Sample records for pm2000 microstructure evolution

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The correspondingmore » microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).« less

  2. Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.

    2009-04-01

    An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.

  3. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    NASA Technical Reports Server (NTRS)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  4. Microstructure Evolution in Cut Metal Chips of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Dong, L.; Schneider, J. A.

    2008-01-01

    The microstructural evolution following metal cutting was investigated within metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior beta grains and equiaxed primary alpha located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary alpha grains and beta lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the beta transus temperature.

  5. The Microstructure and Gamma Prime Distributions in Inertia Friction Welded Joint of P/M Superalloy FGH96

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Shen, Wenfei; Zhang, Liwen; Xia, Yingnan; Li, Ruiqin

    2017-04-01

    A gamma prime ( γ') precipitation ( 35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ' distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ' in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ' precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ' resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ' precipitation.

  6. Simultaneous and quasi-independent strain and temperature sensor based on microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Auguste, J.-L.; Jamier, R.; Roy, P.; Lopez-Amo, M.

    2017-04-01

    In this paper, a new sensor system for simultaneous and quasi-independent strain and temperature measurements is presented. The interrogation of the sensing head has been carried out by monitoring the FFT phase variations of two of the microstructured optical fiber (MOF) cavity interference frequencies. This method is independent of the signal amplitude and also avoids the need to track the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a range of temperature of 30°C-75°C, and 380μɛ of maximum strain were applied; being the sensitivities achieved of 127.5pm/°C and -19.1pm/μɛ respectively. Because the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  7. Spatiotemporal evolution of the remotely sensed global continental PM2.5 concentration from 2000-2014 based on Bayesian statistics.

    PubMed

    Li, Junming; Wang, Nannan; Wang, Jinfeng; Li, Honglin

    2018-07-01

    PM 2.5 pollution is threatening human health and quality of life, especially in some densely populated regions of Asia and Africa. This paper used remotely sensed annual mean PM 2.5 concentrations to explore the spatiotemporal evolution of global continental PM 2.5 pollution from 2000 to 2014. The work employed an improved Bayesian space-time hierarchy model combined with a multiscale homogeneous subdivision method. The statistical results quantitatively demonstrated a 'high-value increasing and low-value decreasing' trend. Areas with annual PM 2.5 concentrations of more than 70μg/m 3 and less than 10μg/m 3 expanded, while areas with of an annual PM 2.5 concentrations of 10-25μg/m 3 shrank. The most heavily PM 2.5 -polluted areas were located in northwest Africa, where the PM 2.5 pollution level was 12.0 times higher than the average global continental level; parts of China represented the second most PM 2.5 -polluted areas, followed by northern India and Saudi Arabia and Iraq in the Middle East region. Nearly all (96.50%) of the highly PM 2.5 -polluted area (hot spots) had an increasing local trend, while 68.98% of the lightly PM 2.5 -polluted areas (cold spots) had a decreasing local trend. In contrast, 22.82% of the cold spot areas exhibited an increasing local trend. Moreover, the spatiotemporal variation in the health risk from exposure to PM 2.5 over the global continents was also investigated. Four areas, India, eastern and southern China, western Africa and central Europe, had high health risks from PM 2.5 exposure. Northern India, northeastern Pakistan, and mid-eastern China had not only the highest risk but also a significant increasing trend; the areas of high PM 2.5 pollution risk are thus expanding, and the number of affected people is increasing. Northern and central Africa, the Arabian Peninsula, the Middle East, western Russia and central Europe also exhibited increasing PM 2.5 pollution health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Irradiation creep and precipitation in a ferritic ODS steel under helium implantation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Pouchon, M. A.; Rebac, T.; Hoffelner, W.

    2008-02-01

    Ferritic oxide dispersion strengthened (ODS) steel, PM2000, has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to maximum doses of about 0.75 dpa (3000 ppm He) with displacement damage rates of 5.5 × 10 -6 dpa/s at temperatures of 573, 673 and 773 K. Straining of a miniaturized dog-bone specimen under helium implantation was monitored by linear variable displacement transformer (LVDT) and meanwhile by their resistance also measured by four-pole technique. Creep compliance was almost constant at 5.7 × 10 -6 dpa -1 MPa -1 for temperatures below 673 K and increased to 18 × 10 -6 dpa -1 MPa -1 at 773 K. The resistivity of PM2000 samples decreased with dose and showed a tendency to saturation. Subsequent transmission electron microscopy observations indicated the formation of ordered Fe 3- xCr xAl precipitates during implantation. Correlations between the microstructure and resistivity are discussed.

  9. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jianbo

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less

  10. Plastic Flow and Microstructure Evolution during Thermomechanical Processing of a PM Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; McClary, K. E.; Rollett, A. D.; Roberts, C. G.; Payton, E. J.; Zhang, F.; Gabb, T. P.

    2013-06-01

    Plastic flow and microstructure evolution during sub- and supersolvus forging and subsequent supersolvus heat treatment of the powder-metallurgy superalloy LSHR (low-solvus, high-refractory) were investigated to develop an understanding of methods that can be used to obtain a moderately coarse gamma grain size under well-controlled conditions. To this end, isothermal, hot compression tests were conducted over broad ranges of temperature [(1144 K to 1450 K) 871 °C to 1177 °C] and constant true strain rate (0.0005 to 10 s-1). At low temperatures, deformation was generally characterized by flow softening and dynamic recrystallization that led to a decrease in grain size. At high subsolvus temperatures and low strain rates, steady-state flow or flow hardening was observed. These latter behaviors were ascribed to superplastic deformation and microstructure evolution characterized by a constant grain size or concomitant dynamic grain growth, respectively. During supersolvus heat treatment following subsolvus deformation, increases in grain size whose magnitude was a function of the prior deformation conditions were noted. A transition in flow behavior from superplastic to nonsuperplastic and the development during forging at a high subsolvus temperature of a wide (possibly bi- or multimodal) gamma-grain-size distribution having some large grains led to a substantially coarser grain size during supersolvus annealing in comparison to that produced under all other forging conditions.

  11. B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering

    NASA Astrophysics Data System (ADS)

    Jia, Jianbo; Liu, Wenchao; Xu, Yan; Chen, Chen; Yang, Yue; Luo, Junting; Zhang, Kaifeng

    2018-05-01

    Grain growth behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy was investigated by applying a series of isothermal treatment tests over a wide range of temperatures and holding times. An isothermal treatment scheme was conducted in the B2 phase region (1070-1110 °C) and α 2 + B2 phase region (1010-1050 °C) at holding times of 10, 30 min, 1, 2, and 3 h, respectively. The effects of temperature and holding time on the microstructure evolution and microhardness of the P/M Ti-22Al-25Nb alloy at elevated temperatures were evaluated using optical microscope, scanning electron microscope, x-ray diffraction, and Vickers hardness test techniques. The results revealed that the alloy's treated microstructure was closely linked to temperature and holding time, respectively. The change law of B2 grain growth with holding time and temperature can be well interpreted by the Beck equation and Hillert equation, respectively. The B2 grain growth exponent n and activation energy Q were acquired based on experimental data in the α 2 + B2 and B2 phase regions. In addition, the grain growth contour map for the P/M Ti-22Al-25Nb alloy was constructed to depict variations in B2 grain size based on holding time and temperature.

  12. Comparisons of Fabric Strength and Development in Polycrystalline Ice at Atmospheric and Basal Hydrostatic Pressures

    NASA Astrophysics Data System (ADS)

    Breton, Daniel; Baker, Ian; Cole, David

    2013-04-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests to ~10% strain on 917 kg m-3, initially randomly-oriented polycrystalline ice specimens at 0.1 (atmospheric) and 20 MPa (simulating ~2,000 m depth) hydrostatic pressures, performing microstructural analyses on the resulting deformed specimens to characterize the evolution and strength of crystal fabric. Our microstructural analysis technique simultaneously collects grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtains crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and orientation data. We present creep and microstructural data to demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice and discuss possible mechanisms for the observed differences.

  13. Effects of pre-creep on the dislocations of 316LN Austenite stainless steel

    NASA Astrophysics Data System (ADS)

    Pei, Hai-xiang; Hui, Jun; Hua, Hou; Feng, Zai-xin; Xu, Xiao-long

    2017-09-01

    The 316LN Austenite stainless steels (316LNASS) were pre-creep treated, the evolution of microstructure were investigated. The samples were pre-creep at 593 K and from 500 to 2000 h at 873 K with a stress in the range of 20 to 150 MPa, Then the evolution of microstructure and precipitation were investigated by optical microscope (OM), and transmission electron microscope (TEM). The results show that the crystal surface slipping resulted in dislocations and original dislocations decomposition during the pre-creep process, and generate quadrilateral or hexagonal dislocation network was obviously. The sub-grain boundary gradually became narrow with the increasing of pre-creep treatment time and temperature. When the pre-creep temperature was 593 K and 873 K, dislocation network gradually disappear with the increasing of pre-creep time and load. When the pre-creep temperature was 873 K under 120 MPa, and the treatment time was 2000 h, the hexagonal dislocation network (HDN) would completely disappeared. When the pre-creep temperature was 593 K under 20 MPa, and the treatment time was 500 h, the quadrilateral dislocation network (QDN) would completely disappeared.

  14. Microstructure Evolution and Mechanical Properties of High-Speed Friction Stir Welded Aluminum Alloy Thin Plate Joints

    NASA Astrophysics Data System (ADS)

    Liu, Fenjun; Fu, Li; Chen, Haiyan

    2018-06-01

    Sound friction stir welded (FSW) joints of 6061-T6 aluminum alloy sheets with an 0.8 mm thickness were obtained at conventional speed (2000 rpm, 300 mm/min) and high speed (11,000 rpm, 1500 mm/min). The recrystallization mechanism, precipitate evolution, mechanical properties and fracture behavior were investigated in detail. Microstructure analyses revealed that the grain structure evolution in the nugget zone (NZ) was dominated by continuous dynamic recrystallization. In the process of FSW, high speed facilitates the formation of finer equiaxed recrystallized grains, higher density of dislocations and substructures, and a larger number of precipitates in the NZ compared to the conventional speed, which further significantly improves the hardness and tensile strength of the joints. The maximum tensile strength was obtained with 292.6 MPa, 83.2% for the 6061-T6 aluminum alloy and 122.6% for the conventional-speed FSW joints. This work provides an effective method for preparing FSW aluminum alloy thin plate joints with excellent mechanical properties.

  15. Trends in primary NO2 and exhaust PM emissions from road traffic for the period 2000-2020 and implications for air quality and health in the Netherlands

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Roemer, M. G. M.; Zandveld, P.; Verbeek, R. P.; Velders, G. J. M.

    2012-07-01

    Application of an oxidation catalyst mainly by diesel-fuelled passenger cars reduces harmful exhaust emissions of particulate matter (PM). As a side effect, the primary NO2/NOx emission ratio by these vehicles increased from 10% in 2000 (before the introduction of the oxidation catalyst) to between 55% and 70% in 2010. The impact of this evolution in traffic emissions was studied from both a health and a regulatory perspective. Primary NO2 emissions from road traffic in the Netherlands is expected to increase from 8 kt in 2000 to 15 kt by 2015 and subsequently to decrease to 9 kt by 2020. Meanwhile, exhaust PM emissions from road traffic in the Netherlands will decrease from 7 kt in 2000 to 3 kt by 2020. The impact of exhaust PM on air quality and health was assessed according to the mass concentrations of elemental carbon (EC) in ambient air, as EC is a more sensitive indicator than PM. Monitoring data on the NO2/EC concentration ratios near road traffic between 2000 and 2010 indicate no significant change in ambient air quality. This indicates that health effects in epidemiological studies associated with long-term exposure to NO2 concentrations are still valid. The health impact from the introduction of the oxidation catalyst was assessed by comparing the relatively higher NO2 ("cost") and lower EC ("benefit") concentrations at street locations. "Relative" refers to traffic emissions in situations "with" and "without" the oxidation catalyst being introduced. The cost-benefit ratio in 2010 was in balance, but benefits are expected to outweigh costs by 2015 and 2020. It is concluded that the application of oxidation catalysts is beneficial from a health perspective, but from a regulatory perspective it complicates compliance with the average annual limit value of NO2. This indicates that additional local measures may be required in order to meet air quality standards at locations with high traffic intensities.

  16. Strength-Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Chandran, K. S. Ravi

    2017-05-01

    A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.

  17. The microstructure and tensile properties of nitrogen containing vacuum atomized Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, G.E.; Hayden, S.Z.

    1991-02-01

    The mechanical properties and microstructure of a heat of nitrogen containing vacuum atomized A690 have been characterized. Although wrought A690 exhibits extensive grain growth during solution annealing heat treatments, only limited grain growth was observed in P/M690N{sub 2}. The presence of the nitrogen in the P/M690N{sub 2} resulted in the formation of a fine dispersion of Ti(C,N) which limited grain growth during elevated temperature exposures. The yield and ultimate tensile strength of the P/M690N{sub 2} was significantly greater than wrought A690 and elevated temperature exposures did not greatly affect the properties of the P/M690N{sub 2}. Although the P/M690N{sub 2} didmore » exhibit appreciably higher strengths than wrought A690, the ductility was not adversely affected. In general, the resulting microstructure and, hence, mechanical properties of the P/M690N{sub 2} were very stable, uniform, and reproducible, even after long-term elevated temperature exposures of up to 24 hours at 1100{degree}C. 14 refs., 5 figs., 1 tab.« less

  18. Analyses of 2000-2002 PM Data for the PM NAAQS Review

    EPA Pesticide Factsheets

    These files document all analyses conducted in association with the EPA memorandum from Mark Schmidt, David Mintz, Tesh Rao, and Lance McCluney titled Analyses of 2000-2002 PM Data for the PM NAAQS Review, August 29, 2003.

  19. Navy Explosive Ordnance Disposal School Master Development Plan for Test Area D-51, Eglin Air Force Base, Florida

    DTIC Science & Technology

    2008-01-25

    depending on the corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Year...2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE = .262 * Trips To convert from pounds per day to tons per year...VOC (tons/yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000 PM10 (tons/yr) = PM10E * DPYII/2000 CO (tons/yr) = COE * DPYII/2000

  20. Final Environmental Assessment to Implement the Defense Base Closure and Realignment Commission Recommendations for Shaw Air Force Base, South Carolina

    DTIC Science & Technology

    2007-07-01

    corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE ... VOCE * DPYII/2000 Nox (tons/yr) = NOxE * DPYII/2000 PM10(tons/yr) = PM10E * DPYII/2000 CO (tons/yr) = COE * DPYII/2000 Where: Commercial

  1. Observations of Fabric Development in Polycrystalline Ice at Basal Pressures: Methods and Initial Results

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Baker, I.; Cole, D. M.

    2012-12-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.

  2. Final Environmental Assessment for the Military Family Housing Privatization Initiative

    DTIC Science & Technology

    2006-09-01

    Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Appendix A Additional Materials Final...Environmental Assessment Page A-39 Military Family Housing Privatization Initiative Robins Air Force Base, Georgia Year 2010 and beyond: VOCE ...yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000 PM10 (tons/yr) = PM10E * DPYII/2000 CO (tons/yr) = COE * DPYII/2000 Where: Area of

  3. Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.

    2018-06-01

    The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.

  4. 2001 GPS and Classical Survey at Medicina Observatory: Local Tie and VLBI Antenna's Reference Point Determination

    NASA Astrophysics Data System (ADS)

    Vittuari, Luca; Sarti, Pierguido; Tomasi, Paolo

    2001-12-01

    During a 6 days campaign in June 2001, we have performed a local survey at Medicina Observatory using classical geodesy and GPS techniques in order to determine the effects of an undergone track repair. We have determined the position of the reference point P within a local and ITRF2000 (epoch 1997.0) reference frames using trilateration and triangulation: Pclas_{loc}^{2001}=(21.580pm0.001,45.536pm0.001,17.699pm0.001) Pclas_{loc}^{2001}=(21.580pm0.001,45.536pm0.001,17.699pm0.001) Pclas_{ITRF2000}^{1997.0}=(4461369.982pm0.001,919596.818pm0.001,4449559.207pm0.001) Kinematic GPS has also given interesting results:

  5. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  6. Revised Final Environmental Review for the Construction of a New Base Exchange at Kadena Air Base, Okinawa, Japan

    DTIC Science & Technology

    2007-05-01

    factors depending on the corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262...Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE = .262 * Trips To convert from pounds per day to...tons per year: VOC (tons/yr) = VOCE * DPYII/2000 Nox (tons/yr) = NOxE * DPYII/2000 PM10(tons/yr) = PM10E * DPYII/2000 CO (tons/yr) = COE * DPYII

  7. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  8. The effect of microstructure on 650 C fatigue crack growth in P/M Astroloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Miner, R. V.

    1983-01-01

    The effect of microstructure on fatigue crack propagation at 650 C has been studied in a P/M nickel-base superalloy, Astroloy. Crack propagation data were obtained in air and vacuum at 20 cpm with a modified compact tension specimen. The rate of crack growth, da/dn, was correlated with the stress intensity range. Key microstructural variables examined were grain size and the distribution and size of the strengthening gamma prime phase. A fine grain size less than 20 microns always promoted rapid, intergranular failure, while a large grain size promoted slower, transgranular failure which decreased as the size and volume fraction of aging gamma prime was manipulated so as to increase alloy strength. The rapid, intergranular mode of failure of the fine grain microstructures was suppressed in vacuum.

  9. STRUCTURE OF PRIMARY PM2.5 DERIVED FROM DIESEL TRUCK EXHAUST

    EPA Science Inventory

    The U.S. Environmental Protection Agency is currently considering regulations on airborne particulate matter < 2.5 microns in mean diameter (PM2.5). It is important that the molecular structure and microstructure of PM2.5 from various sources be thoroughly characterized in order ...

  10. Quantifying Future PM2.5 and Associated Health Effects Due to Changes in US Wildfires

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Val Martin, M.; Ford, B.; Zelasky, S.; Heald, C. L.; Li, F.; Lawrence, D. M.; Fischer, E. V.

    2017-12-01

    Fine particulate matter (PM2.5) from landscape fires has been shown to adversely affect visibility, air quality and and health across the US. Fire activity is strongly related to climate and human activities. Predictions based on climate scenarios and future land cover projections that consider socioeconomic development suggest that fire activity will rise dramatically over the next decades. As PM2.5 is associated with increased mortality and morbidity rates, increases in emissions from landscape fires may alter the health burden on the US population. Here we present an analysis of the changes in future wildfire activity and consequences for PM2.5 and health over the US from 2000 to 2100. We employ the global Community Earth System Model (CESM) with the IPCC RCP projections. Within CESM, we use a process-based global fire parameterization to project future climate-driven and human-caused fire emissions. From these simulations, we determine the current and future impact on PM2.5 concentrations and visibility for different regions of the US, and we also calculate the mortality attributable to PM2.5 and wildfire-specific PM2.5 using existing concentration-response functions. Results show that although total PM2.5 concentrations in the US are projected to be similar in 2100 as in 2000, the dominant source of PM2.5 will change. Under the RCP8.5 climate projection and SSP3 population projection, non-fire emissions (mostly anthropogenic) are projected to decrease, but PM2.5 from CONUS and non-US wildfires is projected to increase from approximately 20% of all PM2.5 in 2000 to 80% of all PM2.5 in 2100. Furthermore, although the US population is expected to decline between 2000 and 2100, the mortality attributable to wildfire smoke is expected to increase from 25,000 deaths per year in 2000 to 75,000 deaths per year in 2100.

  11. The reduction of summer sulfate and switch from summertime to wintertime PM2.5 concentration maxima in the United States

    NASA Astrophysics Data System (ADS)

    Chan, Elizabeth A. W.; Gantt, Brett; McDow, Stephen

    2018-02-01

    Exposure to particulate matter air pollution with a nominal mean aerodynamic diameter less than or equal to 2.5 μm (PM2.5) has been associated with health effects including cardiovascular disease and death. Here, we add to the understanding of urban and rural PM2.5 concentrations over large spatial and temporal scales in recent years. We used high-quality, publicly-available air quality monitoring data to evaluate PM2.5 concentration patterns and changes during the years 2000-2015. Compiling and averaging measurements collected across the U.S. revealed that PM2.5 concentrations from urban sites experienced seasonal maxima in both winter and summer. Within each year from 2000 to 2008, the maxima of urban summer peaks were greater than winter peaks. However, from 2012 to 2015, the maxima of urban summertime PM2.5 peaks were smaller than the urban wintertime PM2.5 maxima, due to a decrease in the magnitude of summertime maxima with no corresponding decrease in the magnitude of winter maxima. PM2.5 measurements at rural sites displayed summer peaks with magnitudes relatively similar to those of urban sites, and negligible to no winter peaks through the time period analyzed. Seasonal variations of urban and rural PM2.5 sulfate, PM2.5 nitrate, and PM2.5 organic carbon (OC) were also assessed. Summer peaks in PM2.5 sulfate decreased dramatically between 2000 and 2015, whereas seasonal PM2.5 OC and winter PM2.5 nitrate concentration maxima remained fairly consistent. These findings demonstrate that PM2.5 concentrations, especially those occurring in the summertime, have declined in the U.S. from 2000 to 2015. In addition, reduction strategies targeting sulfate have been successful and the decrease in PM2.5 sulfate contributed to the decline in total PM2.5.

  12. Autonomous Microstructure EM-APEX Floats

    DTIC Science & Technology

    2016-01-01

    Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats

  13. Microstructure control for high strength 9Cr ferritic-martensitic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T

    2012-01-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literaturemore » data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.« less

  14. Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai

    Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less

  15. Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes

    DOE PAGES

    Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai

    2017-02-13

    Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less

  16. AEROSOL CHEMICAL CHARACTERISTION ON BOARD THE DOE G1 AIRCRAFT USING A PARTICLE INTO LIQUID SAMPLER DURING THE TEXAQS 2000 EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEE,Y.N.; SONG,Z.; LIU,Y.

    2001-01-13

    Knowledge of aerosol chemical composition is key to understanding a number of properties of ambient aerosol particles including sources, size/number distribution, chemical evolution, optical properties and human health effects. Although filter based techniques have been widely used to determine aerosol chemical constituents, they generally cannot provide sufficiently fast time resolution needed to investigate sources and chemical evolution that effect aerosol chemical, size and number changes. In order to gain an ability to describe and predict the life cycles of ambient aerosols as a basis for ambient air quality control, fast and sensitive determination of the aerosol chemical composition must bemore » made available. To help to achieve this goal, we deployed a newly developed technique, referred to as PILS (particle-into-liquid-sampler), on the DOE G1 aircraft during the 2000 Texas Air Quality Study (TexAQS 2000) to characterize the major ionic species of aerosol particles with aerodynamic size smaller than 2.5 {micro}m (PM 2.5). The results obtained are examined in the context of other simultaneously collected data for insights into the measurement capability of the PILS system.« less

  17. Shaw Air Force Base Infrastructure Project Environmental Assessment

    DTIC Science & Technology

    2008-09-01

    are the applied to the following factors depending on the corresponding years. Year 2009: VOCE = .016 * Trips NOXE = .015 * Trips PM10E...0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOXE = .013 * Trips PM10E = .0022 * Trips COE = .262 * Trips To...convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 Nox (tons/yr) = NOxE * DPYII/2000 PM10(tons/yr) = PM10E

  18. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  19. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  20. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    NASA Astrophysics Data System (ADS)

    Getto, E.; Vancoevering, G.; Was, G. S.

    2017-02-01

    Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.

  1. Tribological and microstructural comparison of HIPped PM212 and PM212/Au self-lubricating composites

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1992-01-01

    The feasibility of replacing the silver with the volumetric equivalent of gold in the chromium carbide-based self-lubricating composite PM212 (70 wt. percent NiCo-Cr3C2, 15 percent BaF2/CaF2 eutectic) was studied. The new composite, PM212/Au has the following composition: 62 wt. percent NiCo-Cr3C2, 25 percent Au, 13 percent BaF2/CaF2 eutectic. The silver was replaced with gold to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. The composites were fabricated by hot isostatic pressing (HIPping) and machined into pin specimens. The pins were slid against nickel-based superalloy disks. Sliding velocities ranged from 0.27 to 10.0 m/s and temperatures from 25 to 900 C. Friction coefficients ranged from 0.25 to 0.40 and wear factors for the pin and disk were typically low 10(exp -5) cu mm/N-m. HIPped PM212 measured fully dense, whereas PM212/Au had 15 percent residual porosity. Examination of the microstructures with optical and scanning electron microscopy revealed the presence of pores in PM212/Au that were not present in PM212. Though the exact reason for the residual porosity in PM212/Au was not determined, it may be due to particle morphology differences between the gold and silver and their effect on powder metallurgy processing.

  2. Chemical mass balance (CMB) source apportionment and organic speciation of PM(2.5) in Missoula, Montana including the 2000 wildfire season

    NASA Astrophysics Data System (ADS)

    Ward, Tony J.

    A yearlong sampling program for PM2.5, Semi- Volatile Organic Compounds (SVOCs), and Volatile Organic Compounds (VOCs) was conducted in 2000/2001. The data were used in a Chemical Mass Balance (CMB) Source Apportionment Model (Version 8.0) to apportion the sources of PM2.5 in the Missoula Valley. Results showed that wood combustion contributed an average of 41% to the fine fraction throughout the year. The second largest source of PM 2.5 was diesel (19%), followed by ammonium nitrate (17%), the kraft recovery boilers from Smurfit-Stone Container (14%), other hog fuel boilers (6%), and street sand (5%). Results also showed that PM2.5 levels and contributions from sources were consistent on both sides of the Missoula Valley, but VOCs were twice as high in Missoula compared to Frenchtown. Another aspect of this program was to investigate the organic fraction of the Missoula Valley PM2.5 by evaluating a modified Federal Reference Method (FRM) PM2.5 sampler. A method comparison was also made between sampling for SVOCs using the modified PM2.5 sampler and in using a Hi-volume Polyurethane Foam (PUF) sampler. Results showed that the PM 2.5 PUF measured more of the lighter SVOCs compared to the Hi-vol PUF sampler. This is most likely the result of the higher flows through the Hi-vol PUF which ``strip'' the lighter organics from the surface of the filter. The wildland fires of summer 2000 comprised one of the most severe fire seasons is U.S. history, and had a direct impact on the city of Missoula. Sampling in Missoula was already in progress when the fires began and smoke started rolling into the Missoula Valley. Samples were collected before, during, and after the 2000 fire season, and a detailed characterization of particulate and gaseous emissions from extensive wildland fires was obtained. The 2000/2001 CMB Sampling Program data collected during the 2000 fire season suggest that the main health impacts to downwind populations reside in the fine particulate exposures, with an average of 81% of the Missoula Valley PM2.5 resulting from forest fires.

  3. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  4. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less

  5. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE PAGES

    Li, Yulan; Hu, Shenyang; Sun, Xin; ...

    2017-04-14

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  6. Analyses of 1999 PM Data for the PM NAAQS Review

    EPA Pesticide Factsheets

    These files document all analyses conducted in association with the EPA memorandum from Terence Fitz-Simons, Scott Mathias, and Mike Rizzo titled Analyses of 1999 PM Data for the PM NAAQS Review, November 17, 2000.

  7. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE PAGES

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...

    2017-02-20

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  8. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  9. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  10. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading.

    PubMed

    Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter

    2016-06-22

    Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.

  11. Comparison and evaluation of in situ and filter carbon measurements at the Fresno Supersite

    NASA Astrophysics Data System (ADS)

    Watson, John G.; Chow, Judith C.

    2002-11-01

    The Fresno Supersite in Fresno, California, USA, acquires in situ 5- to 60-min average PM2.5 organic carbon (OC), elemental carbon (EC), and total carbon (TC) measurements by the following methods: (1) thermal evolution carbon analyzer for organic, elemental, and total carbon; (2) single-wavelength and seven-color aethalometer for black carbon (BC); and (3) photoionization for particle-bound polycyclic aromatic hydrocarbons. Twenty-four-hour average PM2.5 filter-based measurements include (1) nondenuded quartz filters with no backup filter in a PM2.5 Federal Reference Method (FRM) sampler; (2) quartz filters behind an organic carbon denuder with a quartz backup filter in a Reference Ambient Aerosol Sampler (RAAS); (3) nondenuded quartz filters with backup filter in a RAAS; and (4) nondenuded quartz filters with no backup filter in a sequential filter sampler. Filter samples are analyzed after sampling by the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance carbon analysis protocol. Collocated measurements are examined for year 2000. Measurement equivalence is found for PM2.5 mass, light transmission, and TC between the FRM and RAAS speciation samplers. The average ratios of front filter carbon between the denuded and nondenuded channels in the RAAS sampler are 0.83 ± 0.19 for TC, 0.81 ± 0.20 for OC, and 1.01 ± 0.33 for EC. The average differences for TC and OC are low (1.2 to 1.4 μg m-3) and are comparable to the measurement uncertainties. Continuous thermal evolution carbon measurements are not comparable to filter measurements. Aethalometer BC and filter EC are highly correlated, but filter EC is consistently 20-25% higher than continuous aethalometer BC. Pairwise comparisons show filter EC measurements acquired in this study are predictable from aethalometer BC measurements.

  12. Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Cui, Xixi; Yang, Chen

    2018-05-01

    A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.

  13. Final Environmental Assessment for the Military Family Housing Privatization Initiative Columbus Air Force Base, Mississippi

    DTIC Science & Technology

    2005-05-03

    daily trips are applied to the following factors depending on the corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015...Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE...262 * Trips To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000 PM10 (tons/yr

  14. Influence of Climate on PM2.5 Concentrations over Europe : a Meteorological Analysis using a 9-year Model Simulation

    NASA Astrophysics Data System (ADS)

    Lecoeur, À.; Seigneur, C.; Terray, L.; Pagé, C.

    2012-04-01

    In the early 1970s, it has been demonstrated that a large number of deaths and health problems are associated with particulate pollution. As a consequence, several governments have set health-based air quality standards to protect public health. Particulate matter with an aerodynamical diameter of 2.5 μg.m-3 or less (PM2.5) is particularly concerned by these measures. As PM2.5 concentrations are strongly dependent on meteorological conditions, it is important to investigate the relationships between PM2.5 and meteorological parameters. This will help to understand the processes at play and anticipate the effects of climate change on PM2.5 air quality. Most of the previous work agree that temperature, wind speed, humidity, rain rate and mixing height are the meteorological variables that impact PM2.5 concentrations the most. A large number of those studies used Global Circulation Models (GCM) and Chemical Transport Models (CTM) and focus on the USA. They typically predict a diminution of PM2.5 concentrations in the future, with some geographical and/or temporal discrepancies, when only the climate evolution is considered. When considering changes in emissions along with climate, no consensus has yet been found. Furthermore, the correlations between PM2.5 concentrations and meteorological variables are often low, which prevents a straightforward analysis of their relationships. In this work, we consider that PM2.5 concentrations depend on both large-scale atmospheric circulation and local meteorological variables. We thus investigate the influence of present climate on PM2.5 concentrations over Europe by representing it using a weather regimes/types approach. We start by exploring the relationships between classical weather regimes, meteorological variables and PM2.5 concentrations over five stations in Europe, using the EMEP air quality database. The pressure at sea level is used in the classification as it effectively describes the atmospheric circulation. We experimentally verify some intuitive results: weather regimes associated with weak (resp. high) precipitation, wind and low (resp. high) temperatures correspond to higher (resp. lower) PM2.5 concentrations. We also observe that rain rate is the variable that impacts PM2.5 concentrations the most. Next, we search for better relationships by adding this second variable to the classification: we therefore build new weather regimes, called weather types. Because of the low number of the EMEP observations, we compute PM2.5 concentrations with the Polyphemus/Polair3D CTM for years between 2000 and 2008 in order to obtain a spatially and temporally complete dataset of PM2.5 concentrations and chemical components, which can be used to relate PM2.5 concentrations to meteorological regimes and specific variables. By classifying both a large-scale variable and a local variable that influence the PM2.5 concentrations and using gridded data of the modeled concentrations of PM2.5, we obtain a more robust analysis. The results of this work will provide the basis to predict the effects of climate change (via the evolution of weather regimes/types frequencies) on PM2.5 chemical composition and concentrations.

  15. OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2013-09-30

    The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.

  16. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    PubMed

    Liu, Suyang; Zhang, Kai

    2015-12-15

    Fine particulate matter (less than 2.5μm in aerodynamic diameter; PM2.5) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM2.5 sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM2.5 components and mortality during 2000-2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM2.5 components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000-2005 and 2006-2011. Interquartile range increases in ammonium (0.881μg/m(3)), nitrate (0.487μg/m(3)), sulfate (2.245μg/m(3)), and vanadium (0.004μg/m(3)) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM2.5 mass and mortality decreased during 2000-2011, however, the PM2.5 components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM2.5 and mortality differ across the PM2.5 components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China

    NASA Astrophysics Data System (ADS)

    Li, Ke; Liao, Hong; Zhu, Jia; Moch, Jonathan M.

    2016-11-01

    Severe PM2.5 air pollution in China and the First Grand National Standard (FGNS), implemented in 2016 (annual PM2.5 concentration target of less than 35 µg m-3), necessitate urgent reduction strategies. This study applied the nested-grid version of the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to quantify 2000-2050 changes in PM2.5 air quality and related direct radiative forcing (DRF) in China, based on future emission changes under the representative concentration pathway (RCP) scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In the near term (2000-2030), a projected maximum increase in PM2.5 concentrations of 10-15 µg m-3 is found over east China under RCP6.0 and RCP8.5 and less than 5 µg m-3 under RCP2.6 and RCP4.5. In the long term (2000-2050), PM2.5 pollution clearly improves, and the largest decrease in PM2.5 concentrations of 15-30 µg m-3 is over east China under all RCPs except RCP6.0. Focusing particularly on highly polluted regions, we find that Beijing-Tianjin-Hebei (BTH) wintertime PM2.5 concentrations meeting the FGNS occur after 2040 under RCP2.6, RCP4.5, and RCP8.5, and summertime PM2.5 concentrations reach this goal by 2030 under RCP2.6 and RCP4.5. In Sichuan Basin (SCB), wintertime PM2.5 concentrations below the FGNS occur only in 2050 under RCP2.6 and RCP4.5, although future summertime PM2.5 will be well controlled. The difficulty in controlling future PM2.5 concentrations relates to unmitigated high levels of nitrate, although NOx and SO2 emissions show substantial reductions during 2020-2040. The changes in aerosol concentrations lead to positive aerosol DRF over east China (20°-45°N, 100°-125°E) by 1.22, 1.88, and 0.66 W m-2 in 2050 relative to 2000 under RCP2.6, RCP4.5, and RCP8.5, respectively. When considering both health and climate effects of PM2.5 over China, for example, PM2.5 concentrations averaged over east China under RCP4.5 (RCP2.6) decrease by 54% (43%) in 2050 relative to 2000, but at the cost of warming with DRF of 1.88 (1.22) W m-2. Our results indicate that it will be possible to mitigate future PM2.5 pollution in China, but it will likely take two decades for polluted regions such as BTH and SCB to meet the FGNS, based on all RCP scenarios. At the same time, the consequent warming effects from reduced aerosols are also significant and inevitable.

  18. Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    2017-01-01

    The Yb3+-doped silica glass was prepared by the SiCl4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb3+-doped silica glass are studied at room temperature. The integrated absorption cross section, stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×104 pm3, 1.39 pm2 and 0.56 ms, respectively. The Yb3+-doped microstructure fiber (MSF) was also fabricated by using the Yb3+-doped silica glass as fiber core. What's more, the laser properties of the Yb3+-doped MSF are studied.

  19. Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C

    NASA Astrophysics Data System (ADS)

    Archana Barla, Nikki

    2018-03-01

    Fe-Cu-C system is very popular in P/M industry for its good compressibility and dimensional stability with high strength. Fe-Cu-C is a structural material and is used where high strength with high hardness is required. The composition of powder metallurgy steel plays a vital role in the microstructure and physical properties of the sintered component. Fe-2Cu-0.7C-Ni alloy with varying nickel composition (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%) wt. % was prepared by powder metallurgy (P/M) sinter forging process. The present work discuss the effect of varying nickel content on microstructure and mechanical properties.

  20. Effects of Initial Powder Size on the Mechanical Properties and Microstructure of As-Extruded GRCop-84

    NASA Technical Reports Server (NTRS)

    Okoro, Chika L.

    2004-01-01

    GRCop-84 was developed to meet the mechanical and thermal property requirements for advanced regeneratively cooled rocket engine main combustion chamber liners. It is a ternary Cu- Cr-Nb alloy having approximately 8 at% Cr and 4 at% Nb. The chromium and niobium constituents combine to form 14 vol% Cr2Nb, the strengthening phase. The alloy is made by producing GRCop-84 powder through gas atomization and consolidating the powder using extrusion, hot isostatic pressing (HIP) or vacuum plasma spraying (VPS). GRCop-84 has been selected by Rocketdyne, Ratt & Wlutney and Aerojet for use in their next generation of rocket engines. GRCop-84 demonstrates favorable mechanical and thermal properties at elevated temperatures. Compared to NARloy-Z, the currently used inaterial in the Space Shuttle, GRCop-84 has approximately twice the yield strength, 10-1000 times the creep life, and 1.5-2.5 times the low cycle fatigue life. The thermal expansion of GRCop-84 is 7515% less than NARloy-Z which minimizes thermally induced stresses. The thermal conductivity of the two alloys is comparable at low temperature but NARloy-Z has a 20-50 W/mK thermal conductivity advantage at typical rocket engine hot wall temperatures. GRCop-84 is also much more microstructurally stable than NARloy-Z which translates into better long term stability of mechanical properties. Previous research into metal alloys fabricated by means of powder metallurgy (PM), has demonstrated that initial powder size can affect the microstructural development and mechanical properties of such materials. Grain size, strength, ductility, size of second phases, etc., have all been shown to vary with starting powder size in PM-alloys. This work focuses on characterizing the effect of varying starting powder size on the microstructural evolution and mechanical properties of as- extruded GRCop-84. Tensile tests and constant load creep tests were performed on extrusions of four powder meshes: +140 mesh (great3er than l05 micron powder size), -140 mesh (less than or equal to 105 microns), -140 plus or minus 270 (53 - 105 microns), and - 270 mesh (less than or equal to 53 microns). Samples were tested in tension at room temperature and at 500 C (932 F). Creep tests were performed under vacuum at 500 C using a stress of 111 MPa (16.1 ksi). The fracture surfaces of selected samples from both tests were studied using a Scanning Electron Microscope (SEM). The as-extruded materials were also studied, using both optical microscopy and SEM analysis, to characterize changes within the microstructure.

  1. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel

    2013-12-01

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less

  2. Final Environmental Assessment: To Relocate Air Force Explosive Ordnance Disposal Administrative Complex at Eglin Air Force Base

    DTIC Science & Technology

    2006-10-01

    Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE...Air Force Base, Florida To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000

  3. Mechanical Properties and Microstructural Evolution of Welded Eglin Steel

    NASA Astrophysics Data System (ADS)

    Leister, Brett M.

    Eglin steel is a new ultra-high strength steel that has been developed at Eglin Air Force Base in the early 2000s. This steel could be subjected to a variety of processing steps during fabrication, each with its own thermal history. This article presents a continuous cooling transformation diagram developed for Eglin steel to be used as a guideline during processing. Dilatometry techniques performed on a Gleeble thermo-mechanical simulator were combined with microhardness results and microstructural characterization to develop the diagram. The results show that four distinct microstructures form within Eglin steel depending on the cooling rate. At cooling rates above about 1 °C/s, a predominately martensitic microstructure is formed with hardness of ˜520 HV. Intermediate cooling rates of 1 °C/s to 0.2 °C/s produce a mixed martensitic/bainitic microstructure with a hardness that ranges from 520 - 420 HV. Slower cooling rates of 0.1 °C/s to 0.03 °C/s lead to the formation of a bainitic microstructure with a hardness of ˜420 HV. The slowest cooling rate of 0.01 °C/s formed a bainitic microstructure with pearlite at the prior austenite grain boundaries. A comprehensive study was performed to correlate the mechanical properties and the microstructural evolution in the heat affected zone of thermally simulated Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to resistively heat samples of wrought Eglin steel according to calculated thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness, in both the `as-simulated' condition and also following post-weld heat treatments. Mechanical testing has shown that the inter-critical heat affected zone (HAZ) has the lowest strength following thermal simulation, and the fine-grain and coarse-grain heat affected zone having an increased strength when compared to the inter-critical HAZ. The toughness of the heat affected zone in the as-simulated condition is lower than that of the base metal. Post-weld heat treatments (PWHT) have been shown to increase the toughness of the HAZ, but at the expense of strength. In addition, certain combinations of PWHTs within specific HAZ regions have exhibited low toughness caused by tempered martensite embrittlement or intergranular failure. Synchrotron X-ray diffraction data has shown that Eglin steel has retained austenite in the fine-grain HAZ in the as-simulated condition. In addition, alloy carbides (M23C 6, M2C, M7C3) have been observed in the diffraction spectra for the fine-grain and coarse-grain HAZ following a PWHT of 700 °C / 4 hours. A first attempt at thermodynamic modeling has been undertaken using MatCalc to try to predict the evolution of carbides in the HAZ following thermal cycling and PWHT.

  4. The Role of Action Coordination for Prospective Memory: Task-Interruption Demands Affect Intention Realization

    ERIC Educational Resources Information Center

    Rummel, Jan; Wesslein, Ann-Katrin; Meiser, Thorsten

    2017-01-01

    Event-based prospective memory (PM) is the ability to remember to perform an intention in response to an environmental cue. Recent microstructure models postulate four distinguishable stages of successful event-based PM fulfillment. That is, (a) the event must be noticed, (b) the intention must be retrieved, (c) the context must be verified, and…

  5. Safety and efficacy assessment of standardized herbal formula PM012

    PubMed Central

    2012-01-01

    Background This study was conducted to evaluate the efficacy of the herbal formula PM012 on an Alzheimer's disease model, human presenilin 2 mutant transgenic mice (hPS2m), and also to evaluate the toxicity of PM012 in Sprague-Dawely rats after 4 or 26 weeks treatment with repeated oral administration. Methods Spatial learning and memory capacities of hPS2m transgenic mice were evaluated using the Morris Water Maze. Simultaneously, PM012 was repeatedly administered orally to male and female SD rats (15/sex/group) at doses of 0 (vehicle control), 500, 1,000 and 2,000 mg/kg/day for 4 or 26 weeks. To evaluate the recovery potential, 5 animals of each sex were assigned to vehicle control and 2,000 mg/kg/day groups during the 4-week recovery period. Results The results showed that PM012-treated hPS2m transgenic mice showed significantly reduced escape latency when compared with the hPS2m transgenic mice. The repeated oral administration of PM012 over 26 weeks in male and female rats induced an increase and increasing trend in thymus weight in the female treatment groups (main and recovery groups), but the change was judged to be toxicologically insignificant. In addition, the oral administration of the herbal medicine PM012 did not cause adverse effects as assessed by clinical signs, mortality, body weight, food and water consumption, ophthalmology, urinalysis, hematology, serum biochemistry, blood clotting time, organ weights and histopathology. The No Observed Adverse Effects Levels of PM012 was determined to be 2,000 mg/kg/day for both sexes, and the target organ was not identified. Conclusion These results suggest that PM012 has potential for use in the treatment of the Alzheimer's disease without serious adverse effects. PMID:22458507

  6. Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves

    NASA Astrophysics Data System (ADS)

    Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian

    2017-10-01

    The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.

  7. Modeling of Microstructure Evolution During Alloy Solidification

    NASA Astrophysics Data System (ADS)

    Zhu, Mingfang; Pan, Shiyan; Sun, Dongke

    In recent years, considerable advances have been achieved in the numerical modeling of microstructure evolution during solidification. This paper presents the models based on the cellular automaton (CA) technique and lattice Boltzmann method (LBM), which can reproduce a wide variety of solidification microstructure features observed experimentally with an acceptable computational efficiency. The capabilities of the models are addressed by presenting representative examples encompassing a broad variety of issues, such as the evolution of dendritic structure and microsegregation in two and three dimensions, dendritic growth in the presence of convection, divorced eutectic solidification of spheroidal graphite irons, and gas porosity formation. The simulations offer insights into the underlying physics of microstructure formation during alloy solidification.

  8. Structural Evolution of Silicon Oxynitride Fiber Reinforced Boron Nitride Matrix Composite at High Temperatures

    NASA Astrophysics Data System (ADS)

    Zou, Chunrong; Li, Bin; Zhang, Changrui; Wang, Siqing; Xie, Zhengfang; Shao, Changwei

    2016-02-01

    The structural evolution of a silicon oxynitride fiber reinforced boron nitride matrix (Si-N-Of/BN) wave-transparent composite at high temperatures was investigated. When heat treated at 1600 °C, the composite retained a favorable bending strength of 55.3 MPa while partially crystallizing to Si2N2O and h-BN from the as-received amorphous structure. The Si-N-O fibers still performed as effective reinforcements despite the presence of small pores due to fiber decomposition. Upon heat treatment at 1800 °C, the Si-N-O fibers already lost their reinforcing function and rough hollow microstructure formed within the fibers because of the accelerated decomposition. Further heating to 2000 °C led to the complete decomposition of the reinforcing fibers and only h-BN particles survived. The crystallization and decomposition behaviors of the composite at high temperatures are discussed.

  9. Effect of solidification rate on microstructure evolution in dual phase microalloyed steel

    PubMed Central

    Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.

    2016-01-01

    In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109

  10. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  11. Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.

    Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less

  12. Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions

    DOE PAGES

    Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; ...

    2015-12-11

    Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less

  13. Microstructural Evolution and Tensile Properties of SnAgCu Mixed with Sn-Pb Solder Alloys (Preprint)

    DTIC Science & Technology

    2009-03-01

    AFRL-RX-WP-TP-2009-4132 MICROSTRUCTURAL EVOLUTION AND TENSILE PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT...PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT) 5a. CONTRACT NUMBER FA8650-04-C-5704 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 Microstructural evolution and tensile properties of SnAgCu mixed with Sn-Pb solder alloys Fengjiang Wang,1 Matthew O’Keefe,1,2 and

  14. Microstructural evolution and mechanical properties of a low alloy high strength Ni-Cr-Mo-V steel during heat treatment process

    NASA Astrophysics Data System (ADS)

    Wu, C.; Han, S.

    2018-05-01

    In order to obtain an optimal heat treatment for a low alloy high strength Ni-Cr-Mo-V steel, the microstructural evolution and mechanical properties of the material were studied. For this purpose, a series of quenching and temper experiments were carried out. The results showed that the effects of tempering temperature, time, original microstructure on the microstructural evolution and final properties were significant. The martensite can be completely transformed into the tempered lath structure. The width and length of the lath became wider and shorter, respectively with increasing temperature and time. The amount and size of the precipitates increased with temperature and time. The yield strength (YS), ultimate tensile strength (UTS) and hardness decreased with temperature and time, but the reduction in area (Z), elongation (E) and impact toughness displayed an opposite trend, which was related to the morphological evolution of the lath tempered structure.

  15. Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy

    NASA Astrophysics Data System (ADS)

    Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.

    2018-05-01

    A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.

  16. Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)

    DTIC Science & Technology

    2016-05-06

    10.1002/9781119296126.ch29 14. ABSTRACT (Maximum 200 words) Advances in the fundamental understanding of microstructure evolution and plastic flow during...Abstract Advances in the fundamental understanding of microstructure evolution and plastic flow during primary and secondary processing of titanium...generation of rolling-direction secondary tension stresses. Important factors in such failures have been deduced to include the plastic properties and the

  17. PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations

    NASA Astrophysics Data System (ADS)

    Viana, M.; Querol, X.; Alastuey, A.; Gangoiti, G.; Menéndez, M.

    Levels of PM observed at the air quality network from the Basque Country in 1996-2000 ranged from 16 μg PM 10/m 3 at regional background sites, to 35-40 μg TSP/m 3 (equivalent to 25-30 μg PM 10/m 3) at urban background sites, to 40-48 μg TSP/m 3 (30-40 μg PM 10/m 3) at roadside sites; to 50-64 μg TSP/m 3 (35-50 μg PM 10/m 3) at industrial and heavy traffic sites. The EU daily and annual PM 10 limit values for 2005 are not equivalent for the Basque Country, and consequently only the mean 1996-2000 PM levels from one station would exceed the 2005 annual limit value but most of them surpass n=35 exceedances of the daily limit value. The equivalent n to the 2005 annual limit value is around 80. Four major processes exert an influence on PM levels throughout the Basque territory: local and regional anthropogenic contributions, precipitation, African dust and European transport. PM at Llodio (an urban background site under industrial influence and mean PM 10, PM 2.5 and PM 1 levels for 2001 of 34, 25 and 21 μg/m 3) is mainly distributed in the fine mode: 74% of PM 10 is constituted by PM 2.5, and 64% of PM 2.5 presents a diameter <1 μm. The particle size distribution of PM varies seasonally with the fine fractions prevailing in summer (PM 2.5/PM 10=80-90%) and the coarser increasing in winter (PM 2.5/PM 10=60-70%). Meso- and synoptic scale processes affecting global PM levels in the Basque Country have been identified (mainly pollution episodes, African, Atlantic and EU transport). The results obtained allowed us to evaluate the impact of the different types of PM episodes on ambient PM levels and particle size fractions.

  18. Mechanical and Microstructural Effects of Thermal Aging on Cast Duplex Stainless Steels by Experiment and Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.

    Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less

  19. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co-Cr dental alloys.

    PubMed

    Li, Kai Chun; Prior, David J; Waddell, J Neil; Swain, Michael V

    2015-12-01

    The objective of this study was to identify the different microstructures produced by CC, PM and as-cast techniques for Co-Cr alloys and their phase stability following porcelain firings. Three bi-layer porcelain veneered Co-Cr specimens and one monolithic Co-Cr specimen of each alloy group [cast, powder metallurgy (PM), CAD/CAM (CC)] were manufactured and analyzed using electron backscatter diffraction (EBSD), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Specimens were treated to incremental numbers of porcelain firings (control 0, 5, 15) with crystallographic data, grain size and chemical composition subsequently obtained and analyzed. EBSD datasets of the cast alloy indicated large grains >200 μm whereas PM and CC alloy consisted of mean arithmetic grain sizes of 29.6 μm and 19.2 μm respectively. XRD and EBSD results both indicated the highest increase in hcp content (>13vol%) for cast Co-Cr alloy after treatment with porcelain firing while PM and CC indicated <2vol% hcp content. A fine grain interfacial layer developed on all surfaces of the alloy after porcelain firing. The depth of this layer increased with porcelain firings for as-cast and PM but no significant increase (p>.05) was observed in CC. EDS line scans indicated an increase in Cr content at the alloy surface after porcelain firing treatment for all three alloys. PM and CC produced alloy had superior fcc phase stability after porcelain firings compared to a traditional cast alloy. It is recommended that PM and CC alloys be used for porcelain-fused-to-metal restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Assessment of the microstructure evolution of an austempered ductile iron during austempering process through strain hardening analysis

    NASA Astrophysics Data System (ADS)

    Donnini, Riccardo; Fabrizi, Alberto; Bonollo, Franco; Zanardi, Franco; Angella, Giuliano

    2017-09-01

    The aim of this investigation was to determine a procedure based on tensile testing to assess the critical range of austempering times for having the best ausferrite produced through austempering. The austempered ductile iron (ADI) 1050 was quenched at different times during austempering and the quenched samples were tested in tension. The dislocation-density-related constitutive equation proposed by Estrin for materials having high density of geometrical obstacles to dislocation motion, was used to model the flow curves of the tensile tested samples. On the basis of strain hardening theory, the equation parameters were related to the microstructure of the quenched samples and were used to assess the ADI microstructure evolution during austempering. The microstructure evolution was also analysed through conventional optical microscopy, electron back-scattered diffraction technique and transmission electron microscopy. The microstructure observations resulted to be consistent with the assessment based on tensile testing, so the dislocation-density-related constitutive equation was found to be a powerful tool to characterise the evolution of the solid state transformations of austempering.

  1. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less

  2. Remote sensing of ambient particles in Delhi and its environs: estimation and validation

    PubMed Central

    KUMAR, N.; CHU, A.; FOSTER, A.

    2011-01-01

    Recent advances in atmospheric remote sensing offer a unique opportunity to compute indirect estimates of air quality, particularly for developing countries that lack adequate spatial–temporal coverage of air pollution monitoring. The present research establishes an empirical relationship between satellite-based aerosol optical depth (AOD) and ambient particulate matter (PM) in Delhi and its environs. The PM data come from two different sources. Firstly, a field campaign was conducted to monitor airborne particles ≤ 2.5 μm and ≤10 μm in aerodynamic diameter (PM2.5 and PM10 respectively) at 113 spatially dispersed sites from July to December 2003 using photometric samplers. Secondly, data on eight hourly PM10 and total suspended particulate (TSP) matter, collected using gravimetric samplers, from 2000 to 2005 were acquired from the Central Pollution Control Board (CPCB). The aerosol optical depths were estimated from MODIS data, acquired from NASA’s Goddard Space Flight Center Earth Sciences Distributed Active Archive Center from 2000 to 2005. Both the PM and AOD data were collocated by time and space: PM mass ± 150 min of AOD time, and ± 2.5 and 5 km radius (separately) of the centroid of the AOD pixel for the 5 and 10 km AOD, respectively. The analysis here shows that PM correlates positively with the 5 km AOD; a 1% change in the AOD explains 0.52% ± 0.20% and 0.39% ± 0.15% changes in PM2.5 within 45 and 150 min intervals (of AOD data) respectively. At a coarser spatial resolution, however, the relationship between AOD and PM is relatively weak. But, the relationship turns significantly stronger when monthly estimates are analysed over a span of six years (2000 to 2005), especially for the winter months, which have relatively stable meteorological conditions. PMID:22162895

  3. Influences of Thermomechanical Processing on the Microstructure and Mechanical Properties of a HSLA Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Xu, Songsong; Zou, Yun; Li, Jinhui; Zhang, Z. W.

    High strength low alloy (HSLA) steels with high strength, high toughness, good corrosion resistance and weldability, can be widely used in shipbuilding, automobile, construction, bridging industry, etc. The microstructure evolution and mechanical properties can be influenced by thermomechanical processing. In this study, themomechanical processing is optimized to control the matrix microstructure and nano-scale precipitates in the matrix simultaneously. It is found that the low-temperature toughness and ductility of the steels are significantly the matrix microstructure during enhancing the strength by introducing the nano-scale precipitates. The effects of alloying elements on the microstructure evolution and nano-scale precipitation are also discussed.

  4. Increment of ambient exposure to fine particles and the reduced human fertility rate in China, 2000-2010.

    PubMed

    Xue, Tao; Zhu, Tong

    2018-06-13

    Epidemiological and toxicological studies suggest that exposure to ambient fine particles (PM 2.5 ) can reduce human reproductive capacity. We previously reported, based on spatial epidemiology, that higher levels of PM 2.5 exposure were associated with a lower fertility rate (FR) in China. However, that study was limited by a lack of temporal variation. Using first-difference regression, we linked temporal changes in FR and PM 2.5 with adjustment for ecological covariates across 2806 counties in China during 2000-2010. Next, we performed a sensitivity analysis of the variation in the PM 2.5 -FR association according to (1) geographic region, (2) indicators of the level of development, and (3) PM 2.5 concentrations. Also, we quantified the reduction in the FR attributable to ambient PM 2.5 in China for the first time. The FR decreased by 3.3% (1.2%, 5.3%) for each 10 μg/m 3 increment in PM 2.5 . The association varied significantly among the geographic regions, but not with the level of development. Nonlinearity analysis suggested a linear exposure-response function with an effect threshold of ~8 μg/m 3 . We also found that comparing to the 2000 scenario, increment of PM 2.5 in 2010 might result in a reduction of 2.50 (2.44, 2.60) infants per 1000 women aged 15-44 years per year in China. Our results confirm the statistical association between ambient particles and FR and suggest that poor air quality may contribute to childlessness in China. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Characterization of Plastic Flow Pertinent to the Evolution of Bulk Residual Stress in Powder-Metallurgy, Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.

    2015-09-01

    The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.

  6. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less

  7. Influence of model grid size on the simulation of PM2.5 and the related excess mortality in Japan

    NASA Astrophysics Data System (ADS)

    Goto, D.; Ueda, K.; Ng, C. F.; Takami, A.; Ariga, T.; Matsuhashi, K.; Nakajima, T.

    2016-12-01

    Aerosols, especially PM2.5, can affect air pollution, climate change, and human health. The estimation of health impacts due to PM2.5 is often performed using global and regional aerosol transport models with various horizontal resolutions. To investigate the dependence of the simulated PM2.5 on model grid sizes, we executed two simulations using a high-resolution model ( 10km; HRM) and a low-resolution model ( 100km; LRM, which is a typical value for general circulation models). In this study, we used a global-to-regional atmospheric transport model to simulate PM2.5 in Japan with a stretched grid system in HRM and a uniform grid system in LRM for the present (the 2000) and the future (the 2030, as proposed by the Representative Concentrations Pathway 4.5, RCP4.5). These calculations were performed by nudging meteorological fields obtained from an atmosphere-ocean coupled model and providing emission inventories used in the coupled model. After correcting for bias, we calculated the excess mortality due to long-term exposure to PM2.5 for the elderly. Results showed the LRM underestimated by approximately 30 % (of PM2.5 concentrations in the 2000 and 2030), approximately 60 % (excess mortality in the 2000) and approximately 90 % (excess mortality in 2030) compared to the HRM results. The estimation of excess mortality therefore performed better with high-resolution grid sizes. In addition, we also found that our nesting method could be a useful tool to obtain better estimation results.

  8. Effect of Interface Structure on the Microstructural Evolution of Ceramics

    DTIC Science & Technology

    2007-11-06

    because almost all the material properties are de - pendent upon their internal microstructures. Therefore, the microstructural evolution during the...growing interface de - pends upon the density of kinks on that interface. It fol- lows that the atomically smooth interface, which is char- acterized by...grain, and its de - tailed coarsening process has been treated elsewhere.139 During liquid-phase sintering, the formation of grain boundaries between

  9. Lake Holloman Recreational Area Development Environmental Assessment

    DTIC Science & Technology

    2009-08-01

    facilities Total daily trips are applied to the following factors depending on the corresponding years. Year 2005 through 2009: VOCE = .016...Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022...Trips COE = .262 * Trips To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000

  10. Oxidation of High-temperature Alloy Wires in Dry Oxygen and Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Lorincz, Jonathan A.; DeMange, Jeffrey J.

    2004-01-01

    Small diameter wires (150 to 250 microns) of the high temperature alloys Haynes 188, Haynes 230, Haynes 230, Haynes 214, Kanthal Al and PM2000 were oxidized at 1204 C in dry oxygen or 50% H2O /50% O2 for 70 Hours. The oxidation kinetics were monitored using a thermogravimetric technique. Oxide phase composition and morphology of the oxidized wires were determined by X-ray diffraction,field emission scanning electron microscopy, and energy dispersive spectroscopy. The alumina-forming alloys, Kanthal Al and PM2000, out-performed the chromia-forming alloys under this conditions. PM2000 was recommended as the most promising candidate for advanced hybrid seal applications for space reentry control surface seals or hypersonic propulsion system seals. This study also demonstrated that thermogravimetric analysis of small diameter wires is a powerful technique for the study of oxide volatility, oxide adherence, and breakaway oxidation.

  11. Microstructural evolution associated with martensitic transformation in Ni-Mn-Ga alloy

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L.

    2015-04-01

    Based on the spatially resolved electron backscatter diffraction technique, the microstructural evolution accompanying the martensitic transformation (austenite to 7M martensite) and the intermartensitic transformation (7M martensite to NM martensite) was studied on a polycrystalline Ni53Mn22Ga25 alloy. Results show that the 7M martensite plate groups transformed from initial austenite have a diamond-shape with four twin-related variants. The 7M to NM intermartensitic transformation was accompanied by the thickening of martensite plates. With the experimental results, the characteristics of microstructural evolution during the phase transformations were further analyzed.

  12. Development of fully dense and high performance powder metallurgy HSLA steel using HIP method

    NASA Astrophysics Data System (ADS)

    Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping

    2018-05-01

    In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.

  13. Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Kishi, Hiroshi; Mizuno, Youichi; Chazono, Hirokazu

    2003-01-01

    Multilayer ceramic capacitor (MLCC) production and sales figures are the highest among fine-ceramic products developed in the past 30 years. The total worldwide production and sales reached 550 billion pieces and 6 billion dollars, respectively in 2000. In the course of progress, the development of base-metal electrode (BME) technology played an important role in expanding the application area. In this review, the recent progress in MLCCs with BME nickel (Ni) electrodes is reviewed from the viewpoint of nonreducible dielectric materials. Using intermediate-ionic-size rare-earth ion (Dy2O3, Ho2O3, Er2O3, Y2O3) doped BaTiO3 (ABO3)-based dielectrics, highly reliable Ni-MLCCs with a very thin layer below 2 μm in thickness have been developed. The effect of site occupancy of rare-earth ions in BaTiO3 on the electrical properties and microstructure of nonreducible dielectrics is studied systematically. It appears that intermediate-ionic-size rare-earth ions occupy both A- and B-sites in the BaTiO3 lattice and effectively control the donor/acceptor dopant ratio and microstructural evolution. The relationship between the electrical properties and the microstructure of Ni-MLCCs is also presented.

  14. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  15. Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy

    NASA Astrophysics Data System (ADS)

    Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars

    2018-01-01

    Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.

  16. PM CONCENTRATIONS ASSOCIATED WITH PERSONAL ACTIVITIES BASED ON REAL-TIME PERSONAL NEPHELOMETRY DATA FROM THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    A longitudinal particulate matter (PM) exposure study sponsored by EPA's National Exposure Research Laboratory (NERL) was conducted in the Research Triangle Park, NC area between June 2000 and June 2001. Participants were selected from two groups of potentially susceptible sub-...

  17. U.S. National PM2.5 Chemical Speciation Monitoring Networks – CSN and IMPROVE: Description of Networks

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range belo...

  18. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  19. Linking Initial Microstructure to ORR Related Property Degradation in SOFC Cathode: A Phase Field Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Y.; Cheng, T. -L.; Wen, Y. H.

    Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less

  20. Linking Initial Microstructure to ORR Related Property Degradation in SOFC Cathode: A Phase Field Simulation

    DOE PAGES

    Lei, Y.; Cheng, T. -L.; Wen, Y. H.

    2017-07-05

    Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less

  1. Estimation of excess mortality due to long-term exposure to PM2.5 in Japan using a high-resolution model for present and future scenarios

    NASA Astrophysics Data System (ADS)

    Goto, Daisuke; Ueda, Kayo; Ng, Chris Fook Sheng; Takami, Akinori; Ariga, Toshinori; Matsuhashi, Keisuke; Nakajima, Teruyuki

    2016-09-01

    Particulate matter with a diameter of less than 2.5 μm, known as PM2.5, can affect human health, especially in elderly people. Because of the imminent aging of society in the near future in most developed countries, the human health impacts of PM2.5 must be evaluated. In this study, we used a global-to-regional atmospheric transport model to simulate PM2.5 in Japan with a high-resolution stretched grid system (∼10 km for the high-resolution model, HRM) for the present (the 2000) and the future (the 2030, as proposed by the Representative Concentrations Pathway 4.5, RCP4.5). We also used the same model with a low-resolution uniform grid system (∼100 km for the low-resolution model, LRM). These calculations were conducted by nudging meteorological fields obtained from an atmosphere-ocean coupled model and providing emission inventories used in the coupled model. After correcting for bias, we calculated the excess mortality due to long-term exposure to PM2.5 among the elderly (over 65 years old) based on different minimum PM2.5 concentration (MINPM) levels to account for uncertainty using the simulated PM2.5 distributions to express the health effect as a concentration-response function. As a result, we estimated the excess mortality for all of Japan to be 31,300 (95% confidence intervals: 20,700 to 42,600) people in 2000 and 28,600 (95% confidence intervals: 19,000 to 38,700) people in 2030 using the HRM with a MINPM of 5.8 μg/m3. In contrast, the LRM resulted in underestimates of approximately 30% (for PM2.5 concentrations in the 2000 and 2030), approximately 60% (excess mortality in the 2000) and approximately 90% (excess mortality in 2030) compared to the HRM results. We also found that the uncertainty in the MINPM value, especially for low PM2.5 concentrations in the future (2030) can cause large variability in the estimates, ranging from 0 (MINPM of 15 μg/m3 in both HRM and LRM) to 95,000 (MINPM of 0 μg/m3 in HRM) people.

  2. Transparent air filter for high-efficiency PM2.5 capture.

    PubMed

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-16

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  3. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  4. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    NASA Astrophysics Data System (ADS)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter <10 μm) limit values at individual air quality monitoring stations reporting to the AirBase database. The modelling approach relies on a combination of bottom up modelling of emissions, simplified atmospheric chemistry and dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  5. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    NASA Astrophysics Data System (ADS)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Amann, M.

    2014-07-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter < 10 μm) limit values at individual air quality monitoring stations reporting to the AirBase database. The modelling approach relies on a combination of bottom up modelling of emissions, simplified atmospheric chemistry and dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  6. The effect of microstructure, temperature, and hold-time on low-cycle fatigue of As HIP P/M Rene 95

    NASA Technical Reports Server (NTRS)

    Bashir, S.; Antolovich, S. D.

    1984-01-01

    The effects of microstructure, temperature, plastic strain range, and hold time on the low-cycle fatigue (LCF) life were studied for Rene 95, an important Ni base superalloy used in jet engine disks. It was shown that the life could be varied by approximately an order of magnitude at elevated temperatures by simple heat treatments. The life was largest for the microstructure that promoted the most homogeneous deformation mode. The results are explained using the concept of a synergistic interaction between the deformation mode and boundary oxidation.

  7. Toward a virtual platform for materials processing

    NASA Astrophysics Data System (ADS)

    Schmitz, G. J.; Prahl, U.

    2009-05-01

    Any production is based on materials eventually becoming components of a final product. Material properties being determined by the microstructure of the material thus are of utmost importance both for productivity and reliability of processing during production and for application and reliability of the product components. A sound prediction of materials properties therefore is highly important. Such a prediction requires tracking of microstructure and properties evolution along the entire component life cycle starting from a homogeneous, isotropic and stress-free melt and eventually ending in failure under operational load. This article will outline ongoing activities at the RWTH Aachen University aiming at establishing a virtual platform for materials processing comprising a virtual, integrative numerical description of processes and of the microstructure evolution along the entire production chain and even extending further toward microstructure and properties evolution under operational conditions.

  8. Processing, Microstructures and Properties of a Dual Phase Precipitation-Hardening PM Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schade, Christopher

    To improve the mechanical properties of PM stainless steels in comparison with their wrought counterparts, a PM stainless steel alloy was developed which combines a dual-phase microstructure with precipitation-hardening. The use of a mixed microstructure of martensite and ferrite results in an alloy with a combination of the optimum properties of each phase, namely strength and ductility. The use of precipitation hardening via the addition of copper results in additional strength and hardness. A range of compositions was studied in combination with various sintering conditions to determine the optimal thermal processing to achieve the desired microstructure. The microstructure could be varied from predominately ferrite to one containing a high percentage of martensite by additions of copper and a variation of the sintering temperature before rapid cooling. Mechanical properties (transverse rupture strength (TRS), yield strength, tensile strength, ductility and impact toughness) were measured as a function of the v/o ferrite in the microstructure. A dual phase alloy with the optimal combination of properties served as the base for introducing precipitation hardening. Copper was added to the base alloy at various levels and its effect on the microstructure and mechanical properties was quantified. Processing at various sintering temperatures led to a range of microstructures; dilatometry was used utilized to monitor and understand the transformations and the formation of the two phases. The aging process was studied as a function of temperature and time by measuring TRS, yield strength, tensile strength, ductility, impact toughness and apparent hardness. It was determined that optimum aging was achieved at 538°C for 1h. Aging at slightly lower temperatures led to the formation of carbides, which contributed to reduced hardness and tensile strength. As expected, at the peak aging temperature, an increase in yield strength and ultimate tensile strength as well as apparent hardness was found. Aging also lead to an unexpected and concurrent increase in ductility and impact toughness. The alloys also showed an increase in strain hardening on aging. The increase in ductility varied with the v/o martensite in the microstructure and was shown to occur after short time intervals at the optimum aging temperature. Compressive strength measurements revealed that the increase in ductility was due to the relaxation of residuals stresses that occur when the high temperature austenite transforms to martensite in the dual phase microstructure. The specific volume of martensite is much larger than that of austenite so that when the transformation takes place, a compressive stress is induced in the ferrite. In the sintered state, the residual stress leads to a higher work hardening rate in tension. When the alloy is aged, the work hardening rate is reduced and the ductility is increased compared with the sintered state, even though aging increases the strength and apparent hardness.

  9. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less

  10. Microstructure of Pharmaceutical Semicrystalline Dispersions: The Significance of Polymer Conformation.

    PubMed

    Van Duong, Tu; Goderis, Bart; Van Humbeeck, Jan; Van den Mooter, Guy

    2018-02-05

    The microstructure of pharmaceutical semicrystalline solid dispersions has attracted extensive attention due to its complexity that might result in the diversity in physical stability, dissolution behavior, and pharmaceutical performance of the systems. Numerous factors have been reported that dictate the microstructure of semicrystalline dispersions. Nevertheless, the importance of the complicated conformation of the polymer has never been elucidated. In this study, we investigate the microstructure of dispersions of polyethylene glycol and active pharmaceutical ingredients by small-angle X-ray scattering and high performance differential scanning calorimetry. Polyethylene glycol with molecular weight of 2000 g/mol (PEG2000) and 6000 g/mol (PEG6000) exhibited remarkable discrepancy in the lamellar periodicity in dispersions with APIs which was attributed to the differences in their folding behavior. The long period of PEG2000 always decreased upon aging-induced exclusion of APIs from the interlamellar region of extended chain crystals whereas the periodicity of PEG6000 may decrease or increase during storage as a consequence of the competition between the drug segregation and the lamellar thickening from nonintegral-folded into integral-folded chain crystals. These processes were in turn significantly influenced by the crystallization tendency of the pharmaceutical compounds, drug-polymer interactions, as well as the dispersion composition and crystallization temperature. This study highlights the significance of the polymer conformation on the microstructure of semicrystalline systems that is critical for the preparation of solid dispersions with consistent and reproducible quality.

  11. Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb (At.%) Orthorhombic Alloy with Three Typical Microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo

    2018-01-01

    Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.

  12. Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study

    NASA Astrophysics Data System (ADS)

    Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.

    2017-12-01

    The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.

  13. Analysis of the Characteristics and Evolution Modes of PM2.5 Pollution Episodes in Beijing, China During 2013

    PubMed Central

    Song, Ci; Pei, Tao; Yao, Ling

    2015-01-01

    Fine particulate matter (PM2.5) has been recognized as a serious hazard linked to deleterious health effects. In this study, all PM2.5 Pollution Episodes (PPEs) in Beijing during 2013 were investigated with hourly PM2.5 observations from the Olympic Sport Center site, and then their characteristics and evolution modes analysed. Results show that 80 PPEs, covering 209 days, occurred in Beijing during 2013. Average PM2.5 concentrations during PPEs were almost twice (1.86) the annual mean value, although the PPEs showed significant seasonal variations. The most hazardous PPEs tended to occur in winter, whereas PPEs with long duration occurred in autumn. The PPEs could be divided into six clusters based on their compositions of different pollution levels, which were strongly related to meteorological factors. We used series peaks of PM2.5 concentrations to analyse the evolution modes of PPEs and found that the more peaks there were within the evolution mode, the longer the duration, and the higher the average and maximum PM2.5 concentrations. Each peak within a PPE can be identified by “rise” and “fall” patterns. The “rise” patterns are widely related to relative humidity, whereas the “fall” patterns are affected principally by wind speed for one-peak PPEs and boundary layer height for multi-peak PPEs. The peak patterns cannot be explained fully by meteorological factors; however, they might also be closely related to complex and diversified human activities. PMID:25648172

  14. A Monte Carlo-finite element model for strain energy controlled microstructural evolution - 'Rafting' in superalloys

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1989-01-01

    This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.

  15. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510

  16. Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.

    PubMed

    Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.

  17. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  18. A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Lv, Baolei; Zhang, Bin; Bai, Yuqi

    2016-01-01

    Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) is the main air pollutant in Beijing. To have a comprehensive understanding of concentrations, compositions and sources of PM2.5 in Beijing, recent studies reporting ground-based observations and source apportionment results dated from 2000 to 2012 in this typical large city of China are reviewed. Statistical methods were also used to better enable data comparison. During the last decade, annual average concentrations of PM2.5 have decreased and seasonal mean concentrations declined through autumn and winter. Generally, winter is the most polluted season and summer is the least polluted one. Seasonal variance of PM2.5 levels decreased. For diurnal variance, PM2.5 generally increases at night and decreases during the day. On average, organic matters, sulfate, nitrate and ammonium are the major compositions of PM2.5 in Beijing. Fractions of organic matters increased from 2000 to 2004, and decreased afterwards. Fractions of sulfate, nitrate and ammonium decreased in winter and remained largely unchanged in summer. Concentrations of organic carbon and elemental carbon were always higher in winter than in summer and they barely changed during the last decade. Concentrations of sulfate, nitrate and ammonium exhibited significant increasing trend in summer but in reverse in winter. On average they were higher in winter than in summer before 2005, and took a reverse after 2005. Receptor model results show that vehicle, dust, industry, biomass burning, coal combustion and secondary products were major sources and they all increased except coal combustions and secondary products. The growth was decided both changing social and economic activities in Beijing, and most likely growing emissions in neighboring Hebei province. Explicit descriptions of the spatial variations of PM2.5 concentration, better methods to estimate secondary products and ensemble source apportionments models to reduce uncertainties would remain being open questions for future studies.

  19. Experimental evaluation of rigor mortis. VII. Effect of ante- and post-mortem electrocution on the evolution of rigor mortis.

    PubMed

    Krompecher, T; Bergerioux, C

    1988-01-01

    The influence of electrocution on the evolution of rigor mortis was studied on rats. Our experiments showed that: (1) Electrocution hastens the onset of rigor mortis. After an electrocution of 90 s, a complete rigor develops already 1 h post-mortem (p.m.) compared to 5 h p.m. for the controls. (2) Electrocution hastens the passing of rigor mortis. After an electrocution of 90 s, the first significant decrease occurs at 3 h p.m. (8 h p.m. in the controls). (3) These modifications in rigor mortis evolution are less pronounced in the limbs not directly touched by the electric current. (4) In case of post-mortem electrocution, the changes are slightly less pronounced, the resistance is higher and the absorbed energy is lower as compared with the ante-mortem electrocution cases. The results are completed by two practical observations on human electrocution cases.

  20. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    NASA Astrophysics Data System (ADS)

    Jin, Shi; Wang, Xuelei

    2003-04-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  1. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai

    2017-07-01

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  2. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5ZrTi Alloy (Preprint)

    DTIC Science & Technology

    2011-10-01

    slightly enriched with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was...FCC phase was highly enriched with Cr and it was identified as a Laves C15 phase, ( Zr ,Ta)(Cr,Mo, Nb )2, with the lattice parameter a = 733.38 ± 0.18 pm...with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was enriched with Zr and Ti

  3. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  4. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

    NASA Astrophysics Data System (ADS)

    Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran

    2018-06-01

    In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.

  5. Effects of the Strain Rate and Temperature on the Microstructural Evolution of Twin-Rolled Cast Wrought AZ31B Alloys Sheets

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. K.; Kridli, G.; Ayoub, G.; Zbib, H.

    2013-10-01

    This article investigates the effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B sheets. This was achieved through static heating and through tensile test performed at strain rates from 10-4 to 10-1 s-1 and temperatures between room temperature (RT) and 300 °C. While brittle fracture with high stresses and limited elongation was observed at the RT, ductile behavior was obtained at higher temperatures with low strain rates. The strain rate sensitivity and activation energy calculations indicate that grain boundary diffusion and lattice diffusion are the two rate-controlling mechanisms at warm and high temperatures, respectively. An analysis of the evolution of the microstructure provided some indications of the most probable deformation mechanisms in the material: twinning operates at lower temperatures, and dynamic recrystallization dominates at higher temperatures. The static evolution of the microstructure was also studied, proving a gradual static grain growth of the AZ31B with annealing temperature and time.

  6. Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel

    NASA Astrophysics Data System (ADS)

    Pickering, E. J.; Bhadeshia, H. K. D. H.

    2014-06-01

    This work assesses the consequences of macrosegregation on microstructural evolution during solid-state transformations in a continuously cooled pressure-vessel steel (SA508 Grade 3). Stark spatial variations in microstructure are observed following a simulated quench from the austenitization temperature, which are found to deliver significant variations in hardness. Partial-transformation experiments are used to show the development of microstructure in segregated material. Evidence is presented which indicates the bulk microstructure is not one of upper bainite, as it has been described in the past, but one comprised of Widmanstätten ferrite and pockets of lower bainite. Segregation is observed on three different length scales, and the origins of each type are proposed. Suggestions are put forward for how the segregation might be minimized, and its detrimental effects suppressed by heat treatments.

  7. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    PubMed

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  8. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    PubMed Central

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-01-01

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707

  9. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  10. Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Lei

    Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that the attachment behavior takes place collectively and heterogeneously, similarly to Al diffusion in MGs. Finally, we applied the MD technique to study the origin of five-fold twinning nucleation during the solidification of Al base alloys. We studied several model alloys and reported the observed nucleation pathway. We found that the key factors controlling the five-fold twinning are the twin boundary energy and the formation of pentagon structures, and the twin boundary energy plays the dominant role in the five-fold twinning in the model alloys studied.

  11. Evolution of microstructural disorder in annealed bismuth telluride nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham

    Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less

  12. Evolution of microstructural disorder in annealed bismuth telluride nanowires

    DOE PAGES

    Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham; ...

    2017-03-01

    Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less

  13. Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming

    NASA Astrophysics Data System (ADS)

    Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng

    2017-10-01

    With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.

  14. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Genculu, S.

    1983-01-01

    The nickel-base alloy 718 was evaluated to study the role of preweld heat treatment in reducing or eliminating heat-affected zone hot cracking. Three heat treatments were studied using the Gleeble hot ductility test. A modified hot ductility test was also used to follow the evolution of microstructure during simulated welding thermal cycles. The microstructural evolution was correlated with the hot ductility data in order to evaluate the mechanism of hot cracking in alloy 718. The correlation of hot ductility with microstructure showed that recrystallization, grain growth, and dissolution of precipitates did not in themselves cause any loss of ductility during cooling. Ductility loss during cooling was not initiated until the constitutional liquation of NbC particles was observed in the microstructure. Laves-type phases were found precipitated in the solidified grain boundaries but were not found to correlate with any ductility loss parameter. Mechanisms are reviewed which help to explain how heat treatment controls the hot crack susceptibility of alloy 718 as measured in the hot ductility test.

  15. 3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Zöllner, Dana; Field, David P.

    2018-04-01

    Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.

  16. The National Shipbuilding Research Program. Short Course on Implementing Advanced Technology. Course Notes

    DTIC Science & Technology

    1996-01-01

    12.30PM LUNCH 12.30-1.00 PM EXERCISE - U.S. VERSUS FOREIGN COST BREAKDOWN 1.00-1.30 PM THE CANDY STORE - TOTAL QUALITY MANAGEMENT 1.30-2000 PM SEAMLESS...AVONDALE’S RUSSIAN TANKER, AND BENDER’S REEFER SHIP PROJECTS ALL APPEAR DEAD OTHER U.S. SHIPBUILDERS ARE STILL IN NEGOTIATION WITH POTENTIAL FOREIGN AND...derived: Direct ManhourdCGT Total Employee Manhours/CGT CGT/ Direct worker Year CGT/Total Employee Year 2 3 NATIONAL RESEARCH COUNCIL DESIGN AND

  17. Microstructure Modeling of Third Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  18. A novel method of multi-scale simulation of macro-scale deformation and microstructure evolution on metal forming

    NASA Astrophysics Data System (ADS)

    Huang, Shiquan; Yi, Youping; Li, Pengchuan

    2011-05-01

    In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.

  19. Three-dimensional microstructure simulation of Ni-based superalloy investment castings

    NASA Astrophysics Data System (ADS)

    Pan, Dong; Xu, Qingyan; Liu, Baicheng

    2011-05-01

    An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.

  20. VizieR Online Data Catalog: Proper motions of PM2000 open clusters (Krone-Martins+, 2010)

    NASA Astrophysics Data System (ADS)

    Krone-Martins, A.; Soubiran, C.; Ducourant, C.; Teixeira, R.; Le Campion, J. F.

    2010-04-01

    We present lists of proper-motions and kinematic membership probabilities in the region of 49 open clusters or possible open clusters. The stellar proper motions were taken from the Bordeaux PM2000 catalogue. The segregation between cluster and field stars and the assignment of membership probabilities was accomplished by applying a fully automated method based on parametrisations for the probability distribution functions and genetic algorithm optimisation heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. (3 data files).

  1. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution

    NASA Technical Reports Server (NTRS)

    Sircar, S.; Chattopadhyay, K.; Mazumder, J.

    1992-01-01

    The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.

  2. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    NASA Astrophysics Data System (ADS)

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  3. Phase Transformations and Microstructural Evolution: Part II

    DOE PAGES

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less

  4. Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing 35CrMoA axle steel

    NASA Astrophysics Data System (ADS)

    Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng

    2018-03-01

    In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.

  5. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble

    NASA Astrophysics Data System (ADS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T.; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, Ian A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zengast, Guang

    2016-08-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths year-1), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382 000 (121 000 to 728 000) deaths year-1 in 2000 to between 1.09 and 2.36 million deaths year-1 in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between -2.39 and -1.31 million deaths year-1 for the four RCPs. The global mortality burden of PM2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths year-1 in 2000 to between 0.95 and 1.55 million deaths year-1 in 2100 for the four RCPs due to the combined effect of decreases in PM2.5 concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.

  6. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble.

    PubMed

    Silva, Raquel A; West, J Jason; Lamarque, Jean-François; Shindell, Drew T; Collins, William J; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M; Eyring, Veronika; Josse, Beatrice; MacKenzie, I A; Plummer, David; Righi, Mattia; Stevenson, David S; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2016-01-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM 2.5 ) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM 2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM 2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM 2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths/year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382,000 (121,000 to 728,000) deaths/year in 2000 to between 1.09 and 2.36 million deaths/year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM 2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between -2.39 and -1.31 million deaths/year for the four RCPs. The global mortality burden of PM 2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths/year in 2000 to between 0.95 and 1.55 million deaths/year in 2100 for the four RCPs, due to the combined effect of decreases in PM 2.5 concentrations and changes in population and baseline mortality rates. Trends in future air pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.

  7. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000-2011

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.

    2015-12-01

    Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.

  8. The Research Triangle Park particulate matter panel study: PM mass concentration relationships

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Suggs, Jack; Rea, Anne; Leovic, Kelly; Vette, Alan; Croghan, Carry; Sheldon, Linda; Rodes, Charles; Thornburg, Jonathan; Ejire, Ademola; Herbst, Margaret; Sanders, William

    The US Environmental Protection Agency has recently performed the Research Triangle Park Particulate Matter Panel Study. This was a 1-year investigation of PM and related co-pollutants involving participants living within the RTP area of North Carolina. Primary goals were to characterize the relationships between ambient and residential PM measures to those obtained from personal exposure monitoring and estimate ambient source contributions to personal and indoor mass concentrations. A total of 38 participants living in 37 homes were involved in personal, residential indoor, residential outdoor and ambient PM 2.5 exposure monitoring. Participants were 30 non-smoking hypertensive African-Americans living in a low-moderate SES neighborhood (SE Raleigh, NC) and a cohort of eight individuals having implanted cardiac defibrillators (Chapel Hill, NC). Residential and ambient monitoring of PM 10 and PM 10-2.5 (coarse by differential) was also performed. The volunteers were monitored for seven consecutive days during each of four seasons (summer 2000, fall 2000, winter 2001, spring 2001). Individual PM 2.5 personal exposure concentrations ranged from 4 to 218 μg m -3 during the study. The highest personal exposures were determined to be the result of passive environmental tobacco exposures. Subsequently, ˜7% of the total number of personal exposure trials were excluded to minimize this pollutant's effect upon the overall analysis. Results indicated that a pooled data set (seasons, cohorts, residences, participants) was appropriate for investigation of the basic mass concentration relationships. Daily personal PM 2.5 mass concentrations were typically higher than their associated residential or ambient measurements (mean personal=23.0, indoor=19.1, outdoor=19.3, ambient=19.2 μg m -3). Mean personal PM 2.5 exposures were observed to be only moderately correlated to ambient PM 2.5 concentrations ( r=0.39).

  9. Evolution of vehicle exhaust particles in the atmosphere.

    PubMed

    Canagaratna, Manjula R; Onasch, Timothy B; Wood, Ezra C; Herndon, Scott C; Jayne, John T; Cross, Eben S; Miake-Lye, Richard C; Kolb, Charles E; Worsnop, Douglas R

    2010-10-01

    Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.

  10. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.

  11. Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in Medicare enrollees in the eastern United States.

    PubMed

    Chung, Yeonseung; Dominici, Francesca; Wang, Yun; Coull, Brent A; Bell, Michelle L

    2015-05-01

    Several epidemiological studies have reported that long-term exposure to fine particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions of PM2.5 constituents is inconclusive. We assembled a data set of 12.5 million Medicare enrollees (≥ 65 years of age) to determine which PM2.5 constituents are a) associated with mortality controlling for previous-year PM2.5 total mass (main effect); and b) elevated in locations exhibiting stronger associations between previous-year PM2.5 and mortality (effect modification). For 518 PM2.5 monitoring locations (eastern United States, 2000-2006), we calculated monthly mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages (2000-2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), sulfate (SO42-), silicon (Si), nitrate (NO3-), and sodium (Na)] and community-level variables. We applied a Bayesian hierarchical model to estimate location-specific mortality rates associated with previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial variability of mortality, and constituents that modified associations between previous-year PM2.5 and mortality (model level 2), controlling for community-level confounders. One-standard deviation (SD) increases in 7-year average EC, Si, and NO3- concentrations were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 0.6, 2.4), and 1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-year PM2.5. Associations between previous-year PM2.5 and mortality were stronger in combination with 1-SD increases in SO42- and Na. Long-term exposures to PM2.5 and several constituents were associated with mortality in the elderly population of the eastern United States. Moreover, some constituents increased the association between long-term exposure to PM2.5 and mortality. These results provide new evidence that chemical composition can partly explain the differential toxicity of PM2.5.

  12. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE PAGES

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...

    2017-04-13

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  13. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  14. Texture and microstructure evolution in single-phase Ti{sub x}Ta{sub 1-x}N alloys of rocksalt structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.

    2011-08-15

    The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less

  15. Evolution of hardness, microstructure, and strain rate sensitivity in a Zn-22% Al eutectoid alloy processed by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Kawasaki, Megumi; Lee, Han-Joo; Choi, In-Chul; Jang, Jae-il; Ahn, Byungmin; Langdon, Terence G.

    2014-08-01

    Severe plastic deformation (SPD) is an attractive processing method for refining microstructures of metallic materials to give ultrafine grain sizes within the submicrometer to even the nanometer levels. Experiments were conducted to discuss the evolution of hardness, microstructure and strain rate sensitivity, m, in a Zn-22% Al eutectoid alloy processed by high- pressure torsion (HPT). The data from microhardness and nanoindentation hardness measurements revealed that there is a significant weakening in the Zn-Al alloy during HPT despite extensive grain refinement. Excellent room-temperature (RT) plasticity was observed in the alloy after HPT from nanoindentation creep in terms of an increased value of m. The microstructural changes with increasing numbers of HPT turns show a strong correlation with the change in the m value. Moerover, the excellent RT plasticity in the alloy is discussed in terms of the enhanced level of grain boundary sliding and the evolution of microsturucture.

  16. Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Hermenegildo, Tahiana F. C.; Santos, Tiago F. A.; Torres, Edwar A.; Afonso, Conrado R. M.; Ramirez, Antonio J.

    2018-03-01

    Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.

  17. Microstructure and inclusion of Ti-6Al-4V fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Huang, Qianli; Hu, Ningmin; Yang, Xing; Zhang, Ranran; Feng, Qingling

    2016-12-01

    Selective laser melting (SLM) was used in fabricating the dense part from pre-alloyed Ti-6Al-4V powder. The microstructural evolution and inclusion formation of as-fabricated part were characterized in depth. The microstructure was characterized by features of columnar prior β grains and acicular martensite α'. High density defects such as dislocations and twins can be produced in SLM process. Investigations on the inclusions find out that hard alpha inclusion, amorphous CaO and microcrystalline Al2O3 are three main inclusions formed in SLM. The inclusions formed at some specific sites on melt pool surface. The microstructural evolution and inclusion formation of as-fabricated material are closely related to the SLM process.

  18. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-06-01

    The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  19. Mode evolution in polarization maintain few mode fibers and applications in mode-division-multiplexing systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    In few-mode polarization-maintaining-fiber (FM-PMF), the effective-index splitting exists not only between orthogonally polarization state but also between degenerated modes within a high-order mode group. Hence besides the polarization state evolution, the mode patterns in each LP set are need to be analyzed. In this letter, the completed firstorder mode (LP11 mode) evolution in PM-FMF is analyzed and represented by analogous Jones vector and Poincarésphere respectively. Furthermore, with Jones matrix analysis, the modal dynamics in FM-PMFs is conveniently analyzed. The conclusions are used to propose a PM-FMF based LP11 mode rotator and an PM-FMF based OAM generator. Both simulation and experiments are conducted to investigate performance of the two devices.

  20. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    DOE PAGES

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 10 15 ions/cm 2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structuremore » as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less

  1. Effects of high pressure on microstructure evolution and crystallization mechanisms during solidification of nickel

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping

    2018-03-01

    To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.

  2. Phase Transformations and Microstructural Evolution: Part I

    DOE PAGES

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less

  3. Association of expired nitric oxide with occupational particulate exposure.

    PubMed Central

    Kim, Jee Young; Wand, Matthew P; Hauser, Russ; Mukherjee, Sutapa; Herrick, Robert F; Christiani, David C

    2003-01-01

    Particulate air pollution has been associated with adverse respiratory health effects. This study assessed the utility of expired nitric oxide to detect acute airway responses to metal-containing fine particulates. Using a repeated-measures study design, we investigated the association between the fractional concentration of expired nitric oxide (F(E)NO) and exposure to particulate matter with an aerodynamic mass median diameter of less than or equal to 2.5 micro m (PM(2.5)) in boilermakers exposed to residual oil fly ash and metal fumes. Subjects were monitored for 5 days during boiler repair overhauls in 1999 (n = 20) or 2000 (n = 14). The Wilcoxon median baseline F(E)NO was 10.6 ppb [95% confidence interval (CI): 9.1, 12.7] in 1999 and 7.4 ppb (95% CI: 6.7, 8.0) in 2000. The Wilcoxon median PM(2.5) 8-hr time-weighted average was 0.56 mg/m(3) (95% CI: 0.37, 0.93) in 1999 and 0.86 mg/m(3) (95% CI: 0.65, 1.07) in 2000. F(E)NO levels during the work week were significantly lower than baseline F(E)NO in 1999 (p < 0.001). A significant inverse exposure-response relationship between log-transformed F(E)NO and the previous workday's PM(2.5) concentration was found in 1999, after adjusting for smoking status, age, and sampling year. With each 1 mg/m(3) incremental increase in PM(2.5) exposure, log F(E)NO decreased by 0.24 (95% CI: -0.38, -0.10) in 1999. The lack of an exposure-response relationship between PM(2.5) exposure and F(E)NO in 2000 could be attributable to exposure misclassification resulting from the use of respirators. In conclusion, occupational exposure to metal-containing fine particulates was associated with significant decreases in F(E)NO in a survey of workers with limited respirator usage. PMID:12727593

  4. On the characterization of subpixel effects for passive microwave remote sensing of snow in montane environments

    NASA Astrophysics Data System (ADS)

    Vander Jagt, Benjamin John

    Snow and its water equivalent plays a vital role in global water and energy balances, with particular relevance in mountainous areas with arid and semi-arid climate regimes. Spaceborne passive microwave (PM) remote sensing measurements are attractive for snowpack characterization due to their continuous global coverage and historical record; over 30 years of research has been invested in the development of methods to characterize large-scale snow water resources from PM-based measurements. Historically, use of PM data for snowpack characterization in montane enviroments has been obstructed by the complex subpixel variability of snow properties within the PM measurement footprint. The main subpixel effects can be grouped as: the effect of snow microstructure (e.g. snow grain size) and stratigraphy on snow microwave emission, vegetation attenuation of PM measurements, and the sensitivity PM brightness temperature (Tb) observation to the variability of different subpixel properties at spaceborne measurement scales. This dissertation is focused on a systematic examination of these issues, which thus far have prevented the widespread integration of snow water equivalent (SWE) retrieval methods. It is meant to further our comprehension of the underlying processes at work in these rugged, remote, a hydrologically important areas. The role that snow microstructure plays in the PM retrievals of SWE is examined first. Traditional estimates of grain size are subjective and prone to error. Objective techniques to characterize grain size are described and implemented, including near infrared (NIR), stereology, and autocorrelation based approaches. Results from an intensive Colorado field study in which independent estimates of grain size and their modeled brightness temperature (Tb) emission are evaluated against PM Tb observations are included. The coarse resolution of the passive microwave measurements provides additional challenges when trying to resolve snow states via remote sensing observations. The natural heterogeneity of snowpack (e.g. depth, stratigraphy, etc) and vegetative states within the PM footprint occurs at spatial scales smaller than PM observation scales. The sensitivity to changes in snow depth given sub-pixel variability in snow and vegetation is explored and quantified using the comprehensive dataset acquired during the Cold Land Processes experiment (CLPX). Lastly, vegetation has long been an obstacle in efforts to derive snow depth and mass estimates from passive microwave (PM) measurements of brightness temperature (Tb). We introduce a vegetation transmissivity model that is derived entirely from multi-scale and multi-temporal PM Tb observations and a globally available vegetation dataset, specifically the Leaf Area Index (LAI). This newly constructed model characterizes the attenuation of PM Tb observations at frequencies typically employed for snow retrieval algorithms, as a function of LAI. Additionally, the model is used to predict how much SWE is observable within the major river basins of Colorado and the central Rockies.

  5. Regulation of Glucose Transport in Quiescent, Lactating, and Neoplastic Mammary Epithelia

    DTIC Science & Technology

    2000-10-01

    Manuscripts, Abstracts, Presentations Manuscripts 1. Nemeth, BN, Tsang, ST, Geske , RS, Haney, PM. Golgi targeting of the GLUT 1 glucose transporter in...targeting in lactating mouse mammary gland. Mol. Biol. Cell 1997; 8, 307a (ASCB poster presentation). 6. Geske , S, Haney, PM. Developmental regulation...1995. Characterization of a cis-Golgi matrix protein, GM130. JCellBiol 131:1715-1726. NEMETH BA, TSANG SWY, GESKE RS, HANEY PM, 2000. Golgi targeting

  6. REAL-TIME PERSONAL NEPHELOMETER AND TIME ACTIVITY DATA FROM THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    A longitudinal particulate matter (PM) exposure study was conducted in the Research Triangle Park, NC, area between June 2000 and June 2001. Participants were selected from two groups of potentially susceptible sub-populations: a group of African-Americans living in an environm...

  7. EMISSIONS OF METALS ASSOCIATED WITH MOTOR VEHICLE ROADWAYS

    EPA Science Inventory

    Emissions of metals and other particle-phase species from on-road motor vehicles were measured in two tunnels in Milwaukee, WI during the summer of 2000 and winter of 2001. Emission factors were calculated from measurements

    of fine (PM2.5) and coarse (PM10<...

  8. GASEOUS CO-POLLUTANTS ASSOCIATED WITH PARTICULATE MATTER-RESULTS FROM THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    The U.S. EPA National Exposure Research Laboratory (NERL) conducted a longitudinal particulate matter (PM) panel study in Research Triangle Park, NC between June 2000 and June 2001. Participants were selected from two potentially susceptible sub-populations: a multi-racial grou...

  9. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko

    2017-12-01

    This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10-3 s-1 to 1 s-1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, Tβ (880 890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above Tβ, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region.

  10. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure

    PubMed Central

    Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko

    2017-01-01

    Abstract This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10−3 s−1 to 1 s−1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region. PMID:29152021

  11. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure.

    PubMed

    Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko

    2017-01-01

    This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10 -3  s -1 to 1 s -1 ) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β , continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+ β ) region.

  12. Modeling property evolution of container materials used in nuclear waste storage

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Garmestani, Hamid; Khaleel, Moe; Sun, Xin

    2010-03-01

    Container materials under irradiation for a long time will raise high energy in the structure to generate critical structural damage. This study investigated what kind of mesoscale microstructure will be more resistant to radiation damage. Mechanical properties evolution during irradiation was modeled using statistical continuum mechanics. Preliminary results also showed how to achieve the desired microstructure with higher resistance to radiation.

  13. Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690

    NASA Astrophysics Data System (ADS)

    Bullens, Alexander L.; Bautista, Esteban; Jaye, Elizabeth H.; Vas, Nathaniel L.; Cain, Nathan B.; Mao, Keyou; Gandy, David W.; Wharry, Janelle P.

    2018-03-01

    This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400-800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall-Petch relationship for Ni-based superalloys predicts yield strength for 0-100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.

  14. A New Paradigm of Fatigue Variability Behavior and Implications for Life Prediction (Preprint)

    DTIC Science & Technology

    2006-06-01

    turbine engine materials is discussed. These were: the α+β titanium alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ) and a powder metallurgy (P/M) processed...MATERIALS AND EXPERIMENTAL PROCEDURE The materials in this study were an α+β titanium alloy, Ti- 6 -2- 4 - 6 and a P/M processed nickel-based superalloy. Two...and correlations between microstructure and loading variables vs. the mean behavior have been established in many cases [ 6 -9]. In α+β titanium alloys

  15. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0037: Mechanisms Causing Fatigue Variability in Turbine Engine Materials

    DTIC Science & Technology

    2008-05-01

    titanium alloy, Ti- 6 -2- 4 - 6 and a P/M processed nickel-based superalloy. Two heats of the Ti- 6 -2- 4 - 6 alloy with constant composition but...fatigue behavior, and the effect of microstructure and loading variables on the long-lifetime regime of the α+β titanium alloy Ti- 6 -2- 4 - 6 . By long...α+β titanium alloy, Ti- 6 -2- 4 - 6 . These are shown in Fig. 1 (a) and (b) respectively. We designate these as microstructures A and B,

  16. Evolution of microstructure, strain and physical properties in oxide nanocomposite films

    DOE PAGES

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; ...

    2014-06-24

    Using LSMO:ZnO nanocomposite films as a model system, we have researched the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures,more » strain states, and functionalities. Furthermore, it shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.« less

  17. Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys

    NASA Astrophysics Data System (ADS)

    Li, R.; Stoica, M.; Liu, G.; Eckert, J.

    2010-07-01

    Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.

  18. The Effect of Future Ambient Air Pollution on Human Premature Mortality to 2100 Using Output from the ACCMIP Model Ensemble

    NASA Technical Reports Server (NTRS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; hide

    2016-01-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM(sub 2.5)) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry climate models simulated future concentrations of ozone and PM(sub 2.5) at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM(sub 2.5) relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM(sub 2.5) in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths per year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382000 (121000 to 728000) deaths per year in 2000 to between 1.09 and 2.36 million deaths per year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM(sub 2.5) concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between 2.39 and 1.31 million deaths per year for the four RCPs. The global mortality burden of PM(sub 2.5) is estimated to decrease from 1.70 (1.30 to 2.10) million deaths per year in 2000 to between 0.95 and 1.55 million deaths per year in 2100 for the four RCPs due to the combined effect of decreases in PM(sub 2.5) concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.

  19. Evolution of microstructure and residual stress during annealing of austenitic and ferritic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wawszczak, R.; Baczmański, A., E-mail: Andrzej.Baczmanski@fis.agh.edu.pl; Marciszko, M.

    2016-02-15

    In this work the recovery and recrystallization processes occurring in ferritic and austenitic steels were studied. To determine the evolution of residual stresses during material annealing the nonlinear sin{sup 2}ψ diffraction method was used and an important relaxation of the macrostresses as well as the microstresses was found in the cold rolled samples subjected to heat treatment. Such relaxation occurs at the beginning of recovery, when any changes of microstructure cannot be detected using other experimental techniques. Stress evolution in the annealed steel samples was correlated with the progress of recovery process, which significantly depends on the value of stackingmore » fault energy. - Highlights: • X-ray diffraction was used to determine the first order and second order stresses. • Diffraction data were analyzed using scale transition elastoplastic models model. • Stress relaxation in annealed ferritic and austenitic steels was correlated with evolution of microstructure. • Influence of stacking fault energy on thermally induced processes was discussed.« less

  20. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  1. Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianwei; Zeng, Weidong; Jia, Zhiqiang; Sun, Xin; Zhao, Yawei

    2016-03-01

    The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.

  2. Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.

    2017-01-01

    We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.

  3. ANALYSIS OF COMPONENTS OF PARTICULATE MATTER (PM2.5) FOR AN EXPOSURE ASSESSMENT STUDY OF TWO SENSITIVE COHORTS IN ATLANTA, GA

    EPA Science Inventory

    Introduction
    An exposure assessment study was conducted in Atlanta, GA during fall 1999 and spring 2000 to examine the short-term effects of exposure to particulate matter and gaseous air pollutants on heart rate variability (HRV). Characterization of particulate matter (PM...

  4. PERSONAL PARTICULATE MATTER EXPOSURE MONITORING: IDENTIFYING IMPORTANT SOURCES, ACTIVITIES, AND LOCATIONS BASED ON DATA FROM THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    A longitudinal particulate matter (PM) exposure study was conducted in the Research Triangle Park, NC area between June 2000 and June 2001. Participants were selected from two groups of potentially susceptible sub-populations: a group of African-Americans living in an environme...

  5. IMPACT OF ORGANIC COMPOUNDS ON THE CONCENTRATIONS OF LIQUID WATER IN AMBIENT PM2.5

    EPA Science Inventory

    A field study was undertaken during the summer of 2000 to assess the impact of the presence of organic compounds on the liquid water concentrations of PM2.5 samples. The selected site, located in Research Triangle Park, North Carolina, was in a semi-rural environment with expe...

  6. POLAR ORGANIC OXYGENATES IN PM2.5 AT A SOUTHEASTERN SITE IN THE UNITED STATES

    EPA Science Inventory

    A field study was undertaken in Research Triangle Park, NC, USA, during the summer of 2000 to identify classes of polar oxygenates in PM2.5 containing carbonyl and/or hydroxyl functional groups and, to the extent possible, determine the individual particle-bound oxygenates that m...

  7. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Xu, Wei; Van Der Zwaag, Sybrand

    2018-01-01

    The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation. In this research, a computational model is presented to connect the rafting kinetics of Ni superalloys to their chemical composition by combining thermodynamics calculation and a modified microstructural model. To simulate the evolution of key microstructural parameters during creep, the isotropic coarsening rate and γ/ γ' misfit stress are defined as composition-related parameters, and the effect of service temperature, time, and applied stress are taken into consideration. Two commercial superalloys, for which the kinetics of the rafting process are selected as the reference alloys, and the corresponding microstructural parameters are simulated and compared with experimental observations reported in the literature. The results confirm that our physical model not requiring any fitting parameters manages to predict (semiquantitatively) the microstructural parameters for different service conditions, as well as the effects of alloying element concentrations. The model can contribute to the computational design of new Ni-based superalloys.

  8. Observation of asphalt binder microstructure with ESEM.

    PubMed

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Microstructure evolution in dissimilar AA6060/copper friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.

    2017-12-01

    Friction stir welding process has been applied for making a dissimilar copper/aluminum alloy joint. The grain microstructure and mechanical properties of the obtained joint were studied. The structure of the cross-section of the FSW compound was analyzed. The microstructural evolution of the joint was examined using optical microscopy. The mechanical properties of the intermetallic particles were evaluated by measuring the microhardness according to the Vickers method. The microhardness of the intermetallic particles was by a factor of 4 lower than that of the particles obtained by fusion welding. The results of the investigations enable using friction stir welding for making dissimilar joints.

  10. Prevalence of snake bites in Kangar District Hospital, Perlis, west Malaysia: a retrospective study (January 1999-December 2000).

    PubMed

    Jamaiah, I; Rohela, M; Roshalina, R; Undan, R C

    2004-12-01

    The records of 284 snake bite cases presenting to the Kangar District Hospital, Perlis, west Malaysia, from January 1999 till December 2000 were carefully reviewed. Data on prevalence and types of snake bites, were recorded. The majority of the cases were among Malays (60.2%), followed by Chinese (16.9%), Indians (13%), and others which include Thai nationals, army personnel from Sabah and Sarawak, and foreign tourists (9.8%). A higher incidence was found in males (60.2%) and most cases were seen in the age group of 10-19 years (33%). Snake bites were more common between 2 PM and 9 PM (47.6%) and from 7 AM to 2 PM (33.4%). The snakes were positively identified in 68 cases, of which 50 were common cobras (Naja naja) (73%), 16 were Malayan pit vipers (Agkistrodon rhodostoma) (24%) and two were sea-snakes (3%).

  11. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    NASA Astrophysics Data System (ADS)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-05-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  12. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    NASA Astrophysics Data System (ADS)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-04-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  13. Elucidating doping driven microstructure evolution and optical properties of lead sulfide thin films grown from a chemical bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit

    2018-03-01

    Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.

  14. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  15. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-10-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  16. The Effect of Substrate Microstructure on the Heat-Affected Zone Size in Sn-Zn Alloys Due to Adjoining Ni-Al Reactive Multilayer Foil Reaction

    DOE PAGES

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; ...

    2015-08-05

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less

  17. Microstructural evolution and mechanical properties of SnAgCu alloys

    NASA Astrophysics Data System (ADS)

    Fouassier, O.; Heintz, J.-M.; Chazelas, J.; Geffroy, P.-M.; Silvain, J.-F.

    2006-08-01

    Lead containing solder paste is now considered as an environmental threat. In order to eliminate this undesirable environmental impact associated to their production, a family of lead-free solder joint, Sn-3.8Ag-0.7Cu, is proposed. Microstructural and mechanical data of this solder joint have been acquired and compared with the most common used SnPb solder paste. The evolution of the microstructure as well as the failure mode and the mechanical properties of SnAgCu solder joint are discussed as a function of strain rate, annealing treatments, and testing temperature. Tensile tests have been performed, at temperatures ranging from -50to+150°C, on bulk samples. Changes of the mechanical properties of bulk tested samples are actually correlated with microstructural changes, as shown by transmission electronic microscopy investigations.

  18. Emergency room visits associated with particulate concentration and Asian dust storms in metropolitan Taipei.

    PubMed

    Lin, Yu-Kai; Chen, Chi-Feng; Yeh, Hui-Chung; Wang, Yu-Chun

    2016-01-01

    This study evaluated risks of emergency room visits (ERV) for all causes, circulatory diseases, and respiratory diseases associated with concentrations of particulate matter (PM10 and PM2.5) and Asian dust storms (ADS) from 2000 to 2008 in metropolitan Taipei. Cumulative 4-day (lag 0-3) relative risks (RR) and confidence intervals (CI) of cause-specific ERV associated with daily concentrations of PM10 or PM2.5 and ADS based on study period (ADS frequently inflicted period: 2000-2004 and less-inflicted period: 2005-2008) were estimated using a distributed lag non-linear model with Poisson distribution. Risks associated with ADS-inflicted season (winter and spring), strength (ratio of stations with Pollutant Standard Index above 100 is < 0.5 or ≥ 0.5), and duration (ADS lasting for 1-3 days or ≥ 4 days) were especially evaluated. In non-linear models, an increase in PM10 from 10 μg/m(3) to 50 μg/m(3) was associated with increased risk of ERV for all causes and respiratory disease with cumulative 4- day RR of 1.18 (95% CI: 1.13, 1.24) and 1.37 (95% CI: 1.23, 1.54), respectively. From 2005 to 2008, the cumulative 4-day RR for an ERV related to an increase in PM2.5 from 5 μg/m(3) to 30 μg/m(3) is 1.21 (95% CI: 1.03, 1.41) for respiratory diseases, and 1.15 (95% CI: 1.08, 1.22) for all causes. In comparison with normal days, elevated ERV of all causes and respiratory diseases was also associated with winter ADS (with corresponding RRs of 1.10 (95% CI: 1.07, 1.13) and 1.14 (95% CI: 1.08, 1.21)) and shorter and less area-affected ADS (with corresponding RRs of 1.07 (95% CI: 1.01, 1.10) and 1.09 (95% CI: 1.03, 1.14)) from 2000 to 2004. Results of this study demonstrate that population health risk varies not only with PM concentration, but also with the ADS characteristics.

  19. Mortality associated with particulate concentration and Asian dust storms in Metropolitan Taipei

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Chun; Lin, Yu-Kai

    2015-09-01

    This study evaluates mortality risks from all causes, circulatory diseases, and respiratory diseases associated with particulate matter (PM10 and PM2.5) concentrations and Asian dust storms (ADS) from 2000 to 2008 in Metropolitan Taipei. This study uses a distributed lag non-linear model with Poisson distribution to estimate the cumulative 5-day (lags 0-4) relative risks (RRs) and confidence intervals (CIs) of cause-specific mortality associated with daily PM10 and PM2.5 concentrations, as well as ADS, for total (all ages) and elderly (≥65 years) populations based on study periods (ADS frequently inflicted period: 2000-2004; and less inflicted period: 2005-2008). Risks associated with ADS characteristics, including inflicted season (winter and spring), strength (the ratio of stations with Pollutant Standard Index >100 is <0.5 or ≥0.5), and duration (ADS persisted for 1-3 or ≥4 days), were also evaluated. Nonlinear models showed that an increase in PM10 from 10 μg/m3 to 50 μg/m3 was associated with increased all-cause mortality risk with cumulative 5-day RR of 1.10 (95% CI: 1.04, 1.17) for the total population and 1.10 (95% CI: 1.02, 1.18) for elders. Mortality from circulatory diseases for the elderly was related to increased PM2.5 from 5 μg/m3 to 30 μg/m3, with cumulative 5-day RR of 1.21 (95% CI: 1.02, 1.44) from 2005 to 2008. Compared with normal days, the mortality from all causes and circulatory diseases for the elderly population was associated with winter ADS with RRs of 1.05 (95% CI: 1.01, 1.08) and 1.08 (95% CI: 1.01, 1.15), respectively. Moreover, all-cause mortality was associated with shorter and less area-affected ADS with an RR of 1.04 for total and elderly populations from 2000 to 2004. Population health risk differed not only with PM concentration but also with ADS characteristics.

  20. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-03-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  1. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  2. Traffic-related air quality trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, Pedro José; de Fátima Andrade, María.; de Miranda, Regina Maura

    2015-06-01

    The urban population of South America has grown at 1.05%/yr, greater urbanization increasing problems related to air pollution. In most large cities in South America, there has been no continuous long-term measurement of regulated pollutants. One exception is São Paulo, Brazil, where an air quality monitoring network has been in place since the 1970s. In this paper, we used an air quality-based approach to determine pollutant trends for emissions of carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), and coarse particulate matter (PM10), mostly from mobile sources, in the Metropolitan Region of São Paulo for the 2000-2013 period. Mobile sources included light-duty vehicles (LDVs, comprising gasoline- or ethanol-powered cars and motorcycles) and heavy-duty vehicles (HDVs, comprising diesel-powered trucks and buses). Pollutant concentrations for mobile source emissions were measured and correlated with fuel sales by the emission factors. Over the 2000-2013 period, concentrations of NOx, CO, and PM10 decreased by 0.65, 0.37, and 0.71% month-1, respectively, whereas sales of gasoline, ethanol, and diesel increased by 0.26, 1.96, and 0.38% month-1, respectively. LDVs were the major mobile source of CO, whereas LDVs were the major source of NOx and PM10. Increases in fuel sales and in the corresponding traffic volume were partially offset by decreases in pollutant concentrations. Between 2000 and 2013, there was a sharp (-5 ppb month-1) decrease in the concentrations of LDV-emitted CO, together with (less dramatic) decreases in the concentrations of HDV-emitted NOx and PM10 (-0.25 and -0.09 ppb month-1, respectively). Variability was greater for HDV-emitted NOx and PM10 (R = -0.47 and -0.41, respectively) than for LDV-emitted CO (R = -0.72). We draw the following conclusions: the observed concentrations of LDV-emitted CO decreased at a sharper rate than did those of HDV-emitted NOx and PM10; mobile source contributions to O3 formation varied significantly, LDVs making a greater contribution during the 2000-2008 period, whereas HDVs made a greater contribution during the 2009-2013 period, and decreases in NOx emissions resulted in increases in O3 observations.

  3. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness and the residual stresses throughout the various FSW zones of the two alloys. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results. Keywords: Friction Stir Welding; AA5083; AA2139; Johnson-Cook Strength Model; Finite Element Analysis; Hardness Prediction.

  4. Evolution of Microstructure in a Nickel-based Superalloy as a Function of Ageing Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ren; Smith, Gregory Scott; Porcar, L.

    2011-01-01

    An experimental investigation, combining synchrotron X-ray powder diffraction, small-angle neutron-scattering, and transmission electron microscopy, has been undertaken to study the microstructure of nanoprecipitates in a nickel-based superalloy. Upon increasing the ageing time during a heat-treatment process, the average size of the precipitates first decreases before changing to a monotonical growth stage. Possible reasons for this observed structural evolution, which is predicted thermodynamically, are suggested.

  5. Densification, Microstructural Evolution, Mechanical Properties and Oxidation Study of CrB2 + EuB6 Composite

    NASA Astrophysics Data System (ADS)

    Raju, K.; Sonber, J. K.; Murthy, T. S. R. Ch.; Sairam, K.; Majumdar, S.; Kain, V.; Nageswar Rao, G. V. S.

    2018-05-01

    This paper reports the results of investigation on densification, microstructural evolution, mechanical properties and oxidation study of CrB2 + EuB6 composite. CrB2 + EuB6 (10 and 20 wt.%) composites have been fabricated by hot pressing at a temperature of 1700 °C and 35 MPa pressure. The hardness and flexural strength were measured in the range of 21.25-24.48 GPa and 171-199 MPa, respectively. The fracture toughness increased from 3.3 to 4.01 MPa m1/2 by the addition of 20% EuB6. Microstructural evolution revealed the uniform distribution of EuB6 and absence of any reaction product. Fracture surface analysis confirmed the presence of transgranular mode of fracture. Oxidation study at 1200 °C revealed that the developed composites have good oxidation resistance and followed the parabolic rate of oxidation.

  6. Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

    NASA Astrophysics Data System (ADS)

    Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao

    2018-04-01

    Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

  7. 76 FR 65653 - New Source Performance Standards (NSPS) Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ..., PM 2.5 , PM 10 ), nitrogen oxides (NO X ), carbon monoxide (CO), lead (Pb), volatile organic... Refineries Ja 06/24/2008 (73FR35867) 12/22/2008 \\4\\ (73FR78552) (Stay) Phosphate Fertilizers--Diammonium V 08/06/1975 (40FR33155) 10/17/2000 3 4 (65FR61757) Phosphate Plants. Phosphate Fertilizers--Granular X 08...

  8. 76 FR 7809 - Notice of Mineral County Resource Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Self-Determination Act of 2000 (Pub. L. 106-393, as amended by H.R. 1424 January 3, 2008) the Lob..., and May 11, 2011 at 6 p.m. until 8:30 p.m. in Superior, Montana for a business meeting. The meeting is...-10-11; 8:45 am] BILLING CODE 3410-11-M ...

  9. CHOICE OF INDICATOR DETERMINES THE SIGNIFICANCE AND RISK OBTAINED FROM THE STATISTICAL ASSOCIATION BETWEN FINE PARTICULATE MATTER MASS AND CARDIOVASCULAR MORTALITY

    EPA Science Inventory

    Minor changes in the indicator used to measure fine PM, which cause only modest changes in Mass concentrations, can lead to dramatic changes in the statistical relationship of fine PM mass with cardiovascular mortality. An epidemiologic study in Phoenix (Mar et al., 2000), augme...

  10. SOURCE APPORTIONMENT OF INDOOR, OUTDOOR, AND PERSONAL PM2.5 IN SEATTLE, WASHINGTON, USING POSITIVE MATRIX FACTORIZATION

    EPA Science Inventory

    As part of a large exposure assessment and health effects panel study, 33 trace elements and light-absorbing carbon were measured on 24-hr particulate matter with an aero-dynamic diameter <2.5 um (PM2.5) fixed-site filter samples collected between September 26, 2000, and May 25, ...

  11. Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee

    Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during homogenization heat treatment at both length scales which include the (i) dissolution and transformation of the as-cast secondary phases; (ii) precipitation of dispersoids; and (iii) reprecipitation of some of the secondary phases during post-homogenization cooling. The kinetics of the phase transformations are mostly diffusion controlled except for the eta to S phase transformation in 7XXX alloys which is interface reaction rate controlled which has been implemented using a novel approach. Recommendations for homogenization temperature, time, cooling rates and compositions are made for Al-Si-Mg-Fe-Mn and Al-Zn-Cu-Mg-Zr alloys. The numerical model developed has been applied for a through process solidification-homogenization modeling of a Direct-Chill cast AA7050 cylindrical billet to study the radial variation of microstructure after solidification, homogenization and post-homogenization cooling.

  12. PM over summertime India: Sources and trends investigated using long term measurements and multi-receptor site back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Sarkar, Chinmoy; Sachan, Himanshu; Kumar, Devender; Sinha, Baerbel

    2013-04-01

    We apply multi-receptor site residence-time weighted concentration back trajectory analysis to a ten year data set (1991-2003) of PM10 and TSP measurement data from four Indian megacities Delhi, Mumbai, Kolkata and Chennai. The dataset was sourced from the published and peer reviewed work of Gupta and Kumar (2006). Sources and trends of PM10 and TSP during the pre-monsoon season (March-June) were investigated. Residence-time weighted concentration maps were derived using 72 hour HYSPLIT back trajectory ensemble calculations. Trajectory runs were started 100 m AGL and the observed PM monthly averages were attributed to all trajectory runs in a month and each trajectory of the ensemble runs with equal probability. For investigating trends the dataset was further subdivided into two groups of four year durations each (1992-1995 and 2000-2003). We found a linear correlation with a slope of 1.0 (R2=0.9) between estimated seasonal average TSP (2000-2003) using our approach and the measured seasonal averages (2006-2007) for Kanpur, Ahmedabad, Pune and Bangalore. A linear fit between predicted and measured PM10 concentration for 19 sites with PM10 observations of at least one seasonal average between 1999-2009 shows a slope of 1.4 (R2=0.4). For the observation period 2000-2003, the Thar Desert and Taklimakan Desert emerged as largest sources for both PM10 (>180 μg/m3 and >200 μg/m3 respectively) and TSP (>650 μg/m3 and >725 μg/m3 respectively). In-situ observation at Bikaner (central Thar Desert) and in Jhunjhunu (semi-arid site at the border of the Thar Desert) indicate that both TSP and PM10 inside the desert source region are underpredicted by a factor of 10 compared to in-situ observations while for the semi arid area bordering the desert PM10 and TSP are underpredicted by a factor of 5 and 3 respectively. This indicates that strong sources are underpredicted by a receptor site centred approach. The entire North-Western Indo-Gangetic Basin (NW-IGB), where crop residue burning is practiced during harvesting months (April-May) displays enhanced seasonal average PM10 loadings. Average PM10 loadings are approximately 40 μg/m3 higher compared to average PM10 loadings in the Eastern IGP, where crop residue burning is not practiced. PM10 loading in Patiala (Central Punjab) are underpredicted by a factor of 1.8 with respect to the seasonal average and a factor of 2.5 for the harvesting season only. A comparison between 1992-1995 and 2000-2003 shows that PM10 loadings over entire India decreased with the strongest decrease (-150 μg/m3) over the mining areas in Madhya Pradesh and in Chhattisgarh, providing confidence in environmental protection norms put in place by government regulatory authorities. TSP mass loadings decreased over Central India, the Eastern IGB and the Bay of Bengal (-300 μg/m3) but increased over the Southern Indus plains (+ 200 μg/m3) and the Thar Desert. In general there is an increase of TSP from windblown desert dust which is most apparent over the dust source regions but also impacts TSP loadings over the NW-IGB. References: Gupta and Kumar: Trends of particulate matter in four cities in India. Atmospheric Environment 40 (2006) 2552-2566. Acknowledgement: Vinod Kumar and Himanshu Sachan acknowledge the DST INSPIRE Fellowship programme. Chinmoy Sarkar thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding

  13. Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application.

    PubMed

    Zou, Meng; Dai, Yutang; Zhou, Xian; Dong, Ke; Yang, Minghong

    2016-12-01

    A composite microstructure in fiber Bragg grating (FBG) with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd-Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.

  14. Influence of Processing on the Microstructure and Mechanical Properties of a NbAl3-Base Alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Locci, Ivan E.; Raj, S. V.; Nathal, Michael V.

    1992-01-01

    Induction melting and rapid solidification processing, followed by grinding to 75-micron powder and P/M consolidation, have been used to produce a multiphase, NbAl3-based, oxidation-resistant alloy of Nb-67Al-7Cr-0.5Y-0.25W composition whose strength and ductility are significantly higher than those of the induction-melted alloy at test temperatures of up to 1200 K. Attention is given to the beneficial role of microstructural refinement; the major second phase, AlNbCr, improves both oxidation resistance and mechanical properties.

  15. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and alteredmore » mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less

  17. Day-Ahead PM2.5 Concentration Forecasting Using WT-VMD Based Decomposition Method and Back Propagation Neural Network Improved by Differential Evolution

    PubMed Central

    Wang, Deyun; Liu, Yanling; Luo, Hongyuan; Yue, Chenqiang; Cheng, Sheng

    2017-01-01

    Accurate PM2.5 concentration forecasting is crucial for protecting public health and atmospheric environment. However, the intermittent and unstable nature of PM2.5 concentration series makes its forecasting become a very difficult task. In order to improve the forecast accuracy of PM2.5 concentration, this paper proposes a hybrid model based on wavelet transform (WT), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by differential evolution (DE) algorithm. Firstly, WT is employed to disassemble the PM2.5 concentration series into a number of subsets with different frequencies. Secondly, VMD is applied to decompose each subset into a set of variational modes (VMs). Thirdly, DE-BP model is utilized to forecast all the VMs. Fourthly, the forecast value of each subset is obtained through aggregating the forecast results of all the VMs obtained from VMD decomposition of this subset. Finally, the final forecast series of PM2.5 concentration is obtained by adding up the forecast values of all subsets. Two PM2.5 concentration series collected from Wuhan and Tianjin, respectively, located in China are used to test the effectiveness of the proposed model. The results demonstrate that the proposed model outperforms all the other considered models in this paper. PMID:28704955

  18. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun

    2015-02-11

    The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  19. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    PubMed

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  1. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhihao; Zhang, Maicang; Dong, Jianxin

    2013-07-01

    Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ' precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ' instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson-Miller parameter method.

  2. Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-12-01

    Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes "degenerated" to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey { < 110 > _{γ } || < 1\\overline{1} 0 > _{θ } } { < 111 > _{α } || < 1\\overline{1} 0 > _{θ } } { < 110 > _{γ } || < 111 > _{α } } 111_{γ } || { \\overline{2} 21} _{θ } } { 110} _{α } || { \\overline{2} 21} _{θ } } { 111} _{γ } || { 110 } _{α } {111} _{γ } || {211} _{θ } {110} _{α } || {211} _{θ } Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.

  3. Microstructural characterization and simulation of damage for geared sheet components

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Isik, K.; Gutknecht, F.; Sieczkarek, P.; Ewert, J.; Tekkaya, A. E.; Clausmeyer, T.; Nürnberger, F.

    2017-09-01

    The evolution of damage in geared components manufactured from steel sheets was investigated, to analyse the influence of damage caused by the sheet-bulk-metal forming. Due to the inhomogeneous and multi-axial deformation in the investigated parts, different aspects such as the location-dependent shape and size of voids are analysed by means of various microscopic methods. In particular, a method to characterize the state of damage evolution, i. e. void nucleation, growth and coalescence using scanning electron microscopy (SEM) is applied. The investigations reveal a strong dependence of the void area fraction, shape of voids and thus damage evolution on the loading mode. The microstructural analysis is complemented with FEM simulations using material models which consider the characteristics of the void evolution.

  4. Personal exposures to particulate matter among children with asthma in Detroit, Michigan

    NASA Astrophysics Data System (ADS)

    Yip, Fuyuen Y.; Keeler, Gerald J.; Dvonch, J. Timothy; Robins, Thomas G.; Parker, Edith A.; Israel, Barbara A.; Brakefield-Caldwell, Wilma

    2004-10-01

    From 2000 to 2001, eight two-week seasonal intensive measurement campaigns were conducted in Detroit which included daily ambient and indoor measurements of PM10 at two elementary schools. Concurrent measurements of PM10 inside the homes of 20 children, aged 7-11 years, with asthma as well as personal PM10 measurements for the same 20 children were performed. Sampling was changed from 24-h measurements to 8-hs in the classroom and 16-hs in the home in 2001 to more closely match the times spent by the children in these microenvironments. The mean personal PM10 concentrations were 57.1±41.0 μg m-3and 47.6±34.6 μg m-3 for children residing in homes with and without smokers, respectively. The mean personal PM10 exposures exceeded the mean classroom and ambient PM10 concentrations. The personal exposures of children residing in homes with non-smokers also exceeded the mean home concentration of 33.1±23.4 μg m-3 in 2000 and 16-h concentration of 27.2±22.8 μg m-3 in 2001. Among children residing in homes with smokers, their mean personal concentrations were less than the 24-h (65.1±43.0 μg m-3) and 16-h (81.7±68.9 μg m-3) concentrations measured in their home for 2000 and 2001. As the children spent an average of 70% of their day at home, their personal PM10 concentrations were significantly correlated with their home environment (Pearson's r=0.38 to 0.70), with the strongest relationships observed in homes with non-smokers. Weak correlations were observed between the personal concentrations and those in the ambient and classroom environments. The correlations between the children's personal exposures and the ambient and classroom concentrations improved when analyzed longitudinally, with the strongest correlations observed in 2001 (median Pearson's r > 0.41 , overall). The children's exposures, however, remained most strongly correlated with PM10 measured in their homes (Pearson's r > 0.50). The mean unexplained contributions to personal PM10-based on measured and modeled personal exposures-were greater among children in homes with non-smokers. The lowest estimate was observed in 2001 among children in homes with smokers, at 0.22±28.29 μg m-3. Overall, the model explained 37% and 45% of the variability in the children's exposures among those in non-smoking and smoking households, respectively, when the measured and modeled personal exposures were compared.

  5. Quantitative characterization of microstructure of asphalt mixtures

    DOT National Transportation Integrated Search

    2010-10-01

    The microstructure of the fine aggregate matrix has a significant influence on the : mechanical properties and evolution of damage in an asphalt mixture. However, very little : work has been done to define and quantitatively characterize the microstr...

  6. A damage analysis for brittle materials using stochastic micro-structural information

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue

    2016-03-01

    In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.

  7. Microbes and Microstructure: Dust's Role in the Snowpack Evolution

    NASA Astrophysics Data System (ADS)

    Lieblappen, R.; Courville, Z.; Fegyveresi, J. M.; Barbato, R.; Thurston, A.

    2017-12-01

    Dust is a primary vehicle for transporting microbial communities to polar and alpine snowpacks both through wind distribution (dry deposition) and snowfall events (wet deposition). The resulting microbial community diversity in the snowpack may then resemble the source material properties rather than its new habitat. Dust also has a strong influence on the microstructural properties of snow, resulting in changes to radiative and mechanical properties. As local reductions in snowpack albedo lead to enhanced melting and a heterogeneous snow surface, the microbial communities are also impacted. Here we study the impact of the changing microstructure in the snowpack, its influence on microbial function, and the fate of dust particles within the snow matrix. We seek to quantify the changes in respiration and water availability with the onset of melt. Polar samples were collected from the McMurdo Ice Shelf, Antarctica in February, 2017, while alpine samples were collected from Silverton, CO from October to May, 2017 as part of the Colorado Dust on Snow (CDOS) network. At each site, coincident meteorological data provides temperature, wind, and radiative measurements. Samples were collected immediately following dust deposition events and after subsequent snowpack evolution. We used x-ray micro-computed tomography to quantify the microstructural evolution of the snow, while also imaging the microstructural distribution of the dust within the snow. The dust was then collected and analyzed for chemical and microbial activity.

  8. Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidarzadeh, A., E-mail: ak.hz62@gmail.com

    Microstructural evolution during friction stir welding of single-phase brass and corresponding mechanical properties were investigated. For this purpose, 2 mm thick brass plate was friction stir welded at a rotational speed of 450 rpm and traverse speed of 100 mm/min. The microstructure of the joint was studied using optical microscopy, scanning electron microscopy equipped with electron back scattered diffraction system, and scanning transmission electron microscopy. The mechanical properties were measured using hardness and tensile tests. The formation of subgrains and their transformation into new grains in conjunction with existence of A{sub 1}{sup ⁎}, A{sub 2}{sup ⁎} and C texture componentsmore » revealed that the continuous dynamic recrystallization plays a dominant role in the microstructural evolution. However, grain boundary bulging, along with the formation of twin boundaries, and presence of the G texture component showed that the discontinues dynamic recrystallization may participate in the new grain formation. Furthermore, the different strengthening mechanisms, which caused the higher strength of the joint, were discussed. - Highlights: •Microstructural evolution during FSW of a single phase brass was investigated. •CDRX and DDRX were the main mechanisms of the grain structure formation during FSW. •GDRX and SRX were not contributed in grain structure formation. •The lamellas TBs were formed in the SZ of the joints. •Grain boundary, dislocation, and texture effects resulted in higher strength.« less

  9. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  10. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersionmore » was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.« less

  11. Satellite-based PM concentrations and their application to COPD in Cleveland, OH

    PubMed Central

    Kumar, Naresh; Liang, Dong; Comellas, Alejandro; Chu, Allen D.; Abrams, Thad

    2014-01-01

    A hybrid approach is proposed to estimate exposure to fine particulate matter (PM2.5) at a given location and time. This approach builds on satellite-based aerosol optical depth (AOD), air pollution data from sparsely distributed Environmental Protection Agency (EPA) sites and local time–space Kriging, an optimal interpolation technique. Given the daily global coverage of AOD data, we can develop daily estimate of air quality at any given location and time. This can assure unprecedented spatial coverage, needed for air quality surveillance and management and epidemiological studies. In this paper, we developed an empirical relationship between the 2 km AOD and PM2.5 data from EPA sites. Extrapolating this relationship to the study domain resulted in 2.3 million predictions of PM2.5 between 2000 and 2009 in Cleveland Metropolitan Statistical Area (MSA). We have developed local time–space Kriging to compute exposure at a given location and time using the predicted PM2.5. Daily estimates of PM2.5 were developed for Cleveland MSA between 2000 and 2009 at 2.5 km spatial resolution; 1.7 million (~79.8%) of 2.13 million predictions required for multiyear and geographic domain were robust. In the epidemiological application of the hybrid approach, admissions for an acute exacerbation of chronic obstructive pulmonary disease (AECOPD) was examined with respect to time–space lagged PM2.5 exposure. Our analysis suggests that the risk of AECOPD increases 2.3% with a unit increase in PM2.5 exposure within 9 days and 0.05° (~5 km) distance lags. In the aggregated analysis, the exposed groups (who experienced exposure to PM2.5 >15.4 μg/m3) were 54% more likely to be admitted for AECOPD than the reference group. The hybrid approach offers greater spatiotemporal coverage and reliable characterization of ambient concentration than conventional in situ monitoring-based approaches. Thus, this approach can potentially reduce exposure misclassification errors in the conventional air pollution epidemiology studies. PMID:24045428

  12. Investigation of the Environmental Durability of a Powder Metallurgy Material

    NASA Technical Reports Server (NTRS)

    Ward, LaNita D.

    2004-01-01

    PM304 is a NASA-developed composite powder metallurgy material that is being developed for high temperature applications such as bushings in high temperature industrial furnace conveyor systems. My goal this summer was to analyze and evaluate the effects that heat exposure had on the PM304 material at 500 C and 650 C. The material is composed of Ni-Cr, Ag, Cr2O3, and eutectic BaF2-CaF2. PM304 is designed to eliminate the need for oil based lubricants in high temperature applications, while reducing friction and wear. However, further investigation was needed to thoroughly examine the properties of PM304. The effects of heat exposure on PM304 bushings were investigated. This investigation was necessary due to the high temperatures that the material would be exposed to in a typical application. Each bushing was cut into eight sections. The specimens were heated to 500 C or 650 C for time intervals from 1 hr to 5,000 hrs. Control specimens were kept at room temperature. Weight and thickness measurements were taken before and after the bushing sections were exposed to heat. Then the heat treated specimens were mounted and polished side by side with the control specimens. This enabled optical examination of the material's microstructure using a metallograph. The specimens were also examined with a scanning electron microscope (SEM). The microstructures were compared to observe the effects of the heat exposure. Chemical analysis was done to investigate the interactions between Ni-Cr and BaF2-CaF2 and between Cr2O3 and BaF2-CaF2 at high temperature. To observe this, the two compounds that were being analyzed were mixed in a crucible in varied weight percentages and heated to 1100 C in a furnace for approximately two hours. Then the product was allowed to cool and was then analyzed by X-ray diffraction. Interpretation of the results is in progress.

  13. The Evolution of Dendrite Morphology during Isothermal Coarsening

    NASA Technical Reports Server (NTRS)

    Alkemper, Jens; Mendoza, Roberto; Kammer, Dimitris; Voorhees, Peter W.

    2003-01-01

    Dendrite coarsening is a common phenomenon in casting processes. From the time dendrites are formed until the inter-dendritic liquid is completely solidified dendrites are changing shape driven by variations in interfacial curvature along the dendrite and resulting in a reduction of total interfacial area. During this process the typical length-scale of the dendrite can change by orders of magnitude and the final microstructure is in large part determined by the coarsening parameters. Dendrite coarsening is thus crucial in setting the materials parameters of ingots and of great commercial interest. This coarsening process is being studied in the Pb-Sn system with Sn-dendrites undergoing isothermal coarsening in a Pb-Sn liquid. Results are presented for samples of approximately 60% dendritic phase, which have been coarsened for different lengths of times. Presented are three-dimensional microstructures obtained by serial-sectioning and an analysis of these microstructures with regard to interface orientation and interfacial curvatures. These graphs reflect the evolution of not only the microstructure itself, but also of the underlying driving forces of the coarsening process. As a visualization of the link between the microstructure and the driving forces a three-dimensional microstructure with the interfaces colored according to the local interfacial mean curvature is shown.

  14. Molecular modeling of the microstructure evolution during carbon fiber processing

    NASA Astrophysics Data System (ADS)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  15. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment.

    PubMed

    Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin

    2015-11-04

    Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterova, E.V.; Bouvier, S.; Bacroix, B.

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones presentmore » a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.« less

  17. Mesoscale Thermodynamically motivated Statistical Mechanics based Kinetic Model for Sintering monoliths

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.

  18. Investigation of the laser engineered net shaping process for nanostructured cermets

    NASA Astrophysics Data System (ADS)

    Xiong, Yuhong

    Laser Engineered Net Shaping (LENSRTM) is a solid freeform fabrication (SFF) technology that combines high power laser deposition and powder metallurgy technologies. The LENSRTM technology has been used to fabricate a number of metallic alloys with improved physical and mechanical material properties. The successful application provides a motivation to also apply this method to fabricate non-metallic alloys, such as tungsten carbide-cobalt (WC-Co) cermets in a timely and easy way. However, reports on this topic are very limited. In this work, the LENSRTM technology was used to investigate its application to nanostructured WC-Co cermets, including processing conditions, microstructural evolution, thermal behavior, mechanical properties, and environmental and economic benefits. Details of the approaches are described as follows. A comprehensive analysis of the relationships between process parameters, microstructural evolution and mechanical properties was conducted through various analytical techniques. Effects of process parameters on sample profiles and microstructures were analyzed. Dissolution, shape change and coarsening of WC particles were investigated to study the mechanisms of microstructural evolution. The thermal features were correlated with the microstructure and mechanical properties. The special thermal behavior during this process and its relevant effects on the microstructure have been experimentally studied and numerically simulated. A high-speed digital camera was applied to study the temperature profile, temperature gradient and cooling rate in and near the molten pool. Numerical modeling was employed for 3D samples using finite element method with ADINA software for the first time. The validated modeling results were used to interpret microstructural evolution and thermal history. In order to fully evaluate the capability of the LENSRTM technology for the fabrication of cermets, material properties of WC-Co cermets produced by different powder metallurgy technologies were compared. In addition, another cermet system, nanostructured titanium/tungsten carbide-nickel ((Ti,W)C-Ni) powder, prepared using high-energy ball milling process, was also deposited by the LENSRTM technology. Because of the near net shape feature of the LENSRTM process, special emphasis was also placed on its potential environmental and economic benefits by applying life cycle assessment (LCA) and technical cost modeling (TCM). Comparisons were conducted between the conventional powder metallurgy processes and the LENSRTM process.

  19. Treatment of Breast Cancer With Antibodies Against DR4 and DR5 Receptors in Combination With Chemotherapy

    DTIC Science & Technology

    2005-06-01

    Adriamycin ~ 60 U Drug + mTRA-8 T 0 Drug + Adriamycin + mnTRA-8 44 40 20 None SS SSF Indomcethacin Indomethacin Curcumin NS-398 (50 pM) (50 pM) (10 pM) (100 p...8217 PE-conjugated goat antimouse by TRAIL. Administration of soluble TRAIL in experimental IgG1 and isotype-specific IgGl control antibody were...and antitumor activity of and interference. J. Biopharm. Stat, 10: 457-467, 2000. recombinant soluble Apo2 ligand. J. Clin. Investig., 104: 155-162

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stulikova, Ivana, E-mail: ivana.stulikova@mff.cuni.cz; Smola, Bohumil; Vlach, Martin

    Solution treated MgTb3Nd2 alloy (nominal composition in wt.%) (ST) and the alloy prepared by hot extrusion of isostatically pressed powder (PM) were isochronally heat treated and studied by electrical resistivity and hardness measurements and by differential scanning calorimetry. Microstructure development was investigated in transmission electron microscopy. Successive precipitation of transient phases in the sequence β″ (D0{sub 19} plates) → β′(cbco) → β{sub 1} (Mg{sub 3}Gd type, fcc) → β (Mg{sub 5}Gd type, fcc) known from the ST alloy was identified also in the PM alloy. The early precipitation stage (D0{sub 19} clusters) revealed in the ST alloy as well asmore » precipitation of equilibrium β{sub e} phase Mg{sub 41}(Tb,Nd){sub 5} manifest themselves only slightly in the PM alloy. Powder metallurgy route does not change the values of activation energies but shifts the temperature ranges of these processes. Vickers hardness of the as prepared state is higher in the PM alloy and is very resistant against the heat treatment up to 510 °C. Contrary to the ST alloy precipitation due to isochronal annealing does not lead to pronounced hardness changes in the PM alloy. - Highlights: • Powder metallurgy (PM) does not change precipitation sequence in MgTbNd alloy. • Temperature ranges of transient phase precipitations are shifted in PM alloy. • Hardness is resistant against isochronal heat treatment up to 510 °C in the PM alloy. • PM procedure does not change activation energies of precipitation.« less

  1. Experimental study of the continuous casting slab solidification microstructure by the dendrite etching method

    NASA Astrophysics Data System (ADS)

    Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.

    2017-12-01

    The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.

  2. The 25 kW power module evolution study. Part 3: Conceptual design for power module evolution. Volume 6: WBS and dictionary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.

  3. Isothermal Ageing of SnAgCu Solder Alloys: Three-Dimensional Morphometry Analysis of Microstructural Evolution and Its Effects on Mechanical Response

    NASA Astrophysics Data System (ADS)

    Maleki, Milad; Cugnoni, Joë; Botsis, John

    2014-04-01

    Due to the high homologous temperature and fast cooling rates, the microstructures of SnAgCu (SAC) solders are in a meta-stable state in most applications, which is the cause of significant microstructural evolution and continuous variation in the mechanical behavior of the joints during service. The link between microstructures evolution and deformation behavior of Sn-4.0Ag-0.5Cu solder during isothermal ageing is investigated. The evolution of the microstructures in SAC solders are visualized at different scales in 3D by using a combination of synchrotron x-ray and focused ion beam/scanning electron microscopy tomography techniques at different states of ageing. The results show that, although the grain structure, morphology of dendrites, and overall volume fraction of intermetallics remain almost constant during ageing, considerable coarsening occurs in the Ag3Sn and Cu6Sn5 phases to lower the interfacial energy. The change in the morphometrics of sub-micron intermetallics is quantified by 3D statistical analyses and the kinetic of coarsening is discussed. The mechanical behavior of SAC solders is experimentally measured and shows a continuous reduction in the yield resistance of solder during ageing. For comparison, the mechanical properties and grain structure of β-tin are evaluated at different annealing conditions. Finally, the strengthening effect due to the intermetallics at different ageing states is evaluated by comparing the deformation behaviors of SAC solder and β-tin with similar grain size and composition. The relationship between the morphology and the strengthening effect due to intermetallics particles is discussed and the causes for the strength degradation in SAC solder during ageing are identified.

  4. Relationships between Changes in Urban Characteristics and Air Quality in East Asia from 2000 to 2010

    PubMed Central

    Larkin, Andrew; van Donkelaar, Aaron; Geddes, Jeffrey A.; Martin, Randall V.; Hystad, Perry

    2017-01-01

    Characteristics of urban areas, such as density and compactness, are associated with local air pollution concentrations. The potential for altering air pollution through changing urban characteristics, however, is less certain, especially for expanding cities within the developing world. We examined changes in urban characteristics from 2000 to 2010 for 830 cities in East Asia to evaluate associations with changes in nitrogen dioxide (NO2) and fine particulate matter (PM2.5) air pollution. Urban areas were stratified by population size into small (100,000–250,000), medium, (250,000–1,000,000) and large (>1,000,000). Multivariate regression models including urban baseline characteristics, meteorological variables, and change in urban characteristics explained 37%, 49%, and 54% of the change in NO2 and 29%, 34%, and 37% of the change in PM2.5 for small, medium and large cities, respectively. Change in lights at night strongly predicted change in NO2 and PM2.5, while urban area expansion was strongly associated with NO2 but not PM2.5. Important differences between changes in urban characteristics and pollutant levels were observed by city size, especially NO2. Overall, changes in urban characteristics had a greater impact on NO2 and PM2.5 change than baseline characteristics, suggesting urban design and land use policies can have substantial impacts on local air pollution levels. PMID:27442110

  5. Review of atmospheric metallic elements in Asia during 2000-2004

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Wu, Yuh-Shen; Huang, Shih-Han; Rau, Jui-Yeh

    Metallic element transfer through the atmosphere is a significant part of the biogeochemical cycle of these elements. Natural and anthropogenic were two processes which can increase heavy metal concentrations in the atmosphere. Atmospheric particulates, especially secondary anthropogenic fine particles (PM 2.5), have been influence human health. Generally speaking, the total daily mortality increases by approximately 1% for every 10 μg m -3 increase in PM 10 concentration (Lippmann, 1998). This is why the PM 10 and PM 2.5 measurements are included in the US ambient air quality standards (US-EPA, 1987 for PM 10; 1996 for PM 2.5) (Querol et al., 2001). In recent years, since the great efforts made by Taiwan government towards the reduction of O 3 and PM 10 concentrations by controlling the emission rates of local pollutants sources, the frequency of exceeded PSI has gradually decrease the value of 4.9% in 1999 (Taiwan EPA, 2000). Urban populations are exposed to metals in suspended particles and these are often well above natural background levels owing to anthropogenic processes (Espinosa et al., 2002). This results in elevated metal concentrations that can pose an important risk to human health. Understanding emissions from traffic includes identification of the sources, which is also crucial for designing control measures. Road traffic involves numerous potential sources of metals, combustion products from fuel and oil, wear products from tires, brake linings, bearings, coach and road construction materials, and re-suspension of soil and road dust. The different sample collection devices, pretreatment and analysis methods were discussed in this study. The purpose of this study arranges the atmospheric metallic elements investigations in Asia regions. The data obtained here can also help to understand the sources, concentration, phase distribution and health impact of atmospheric metallic elements in Asian countries.

  6. Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000.

    PubMed

    Gutiérrez-Castillo, M E; Olivos-Ortiz, M; De Vizcaya-Ruiz, A; Cebrián, M E

    2005-11-01

    We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.

  7. Effect of Surface Densification on the Microstructure and Mechanical Properties of Powder Metallurgical Gears by Using a Surface Rolling Process

    PubMed Central

    Peng, Jingguang; Zhao, Yan; Chen, Di; Li, Kiade; Lu, Wei; Yan, Biao

    2016-01-01

    Powder metallurgy (PM) components are widely used in the auto industry due to the advantage of net-shape forming, low cost, and high efficiency. Still, usage of PM components is limited in the auto industry when encountering rigorous situations, like heavy load, due to lower strength, hardness, wear resistance, and other properties compared to wrought components due to the existence of massive pores in the PM components. In this study, through combining the powder metallurgy process and rolling process, the pores in the PM components were decreased and a homogenous densified layer was formed on the surface, which resulted in the enhancement of the strength, hardness, wear resistance, and other properties, which can expand its range of application. In this paper, we study the impact of different rolling feeds on the performance of the components’ surfaces. We found that with the increase of the rolling feed, the depth of the densified layer increased. PMID:28773970

  8. Effect of Surface Densification on the Microstructure and Mechanical Properties of Powder Metallurgical Gears by Using a Surface Rolling Process.

    PubMed

    Peng, Jingguang; Zhao, Yan; Chen, Di; Li, Kiade; Lu, Wei; Yan, Biao

    2016-10-19

    Powder metallurgy (PM) components are widely used in the auto industry due to the advantage of net-shape forming, low cost, and high efficiency. Still, usage of PM components is limited in the auto industry when encountering rigorous situations, like heavy load, due to lower strength, hardness, wear resistance, and other properties compared to wrought components due to the existence of massive pores in the PM components. In this study, through combining the powder metallurgy process and rolling process, the pores in the PM components were decreased and a homogenous densified layer was formed on the surface, which resulted in the enhancement of the strength, hardness, wear resistance, and other properties, which can expand its range of application. In this paper, we study the impact of different rolling feeds on the performance of the components' surfaces. We found that with the increase of the rolling feed, the depth of the densified layer increased.

  9. Microstructured FBG hydrogen sensor based on Pt-loaded WO3.

    PubMed

    Zhou, Xian; Dai, Yutang; Karanja, Joseph Muna; Liu, Fufei; Yang, Minghong

    2017-04-17

    Hydrogen gas sensing properties of Pt-WO3 films on spiral microstructured fiber Bragg grating (FBG) has been demonstrated. Pt-WO3 film was prepared by hydrothermal method. The spiral microsturctured FBG was fabricated using femtosecond laser. Spiral microstructure FBG hydrogen sensor can detect hydrogen concentration from 0.02% H2 to 4% H2 at room temperature, and the response time is shortened from a few minutes to 10~30 s. Double spiral microstructure at pitch 60 μm and sputtered with 2 μm Pt-WO3 film recorded hydrogen sensitivity of 522 pm/%(v/v) H2 responding to hydrogen gas in air. This translated to approximately 2~4 times higher than the unprocessed standard FBG. The humidity has little effect on the sensing property. The sensor has fast response time, good stability, large detection range and has the good prospect of practical application for hydrogen leak detection.

  10. Particulate matter from tobacco versus diesel car exhaust: an educational perspective

    PubMed Central

    Invernizzi, G; Ruprecht, A; Mazza, R; Rossetti, E; Sasco, A; Nardini, S; Boffi, R

    2004-01-01

    Methods: A 60 m3 garage was chosen to assess PM emission from three smouldering cigarettes (lit sequentially for 30 minutes) and from a TDCi 2000cc, idling for 30 minutes. Results: Particulate was measured with a portable analyser with readings every two minutes. Background PM10, PM2.5, and PM1 levels (mean (SD)) were 15 (1), 13 (0.7), and 7 (0.6) µg/m3 in the car experiment and 36 (2), 28 (1), and 14 (0.8) µg/m3 in the ETS experiment, respectively. Mean (SD) PM recorded in the first hour after starting the engine were 44 (9), 31 (5), and 13 (1) µg/m3, while mean PM in the first hour after lighting cigarettes were 343 (192), 319 (178), and 168 (92) µg/m3 for PM10, PM2.5, and PM1, respectively (p < 0.001, background corrected). Conclusions: ETS is a major source of PM pollution, contributing to indoor PM concentrations up to 10-fold those emitted from an idling ecodiesel engine. Besides its educational usefulness, this knowledge should also be considered from an ecological perspective. PMID:15333875

  11. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.

    PubMed

    Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw

    2018-01-08

    This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.

  12. Recent intensification of winter haze in China linked to foreign emissions and meteorology.

    PubMed

    Yang, Yang; Wang, Hailong; Smith, Steven J; Zhang, Rudong; Lou, Sijia; Qian, Yun; Ma, Po-Lun; Rasch, Philip J

    2018-02-01

    Wintertime aerosol pollution in the North China Plain has increased over the past several decades as anthropogenic emissions in China have increased, and has dramatically escalated since the beginning of the 21 st century, but the causes and their quantitative attributions remain unclear. Here we use an aerosol source tagging capability implemented in a global aerosol-climate model to assess long-term trends of PM 2.5 (particulate matter less than 2.5 μm in diameter) in the North China Plain. Our analysis suggests that the impact of China's increasing domestic emissions on PM 2.5 concentrations over the last two decades of 20 th century was partially offset (13%) by decreasing foreign emission over this period. As foreign emissions stabilized after 2000, their counteracting effect almost disappeared, uncovering the impact of China's increasing domestic emissions that had been partially offset in previous years by reductions in foreign emissions. A slowdown in the impact from foreign emission reductions together with weakening winds explain 25% of the increased PM 2.5 trend over 2000-2014 as compared to 1980-2000. Further reductions in foreign emissions are not expected to relieve China's pollution in the future. Reducing local emissions is the most certain way to improve future air quality in the North China Plain.

  13. Microstructural evolution of neutron irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  14. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  15. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam.

    PubMed

    Kang, Minjung; Han, Heung Nam; Kim, Cheolhee

    2018-04-23

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  16. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam

    PubMed Central

    Kang, Minjung; Han, Heung Nam

    2018-01-01

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630

  17. Mathematical modeling of microstructural development in hypoeutectic cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maijer, D.; Cockcroft, S.L.; Patt, W.

    A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less

  18. Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao

    2018-06-01

    The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

  19. Mesoscale modeling of solute precipitation and radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin

    2015-09-01

    This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulationmore » and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.« less

  20. Microstructural evolution in ultra-low-carbon steel weldments—Part I: Controlled thermal cycling and continuous cooling transformation diagram of the weld metal

    NASA Astrophysics Data System (ADS)

    Fonda, R. W.; Spanos, G.

    2000-09-01

    The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.

  1. The effect of future outdoor air pollution on human health and the contribution of climate change

    NASA Astrophysics Data System (ADS)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  2. Internal migration and urbanization in China: impacts on population exposure to household air pollution (2000-2010).

    PubMed

    Aunan, Kristin; Wang, Shuxiao

    2014-05-15

    Exposure to fine particles ≤ 2.5 μm in aerodynamic diameter (PM2.5) from incomplete combustion of solid fuels in household stoves, denoted household air pollution (HAP), is a major contributor to ill health in China and globally. Chinese households are, however, undergoing a massive transition to cleaner household fuels. The objective of the present study is to establish the importance of internal migration when it comes to the changing household fuel use pattern and the associated exposure to PM2.5 for the period 2000 to 2010. We also estimate health benefits of the fuel transition in terms of avoided premature deaths. Using China Census data on population, migration, and household fuel use for 2000 and 2010 we identify the size, place of residence, and main cooking fuel of sub-populations in 2000 and 2010, respectively. We combine these data with estimated exposure levels for the sub-populations and estimate changes in population exposure over the decade. We find that the population weighted exposure (PWE) for the Chinese population as a whole was reduced by 52 (36-70) μg/m(3) PM2.5 over the decade, and that about 60% of the reduction can be linked to internal migration. During the same period the migrant population, in total 261 million people, was subject to a reduced population weighted exposure (ΔPWE) of 123 (87-165) μg/m(3) PM2.5. The corresponding figure for non-migrants is 34 (23-47) μg/m(3). The largest ΔPWE was estimated for rural-to-urban migrants (138 million people), 214 (154-283) μg/m(3). The estimated annual health benefit associated with the reduced exposure in the total population is 31 (26-37) billion USD, corresponding to 0.4% of the Chinese GDP. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A study of spectrum fatigue crack propagation in two aluminum alloys. 2: Influence of microstructures

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The important metallurgical factors that influence both constant amplitude and spectrum crack growth behavior in aluminum alloys were investigated. The effect of microstructural features such as grain size, inclusions, and dispersoids was evaluated. It was shown that a lower stress intensities, the I/M 7050 alloy showed better fatigue crack propagation (FCP) resistance than P/M 7091 alloy for both constant amplitude and spectrum testing. It was suggested that the most important microstructural variable accounting for superior FCP resistance of 7050 alloy is its large grain size. It was further postulated that the inhomogenous planar slip and large grain size of 7050 limit dislocation interactions and thus increase slip reversibility which improves FCP performance. The hypothesis was supported by establishing that the cyclic strain hardening exponent for the 7091 alloy is higher than that of 7050.

  4. The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using ultrasonic vibration assisted welding process

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Jiansheng

    2017-12-01

    The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using an ultrasonic vibration assisted welding process is investigated. The results show that, with ultrasonic vibration treatment, a reliable AZ80 joint without defects is obtained. The coarsening α-Mg grains are refined to about 83.5  ±  3.3 µm and the continuous β-Mg17Al12 phases are broken to granular morphology, owing to the acoustic streaming effect and the cavitation effect evoked by ultrasonic vibration. Both immersion and electrochemical test results indicate that the corrosion resistance of the AZ80 joint welded with ultrasonic vibration is improved, attributed to microstructure evolution. With ultrasonic power of 900 W, the maximum tensile strength of an AZ80 specimen is 261  ±  7.5 MPa and fracture occurs near the heat affected zone of the joint.

  5. Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy

    NASA Astrophysics Data System (ADS)

    Liang, C.; Li, C.; An, J.; Yu, M.; Hu, Y. C.; Lin, W. H.; Liu, F.; Ding, Y. H.

    2013-12-01

    Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.

  6. Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography

    NASA Astrophysics Data System (ADS)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Tsai, Esther Hsiao Rho; Holler, Mirko; Kreka, Kosova; Bowen, Jacob R.

    2018-04-01

    Nickel coarsening is considered a significant cause of solid oxide cell (SOC) performance degradation. Therefore, understanding the morphological changes in the nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode is crucial for the wide spread usage of SOC technology. This paper reports a study of the initial 3D microstructure evolution of a SOC analyzed in the pristine state and after 3 and 8 h of annealing at 850 °C, in dry hydrogen. The analysis of the evolution of the same location of the electrode shows a substantial change of the nickel and pore network during the first 3 h of treatment, while only negligible changes are observed after 8 h. The nickel coarsening results in loss of connectivity in the nickel network, reduced nickel specific surface area and decreased total triple phase boundary density. For the condition of this experiment, nickel coarsening is shown to be predominantly curvature driven, and changes in the electrode microstructure parameters are discussed in terms of local microstructural evolution.

  7. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  8. Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression

    NASA Astrophysics Data System (ADS)

    Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming

    2018-05-01

    High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.

  9. Episode-Based Evolution Pattern Analysis of Haze Pollution: Method Development and Results from Beijing, China.

    PubMed

    Zheng, Guangjie; Duan, Fengkui; Ma, Yongliang; Zhang, Qiang; Huang, Tao; Kimoto, Takashi; Cheng, Yafang; Su, Hang; He, Kebin

    2016-05-03

    Haze episodes occurred in Beijing repeatedly in 2013, resulting in 189 polluted days. These episodes differed in terms of sources, formation processes, and chemical composition and thus required different control policies. Therefore, an overview of the similarities and differences among these episodes is needed. For this purpose, we conducted one-year online observations and developed a program that can simultaneously divide haze episodes and identify their shapes. A total of 73 episodes were identified, and their shapes were linked with synoptic conditions. Pure-haze events dominated in wintertime, whereas mixed haze-dust (PM2.5/PM10 < 60%) and mixed haze-fog (Aerosol Water/PM2.5 ∼ 0.3) events dominated in spring and summer-autumn, respectively. For all types, increase of ratio of PM2.5 in PM10 was typically achieved before PM2.5 reached ∼150 μg/m(3). In all PM2.5 species observed, organic matter (OM) was always the most abundant component (18-60%), but it was rarely the driving factor: its relative contribution usually decreased as the pollution level increased. The only OM-driven episode observed was associated with intensive biomass-burning activities. In comparison, haze evolution generally coincided with increasing sulfur and nitrogen oxidation ratios (SOR and NOR), indicating the enhanced production of secondary inorganic species. Applicability of these conclusions required further tests with simultaneously multisite observations.

  10. PM10 and Pb evolution in an industrial area of the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Vicente, A. B.; Jordán, M. M.; Pallarés, S.; Sanfeliu, T.

    2007-02-01

    The study area is highly industrialized, with businesses involved in the non-metal mineral products sector and ceramic industries (colors, frits and enamel manufacturing) standing out. Air quality evaluation was performed regarding atmospheric particles (PM10 fraction) and Pb in a Spanish coastal area during 2001 and 2002 in order to compare these values with other areas in the Mediterranean basin. Once the samples were collected, their PM10 fraction concentration levels were determined gravimetrically. A Pb analysis in air pollution filters was carried out by ICP-MS. The seasonal and weekly variabilities of these contaminants were also studied, with the objective of being able to explain their origin and thus minimize their possible damaging effects. A similar evolution of PM10 and Pb was observed in both years of the study. Higher PM10 concentrations have been detected during the months of June and July, lower values between March-May, August and October-December, and intermediate values in January and February. A similar tendency has been observed by other authors in European industrialized cities. Regarding Pb, the monthly mean remains constant during the entire year. In the study area, Pb represents 0.6% as a mean of the total PM10 mass, with a variation range between 0.1 and 5.1%. The major crystalline phases in PM10 were quartz, calcite, dolomite, illite, kaolinite and feldspars.

  11. Exposure to the elemental carbon, organic carbon, nitrate and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000-2005).

    EPA Science Inventory

    BACKGROUND: Particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied.OBJECTIVE:We estimated risk differences (RD) of PTB (reported per 106 pregnancies...

  12. 75 FR 13251 - Notice of Mineral County Resource Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Self-Determination Act of 2000 (Pub. L. 106-393, as amended by H.R. 1424 January 3, 2008) the Lolo... at 6 p.m. until 8:30 p.m. in Superior, Montana for a business meeting. The meeting is open to the... Sweeney, Designated Federal Official. [FR Doc. 2010-6034 Filed 3-18-10; 8:45 am] BILLING CODE 3410-11-M ...

  13. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-02-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23%, nitrate increasing by 58%, and sulfate decreasing by 46%.

  14. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23 %, nitrate increasing by 58%, and sulfate decreasing by 46%.

  15. Microstructural analysis of the thermal annealing of ice-Ih using EBSD

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-04-01

    Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period up to 2 hours, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intra-granular misorientations and its kinetics fits the parabolic growth law. Deformation-induced microstructures (tilt boundaries and kink bands) are stable features during early stages of static recrystallization and locally slow down grain boundary migration, pinning grain growth. REFERENCES 1. Duval, P., Ashby, M.F., Anderman, I., 1983. Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry 87, 4066-4074. 2. Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet, P., Duval, P., 2012. Experimental characterization of the intragranular strain field in columnar ice during transient creep. Acta Materialia 60, 3655-3666. 3. Chauve, T., Montagnat, M., Vacher, P., 2015. Strain field evolution during dynamic recrystallization nucleation: A case study on ice. Acta Materialia 101, 116-124. Funding: Research leading to these results was funded by the EU-FP7 Marie Curie postdoctoral grant PIEF-GA-2012-327226 to K.H.

  16. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort.

    PubMed

    Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B

    2016-04-01

    Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484-490; http://dx.doi.org/10.1289/ehp.1509676.

  17. A finite-strain homogenization model for viscoplastic porous single crystals: I - Theory

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2017-10-01

    This paper presents a homogenization-based constitutive model for the finite-strain, macroscopic response of porous viscoplastic single crystals. The model accounts explicitly for the evolution of the average lattice orientation, as well as the porosity, average shape and orientation of the voids (and their distribution), by means of appropriate microstructural variables playing the role of internal variables and serving to characterize the evolution of both the "crystallographic" and "morphological" anisotropy of the porous single crystals. The model makes use of the fully optimized second-order variational method of Ponte Castañeda (2015), together with the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to characterize the instantaneous effective response of the porous single crystals with fixed values of the microstructural variables. Consistent homogenization estimates for the average strain rate and vorticity fields in the phases are then used to derive evolution equations for the associated microstructural variables. The model is 100% predictive, requiring no fitting parameters, and applies for porous viscoplastic single crystals with general crystal anisotropy and average void shape and orientation, which are subjected to general loading conditions. In Part II of this work (Song and Ponte Castañeda, 2017a), results for both the instantaneous response and the evolution of the microstructure will be presented for porous FCC and HCP single crystals under a wide range of loading conditions, and good agreement with available FEM results will be shown.

  18. Evolution of deep-bed filtration of engine exhaust particulates with trapped mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Sandeep; Rothamer, David A.; Foster, David E.

    Micro-scale filtration experiments were performed on cordierite filter samples using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with tier II EEE certification gasoline. Size-resolved mass and number concentrations were obtained from several engine operating conditions. The resultant mass-mobility relationships showed weak dependence on the operating condition. An integrated particle size distribution (IPSD) method was used estimate the PM mass concentration in the exhaust stream from the SIDI engine and a heavy duty diesel (HDD) engine. The average estimated mass concentration between all conditions was ~77****** % of the gravimetric measurements performed on Teflon filters. Despite themore » relatively low elemental carbon fraction (~0.4 to 0.7), the IPSD mass for stoichiometric SIDI exhaust was ~83±38 % of the gravimetric measurement. Identical cordierite filter samples with properties representative of diesel particulate filters were sequentially loaded with PM from the different SIDI engine operating conditions, in order of increasing PM mass concentration. Simultaneous particle size distribution measurements upstream and downstream of the filter sample were used to evaluate filter performance evolution and the instantaneous trapped mass within the filter for two different filter face velocities. The evolution of filtration performance for the different samples was sensitive only to trapped mass, despite using PM from a wide range of operating conditions. Higher filtration velocity resulted in a more rapid shift in the most penetrating particle size towards smaller mobility diameters.« less

  19. Transmission electron microscopy characterization of microstructural features of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Pizzo, P. P.; Larson, L. A.

    1983-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitation events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significant alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  20. Transmission electron microscopy characterization of microstructural features in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Larson, L. A.; Pizzo, P. P.

    1984-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitaton events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significantly alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  1. Microstructure Evolution from X-CT Measurements for Concrete/mortar under Multi-actions of Composite Salts Dry-wet Cycles and Loading

    NASA Astrophysics Data System (ADS)

    Chen, Yanjuan; Gao, Jianming; Shen, Daman

    2017-08-01

    Inthis research, microstructure evolution forconcrete/mortar under multi-actions of composite salts dry-wet cycles and loading was investigated through X-CT measurements. The evolution process of pores and micro-cracking with the erosion time were tracked. Compared the different erosion actions, it was found that dry-wet cycles promoted the pores become connected gradually. Besides, the dry-wet cycles accelerated the damage seriously on interface area between concrete and aggregate, whistle, loading contributes to the cracking propagation toward the internal. Moreover, fly ash played a positive role in the increasing of the number of harmless holes again and contributed to the durability of concrete.

  2. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE PAGES

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...

    2015-02-11

    Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  3. New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains

    NASA Astrophysics Data System (ADS)

    Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.

    2017-07-01

    A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.

  4. Impedance Spectroscopy Study of the Effect of Environmental Conditions on the Microstructure Development of Sustainable Fly Ash Cement Mortars.

    PubMed

    Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel

    2017-09-25

    Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.

  5. The role of action coordination for prospective memory: Task-interruption demands affect intention realization.

    PubMed

    Rummel, Jan; Wesslein, Ann-Katrin; Meiser, Thorsten

    2017-05-01

    Event-based prospective memory (PM) is the ability to remember to perform an intention in response to an environmental cue. Recent microstructure models postulate four distinguishable stages of successful event-based PM fulfillment. That is, (a) the event must be noticed, (b) the intention must be retrieved, (c) the context must be verified, and (d) the intended action must be coordinated with the demands of any currently ongoing task (e.g., Marsh, Hicks, & Watson, 2002b). Whereas the cognitive processes of Stages 1, 2, and 3 have been studied more or less extensively, little is known about the processes of Stage 4 so far. To fill this gap, the authors manipulated the magnitude of response overlap between the ongoing task and the PM task to isolate Stage-4 processes. Results demonstrate that PM performance improves in the presence versus absence of a response overlap, independent of cue saliency (Experiment 1) and of demands from currently ongoing tasks (Experiment 2). Furthermore, working-memory capacity is associated with PM performance, especially when there is little response overlap (Experiments 2 and 3). Finally, PM performance benefits only from strong response overlap, that is, only when the appropriate ongoing-task and PM response keys were identical (Experiment 4). They conclude that coordinating ongoing-task and PM actions puts cognitive demands on the individual which are distinguishable from the demands imposed by cue-detection and intention-retrieval processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Identifying PM2.5 and PM0.1 sources for epidemiological studies in California.

    PubMed

    Hu, Jianlin; Zhang, Hongliang; Chen, Shuhua; Ying, Qi; Wiedinmyer, Christine; Vandenberghe, Francois; Kleeman, Michael J

    2014-05-06

    The University of California-Davis_Primary (UCD_P) model was applied to simultaneously track ∼ 900 source contributions to primary particulate matter (PM) in California for seven continuous years (January 1st, 2000 to December 31st, 2006). Predicted source contributions to primary PM2.5 mass, PM1.8 elemental carbon (EC), PM1.8 organic carbon (OC), PM0.1 EC, and PM0.1 OC were in general agreement with the results from previous source apportionment studies using receptor-based techniques. All sources were further subjected to a constraint check based on model performance for PM trace elemental composition. A total of 151 PM2.5 sources and 71 PM0.1 sources contained PM elements that were predicted at concentrations in general agreement with measured values at nearby monitoring sites. Significant spatial heterogeneity was predicted among the 151 PM2.5 and 71 PM0.1 source concentrations, and significantly different seasonal profiles were predicted for PM2.5 and PM0.1 in central California vs southern California. Population-weighted concentrations of PM emitted from various sources calculated using the UCD_P model spatial information differed from the central monitor estimates by up to 77% for primary PM2.5 mass and 148% for PM2.5 EC because the central monitor concentration is not representative of exposure for nearby population. The results from the UCD_P model provide enhanced source apportionment information for epidemiological studies to examine the relationship between health effects and concentrations of primary PM from individual sources.

  7. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stershic, A. J.; Simunovic, S.; Nanda, J.

    2015-08-25

    Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less

  8. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    DOE PAGES

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; ...

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less

  9. A heat treatment procedure to produce fine-grained lamellar microstructures in a P/M titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Au, Peter

    A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.

  10. Computational methods for coupling microstructural and micromechanical materials response simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less

  11. Microstructure Evolution and Mechanical Behavior of a CMnSiAl TRIP Steel Subjected to Partial Austenitization Along with Quenching and Partitioning Treatment

    NASA Astrophysics Data System (ADS)

    Kong, H.; Chao, Q.; Cai, M. H.; Pavlina, E. J.; Rolfe, B.; Hodgson, P. D.; Beladi, H.

    2018-02-01

    The present study investigated the microstructure evolution and mechanical behavior in a low carbon CMnSiAl transformation-induced plasticity (TRIP) steel, which was subjected to a partial austenitization at 1183 K (910 °C) followed by one-step quenching and partitioning (Q&P) treatment at different isothermal holding temperatures of [533 K to 593 K (260 °C to 320 °C)]. This thermal treatment led to the formation of a multi-phase microstructure consisting of ferrite, tempered martensite, bainitic ferrite, fresh martensite, and retained austenite, offering a superior work-hardening behavior compared with the dual-phase microstructure (i.e., ferrite and martensite) formed after partial austenitization followed by water quenching. The carbon enrichment in retained austenite was related to not only the carbon partitioning during the isothermal holding process, but also the carbon enrichment during the partial austenitization and rapid cooling processes, which has broadened our knowledge of carbon partitioning mechanism in conventional Q&P process.

  12. Microstructural evolution of ion-irradiated sol–gel-derived thin films

    DOE PAGES

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...

    2017-07-17

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  13. Microstructural evolution and rheology of quartz in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Rahl, Jeffrey M.; Skemer, Philip

    2016-06-01

    We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.

  14. The microstructural evolution, crystallography, and thermal processing of ultrahigh carbon Fe-1.85 pct C melt-spun ribbon

    NASA Technical Reports Server (NTRS)

    Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.

    1993-01-01

    A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.

  15. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareige, P.; Russell, K.F.; Stoller, R.E.

    1998-03-01

    Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less

  16. Microstructural evolution and IMCs growth behavior of Sn-58Bi-0.25Mo solder joint during aging treatment

    NASA Astrophysics Data System (ADS)

    Yang, Li; Zhu, Lu; Zhang, Yaocheng; Zhou, Shiyuan; Xiong, Yifeng; Wu, Pengcheng

    2018-02-01

    The microstructural evolution and IMCs growth behavior of Sn-58Bi and Sn-58Bi-0.25Mo solder joints were investigated. The results showed that the microstructure is coarsened, the IMCs layer thickness is increased and the tensile strength of Sn-58Bi and Sn-58Bi-0.25Mo solder joints is decreased with increasing aging time and temperature. Aging temperature is the key factor that causes the excessive IMCs growth of the solder joint compared with aging time, and the activation energy of IMCs layer growth of Sn-58Bi and Sn-58Bi-0.25Mo solder joints is 48.94 kJ mol-1 and 53.79 kJ mol-1, respectively. During the aging treatment, the microstructure of Sn-58Bi solder joint is refined by adding Mo nanoparticles, and the appropriate IMCs layer thickness and improved mechanical properties are obtained by Sn-58Bi-0.25Mo solder joint.

  17. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu; Yao, Sheng-Jie

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initialmore » as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.« less

  18. Evolution of Mechanical and Electrical Properties During Annealing of the Copper Wire Drawn

    NASA Astrophysics Data System (ADS)

    Zidani, M.; Messaoudi, S.; Baudin, T.; Derfouf, C.; Boulagroun, A.; Mathon, M. H.

    2011-12-01

    In this work, the evolution of mechanical and electrical properties and microstructure of industrial copper wire used for electrical cabling was characterized. This work is not limited to the interpretation of the microstructural characteristics of the wire-drawn state but also after different annealing treatments. For the lowest temperatures (160 °C and 200 °C), significant changes are not observed in the microstructure (grain size) in the weak deformed wire (28.5%). Instead, variations of some properties of the metal were observed (hardness and electrical resistivity). For strong deformation (61.4% and 84.59%), annealing, leads to recrystallization with a softening material. Let us note that the resistivity increases with deformation level and becomes higher after annealing at low temperature (200 °C).

  19. A Study of metabolic transformation of organic and inorganic components in PM2.5 and PM10, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yoon, H.; Lee, M.

    2012-12-01

    The important factors of atmospheric particle matter (PM) are size, concentration, composition and toxicity which can considerably affect the possible human health problem, especially respiratory diseases, visibility reduction and climate change. PM2.5 and PM10 are complex mixture of ammonium sulfate, ammonium nitrate, organic carbon, inorganic carbon and inorganic constituents. Recently, most researches of source attribution and assessments of the relationship between health effects and particle concentrations have not taken advantage of the development in analytical tools measuring the detailed molecular structure and microstructure of particles and of the knowledge of particle formation mechanisms in combustion system. This study will combine variety analytical techniques that can provide structural and compositional information to determine the correlation between sources of hazardous material and physicochemical properties in aerosol particle. Inorganic metal can be rapidly quantifying to filter base using ED-XRF (Energy-dispersive X-ray fluorescence). Speciation and quantification of water soluble components applied HPLC-ICP-MS and LC-MS NMR (nuclear magnetic resonance). Afterward, we investigate metabolic transformations of atmospheric particle matter also using FE-TEM (Field Emission Transmission Electron Microscopy).

  20. Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngmoo; Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea.; Lee, Dongju

    2016-04-15

    The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sinteredmore » density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.« less

  1. Final Environmental Assessment: For Construction of an Addition to the Joint Strike Fighter Reprogramming Facility, Building 614, on Eglin Air Force Base, Florida

    DTIC Science & Technology

    2007-01-01

    VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013...Trips PM10E = .0022 * Trips COE = .262 * Trips E = emissions To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 lbs

  2. Recent intensification of winter haze in China linked to foreign emissions and meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wang, Hailong; Smith, Steven J.

    Wintertime aerosol pollution in Northern China has increased over the past several decades as anthropogenic emissions in China have increased, and has increased dramatically since the beginning of the 21st century, but the causes and their quantitative contributions remain uncertain. Here we use an aerosol source tagging capability implemented in a global aerosol-climate model to assess long-term trends of PM2.5 (particulate matter less than 2.5 μm in diameter) in Northern China. Our analysis suggests that increasing PM2.5 concentrations due to local emission increases within China were obscured (~13%) by foreign emission reductions between 1980–2000. As foreign emissions stabilized during 2000-2014,more » their counteracting effect almost disappeared, uncovering China’s pollution potential from domestic emission increases. The meteorology dominated PM2.5 trend during 1990–1996 and also uncovered the pollution potential due to decadal variations in winds. The stabilized foreign emissions together with changing meteorology explain a quarter of the larger increasing trend of PM2.5 since the beginning of the 21st century. Future foreign emissions are not expected to help hiding China’s pollution, reductions in local emissions are the efficient way to improve future air quality in Northern China.« less

  3. Recent intensification of winter haze in China linked to foreign emissions and meteorology

    DOE PAGES

    Yang, Yang; Wang, Hailong; Smith, Steven J.; ...

    2018-02-01

    Wintertime aerosol pollution in Northern China has increased over the past several decades as anthropogenic emissions in China have increased, and has increased dramatically since the beginning of the 21st century, but the causes and their quantitative contributions remain uncertain. Here we use an aerosol source tagging capability implemented in a global aerosol-climate model to assess long-term trends of PM2.5 (particulate matter less than 2.5 μm in diameter) in Northern China. Our analysis suggests that increasing PM2.5 concentrations due to local emission increases within China were obscured (~13%) by foreign emission reductions between 1980–2000. As foreign emissions stabilized during 2000-2014,more » their counteracting effect almost disappeared, uncovering China’s pollution potential from domestic emission increases. The meteorology dominated PM2.5 trend during 1990–1996 and also uncovered the pollution potential due to decadal variations in winds. The stabilized foreign emissions together with changing meteorology explain a quarter of the larger increasing trend of PM2.5 since the beginning of the 21st century. Future foreign emissions are not expected to help hiding China’s pollution, reductions in local emissions are the efficient way to improve future air quality in Northern China.« less

  4. Relationships between Changes in Urban Characteristics and Air Quality in East Asia from 2000 to 2010.

    PubMed

    Larkin, Andrew; van Donkelaar, Aaron; Geddes, Jeffrey A; Martin, Randall V; Hystad, Perry

    2016-09-06

    Characteristics of urban areas, such as density and compactness, are associated with local air pollution concentrations. The potential for altering air pollution through changing urban characteristics, however, is less certain, especially for expanding cities within the developing world. We examined changes in urban characteristics from 2000 to 2010 for 830 cities in East Asia to evaluate associations with changes in nitrogen dioxide (NO2) and fine particulate matter (PM2.5) air pollution. Urban areas were stratified by population size into small (100 000-250 000), medium, (250 000-1 000 000), and large (>1 000 000). Multivariate regression models including urban baseline characteristics, meteorological variables, and change in urban characteristics explained 37%, 49%, and 54% of the change in NO2 and 29%, 34%, and 37% of the change in PM2.5 for small, medium and large cities, respectively. Change in lights at night strongly predicted change in NO2 and PM2.5, while urban area expansion was strongly associated with NO2 but not PM2.5. Important differences between changes in urban characteristics and pollutant levels were observed by city size, especially NO2. Overall, changes in urban characteristics had a greater impact on NO2 and PM2.5 change than baseline characteristics, suggesting urban design and land use policies can have substantial impacts on local air pollution levels.

  5. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  6. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process.

    PubMed

    Zhou, Wei; Jiang, Jingkun; Duan, Lei; Hao, Jiming

    2016-07-19

    In the absence of particulate matter (PM) control devices, residential coal combustion contributes significantly to ambient PM pollution. Characterizing PM emissions from residential coal combustion with high time resolution is beneficial for developing control policies and evaluating the environmental impact of PM. This study reports the evolution of submicrometer organic aerosols (OA) during a complete residential coal combustion process, that is, from fire start to fire extinction. Three commonly used coal types (bituminous, anthracite, and semicoke coals) were evaluated in a typical residential stove in China. For all three types of coal, the OA emission exhibited distinct characteristics in the four stages, that is, ignition, fierce combustion, relatively stable combustion, and ember combustion. OA emissions during the ignition stage accounted for 58.2-85.4% of the total OA emission of a complete combustion process. The OA concentration decreased rapidly during the fierce combustion stage and remained low during the relatively stable combustion stage. During these two stages, a significant ion peak of m/z 73 from organic acids were observed. The degree of oxidation of the OA increased from the first stage to the last stage. Implications for ambient OA source-apportionment and residential PM emission characterization and control are discussed.

  7. Nuclear Data Sheets for A = 142

    NASA Astrophysics Data System (ADS)

    Johnson, T. D.; Symochko, D.; Fadil, M.; Tuli, J. K.

    2011-08-01

    The 2000 Nuclear Data Sheets for A=142 by J. K. Tuli, with literature cutoff date of February 4, 2000, has been revised. The evaluated experimental data are presented for 16 known nuclides of mass 142 (Ba, Ce, Cs, Dy, Eu, Gd, Ho, I, La, Nd, Pm, Pr, Sm, Tb, Te, Xe). Comparing to the previous evaluation (2000Tu01) significant changes were done to the level schemes of Gd, Cs, Ce and Nd. For all nuclides, the more recent Q values have been added.

  8. Nuclear Data Sheets for A-142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, T.D.; Johnson,T.D.; Symochko,D.

    The 2000 Nuclear Data Sheets for A = 142 by J. K. Tuli, with literature cutoff date of February 4, 2000, has been revised. The evaluated experimental data are presented for 16 known nuclides of mass 142 (Ba, Ce, Cs, Dy, Eu, Gd, Ho, I, La, Nd, Pm, Pr, Sm, Tb, Te, Xe). Comparing to the previous evaluation (2000Tu01) significant changes were done to the level schemes of Gd, Cs, Ce and Nd. For all nuclides, the more recent Q values have been added.

  9. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  10. Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, A.; Department of Metallurgical Engineering and Materials Science, IIT Bombay; Department of Materials Engineering, Monash University

    2016-04-15

    The evolution of microstructure under static annealing was studied for mid-thickness section of a twin-roll-cast (TRC) magnesium alloy. Annealing was performed at 300 °C and 500 °C for different times. Microstructural evolution was quantitatively analyzed, from optical micrographs, using grain path envelope analysis. Additional information from electron backscatter diffraction (EBSD) was used for addressing the possible mechanism(s). It was found that the TRC structure had a bimodal grain size, which was preserved even after annealing at 300 °C. However, the annealing at 500 °C led to a unimodal grain size. This difference in the grain size distribution created a contrastingmore » behavior in the normalized standard deviations. This was primarily attributed to a competition between recovery and recrystallization, and their respective dominance at 300° and 500 °C. A deformation induced recrystallization recovery (DIRR) model was proposed. The proposed model could successfully address the experimental microstructural evolution. - Highlights: • Annealing of twin roll cast (TRC) magnesium alloy was done at temperatures of 300 °C and 500 °C. • TRC had bimodal structure. Bimodality preserved for annealing at 300 °C. Annealing at 500 °C led to unimodal structure. • Grain evolution was described based on the competition between recovery and recrystallization. • Deformation induced recrystallization recovery (DIRR) mechanistic model was developed.« less

  11. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less

  12. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less

  13. Effect of milling time on microstructure and mechanical properties of Cu-Ni-graphite composites

    NASA Astrophysics Data System (ADS)

    Wang, Yiran; Gao, Yimin; Li, Yefei; Zhang, Chao; Huang, Xiaoyu; Zhai, Wenyan

    2017-09-01

    Cu-Ni-graphite composites are intended for application in switch slide baseplate materials. The microstructure of the composites depends strongly on the ball milling time, and a suitable time can significantly improve the properties of the Cu-Ni-graphite composites. In this study, a two-step milling method was employed. The morphology evolution and microstructural features of the powder was characterized at different milling times. Afterwards, the Cu-Ni-graphite composites were prepared in the process of cold pressing, sintering, re-pressing and re-sintering as a function of the different milling times. Finally, both the microstructure and mechanical properties of the Cu-Ni-graphite composites are discussed. The results show that no new phase was generated during the milling process. The morphology evolution of the mixture of Cu/Ni powder changed from spherical-like to cubic-like, plate-like and flake-like with an increasing milling time. The microstructure of the composites consisted of α-phase and graphite. The boundary area and quantity of pores changed as the milling time increased. The relative density, hardness and flexural strength reached maximum values at 15 h of milling time.

  14. The Microstructural Evolution of Fatigue Cracks in FCC Metals

    NASA Astrophysics Data System (ADS)

    Gross, David William

    The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations between the dislocation cells increased and the cell size decreased as the crack flank was approached. The final set of experiments involved reloading the arrested crack tips in monotonic tension. This was performed on both the Haynes 230 and 316 stainless steel. This technique exposed the fracture surface and location of the arrested crack tip away from the free surface, allowing for a sample to be extracted via FIB micromachining and TEM evaluation of the microstructure. This permitted the crack tip microstructure to be investigated without exposing the microstructure to crack closure or free surface effects. These experiments confirmed what was inferred from the earlier experiments, namely that the banded structure was a product of the crack tip plastic zone and the refined structure was a product of the strain associated with crack advance. Overall the microstructural complexity presented in this work was much higher than would be predicted by current models of fatigue crack propagation. It is recommended that future models attempt to simulate interactions between the dislocations emitted during fatigue crack growth and the pre-existing microstructure to more accurately simulate the processes occurring at the crack tip during crack growth.

  15. Modeling the microstructural changes during hot tandem rolling of AA5 XXX aluminum alloys: Part I. Microstructural evolution

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.

    1998-06-01

    A comprehensive mathematical model of the hot tandem rolling process for aluminum alloys has been developed. Reflecting the complex thermomechanical and microstructural changes effected in the alloys during rolling, the model incorporated heat flow, plastic deformation, kinetics of static recrystallization, final recrystallized grain size, and texture evolution. The results of this microstructural engineering study, combining computer modeling, laboratory tests, and industrial measurements, are presented in three parts. In this Part I, laboratory measurements of static recrystallization kinetics and final recrystallized grain size are described for AA5182 and AA5052 aluminum alloys and expressed quantitatively by semiempirical equations. In Part II, laboratory measurements of the texture evolution during static recrystallization are described for each of the alloys and expressed mathematically using a modified form of the Avrami equation. Finally, Part III of this article describes the development of an overall mathematical model for an industrial aluminum hot tandem rolling process which incorporates the microstructure and texture equations developed and the model validation using industrial data. The laboratory measurements for the microstructural evolution were carried out using industrially rolled material and a state-of-the-art plane strain compression tester at Alcan International. Each sample was given a single deformation and heat treated in a salt bath at 400 °C for various lengths of time to effect different levels of recrystallization in the samples. The range of hot-working conditions used for the laboratory study was chosen to represent conditions typically seen in industrial aluminum hot tandem rolling processes, i.e., deformation temperatures of 350 °C to 500 °C, strain rates of 0.5 to 100 seconds and total strains of 0.5 to 2.0. The semiempirical equations developed indicated that both the recrystallization kinetics and the final recrystallized grain size were dependent on the deformation history of the material i.e., total strain and Zener-Hollomon parameter ( Z), where Z = dot \\varepsilon exp left( {{Q_{def} }/{RT_{def }}} right) and time at the recrystallization temperature.

  16. Le Changement linguistique: Evolution, variation, and heterogeneite. Actes du colloque de Neuchatel Universite (Neuchatel, Suisse, 2-4 Octobre 2000) (Linguistic Change: Evolution, Variation, Heterogeneity. Proceedings of the University of Neuchatel Colloquium [Neuchatel, Switzerland, October 2-4, 2000]).

    ERIC Educational Resources Information Center

    Matthey, Marinette, Ed.

    2001-01-01

    Articles in this issue focus on language evolution, variation, and heterogeneity. The following are English translations of the French article titles appearing in the issue: "Irregular Phonetic Development Due to Frequency; Regional Traits in Proto-Romance"; "Linguistic Evolution and Evolution of Perspective in the Comparative…

  17. Herbicide sorption to fine particulate matter suspended downwind of agricultural operations: field and laboratory investigations.

    PubMed

    Clymo, Amelia S; Shin, Jin Young; Holmen, Britt A

    2005-01-15

    Tillage-induced erosion of herbicides bound to airborne soil particles has not been quantified as a mechanism for offsite herbicide transport. This study quantifies the release of two preemergent herbicides, metolachlor and pendimethalin, to the atmosphere as gas- and particle-phase species during soil incorporation operations. Fine particulate matter (PM2.5) and gas-phase samples were collected at three sampling heights during herbicide disking into the soil in Davis, CA, in May 2000 and May 2001 using filter/PUF sampling. Quartz fiber filters (QFFs) were used in May 2000, and Teflon membrane filters (TMFs) were used in May 2001. The field data were combined with laboratory filter/PUF partitioning experiments to account for adsorption to the filter surfaces and quantify the mass of PM2.5-bound herbicides in the field samples. Laboratory results indicate a significant adsorption of metolachlor, but not pendimethalin, to the quartz filter surfaces. Metolachlor partitioning to PM2.5 collected on TMF filters resulted in corrected PM2.5 field partition coefficient values, Kp,corr = Cp/Cg, of approximately 10(-3.5) m3/microg, indicating its preference for the gas phase. Pendimethalin exhibited more semivolatile behavior,with Kp,corr values that ranged from 10(-3) to 10(-1) m3/ microg and increased with sampling height and distance downwind of the operation. An increase in pendimethalin enrichment at a height of 5 m suggests winnowing of finer, more sorptive soil components with corresponding higher transport potential. Pendimethalin was enriched in the PM2.5 samples by up to a factor of 250 compared to the field soil, indicating thatfurther research on the processes controlling the generation of PM-bound herbicides during agricultural operations is warranted to enable prediction of off-site mass fluxes by this mechanism.

  18. Mortality in the Medicare Population and Chronic Exposure to Fine Particulate Air Pollution in Urban Centers (2000–2005)

    PubMed Central

    Zeger, Scott L.; Dominici, Francesca; McDermott, Aidan; Samet, Jonathan M.

    2008-01-01

    Background Prospective cohort studies constitute the major source of evidence about the mortality effects of chronic exposure to particulate air pollution. Additional studies are needed to provide evidence on the health effects of chronic exposure to particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) because few studies have been carried out and the cohorts have not been representative. Objectives This study was designed to estimate the relative risk of death associated with long-term exposure to PM2.5 by region and age groups in a U.S. population of elderly, for the period 2000–2005. Methods By linking PM2.5 monitoring data to the Medicare billing claims by ZIP code of residence of the enrollees, we have developed a new retrospective cohort study, the Medicare Cohort Air Pollution Study. The study population comprises 13.2 million participants living in 4,568 ZIP codes having centroids within 6 miles of a PM2.5 monitor. We estimated relative risks adjusted by socioeconomic status and smoking by fitting log-linear regression models. Results In the eastern and central regions, a 10-μg/m3 increase in 6-year average of PM2.5 is associated with 6.8% [95% confidence interval (CI), 4.9–8.7%] and 13.2% (95% CI, 9.5–16.9) increases in mortality, respectively. We found no evidence of an association in the western region or for persons ≥ 85 years of age. Conclusions We established a cohort of Medicare participants for investigating air pollution and mortality on longer-term time frames. Chronic exposure to PM2.5 was associated with mortality in the eastern and central regions, but not in the western United States. PMID:19079710

  19. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    NASA Astrophysics Data System (ADS)

    Getto, Elizabeth Margaret

    The objective of this study was to understand the co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. HT9 (heat 84425) was pre-implanted with 10 atom parts per million helium and then irradiated with 5 MeV Fe++ in the temperature range of 440-480°C to 188 dpa. A damage dependence study from 75 to 650 dpa was performed at the peak swelling temperature of 460°C. The swelling, dislocation and precipitate evolution was determined using Analytic Electron Microscopes in both Conventional Transmission electron microscopy (CTEM) and Scanning Transmission Electron Microscopy (STEM) modes. Void swelling reached a nominally linear rate of 0.03%/dpa from 188 to 650 dpa at 460°C. G phase precipitates were observed by 75 dpa and grew linearly up to 650 dpa. M 2X was observed by 250 dpa and peaked in volume fraction at 450 dpa. Dislocation loop evolution was observed up to 650 dpa including a step change in diameter between 375 and 450 dpa; which correlated with nucleation and growth of M2X. The experimental results were interpreted using a rate theory model, the Radiation Induced Microstructure Evolution (RIME), in the damage range from 188 to 650 dpa. A simple system of voids and dislocations was modeled in which the dislocations measured from experiment were used as input, or the dislocations were allowed to evolve dynamically, resulting in swelling that was overestimated by 63% relative to that observed experimentally. G phase had limited effect on the void or dislocation behavior. The behavior of M2X within the microstructure was characterized as a direct effect as a coherent sink, and as an indirect effect in consuming carbon from the matrix, which had the largest impact on both void and dislocation behavior. A slowly monotonically increasing swelling rate was observed both experimentally and computationally, with swelling rates of ˜0.025%/dpa and ˜0.036%/dpa before and after 450 dpa. The agreement in void behavior between experiment and model when all effects (loops, network, G phase, M2X formation and growth, and removal of carbon) are accounted for demonstrates the importance of characterizing the evolution of the full microstructure over a large dpa range.

  20. SOA VOLATILITY EVOLUTION: FORMATION AND OXIDATION OVER THE LIFECYCLE OF PM2.5

    EPA Science Inventory

    Secondary Organic Aerosols are a major, possibly dominant, source of organic PM2.5 that remain enigmatic. Enormous progress has been made in the past 15 years regarding SOA formation, starting with recognition that most SOA products are semivolatile, continuing to a...

  1. Comparison of Hourly PM2.5 Observations Between Urban and Suburban Areas in Beijing, China.

    PubMed

    Yao, Ling; Lu, Ning; Yue, Xiafang; Du, Jia; Yang, Cundong

    2015-09-29

    Hourly PM2.5 observations collected at 12 stations over a 1-year period are used to identify variations between urban and suburban areas in Beijing. The data demonstrates a unique monthly variation form, as compared with other major cities. Urban areas suffer higher PM2.5 concentration (about 92 μg/m³) than suburban areas (about 77 μg/m³), and the average PM2.5 concentration in cold season (about 105 μg/m³) is higher than warm season (about 78 μg/m³). Hourly PM2.5 observations exhibit distinct seasonal, diurnal and day-of-week variations. The diurnal variation of PM2.5 is observed with higher concentration at night and lower value at daytime, and the cumulative growth of nighttime (22:00 p.m. in winter) PM2.5 concentration maybe due to the atmospheric stability. Moreover, annual average PM2.5 concentrations are about 18 μg/m³ higher on weekends than weekdays, consistent with driving restrictions on weekdays. Additionally, the nighttime peak in weekdays (21:00 p.m.) is one hour later than weekends (20:00 p.m.) which also shows the evidence of human activity. These observed facts indicate that the variations of PM2.5 concentration between urban and suburban areas in Beijing are influenced by complex meteorological factors and human activities.

  2. Comparison of Hourly PM2.5 Observations Between Urban and Suburban Areas in Beijing, China

    PubMed Central

    Yao, Ling; Lu, Ning; Yue, Xiafang; Du, Jia; Yang, Cundong

    2015-01-01

    Hourly PM2.5 observations collected at 12 stations over a 1-year period are used to identify variations between urban and suburban areas in Beijing. The data demonstrates a unique monthly variation form, as compared with other major cities. Urban areas suffer higher PM2.5 concentration (about 92 μg/m3) than suburban areas (about 77 μg/m3), and the average PM2.5 concentration in cold season (about 105 μg/m3) is higher than warm season (about 78 μg/m3). Hourly PM2.5 observations exhibit distinct seasonal, diurnal and day-of-week variations. The diurnal variation of PM2.5 is observed with higher concentration at night and lower value at daytime, and the cumulative growth of nighttime (22:00 p.m. in winter) PM2.5 concentration maybe due to the atmospheric stability. Moreover, annual average PM2.5 concentrations are about 18 μg/m3 higher on weekends than weekdays, consistent with driving restrictions on weekdays. Additionally, the nighttime peak in weekdays (21:00 p.m.) is one hour later than weekends (20:00 p.m.) which also shows the evidence of human activity. These observed facts indicate that the variations of PM2.5 concentration between urban and suburban areas in Beijing are influenced by complex meteorological factors and human activities. PMID:26426035

  3. [Plasma homocysteine, Lp(a), and oxidative stress markers in peripheral macroangiopathy in patients with type 2 diabetes mellitus].

    PubMed

    Real, Jose T; Folgado, José; Molina Mendez, Mercedes; Martinez-Hervás, Sergio; Peiro, Marta; Ascaso, Juan F

    2016-01-01

    To study new risk factors for peripheral macroangiopathy (PM) in patients with diabetes, as oxidative stress (OS) and its interaction with classical risk factors: age, Lp(a), plasma homocysteine values and HbA1c. We studied 204 type2 diabetic (T2DM) patients, consecutive selected form a reference hospital and a secondary hospital form our Community (2009-2010). Design was a case (ABI<0.89) control (ABI0.9-1.2) study. PM was defined using ankle brachial index (ABI). Thirty nine T2DM subjects presented ABI>1.2 and were excluded. Clinical and biological parameters were determined using standard methods. Comparing clinical and biological parameters obtained in both studied groups (T2DM+ABI<0.9 vs T2DM+ABI0.9-1.2), we found statistical significant differences in age, evolution time of diabetes, Lp(a) and plasma homocysteine values. No differences were found in OS parameters: reduced glutathione, oxidized glutathione and maloldialdehide between studied groups. Plasma homocysteine values were an independent risk factor for the presence of PM and were related to evolution time of diabetes and reduced glutathione. We have confirmed that Lp(a) and independently plasma homocysteine values were related to PM in T2DM subjects. No association with PM and OS markers (GSH, GSSG and MDA) were found in T2DM with more than 10years of evolution time of their disease and high prevalence of chronic complications. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Microstructural Evolution During Friction Stir Welding of Near-Alpha Titanium

    DTIC Science & Technology

    2009-02-01

    completion of the weld and the weld end was quenched with cold water. This process was intended to preserve the microstructure surrounding the...limited the statistics supporting this result. 16 Mironov et al. [31] also measured the texture developed from friction stir processing of pure iron

  5. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    NASA Astrophysics Data System (ADS)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most elaborated and at the same time the most promising descriptions: thermodynamics-based models with and without Zener pinning. For conditions compatible with the S1 and S2 microstructures (~800 °C and strain rate ~10-13 s-1), the calculated stable grain sizes are ~30 μm and >300 μm in the models with and without Zener pinning, respectively. This is in agreement with the contrasting grain sizes associated with S1 and S2 microstructures implying that mainly chemically induced recrystallization of S1 feldspar porphyroclasts must had played a fundamental role in the transition into the diffusion creep. The model with pinning also explains only minor changes of mean grain size associated with S2 microstructure. The S2-S3 switch from the diffusion to dislocation creep is difficult to explain when assuming reasonable temperature and strain rate (or stress). However, a simple incorporation of the effect of melt solidification into the model with pinning can mimic this observed switch. Besides the above mentioned simple models with prescribed temperature and strain rate, we implemented the grain size evolution laws into in a 2D thermo-mechanical model setup, where stress, strain rate and temperature evolve in a more natural manner. This setup simulates a collisional evolution of an orogenic root with anomalous lower crust. The lower-crustal material is a source region for diapirs and it deforms via a combination of dislocation and grain-size-sensitive creeps. We tested the influence of selected parameters in the flow laws and in the grain-size evolution laws on the shape and other characteristics of the growing diapirs. The outputs of our simulations were then compared with the geological record from the Moldanubian granulite massifs.

  6. Effect of deformation path on microstructure, microhardness and texture evolution of interstitial free steel fabricated by differential speed rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun, E-mail: younggun@ynu.ac.kr

    2014-08-15

    This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50%more » had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.« less

  7. Deep investigation on inorganic fraction of atmospheric PM in Mediterranean area by neutron and photon activation analysis

    PubMed Central

    2013-01-01

    Background Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health. The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study. This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. Results Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. Conclusions The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view. PMID:24196275

  8. Microstructural stability of wrought, laser and electron beam glazed NARloy-Z alloy at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.

    1993-01-01

    Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.

  9. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

    PubMed Central

    2013-01-01

    Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176

  10. Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris

    2018-03-01

    Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure-property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.

  11. Microstructural and strength stability of a developmental CVD SiC fiber

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Garg, Anita; Hull, David R.

    1995-01-01

    The effects of thermal exposure on the room temperature tensile strength and microstructure of a developmental 50 micron CVD SiC fiber have been studied. The fibers were heat treated between 600 and 2000 C in 0.1 MPa argon and air environments for up to 100 hr. In the as-fabricated condition, the fibers showed approximately 6 GPa tensile strength. After argon treatment, the fibers showed strength degradation after 1 hr exposure beyond 1000 C, but those exposed between 1600 and 2000 C retained approximately 2 GPa strength. TEM results showed microstructural changes both in the surface coating and SiC sheath. Flaws created by the rearrangement of carbon in the surface coating and growth of equiaxed SiC grain zone in the SiC sheath are the suggested mechanisms of strength degradation. After air treatment, fibers showed strength degradation after only 2 min exposure at 600 C. Strength retention after 2 min at 1500 C was approximately 2 GPa. Oxidation of the surface coating is the primary reason for strength degradation.

  12. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    NASA Astrophysics Data System (ADS)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  13. Dynamic Response of AA2519 Aluminum Alloy under High Strain Rates

    NASA Astrophysics Data System (ADS)

    Olasumboye, Adewale Taiwo

    Like others in the AA2000 series, AA2519 is a heat-treatable Al-Cu alloy. Its excellent ballistic properties and stress corrosion cracking resistance, combined with other properties, qualify it as a prime candidate for armored vehicle and aircraft applications. However, available data on its high strain-rate response remains limited. In this study, AA2519 aluminum alloy was investigated in three different temper conditions: T4, T6, and T8, to determine the effects of heat treatment on the microstructure and dynamic deformation behavior of the material at high strain rates ranging within 1000 ≤ epsilon ≤ 4000 s-1. Split Hopkinson pressure bar integrated with digital image correlation system was used for mechanical response characterization. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. Results showed heterogeneous deformation in the three temper conditions. It was observed that dynamic behavior in each condition was dependent on strength properties due to the aging type controlling the strengthening precipitates produced and initial microstructure. At 1500 s -1, AA2519-T6 exhibited peak dynamic yield strength and flow stress of 509 and 667 MPa respectively, which are comparable with what were observed in T8 condition at higher rate of 3500 s-1 but AA2519-T4 showed the least strength and flow stress properties. Early stress collapse, dynamic strain aging, and higher susceptibility to shear band formation and fracture were observed in the T6 condition within the selected range of high strain rates. The alloy's general mode of damage evolution was by dispersoid particle nucleation, shearing and cracking.

  14. A Monte Carlo model for 3D grain evolution during welding

    NASA Astrophysics Data System (ADS)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, M; Teslich, N; Lu, J P

    An in situ method for studying the role of laser energy on the microstructural evolution of polycrystalline Si is presented. By monitoring both laser energy and microstructural evolution simultaneously in the dynamic transmission electron microscope, information on grain size and defect concentration can be correlated directly with processing conditions. This proof of principle study provides fundamental scientific information on the crystallization process that has technological importance for the development of thin film transistors. In conclusion, we successfully developed a method for studying UV laser processing of Si films in situ on nanosecond time scales, with ultimate implications for TFT applicationmore » improvements. In addition to grain size distribution as a function of laser energy density, we found that grain size scaled with laser energy in general. We showed that nanosecond time resolution allowed us to see the nucleation and growth front during processing, which will help further the understanding of microstructural evolution of poly-Si films for electronic applications. Future studies, coupled with high resolution TEM, will be performed to study grain boundary migration, intergranular defects, and grain size distribution with respect to laser energy and adsorption depth.« less

  16. Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in [Phase 3 Memory,] 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radchenko, I.; Tippabhotla, S. K.; Tamura, N.

    2016-10-21

    Synchrotron x-ray microdiffraction (μXRD) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, μXRD is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the μXRD technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of μXRD in microelectronicsmore » will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. Here, the approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.« less

  17. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  18. Micro-structured femtosecond laser assisted FBG hydrogen sensor.

    PubMed

    Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong

    2015-11-30

    We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.

  19. The continuing battle against defects in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.

    1986-01-01

    In the six decades since the identification of age hardenable nickel-base superalloys their compositions and microstructures have changed markedly. Current alloys are tailored for specific applications. Thus their microstructures are defined for that application. This paper briefly reviews the evolution of superalloy microstructures and comments on the appearance and implications of microstructural defects in high performance superalloys. It is seen that new alloys and proceses have generated new types of defects. Thus as the industry continues to develop new alloys and processes it must remain vigilant toward the identification and control of new types of defects.

  20. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development ofmore » mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.« less

  1. Microstructural Evolution and Deformation Behavior of a Hot-Rolled and Heat Treated Fe-8Mn-4Al-0.2C Steel

    NASA Astrophysics Data System (ADS)

    Cai, Zhihui; Ding, Hua; Ying, Zhengyan; Misra, R. D. K.

    2014-04-01

    The microstructural evolution following tensile deformation of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel was studied. Quenching in the range of 750-800 °C followed by tempering at 200 °C led to a ferrite-austenite mixed microstructure that was characterized by excellent combination of tensile strength of 800-1000 MPa and elongation of 30-40%, and a three-stage work hardening behavior. During the tensile deformation, the retained austenite transformed into martensite and delayed the onset of necking, thus leading to a higher ductility via the transformation-induced plasticity (TRIP) effect. The improvement of elongation is attributed to diffusion of carbon from δ-ferrite to austenite during tempering, which improves the stability of austenite, thus contributing to enhanced tensile ductility.

  2. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-01

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  3. Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Dongyong; Liu, Wenquan; Ying, Liang, E-mail: pinghu@dlut.edu.cn

    The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models undermore » isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part.« less

  4. Three dimensional X-ray Diffraction Contrast Tomography Reconstruction of Polycrystalline Strontium Titanate during Sintering and Electron Backscatter Diffraction Validation

    NASA Astrophysics Data System (ADS)

    Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.

    The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.

  5. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy

    PubMed Central

    Gong, Xuebo; Duan, Zhenxin; Pei, Wen; Chen, Hua

    2017-01-01

    In this paper, the equiaxed superfine/nanocrystalline duplex PM-TiAl-based alloy with (γ + α2) microstructure, Ti-45Al-5Nb (at %), has been synthesized by high-energy ball milling and vacuum hot pressing sintering. Superplastic deformation behavior has been investigated at 1000 °C and 1050 °C with strain rates from 5 × 10−5 s−1 to 1 × 10−3 s−1. The effects of deformation on the microstructure and mechanical behaviors of high Nb containing TiAl alloy have been characterized and analyzed. The results showed that, the ultimate tensile strength of the alloy was 58.7 MPa at 1000 °C and 10.5 MPa at 1050 °C with a strain rate of 5 × 10−5 s−1, while the elongation was 121% and 233%, respectively. The alloy exhibited superplastic elongation at 1000 and 1050 °C with an exponent (m) of 0.48 and 0.45. The main softening mechanism was dynamic recrystallization of γ grains; the dislocation slip and γ/γ interface twinning were responsible for superplastic deformation. The orientation relationship of γ/γ interface twinning obeyed the classical one: (001)γ//(110)γ. PMID:28925971

  6. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy.

    PubMed

    Gong, Xuebo; Duan, Zhenxin; Pei, Wen; Chen, Hua

    2017-09-19

    In this paper, the equiaxed superfine/nanocrystalline duplex PM-TiAl-based alloy with (γ + α₂) microstructure, Ti-45Al-5Nb (at %), has been synthesized by high-energy ball milling and vacuum hot pressing sintering. Superplastic deformation behavior has been investigated at 1000 °C and 1050 °C with strain rates from 5 × 10 -5 s -1 to 1 × 10 -3 s -1 . The effects of deformation on the microstructure and mechanical behaviors of high Nb containing TiAl alloy have been characterized and analyzed. The results showed that, the ultimate tensile strength of the alloy was 58.7 MPa at 1000 °C and 10.5 MPa at 1050 °C with a strain rate of 5 × 10 -5 s -1 , while the elongation was 121% and 233%, respectively. The alloy exhibited superplastic elongation at 1000 and 1050 °C with an exponent (m) of 0.48 and 0.45. The main softening mechanism was dynamic recrystallization of γ grains; the dislocation slip and γ/γ interface twinning were responsible for superplastic deformation. The orientation relationship of γ/γ interface twinning obeyed the classical one: (001) γ //(110) γ .

  7. Effect of Initial Microstructure on the Microstructural Evolution and Joint Efficiency of a WE43 Alloy During Friction Stir Welding

    DTIC Science & Technology

    2013-04-01

    to maximize joint efficiency. 15. SUBJECT TERMS friction stir welding, strain rate, dynamic recrystallization , joint efficiency, stir zone (SZ...stir welding, Strain rate, Dynamic recrystallization , Joint efficiency, Stir Zone (SZ) Abstract The initial microstructure plays an important role in... eutectic Mg17Al12 phase. Park et al. [7] demonstrated the importance of texture and related it to the mechanical properties of an AZ61 alloy

  8. Microstructural Evolution during the Dynamic Deformation of High Strength Navy Steels

    DTIC Science & Technology

    2008-05-19

    phase particles (Figures 23d,e). These include carbides as well as copper precipitates that are of the order of 10 nm or less in size. These particles ...Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - I pure Fe: Acta Metallurgica 30(1982)323. 22. Y. Inokuti...and B. Cantor, Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - II Fe-Ni alloys : Acta

  9. Structure of anodized Al-Zr sputter deposited coatings and effect on optical appearance

    NASA Astrophysics Data System (ADS)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara; Rechendorff, Kristian; Dirscherl, Kai; Ambat, Rajan

    2014-10-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al-Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550 °C for 4 h in order to evolve Al-Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acid at 18 °C with an intention to study the effect of anodizing on the Al-Zr based precipitates in the coating. Detailed microstructural characterization of the coating and anodized layer was carried out using high resolution scanning and transmission electron microscopy, grazing incidence X-ray diffraction analysis, glow discharge optical emission spectroscopy, and optical appearance using spectrophotometry. The evolution of microstructure in the anodized layer as a function of anodizing parameters and their influence on the interaction of light is investigated and the results in general are applicable to discolouration of anodized layer on recycled aluminium alloys due to intermetallics.

  10. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  11. Dust deposition and ambient PM10 concentration in northwest China: spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Sharratt, Brenton; Chen, Xi; Wang, Zi-Fa; Liu, Lian-You; Guo, Yu-Hong; Li, Jie; Chen, Huan-Sheng; Yang, Wen-Yi

    2017-02-01

    Eolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable deposition data are scarce in central and east Asia. Located at the boundary of central and east Asia, Xinjiang Province of northwestern China has long played a strategic role in cultural and economic trade between Asia and Europe. In this paper, we investigated the spatial distribution and temporal variation in dust deposition and ambient PM10 (particulate matter in aerodynamic diameter ≤ 10 µm) concentration from 2000 to 2013 in Xinjiang Province. This variation was assessed using environmental monitoring records from 14 stations in the province. Over the 14 years, annual average dust deposition across stations in the province ranged from 255.7 to 421.4 t km-2. Annual dust deposition was greater in southern Xinjiang (663.6 t km-2) than northern (147.8 t km-2) and eastern Xinjiang (194.9 t km-2). Annual average PM10 concentration across stations in the province varied from 100 to 196 µg m-3 and was 70, 115 and 239 µg m-3 in northern, eastern and southern Xinjiang, respectively. The highest annual dust deposition (1394.1 t km-2) and ambient PM10 concentration (352 µg m-3) were observed in Hotan, which is located in southern Xinjiang and at the southern boundary of the Taklamakan Desert. Dust deposition was more intense during the spring and summer than other seasons. PM10 was the main air pollutant that significantly influenced regional air quality. Annual average dust deposition increased logarithmically with ambient PM10 concentration (R2 ≥ 0.81). While the annual average dust storm frequency remained unchanged from 2000 to 2013, there was a positive relationship between dust storm days and dust deposition and PM10 concentration across stations. This study suggests that sand storms are a major factor affecting the temporal variability and spatial distribution of dust deposition in northwest China.

  12. Assessing the co-benefits of greenhouse gas reduction: health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand.

    PubMed

    Li, Ying; Crawford-Brown, Douglas J

    2011-04-15

    Since the 1990s, the capital city of Thailand, Bangkok has been suffering from severe ambient particulate matter (PM) pollution mainly attributable to its wide use of diesel-fueled vehicles and motorcycles with poor emission performance. While the Thai government strives to reduce emissions from transportation through enforcing policy measures, the link between specific control policies and associated health impacts is inadequately studied. This link is especially important in exploring the co-benefits of greenhouse gas emissions reductions, which often brings reduction in other pollutants such as PM. This paper quantifies the health benefits potentially achieved by the new PM-related I/M programs targeting all diesel vehicles and motorcycles in the Bangkok Metropolitan Area (BMA). The benefits are estimated by using a framework that integrates policy scenario development, exposure assessment, exposure-response assessment and economic valuation. The results indicate that the total health damage due to the year 2000 PM emissions from vehicles in the BMA was equivalent to 2.4% of Thailand's GDP. Under the business-as-usual (BAU) scenario, total vehicular PM emissions in the BMA will increase considerably over time due to the rapid growth in vehicle population, even if the fleet average emission rates are projected to decrease over time as the result of participation of Thailand in post-Copenhagen climate change strategies. By 2015, the total health damage is estimated to increase by 2.5 times relative to the year 2000. However, control policies targeting PM emissions from automobiles, such as the PM-oriented I/M programs, could yield substantial health benefits relative to the BAU scenario, and serve as co-benefits of greenhouse gas control strategies. Despite uncertainty associated with the key assumptions used to estimate benefits, we find that with a high level confidence, the I/M programs will produce health benefits whose economic impacts considerably outweigh the expenditures on policy implementation. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter

    PubMed Central

    Martin, Randall V.; Brauer, Michael; Boys, Brian L.

    2014-01-01

    Background: More than a decade of satellite observations offers global information about the trend and magnitude of human exposure to fine particulate matter (PM2.5). Objective: In this study, we developed improved global exposure estimates of ambient PM2.5 mass and trend using PM2.5 concentrations inferred from multiple satellite instruments. Methods: We combined three satellite-derived PM2.5 sources to produce global PM2.5 estimates at about 10 km × 10 km from 1998 through 2012. For each source, we related total column retrievals of aerosol optical depth to near-ground PM2.5 using the GEOS–Chem chemical transport model to represent local aerosol optical properties and vertical profiles. We collected 210 global ground-based PM2.5 observations from the literature to evaluate our satellite-based estimates with values measured in areas other than North America and Europe. Results: We estimated that global population-weighted ambient PM2.5 concentrations increased 0.55 μg/m3/year (95% CI: 0.43, 0.67) (2.1%/year; 95% CI: 1.6, 2.6) from 1998 through 2012. Increasing PM2.5 in some developing regions drove this global change, despite decreasing PM2.5 in some developed regions. The estimated proportion of the population of East Asia living above the World Health Organization (WHO) Interim Target-1 of 35 μg/m3 increased from 51% in 1998–2000 to 70% in 2010–2012. In contrast, the North American proportion above the WHO Air Quality Guideline of 10 μg/m3 fell from 62% in 1998–2000 to 19% in 2010–2012. We found significant agreement between satellite-derived estimates and ground-based measurements outside North America and Europe (r = 0.81; n = 210; slope = 0.68). The low bias in satellite-derived estimates suggests that true global concentrations could be even greater. Conclusions: Satellite observations provide insight into global long-term changes in ambient PM2.5 concentrations. Satellite-derived estimates and ground-based PM2.5 observations from this study are available for public use. Citation: van Donkelaar A, Martin RV, Brauer M, Boys BL. 2015. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 123:135–143; http://dx.doi.org/10.1289/ehp.1408646 PMID:25343779

  14. Flight Planning for the International Space Station-Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper is an overview of the status and science for the LODESTARS (Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification) research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.

  15. U.S. Science Teaching and Learning of Evolution: A Critical Review of the Literature 2000-2014

    ERIC Educational Resources Information Center

    Glaze, Amanda L.; Goldston, M. Jenice

    2015-01-01

    This critical analysis examined research on evolution in the United States between the years 2000-2014, spanning early classroom implementation of the National Science Education Standards to current research findings. First, we sought to understand how the research literature published between 2000 and 2014 contributed to knowledge of evolution…

  16. Mechanical properties and microstructural evolution of modified 9Cr-1Mo steel after long-term aging for 50,000 h

    NASA Astrophysics Data System (ADS)

    Baek, Jong-Hyuk; Kim, Sung-Ho; Lee, Chan-Bock; Hahn, Do-Hee

    2009-08-01

    The mechanical properties and microstructural evolution of modified 9Cr-1Mo steel have been studied to investigate steel property changes after long-term isothermal aging at 600 °C for 50,000 h. The microhardness and strength were maintained constantly after aging but the impact energy was dramatically reduced by 62 % during the aging period. From the viewpoint of microstructural evolution after the aging process, Cr-enrichment and Fe-depletion took place within the M23C6-type precipitates in the as-aged steel and V-depletion also happened within the VX-type precipitates after aging. In addition, the precipitates of the M2Mo-type Laves phase and the segregation of the impurity atoms would be formed during the long-term aging period. It was considered that the sharp reduction of the impact energy could be related to the formation of the Laves phases and the impurity segregation after aging at 600 °C. The phase stability was also verified by the specific heat results up to 950 °C from a DSC test. It was concluded from this study that the modified 9Cr-1Mo steel would keep its microstructural stability at 600 °C during the long-term aging period of 50,000 h, which was equivalent to the in-service life of the SFR fuel cladding.

  17. Effect of Thermomechanical Processing on Microstructure, Texture Evolution, and Mechanical Properties of Al-Mg-Si-Cu Alloys with Different Zn Contents

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.

    2017-07-01

    The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.

  18. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  19. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test

    PubMed Central

    Song, Wenwen; Bleck, Wolfgang

    2017-01-01

    The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels—in terms of ε-martensite and α’-martensite volume fractions, the stacking fault probability, and the twin fault probability—was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α’-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE. PMID:28946692

  20. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test.

    PubMed

    Ma, Yan; Song, Wenwen; Bleck, Wolfgang

    2017-09-25

    The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.

  1. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  2. Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.

    2016-10-01

    Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.

  3. Microstructure Evolution and Mechanical Response of Nanolaminate Composites Irradiated with Helium at Elevated Temperatures

    DOE PAGES

    Li, Nan; Demkowicz, Michael J.; Mara, Nathan A.

    2017-09-12

    In this paper, we summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Finally, overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.

  4. Microstructural Evolution During Cold Rolling and Subsequent Annealing in Low-Carbon Steel with Different Initial Microstructures

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Dannoshita, Hiroyuki; Maruoka, Kuniaki; Ushioda, Kohsaku

    2017-08-01

    Microstructural evolution during cold rolling and subsequent annealing of low-carbon steel with different initial microstructures was investigated from the perspective of the competitive phenomenon between recrystallization of ferrite and reverse phase transformation from ferrite to austenite. Three kinds of hot-rolled sheet specimens were prepared. Specimen P consisted of ferrite and pearlite, specimen B consisted of bainite, and specimen M consisted of martensite. The progress of recovery and recrystallization of ferrite during annealing was more rapid in specimen M than that in specimens P and B. In particular, the recrystallized ferrite grains in specimen M were fine and equiaxed. The progress of ferrite-to-austenite phase transformation during intercritical annealing was more rapid in specimen M than in specimens P and B. In all specimens, the austenite nucleation sites were mainly at high-angle grain boundaries, such as those between recrystallized ferrite grains. The austenite distribution was the most uniform in specimen M. Thus, we concluded that fine equiaxed recrystallized ferrite grains were formed in specimen M, leading to a uniform distribution of austenite.

  5. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  6. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    NASA Astrophysics Data System (ADS)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  7. Microstructure characterization and charpy toughness of P91 weldment for as-welded, post-weld heat treatment and normalizing & tempering heat treatment

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.

    2017-09-01

    The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.

  8. Simulations of Precipitate Microstructure Evolution during Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul

    Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.

  9. Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: Implications for inhalation hazards around old mines

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Higueras, Pablo; Jones, Tim; McDonald, Iain; Gibbons, Wes

    Almadén has a >2000y mining history and an unprecedented legacy of mercury contamination. Resuspended airborne particles were extracted from mine waste (Las Cuevas), retort site soil (Almadenejos), and urban car park dust (Almadén), separated into fine (PM 10) and coarse (PM >10 μm ) fractions, analysed for mercury using ICP-MS, and individual HgPM characterised using SEM. Cold extractable mercury concentrations in PM 10 range from 100 to 150 μg g -1 (car parks), to nearly 6000 μg g -1 (mine waste), reaching a world record of 95,000 μg g -1 above the abandoned retort at Almadenejos where ultrafine HgPM have pervaded the brickwork and soil and entered the food chain: edible wild asparagus stem material from here contains 35-65 μg g -1 Hg, and pig hair from animals living, inhaling and ingesting HgPM 10 at the site yielded 8-10 μg g -1. The PM 10 fraction (dusts easily wind transported and deeply inhaled) contains much more mercury than the coarser fraction. The contribution of HgPM 10 to ecosystem contamination and potential human health effects around old mercury mines has been underestimated.

  10. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  11. Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yuanyuan; Ye, Xingnan; Ma, Zhen; Tao, Ye; Wang, Ruyu; Zhang, Ci; Yang, Xin; Chen, Jianmin; Chen, Hong

    2017-06-01

    We characterize a representative particulate matter (PM) episode that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The mass ratio of SNA / PM1. 0 (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. During the representative PM episode, the calculated PM was always consistent with the measured PM1. 0, indicating that the enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating the accumulation of local emissions. Three banana-shaped particle evolutions were consistent with the rapid increase of PM1. 0 mass loading, indicating that the rapid size growth by the condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that the secondary transformation of NOx and SO2 was one of the most important contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes were primarily responsible for the haze pollution in Shanghai during wintertime.

  12. Spatio-temporal Variations and Source Contributions of China's Premature Deaths Attributable to Ambient PM2.5

    NASA Astrophysics Data System (ADS)

    Rong, X.; Wang, H.

    2016-12-01

    With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantifications of the spatial and temporal variations of health impacts attributed to ambient fine particulate matter (PM2.5) are not only important for designing effective strategies in mitigating the health damage of air pollution, but also provide valuable references for other developing regions in the world. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2014 attributed to ambient PM2.5 in accord with Global Burden of Disease (GBD) based on a high resolution population density map, satellite retrieved PM2.5 concentration, and provincial health data. An Integrated Exposure Response (IER) model was applied to analyze the premature deaths for four leading causes (ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC), stroke) in China. The contributions of emission sources to air pollution and related mortality burdens across China were further evaluated by incorporating CMAQ model. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides the increased PM2.5 concentration, rapid urbanization has been attracting large population migration into the more developed eastern coastal urban areas, intensifying the overall health impacts. Our analysis implies that the health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. China's regulations on PM2.5 should not be loosened on inner provinces to avoid such national level environmental inequities, and furthermore policies should be designed to form incentive mechanisms to transfer advanced technologies of production and emissions control from the coastal regions to the interior regions. Finally, we discussed the contributions of various emission sources (e.g., power plant, transportation, industries, residential) to premature deaths due to ambient PM2.5 across China.

  13. PM10 Concentration levels at an urban and background site in Cyprus: The impact of urban sources and dust storms

    PubMed Central

    Achilleos, Souzana; Evans, John S.; Yiallouros, Panayiotis K.; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2016-01-01

    Air quality in Cyprus is influenced by both local and transported pollution including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993 through December 11, 2008, and Ayia Marina (rural background representative) from January 1, 1999 through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records and satellite data were used to identify dust storm days. We investigated long term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. PMID:25562931

  14. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  15. Magnetic and microstructural characterisation of FeNi: Insight into the formation and impact history of the IAB parent body

    NASA Astrophysics Data System (ADS)

    Nichols, C. I. O.; Krakow, R.; Herrero-Albillos, J.; Kronast, F.; Northwood-Smith, G.; Harrison, R. J.

    2017-12-01

    The IABs represent one of only two groups of iron meteorites that did not form by fractional crystallization of liquid Fe-Ni in the core of a differentiated planetesimal. Instead, they are believed to originate from a partially differentiated body that was severely disrupted by one or more impacts during its early history. Paleomagnetic signals from two IABs, Toluca and Odessa, were investigated using X-ray magnetic circular dichroism (XMCD) and X-ray photoemission electron microscopy (X-PEEM) to image the magnetisation of the cloudy zone. The IABs do not appear to have experienced a magnetic field, consistent with the lack of a metallic core on the parent body. We also present a detailed microstructural and magnetic study of the observed FeNi microstructures, characterising their properties using XMCD and X-PEEM. The crystallographic architecture of the microstructures was analysed using electron backscatter diffraction (EBSD). Odessa and Toluca both exhibit a complex series of microstructures, requiring an unusual evolution during slow cooling. A conventional Widmanstätten sequence of kamacite, tetrataenite rim and cloudy zone developed via slow cooling to temperatures below 400 ºC. Subsequent modification of the microstructures resulted in the formation of pearlitic plessite and spheroidized plessite. Compositional and crystallographic analysis suggests that pearlitic and spheroidized plessite formed by impact modification of the cloudy zone and martensite, respectively. This study highlights the importance of characterising microstructures in order to corroborate paleomagnetic observations, as well as improving our understanding of the processes effecting planetary formation and evolution.

  16. Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy

    NASA Astrophysics Data System (ADS)

    Jung, Jaimyun; Yoon, Jae Ik; Kim, Jung Gi; Latypov, Marat I.; Kim, Jin You; Kim, Hyoung Seop

    2017-12-01

    Deformation twinning from grain boundaries is often observed in face-centered cubic metals with low stacking fault energy. One of the possible factors that contribute to twinning origination from grain boundaries is the intergranular interactions during deformation. Nonetheless, the influence of mechanical interaction among grains on twin evolution has not been fully understood. In spite of extensive experimental and modeling efforts on correlating microstructural features with their twinning behavior, a clear relation among the large aggregate of grains is still lacking. In this work, we characterize the micromechanics of grain-to-grain interactions that contribute to twin evolution by investigating the mechanical twins near grain boundaries using a full-field crystal plasticity simulation of a twinning-induced plasticity steel deformed in uniaxial tension at room temperature. Microstructures are first observed through electron backscatter diffraction technique to obtain data to reconstruct a statistically equivalent microstructure through synthetic microstructure building. Grain-to-grain micromechanical response is analyzed to assess the collective twinning behavior of the microstructural volume element under tensile deformation. Examination of the simulated results reveal that grain interactions are capable of changing the local mechanical behavior near grain boundaries by transferring strain across grain boundary or localizing strain near grain boundary.

  17. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel

    PubMed Central

    Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-01

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743

  18. Deformation Behavior and Microstructure Evolution of As-Cast 42CrMo Alloy in Isothermal and Non-isothermal Compression

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua

    2016-11-01

    The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.

  19. 4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.

    Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularlymore » in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.« less

  20. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.

    PubMed

    Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-22

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

  1. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    NASA Astrophysics Data System (ADS)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-06-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  2. Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadayyon, Ghazal, E-mail: Ghazal.tadayyon@gmail.co

    The main objective of this work was to investigate the thermomechanical behavior and microstructural changes of a Ti-rich NiTi shape memory alloy (SMA). The microstructural and texture evolution of aged NiTi alloy at different degrees of deformation were elicited by transmission electron microscopy (TEM). An effort was made to correlate results obtained from the tensile test with results from microstructure studies. The undeformed sample reveals a self-accommodated morphology with straight and well defined twin boundaries. At different stages of deformation, diverse mechanisms were involved. These mechanisms include marstraining, detwinning accompanied by dislocation movement, and finally, severe plastic deformation, subdivision andmore » amorphization of the matrix. Under increasing strains, high density lattice defects were generated and the morphology of B19’ became disordered. - Graphical abstract: The summary of microstructure changes of the martensite twins during tensile deformation in polycrystalline NiTi SMAs. - Highlights: • Initial elastic response, dislocation avalanche and deformation bands were studied. • < 011 > Type II twin accompanied by detwinned area after 2% cold work was observed. • Visible parallel fine stacking faults showed plastic flow of the material. • At higher strains, subgrains changed to recrystallized, finely amorphous structure.« less

  3. Formation of Foam-like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligand-Assisted Foaming Process.

    PubMed

    Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu

    2015-09-14

    Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Bo; Yang, Zhi-liang; Wu, Guang-xin; Zhang, Jie-yu; Zhao, Shun-li

    2016-03-01

    In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.

  5. Traffic Related Air Quality Trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, P.; Andrade, M. D. F.

    2014-12-01

    An air quality based approach is used to determine pollutant-trends of carbon monoxide (CO), nitrogen oxides (NOX), ozone (O3) and particle matter (PM10) mostly from road transport sources in the Metropolitan Region of São Paulo (MRSP) for the years 2000-2013. Road transport sources included flex (gasoline and ethanol) cars and motorcycles and diesel trucks and buses. Air pollutant concentrations for the transport sources were measured and related with the fuel sales by the emission factors (EFs) expressed in grams of pollutant per kilometer driven or unit of fuel consumed. Over the 14- year time period, pollutant concentrations of NOX, CO and PM10 decreased by 0.65, 0.37 and 0.71% month-1, respectively. Oppossitely during this time, fuel sales of gasoline, ethanol and diesel increased by 0.26, 1.96 and 0.38% month-1. Flex engines are the prevalent road source of CO, oppositely to diesel ones which appear to be the major source of NOX and PM10. Decrease in air pollutants are partially offset by the increment of fuel sales and related transport activity. For CO, there have been steep decreases in pollutant concentrations (rate of -5 parts per billion, ppb, month-1) for gasoline and ethanol engines between 2000 and 2013. Similarly, diesel related NOX and PM10 concentrations decreased but at slower time rates (-0.25 and -0.09 ppb month-1). Rates uncertainties are larger for diesel pollutants (coefficient of determination R of -0.47 and -0.41) than for gasoline and ethanol related CO (R equal to -0.72). This paper led to the following conclusions: (1) concentrations of gasoline and ethanol related CO, estimated by air quality network measurements, decreased at steeper rate than diesel pollutants NOX and PM10, (2) transport source contributions to the O3 formation differ significantly through the time period focus of this work, with higher contributions coming from gasoline and ethanol engines at the beinning of the reviewed period (2000-2007) and from diesel engines at the end (2008-2013).

  6. Variable-order fractional MSD function to describe the evolution of protein lateral diffusion ability in cell membranes

    NASA Astrophysics Data System (ADS)

    Yin, Deshun; Qu, Pengfei

    2018-02-01

    Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.

  7. The effects of CuO particle size on microstructure evolution of AgCuO compo-sites in plastic deformation process: finite element simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Li, Zhiguo; Cao, Hanxing; Zhou, Xiaolong; Zhou, Zhaobo; Cao, Jianchun

    2018-04-01

    The effects of CuO with different particle sizes on the microstructure evolution of AgCuO composite material during plastic deformation process were investigated by finite element (FE) analysis and experiment. The results are as follows: with the decrease of CuO particle size, the degree of radial compression and axial elongation of CuO particle cluster increase gradually, as well as the dispersion of CuO also increase. Meanwhile, the shape of CuO particles is constantly transformed from polygonal to fibrous, which makes the number of linear fibrous CuO increase continuously while bent fibrous CuO reduce gradually. By comparing the simulation and experiment results we find that there are four different typical microstructure regions, which caused by the interaction between monoclinic and cubic CuO during the extrusion process.

  8. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    NASA Astrophysics Data System (ADS)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  9. Microstructure Evolution and Failure Analysis of an Aluminum-Copper Cathode Conductive Head Produced by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Wei, Yanni; Luo, Yongguang; Qu, Hongtao; Zou, Juntao; Liang, Shuhua

    2017-12-01

    In this paper, microstructure evolution and failure analysis of the aluminum-copper interface of cathode conductive heads during their use were studied. The interface morphologies, compositions, conductivity and mechanical properties were investigated and analyzed. Obvious corrosion was found on the surface of the contact interface, which was more prevalent on an Al matrix. The crack increased sharply in the local metallurgical bonding areas on the interface, with the compound volume having no significant change. The phase transformation occurred on the interface during use, which was investigated using the elemental composition and x-ray diffraction pattern. The microhardness near the interface increased accordingly. An obvious electrical conductivity decrease appeared on the Al/Cu interface of the cathode conductive head after use over a specific time interval. Therefore, the deterioration of the microstructures and corrosion are the primary factors that affect the electrical conductivity and effective bonding, which will lead to eventual failure.

  10. Adaptive characterization of recrystallization kinetics in IF steel by electron backscatter diffraction.

    PubMed

    Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek

    2013-12-01

    In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  11. Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology

    NASA Astrophysics Data System (ADS)

    Davis, Ryan Scott

    The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.

  12. Microstructure evolution of heat treated NiTi alloys

    NASA Astrophysics Data System (ADS)

    Losertová, M.; Štencek, M.; Matýsek, D.; Štefek, O.; Drápala, J.

    2017-11-01

    Superelastic behavior of off-stoichiometric NiTi alloys is significantly affected by microstructure changes due to heat treatment. Applying appropriate thermal treatments important effects on microstructural changes, transformation temperatures and thermomechanical properties of final NiTi products can be achieved. The experimental samples of NiTi alloy with 55.8 wt.% Ni were submitted to heat treatment and the microstructures before and after the treatment were observed. The thermal regimes consisted of annealing treatment at 600 °C for 1 hour followed by water quenching and of ageing at eight different temperatures (250, 270, 290, 300, 350, 400, 450 and 500 °C) for 30 minutes. Microstructure features studied by means of optical and scanning electron microscopies, EDX microanalyses, X-ray diffraction analyses and microhardness measurement, have shown that higher ageing temperatures led to microstructure changes and corresponding increase in microhardness.

  13. Bibliography on Hot Isostatic Pressing (HIP) Technology

    DTIC Science & Technology

    1992-11-01

    alloys are used mainly as compressor discs and fan blades . Today titanium alloys are more important as structural materials for modern warplanes and...2.5Fc, microstructure. fatigue life crack initiation, tensile properties 2. P/M Processing of Titanium Aluminides Moll, John H., Yolton, C. F...toughness, hardness, titanium additions niobium additions 2. Consolidation of Nickel Aluminide Powders Using Hot Isostatic Pressing Wright, R. N., Knibloe

  14. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious //ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.« less

  15. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.

    PubMed

    Han, Changjun; Wang, Qian; Song, Bo; Li, Wei; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng

    2017-07-01

    Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microstructure and Texture Evolution in Double-Cone Samples of Ti-6Al-4V Alloy with Colony Preform Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Kun Vanna; Lim, Chao Voon Samuel; Zhang, Kai; Sun, Jifeng; Yang, Xiaoguang; Huang, Aijun; Wu, Xinhua; Davies, Christopher H.

    2015-12-01

    Heat-treated Ti-6Al-4V forged bar with colony microstructure was machined into double-cone-shaped samples for a series of isothermal uniaxial compression test at 1223 K (950 °C) with varying constant crosshead speeds of 12.5, 1.25, and 0.125 mms-1 to a height reduction of 70 pct. Another set of samples deformed under the same conditions were heat treated at 1173 K (900 °C) for an hour followed by water quench. Finite element modeling was used to provide the strains, strain rates, and temperature profiles of the hot compression samples, and the microstructure and texture evolution was examined at four positions on each sample, representative of different strain ranges. Lamellae fragmentation and kinking are the dominant microstructural features at lower strain range up to a maximum of 2.0, whereas globularization dominates at strains above 2.0 for the as-deformed samples. The globularization fraction generally increases with strain, or by post-deformation heat treatment, but fluctuates at lower strain. The grain size of the globular α is almost constant with strain and maximizes for samples with the lowest crosshead speed due to the longer deformation time. The globular α grain also coarsens because of post-deformation heat treatment, with its size increasing with strain level. With respect to texture evolution, a basal transverse ring and another component 30 deg from ND is determined for samples deformed at 12.5 mms-1, which is consistent with the temperature increase to close to β-transus from simulation results. The texture type remains unchanged with its intensity increased and spreads with increasing strain.

  17. Manufacturing of microcomponents in a research institute under DIN EN ISO 9001

    NASA Astrophysics Data System (ADS)

    Maas, Dieter; Karl, Bernhard; Saile, Volker; Schulz, Joachim

    2000-08-01

    The Institute for Microstructure Technology at Forschungszentrum Karlsruhe has implemented a rigorous quality management system and was certified according to the DIN ISO EN 9001 standard in January 2000.

  18. C-reactive protein (CRP) and long-term air pollution with a focus on ultrafine particles.

    PubMed

    Pilz, Veronika; Wolf, Kathrin; Breitner, Susanne; Rückerl, Regina; Koenig, Wolfgang; Rathmann, Wolfgang; Cyrys, Josef; Peters, Annette; Schneider, Alexandra

    2018-04-01

    Long-term exposure to ambient air pollution contributes to the global burden of disease by particularly affecting cardiovascular (CV) causes of death. We investigated the association between particle number concentration (PNC), a marker for ultrafine particles, and other air pollutants and high sensitivity C-reactive protein (hs-CRP) as a potential link between air pollution and CV disease. We cross-sectionally analysed data from the second follow up (2013 and 2014) of the German KORA baseline survey which was conducted in 1999-2001. Residential long-term exposure to PNC and various other size fractions of particulate matter (PM 10 with size of <10 μm in aerodynamic diameter, PM coarse 2.5-10 μm or PM 2.5  < 2.5 μm, respectively), soot (PM 2.5 abs: absorbance of PM 2.5 ), nitrogen oxides (nitrogen dioxide NO 2 or oxides NO x , respectively) and ozone (O 3 ) were estimated by land-use regression models. Associations between annual air pollution concentrations and hs-CRP were modeled in 2252 participants using linear regression models adjusted for several confounders. Potential effect-modifiers were examined by interaction terms and two-pollutant models were calculated for pollutants with Spearman inter-correlation <0.70. Single pollutant models for PNC, PM 10 , PM coarse , PM 2.5 abs, NO 2 and NO x showed positive but non-significant associations with hs-CRP. For PNC, an interquartile range (2000 particles/cm 3 ) increase was associated with a 3.6% (95% CI: -0.9%, 8.3%) increase in hs-CRP. A null association was found for PM 2.5 . Effect estimates were higher for women, non-obese participants, for participants without diabetes and without a history of cardiovascular disease whereas ex-smokers showed lower estimates compared to smokers or non-smokers. For O 3 , the dose-response function suggested a non-linear relationship. In two-pollutant models, adjustment for PM 2.5 strengthened the effect estimates for PNC and PM 10 (6.3% increase per 2000 particles/cm 3 [95% CI: 0.4%; 12.5%] and 7.3% per 16.5 μg/m 3 [95% CI: 0.4%; 14.8%], respectively). This study adds to a scarce but growing body of literature showing associations between long-term exposure to ultrafine particles and hs-CRP, one of the most intensely studied blood biomarkers for cardiovascular health. Our results highlight the role of ultrafine particles within the complex mixture of ambient air pollution and their inflammatory potential. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. 3D Microstructures for Materials and Damage Models

    DOE PAGES

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    2017-02-01

    Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less

  20. Evolution of the viscosity of Earth's upper mantle: Grain-boundary sliding and the role of microstructure in olivine deformation

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.

    Many features of plate tectonics cannot be explained with standard rheological models of the upper mantle. In particular, the localization of deformation at plate boundaries requires the viscosity of the constituent rocks to evolve spatially and temporally. Such rheological complexity may arise from changing microstructural state variables (e.g., grain size and crystallographic-fabric strength), but the degree to which microstructure contributes to the evolution of viscosity is unclear given our current understanding of deformation mechanisms in mantle minerals. Dislocation-accommodated grain-boundary sliding (GBS) is a potentially critical mechanism for localizing deformation in olivine because it imparts a sensitivity of the viscosity to the state of the microstructure while simultaneously providing mechanisms for changing the microstructure. However, many details of GBS in olivine are currently unknown including 1) the magnitude of the sensitivity of strain rate to crystallographic fabric and grain size, 2) the strength of the crystallographic fabrics produced, and 3) the anisotropy in viscosity of polycrystalline aggregates. Detailed knowledge of these unknowns is necessary to assess the importance of microstructural evolution in the operation of plate tectonics. This dissertation investigates the details of GBS in olivine through four sets of laboratory-based experiments. In Chapter 2, triaxial compressive creep experiments on aggregates of San Carlos olivine are used to develop a flow law for olivine deforming by GBS. Extrapolations of strain rate to geological conditions using the derived flow law indicate that GBS is the dominant deformation mechanism throughout the uppermost mantle. Crystallographic fabrics observed in deformed samples are consistent with upper-mantle seismic anisotropy. In Chapter 3, torsion experiments on iron-rich olivine are used to determine the rheological behavior of olivine deforming by GBS at large strains. The sensitivity of the strain rate to grain size and stress is demonstrated to be consistent with low-strain experiments. Additionally, the sensitivity of strain rate to the development of a crystallographic fabric is determined. Constitutive relationships including microstructural evolution are developed that accurately predict the observed stress as a function of strain. The results of Chapter 3 confirm that significant weakening is associated with both grain-size reduction and crystallographic-fabric development. In Chapter 4, torsion experiments on iron-rich olivine are used to determine if microstructural evolution can lead to strain localization. Experiments were conducted with either constant-strain-rate or constant-stress boundary conditions. Localization is only observed in samples deformed at constant-stress, which suggests boundary conditions affect the critical size of strength perturbation necessary for localization to occur. Strain localization is correlated with fine-grained regions, and a feedback mechanism between grain-size reduction and strain rate is proposed. In Chapter 5, both torsion and tension experiments are used to assess the mechanical anisotropy of previously deformed samples. Based on the direction of the applied stress relative to the orientation of a pre-existing crystallographic fabric, the viscosity is demonstrated to vary by over an order of magnitude. This observation suggests deformation can localize in regions that were previously deformed and retained a strong crystallographic fabric. The results of this dissertation elucidate the interplay between microstructure and deformation of olivine in the GBS regime. Because the viscosity of olivine-rich rocks deforming by GBS is dependent on both grain size and crystallographic fabric, heterogeneities in these microstructural parameters can lead to spatial and temporal variations in viscosity, possibly explaining the large-scale patterns of deformation in the upper mantle. Future numerical simulations can test the importance of microstructure in geodynamic processes by incorporating the constitutive relationships outlined in this dissertation.

  1. A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong

    2018-06-01

    The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.

  2. PM Levels, Composition and Evolution in a Highly Industrialised Area. Objectives of Improvement

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Alastuey, A.; Monfort, E.; Mantilla, E.; Miro, J. V.

    2007-05-01

    Evolution of levels and speciation of PM10 in the ceramic producing area of Castello (East Spain) was studied from April 2002 until December 2005. To this end, daily PM10 sampling was carried out at three urban sites and one suburban site of the area and chemical analyses were made in about 35 % of the samples. Average PM10 levels varied between 27-36 µg/m3 for the study period. The major constituent was mineral matter, exceeding by 5-12 µg/m3 the usual ranges of annual mineral loads in PM10 at similar Spanish urban or regional background sites with no industrial influence. Based on this comparison and on the efficiency of emission abatement techniques, a reduction target of 3-5 µgPM10/m3 of the annual mean seems to be achievable at the urban sites. Moreover, levels of Li, Sc, Co, Zn, As, Se, Rb, Zr, Cd, Cs, Ce, Tl and Pb were higher than the usual range of concentration in urban areas of Spain. Of these elements, Zr, Zn, Pb and As may be considered as tracers of the ceramic emissions from the study area. Their levels showed a simultaneous decrease with the progressive implementation of emission abatement techniques in frit (glaze component for the manufacture of glazed tiles) fusion kilns of the area. Given the high proportion of facilities with implemented abatement techniques at the end of the study period, the reduction margin for these elements is very low.

  3. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.

    PubMed

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Clausmeyer, Till; Tekkaya, A Erman

    2018-05-09

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  4. On the influence of recrystallization on snow fabric and microstructure: study of a snow profile in Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Schneebeli, Martin; Montagnat, Maurine; Matzl, Margret

    2016-04-01

    Temperature gradient metamorphism affects the Antarctic snowpack up to 5 meters depth, which lead to a recrystallization of the ice grains by sublimation of ice and deposition of water vapor. By this way, it is well known that the snow microstructure evolves (geometrical changes). Also, a recent study shows an evolution of the snow fabric, based on a cold laboratory experiment. Both fabric and microstructure are required to better understand mechanical behavior and densification of snow, firn and ice, given polar climatology. The fabric of firn and ice has been extensively investigated, but the publications by Stephenson (1967, 1968) are to our knowledge the only ones describing the snow fabric in Antarctica. In this context, our work focuses on snow microstructure and fabric in the first meters depth of the Antarctic ice sheet, where temperature gradients driven recrystallization occurs. Accurate details of the snow microstructure are observed using micro-computed tomography. Snow fabrics were measured at various depths from thin sections of impregnated snow with an Automatic Ice Texture Analyzer (AITA). A definite relationship between microstructure and fabric is found and highlights the influence of metamorphism on both properties. Our results also show that the metamorphism enhances the differences between the snow layers properties. Our work stresses the significant and complex evolution of snow properties in the upper meters of the ice sheet and opens the question of how these layer properties will evolve at depth and may influence the densification.

  5. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the overview for the EDSE in the Microgravity Development Lab (MDL).

  6. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Video and power rack for the EDSE in the Microgravity Development Lab (MDL).

  7. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrite irritator control for the EDSE in the Microgravity Development Lab (MDL).

  8. The Microstructural Evolution of Haynes 282 Alloy During Long-Term Exposure Tests

    NASA Astrophysics Data System (ADS)

    Fu, Rui; Zhao, Shuangqun; Wang, Yanfeng; Li, Qiang; Ma, Yunhai; Lin, Fusheng; Chi, Chengyu

    Haynes 282 alloy is a γ' precipitation strengthened nickel based superalloy designed by Haynes International Incorporation in 2005. This alloy is currently being evaluated for use as high temperature components at 700°C Advanced-Ultra Supercritical (A-USC)power plants, thus it is particularly important to have good creep property and microstructure stability.

  9. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates spacing on acceleration factor was investigated. Results indicated that a smaller initial precipitate spacing would tend to result in a longer life in mild thermal cycling/service (where there is lower stresses). Accordingly, it is essential to incorporate the dependence of damage rate (i.e. recrystallization) on precipitate coarsening in any predictions.

  10. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured quantitatively using BbDS. These materials are typically used in solid oxide fuel cells (SOFC). Results show significant effect of microstructural design on material properties at multiple temperatures (up to 800 °C). In the later part of the thesis, we will focus on microstructural changes of fiber reinforced composite materials due to impact and static loading. The changes in dielectric response can then be linked to the bulk mechanical properties of the material and various damage modes. Observing trends in dielectric response enables us to further determine local mechanisms and distribution of properties throughout the damaged specimens. A 3D X-ray microscope and a digital microscope have been used to visualize these changes in material microstructure and validate experimental observations. The increase in damage observed in the material microstructure can then also be linked to the changes in dielectric response. Results show that BbDS is an extremely useful tool for identifying microstructural changes within a heterogeneous material and particularly useful in relating remaining properties. Dielectric material variables can be used directly in property degradation laws and help develop a framework for future predictive modeling methodologies.

  11. Association of long-term PM2.5 exposure with mortality using different air pollution exposure models: impacts in rural and urban California.

    PubMed

    Garcia, Cynthia A; Yap, Poh-Sin; Park, Hye-Youn; Weller, Barbara L

    2016-01-01

    Most PM2.5-associated mortality studies are not conducted in rural areas where mortality rates may differ when population characteristics, health care access, and PM2.5 composition differ. PM2.5-associated mortality was investigated in the elderly residing in rural-urban zip codes. Exposure (2000-2006) was estimated using different models and Poisson regression was performed using 2006 mortality data. PM2.5 models estimated comparable exposures, although subtle differences were observed in rate ratios (RR) within areas by health outcomes. Cardiovascular disease (CVD), ischemic heart disease (IHD), and cardiopulmonary disease (CPD), mortality was significantly associated with rural, urban, and statewide chronic PM2.5 exposures. We observed larger effect sizes in RRs for CVD, CPD, and all-cause (AC) with similar sizes for IHD mortality in rural areas compared to urban areas. PM2.5 was significantly associated with AC mortality in rural areas and statewide; however, in urban areas, only the most restrictive exposure model showed an association. Given the results seen, future mortality studies should consider adjusting for differences with rural-urban variables.

  12. Final Environmental Assessment for the Okaloosa Regional Airport Expansion at Eglin Air Force Base, FL

    DTIC Science & Technology

    2006-06-01

    construction Total daily trips are then applied to the following factors depending on the corresponding years. Year 2005 through 2009: VOCE ...016 * Trips NOxE = .015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E...0022 * Trips COE = .262 * Trips To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 Nox (tons/yr) = NOxE

  13. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  14. 77 FR 40910 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ..., 500 E Street SW., Washington, DC 20436, Telephone: (202) 205-2000. STATUS: Open to the public. MATTERS... Commission. Lisa R. Barton, Acting Secretary to the Commission. [FR Doc. 2012-17056 Filed 7-9-12; 4:15 pm...

  15. The deformation behavior and microstructure evolution of duplex Mg-9Li-1Al alloy during superplasticity tensile testing

    NASA Astrophysics Data System (ADS)

    Liu, Meiduo; Zheng, Haipeng; Zhang, Tianlong; Wu, Ruizhi

    2017-12-01

    The superplastic mechanical properties and microstructure evolution of the duplex Mg-9Li-1Al alloy were investigated. The tensile testing results show that, the elongation of the as-extruded Mg-9Li-1Al alloy reaches 510% at 573 K with a strain rate of 2×10-4 s-1. During the deformation process, the strips of α phase break into equiaxed structure. This phenomenon can be attributed to a particular dynamic recrystallization, which suggests that the β phase can recrystallize in the α phase due to the small misfit degree between α phase and β phase.

  16. Influence of multi-walled carbon nanotubes on melting temperature and microstructural evolution of Pb-free Sn-5Sb/Cu solder joint

    NASA Astrophysics Data System (ADS)

    Dele-Afolabi, T. T.; Azmah Hanim, M. A.; Norkhairunnisa, M.; Suraya, M. T.; Yusoff, H. M.

    2017-09-01

    In this study, the effects of multi-walled carbon nanotubes on the melting temperature and microstructural evolution of the Sn-5Sb/Cu joints are evaluated. Plain and carbon nanotubes (CNTs) reinforced Sn-5Sb solder systems with solder formulations Sn-5Sb, Sn-5Sb-0.01CNT, Sn-5Sb-0.05CNT and Sn-5Sb-0.1CNT were prepared through the powder metallurgy route and thereafter samples were subjected to thermal and microstructural evaluation. As retrieved from the DSC scans, a slight decline in the peak temperature was observed in the composite solders which is indicative of the CNTs role in exciting surface instability in the host Sn matrix. In order to prepare the solder joints and analyze the interfacial intermetallic compound (IMC) evolution, respective solder systems were placed on copper (Cu) substrate and subjected to both reflow soldering and isothermal aging (170°C) conditions. From the IMC thickness result, considerable retardation in the IMC layer growth was observed in the CNTs reinforced solder joints, especially the 0.05wt.% CNTs solder system owing to the inhibition of Sn atoms diffusion by reinforcement material.

  17. A Monte Carlo model for 3D grain evolution during welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less

  19. A Monte Carlo model for 3D grain evolution during welding

    DOE PAGES

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-08-04

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  20. An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum AI6061 alloy

    NASA Astrophysics Data System (ADS)

    Vaseghi, M.; Karimi Taheri, A.; Kim, H. S.

    2014-08-01

    In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to phi=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron back-scattering diffraction (EBSD). The grains of Al6061 aluminum alloy were refined significantly at 100 and 150 °C with greater pass numbers and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into highangle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAP 4 passes.

  1. The Evolution of Solid Oxide Fuel Cell Nickel-Yttria Stabilized Zirconia Anodes Studied Using Electrochemical and Three-Dimensional Microstructural Characterizations

    NASA Astrophysics Data System (ADS)

    Kennouche, David O.

    This thesis focuses on Solid Oxide Fuel Cells (SOFCs). The 21st century will see major changes in the way energy is produced, stored, and used around the world. SOFCs, which provide an efficient, scalable, and low-pollution alternative method for electricity generation, are expected to play an important role. SOFCs can also be operated in electrolysis mode for energy storage, important since health and economic reasons are causing a shift towards intermittent renewable energy resources. However, multiple limitations mainly linked to cost and durability have prevented the expansion of this technology to mass markets. This work focuses on the Nickel - Yttria Stabilized Zirconia (Ni-YSZ) anode that is widely used in SOFCs. Coarsening of Ni in the Ni-YSZ anode has been widely cited as a primary cause of long-term SOFC degradation. While there have been numerous studies of Ni coarsening reported, these have typically only tracked the evolution of Ni particle size, not the entire microstructure, and have typically not been correlated directly with electrochemical performance. In this thesis, the advanced tomography techniques Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography and Trans- mission X-ray Microscopy (TXM) have been utilized to enable insight into the evolution of Ni-YSZ structure and how it relates to performance degradation. Extensive anode aging studies were done for relatively short times using temperatures higher than in normal SOFC operation in order to accelerate microstructural evolution. In addition the microstructure changes were correlated with changes in anode polarization resistance. While most of the measurements were done by comparing different anodes aged under different conditions, the first example of a "pseudo in situ" measurement where the same anode was 3D imaged repeatedly with intervening aging steps, was also demonstrated. A microstructural evolution model that focuses on the active three-phase boundary density was fitted to the experimental data, and subsequently used to predict the change in anode three-phase boundary density and average particle size for extended times under normal SOFC conditions. Characterization of other anodes (pulsed-laser deposited and micro-tubular geometries) produced by international collaborators is also presented. Finally, a testing setup and protocol for anode life testing with current density and overpotential has been developed and implemented. Early test results are presented.

  2. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    NASA Astrophysics Data System (ADS)

    Schmidtchen, M.; Rimnac, A.; Warczok, P.; Kozeschnik, E.; Bernhard, C.; Bragin, S.; Kawalla, R.; Linzer, B.

    2016-03-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness.

  3. Atomic scale modeling of defect production and microstructure evolution in irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.

    1997-04-01

    Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitialmore » clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.« less

  4. Fabrication and Sintering Behavior of Er:SrF₂ Transparent Ceramics using Chemically Derived Powder.

    PubMed

    Liu, Jun; Liu, Peng; Wang, Jun; Xu, Xiaodong; Li, Dongzhen; Zhang, Jian; Nie, Xinming

    2018-03-22

    In this paper, we report the fabrication of high-quality 5 at. % Er 3+ ions doped SrF₂ transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF₂ ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF₂ was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF₂ transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF₂ single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er 3+ ions doped SrF₂ transparent ceramics.

  5. Microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys observed by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Pang, Z. Y.; Han, S. H.; Wang, Y. T.; Wang, W. H.; Han, B. S.

    2005-03-01

    The microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys have been achieved simultaneously by employing a magnetic force microscope directly on the as-cast cylinder rod surface for the first time. By varying the content of Fe, the microstructure of the Pr-based alloy changes progressively from a full glassy state to a composite state with nanocrystalline particles embedded in the glassy matrix, and finally into a nanostructured state. The accompanying magnetic property gradually changes from paramagnetic to hard. The experiment directly evidences the existence of exchange coupling between the crystallites and the variety of the grain-size-dependent magnetic properties can be well explained by Löffler et al.'s new random-anisotropy model (Löffler, et al., Phys. Rev. Lett. 85 (9) (2000) 1990).

  6. Numerical analysis of stress effects on Frank loop evolution during irradiation in austenitic Fe&z.sbnd;Cr&z.sbnd;Ni alloy

    NASA Astrophysics Data System (ADS)

    Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira

    1995-08-01

    Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.

  7. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  8. Flight Planning for the International Space Station-Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper is an overview of the status and science for the LODESTARS research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures

  9. The Northern Ireland Framework for Peace: Terrorism and its Aftermath

    DTIC Science & Technology

    2012-04-10

    Manchester University Press, 2000. Crawshaw , Colonel (Retd) Michael. The Evolution of British COIN. Joint Doctrine Publication 3-40: 19...Margaret E. McGuinness (Maryland: Rowman & Littlefield, 2000), 206. 35 Colonel (Retd) Michael Crawshaw , “The Evolution of British COIN”. Joint

  10. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Part 2; Acquire TM Date for Type B Sensors for "Express-A" Number 2 Satellite for the Period of March 12, 2000 to and Including June 15, 2000, Task 25

    NASA Technical Reports Server (NTRS)

    Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  11. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Acquire Express-A2 SPT-100 Based Propulsion Subsystem and Other Subsystem Flight Operation TM-Data for the Period of March 12, 2000 to and Including June 15, 2000, Task 29

    NASA Technical Reports Server (NTRS)

    Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney s Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  12. Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2.5 levels.

    PubMed

    Yu, Chao; Di Girolamo, Larry; Chen, Liangfu; Zhang, Xueying; Liu, Yang

    2015-01-01

    The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter <2.5 μm in aerodynamic diameter) are increasingly being studied from satellite aerosol remote sensing data. However, cloud cover severely limits the coverage of satellite-driven PM2.5 models, and little research has been conducted on the association between cloud properties and PM2.5 levels. In this study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000-2010. We found that both satellite-retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.

  13. A hierarchical modeling approach to estimate regional acute health effects of particulate matter sources

    PubMed Central

    Krall, J. R.; Hackstadt, A. J.; Peng, R. D.

    2017-01-01

    Exposure to particulate matter (PM) air pollution has been associated with a range of adverse health outcomes, including cardiovascular disease (CVD) hospitalizations and other clinical parameters. Determining which sources of PM, such as traffic or industry, are most associated with adverse health outcomes could help guide future recommendations aimed at reducing harmful pollution exposure for susceptible individuals. Information obtained from multisite studies, which is generally more precise than information from a single location, is critical to understanding how PM impacts health and to informing local strategies for reducing individual-level PM exposure. However, few methods exist to perform multisite studies of PM sources, which are not generally directly observed, and adverse health outcomes. We developed SHARE, a hierarchical modeling approach that facilitates reproducible, multisite epidemiologic studies of PM sources. SHARE is a two-stage approach that first summarizes information about PM sources across multiple sites. Then, this information is used to determine how community-level (i.e. county- or city-level) health effects of PM sources should be pooled to estimate regional-level health effects. SHARE is a type of population value decomposition that aims to separate out regional-level features from site-level data. Unlike previous approaches for multisite epidemiologic studies of PM sources, the SHARE approach allows the specific PM sources identified to vary by site. Using data from 2000–2010 for 63 northeastern US counties, we estimated regional-level health effects associated with short-term exposure to major types of PM sources. We found PM from secondary sulfate, traffic, and metals sources was most associated with CVD hospitalizations. PMID:28098412

  14. Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelles, D.S.

    Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.

  15. Combined use of land use regression and BenMAP for estimating public health benefits of reducing PM2.5 in Tianjin, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Shi, Mengshuang; Li, Suhuan; Bai, Zhipeng; Wang, Zhongliang

    2017-03-01

    To assess the public health benefits of reducing PM2.5 in Tianjin, we created an annual air quality surface with a land use regression (LUR) model conducted at a high spatial resolution (1 km). The predictors included in the final model were population density, road length within a 1000 m buffer, industrial land area within a 2000m buffer and distance to the coast. The fitting R2 and the leave-one-out-cross-validation (LOOCV) R2 of the PM2.5 LUR models were 0.78 and 0.73, respectively, suggesting that the predicted PM2.5 concentrations fitted well with the measured values for the entire year. Daily air quality surfaces were established based on historic concentration data and interpolation method. We evaluated avoided cases of mortality and morbidity in Tianjin, assuming achievement of China's current air quality daily and annual standards (No. GB3095-2012). Reducing the daily average PM2.5 to the daily Class II standard (75 μg/m3), the avoided emergency department visits, the deaths for cardiovascular disease and the deaths for respiratory disease are 85,000 (95% confidence interval (CI), 17,000-150,000), 2000 (95% CI, 920-3100) and 280 (95% CI, 94-460) per year respectively, and the monetary values are 23-42 million yuan, 180-4800 million yuan and 25-670 million yuan per year in 2015 yuan year respectively. Reducing the annual average PM2.5 to the annual Class II standard (35 μg/m3), the avoided emergency department visits, the deaths for cardiovascular disease and the deaths for respiratory disease are 59,000 (95% CI, 12,000-110,000), 1400 (95% CI, 640-2100) and 200 (95% CI, 66-320) per year respectively, and the monetary values are 16-29 million yuan, 130 to 3400 million yuan and 18 to 480 million yuan per year in 2015 yuan year respectively.

  16. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics

    NASA Astrophysics Data System (ADS)

    Kormondy, Kristy J.; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D.; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A.; Fompeyrine, Jean; Abe, Stefan

    2017-02-01

    Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.

  17. A laboratory means to produce tough aluminum sheet from powder

    NASA Technical Reports Server (NTRS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    1990-01-01

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  18. The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin

    2017-02-01

    Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.

  19. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  20. Microstructure Changes of Plasma Spraying Tungsten Coatings on Cfc after Different Temperature Annealing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.

    2003-06-01

    Thermal behaviors of tungsten coating of 0.5 mm thick with multi-layers interface of tungsten (W) and rhenium (Re) coated on CFC (CX-2002U) substrate by vacuum plasma spraying (VPS) technique were examined by annealing with an electron beam thermal load facility between 1200 °C and 2000 °C. Change of the microstructure was observed and its chemical composition was analyzed by EDS after annealing. It was observed that remarkable recrystallization of VPS-W occurred above 1400 °C. The structure of the multi-layers of W and Re become obscure by the mutual diffusion of W, Re and C above 1600°C and finally disappeared after annealing at 2000 °C for one hour. Very hard tungsten carbides are formed at the interface above 1600 °C and they were broadening with increasing annealing temperature and time.

  1. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the isothermal bath and video system for the EDSE in the Microgravity Development Lab (MDL).

  2. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  3. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    PubMed Central

    Shi, Cangji; Lai, Jing; Chen, X.-Grant

    2014-01-01

    The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454

  4. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials – CF3, CF3M, CF8, and CF8M – were thermally aged for 1500 hours at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/ α`, precipitationmore » of G-phase in the δ-ferrite, segregation of solute to the austenite/ ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. A comprehensive model is being developed to correlate the microstructural evolution with mechanical behavior and simulation for predictive evaluations of LWR coolant system components.« less

  5. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  6. Effect of Long-Term Thermal Exposures on Microstructure and Impression Creep in 304HCu Grade Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.

    2017-10-01

    This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.

  7. Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties

    PubMed Central

    Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong

    2016-01-01

    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425

  8. Microstructure and Texture of Al-2.5wt.%Mg Processed by Combining Accumulative Roll Bonding and Conventional Rolling

    NASA Astrophysics Data System (ADS)

    Gatti, J. R.; Bhattacharjee, P. P.

    2014-12-01

    Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.

  9. Crystal plasticity analysis of stress partitioning mechanisms and their microstructural dependence in advanced steels

    DOE PAGES

    Pu, Chao; Gao, Yanfei

    2015-01-23

    Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less

  10. Rock-Fluid Interactions Under Stress: How Rock Microstructure Controls The Evolution of Porosity and Permeability

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2016-12-01

    Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.

  11. Fine particulate matter and risk of preterm birth in Connecticut in 2000-2006: a longitudinal study.

    PubMed

    Pereira, Gavin; Belanger, Kathleen; Ebisu, Keita; Bell, Michelle L

    2014-01-01

    Several studies have examined associations between particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5) and preterm birth, but it is uncertain whether results were affected by individual predispositions (e.g., genetic factors, social conditions) that might vary considerably between women. We tested the hypothesis that a woman is at greater risk of preterm delivery when she has had elevated exposure to ambient PM2.5 during a pregnancy than when she has not by comparing pregnancies in the same woman. From 271,204 births, we selected 29,175 women who had vaginal singleton livebirths at least twice in Connecticut in 2000-2006 (n = 61,688 births). Analyses matched pregnancies to the same woman. Adjusted odds ratios per interquartile range (2.33-µg/m(3)) increase in PM2.5 in the first trimester, second trimester, third trimester, and whole pregnancy were 1.07 (95% confidence interval (CI): 1.00, 1.15), 0.96 (95% CI: 0.90, 1.03), 1.03 (95% CI: 0.97, 1.08), and 1.13 (95% CI: 1.01, 1.28), respectively. Among Hispanic women, the odds ratio per interquartile range increase in whole-pregnancy exposure was 1.31 (95% CI: 1.00, 1.73). Pregnancies with elevated PM2.5 exposure were more likely to result in preterm birth than were other pregnancies to the same woman at lower exposure. Associations were most pronounced in the first trimester and among Hispanic women.

  12. Texture evolution during isothermal, isostrain, and isobaric loading of polycrystalline shape memory NiTi

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Padula, S. A.; Benafan, O.; Vaidyanathan, R.

    2017-06-01

    In situ neutron diffraction was used to provide insights into martensite variant microstructures during isothermal, isobaric, and isostrain loading in shape memory NiTi. The results show that variant microstructures were equivalent for the corresponding strain, and more importantly, the reversibility and equivalency were immediately evident in variant microstructures that were first formed isobarically but then reoriented to near random self-accommodated microstructures following isothermal deformation. Variant microstructures formed isothermally were not significantly affected by a subsequent thermal cycle under constant strain. In all loading cases considered, the resulting variant microstructure correlated with strain and did not correlate with stress. Based on the ability to select a variant microstructure for a given strain despite thermomechanical loading history, the results demonstrated here can be obtained by following any sequence of thermomechanical loading paths over multiple cycles. Thus, for training shape memory alloys (repeating thermomechanical cycling to obtain the desired variant microstructure), optimal paths can be selected so as to minimize the number of training cycles required, thereby increasing the overall stability and fatigue life of these alloys in actuator or medical applications.

  13. Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxu; Jaeglé, Lyatt; Thompson, LuAnne

    2014-05-01

    We implement mercury (Hg) biogeochemistry in the offline global 3-D ocean tracer model (OFFTRAC) to investigate the natural Hg cycle, prior to any anthropogenic input. The simulation includes three Hg tracers: dissolved elemental (Hg0aq), dissolved divalent (HgIIaq), and particle-bound mercury (HgPaq). Our Hg parameterization takes into account redox chemistry in ocean waters, air-sea exchange of Hg0, scavenging of HgIIaq onto sinking particles, and resupply of HgIIaq at depth by remineralization of sinking particles. Atmospheric boundary conditions are provided by a global simulation of the natural atmospheric Hg cycle in the GEOS-Chem model. In the surface ocean, the OFFTRAC model predicts global mean concentrations of 0.16 pM for total Hg, partitioned as 80% HgIIaq, 14% Hg0aq, and 6% HgPaq. Total Hg concentrations increase to 0.38 pM in the thermocline/intermediate waters (between the mixed layer and 1000 m depth) and 0.82 pM in deep waters (below 1000 m), reflecting removal of Hg from the surface to the subsurface ocean by particle sinking followed by remineralization at depth. Our model predicts that Hg concentrations in the deep North Pacific Ocean (>2000 m) are a factor of 2-3 higher than in the deep North Atlantic Ocean. This is the result of cumulative input of Hg from particle remineralization as deep waters transit from the North Atlantic to the North Pacific on their ~2000 year journey. The model is able to reproduce the relatively uniform concentrations of total Hg observed in the old deep waters of the North Pacific Ocean (observations: 1.2 ± 0.4 pM; model: 1.1 ± 0.04 pM) and Southern Ocean (observations: 1.1 ± 0.2 pM; model: 0.8 ± 0.02 pM). However, the modeled concentrations are factors of 5-6 too low compared to observed concentrations in the surface ocean and in the young water masses of the deep North Atlantic Ocean. This large underestimate for these regions implies a factor of 5-6 anthropogenic enhancement in Hg concentrations.

  14. Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.

    PubMed

    Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W

    2006-11-01

    Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.

  15. The influence of urban heat island phenomenon on PM concentration: an observation study during the summer half-year in metropolitan Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Li-Wei

    2018-01-01

    Air circulation due to the urban heat island (UHI) effect can influence the dispersion of air pollutants in a metropolis. This study focusses on the influence of the UHI effect on particulate matter (PM; including PM2.5 and PM2.5-10) between May and September 2010-2012 in the Taipei basin. Meteorological and PM data were obtained from the sites, owned by the governmental authorities. The analysis was carried out using t test, relative indices (RIs), Pearson product-moment correlation and stepwise regression. The results show that the RI values for PM were the highest at moderate UHI intensity (MUI; 2 °C ≤ UHI < 4 °C) rather than at strong UHI intensity (SUI; 4 °C ≤ UHI) during the peak time for anthropogenic emissions (20:00 LST). Neither the accumulation of PM nor the surface convergence occurred in the hot centre, as shown by the case study. At MUI, more than 89 % of the synoptic weather patterns showed that the weather was clear and hot or that the atmosphere was stable. The variation in PM was associated with horizontal and vertical air dispersion. Poor horizontal air dispersion, with subsidence, caused an increase in PM at MUI. However, the updraft motion diluted the PM at SUI. The stepwise regression models show that the cloud index and surface air pressure determined the variation in PM2.5-10, while cloud index, wind speed and mixing height influenced the variation in PM2.5. In conclusion, a direct relationship between UHI effect and PM was not obvious.

  16. Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden

    PubMed Central

    Johansson, Christer; Forsberg, Bertil

    2011-01-01

    Background: Although serious health effects associated with particulate matter (PM) with aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5; fine fraction) are documented in many studies, the effects of coarse PM (PM2.5–10) are still under debate. Objective: In this study, we estimated the effects of short-term exposure of PM2.5–10 on daily mortality in Stockholm, Sweden. Method: We collected data on daily mortality for the years 2000 through 2008. Concentrations of PM10, PM2.5, ozone, and carbon monoxide were measured simultaneously in central Stockholm. We used additive Poisson regression models to examine the association between daily mortality and PM2.5–10 on the day of death and the day before. Effect estimates were adjusted for other pollutants (two-pollutant models) during different seasons. Results: We estimated a 1.68% increase [95% confidence interval (CI): 0.20%, 3.15%] in daily mortality per 10-μg/m3 increase in PM2.5–10 (single-pollutant model). The association with PM2.5–10 was stronger for November through May, when road dust is most important (1.69% increase; 95% CI: 0.21%, 3.17%), compared with the rest of the year (1.31% increase; 95% CI: –2.08%, 4.70%), although the difference was not statistically significant. When adjusted for other pollutants, particularly PM2.5, the effect estimates per 10 μg/m3 for PM2.5–10 decreased slightly but were still higher than corresponding effect estimates for PM2.5. Conclusions: Our analysis shows an increase in daily mortality associated with elevated urban background levels of PM2.5–10. Regulation of PM2.5–10 should be considered, along with actions to specifically reduce PM2.5–10 emissions, especially road dust suspension, in cities. PMID:22182596

  17. Analysis of PM10, PM2.5, and PM2 5-10 concentrations in Santiago, Chile, from 1989 to 2001.

    PubMed

    Koutrakis, Petros; Sax, Sonja N; Sarnat, Jeremy A; Coull, Brent; Demokritou, Phil; Oyola, Pedro; Garcia, Javier; Gramsch, Ernesto

    2005-03-01

    Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.

  18. Development of powder metallurgy 2XXX series Al alloy plate and sheet materials for high temperature aircraft structural applications, FY 1983/1984

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1985-01-01

    The objective of this investigation is to fabricate and evaluate PM 2124 Al alloy plate and sheet materials according to NASA program goals for damage tolerance and fatigue resistance. Previous research has indicated the outstanding strength-toughness relationship available with PM 2124 Al-Zr modified alloy compositions in extruded product forms. The range of processing conditions was explored in the fabrication of plate and sheet gage materials, as well as the resultant mechanical and metallurgical properties. The PM composition based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.60 wt. pct. Zr was selected. Flat rolled material consisting of 0.250 in. thick plate was fabricated using selected thermal mechanical treatments (TMT). The schedule of TMT operations was designed to yield the extreme conditions of grain structure normally encountered in the fabrication of flat rolled products, specifically recrystallized and unrecrystallized. The PM Al alloy plate and sheet materials exhibited improved strength properties at thin gages compared to IM Al alloys, as a consequence of their enhanced ability to inhibit recrystallization and grain growth. In addition, the PM 2124 Al alloys offer much better combinations of strength and toughnessover equivalent IM Al. The alloy microstructures were examined by optical metallographic texture techniques in order to establish the metallurgical basis for these significant property improvements.

  19. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    PubMed Central

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Tekkaya, A. Erman

    2018-01-01

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties. PMID:29747417

  20. Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin

    2017-09-01

    In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.

  1. Use of Visual Range Measurements to Predict PM2.5 Exposures in Southwest Asia and Afghanistan

    PubMed Central

    Masri, Shahir; Garshick, Eric; Hart, Jaime; Bouhamra, Walid; Koutrakis, Petros

    2016-01-01

    Military personnel deployed to Southwest Asia and Afghanistan were exposed to high levels of ambient particulate matter (PM) indicating the potential for exposure-related health effects. However, historical quantitative ambient PM exposure data for conducting epidemiological health studies are unavailable due to a lack of monitoring stations. Since visual range is proportional to particle light extinction (scattering and absorption), visibility can serve as a surrogate for PM2.5 concentrations where ground measurements are not available. We used data on visibility, relative humidity (RH), and PM2.5 ground measurements collected in Kuwait from years 2004 to 2005 to establish the relationship between PM2.5 and visibility. Model validation obtained by regressing trimester average PM2.5 predictions against PM2.5 measurements in Kuwait produced an r2 value of 0.84. Cross validation of urban and rural sites in Kuwait also revealed good model fit. We applied this relationship to location-specific visibility data at 104 regional sites between years 2000 and 2012 to estimate monthly average PM2.5 concentrations. Monthly averages at sites in Iraq, Afghanistan, United Arab Emirates, Kuwait, Djibouti, and Qatar ranged from 10 to 365 µg/m3 during this period, while site averages ranged from 22 to 80 µg/m3, indicating considerable spatial and temporal heterogeneity in ambient PM2.5 across these regions. These data support the use of historical visibility data to estimate location-specific PM2.5 concentrations for use in future epidemiological studies in the region. PMID:27700621

  2. Characterization of fine particulate matter in Ohio: Indoor, outdoor, and personal exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crist, Kevin C.; Liu, Bian; Kim, Myoungwoo

    2008-01-15

    Ambient, indoor, and personal PM{sub 2.5} concentrations were assessed based on an exhaustive study of PM{sub 2.5} performed in Ohio from 1999 to 2000. Locations in Columbus, one in an urban corridor and the other in a suburban area were involved. A third rural location in Athens, Ohio, was also established. At all three locations, elementary schools were utilized to determine outdoor, indoor, and personal PM{sub 2.5} concentrations for fourth and fifth grade students using filter-based measurements. Three groups of 30 students each were used for personal sampling at each school. Continuous ambient PM{sub 2.5} mass concentrations were also measuredmore » with tapered element oscillating microbalances (TEOMs). At all three sites, personal and indoor PM{sub 2.5} concentrations exceeded outdoor levels. This trend is consistent on all week days and most evident in the spring as compared to fall and winter. The ambient PM{sub 2.5} concentrations were similar among the three sites, suggesting the existence of a common regional source influence. At all the three sites, larger variations were found in personal and indoor PM{sub 2.5} than ambient levels. The strongest correlations were found between indoor and personal concentrations, indicating that personal PM{sub 2.5} exposures were significantly affected by indoor PM{sub 2.5} than by ambient PM{sub 2.5}. This was further confirmed by the indoor to outdoor (I/O) ratios of PM{sub 2.5} concentrations, which were greater when school was in session than non-school days when the students were absent.« less

  3. An overview of PM-10 base year emissions inventories

    DOT National Transportation Integrated Search

    1999-01-01

    This report provides an overview of the Long Term Pavement Performance (LTPP) program's analysis program. Specifically, it outlines the analysis projects that will be undertaken by the Federal Highway Administration in fiscal years 1999 and 2000 and ...

  4. CHARACTERIZATION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Size distribution data processing and fitting
    Ultrafine, very fine and fine PM were collected nearly continuously from December 2000 through March 2003 at a Washington State Department of Ecology site on Beacon Hill in Seattle. Particle size distributio...

  5. Microstructural evolution of AZ31 magnesium alloy subjected to sliding friction treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lu, Jinwen; Huo, Wangtu; Zhang, Yusheng; Wei, Q.

    2018-06-01

    Microstructural evolution and grain refinement mechanism in AZ31 magnesium alloy subjected to sliding friction treatment were investigated by means of transmission electron microscopy. The process of grain refinement was found to involve the following stages: (I) coarse grains were divided into fine twin plates through mechanical twinning; then the twin plates were transformed to lamellae with the accumulation of residual dislocations at the twin boundaries; (II) the lamellae were separated into subgrains with increasing grain boundary misorientation and evolution of high angle boundaries into random boundaries by continuous dynamic recrystallisation (cDRX); (III) the formation of nanograins. The mechanisms for the final stage, the formation of nanograins, can be classified into three types: (i) cDRX; (ii) discontinuous dynamic recrystallisation (dDRX); (iii) a combined mechanism of prior shear-band and subsequent dDRX. Stored strain energy plays an important role in determining deformation mechanisms during plastic deformation.

  6. Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber

    PubMed Central

    Zhang, Shuzhi; Zhang, Shuling; Chen, Yanfei; Han, Jianchao; Zhang, Changjiang; Wang, Xiaopeng; Chen, Yuyong

    2017-01-01

    The microstructure of melt extracted Ti-44Al-8Nb-0.2W-0.2B-1.5Si fiber were investigated. When the rotation speed increased from 2000 to 2600 r/min, the appearance of the wire was uniform with no Rayleigh-wave default. The structure was mainly composed of fine α2 (α) phase dendritic crystal and a second phase between dendrite arms and grain boundaries. The precipitated second phases were confirmed to be Ti5Si3 from the eutectic reaction L→Ti5Si3 + α and TiB. As the lower content of Si and higher cooling rate, a divorced eutectic microstructure was obtained. Segregation of Ti, Nb, B, Si, and Al occurred during rapid solidification. PMID:28772555

  7. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} (0 ≤ x ≤ 0.6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J. C.; Tong, P., E-mail: tongpeng@issp.ac.cn; Lin, S.

    2015-02-23

    The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings aremore » involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.« less

  8. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    PubMed

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Uion annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the hig particle levels.

  9. Microstructural Evolution and the Precipitation Behavior in X90 Linepipe Steel During Isothermal Processing

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Wang, H. T.; Wang, Z. D.; Misra, R. D. K.; Wang, G. D.

    2018-03-01

    Thermomechanical controlled processing of 560-MPa (X90) linepipe steel was simulated in the laboratory using a thermomechanical simulator to study the microstructural evolution and precipitation behavior during isothermal holding. The results indicated that martensite was obtained when the steels were isothermally held for 5 s at 700 °C. Subsequently, granular bainite and acicular ferrite transformation occurred with increased holding time. Different amount of polygonal ferrite formed after isothermally holding for 600-3600 s. Pearlite nucleated after isothermally holding for 3600 s. Precipitation occurred after isothermal holding for 5 s and continuous precipitation occurred at grain boundaries after isothermally holding for 600 s. After isothermally holding for 3600 s, large Nb/Ti carbide precipitated. The presence of MX-type precipitates was confirmed by diffraction pattern. The interphase precipitation (IP) occurred between 5 and 30 s. Maximum hardness was obtained after isothermally holding for 600 s when IP occurred and rapidly decreased to a low value, mainly because polygonal ferrite dominated the microstructure after isothermally holding for 3600 s.

  10. Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roostaei, M., E-mail: miladroustaei68@ut.ac.ir

    2016-08-15

    Grain growth behavior of Mg–3Gd–1Zn (GZ31) magnesium alloy was studied in a wide range of annealing time and temperature to clarify the kinetics of grain growth, microstructural evolution and related metallurgical phenomena. This material exhibited typical normal grain growth mode under annealing conditions with annealing temperature of lower than 300 °C and soaking time of lower than 240 min. However, the abnormality in grain growth was also evident at annealing temperature of 400 °C and 500 °C. The dependence of abnormal grain growth (AGG) at mentioned annealing temperatures upon microstructural features such as dispersed precipitates, which were rich in Znmore » and Gd, was investigated by optical micrographs, X-ray diffraction patterns, scanning electron microscopy images, and energy dispersive X-ray analysis spectra. The bimodality in grain-size distribution histograms also signified the occurrence of AGG. Based on the experimental data on grain growth obtained by annealing treatments, the grain growth exponent and the activation energy were also figured out.« less

  11. Effect of microstructural evolution on mechanical and tribological properties of Ti-doped DLC films: How was an ultralow friction obtained?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Li, Hongxuan; Ji, Li

    2016-05-15

    This paper examined the evolution of microstructure and its effect on the mechanical and tribological properties of ultralow friction Ti-doped diamondlike carbon (DLC) films, by adjusting the CH{sub 4}/Ar ratio under constant radio frequency discharge power and bias. The Raman, high resolution transmission electron microscopy, atomic force microscope and nanoindentation measurements consistently reveal or indicate the formation of curved graphene sheets or fullerenelike nanostructures with increasing CH{sub 4}/Ar ratio. The superior frictional performance (0.008–0.01) of Ti-DLC films can be attributed to the special microstructure related to the development of embedded fullerenelike nanostructures as a result of incorporation of TiO{sub 2}more » clusters. The contributing factors include high hardness and cohesion, excellent toughness, high load-bearing capacity, as well as the ultralow shear resistance transform layer and the excellent antioxidation stability brought by the doped Ti.« less

  12. Use of EBSD Data in Numerical Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, R; Wiland, H

    2000-01-14

    Experimentation, theory and modeling have all played vital roles in defining what is known about microstructural evolution and the effects of microstructure on material properties. Recently, technology has become an enabling factor, allowing significant advances to be made on several fronts. Experimental evidence of crystallographic slip and the basic theory of crystal plasticity were established in the early 20th Century, and the theory and models evolved incrementally over the next 60 years. (Asaro provides a comprehensive review of the mechanisms and basic plasticity models.) During this time modeling was primarily concerned with the average response of polycrystalline aggregates. While somemore » detailed finite element modeling (FEM) with crystal plasticity constitutive relations was done in the early 1980s, such simulations over taxed the capabilities of the available computer hardware. Advances in computer capability led to a flurry of activity in finite element modeling in the next 10 years, increasing understanding of microstructure evolution and pushing the limits of theories and material characterization. Automated Electron Back Scatter Diffraction (EBSD) has produced a similar revolution in material characterization. The data collected is extensive and many questions about the evolution of microstructure and its role in determining mechanic properties can now be addressed. It is also now possible to obtain sufficient information about lattice orientations on a fine enough scale to allow detailed quantitative comparisons of experiments and newly emerging large scale numerical simulations. The insight gained from the coupling of EBSD and FEM studies will provide impetus for further development of microstructure models and theories of microstructure evolution. Early studies connecting EBSD data to finite element models used manual measurements to define initial orientations for the simulation. In one study, manual measurements of the deformed structure were also obtained for comparison with the model predictions. More recent work has taken advantage of automated data collection on deformed specimens as a means of collecting detailed and spatially correlated data for model validation. Although it will not be discussed in detail here, another area in which EBSD data is having a great impact is on recrystallization modeling. EBSD techniques can be used to collect data for quantitative microstructural analysis. This data can be used to infer growth kinetics of specific orientations, and this information can be synthesized into more accurate grain growth or recrystallization models. Another role which EBSD techniques may play is in determining initial structures for recrystallization models. A realistic starting structure is vital for evaluating the models, and attempts at predicting realistic structures with finite element simulations are not yet successful. As methodologies and equipment resolution continue to improve, it is possible that measured structures will serve as input for recrystallization models. Simulations have already been run using information obtained manually from a TEM.« less

  13. In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle.

    PubMed

    Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William

    2005-01-01

    Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.

  14. Effects of particle packing on the sintered microstructure

    NASA Astrophysics Data System (ADS)

    Barringer, E. A.; Bowen, H. K.

    1988-04-01

    The sintering process is shown to be critically dependent on particle-packing density and porosity uniformity. Sintering experiments were conducted on compacts consisting of monodisperse, spherical TiO2 particles. Densification kinetics and microstructure evolution for two initial packing densities, 55% and 69% of theoretical, were investigated. The lower-density compacts sintered rapidly to theoretical density, yet improved particle-packing density and uniformity significantly enhanced densification.

  15. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrites growing at .4 supercooling from a 2 stinger growth chamber for the EDSE in the Microgravity Development Lab (MDL).

  16. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several quiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. George Myers, controls engineer, monitors the thermal environment of a ground test for the EDSE located in the Microgravity Development Laboratory (MDL).

  17. Microgravity

    NASA Image and Video Library

    1999-04-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. EDSE/TDSE project engineer, Zena Hester, monitors a test run of the EDSE located in the Microgravity Development Laboratory (MDL).

  18. Linking Endotoxins, African Dust PM10 and Asthma in an Urban and Rural Environment of Puerto Rico

    PubMed Central

    Ortiz-Martínez, Mario G.; Rodríguez-Cotto, Rosa I.; Ortiz-Rivera, Mónica A.; Pluguez-Turull, Cedric W.; Jiménez-Vélez, Braulio D.

    2015-01-01

    African Dust Events (ADE) are a seasonal phenomenon that has been suggested to exacerbate respiratory and proinflammatory diseases in Puerto Rico (PR). Increases in PM10 concentration and the effects of biological endotoxins (ENX) are critical factors to consider during these storms. ENX promote proinflammatory responses in lungs of susceptible individuals through activation of the Toll-like receptors (TLR2/4) signaling pathways. The objective of the study was to evaluate the toxicological and proinflammatory responses stimulated by ADE PM10 ENX reaching PR using human bronchial epithelial cells. PM10 organic extracts from a rural and urban site in PR (March 2004) were obtained from ADE and non-ADE and compared. A retrospective data analysis (PM10 concentration, aerosol images, and pediatric asthma claims) was performed from 2000 to 2012 with particular emphasis in 2004 to classify PM samples. Urban extracts were highly toxic, proinflammatory (IL-6/IL-8 secretion), and induced higher TLR4 expression and NF-κB activation compared to rural extracts. ENX were found to contribute to cytotoxicity and inflammatory responses provoked by urban ADE PM10 exposure suggesting a synergistic potency of local and natural ENX incoming from ADE. The contribution of ADE PM10 ENX is valuable in order to understand interactions and action mechanisms of airborne pollutants as asthma triggers in PR. PMID:26681839

  19. Modeling Air Quality in the San Joaquin Valley during the 2013 DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhao, Z.; Cai, C.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2014-12-01

    The San Joaquin Valley (SJV) in California frequently experiences elevated PM2.5 concentrations during winter months. The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign conducted by NASA took place in the SJV from January 16 to February 06, 2013. This campaign captured two elevated PM2.5 events in Bakersfield where the 24-hour surface PM2.5 exceeded 70 μg/m3 (more than double the 24-hour PM2.5 Standard of 35 μg/m3). The campaign provided unparalleled surface, vertical and column measurements of a suite of gaseous and particulate pollutants in the SJV, which have not been available for over a decade since the last major PM field campaign (CRPAQS in 2000-2001). The U.S. EPA CMAQ model was used to investigate PM formation and buildup throughout the DISCOVER-AQ time period. Model performance will be presented for both surface and vertical profiles of a variety of gases (e.g., O3, NOx, PAN, HNO3, NH3, HCHO and other selected VOCs) and PM species (e.g., nitrate, sulfate, ammonium, black carbon, and organic compounds (OC)), as well as the sensitivity of PM formation and buildup to the simulated meteorological fields. Areas for future model improvements will be also highlighted.

  20. The effects of components of fine particulate air pollution on mortality in california: results from CALFINE.

    PubMed

    Ostro, Bart; Feng, Wen-Ying; Broadwin, Rachel; Green, Shelley; Lipsett, Michael

    2007-01-01

    Several epidemiologic studies provide evidence of an association between daily mortality and particulate matter < 2.5 pm in diameter (PM2.5). Little is known, however, about the relative effects of PM2.5 constituents. We examined associations between 19 PM2.5 components and daily mortality in six California counties. We obtained daily data from 2000 to 2003 on mortality and PM2.5 mass and components, including elemental and organic carbon (EC and OC), nitrates, sulfates, and various metals. We examined associations of PM2.5 and its constituents with daily counts of several mortality categories: all-cause, cardiovascular, respiratory, and mortality age > 65 years. Poisson regressions incorporating natural splines were used to control for time-varying covariates. Effect estimates were determined for each component in each county and then combined using a random-effects model. PM2.5 mass and several constituents were associated with multiple mortality categories, especially cardiovascular deaths. For example, for a 3-day lag, the latter increased by 1.6, 2.1, 1.6, and 1.5% for PM2.5, EC, OC, and nitrates based on interquartile ranges of 14.6, 0.8, 4.6, and 5.5 pg/m(3), respectively. Stronger associations were observed between mortality and additional pollutants, including sulfates and several metals, during the cool season. This multicounty analysis adds to the growing body of evidence linking PM2.5 with mortality and indicates that excess risks may vary among specific PM2.5 components. Therefore, the use of regression coefficients based on PM2.5 mass may underestimate associations with some PM2.5 components. Also, our findings support the hypothesis that combustion-associated pollutants are particularly important in California.

  1. Baseline Air Quality Assessment of Goods Movement Activities before the Port of Charleston Expansion: A Community–University Collaborative

    PubMed Central

    Wilson, Sacoby M.; Tarver, Siobhan L.; Svendsen, Erik; Jiang, Chengsheng; Ogunsakin, Olalekan A.; Zhang, Hongmei; Campbell, Dayna; Fraser-Rahim, Herbert

    2017-01-01

    Abstract As the demand for goods continues to increase, a collective network of transportation systems is required to facilitate goods movement activities. This study examines air quality near the Port of Charleston before its expansion and briefly describes the establishment and structure of a community–university partnership used to monitor existing pollution. Particulate matter (PM) concentrations (PM2.5 and PM10) were measured using the Thermo Fisher Scientific Partisol 2000i-D Dichotomous Air Sampler, Thermo Scientific Dichotomous Sequential Air Sampler Partisol-Plus 2025-D, and Rupprecht & Patashnick TEOM Series 1400 Sampler at neighborhood (Union Heights, Rosemont, and Accabee) and reference (FAA2.5 and Jenkins Street) sites. Descriptive statistics were performed and an ANOVA (analysis of variance) was calculated to find the difference in overall mean 24-hour PM average concentrations in communities impacted by environmental injustice. PM2.5 (15.2 μg/m3) and PM10 (27.2 μg/m3) maximum concentrations were highest in neighborhoods such as Union Heights neighborhoods due to more goods movement activities. Nevertheless, there was no statistically significant difference in mean concentrations of PM2.5 and PM10 across neighborhood sites. In contrast, mean PM10 neighborhood concentrations were significantly lower than mean PM10 reference concentrations for Union Heights (p = 0.00), Accabee (p ≤ 0.0001), and Rosemont (p = 0.01). Although PM concentrations were lower than current National Ambient Air Quality Standards, this study demonstrated how community–university partners can work collectively to document baseline PM concentrations that will be used to examine changes in air quality after the port expansion brings additional goods movement activities to the area. PMID:29576842

  2. Wintertime vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin Valley during the California Regional Coarse PM/Fine PM Air Quality Study.

    PubMed

    Brown, Steven G; Roberts, Paul T; McCarthy, Michael C; Lurmann, Frederick W; Hyslop, Nicole P

    2006-09-01

    Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.

  3. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of coarse grained joints has not been modeled in this study.

  4. Space Shuttle Atlantis landing at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  5. Space Shuttle Atlantis landing at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, Ca

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis landed at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  6. Final Environmental Assessment for Construction of a Precision Measurement Equipment Laboratory Facility on Eglin Air Force Base, FL

    DTIC Science & Technology

    2006-10-01

    daily trips are then applied to the following factors depending on the corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE...015 * Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE...262 * Trips E = emissions To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 lbs/ton NOx (tons/yr) = NOxE * DPYII

  7. [Compressive and bend strength of experimental admixed high copper alloys].

    PubMed

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  8. Microstructure Evolution and Selective Corrosion Resistance in Underwater Multi-pass 2101 Duplex Stainless Steel Welding Joints

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Shi, Yonghua; Shen, Xiaoqin; Wang, Zhongmin

    2018-05-01

    A recently developed promising material, 2101 lean duplex stainless steel, represents an alternative to 304 austenite stainless steel. In this work, multi-pass 2101 weld joints were fabricated using the flux-cored arc welding method in a hyperbaric chamber. The pressure varied from 0 to 0.75 MPa. The evolution of the welding process and microstructure was investigated. γ 2 formation in the reheated zones of the WM and HAZ was not uniform. The closer the reheated zone is to the subsequent heat source, the greater the γ 2 formation in the reheated zone. Sufficient primary austenite transformation inhibited Cr2N precipitation and the subsequent intragranular γ 2 formation in the reheated weld passes of the 0.45 MPa weld metal. The localized corrosion resistance of each zone of the 0.45 MPa DSS joint was measured using non-destructive double-loop electrochemical potentiokinetic reactivation tests. The localized corrosion was induced by γ 2 and Cr2N. The root region of the 0.45 MPa weld metal underwent two subsequent welding thermal cycles, which induced increased γ 2 formation and lower resistance to corrosion because of the decreased pitting resistance value of γ 2. The correlation between microstructure evolution and the distribution of selective corrosion was determined.

  9. Evolution of the microstructure during the process of consolidation and bonding in soft granular solids.

    PubMed

    Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M

    2016-04-30

    The evolution of microstructure during powder compaction process was investigated using a discrete particle modeling, which accounts for particle size distribution and material properties, such as plasticity, elasticity, and inter-particle bonding. The material properties were calibrated based on powder compaction experiments and validated based on tensile strength test experiments for lactose monohydrate and microcrystalline cellulose, which are commonly used excipient in pharmaceutical industry. The probability distribution function and the orientation of contact forces were used to study the evolution of the microstructure during the application of compaction pressure, unloading, and ejection of the compact from the die. The probability distribution function reveals that the compression contact forces increase as the compaction force increases (or the relative density increases), while the maximum value of the tensile contact forces remains the same. During unloading of the compaction pressure, the distribution approaches a normal distribution with a mean value of zero. As the contact forces evolve, the anisotropy of the powder bed also changes. Particularly, during loading, the compression contact forces are aligned along the direction of the compaction pressure, whereas the tensile contact forces are oriented perpendicular to direction of the compaction pressure. After ejection, the contact forces become isotropic. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Microstructural evolution and wear behaviors of laser cladding Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    NASA Astrophysics Data System (ADS)

    Song, R.; Li, J.; Shao, J. Z.; Bai, L. L.; Chen, J. L.; Qu, C. C.

    2015-11-01

    The Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements' microstructure, namely TiCp+(TiB+TiC)e, (TiB+TiC)e and TiBp+(TiB+TiC)e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  11. EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.

    2016-07-01

    The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less

  13. Region 8: Colorado Denver, Pagosa Springs and Telluride Adequate Letter (8/18/2000)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Denvers' Carbon Monoxide (CO) maintenance plan, Pagosa Springs and Tellurides' Particulate Matter (PM10) maintenance plans for Motor Vehicle Emissions Budgets adequate

  14. Evolved α-factor prepro-leaders for directed laccase evolution in Saccharomyces cerevisiae.

    PubMed

    Mateljak, Ivan; Tron, Thierry; Alcalde, Miguel

    2017-11-01

    Although the functional expression of fungal laccases in Saccharomyces cerevisiae has proven to be complicated, the replacement of signal peptides appears to be a suitable approach to enhance secretion in directed evolution experiments. In this study, twelve constructs were prepared by fusing native and evolved α-factor prepro-leaders from S. cerevisiae to four different laccases with low-, medium- and high-redox potential (PM1L from basidiomycete PM1; PcL from Pycnoporus cinnabarinus; TspC30L from Trametes sp. strain C30; and MtL from Myceliophthora thermophila). Microcultures of the prepro-leader:laccase fusions were grown in selective expression medium that used galactose as both the sole carbon source and as the inducer of expression so that the secretion and activity were assessed with low- and high-redox potential mediators in a high-throughput screening context. With total activity improvements as high as sevenfold over those obtained with the native α-factor prepro-leader, the evolved prepro-leader from PcL (α PcL ) most strongly enhanced secretion of the high- and medium-redox potential laccases PcL, PM1L and TspC30L in the microtiter format with an expression pattern driven by prepro-leaders in the order α PcL  > α PM 1L  ~ α native . By contrast, the pattern of the low-redox potential MtL was α native  > α PcL  > α PM 1L . When produced in flask with rich medium, the evolved prepro-leaders outperformed the α native signal peptide irrespective of the laccase attached, enhancing secretion over 50-fold. Together, these results highlight the importance of using evolved α-factor prepro-leaders for functional expression of fungal laccases in directed evolution campaigns. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Part 3; Acquire Express-A3 SPT-100 Based Propulsion Subsystem and Other Subsystem Flight Operation TM-Data for the Period of June 24, 2000 to and Including September 30, 2000, Task 30

    NASA Technical Reports Server (NTRS)

    Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  16. Global distribution and evolvement of urbanization and PM2.5 (1998-2015)

    NASA Astrophysics Data System (ADS)

    Yang, Dongyang; Ye, Chao; Wang, Xiaomin; Lu, Debin; Xu, Jianhua; Yang, Haiqing

    2018-06-01

    PM2.5 concentrations increased and have been one of the major social issues along with rapid urbanization in many regions of the world in recent decades. The development of urbanization differed among regions, PM2.5 pollution also presented discrepant distribution across the world. Thus, this paper aimed to grasp the profile of global distribution of urbanization and PM2.5 and their evolutionary relationships. Based on global data for the proportion of the urban population and PM2.5 concentrations in 1998-2015, this paper investigated the spatial distribution, temporal variation, and evolutionary relationships of global urbanization and PM2.5. The results showed PM2.5 presented an increasing trend along with urbanization during the study period, but there was a variety of evolutionary relationships in different countries and regions. Most countries in East Asia, Southeast Asia, South Asia, and some African countries developed with the rapid increase in both urbanization and PM2.5. Under the impact of other socioeconomic factors, such as industry and economic growth, the development of urbanization increased PM2.5 concentrations in most Asian countries and some African countries, but decreased PM2.5 concentrations in most European and American countries. The findings of this study revealed the spatial distributions of global urbanization and PM2.5 pollution and provided an interpretation on the evolution of urbanization-PM2.5 relationships, which can contribute to urbanization policies making aimed at successful PM2.5 pollution control and abatement.

  17. Dual pathways to prospective remembering

    PubMed Central

    McDaniel, Mark A.; Umanath, Sharda; Einstein, Gilles O.; Waldum, Emily R.

    2015-01-01

    According to the multiprocess framework (McDaniel and Einstein, 2000), the cognitive system can support prospective memory (PM) retrieval through two general pathways. One pathway depends on top–down attentional control processes that maintain activation of the intention and/or monitor the environment for the triggering or target cues that indicate that the intention should be executed. A second pathway depends on (bottom–up) spontaneous retrieval processes, processes that are often triggered by a PM target cue; critically, spontaneous retrieval is assumed not to require monitoring or active maintenance of the intention. Given demand characteristics associated with experimental settings, however, participants are often inclined to monitor, thereby potentially masking discovery of bottom–up spontaneous retrieval processes. In this article, we discuss parameters of laboratory PM paradigms to discourage monitoring and review recent behavioral evidence from such paradigms that implicate spontaneous retrieval in PM. We then re-examine the neuro-imaging evidence from the lens of the multiprocess framework and suggest some critical modifications to existing neuro-cognitive interpretations of the neuro-imaging results. These modifications illuminate possible directions and refinements for further neuro-imaging investigations of PM. PMID:26236213

  18. Application of SiPM for Modern Nuclear Physics Practical Workshop

    NASA Astrophysics Data System (ADS)

    Chepurnov, A. S.; Gavrilenko, O. I.; Caccia, Massimo; Mattone, Cristina; Oleinik, A. N.; Radchenko, V. V.

    2017-01-01

    Silicon PhotoMultipliers (SiPM) are state of the art light detectors with very high single photon sensitivity and photon number resolving capability, representing a breakthrough in several fundamental and applied Science domains. So, introduction of SiPM in to the education is important process increasing the number of specialists involved in the SiPM development and application. As a result of collaborative efforts between industry and academic institutions modular set of instruments based on SiPM light sensors has been developed by CAEN s.p.a. It is developed for educational purposes mainly and allows performing a series of experiments including photon detection, gamma spectrometry, cosmic ray observation and beta and gamma ray absorption. In addition, an educational experiments based on a SiPM set-up guides students towards a comprehensive knowledge of SiPM technology while experiencing the quantum nature of light and exploring the statistical properties of the light pulses emitted by a LED. The toolbox is actually an open platform in continuous evolution thanks to the contribution of the research community and cooperation with high schools.

  19. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004.

    PubMed

    Zhang, Minsi; Song, Yu; Cai, Xuhui

    2007-04-15

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 microm (PM(10)), ranging from 141 to 166 microg m(-3) in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM(10) pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM(2.5) pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution.

  20. Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi

    A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less

Top