels. To develop models that estimate pollutant concentrations at fine spatiotemporal scales and provide improved air pollution exposure assessments for health studies in Mexico City. We developed finer spatiotemporal land use regression (LUR) models for PM 2.5 , PM 10 , O 3 , NO 2 , CO and SO 2 using mixed effect models with the Least Absolute Shrinkage and Selection Operator (LASSO). Hourly traffic density was included as a temporal variable besides meteorological and holiday variables. Models of hourly, daily, monthly, 6-monthly and annual averages were developed and evaluated using traditional and novel indices. The developed spatiotemporal LUR models yielded predicted concentrations with good spatial and temporal agreements with measured pollutant levels except for the hourly PM 2.5 , PM 10 and SO 2 . Most of the LUR models met performance goals based on the standardized indices. LUR models with temporal scales greater than one hour were successfully developed using mixed effect models with LASSO and showed superior model performance compared to earlier LUR models, especially for time scales of a day or longer. The newly developed LUR models will be further refined with ongoing Mexico City air pollution sampling campaigns to improve personal exposure assessments. Copyright © 2018. Published by Elsevier B.V.

  6. Air pollution and mortality: results from a study of Santiago, Chile.

    PubMed

    Ostro, B; Sanchez, J M; Aranda, C; Eskeland, G S

    1996-01-01

    In 1986, the U.S. EPA issued an air quality standard for particulate matter that included only particulates below 10 microns in diameter (PM10). Unfortunately, epidemiological research investigating the health effects associated with PM10 has been limited by the lack of available daily data from outdoor monitoring stations. Evidence of high concentrations of PM10 in Eastern Europe and in metropolitan areas such as Mexico City and Santiago, Chile underscores the need to evaluate the association between air pollution and mortality. Over the last few years, daily measures of ambient PM10 have been collected in Santiago. Our analysis examines the relationship between PM10 and daily mortality between 1989 and 1991. In addition to total daily mortality, the data were compiled to record total mortality for all males, all females, and those over 65, and mortality from either respiratory disease or cardiovascular disease. Multiple regression analysis was used to explain mortality, with particular attention to controlling for the influence of season and temperature. The results suggest a strong association between PM10 and all of the alternative measures of mortality. The association persists after controlling for daily minimum temperature and binary variables indicating temperature extremes, the day of the week, the month, and the year. Additional sensitivity analyses suggest a fairly robust relationship. In general, a 10 micrograms/m3 change in daily PM10 was associated with a 1% increase in mortality. This relative risk is consistent with the results of recent studies undertaken in the United States.

  7. Investigating the Relation Between Prevalence of Asthmatic Allergy with the Characteristics of the Environment Using Association Rule Mining

    NASA Astrophysics Data System (ADS)

    Kanani Sadat, Y.; Karimipour, F.; Kanani Sadat, A.

    2014-10-01

    The prevalence of allergic diseases has highly increased in recent decades due to contamination of the environment with the allergy stimuli. A common treat is identifying the allergy stimulus and, then, avoiding the patient to be exposed with it. There are, however, many unknown allergic diseases stimuli that are related to the characteristics of the living environment. In this paper, we focus on the effect of air pollution on asthmatic allergies and investigate the association between prevalence of such allergies with those characteristics of the environment that may affect the air pollution. For this, spatial association rule mining has been deployed to mine the association between spatial distribution of allergy prevalence and the air pollution parameters such as CO, SO2, NO2, PM10, PM2.5, and O3 (compiled by the air pollution monitoring stations) as well as living distance to parks and roads. The results for the case study (i.e., Tehran metropolitan area) indicates that distance to parks and roads as well as CO, NO2, PM10, and PM2.5 is related to the allergy prevalence in December (the most polluted month of the year in Tehran), while SO2 and O3 have no effect on that.

  8. Air pollutant characterization in Tula industrial corridor, Central Mexico, during the MILAGRO study.

    PubMed

    Sosa, G; Vega, E; González-Avalos, E; Mora, V; López-Veneroni, D

    2013-01-01

    Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a four-week period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the afternoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS) and Tepeji (TEP) was 75.1 and 36.8 μ g/m(3), respectively while average PM2.5 was 31.0 and 25.7 μ g/m(3). JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm(-1), while aerosol scattering (76 Mm(-1)) was higher compared to a rural site but much lower than at Mexico City. δ(13)C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region.

  9. Hydrogen sulfide and particle matter levels associated with increased dispensing of anti-asthma drugs in Iceland's capital.

    PubMed

    Carlsen, Hanne Krage; Zoëga, Helga; Valdimarsdóttir, Unnur; Gíslason, Thórarinn; Hrafnkelsson, Birgir

    2012-02-01

    Air pollutants in Iceland's capital area include hydrogen sulfide (H2S) emissions from geothermal power plants, particle pollution (PM10) and traffic-related pollutants. Respiratory health effects of exposure to PM and traffic pollutants are well documented, yet this is one of the first studies to investigate short-term health effects of ambient H2S exposure. The aim of this study was to investigate the associations between daily ambient levels of H2S, PM10, nitrogen dioxide (NO2) and ozone (O3), and the use of drugs for obstructive pulmonary diseases in adults in Iceland's capital area. The study period was 8 March 2006 to 31 December 2009. We used log-linear Poisson generalized additive regression models with cubic splines to estimate relative risks of individually dispensed drugs by air pollution levels. A three-day moving average of the exposure variables gave the best fit to the data. Final models included significant covariates adjusting for climate and influenza epidemics, as well as time-dependent variables. The three-day moving average of H2S and PM10 levels were positively associated with the number of individuals who were dispensed drugs at lag 3-5, corresponding to a 2.0% (95% confidence interval [CI] 0.4, 3.6) and 0.9% (95% CI 0.1, 1.8) per 10 μg/m3 pollutant concentration increase, respectively. Our findings indicated that intermittent increases in levels of particle matter from traffic and natural sources and ambient H2S levels were weakly associated with increased dispensing of drugs for obstructive pulmonary disease in Iceland's capital area. These weak associations could be confounded by unevaluated variables hence further studies are needed. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effects of heat waves on mortality: effect modification and confounding by air pollutants.

    PubMed

    Analitis, Antonis; Michelozzi, Paola; D'Ippoliti, Daniela; De'Donato, Francesca; Menne, Bettina; Matthies, Franziska; Atkinson, Richard W; Iñiguez, Carmen; Basagaña, Xavier; Schneider, Alexandra; Lefranc, Agnès; Paldy, Anna; Bisanti, Luigi; Katsouyanni, Klea

    2014-01-01

    Heat waves and air pollution are both associated with increased mortality. Their joint effects are less well understood. We explored the role of air pollution in modifying the effects of heat waves on mortality, within the EuroHEAT project. Daily mortality, meteorologic, and air pollution data from nine European cities for the years 1990-2004 were assembled. We defined heat waves by taking both intensity and duration into account. The city-specific effects of heat wave episodes were estimated using generalized estimating equation models, adjusting for potential confounders with and without inclusion of air pollutants (particles, ozone, nitrogen dioxide, sulphur dioxide, carbon monoxide). To investigate effect modification, we introduced an interaction term between heat waves and each single pollutant in the models. Random effects meta-analysis was used to summarize the city-specific results. The increase in the number of daily deaths during heat wave episodes was 54% higher on high ozone days compared with low, among people age 75-84 years. The heat wave effect on high PM10 days was increased by 36% and 106% in the 75-84 year and 85+ year age groups, respectively. A similar pattern was observed for effects on cardiovascular mortality. Effect modification was less evident for respiratory mortality, although the heat wave effect itself was greater for this cause of death. The heat wave effect was smaller (15-30%) after adjustment for ozone or PM10. The heat wave effect on mortality was larger during high ozone or high PM10 days. When assessing the effect of heat waves on mortality, lack of adjustment for ozone and especially PM10 overestimates effect parameters. This bias has implications for public health policy.

  11. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995-2008: Impact of local emission and super-regional transport

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Wang, Tao; Wang, Wenxing; Wei, Xiaolin; Liu, Qian

    2013-09-01

    The release of large amounts of sulfur dioxide (SO2) and nitrogen oxides (NOx) from the burning of fossil fuel leads to regional air pollution phenomena such as haze and acidic deposition. Despite longstanding recognition of the severity of these problems and the numerous studies conducted in China, little is known of long-term trends in particulate sulfate and nitrate and their association with changes in precursor emissions. In this study, we analyze records covering a 14-year period (1995-2008) of PM10 composition in the subtropical city of Hong Kong, situated in the rapidly developing Pearl River Delta region of southern China. A linear regression method and a Regional Kendall test are employed for trend calculations. In contrast to the decreased levels of SO2 and NOx emissions in Hong Kong, there are increasing overall trends in ambient concentrations of PM10 sulfate and PM10 nitrate, with the most obvious rise seen during 2001-2005. The percentages of sulfate and nitrate in the PM10 mass and rainwater acidity also increased. Backward trajectories are computed to help identify the origin of large-scale air masses arriving in Hong Kong. In air masses dominated by Hong Kong urban sources and ship emissions, there was no statistically significant trend for PM10 sulfate and a small increase for PM10 nitrate; however, the evident increases in PM10 sulfate and PM10 nitrate concentrations were observed in air masses originating from eastern China and are generally consistent with changes in emissions of their precursors in eastern China. Examination of PM10 mass data recorded at a pair of upwind-urban sites also indicates that long-range transport makes a large contribution (>80%) to PM10 loadings in Hong Kong. Together with our previous study on the ozone trend, these results demonstrate the important impact exerted by long-distance sources and suggest a need to consider the impact of super-regional transport when formulating air-quality management strategy in Hong Kong in future.

  12. Air pollution and hospital visits for acute upper and lower respiratory infections among children in Ningbo, China: A time-series analysis.

    PubMed

    Zheng, Pei-Wen; Wang, Jian-Bing; Zhang, Zhen-Yu; Shen, Peng; Chai, Peng-Fei; Li, Die; Jin, Ming-Juan; Tang, Meng-Ling; Lu, Huai-Chu; Lin, Hong-Bo; Chen, Kun

    2017-08-01

    Acute upper and lower respiratory infections are main causes of mortality and morbidity in children. Air pollution has been recognized as an important contributor to development and exacerbation of respiratory infections. However, few studies are available in China. In this study, we investigated the short-term effect of air pollution on hospital visits for acute upper and lower respiratory infections among children under 15 years in Ningbo, China. Poisson generalized models were used to estimate the associations between air pollution and hospital visits for acute upper and lower respiratory infections adjusted for temporal, seasonal, and meteorological effects. We found that four pollutants (PM 2.5 , PM 10 , NO 2 , and SO 2 ) were significantly associated with hospital visits for acute upper and lower respiratory infections. The effect estimates for acute upper respiratory infections tended to be higher (PM 2.5 ER = 3.46, 95% CI 2.18, 4.76; PM 10 ER = 2.81, 95% CI 1.93, 3.69; NO 2 ER = 11.27, 95% CI 8.70, 13.89; SO 2 ER = 15.17, 95% CI 11.29, 19.19). Significant associations for gaseous pollutants (NO 2 and SO 2 ) were observed after adjustment for particular matter. Stronger associations were observed among older children and in the cold period. Our study suggested that short-term exposure to outdoor air pollution was associated with hospital visits for acute upper and lower respiratory infections in Ningbo.

  13. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China.

    PubMed

    Yang, Shaoping; Tan, Yafei; Mei, Hui; Wang, Fang; Li, Na; Zhao, Jinzhu; Zhang, Yiming; Qian, Zhengmin; Chang, Jen Jen; Syberg, Kevin M; Peng, Anna; Mei, Hong; Zhang, Dan; Zhang, Yan; Xu, Shunqing; Li, Yuanyuan; Zheng, Tongzhang; Zhang, Bin

    2018-04-01

    Recent studies suggest that ambient air pollution exposure during pregnancy is associated with stillbirth occurrence. However, the results on the associations between ambient air pollutants and stillbirths are inconsistent and little is known about the gestational timing of sensitive periods for the effects of ambient air pollutants exposure on stillbirth. This study aimed to examine whether exposure to high levels of ambient air pollutants in a Chinese population is associated with an increased risk of stillbirth, and determine the gestational period when the fetus is most susceptible. We conducted a population-based cohort study in Wuhan, China, involving 95,354 births between June 10, 2011 and June 9, 2013. The exposure assessments were based on the daily mean concentrations of air pollutants obtained from the exposure monitor nearest to the pregnant women's residence. Logistic regression analyses were performed to determine the associations between stillbirths and exposure to each of the air pollutants at different pregnancy periods with adjustment for confounding factors. Stillbirth increased with a 10 μg/m 3 increase in particulate matter 2.5 (PM 2.5 ) in each stage of pregnancy, and a significant association between carbon monoxide (CO) exposure and stillbirth was found during the third trimester (adjusted odds ratio (aOR): 1.01, 95% confidence interval (CI): 1.00-1.01) and in the entire pregnancy (aOR: 1.18, 95% CI: 1.04-1.34). Furthermore, an increased risk of stillbirth in the third trimester was associated with a 10 μg/m 3 increase in PM 10 (aOR: 1.08, 95% CI: 1.04-1.11), nitrogen dioxide (NO 2 ) (aOR: 1.13, 95% CI: 1.07-1.21) and sulfur dioxide (SO 2 ) (aOR: 1.26, 95% CI: 1.16-1.35). However, no positive association was observed between ozone exposure and stillbirth. In the two-pollutant models, PM 2.5 and CO exposures were found to be consistently associated with stillbirth. Our study revealed that exposure to high levels of PM 2.5 , PM 10 , SO 2 , NO 2 and CO increases the risk of stillbirth and the most susceptible gestational period to ambient air pollution exposure was in the third trimester. Further toxicological and prospective cohort studies with improved exposure assessments are needed to confirm the causal link between air pollutants and stillbirth. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Association between exposure to ambient air pollution before conception date and likelihood of giving birth to girls in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Liang, Zhijiang; Liu, Tao; Di, Qian; Qian, Zhengmin; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; Guo, Lingchuan; Ma, Wenjun; Zhao, Qingguo

    2015-12-01

    A few studies have linked ambient air pollution with sex ratio at birth. Most of these studies examined the long-term effects using spatial or temporal comparison approaches. This study aimed to investigate whether parental exposure to air pollution before conception date could affect the likelihood of the offspring being male or female. We used the information collected in a major maternal hospital in Guangzhou, China. The parental exposure to air pollution was assessed using the air pollution concentration before the conception date. Logistic regression models were used to assess the association between air pollution exposure and birth sex with adjustment for potential confounding factors, such as maternal age, parental education levels, long-term trend, season, and weather condition (mean temperature and relative humidity). The analysis revealed that higher air pollution was associated with higher probability of female newborns, with the effective exposure around one week prior to conception date. In the one-pollutant models, PM10, SO2 and NO2 had significant effects. For example, the excess risk was 0.61% (95% confidence interval (95% CI): 0.36%, 0.86%) for a 10 ug/m3 increase in lag 2 day's PM10, 0.42% (95% CI: 0.21%, 0.64%) for lag 3 day's SO2 and 0.97% (95% CI: 0.44%, 1.50%) for lag 3 day's NO2; and in two-pollutant models, PM10 remained statistically significant. These results suggest that parental exposure to ambient air pollution a few days prior to conception might be a contributing factor to higher probability of giving birth to female offspring in Guangzhou.

  15. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study.

    PubMed

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang; Cao, Yang

    2016-08-16

    To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. A time-series study using regional death registry between 2009 and 2010. 8 districts in a large metropolitan area in Northern China. 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (-1.09 to 4.28 vs -1.08 to 3.93) and the PCs-based model (-2.23 to 4.07 vs -2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, -1.12 to 4.85 versus -1.11 versus 4.83. The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.

    PubMed

    Guo, Ling-Chuan; Zhang, Yonghui; Lin, Hualiang; Zeng, Weilin; Liu, Tao; Xiao, Jianpeng; Rutherford, Shannon; You, Jing; Ma, Wenjun

    2016-08-01

    Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5-10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5-10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.

  18. Residential Air Pollution and Associations with Wheeze and Shortness of Breath in Adults: A Combined Analysis of Cross-Sectional Data from Two Large European Cohorts

    PubMed Central

    de Hoogh, Kees; Probst-Hensch, Nicole; Mbatchou, Stéphane; Eeftens, Marloes; Cai, Yutong; Schindler, Christian; Fortier, Isabel; Hodgson, Susan; Gaye, Amadou; Stolk, Ronald; Hansell, Anna

    2017-01-01

    Background: Research examining associations between air pollution exposure and respiratory symptoms in adults has generally been inconclusive. This may be related in part to sample size issues, which also preclude analysis in potentially vulnerable subgroups. Objectives: We estimated associations between air pollution exposures and the prevalence of wheeze and shortness of breath using harmonized baseline data from two very large European cohorts, Lifelines (2006–2013) and UK Biobank (2006–2010). Our aim was also to determine whether the relationship between air pollution and respiratory symptom prevalence differed between individuals with different characteristics. Methods: Cross-sectional analyses explored associations between prevalence of self-reported wheeze and shortness of breath and annual mean particulate matter with aerodynamic diameter <2.5μm, 2.5–10μm, and <10μm (PM2.5, PMcoarse, and PM10, respectively) and nitrogen dioxide (NO2) concentrations at place of residence using logistic regression. Subgroup analyses and tests for interaction were performed for age, sex, smoking status, household income, obesity status, and asthma status. Results: All PM exposures were associated with respiratory symptoms based on single-pollutant models, with the largest associations seen for PM2.5 with prevalence of wheezing {odds ratio (OR)=1.16 per 5μg/m³ [95% confidence interval (CI): 1.11, 1.21]} and shortness of breath [OR=1.61 per 5μg/m³ (95% CI: 1.45, 1.78)]. The association between shortness of breath and a 5-μg/m³ increment in PM2.5 was significantly higher for individuals from lower-[OR=1.73 (95% CI: 1.52, 1.97)] versus higher-income households [OR=1.31 (95% CI: 1.11, 1.55); p-interaction=0.005), whereas the association between PM2.5 and wheeze was limited to lower-income participants [OR=1.30 (95% CI: 1.22, 1.38) vs. OR=1.02; (95% CI: 0.96, 1.08); p-interaction<0.001]. Exposure to NO2 also showed positive associations with wheeze and shortness of breath. Conclusion: Exposure to PM and NO2 air pollution was associated with the prevalence of wheeze and shortness of breath in this large study, with stronger associations between PM2.5 and both outcomes among lower- versus higher-income participants. https://doi.org/10.1289/EHP1353 PMID:28963089

  19. Assessing Exposure to Household Air Pollution: A Systematic ...

    EPA Pesticide Factsheets

    ACKGROUND: Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM2.5) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate measure of PM2.5 in studies of household air pollution. OBJECTIVE: The goal was to evaluate the validity of exposure to CO as a surrogate of exposure to PM2.5 in studies of household air pollution and the consistency of the PM2.5–CO relationship across different study settings and conditions. METHODS: We conducted a systematic review of studies with exposure and/or cooking area PM2.5 and CO measurements and assembled 2,048 PM2.5 and CO measurements from a subset of studies (18 cooking area studies and 9 personal exposure studies) retained in the systematic review. We conducted pooled multivariate analyses of PM2.5–CO associations, evaluating fuels, urbanicity, season, study, and CO methods as covariates and effect modifiers. RESULTS: We retained 61 of 70 studies for review, representing 27 countries. Reported PM2.5–CO correlations (r) were lower for personal exposure (range: 0.22–0.97; median=0.57) than for cooking areas (range: 0.10–0.96; median=0.71). In the pooled analyses of personal exposure and cooking area concentrations, the variation in ln(CO) explained 13% and 48% of the variation in ln(PM2.5), respectively. CONCLUSIONS: Our results suggest that exposure to CO is not

  20. Size-segregated particle number concentrations and respiratory emergency room visits in Beijing, China.

    PubMed

    Leitte, Arne Marian; Schlink, Uwe; Herbarth, Olf; Wiedensohler, Alfred; Pan, Xiao-Chuan; Hu, Min; Richter, Matthia; Wehner, Birgit; Tuch, Thomas; Wu, Zhijun; Yang, Minjuan; Liu, Liqun; Breitner, Susanne; Cyrys, Josef; Peters, Annette; Wichmann, H-Erich; Franck, Ulrich

    2011-04-01

    The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. Data on particle size distributions from 3 nm to 1 µm; PM10 (PM ≤ 10 µm), nitrogen dioxide (NO(2)), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single- and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. Associations of respiratory ERV with NO(2) concentrations and 100-1,000 nm particle number or surface area concentrations were of similar magnitude-that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles < 50 nm were not positively associated with ERV, whereas particles 50-100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO(2). Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO(2) concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM(10) or particle number concentrations in Beijing.

  1. Study on the association between ambient air pollution and daily cardiovascular and respiratory mortality in an urban district of Beijing.

    PubMed

    Zhang, Fengying; Li, Liping; Krafft, Thomas; Lv, Jinmei; Wang, Wuyi; Pei, Desheng

    2011-06-01

    The association between daily cardiovascular/respiratory mortality and air pollution in an urban district of Beijing was investigated over a 6-year period (January 2003 to December 2008). The purpose of this study was to evaluate the relative importance of the major air pollutants [particulate matter (PM), SO2, NO2] as predictors of daily cardiovascular/respiratory mortality. The time-series studied comprises years with lower level interventions to control air pollution (2003-2006) and years with high level interventions in preparation for and during the Olympics/Paralympics (2007-2008). Concentrations of PM10, SO2, and NO2, were measured daily during the study period. A generalized additive model was used to evaluate daily numbers of cardiovascular/respiratory deaths in relation to each air pollutant, controlling for time trends and meteorological influences such as temperature and relative humidity. The results show that the daily cardiovascular/respiratory death rates were significantly associated with the concentration air pollutants, especially deaths related to cardiovascular disease. The current day effects of PM10 and NO2 were higher than that of single lags (distributed lags) and moving average lags for respiratory disease mortality. The largest RR of SO2 for respiratory disease mortality was in Lag02. For cardiovascular disease mortality, the largest RR was in Lag01 for PM10, and in current day (Lag0) for SO2 and NO2. NO2 was associated with the largest RRs for deaths from both cardiovascular disease and respiratory disease.

  2. Association between air pollution and rhinitis incidence in two European cohorts.

    PubMed

    Burte, Emilie; Leynaert, Bénédicte; Bono, Roberto; Brunekreef, Bert; Bousquet, Jean; Carsin, Anne-Elie; De Hoogh, Kees; Forsberg, Bertil; Gormand, Frédéric; Heinrich, Joachim; Just, Jocelyne; Marcon, Alessandro; Künzli, Nino; Nieuwenhuijsen, Mark; Pin, Isabelle; Stempfelet, Morgane; Sunyer, Jordi; Villani, Simona; Siroux, Valérie; Jarvis, Deborah; Nadif, Rachel; Jacquemin, Bénédicte

    2018-06-01

    The association between air pollution and rhinitis is not well established. The aim of this longitudinal analysis was to study the association between modeled air pollution at the subjects' home addresses and self-reported incidence of rhinitis. We used data from 1533 adults from two multicentre cohorts' studies (EGEA and ECRHS). Rhinitis incidence was defined as reporting rhinitis at the second follow-up (2011 to 2013) but not at the first follow-up (2000 to 2007). Annual exposure to NO 2 , PM 10 and PM 2.5 at the participants' home addresses was estimated using land-use regression models developed by the ESCAPE project for the 2009-2010 period. Incidence rate ratios (IRR) were computed using Poisson regression. Pooled analysis, analyses by city and meta-regression testing for heterogeneity were carried out. No association between long-term air pollution exposure and incidence of rhinitis was found (adjusted IRR (aIRR) for an increase of 10 μg·m -3 of NO 2: 1.00 [0.91-1.09], for an increase of 5 μg·m -3 of PM 2.5 : 0.88 [0.73-1.04]). Similar results were found in the two-pollutant model (aIRR for an increase of 10 μg·m -3 of NO 2: 1.01 [0.87-1.17], for an increase of 5 μg·m -3 of PM 2.5 : 0.87 [0.68-1.08]). Results differed depending on the city, but no regional pattern emerged for any of the pollutants. This study did not find any consistent evidence of an association between long-term air pollution and incident rhinitis. Copyright © 2018. Published by Elsevier Ltd.

  3. Daily concentrations trend and change point of particulate matter (PM10) in Pahang, Malaysia - A case study at Balok Baru

    NASA Astrophysics Data System (ADS)

    Wahid, Sharifah Norhuda Syed; Ujang, Suriyati

    2015-02-01

    Daily concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10) could be very harmful to human health such as respiratory and cardiovascular diseases. The purpose of this paper is to describe on the experiences of air pollutants in the state of Pahang, Malaysia during the first quarter of year 2014. Data were gathered from available automatic air quality monitoring stations at Balok Baru, Pahang through the assistance from the Department of Environment. Cumulative sum technique shows that a change occurred at March, 8th with 88 μg/ m3, moderate air quality level. This change point indicated that the PM10 level started to have a potential in moderate or worse level. In addition, time series regression analysis shows that the trend of daily concentrations of Balok Baru station was an upward trend and for additional day, the PM10 level was increased by 0.1117 μg/ m3. It is hoped that this study will give a significant contribution for future researcher in the area of the study on the risk of PM10 or other types of air pollutant to air quality and also human health.

  4. Assimilative capacity-based emission load management in a critically polluted industrial cluster.

    PubMed

    Panda, Smaranika; Nagendra, S M Shiva

    2017-12-01

    In the present study, a modified approach was adopted to quantify the assimilative capacity (i.e., the maximum emission an area can take without violating the permissible pollutant standards) of a major industrial cluster (Manali, India) and to assess the effectiveness of adopted air pollution control measures at the region. Seasonal analysis of assimilative capacity was carried out corresponding to critical, high, medium, and low pollution levels to know the best and worst conditions for industrial operations. Bottom-up approach was employed to quantify sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and particulate matter (aerodynamic diameter <10 μm; PM 10 ) emissions at a fine spatial resolution of 500 × 500 m 2 in Manali industrial cluster. AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), an U.S. Environmental Protection Agency (EPA) regulatory model, was used for estimating assimilative capacity. Results indicated that 22.8 tonnes/day of SO 2 , 7.8 tonnes/day of NO 2 , and 7.1 tonnes/day of PM 10 were emitted from the industries of Manali. The estimated assimilative capacities for SO 2 , NO 2 , and PM 10 were found to be 16.05, 17.36, and 19.78 tonnes/day, respectively. It was observed that the current SO 2 emissions were exceeding the estimated safe load by 6.7 tonnes/day, whereas PM 10 and NO 2 were within the safe limits. Seasonal analysis of assimilative capacity showed that post-monsoon had the lowest load-carrying capacity, followed by winter, summer, and monsoon seasons, and the allowable SO 2 emissions during post-monsoon and winter seasons were found to be 35% and 26% lower, respectively, when compared with monsoon season. The authors present a modified approach for quantitative estimation of assimilative capacity of a critically polluted Indian industrial cluster. The authors developed a geo-coded fine-resolution PM 10 , NO 2 , and SO 2 emission inventory for Manali industrial area and further quantitatively estimated its season-wise assimilative capacities corresponding to various pollution levels. This quantitative representation of assimilative capacity (in terms of emissions), when compared with routine qualitative representation, provides better data for quantifying carrying capacity of an area. This information helps policy makers and regulatory authorities to develop an effective mitigation plan for air pollution abatement.

  5. Individual and Neighborhood Stressors, Air Pollution and Cardiovascular Disease.

    PubMed

    Hazlehurst, Marnie F; Nurius, Paula S; Hajat, Anjum

    2018-03-08

    Psychosocial and environmental stress exposures across the life course have been shown to be relevant in the development of cardiovascular disease (CVD). Assessing more than one stressor from different domains (e.g., individual and neighborhood) and across the life course moves us towards a more integrated picture of how stress affects health and well-being. Furthermore, these individual and neighborhood psychosocial stressors act on biologic pathways, including immune function and inflammatory response, which are also impacted by ubiquitous environmental exposures such as air pollution. The objective of this study is to evaluate the interaction between psychosocial stressors, at both the individual and neighborhood level, and air pollution on CVD. This study used data from the 2009-2011 Behavioral Risk Factor Surveillance System (BRFSS) from Washington State. Adverse childhood experiences (ACEs) measured at the individual level, and neighborhood deprivation index (NDI) measured at the zip code level, were the psychosocial stressors of interest. Exposures to three air pollutants-particulate matter (both PM 2.5 and PM 10 ) and nitrogen dioxide (NO₂)-were also calculated at the zip code level. Outcome measures included several self-reported CVD-related health conditions. Both multiplicative and additive interaction quantified using the relative excess risk due to interaction (RERI), were evaluated. This study included 32,151 participants in 502 unique zip codes. Multiplicative and positive additive interactions were observed between ACEs and PM 10 for diabetes, in models adjusted for NDI. The prevalence of diabetes was 1.58 (95% CI: 1.40, 1.79) times higher among those with both high ACEs and high PM 10 compared to those with low ACEs and low PM 10 ( p -value = 0.04 for interaction on the multiplicative scale). Interaction was also observed between neighborhood-level stressors (NDI) and air pollution (NO₂) for the stroke and diabetes outcomes on both multiplicative and additive scales. Modest interaction was observed between NDI and air pollution, supporting prior literature on the importance of neighborhood-level stressors in cardiovascular health and reinforcing the importance of NDI on air pollution health effects. ACEs may exert health effects through selection into disadvantaged neighborhoods and more work is needed to understand the accumulation of risk in multiple domains across the life course.

  6. A chronology of ratios between black smoke and PM10 and PM2.5 in the context of comparison of air pollution epidemiology concentration-response functions.

    PubMed

    Heal, Mathew R; Beverland, Iain J

    2017-05-03

    For many air pollution epidemiological studies in Europe, 'black smoke' (BS) was the only measurement available to quantify ambient particulate matter (PM), particularly for exposures prior to the mid-1990s when quantification via the PM 10 and/or PM 2.5 metrics was introduced. The aim of this work was to review historic BS and PM measurements to allow comparison of health concentration-response functions (CRF) derived using BS as the measure of exposure with CRFs derived using PM 10 or PM 2.5 . The literature was searched for quantitative information on measured ratios of BS:PM 10 , BS:PM 2.5 , and chemical composition of PM; with specific focus on the United Kingdom (UK) between 1970 and the early 2000s when BS measurements were discontinued. The average BS:PM 10 ratio in urban background air was just below unity at the start of the 1970s, decreased rapidly to ≈ 0.7 in the mid-1970s and to ≈ 0.5 at the end of the 1970s, with continued smaller declines in the 1980s, and was within the range 0.2-0.4 by the end of the 1990s. The limited data for the BS:PM 2.5 ratio suggest it equalled or exceeded unity at the start of the 1970s, declined to ≈ 0.7 by the end of the 1970s, with slower decline thereafter to a range 0.4-0.65 by the end of the 1990s. For an epidemiological study that presents a CRF BS value, the corresponding CRF PM10 value can be estimated as R BS:PM10  × CRF BS where R BS:PM10 is the BS:PM 10 concentration ratio, if the toxicity of PM 10 is assumed due only to the component quantified by a BS measurement. In the general case of some (but unknown) contribution of toxicity from non-BS components of PM 10 then CRF PM10  > R BS:PM10  × CRF BS , with CRF PM10 exceeding CRF BS if the toxicity of the other components in PM 10 is greater than the toxicity of the component to which the BS metric is sensitive. Similar analyses were applied to relationships between CRF PM2.5 and CRF BS . Application of this analysis to example published CRF BS values for short and long-term health effects of PM suggest health effects from other components in the PM mixture in addition to the fine black particles characterised by BS.

  7. Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000.

    PubMed

    Gutiérrez-Castillo, M E; Olivos-Ortiz, M; De Vizcaya-Ruiz, A; Cebrián, M E

    2005-11-01

    We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.

  8. A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Calori, Giuseppe

    2013-03-01

    In Delhi, between 2008 and 2011, at seven monitoring stations, the daily average of particulates with diameter <2.5 μm (PM2.5) was 123 ± 87 μg m-3 and particulates with diameter <10 μm (PM10) was 208 ± 137 μg m-3. The bulk of the pollution is due to motorization, power generation, and construction activities. In this paper, we present a multi-pollutant emissions inventory for the National Capital Territory of Delhi, covering the main district and its satellite cities - Gurgaon, Noida, Faridabad, and Ghaziabad. For the base year 2010, we estimate emissions (to the nearest 000's) of 63,000 tons of PM2.5, 114,000 tons of PM10, 37,000 tons of sulfur dioxide, 376,000 tons of nitrogen oxides, 1.42 million tons of carbon monoxide, and 261,000 tons of volatile organic compounds. The inventory is further spatially disaggregated into 80 × 80 grids at 0.01° resolution for each of the contributing sectors, which include vehicle exhaust, road dust re-suspension, domestic cooking and heating, power plants, industries (including brick kilns), diesel generator sets and waste burning. The GIS based spatial inventory coupled with temporal resolution of 1 h, was utilized for chemical transport modeling using the ATMoS dispersion model. The modeled annual average PM2.5 concentrations were 122 ± 10 μg m-3 for South Delhi; 90 ± 20 μg m-3 for Gurgaon and Dwarka; 93 ± 26 μg m-3 for North-West Delhi; 93 ± 23 μg m-3 for North-East Delhi; 42 ± 10 μg m-3 for Greater Noida; 77 ± 11 μg m-3 for Faridabad industrial area. The results have been compared to measured ambient PM pollution to validate the emissions inventory.

  9. Magnetic and SEM-EDS analyses of Tilia cordata leaves and PM10 filters as a complementary source of information on polluted air: Results from the city of Parma (Northern Italy).

    PubMed

    Mantovani, Luciana; Tribaudino, Mario; Solzi, Massimo; Barraco, Vera; De Munari, Eriberto; Pironi, Claudia

    2018-08-01

    In this work, both PM 10 filters and leaves have been collected, on a daily basis, over a period of five months and compared systematically. Filters were taken from an air-quality monitoring station and leaves from two Tilia cordata trees, both located near the railway station of Parma. SEM-EDS analysis on the surface and across the leaves shows that magnetic particles are almost entirely made of magnetite, and that they are found invariably on the leaves surface. The saturation isothermal magnetic remanence (SIRM) shows that for both filters and leaves the magnetic fraction mainly consists of a low coercivity, magnetite-like phase. The magnetic signals of filter and leaves and atmospheric PM concentrations are compared. The correlation is better for filters, mostly with parameters related to vehicular pollution, and improved for both filters and leaves once data were averaged on a 10 days basis. Filters and leaves equally show an increase in magnetic signal during the fall-winter period together with PM 10 content. The comparison between leaves and filters shows that: 1) leaves give a qualitative picture, and in our case they could be used as environmental proxies after averaging the results over multiple days; 2) the correlation with PM 10 is weaker, indicating that there is a PM 10 contribution from non-magnetic particles, like calcite and clay minerals, pollen and spores; 3) multidomain particles contribution from filters indicates a strong relation with vehicular polluters, suggesting the important role of larger particles; 4) magnetization from leaves and filters are weakly related, due to the different sampling lapse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Journey-time exposure to particulate air pollution

    NASA Astrophysics Data System (ADS)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, p<0.01) but strong for fine ( r=0.89, p<0.01) and very fine ( r=0.90, P<0.01) particles. PM 10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  11. Association of Ambient Fine Particles With Out-of-Hospital Cardiac Arrests in New York City

    PubMed Central

    Silverman, Robert A.; Ito, Kazuhiko; Freese, John; Kaufman, Brad J.; De Claro, Danilynn; Braun, James; Prezant, David J.

    2010-01-01

    Cardiovascular morbidity has been associated with particulate matter (PM) air pollution, although the relation between pollutants and sudden death from cardiac arrest has not been established. This study examined associations between out-of-hospital cardiac arrests and fine PM (of aerodynamic diameter ≤2.5 μm, or PM2.5), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide in New York City. The authors analyzed 8,216 out-of-hospital cardiac arrests of primary cardiac etiology during the years 2002–2006. Time-series and case-crossover analyses were conducted, controlling for season, day-of-week, same-day, and delayed/apparent temperature. An increased risk of cardiac arrest in time-series (relative risk (RR) = 1.06, 95% confidence interval (CI): 1.02, 1.10) and case-crossover (RR = 1.04, 95% CI: 0.99, 1.08) analysis for a PM2.5 increase of 10 μg/m3 in the average of 0- and 1-day lags was found. The association was significant in the warm season (RR = 1.09, 95% CI: 1.03, 1.15) but not the cold season (RR = 1.01, 95% CI: 0.95, 1.07). Associations of cardiac arrest with other pollutants were weaker. These findings, consistent with studies implicating acute cardiovascular effects of PM, support a link between PM2.5 and out-of-hospital cardiac arrests. Since few individuals survive an arrest, air pollution control may help prevent future cardiovascular mortality. PMID:20729350

  12. Temperature modifies the acute effect of particulate air pollution on mortality in eight Chinese cities.

    PubMed

    Meng, Xia; Zhang, Yuhao; Zhao, Zhuohui; Duan, Xiaoli; Xu, Xiaohui; Kan, Haidong

    2012-10-01

    Both temperature and particulate air pollution are associated with increased death risk. However, whether the effect of particulate air pollution on mortality is modified by temperature remains unsettled. A stratified time-series analysis was conducted to examine whether the effects of particulate matter less than 10 μm in aerodynamic diameter (PM(10)) on mortality was modified by temperature in eight Chinese cities. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trends of mortality, as well as other time-varying covariates. The bivariate response surface model was applied to visually examine the potential interacting effect. The associations between PM(10) and mortality were stratified by temperature to examine effect modification. The averaged daily concentrations of PM(10) in the eight Chinese cities ranged from 65 μg/m(3) to 124 μg/m(3), which were much higher than in Western countries. We found evidence that the effects of PM(10) on mortality may depend on temperature. The eight-city combined analysis showed that on "normal" (5th-95th percentile) temperature days, a 10-μg/m(3) increment in PM(10) corresponded to a 0.54% (95% CI, 0.39 to 0.69) increase of total mortality, 0.56% (95% CI, 0.36 to 0.76) increase of cardiovascular mortality, and 0.80% (95% CI, 0.64 to 0.96) increase of respiratory mortality. On high temperature (>95th percentile) days, the estimates increased to 1.35% (95% CI, 0.80 to 1.91) for total mortality, 1.57% (95% CI, 0.69 to 2.46) for cardiovascular mortality, and 1.79% (95% CI, 0.75 to 2.83) for respiratory mortality. We did not observe significant effect modification by extreme low temperature. Extreme high temperature increased the associations of PM(10) with daily mortality. These findings may have implication for the health impact associated with both air pollution and global climate change. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Is ambient air pollution associated with onset of sudden infant death syndrome: a case-crossover study in the UK

    PubMed Central

    Ayres, Jon G; Mohammed, Nuredin I

    2018-01-01

    Objectives Air pollution has been associated with increased mortality and morbidity in several studies with indications that its effect could be more severe in children. This study examined the relationship between short-term variations in criteria air pollutants and occurrence of sudden infant death syndrome (SIDS). Design We used a case-crossover study design which is widely applied in air pollution studies and particularly useful for estimating the risk of a rare acute outcome associated with short-term exposure. Setting The study used data from the West Midlands region in the UK. Participants We obtained daily time series data on SIDS mortality (ICD-9: 798.0 or ICD-10: R95) for the period 1996–2006 with a total of 211 SIDS events. Primary outcome measures Daily counts of SIDS events. Results For an IQR increase in previous day pollutant concentration, the percentage increases (95% CI) in SIDS were 16 (6 to 27) for PM10, 1 (−7 to 10) for SO2, 5 (−4 to 14) for CO, −17 (−27 to –6) for O3, 16 (2 to 31) for NO2 and 2 (−3 to 8) for NO after controlling for average temperature and national holidays. PM10 and NO2 showed relatively consistent association which persisted across different lag structures and after adjusting for copollutants. Conclusions The results indicated ambient air pollutants, particularly PM10 and NO2, may show an association with increased SIDS mortality. Thus, future studies are recommended to understand possible mechanistic explanations on the role of air pollution on SIDS incidence and the ways in which we might reduce pollution exposure among infants. PMID:29654005

  14. Is ambient air pollution associated with onset of sudden infant death syndrome: a case-crossover study in the UK.

    PubMed

    Litchfield, Ian J; Ayres, Jon G; Jaakkola, Jouni J K; Mohammed, Nuredin I

    2018-04-12

    Air pollution has been associated with increased mortality and morbidity in several studies with indications that its effect could be more severe in children. This study examined the relationship between short-term variations in criteria air pollutants and occurrence of sudden infant death syndrome (SIDS). We used a case-crossover study design which is widely applied in air pollution studies and particularly useful for estimating the risk of a rare acute outcome associated with short-term exposure. The study used data from the West Midlands region in the UK. We obtained daily time series data on SIDS mortality (ICD-9: 798.0 or ICD-10: R95) for the period 1996-2006 with a total of 211 SIDS events. Daily counts of SIDS events. For an IQR increase in previous day pollutant concentration, the percentage increases (95% CI) in SIDS were 16 (6 to 27) for PM 10 , 1 (-7 to 10) for SO 2 , 5 (-4 to 14) for CO, -17 (-27 to -6) for O 3 , 16 (2 to 31) for NO 2 and 2 (-3 to 8) for NO after controlling for average temperature and national holidays. PM 10 and NO 2 showed relatively consistent association which persisted across different lag structures and after adjusting for copollutants. The results indicated ambient air pollutants, particularly PM 10 and NO 2 , may show an association with increased SIDS mortality. Thus, future studies are recommended to understand possible mechanistic explanations on the role of air pollution on SIDS incidence and the ways in which we might reduce pollution exposure among infants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Estimation of daily PM10 concentrations in Italy (2006-2012) using finely resolved satellite data, land use variables and meteorology.

    PubMed

    Stafoggia, Massimo; Schwartz, Joel; Badaloni, Chiara; Bellander, Tom; Alessandrini, Ester; Cattani, Giorgio; De' Donato, Francesca; Gaeta, Alessandra; Leone, Gianluca; Lyapustin, Alexei; Sorek-Hamer, Meytar; de Hoogh, Kees; Di, Qian; Forastiere, Francesco; Kloog, Itai

    2017-02-01

    Health effects of air pollution, especially particulate matter (PM), have been widely investigated. However, most of the studies rely on few monitors located in urban areas for short-term assessments, or land use/dispersion modelling for long-term evaluations, again mostly in cities. Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated high resolution spatio-temporally resolved model of particulate matter. The complex topography and the air mixture from both natural and anthropogenic sources are great challenges difficult to be addressed. We combined finely resolved data on Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM 10 measurements, land-use variables and meteorological parameters into a four-stage mixed model framework to derive estimates of daily PM 10 concentrations at 1-km2 grid over Italy, for the years 2006-2012. We checked performance of our models by applying 10-fold cross-validation (CV) for each year. Our models displayed good fitting, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed PM 10 =0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting concentration maps showed highest average PM 10 levels in specific areas (Po river valley, main industrial and metropolitan areas) with decreasing trends over time. Our daily predictions of PM 10 concentrations across the whole Italy will allow, for the first time, estimation of long-term and short-term effects of air pollution nationwide, even in areas lacking monitoring data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 <18% of Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( p<0.05) than in traffic streets, and the differences in exposure levels between new urban streets and old urban streets were highly significant ( p<0.01). Pedestrian exposure to toxic VOCs and PM 10 was higher than those reported in other public transportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  17. Emission factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter at two high-rise layer hen houses

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Liu, Shule; Diehl, Claude A.; Lim, Teng-Teeh; Bogan, Bill W.; Chen, Lide; Chai, Lilong; Wang, Kaiying; Heber, Albert J.

    2017-04-01

    Air pollutants emitted from confined animal buildings can cause environmental pollution and ecological damage. Long-term (>6 months) and continuous (or high frequency) monitoring that can reveal seasonal and diurnal variations is needed to obtain emission factors and characteristics about these pollutants. A two-year continuous monitoring of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2) and particulate matter (PM10) emissions from two 218,000-hen high-rise layer houses (H-A and H-B) in Indiana, USA was conducted from June 2007 to May 2009. Gaseous pollutant concentrations were measured with two gas analyzers and PM10 concentrations were measured with three Tapered Element Oscillating Microbalances. The operation and performance of ventilation fans were continuously monitored with multiple methods. Only the emission rates calculated with valid data days (days with more than 18 h, or 75%, of valid data) are reported in this paper. The two-house and two-year mean ± standard deviation emissions per day per hen for NH3, H2S, CO2, and PM10 were 1.08 ± 0.42 g, 1.37 ± 0.83 mg, 76.7 ± 14.6 g, and 20.6 ± 22.5 mg, respectively. Seasonal emission variations were demonstrated for NH3 and CO2, but not evident for H2S and PM10. Ammonia and CO2 emissions were higher in winter than in summer. Significant daily mean emission variations were observed for all four pollutants between the two houses (P < 0.05), and between the two years from the same house (P < 0.01) except for CO2 at one house. Carbon dioxide originated from manure decomposition was >9% of that from bird respiration. Emissions of CO2 during molting were about 80% of those during normal egg production days. Emissions of H2S were not a major concern due to their very low quantities. Emissions of PM10 were more variable than other pollutants. However, not all of the emission statistics are explainable.

  18. The covariance of air quality conditions in six cities in Southern Germany - The role of meteorology.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2017-01-01

    This paper analyzed air quality in six cities in Southern Germany (Ulm, Augsburg, Konstanz, Freiburg, Stuttgart and Munich), in conjunction with the prevailing synoptic conditions. Air quality was estimated through the calculation of a daily Air Stress Index (ASI) constituted by five independent components, each one expressing the contribution of one of the five main pollutants (PM 10 , O 3 , SO 2 , NO 2 and CO) to the total air stress. As it was deduced from ASI components, PM 10 from combustion sources and photochemically produced tropospheric O 3 are the most hazardous pollutants at the studied sites, throughout cold and warm periods respectively, yet PM 10 contribute substantially to the overall air stress during both seasons. The influence of anticyclonic high pressure systems, leading to atmospheric stagnation, was associated with increased ASI values, mainly due to the entrapment of PM 10 . Moderate air stress was generally estimated in all cities however a cleaner atmosphere was detected principally in Freiburg when North Europe was dominated by low pressure systems. Daily events of notably escalated ASI values were further analyzed with backward air mass trajectories. Throughout cold period, ASI episodes were commonly related to eastern airflows carrying exogenous PM 10 originated from eastern continental Europe. During warm period, ASI episodes were connected to the arrival of regionally circulated air parcels reflecting lack of dispersion and accumulation of pollutants in accordance with the synoptic analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Spatial and temporal characteristics of air quality and air pollutants in 2013 in Beijing.

    PubMed

    Yan, Shujun; Cao, Hui; Chen, Ying; Wu, Chengzhen; Hong, Tao; Fan, Hailan

    2016-07-01

    Air pollution has become an ever more critical issue in Beijing in more recent years. In this study, we use the air quality index (AQI), corresponding primary pollutant types and meteorological data which are collected at 16 monitoring stations in Beijing between January 2013 and December, 2013 studying the spatial and temporal variations of air quality and air pollutants. The results show that PM2.5 was the most serious pollutant, followed by O3. The average PM2.5 mass concentration was 119.5 ± 13.8 μg m(-3) in Beijing. In addition, the air quality varies across different seasons. More specifically, winter season showed the worst air quality. Moreover, while particulate matter (PM2.5 and PM10) concentrations were relatively higher in the spring and winter seasons, gaseous pollutants (O3 and NO2) were more serious in the summer and autumn. In terms of spatial heterogeneity, the findings showed that AQI and PM2.5 concentrations were higher in south and lower in the north of the city, and the O3 showed exactly a pattern with the opposite direction-higher in the north and lower in the south. NO2 was found to have a greater impact on the central region compared with that in other regions. Furthermore, PM2.5 was found to be positively correlated with the relative humidity, but negatively correlated with wind speed and atmospheric pressure (P < 0.01). However, the dominant meteorological factors that influence the PM2.5 concentrations varied in different seasons. The results in this paper provide additional information for the effective control of the air pollution in Beijing.

  20. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    PubMed

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM 10 (50.0 μg/m 3 ) and O 3 (53.0 μg/m 3 ) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM 10 and 2.77 (95% CI, 1.94-3.95) for O 3 . Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM 10 and O 3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO 2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top