Sample records for pma-treated thp-1 cells

  1. Presence of estrogen receptors in human myeloid monocytic cells (THP-1 cell line).

    PubMed

    Cutolo, M; Villaggio, B; Bisso, A; Sulli, A; Coviello, D; Dayer, J M

    2001-01-01

    To test THP-1 cells for the presence of estrogen receptors (ER) since studies have demonstrated in vivo and in vitro, the influence of estrogens on cells involved in immune response (i.e. macrophages), and since it has been demonstrated that human myeloid monocytic THP-1 cells acquire phenotypic and functional macrophage-like features after incubation with several cytokines or pharmacological agents. Stimulation of THP-1 cells with phorbol myristate acetate (PMA) to prompt their differentiation into macrophage-like cells and evaluation of the possible induction of ER. The expression of ER was analyzed by immunocytochemical assay, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. After stimulation by PMA, the human myeloid monocytic THP-1 cells showed the presence of ER, together with markers of monocytic cell differentiation such as CD68, CD54 and HLA-DR. Estrogen effects may be exerted directly through ER on monocytes/macrophages. PMA-treated THP-1 cells may constitute a useful in vitro model to determine the effects of estrogens on macrophage-like cells and their implications in the inflammatory and immune processes.

  2. Dexamethasone and interleukin-1 potently synergize to stimulate the production of granulocyte colony-stimulating factor in differentiated THP-1 cells.

    PubMed

    Wang, Y; Zhang, J J; Lei, K Y; Pike, J W

    1997-10-29

    The human monocytic leukemic cell line, THP-1, which differentiates toward macrophages in response to phorbol 12-myristate 13-acetate (PMA) was investigated for its ability to produce granulocyte colony-stimulating factor (G-CSF). G-CSF protein was neither produced during PMA-induced differentiation nor in response to dexamethasone (Dex) alone. However, when combined, PMA and Dex synergistically stimulated THP-1 cells to produce G-CSF. The synergistic interaction between PMA and Dex on G-CSF production appeared to be mediated through the production of interleukin-1 (IL-1) since neutralization of IL-1 activity completely inhibited G-CSF production. Further experiments demonstrated that in THP-1 cells pretreated with PMA, Dex potently synergized with IL-1 to stimulate G-CSF production.

  3. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  4. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    PubMed

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  5. The cytokine-protease connection: identification of a 96-kD THP-1 gelatinase and regulation by interleukin-1 and cytokine inducers.

    PubMed

    Van Ranst, M; Norga, K; Masure, S; Proost, P; Vandekerckhove, F; Auwerx, J; Van Damme, J; Opdenakker, G

    1991-05-01

    The induction of proteolytic enzymes is an important mechanism in the migration of monocytes into tissues and body fluids. The monocytic cell line THP-1 was used as a model system to study the production of a particular gelatinase. Upon stimulation with phorbol myristate acetate (PMA) the cells differentiated to the adherent phenotype and produced significant amounts of a 96-kD gelatinase in a dose-dependent way. The secretion rate was maximal between 12 and 24 h after induction. Study of gelatinase mRNA steady state levels showed that the synthesis of THP-1 gelatinase is regulated by PMA at transcriptional or posttranscriptional levels. Stimulation of signal transduction pathways with other substances, including calcium ionophore A 23187, dibutyryl cyclic AMP, and dexamethasone, were ineffective in inducing gelatinase mRNA or enzyme activity. However, THP-1 cells were responsive to the cytokine interleukin (IL)-1 beta, to bacterial lipopolysaccharide (LPS), and the lectin concanavalin A (Con A), the kinetics of gelatinase induction being similar to those of induction by PMA. The THP-1 cells did not synthesize and/or secrete detectable levels of IL-6 after stimulation with PMA, Con A, LPS, or IL-1 beta. The 96-kD monocytic THP-1 gelatinase was shown to be a neutral metalloproteinase that cross-reacted with hepatoma-derived and neutrophil gelatinases in immunoprecipitation experiments. The active enzyme produced by THP-1 cells consistently showed, however, a molecular mass different from that of normal granulocyte-, monocyte-, and tumor cell-derived gelatinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMA- Differentiated THP-1 Cells

    PubMed Central

    Maghsood, Faezeh; Mirshafiey, Abbas; Farahani, Mohadese M.; Modarressi, Mohammad Hossein; Jafari, Parvaneh; Motevaseli, Elahe

    2018-01-01

    Objective Recent studies have reported dysregulated expression of matrix metalloproteinases (MMPs), especially MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, TIMP-2), and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in activated macrophages of patients with inflammatory diseases. Therefore, MMP-2, MMP-9, and their regulators may represent a new target for treatment of inflammatory diseases. Probiotics, which are comprised of lactic acid bacteria, have the potential to modulate inflammatory responses. In this experimental study, we investigated the anti-inflammatory effects of cell-free supernatants (CFS) from Lactobacillus acidophilus (L. acidophilus) and L. rhamnosus GG (LGG) in phorbol myristate acetate (PMA)-differentiated THP-1 cells. Materials and Methods In this experimental study, PMA-differentiated THP-1 cells were treated with CFS from L. acidophilus, LGG and uninoculated bacterial growth media (as a control). The expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNAs were determined using real-time quantitative reverse transcription polymerase chain reaction (RT- PCR). The levels of cellular surface expression of CD147 were assessed by flow cytometry, and the gelatinolytic activity of MMP-2 and MMP-9 were determined by zymography. Results Our results showed that CFS from both L. acidophilus and LGG significantly inhibited the gene expression of MMP-9 (P=0.0011 and P=0.0005, respectively), increased the expression of TIMP-1 (P<0.0001), decreased the cell surface expression of CD147 (P=0.0307 and P=0.0054, respectively), and inhibited the gelatinolytic activity of MMP-9 (P=0.0003 and P<0.0001, respectively) in PMA-differentiated THP-1 cells. Although, MMP-2 expression and activity and TIMP-2 expression remained unchanged. Conclusion Our results indicate that CFS from L. acidophilus and LGG possess anti-inflammatory properties and can modulate the inflammatory response. PMID:29105390

  7. Transcriptional activation of the lipoprotein lipase gene in macrophages by dexamethasone.

    PubMed

    Domin, W S; Chait, A; Deeb, S S

    1991-03-12

    The effect of dexamethasone on lipoprotein lipase (LPL) gene expression during macrophage differentiation was investigated by using the human monocytic leukemia cell line THP-1 and human monocyte-derived macrophages. Addition of dexamethasone to THP-1 cells increased steady-state levels of LPL mRNA and LPL mass accumulation in the medium during PMA-induced differentiation by 4-fold. Studies with human monocyte-derived macrophages showed a similar effect of dexamethasone on LPL expression. Peak LPL mRNA levels were achieved 24-h post-dexamethasone addition to THP-1 cells. Optimal stimulation of LPL mRNA occurred when dexamethasone was added 24 h after induction with PMA. Thereafter, there was rapid decline in responsiveness to dexamethasone. Induction of LPL mRNA in THP-1 cells was completely blocked by actinomycin D, suggesting that induction was transcription dependent. The stability of LPL mRNA was not influenced by dexamethasone. Treatment of THP-1 cells with PMA led to a 2-fold increase in specific binding of dexamethasone and a 4-fold increase in glucocorticoid receptor mRNA within 12 h. Thus, dexamethasone stimulates LPL gene expression during differentiation of human macrophages, a process that involves induction of glucocorticoid receptor synthesis and activation.

  8. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology.

    PubMed

    Gutsch, Romina; Kandemir, Judith D; Pietsch, Daniel; Cappello, Christian; Meyer, Johann; Simanowski, Kathrin; Huber, René; Brand, Korbinian

    2011-07-01

    Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβ(WT) macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβ(KO). The typical macrophage morphology was only observed in C/EBPβ(WT), whereas C/EBPβ(KO) stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβ(KO) macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβ(WT) cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E pathway and that it may contribute to, but is not directly required for, macrophage morphology. Inhibition of proliferation by C/EBPβ may be important for coordinated monocytic differentiation.

  9. Lycopene Modulates THP1 and Caco2 Cells Inflammatory State through Transcriptional and Nontranscriptional Processes

    PubMed Central

    Makon-Sébastien, Njock; Francis, Fouchier; Eric, Seree; Henri, Villard Pierre; François, Landrier Jean; Laurent, Pechere; Yves, Barra; Serge, Champion

    2014-01-01

    We revisited the action of a carotenoid, the lycopene, on the expression of proinflammatory genes, reactive oxygen species (ROS) production, and metalloprotease (MMP9) activity. THP1 and Caco2 cell lines were used as in vitro models for the two main cell types found in intestine tissue, that is, monocytes and epithelial cells. Proinflammatory condition was induced using either phorbol ester acetate (PMA), lipopolysaccharide (LPS) or tumor necrosis factor (TNF). In THP1 cells, short term pretreatment (2 h) with a low concentration (2 μM) of lycopene reinforce proinflammatory gene expression. The extent of the effect of lycopene is dependent on the proinflammtory stimulus (PMA, LPS or TNF) used. Lycopene enhanced MMP9 secretion via a c-AMP-dependent process, and reduced ROS production at higher concentrations than 2 μM. Cell culture media, conditioned by PMA-treated monocytes and then transferred on CaCo-2 epithelial cells, induced a proinflammatory state in these cells. The extent of this inflammatory effect was reduced when cells has been pretreated (12 h) with lycopene. At low concentration (2 μM or less), lycopene appeared to promote an inflammatory state not correlated with ROS modulation. At higher concentration (5 μM–20 μM), an anti-inflammatory effect takes place as a decrease of ROS production was detected. So, both concentration and time have to be considered in order to define the exact issue of the effect of carotenoids present in meals. PMID:24891766

  10. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  11. Effects of Modified Simiao Decoction on IL-1 β and TNF α Secretion in Monocytic THP-1 Cells with Monosodium Urate Crystals-Induced Inflammation.

    PubMed

    Liu, Ya-Fei; Tu, Sheng-Hao; Chen, Zhe; Wang, Yu; Hu, Yong-Hong; Dong, Hui

    2014-01-01

    Simiao pill, a Chinese herbal formula containing four herbs, has been used in the treatment of gouty arthritis for many years. The aim of this study was to explore the effects of modified Simiao decoction (MSD) on IL-1 β and TNF α secretion in monocytic THP-1 cells with monosodium urate (MSU) crystals-induced inflammation. The MSU crystals-induced inflammation model in THP-1 cells was successfully established by the stimulation of phorbol 12-myristate 13-acetate (PMA) and MSU crystals. Then, the MSD-derived serum or control serum extracted from rat was administered to different treatment groups. The morphology of MSU crystals and THP-1 cells was observed. IL-1 β and TNF α protein expression in supernatant of THP-1 cells were determined by ELISA. Our data demonstrated that MSU crystals induced time-dependent increase of IL-1 β and TNF α . Moreover, MSD significantly decreased IL-1 β release in THP-1 cells with MSU crystals-induced inflammation. These results suggest that MSD is promising in the treatment of MSU crystals-induced inflammation in THP-1 cells. MSD may act as an anti-IL-1 agent in treating gout. The underlying mechanism may be related to NALP3 inflammasome which needs to be validated in future studies.

  12. Effects of Modified Simiao Decoction on IL-1β and TNFα Secretion in Monocytic THP-1 Cells with Monosodium Urate Crystals-Induced Inflammation

    PubMed Central

    Liu, Ya-Fei; Tu, Sheng-Hao; Chen, Zhe; Wang, Yu; Hu, Yong-Hong; Dong, Hui

    2014-01-01

    Simiao pill, a Chinese herbal formula containing four herbs, has been used in the treatment of gouty arthritis for many years. The aim of this study was to explore the effects of modified Simiao decoction (MSD) on IL-1β and TNFα secretion in monocytic THP-1 cells with monosodium urate (MSU) crystals-induced inflammation. The MSU crystals-induced inflammation model in THP-1 cells was successfully established by the stimulation of phorbol 12-myristate 13-acetate (PMA) and MSU crystals. Then, the MSD-derived serum or control serum extracted from rat was administered to different treatment groups. The morphology of MSU crystals and THP-1 cells was observed. IL-1β and TNFα protein expression in supernatant of THP-1 cells were determined by ELISA. Our data demonstrated that MSU crystals induced time-dependent increase of IL-1β and TNFα. Moreover, MSD significantly decreased IL-1β release in THP-1 cells with MSU crystals-induced inflammation. These results suggest that MSD is promising in the treatment of MSU crystals-induced inflammation in THP-1 cells. MSD may act as an anti-IL-1 agent in treating gout. The underlying mechanism may be related to NALP3 inflammasome which needs to be validated in future studies. PMID:24999366

  13. Mannan-Binding Lectin Inhibits Candida albicans-Induced Cellular Responses in PMA-Activated THP-1 Cells through Toll-Like Receptor 2 and Toll-Like Receptor 4

    PubMed Central

    Yang, Jianbin; Zhao, Dongfang; Wang, Hongpo; Shao, Feng; Wang, Wenjun; Sun, Ruili; Ling, Mingzhi; Zhai, Jingjing; Song, Shijun

    2013-01-01

    Background Candida albicans (C. albicans), the most common human fungal pathogen, can cause fatal systemic infections under certain circumstances. Mannan-binding lectin (MBL),a member of the collectin family in the C-type lectin superfamily, is an important serum component associated with innate immunity. Toll-like receptors (TLRs) are expressed extensively, and have been shown to be involved in C. albicans-induced cellular responses. We first examined whether MBL modulated heat-killed (HK) C. albicans-induced cellular responses in phorbol 12-myristate 13-acetate (PMA)-activated human THP-1 macrophages. We then investigated the possible mechanisms of its inhibitory effect. Methodology/Principal Finding Enzyme-linked immunosorbent assay (ELISA) and reverse transcriptasepolymerase chain reaction (RT-PCR) analysis showed that MBL at higher concentrations (10–20 µg/ml) significantly attenuated C. albicans-induced chemokine (e.g., IL-8) and proinflammatory cytokine (e.g., TNF-α) production from PMA-activated THP-1 cells at both protein and mRNA levels. Electrophoretic mobility shift assay (EMSA) and Western blot (WB) analysis showed that MBL could inhibit C. albicans-induced nuclear factor-κB (NF-κB) DNA binding and its translocation in PMA-activated THP-1 cells. MBL could directly bind to PMA-activated THP-1 cells in the presence of Ca2+, and this binding decreased TLR2 and TLR4 expressions in C. albicans-induced THP-1 macrophages. Furthermore, the binding could be partially inhibited by both anti-TLR2 monoclonal antibody (clone TL2.1) and anti-TLR4 monoclonal antibody (clone HTA125). In addition, co-immunoprecipitation experiments and microtiter wells assay showed that MBL could directly bind to the recombinant soluble form of extracellular TLR2 domain (sTLR2) and sTLR4. Conclusions/Significance Our study demonstrates that MBL can affect proinflammatory cytokine and chemokine expressions by modifying C. albicans-/TLR-signaling pathways. This study supports an important role for MBL on the regulation of C. albicans-induced cellular responses. PMID:24391778

  14. Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells.

    PubMed

    Klegeris, A; Walker, D G; McGeer, P L

    1997-09-01

    Glutamate, an excitatory neurotransmitter, is neurotoxic at high concentrations. Neuroglial cells, including astrocytes and microglia, play an important role in regulating its extracellular levels. Cultured human monocytic THP-1 cells increased their glutamate secretion following 18 and 68 h exposure to the inflammatory mediators zymosan, phorbol myristate acetate (PMA), lipopolysaccharide, interferon-gamma, tumor-necrosis factor-alpha and interleukin-1beta. Cultured astrocytoma U-373 MG cells increased their glutamate secretion following similar exposure to zymosan and PMA. DL-Alpha-aminopimelic acid, an inhibitor of the glutamate secretion system, reduced extracellular glutamate in both cell culture systems, while the high-affinity glutamate uptake inhibitors D-Aspartic acid, DL-threo-beta-hydroxyaspartic acid and L-trans-pyrrolidine-2,4-dicarboxylic acid increased extracellular glutamate in U-373 MG, but not THP-1 cell cultures. In co-cultures of THP-1 and U-373 MG cells, extracellular glutamate levels were increased significantly by the Alzheimer beta-amyloid peptide (1-40) and were decreased significantly by the anti-inflammatory drug dexamethasone. These data indicate that inflammatory stimuli may increase extracellular glutamate while antiinflammatory drugs decrease it.

  15. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coll Ferrer, M. Carme; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104; Eckmann, Uriel N.

    In previous work, we developed novel antibacterial hybrid coatings based on dextran containing dispersed Ag NPs (∼ 5 nm, DEX-Ag) aimed to offer dual protection against two of the most common complications associated with implant surgery, infections and rejection of the implant. However, their blood-material interactions are unknown. In this study, we assess the hemocompatibility and biocompatibility of DEX-Ag using fresh blood and two cell lines of the immune system, monocytes (THP-1 cells) and macrophages (PMA-stimulated THP-1 cells). Glass, polyurethane (PU) and bare dextran (DEX) were used as reference surfaces. PU, DEX and DEX-Ag exhibited non-hemolytic properties. Relative to glassmore » (100%), platelet attachment on PU, DEX and DEX-Ag was 15%, 10% and 34%, respectively. Further, we assessed cell morphology and viability, pro-inflammatory cytokines expression (TNF-α and IL-1β), pro-inflammatory eicosanoid expression (Prostaglandin E{sub 2}, PGE{sub 2}) and release of reactive oxygen species (ROS, superoxide and H{sub 2}O{sub 2}) following incubation of the cells with the surfaces. The morphology and cell viability of THP-1 cells were not affected by DEX-Ag whereas DEX-Ag minimized spreading of PMA-stimulated THP-1 cells and caused a reduction in cell viability (16% relative to other surfaces). Although DEX-Ag slightly enhanced release of ROS, the expression of pro-inflammatory cytokines remained minimal with similar levels of PGE{sub 2}, as compared to the other surfaces studied. These results highlight low toxicity of DEX-Ag and hold promise for future applications in vivo. - Highlights: • We examined specific blood-contact reactions of dextran doped with Ag NPs coatings. • Biocompatibility was assessed with THP-1 cells and PMA-stimulated THP-1 cells. • Glass, polyurethane and dextran were used as reference surfaces. • Hybrid coatings exhibited non-hemolytic properties. • Low toxicity, inflammatory response and ROS suggest potential for in vivo use.« less

  16. Thrombomodulin regulates monocye differentiation via PKCδ and ERK1/2 pathway in vitro and in atherosclerotic artery

    PubMed Central

    Tsai, Chien-Sung; Lin, Yi-Wen; Huang, Chun-Yao; Shih, Chun-Min; Tsai, Yi-Ting; Tsao, Nai-Wen; Lin, Chin-Sheng; Shih, Chun-Che; Jeng, Hellen; Lin, Feng-Yen

    2016-01-01

    Thrombomodulin (TM) modulates the activation of protein C and coagulation. Additionally, TM regulates monocyte migration and inflammation. However, its role on monocyte differentiation is still unknown. We investigated the effects of TM on monocyte differentiation. First, we found that TM was increased when THP-1 cells were treated with phorbol-12-myristate-13-acetate (PMA). Overexpression of TM enhanced the macrophage markers, CD14 and CD68 expression in PMA-induced THP-1. TM siRNA depressed the PMA-induced increase of p21Cip1/WAF1 via ERK1/2-NF-kB p65 signaling. TM regulated cytoskeletal reorganization via its interaction with paxillin, cofilin, LIMK1, and PYK2. In addition, PMA-induced p21Cip1/WAF1 expression, CD14-positive cell labeling intensity and ERK1/2 phosphorylation were markedly inhibited when protein kinase C-δ (PKCδ) was knocked down. We identified that TM directly interacts with PKCδ. PKCδ was highly expressed in human atherosclerotic arteries and colocalized with TM in CD68-positive infiltrated macrophages of plaques, indicating that the coordination between TM and PKCδ in macrophages participated in atherogenesis. TM may act as a scaffold for PKCδ docking, which keeps PKCδ in the region close to the monocyte membrane to promote the activation of ERK1/2. Taken together, our findings suggest that TM-PKCδ interaction may contribute to cardiovascular disorders by affecting monocye differentiation, which may develop future therapeutic applications. PMID:27910925

  17. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed Central

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W.; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs. PMID:29520230

  18. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs.

  19. Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell-cell adhesion of colorectal cancer cells.

    PubMed

    Aarons, Cary B; Bajenova, Olga; Andrews, Charles; Heydrick, Stanley; Bushell, Kristen N; Reed, Karen L; Thomas, Peter; Becker, James M; Stucchi, Arthur F

    2007-01-01

    The liver is the most common site for metastasis by colorectal cancer, and numerous studies have shown a relationship between serum carcinoembryonic antigen (CEA) levels and metastasis to this site. CEA activates hepatic macrophages or Kupffer cells via binding to the CEA receptor (CEA-R), which results in the production of cytokines and the up-regulation of endothelial adhesion molecules, both of which are implicated in hepatic metastasis. Since tissue macrophages implicated in the metastatic process can often be difficult to isolate, the aim of this study was to develop an in vitro model system to study the complex mechanisms of CEA-induced macrophage activation and metastasis. Undifferentiated, human monocytic THP-1 (U-THP) cells were differentiated (D-THP) to macrophages by exposure to 200 ng/ml phorbol myristate acetate (PMA) for 18 h. Immunohistochemistry showed two CEA-R isoforms present in both U- and D-THP cells. The receptors were localized primarily to the nucleus in U-THP cells, while a significant cell-surface presence was observed following PMA-differentiation. Incubation of D-THP-1 cells with CEA resulted in a significant increase in tumor necrosis factor-alpha (TNF-alpha) release over 24 h compared to untreated D-THP-1 or U-THP controls confirming the functionality of these cell surface receptors. U-THP cells were unresponsive to CEA. Attachment of HT-29 cells to human umbilical vein endothelial cells significantly increased at 1 h after incubation with both recombinant TNF-alpha and conditioned media from CEA stimulated D-THP cells by six and eightfold, respectively. This study establishes an in vitro system utilizing a human macrophage cell line expressing functional CEA-Rs to study activation and signaling mechanisms of CEA that facilitate tumor cell attachment to activated endothelial cells. Utilization of this in vitro system may lead to a more complete understanding of the expression and function of CEA-R and facilitate the design of anti-CEA-R therapeutic modalities that may significantly diminish the metastatic potential of CEA overexpressing colorectal tumors.

  20. Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells.

    PubMed

    Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise

    2012-12-01

    In a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700-3711, 2012), we evaluated the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistant Staphylococcus aureus strain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, its hemB mutant, and the genetically complemented strain in PMA-activated cells and against the menD strain in both activated and nonactivated cells. This effect was inhibited when cells were incubated with N-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H(2)O(2). In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition of N-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H(2)O(2). Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.

  1. Expression and regulation of aromatase cytochrome P450 in THP 1 human myeloid leukaemia cells.

    PubMed

    Jakob, F; Homann, D; Seufert, J; Schneider, D; Köhrle, J

    1995-04-28

    Aromatase cytochrome P450 mRNA and activity was strongly expressed in THP 1 myeloid leukaemia cells after treatment with phorbol-myristate-acetate (PMA) and dexamethasone, low level expression was caused by calcitriol. mRNA species of 4.0, 3.0, 2.4 and 1.1 kb size were differentially stimulated. After calcitriol-mediated differentiation (72 h, measured by CD 14 expression) mRNA expression was further enhanced by PMA (45-fold), dexamethasone (15-fold), oestradiol (3.7-fold), testosterone (2.5-fold) and androstenedione (3.5-fold). Forskolin, cAMP and follicle stimulating hormone had no stimulatory effect. Oestradiol formation from testosterone (oestradiol radioimmunoassay in culture supernatants) increased to > 2000 pg/ml/10(6) cells/24 h after PMA-stimulation, mirrored mRNA expression and was suppressed below 10% of original values in the presence of 4-OH-androstenedione. Exons I.2 and I.4 were expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. A new splicing variant was expressed after calcitriol-stimulation, which did not hybridize to an exon II-derived oligonucleotide but to an exon III-derived one. Local aromatisation of androgens into oestradiol may be important in the concerted crosstalk of cells of the monocyte/macrophage lineage with their respective tissues in inflammation and bone metabolism.

  2. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  3. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line.

    PubMed

    Yoshida, Y; Sakaguchi, H; Ito, Y; Okuda, M; Suzuki, H

    2003-04-01

    It has been known that dendritic cells (DCs) including Langerhans cells (LCs) play a critical role in the skin sensitization process. Many attempts have been made to develop in vitro sensitization tests that employ DCs derived from peripheral blood mononuclear cells (PBMC-DC) or CD34+ hematopoietic progenitor cells (CD34+ HPC) purified from cord blood or bone marrow. However, the use of the DCs in in vitro methods has been difficult due to the nature of these cells such as low levels in the source and/or donor-to-donor variability. In our studies, we employed the human monocytic leukemia cell line, THP-1, in order to avoid some of these difficulties. At the start, we examined whether treatment of the cells with various cytokines could produce DCs from THP-1. Treatment of THP-1 cells with cytokines such as GM-CSF, IL-4, TNF-alpha, and/or PMA did induce some phenotypic changes in THP-1 cells that were characteristic of DCs. Subsequently, responses to a known sensitizer, dinitrochlorobenzene (DNCB), and a non-sensitizer, dimethyl sulfoxide (DMSO) or sodium lauryl sulfate (SLS), on the expression of co-stimulatory molecules, CD54 and CD86, were examined between the naive cells and the cytokine-treated cells. Interestingly, the naive THP-1 cells responded only to DNCB and the response to the sensitizer was more distinct than cytokine-treated THP-1 cells. Similar phenomena were also observed in the human myeloid leukemia cell line, KG-1. Furthermore, with treatment of DNCB, naive THP-1 cells showed augmented expression of HLA, CD80 and secretion of IL-1 beta. The response of THP-1 cells to a sensitizer was similar to that of LCs/DCs. Upon demonstrating the differentiation of monocyte cells in our system, we then evaluated a series of chemicals, including known sensitizers and non-sensitizers, for their potential to augment CD54 and CD86 expression on naive THP-1 cells. Indeed, known sensitizers such as PPD and 2-MBT significantly augmented CD54 and CD86 expression in a dose-dependent manner while non-sensitizers, such as SLS and methyl salicylate (MS), did not. To note, the metal allergens such as (NH(4))(2)[PtCl(4)], NiSO(4) and CoSO(4) augmented significantly only CD54 expression. Taking advantage of a cultured cell line, measurement of the co-stimulatory molecules, CD54 and CD86, on naive THP-1 cells following chemical exposure shows promise for the development of a simple, short-term in vitro sensitization test.

  4. Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway.

    PubMed

    Li, Xiang; Liu, Sheng; Luo, Jingjing; Liu, Anyuan; Tang, Shuangyang; Liu, Shuo; Yu, Minjun; Zhang, Yan

    2015-06-01

    This study investigated whether Helicobacter pylori could activate the nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome in human macrophages and the involvement of reactive oxygen species (ROS) in inflammasome activation. Phorbol-12-myristate-13-acetate (PMA)-differentiated human acute monocytic leukemia cell line THP-1 was infected with H. pylori. The levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 in supernatant were measured by ELISA. Intracellular ROS level was analyzed by flow cytometry. Quantitative real-time PCR and western blot analysis were employed to determine the mRNA and protein expression levels of NLRP3 and caspase-1 in THP-1 cells, respectively. Our results showed that H. pylori infection could induce IL-1β and IL-18 production in PMA-differentiated THP-1 cells in a dose- and time-dependent manner. Moreover, secretion of IL-1β and IL-18 in THP-1 cells following H. pylori infection was remarkably reduced by NLRP3-specific small interfering RNA treatment. In addition, the intracellular ROS level was elevated by H. pylori infection, which could be eliminated by the ROS scavenger N-acetylcysteine (NAC). Furthermore, NAC treatment could inhibit NLRP3 inflammasome formation and caspase-1 activation and suppress the release of IL-1β and IL-18 from H. pylori-infected THP-1 cells. These findings provide novel insights into the innate immune response against H. pylori infection, which could potentially be used for the prevention and treatment of H. pylori-related diseases. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.

    PubMed

    Cao, Jiatian; Han, Zhihua; Tian, Lei; Chen, Kan; Fan, Yuqi; Ye, Bozhi; Huang, Weijian; Wang, Changqian; Huang, Zhouqing

    2014-09-21

    In coronary arteries, plaque disruption, the major acute clinical manifestations of atherosclerosis, leads to a subsequent cardiac event, such as acute myocardial infarction (AMI) and unstable angina pectoris (UA). Numerous reports have shown that high expression of MMP-9 (matrix metalloproteinase-9), MMP-13 (matrix metalloproteinase-13) and EMMPRIN (extracellular matrix metalloproteinase induce) in monocyte/macrophage results in the plaque progression and destabilization. Curcumin exerts well-known anti-inflammatory and antioxidant effects and probably has a protective role in the atherosclerosis. The purpose of our study was to investigate the molecular mechanisms by which curcumin affects MMP-9, MMP13 and EMMPRIN in PMA (phorbol 12-myristate 13-acetate) induced macrophages. Human monocytic cells (THP-1 cells) were pretreated with curcumin or compound C for 1 h, and then induced by PMA for 48 h. Total RNA and proteins were collected for real-time PCR and Western blot analysis, respectively. In the present study, the exposure to curcumin resulted in attenuated JNK, p38, and ERK activation and decreased expression of MMP-9, MMP-13 and EMMPRIN in PMA induced macrophages. Moreover, we demonstrated that AMPK (AMP-activated protein kinase) and PKC (Protein Kinase C) was activated by PMA during monocyte/macrophage differentiation. Furthermore, curcumin reversed PMA stimulated PKC activation and suppressed the chronic activation of AMPK, which in turn reduced the expression of MMP-9, MMP-13 and EMMPRIN. Therefore, it is suggested that curcumin by inhibiting AMPK-MAPK (mitogen activated protein kinase) and PKC pathway may led to down-regulated EMMPRIN, MMP-9 and MMP-13 expression in PMA-induced THP-1 cells.

  6. Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells

    PubMed Central

    2011-01-01

    Background Mushroom polysaccharides have traditionally been used for the prevention and treatment of a multitude of disorders like infectious illnesses, cancers and various autoimmune diseases. Crude mushroom extracts have been tested without detailed chemical analyses of its polysaccharide content. For the present study we decided to chemically determine the carbohydrate composition of semi-purified extracts from 2 closely related and well known basidiomycete species, i.e. Agaricus bisporus and A. brasiliensis and to study their effects on the innate immune system, in particular on the in vitro induction of pro-inflammatory cytokines, using THP-1 cells. Methods Mushroom polysaccharide extracts were prepared by hot water extraction and precipitation with ethanol. Their composition was analyzed by GC-MS and NMR spectroscopy. PMA activated THP-1 cells were treated with the extracts under different conditions and the production of pro-inflammatory cytokines was evaluated by qPCR. Results Semi-purified polysaccharide extracts of A. bisporus and A. brasiliensis (= blazei) were found to contain (1→6),(1→4)-linked α-glucan, (1→6)-linked β-glucan, and mannogalactan. Their proportions were determined by integration of 1H-NMR signs, and were considerably different for the two species. A. brasiliensis showed a higher content of β-glucan, while A. bisporus presented mannogalactan as its main polysaccharide. The extracts induced a comparable increase of transcription of the pro-inflammatory cytokine genes IL-1β and TNF-α as well as of COX-2 in PMA differentiated THP-1 cells. Pro-inflammatory effects of bacterial LPS in this assay could be reduced significantly by the simultaneous addition of A. brasiliensis extract. Conclusions The polysaccharide preparations from the closely related species A. bisporus and A. brasiliensis show major differences in composition: A. bisporus shows high mannogalactan content whereas A. brasiliensis has mostly β-glucan. Semi-purified polysaccharide extracts from both Agaricus species stimulated the production of pro-inflammatory cytokines and enzymes, while the polysaccharide extract of A. brasiliensis reduced synthesis of these cytokines induced by LPS, suggesting programmable immunomodulation. PMID:21787425

  7. Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research.

    PubMed

    Riddy, Darren M; Goy, Emily; Delerive, Philippe; Summers, Roger J; Sexton, Patrick M; Langmead, Christopher J

    2018-01-01

    Monocyte-like cell lines (MCLCs), including THP-1, HL-60 and U-937 cells, are used routinely as surrogates for isolated human peripheral blood mononuclear cells (PBMCs). To systematically evaluate these immortalised cells and PBMCs as model systems to study inflammation relevant to the pathogenesis of type II diabetes and immuno-metabolism, we compared mRNA expression of inflammation-relevant genes, cell surface expression of cluster of differentiation (CD) markers, and chemotactic responses to inflammatory stimuli. Messenger RNA expression analysis suggested most genes were present at similar levels across all undifferentiated cells, though notably, IDO1, which encodes for indoleamine 2,3-dioxygenase and catabolises tryptophan to kynureninase (shown to be elevated in serum from diabetic patients), was not expressed in any PMA-treated MCLC, but present in GM-CSF-treated PBMCs. There was little overall difference in the pattern of expression of CD markers across all cells, though absolute expression levels varied considerably and the correlation between MCLCs and PBMCs was improved upon MCLC differentiation. Functionally, THP-1 and PBMCs migrated in response to chemoattractants in a transwell assay, with varying sensitivity to MCP-1, MIP-1α and LTB-4. However, despite similar gene and CD expression profiles, U-937 cells were functionally impaired as no migration was observed to any chemoattractant. Our analysis reveals that the MCLCs examined only partly replicate the genotypic and phenotypic properties of human PBMCs. To overcome such issues a universal differentiation protocol should be implemented for these cell lines, similar to those already used with isolated monocytes. Although not perfect, in our hands the THP-1 cells represent the closest, simplified surrogate model of PBMCs for study of inflammatory cell migration.

  8. PKC-Dependent Human Monocyte Adhesion Requires AMPK and Syk Activation

    PubMed Central

    Chang, Mei-Ying; Huang, Duen-Yi; Ho, Feng-Ming; Huang, Kuo-Chin; Lin, Wan-Wan

    2012-01-01

    PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. PMID:22848421

  9. Oxygen Tension Modulates Differentiation and Primary Macrophage Functions in the Human Monocytic THP-1 Cell Line

    PubMed Central

    Grodzki, Ana Cristina G.; Giulivi, Cecilia; Lein, Pamela J.

    2013-01-01

    The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O2 and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O2) in the absence of 2-ME and serum would alter THP-1 cell physiology. Comparisons of cultures maintained in 18% O2 versus 5% O2 indicated that reducing oxygen tension had no effect on the proliferation of undifferentiated THP-1 cells. However, decreasing the oxygen tension to 5% O2 significantly increased the rate of phorbol ester-induced differentiation of THP-1 cells into macrophage-like cells as well as the metabolic activity of both undifferentiated and PMA-differentiated THP-1 cells. Removal of both 2-ME and serum from the medium decreased the proliferation of undifferentiated THP-1 cells but increased metabolic activity and the rate of differentiation under either oxygen tension. In differentiated THP-1 cells, lowering the oxygen tension to 5% O2 decreased phagocytic activity, the constitutive release of β-hexosaminidase and LPS-induced NF-κB activation but enhanced LPS-stimulated release of cytokines. Collectively, these data demonstrate that oxygen tension influences THP-1 cell differentiation and primary macrophage functions, and suggest that culturing these cells under tightly regulated oxygen tension in the absence of exogenous reducing agent and serum is likely to provide a physiologically relevant baseline from which to study the role of the local redox environment in regulating THP-1 cell physiology. PMID:23355903

  10. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components.

    PubMed

    Condino-Neto, A; Whitney, C; Newburger, P E

    1998-11-01

    We investigated the effects of dexamethasone or indomethacin on the NADPH oxidase activity, cytochrome b558 content, and expression of genes encoding the components gp91-phox and p47-phox of the NADPH oxidase system in the human monocytic THP-1 cell line, differentiated with IFN-gamma and TNF-alpha, alone or in combination, for up to 7 days. IFN-gamma and TNF-alpha, alone or in combination, caused a significant up-regulation of the NADPH oxidase system as reflected by an enhancement of the PMA-stimulated superoxide release, cytochrome b558 content, and expression of gp91-phox and p47-phox genes on both days 2 and 7 of cell culture. Noteworthy was the tremendous synergism between IFN-gamma and TNF-alpha for all studied parameters. Dexamethasone down-regulated the NADPH oxidase system of cytokine-differentiated THP-1 cells as assessed by an inhibition on the PMA-stimulated superoxide release, cytochrome b558 content, and expression of the gp91-phox and p47-phox genes. The nuclear run-on assays indicated that dexamethasone down-regulated the NADPH oxidase system at least in part by inhibiting the transcription of gp91-phox and p47-phox genes. Indomethacin inhibited only the PMA-stimulated superoxide release of THP-1 cells differentiated with IFN-gamma and TNF-alpha during 7 days. None of the other parameters was affected by indomethacin. We conclude that dexamethasone down-regulates the NADPH oxidase system at least in part by inhibiting the expression of genes encoding the gp91-phox and p47-phox components of the NADPH oxidase system.

  11. Effects of Pleiotrophin on endothelial and inflammatory cells: Pro-angiogenic and anti-inflammatory properties and potential role for vascular bio-prosthesis endothelialization.

    PubMed

    Palmieri, Daniela; Mura, Marzia; Mambrini, Simone; Palombo, Domenico

    2015-09-01

    One of the limitations emerged with both synthetic and degradable vascular grafts is the lack of endothelialization after implantation that is known to be the main reason leading to unfavourable outcomes. It emerges the need to find new strategies to promote a rapid endothelialization of the scaffold. Pleiotrophin is a growth/differentiation cytokine for various cell type. We here evaluated the effect of Pleiotrophin on endothelial cells (EC), monocytes and macrophages that have been shown as key cells promoting neovascularization. EA.hy926 endothelial cells, THP-1 monocytes and PMA-differentiated macrophages were treated with Pleiotrophin (10 and 100ng/ml). VEGF, Flk-1, Nrp-1, COX-2, ICAM-1 and TGFβ expression were detected by Western Blot, IL-10, MCP-1 and TNFα levels by ELISA. Chemotaxis was performed in Boyden chambers. Wound healing was performed by scratch wound assay. Pleiotrophin induces in EC the expression of VEGF and its receptors Flk-1 and Nrp-1 and improves the migratory capacity. In THP-1 monocytes, Pleiotrophin induces the expression of VEGF and its receptor Nrp-1 and decreases the levels of COX-2 and TNFα. In PMA-differentiated macrophages COX-2 expression was significantly reduced by Pleiotrophin, while IL-10 and TGFβ were increased. Pleiotrophin acts as an angiogenesis 'driver' by promoting the creation of a pro-angiogenic environment, a migratory behaviour in EC and a pro-regenerative alternative phenotype in macrophages. Our results suggest that Pleiotrophin might be considered for vascular prosthesis engineering. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Expression and regulation of aromatase and 17 beta-hydroxysteroid dehydrogenase type 4 in human THP 1 leukemia cells.

    PubMed

    Jakob, F; Homann, D; Adamski, J

    1995-12-01

    Estradiol is active in proliferation and differentiation of sex-related tissues like ovary and breast. Glandular steroid metabolism was for a long time believed to dominate the estrogenic milieu around any cell of the organism. Recent reports verified the expression of estrogen receptors in "non-target" tissues as well as the extraglandular expression of steroid metabolizing enzymes. Extraglandular steroid metabolism proved to be important in the brain, skin and in stromal cells of hormone responsive tumors. Aromatase converts testosterone into estradiol and androstenedione into estrone, thereby activating estrogen precursors. The group of 17 beta-hydroxysteroid dehydrogenases catalyzes the oxidation and/or reduction of the forementioned compounds, e.g. estradiol/estrone, thereby either activating or inactivating estradiol. Aromatase is expressed and regulated in the human THP 1 myeloid leukemia cell line after vitamin D/GMCSF-propagated differentiation. Aromatase expression is stimulated by dexamethasone, phorbolesters and granulocyte/macrophage stimulating factor (GMCSF). Exons I.2 and I.4 are expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. Vitamin D-differentiated THP 1 cells produce a net excess of estradiol in culture supernatants, if testosterone is given as aromatase substrate. In contrast, the 17 beta-hydroxysteroid dehydrogenase type 4 (17 beta-HSD 4) is abundantly expressed in unstimulated THP 1 cells and is further stimulated by glucocorticoids (2-fold). The expression is unchanged after vitamin D/GMCSF-propagated differentiation. 17 beta-HSD 4 expression is not altered by phorbolester treatment in undifferentiated cells but is abolished after vitamin D-propagated differentiation along with downregulation of beta-actin. Protein kinase C activation therefore appears to dissociate the expression of aromatase and 17 beta-HSD 4 in this differentiation stage along the monocyte/phagocyte pathway of THP 1 myeloid cells. The expression of steroid metabolizing enzymes in myeloid cells is able to create a microenvironment which is uncoupled from dominating systemic estrogens. These findings may be relevant in the autocrine, paracrine or iuxtacrine cellular crosstalk of myeloid cells in their respective states of terminal differentiation, e.g. in bone metabolism and inflammation.

  13. Transcriptional and translational disconnect in regulation of the CXCL12 and its receptors CXCR4, 7 in THP-1 monocytes and macrophages

    USDA-ARS?s Scientific Manuscript database

    The chemokine CXCL12 and its receptors, CXCR 4 and 7, play crucial roles in the immune system. In the present study, the regulation of this pathway was further examined using the in-vitro model of undifferentiated human THP-1 monocytes (u-THP-1) and phorbol 12-myristate 13-acetate (PMA)-differentia...

  14. Biofuel cell operating on activated THP-1 cells: A fuel and substrate study.

    PubMed

    Javor, Kristina; Tisserant, Jean-Nicolas; Stemmer, Andreas

    2017-01-15

    It is known that electrochemical energy can be harvested from mammalian cells, more specifically from white blood cells (WBC). This study focuses on an improved biofuel cell operating on phorbol myristate acetate (PMA) activated THP-1 human monocytic cells. Electrochemical investigation showed strong evidence pointing towards hydrogen peroxide being the primary current source, confirming that the current originates from NADPH oxidase activity. Moreover, an adequate substrate for differentiation and activation of THP-1 cells was examined. ITO, gold, platinum and glass were tested and the amount of superoxide anion produced by NADPH oxidase was measured by spectrophotometry through WST-1 reduction at 450nm and used as an indicator of cellular activity and viability. These substrates were subsequently used in a conventional two-compartment biofuel cell where the power density output was recorded. The material showing the highest cell activity compared to the reference cell culture plate and the highest power output was ITO. Under our experimental conditions, a power density of 4.5μW/cm 2 was reached. To the best of our knowledge, this is a threefold higher power output than other leukocyte biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [Use of THP-1 for allergens identification method validation].

    PubMed

    Zhao, Xuezheng; Jia, Qiang; Zhang, Jun; Li, Xue; Zhang, Yanshu; Dai, Yufei

    2014-05-01

    Look for an in vitro test method to evaluate sensitization using THP-1 cells by the changes of the expression of cytokines to provide more reliable markers of the identification of sensitization. The monocyte-like THP-1 cells were induced and differentiated into THP-1-macrophages with PMA (0.1 microg/ml). The changes of expression of cytokines at different time points after the cells being treated with five known allergens, 2,4-dinitrochlorobenzene (DNCB), nickel sulfate (NiSO4), phenylene diamine (PPDA) potassium dichromate (K2Cr2O7) and toluene diisocyanate (TDI) and two non-allergens sodium dodecyl sulfate (SDS) and isopropanol (IPA) at various concentrations were evaluated. The IL-6 and TNF-alpha production was measured by ELISA. The secretion of IL-1beta and IL-8 was analyzed by Cytometric Bead Array (CBA). The section of the IL-6, TNF-alpha, IL-1beta and IL-8 were the highest when THP-1 cells were exposed to NiSO4, DNCB and K2Cr2O7 for 6h, PPDA and TDI for 12h. The production of IL-6 were approximately 40, 25, 20, 50 and 50 times for five kinds chemical allergens NiSO4, DNCB, K2Cr2O7, PPDA and TDI respectively at the optimum time points and the optimal concentration compared to the control group. The expression of TNF-alpha were 20, 12, 20, 8 and 5 times more than the control group respectively. IL-1beta secretion were 30, 60, 25, 30 and 45 times respectively compared to the control group. The production of IL-8 were approximately 15, 12, 15, 12 and 7 times respectively compared to the control group. Both non-allergens SDS and IPA significantly induced IL-6 secretion in a dose-dependent manner however SDS cause a higher production levels, approximately 20 times of the control. Therefore IL-6 may not be a reliable marker for identification of allergens. TNF-alpha, IL-1beta and IL-8 expressions did not change significantly after exposed to the two non-allergens. The test method using THP-1 cells by detecting the productions of cytokines (TNF-alpha, IL-1beta and IL-8) can effectively distinguish chemical allergens and non-allergens. The three cytokines may be reliable markers for the identification of potential sensitizing chemicals.

  16. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke.

    PubMed

    Bruno, A; Cipollina, C; Di Vincenzo, S; Siena, L; Dino, P; Di Gaudio, F; Gjomarkaj, M; Pace, E

    2017-09-05

    Cigarette smoke, the principal risk factor for chronic obstructive pulmonary disease (COPD), negatively influences the effectiveness of the immune system's response to a pathogen. The antibiotic ceftaroline exerts immune-modulatory effects in bronchial epithelial cells exposed to cigarette smoke. The present study aims to assess the effects of ceftaroline on TLR2 and TLR4 expression, LPS binding and TNF-α and human beta defensin (HBD2) release in an undifferentiated and PMA-differentiated human monocyte cell line (THP-1) exposed or not to cigarette smoke extracts (CSE). TLR2, TLR4, and LPS binding were assessed by flow cytometry, TNF-α and HBD2 release were evaluated by ELISA. The constitutive expression of TLR2 and TLR4 and LPS binding were higher in differentiated compared to undifferentiated THP-1 cells. In undifferentiated THP-1 cells, CSE increased TLR2 and TLR4 protein levels, LPS binding and TNF-α release and reduced HBD2 release and ceftaroline counteracted all these effects. In differentiated THP-1, CSE did not significantly affect TLR2 and TLR4 expression and LPS binding but reduced HBD2 release and increased TNF-α release. Ceftaroline counteracted the effects of CSE on HBD2 release in differentiated THP-1. Ceftaroline counteracts the effect of CSE in immune cells by increasing the effectiveness of the innate immune system. This effect may also assist in reducing pathogen activity and recurrent exacerbations in COPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Naloxone inhibits nod-like receptor protein 3 inflammasome.

    PubMed

    Lin, Han-Yu; Chang, Ya-Ying; Kao, Ming-Chang; Huang, Chun-Jen

    2017-11-01

    Naloxone, an opioid receptor antagonist, possesses potent anti-inflammation effects. We previously confirmed the effects of naloxone on inhibiting upregulation of inflammatory cytokine interleukin-1β (IL-1β). Production of mature form IL-1β is mediated by the nod-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex composed of NLRP3, and the adaptor protein apoptosis-associated speck-like protein contains a caspase recruitment domain (ASC). We elucidated whether naloxone could inhibit the activation of NLRP3 inflammasome. To induce IL-1β production and NLRP3 inflammasome activation, the human monocytic leukemia cell line THP-1 cells were first primed with lipopolysaccharide (LPS, 1 μg/mL) and then activated with adenosine triphosphate (ATP, 1 mM). For NLRP3 transcription, THP-1 cells were only treated with LPS priming. Enzyme-link immunosorbent assay data revealed that the concentration of IL-1β in THP-1 cells treated with LPS plus ATP was significantly higher than that in THP-1 cells treated with LPS plus ATP plus naloxone (0.1 μM) (P < 0.001). Real-time quantitative reverse transcription and polymerase chain reaction data also revealed that NLRP3 mRNA concentration in THP-1 cells treated with LPS was significantly higher than that in THP-1 cells treated with LPS plus naloxone (P = 0.001). ASC speck formation, that is, ASC assembles into a large protein complex, is an indicator for NLRP3 inflammasome activation. Our data revealed that the percentage of cells containing ASC specks in THP-1 cells treated with LPS plus ATP was also significantly higher than that in THP-1 cells treated with LPS plus ATP plus naloxone (P < 0.001). Naloxone inhibits NLRP3 inflammasome activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Allicin induces the upregulation of ABCA1 expression via PPARγ/LXRα signaling in THP-1 macrophage-derived foam cells

    PubMed Central

    Lin, Xiao-Long; Hu, Hui-Jun; Liu, Yuan-Bo; Hu, Xue-Mei; Fan, Xiao-Juan; Zou, Wei-Wen; Pan, Yong-Quan; Zhou, Wen-Quan; Peng, Min-Wen; Gu, Cai-Hong

    2017-01-01

    Allicin is considered anti-atherosclerotic due to its antioxidant and anti-inflammatory effects, which makes it an important drug for the prevention and treatment of atherosclerosis. However, the effects of allicin on foam cells are unclear. Thus, in this study, we examined the effects of allicin on lipid accumulation via peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) in THP-1 macrophage-derived foam cells. THP-1 cells were exposed to 100 nM phorbol myristate acetate (PMA) for 24 h, and then to oxydized low-density lipoprotein (ox-LDL; 50 mg/ml) to induce foam cell formation. The results of Oil Red O staining and high-performance liquid chromatography (HPLC) revealed showed that pre-treatment of the foam cells with allicin decreased total cholesterol, free cholesterol (FC) and cholesterol ester levels in cells, and also decreased lipid accumulation. Moreover, allicin upregulated ATP binding cassette transporter A1 (ABCA1) expression and promoted cholesterol efflux. However, these effects were significantly abolished by transfection with siRNA targeting ABCA1. Furthermore, PPARγ/LXRα signaling was activated by allicin treatment. The allicin-induced upregulation of ABCA1 expression was also abolished by PPARγ inhibitor (GW9662) and siRNA or LXRα siRNA co-treatment. Overall, our data demonstrate that the allicin-induced upregulation of ABCA1 promotes cholesterol efflux and reduces lipid accumulation via PPARγ/LXRα signaling in THP-1 macrophage-derived foam cells. PMID:28440421

  19. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent.

    PubMed

    Rupasinghe, H P Vasantha; Boehm, Mannfred M A; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R

    2015-06-02

    Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography-Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 10⁵/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor.

  20. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent

    PubMed Central

    Rupasinghe, H. P. Vasantha; Boehm, Mannfred M. A.; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R.

    2015-01-01

    Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography—Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 105/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank’s buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor. PMID:26043379

  1. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture.

    PubMed

    Yang, S; Tamai, R; Akashi, S; Takeuchi, O; Akira, S; Sugawara, S; Takada, H

    2001-04-01

    An analog of 1alpha,25-dihydroxyvitamin D3, 22-oxyacalcitriol (OCT), differentiated human monocytic THP-1 and U937 cells to express membrane CD14 and rendered the cells responsive to bacterial cell surface components. Both THP-1 and U937 cells expressed Toll-like receptor 4 (TLR4) on the cell surface and TLR4 mRNA in the cells, irrespective of OCT treatment. In contrast, OCT-treated U937 cells scarcely expressed TLR2 mRNA, while OCT-treated THP-1 cells expressed this transcript. Muramyldipeptide (MDP) by itself exhibited only a weak ability to induce secretion of inflammatory cytokines such as interleukin-8 (IL-8) in the OCT-differentiated THP-1 cells but showed marked synergistic effects with Salmonella lipopolysaccharide (LPS) or lipoteichoic acid (LTA) from Staphylococcus aureus, both of which exhibited strong activities. Combinatory stimulation with LPS plus LTA did not show a synergistic effect on OCT-differentiated THP-1 cells. Similar results were observed in OCT-differentiated U937 cells, although combination experiments were carried out only with MDP plus LPS. Anti-CD14 monoclonal antibody (MAb) MY4, anti-TLR4 MAb HTA125, and the synthetic lipid A precursor LA-14-PP almost completely inhibited the IL-8-inducing activities of LTA as well as LPS on OCT-treated THP-1 cells, but these treatments increased MDP activity. OCT-treated THP-1 cells primed with MDP exhibited enhanced production of IL-8 upon stimulation with LPS, while the cells primed with LPS showed no change in production upon stimulation with MDP. MDP up-regulated mRNA expression of an adapter molecule to TLRs, MyD88, to an extent similar to that for LPS in OCT-treated THP-1 cells. These findings suggested that LTA as well as LPS activated human monocytic cells in a CD14- and TLR4-dependent manner, whereas MDP exhibited activity in a CD14-, TLR4-, and probably TLR2-independent manner and exhibited synergistic and priming effects on the cells for cytokine production in response to various bacterial components.

  2. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds.

    PubMed

    Chanput, Wasaporn; Mes, Jurriaan J; Savelkoul, Huub F J; Wichers, Harry J

    2013-02-01

    Little is known about the polarizing potential of currently used human macrophage cell lines, while a better understanding phenomena can support the prediction of effects in vivo based on in vitro analysis. To test the polarization capability of PMA differentiated-THP-1 macrophages (M0), cells were stimulated with 20 ng ml(-1) IFNγ + 1 μg ml(-1) LPS and 20 ng ml(-1) IL-4, which are known to influence macrophage polarization in vivo and ex vivo into the M1 and M2 state, respectively. Apart from several well-known M1 and M2 markers, also new possible markers for M1 and M2 polarization were analysed in this study. The expression of M1 marker genes was up-regulated in IFNγ + LPS stimulated-M0 THP-1 macrophages. The IL-4 stimulated-M0 THP-1 macrophages expressed M2 cell membrane receptor genes. However, M2 chemokine and their receptor genes were only slightly up-regulated which might be due to the complexity of the secondary cell-cell interaction of the chemokine system. Lipopolysaccharides from E. coli (LPS) and food compounds [lentinan, vitamin D3 (vD3) and the combination of lentinan + vitamin D3 (Len + vD3)] were investigated for their polarizing ability on M0 THP-1 macrophages towards either the M1 or M2 state. LPS (700 ng ml(-1)) was able to skew M0 THP-1 macrophages towards the M1 direction since all analysed M1 marker genes were strongly expressed. Lentinan, vD3 and Len + vD3 did not induce expression of either M1 or M2 markers, indicating no polarizing ability of these compounds. Based on the expression of M1 and M2 marker genes we concluded that THP-1 macrophages could be successfully polarized into either the M1 or M2 state. Therefore, they can be used as a new macrophage polarizing model to estimate the polarizing/switching ability of test food compounds.

  3. Macrophage differentiation increases expression of the ascorbate transporter (SVCT2)

    PubMed Central

    Qiao, Huan; May, James M.

    2013-01-01

    To determine whether macrophage differentiation involves increased uptake of vitamin C, or ascorbic acid, we assessed the expression and function of its transporter SVCT2 during phorbol ester-induced differentiation of human-derived THP-1 monocytes. Induction of THP-1 monocyte differentiation by phorbol 12-myristate 13-acetate (PMA) markedly increased SVCT2 mRNA, protein, and function. When ascorbate was present during PMA-induced differentiation, the increase in SVCT2 protein expression was inhibited, but differentiation was enhanced. PMA-induced SVCT2 protein expression was blocked by inhibitors of protein kinase C (PKC), with most of the affect due to the PKCβI and βII isoforms. Activation of MEK/ERK was sustained up to 48 h after PMA treatment, and the inhibitors completely blocked PMA-stimulated SVCT2 protein expression, indicating an exclusive role for the classical MAP kinase pathway. However, inhibitors of NF-κB activation, NADPH oxidase inhibitors, and several antioxidants also partially prevented SVCT2 induction, suggesting diverse distal routes for control of SVCT2 transcription. Both known promoters for the SVCT2 were involved in these effects. In conclusion, PMA-induced monocyte-macrophage differentiation is enhanced by ascorbate and associated with increased expression and function of the SVCT2 protein through a pathway involving sustained activation of PKCβI/II, MAP kinase, NADPH oxidase, and NF-κB. PMID:19232538

  4. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal.

    PubMed

    Kanwar, Jagat R; Kanwar, Rupinder K

    2009-01-31

    Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1beta and TNF-alpha) and up-regulated IFN-gamma, IL-2 and IL-10. Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.

  5. Multiple splicing events involved in regulation of human aromatase expression by a novel promoter, I.6.

    PubMed

    Shozu, M; Zhao, Y; Bulun, S E; Simpson, E R

    1998-04-01

    The expression of aromatase is regulated in a tissue-specific fashion through alternative use of multiple promoter-specific first exons. To date, eight different first exons have been reported in human aromatase, namely I.1., I.2, I.3. I.4, I.5, PII, 2a, and 1f. Recently, we have found a new putative exon I in a RACE-generated library of THP-1 cells and have conducted studies to characterize this new exon I. We confirmed that the constructs containing -1552/+17 or less flanking sequence of this exon function as a promoter in THP-1 cells, JEG-3 cells and osteoblast-like cells obtained from a human fetus. Results of transfection assays using a series of deletion constructs and mutation constructs indicate that a 1-bp mismatch of the consensus TATA-like box (TTTAAT) and the consensus sequence of the initiator site, which is located 45 bp downstream of the putative TATA box, were functioning cooperatively as a core promoter. The putative transcription site was confirmed by the results of RT-PCR southern blot analysis. We examined the regulation and the expression of this exon, I.6, in several human cells and tissues by RT-PCR Southern blot analysis. THP-1 cells (mononuclear leukemic origin) and JEG-3 cells (choriocarcinoma origin) expressed exon I.6 in serum-free media. The level of expression was increased by serum and phorbol myristyl acetate (PMA) in both cell lines. Adipose stromal cells also expressed exon I.6 in the presence of PMA. In fetal osteoblasts, the expression of exon I.6 was increased most effectively by serum and less so by dexamethasone (DEX) + IL-1beta and DEX + IL-11, whereas induction by serum was suppressed by the addition of DEX. The level of expression was low in granulosa cells in culture and did not change with forskolin. On the other hand, dibutyryl cAMP suppressed PMA-stimulated expression of exon I.6 in THP-1 cells and adipose stromal cells. This result supports the hypothesis that the expression of exon I.6 is regulated mainly via an AP-1 binding site that is found upstream of the initiator site of the promoter region. Expression of exon I.6-specific transcripts was examined in several human tissues. Testis and bone obtained from normal adults expressed exon I.6. Testicular tumor and hepatic carcinoma expressed high levels of exon I.6, whereas granulosa cell tumor did not. Fetal liver and bone also showed a significant level of exon I.6 expression, but not so much as testicular tumor and hepatic tumor. Several splicing variants of exon I.6 were detected especially in THP-1 and JEG-3 cells, and to a lesser extent in primary cultures and tissue samples. These variants were identified as an unspliced form, a form spliced at the end of exon I.4, a form spliced at the end of exon I.3 (truncated) and a form spliced 220 bp downstream of the 3' end of exon I.6. The last variant revealed a new splicing site. Because most of the splicing variants contain the sequence specific for exon I.3, RT-PCR specific for exon I.3 can coamplify these splicing variants of exon I.6 transcripts. These results suggests that it is necessary to examine the expression of I.6 in tissues that are known to express exon I.3 such as breast adipose tissue, in which promoter usage of exon I of the aromatase gene switches from exon I.4 to I.3 in the course of malignant transformation.

  6. Plasticity of Human THP-1 Cell Phagocytic Activity during Macrophagic Differentiation.

    PubMed

    Kurynina, A V; Erokhina, M V; Makarevich, O A; Sysoeva, V Yu; Lepekha, L N; Kuznetsov, S A; Onishchenko, G E

    2018-03-01

    Studies of the role of macrophages in phagocytosis are of great theoretical and practical importance for understanding how these cells are involved in the organism's defense response and in the development of various pathologies. Here we investigated phagocytic plasticity of THP-1 (acute monocytic human leukemia) cells at different stages (days 1, 3, and 7) of phorbol ester (PMA)-induced macrophage differentiation. Analysis of cytokine profiles showed that PMA at a concentration of 100 nM induced development of the proinflammatory macrophage population. The functional activity of macrophages was assessed on days 3 and 7 of differentiation using unlabeled latex beads and latex beads conjugated with ligands (gelatin, mannan, and IgG Fc fragment) that bind to the corresponding specific receptors. The general phagocytic activity increased significantly (1.5-2.0-fold) in the course of differentiation; phagocytosis occurred mostly through the Fc receptors, as shown previously for M1 macrophages. On day 7, the levels of phagocytosis of gelatin- and Fc-covered beads were high; however, the intensity of ingestion of mannan-conjugated beads via mannose receptors increased 2.5-3.0-fold as well, which indicated formation of cells with an alternative phenotype similar to that of M2 macrophages. Thus, the type and the plasticity of phagocytic activity at certain stages of macrophage differentiation can be associated with the formation of functionally mature morphological phenotype. This allows macrophages to exhibit their phagocytic potential in response to specific ligands. These data are of fundamental importance and can be used to develop therapeutic methods for correcting the M1/M2 macrophage ratio in an organism.

  7. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1beta and TNF-alpha.

  8. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The activated monocyte-like phenotype is mediated by TLR2/TLR4 signaling.« less

  9. [Acetyl-11-keto-beta-boswellic acid and arsenic trioxide regulate the productions and activities of matrix metalloproteinases in human skin fibroblasts and human leukemia cell line THP-1].

    PubMed

    Liang, Ya-hui; Li, Ping; Zhao, Jing-xia; Liu, Xin; Huang, Qi-fu

    2010-11-01

    In order to reveal the treatment mechanism of Chinese medicine with the effect of activating blood and resolving putridity, we selected acetyl-11-keto-beta-boswellic acid (AKBA) and arsenic trioxide (ATO), the main monomeric components of frankincense and arsenolite which are two most commonly used Chinese medicine with effect of activating blood and resolving putridity. We combined AKBA and ATO as a compound, and explored its regulatory role in productions and activities of matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 in human skin fibroblasts (HSFbs) and human acute monocytic leukemia cell line THP-1 in inflammatory state. In order to simulate the inflammatory micro-environment of chronic wounds, we established 3 cell models: HSFb model activated by tumor necrosis factor-alpha (TNF-α), THP-1 cell model activated by phorbol-12-myristate-13-acetate (PMA) and HSFb-THP-1 cell coculture system. AKBA and ATO were cocultured with these cell models. Enzyme-linked immunosorbent assay (ELISA), gelatin zymography assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to test the secretions, activities and mRNA expressions of MMP-1, MMP-2 and MMP-9. In the study of the regulatory mechanism of AKBA and ATO on MMPs, AKBA and ATO were cocultured with the cell models. ELISA was used to test the secretions of TNF-α and interleukin-1beta (IL-β) and Western blot was used to test the phosphorylation levels of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated proteinkinase (p38MAPK). Compound of AKBA and ATO inhibited MMP-1, MMP-2 and MMP-9 mRNA expressions, secretions and activities respectively in HSFbs and THP-1 cells in inflammatory state (P<0.05, P<0.01). Also compound of AKBA and ATO inhibited secretions of TNF-α and IL-1β in THP-1 cells and cell coculture system (P<0.01). It also decreased the phosphorylation of ERK1/2 and p38 MAPK in HSFbs and THP-1 cells (P<0.05, P<0.01). The combined use of AKBA and ATO which in line with the rule of activating blood and resolving putridity inhibits fibroblasts and inflammatory cells in producing MMPs in inflammatory state through inhibiting the release of inflammatory factors and MAPK cascade pathway.

  10. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype.

    PubMed

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Multiple Signaling Pathways Are Involved in the Interleukine-4 Regulated Expression of DC-SIGN in THP-1 Cell Line

    PubMed Central

    Jin, Changzhong; Wu, Lijuan; Li, Jie; Fang, Meixin; Cheng, Linfang; Wu, Nanping

    2012-01-01

    Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) is an important pattern recognition receptor on dendritic cells (DCs), and its expression shows significant cytological and histological specificity, being interleukine-4 (IL-4) dependent. The signaling pathways through which IL-4 regulates expression of DC-SIGN are still unclear. We used phorbol 12-myristate 13-acetate- (PMA-) differentiated THP-1 cells as the in vitro model of monocyte/macrophage cells to study the signaling pathways involved in IL-4-regulated expression of DC-SIGN. We found that a high expression of DC-SIGN could be induced by IL-4 at the levels of mRNA and cell surface protein. Upregulated expression of DC-SIGN was almost completely blocked by the specific inhibitor of ERK pathway, and partly reduced by the specific inhibitors of JAK-STAT and NF-κB pathways. The activation of the three signaling pathways was directly confirmed by testing the phosphorylation of protein kinase within the cytoplasm and nucleus over time. The analysis of cis-acting elements of DC-SIGN promoter showed that the activity of DC-SIGN promoter without Ets-1 transcription factors binding site almost completely disappeared. Our results demonstrated that multiple signaling pathways are involved in IL-4 induced high expression of DC-SIGN on THP-1 cells, in which ERK pathway is the main signaling pathway and mediated by the Ets-1 transcription factors binding site. PMID:22675249

  12. SU-F-T-59: The Effect of Radiotherapy Dose On Immunoadjuvants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, M; Yasmin-Karim, S; Hao, Y

    Purpose: Combining radiotherapy with immunotherapy is a promising approach to enhance treatment outcomes for cancer patients. This in-vitro study investigated which radiotherapy doses could adversely affect the function of anti-CD40 mAb, which is one of the key immunoadjuvants under investigations for priming such combination therapy. Methods: Human monocyte derived THP-1 cells were treated with 100ng/mL of PMA in chamber slides to differentiate into macrophage. The THP-1 differentiated macrophages were treated with 2uL/ml of the anti-CD40 mAb and incubated at 37°C and 5% CO2 for 24 hours. Anti-CD40 mAb treated cells were then irradiated at different doses of x-rays: (0, 2,more » 4, 6, 8, and 12) Gy using the Small Animal Radiotherapy Research Platform (SARRP). After radiation, the cells were left at 4°C for 2 hours followed by immunofluorescence assay. A Nikon inverted live-cell imaging system with fluorescence microscope was used to image the cells mounted on a slide fixed with Dapi. For comparison, an ELISA assay was performed with the antibody added to 3mL of PBS in multiple 10mm dishes. The 10mm dishes were irradiated at different x-ray dose: (0, 2, 4, 6, 8. 10, 12, and 15) Gy using the SARRP. Results: The anti-CD40 mAb activating the macrophages starts to lose their viability due to radiation dose between 8Gy to 12Gy as indicated by the immunofluorescence assay. The ELISA assay, also indicated that such high doses could lead to loss of the mAb’s viability. Conclusion: This work suggests that high doses like those employed during Stereotactic Ablative Radiotherapy may affect the viability of immunoadjuvants such as anti-CD 40. This study avails in-vivo experiments combining radiotherapy with anti-cd40 to get synergistic outcomes, including in the treatment of metastatic disease.« less

  13. S100A8 facilitates the migration of colorectal cancer cells through regulating macrophages in the inflammatory microenvironment.

    PubMed

    Zha, He; Sun, Hui; Li, Xueru; Duan, Liang; Li, Aifang; Gu, Yue; Zeng, Zongyue; Zhao, Jiali; Xie, Jiaqing; Yuan, Shimei; Li, Huan; Zhou, Lan

    2016-07-01

    Previous studies have shown that S100 calcium-binding protein A8 (S100A8) contributes to the survival and migration of colorectal cancer (CRC) cells. However, whether S100A8 participates in the progression and metastasis of CRC via the regulation of macrophages in the tumor inflammatory microenvironment remains unknown. In this study, phorbol myristate acetate (PMA) was used to induce the differentiation of THP-1 monocytes to macrophages. MTT assay, western blot analysis, immunofluorescence staining, semi-quantitative RT-PCR (semi-PCR), quantitative real-time PCR (qPCR), Gaussia luciferase activity assay and ELISA were performed to analyze the roles and molecular mechanisms of S100A8 in the modulation of macrophages. MTT assay, flow cytometric analysis, Hoechst staining, wound healing and Transwell migration assay were used to test the effect of S100A8 on the viability and migration of CRC cells co-cultured with macrophages in the inflammatory microenvironment. We found that THP-1 monocytes were induced by PMA and differentiated to macrophages. S100A8 activated the NF-κB pathway in the macrophages and promoted the expression of miR-155 and inflammatory cytokines IL-1β and TNF-α in the inflammatory microenvironment mimicked by lipopolysaccharides (LPS). Furthermore, S100A8 contributed to augment the migration but not the viability of the CRC cells co-cultured with the macrophages in the inflammatory microenvironment. Altogether, our study demonstrated that S100A8 facilitated the migration of CRC cells in the inflammatory microenvironment, and the underlying molecular mechanisms may be partially attributed to the overexpression of miR-155, IL-1β and TNF-α through activation of the NF-κB pathway in macrophages.

  14. HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity.

    PubMed

    Wang, Jie; Yang, Shuai; Liu, Lu; Wang, Hui; Yang, Bo

    2017-03-15

    The cellular antiviral innate immune system is essential for host defense and viruses have evolved a variety of strategies to evade the innate immunity. Human T lymphotropic virus type 1 (HTLV-1) belongs to the deltaretrovirus family and it can establish persistent infection in human beings for many years. However, how this virus evades the host innate immune responses remains unclear. Here we report a new strategy used by HTLV-1 to block innate immune responses. We observed that stimulator of interferon genes (STING) limited HTLV-1 protein expression and was critical to HTLV-1 reverse transcription intermediate (RTI) ssDNA90 triggered interferon (IFN)-β production in phorbol12-myristate13-acetate (PMA)-differentiated THP1 (PMA-THP1) cells. The HTLV-1 protein Tax inhibited STING overexpression induced transcriptional activation of IFN-β. Tax also impaired poly(dA:dT), interferon stimulatory DNA (ISD) or cyclic GMP-AMP (cGAMP) -stimulated IFN-β production, which was dependent on STING activation. Coimmunoprecipitation assays and confocal microscopy indicated that Tax was associated with STING in the same complex. Mechanistic studies suggested that Tax decreased the K63-linked ubiquitination of STING and disrupted the interactions between STING and TANK-binding kinase 1 (TBK1). These findings may shed more light on the molecular mechanisms underlying HTLV-1 infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lp-PLA2 silencing protects against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages.

    PubMed

    Zheng, HuaDong; Cui, DaJiang; Quan, XiaoJuan; Yang, WeiLin; Li, YingNa; Zhang, Lin; Liu, EnQi

    2016-09-02

    Atherosclerosis is a disease of the large- and medium-size arteries that is characterized by the formation of atherosclerotic plaques, in which foam cells are the characteristic pathological cells. However, the key underlying pathomechanisms are still not fully elucidated. In this study, we investigated the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in ox-LDL-induced oxidative stress and cell apoptosis, and further, elucidated the potential machanisms in human THP1 macrophages. Flow cytometry and western blot analyses showed that both cell apoptosis and Lp-PLA2 expression were dose-dependently elevated after ox-LDL treatment for 24 h and also time-dependently increased after 50 mg/L ox-LDL incubation in THP1 macrophages. In addition, Lp-PLA2 silencing decreased ox-LDL-induced Lp-PLA2 and CD36 expression in THP1 macrophages. We also found that the levels of oil red O-staining, triglyceride (TG) and total cholesterol (TC) were significantly upregulated in ox-LDL-treated THP1 cells, but inhibited by Lp-PLA2 silencing. Furthermore, ox-LDL treatment resulted in significant increases of ROS and MDA but a marked decrease of SOD, effects that were reversed by Lp-PLA2 silencing in THP1 cells. Lp-PLA2 silencing reduced ox-LDL-induced cell apoptosis and caspase-3 expression in THP1 cells. Moreover, Lp-PLA2 siRNA transfection dramatically lowered the elevated levels of p-Akt and p-mTOR proteins in ox-LDL-treated THP1 cells. Both PI3K inhibitor LY294002 and mTOR inhibitor rapamycin decreased the augmented caspase-3 expression and TC content induced by ox-LDL, respectively. Taken together, these results revealed that Lp-PLA2 silencing protected against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].

    PubMed

    Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang

    2013-08-01

    This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.

  17. c-fms mRNA is regulated posttranscriptionally by 1,25(OH)2D3 in HL-60 cells.

    PubMed

    Biskobing, D M; Fan, D; Rubin, J

    1997-09-01

    Macrophage colony-stimulating factor (MCSF) is required for normal osteoclast and macrophage development. The receptor for MCSF (c-fms) is expressed on the pluripotent precursor and mature osteoclasts and macrophages. We have previously shown in myelomonocytic HL-60 cells that phorbol myristate acetate (PMA) upregulates c-fms mRNA expression. This induction of c-fms is inhibited by 1,25(OH)2D3. The major regulatory control of c-fms mRNA levels by PMA has been identified as posttranscriptional. However, a role of transcript elongation in controlling levels of c-fms mRNA has also been suggested. To better understand the 1,25(OH)2D3 regulation of c-fms mRNA expression we studied nuclear run on, mRNA stability, and transcript elongation in HL-60 cells treated with 10 ng/ml phorbol myristate acetate, 10 nM 1,25(OH)2D3 alone or combined. We demonstrated by nuclear run on that c-fms was constitutively transcribed in 1,25(OH)2D3 as well as control and PMA-treated cells. Transcript elongation was evaluated by RT-PCR for exon 2 or exon 3. Both exons were minimally expressed in control and 1,25(OH)2D3-treated cells, and increased in PMA-treated cells; this increased expression was inhibited by the addition of 1,25(OH)2D3. These results fail to show differential transcript elongation. Measurement of mRNA stability demonstrated decreased mRNA half-life to 5 hours in cells treated with PMA and 1,25(OH)2D3 compared with a half-life of 8 hours in cells treated with PMA alone. Our findings demonstrate that c-fms is regulated by 1,25(OH)2D3 at the posttranscriptional level by changes in mRNA stability. This gives the cell the ability to respond to local signals with rapid changes in c-fms levels altering the ability of the cell to respond to MCSF.

  18. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.

    PubMed

    Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  19. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujita, Maristela; Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, SP; Batista, Wagner L.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinasesmore » by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.« less

  20. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells.

    PubMed

    Curto, Pedro; Simões, Isaura; Riley, Sean P; Martinez, Juan J

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with disease in mammals.

  1. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells

    PubMed Central

    Curto, Pedro; Simões, Isaura; Riley, Sean P.; Martinez, Juan J.

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with disease in mammals. PMID:27525249

  2. Interleukin-6 production by human monocytes treated with granulocyte-macrophage colony-stimulating factor in the presence of lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-06-01

    This study focused on the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and lipopolysaccharide of the putative periodontal pathogens Porphyromonas gingivalis or Fusobacterium nucleatum on IL-6 production by THP-1 cells (a human monocytic cell line). Resting THP-1 cells were alternatively treated with GM-CSF (50 IU/ml) and lipopolysaccharide of P. gingivalis or F. nucleatum, in varying concentrations for varying time periods. IL-6 production in supernatant fluids of treated cells was evaluated by an enzyme-linked immunosorbent assay (ELISA) and a reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate gene expression. Untreated THP-1 cells did not produce IL-6 as determined by ELISA. RT-PCR also failed to detect IL-6 mRNA in untreated THP-1 cells, indicating that IL-6 was not constitutively produced. After stimulation of THP-1 cells with lipopolysaccharide of F. nucleatum or P. gingivalis, IL-6 was produced, peaking at 4 h (200-300 pg/ml) and thereafter sharply declining by 8 h. When GM-CSF was added together with lipopolysaccharide of P. gingivalis or F. nucleatum, there was a synergistic quantitative increase in production of IL-6 as measured by ELISA as compared with lipopolysaccharide alone. IL-6 mRNA was detected by RT-PCR, 15 min after stimulation with lipopolysaccharide of either P. gingivalis or F. nucleatum. GM-CSF supplementation with lipopolysaccharide of P. gingivalis shortened the transcription of IL-6 mRNA to 5 min, a shift which was not observed with lipopolysaccharide of F. nucleatum, possibly indicating a different mechanism of initiation of transcription. Production of IL-6 by GM-CSF-treated THP-1 cells in the presence of lipopolysaccharide of oral microorganisms may provide a model for studying the role of macrophages in acute and chronic periodontal diseases, including the clinical periodontal exacerbation as observed in chemotherapy patients receiving GM-CSF for bone marrow recovery.

  3. The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes.

    PubMed

    Kanno, Sanae; Hirano, Seishiro; Chiba, Shoetsu; Takeshita, Hiroshi; Nagai, Tomonori; Takada, Meri; Sakamoto, Kana; Mukai, Toshiji

    2015-01-01

    Long fibers, such as asbestos and carbon nanotubes (CNTs), are more potent activators of inflammatory and genotoxicity than short or tangled fibers. Fibrous particles trigger interleukin (IL)-1β secretion and cause inflammatory diseases through NLRP3 inflammasomes in phagocytotic cells. However, the mechanism involved in fibrous particle-induced inflammation has not been well documented. In this study, we focused on GTPase effector Rho-kinases (ROCK1, and 2), which are known to be involved in a wide range of cellular functions such as adhesion, regulation of cytoskeleton, and phagocytosis. We examined whether ROCKs are associated with multi-walled CNT (MWCNT)- or asbestos-induced IL-1β secretion in human monocytic THP-1 cells using a selective inhibitor and small interfering RNA. THP-1 cells were differentiated to macrophages by PMA and were exposed to MWCNTs, crocidolite asbestos or lipopolysaccharide (LPS) in the presence or absence of Y27632 (ROCK inhibitor) or Z-YVAD (caspase-1 inhibitor). Exposure of the cells to MWCNTs or asbestos provoked IL-1β secretion, but this secretion was suppressed by both Y27632 and Z-YVAD, whereas LPS-induced IL-1β secretion was inhibited only by Z-YVAD and not by Y27632. siRNA designed for knockdown of both ROCK1 and ROCK2 suppressed MWCNT- and asbestos-induced IL-1β secretion, but did not change LPS-induced IL-1β secretion. Moreover, Y27632 suppressed pro-IL-1β protein levels and the release of activated-cathepsin B and activated-caspase-1 induced by MWCNTs or asbestos. In contrast, LPS-induced pro-IL-1β protein was not suppressed by Y27632. These results suggest that ROCKs are involved in fibrous particle-induced inflammasome responses in THP-1 cells.

  4. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages.

    PubMed

    Wang, Qi-Ming; Wang, Hao; Li, Ya-Fei; Xie, Zhi-Yong; Ma, Yao; Yan, Jian-Jun; Gao, Yi Fan Wei; Wang, Ze-Mu; Wang, Lian-Sheng

    2016-01-01

    It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer) and MMPs (matrix metalloproteinases) by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG) has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR) has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA). Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. We showed that EGCG (10-50µmol/L) significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun N-terminal kinase (JNK) in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris

    2007-11-28

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 °C or held at 5 °C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 μm pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivatemore » remaining PMA and secure intercalation of PMAwith DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.« less

  6. FC-99 ameliorates sepsis-induced liver dysfunction by modulating monocyte/macrophage differentiation via Let-7a related monocytes apoptosis.

    PubMed

    Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan

    2018-03-13

    The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N 1 -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6C hi monocytes in the peripheral blood and CD11b + F4/80 lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b + cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V + cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo , whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels.

  7. Short communication: Protein kinase C regulates glucose uptake and mRNA expression of glucose transporter (GLUT) 1 and GLUT8 in lactating bovine mammary epithelial cells.

    PubMed

    Zhao, K; Liu, H-Y; Zhao, F-Q; Liu, J-X

    2014-07-01

    The aim of this study was to determine the role of protein kinase C (PKC) in regulating glucose uptake in lactating bovine mammary epithelial cells (BMEC). The BMEC were cultured and treated with different concentrations of phorbol 12-myristate 13-acetate (PMA;0, 10, 25, 50, 100, and 200 ng/mL), the classic activator of PKC, for 48 h. Compared with the cells with no PMA treatment, 50 and 100 ng of PMA/mL significantly stimulated the glucose uptake of the BMEC, whereas the glucose uptake by the cells treated with the lowest and the highest amounts of PMA (25 and 200 ng/mL, respectively) did not show a significant difference. Consistently, the mRNA expression of glucose transporter (GLUT) 1 and 8 showed a similar pattern of increase under the treatments of PMA. Furthermore, when the cells were pretreated with GF1090203X (0, 0.25, 0.5, 1, and 2 μM), an inhibitor of PKC, for 30 min before exposed to PMA (50 ng/mL), the PMA-induced glucose uptake and GLUT1 and GLUT8 expression were decreased by GF1090203X in a dose-dependent manner. These results demonstrate that PKC is involved in the regulation of glucose uptake by BMEC, and this function may work, at least partly, through upregulating the expression of GLUT1 and GLUT8. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages

    PubMed Central

    Chamberlain, Michael Dean; Wells, Laura A.; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V.

    2015-01-01

    An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell–material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332

  9. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling.

    PubMed

    Yang, Lifeng; Dai, Fan; Tang, Lian; Le, Yulan; Yao, Wenjuan

    2017-01-01

    In order to investigate the effects of RhoA/ROCK signaling in macrophage differentiation, we used 100 ng/mL PMA to induce macrophage differentiation from U937 cells in vitro. The observation of cell morphology and the expression of CD68 and SR-A were performed to confirm the differentiation induced by PMA. Western blot analysis showed that the expression of ROCK1 and ROCK2 and the phosphorylation of MYPT1 were significantly increased after PMA treatment. Pulldown assay showed that the activation of RhoA was obviously enhanced when U937 cells were treated with PMA. In order to further demonstrate whether RhoA/ROCK signaling could mediate the macrophage differentiation induced by PMA, we successfully suppressed the expression of RhoA, ROCK1 and ROCK2 by performing siRNA technology in U937 cells, respectively. The macrophage differentiation and the expression of CD68 and SR-A were significantly inhibited by the suppression of RhoA, ROCK1 or ROCK2 in PMA-induced U937 cells, indicating that the macrophage differentiation induced by PMA is associated with RhoA/ROCK signaling pathway. In addition, we pretreated U937 cells with Y27632 (ROCK inhibitor, 20 μM) for 30 min and then observed the macrophage differentiation induced by PMA. The result illustrated that Y27632 pretreatment obviously inhibited PMA-induced differentiation and the expression of CD68 and SR-A. In conclusion, the activation of RhoA/ROCK signaling is responsible for the macrophage differentiation induced by PMA.

  10. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux

    PubMed Central

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis. PMID:27128486

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Jianmei; Department of Endocrinology, The First Hospital of Zibo, 4# E Mei Shan Dong Road, Zibo 255200; Li, Bo, E-mail: libosubmit@163.com

    Objectives: Cholesterol efflux has been thought to be the main and basic mechanism by which free cholesterol is transferred from extra hepatic cells to the liver or intestine for excretion. Salvianolic acid B (Sal B) has been widely used for the prevention and treatment of atherosclerotic diseases. Here, we sought to investigate the effects of Sal B on the cholesterol efflux in THP-1 macrophages. Methods: After PMA-stimulated THP-1 cells were exposed to 50 mg/L of oxLDL and [{sup 3}H] cholesterol (1.0 μCi/mL) for another 24 h, the effect of Sal B on cholesterol efflux was evaluated in the presence of apoA-1, HDL{sub 2}more » or HDL{sub 3}. The expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and liver X receptor-alpha (LXRα) was detected both at protein and mRNA levels in THP-1 cells after the stimulation of Sal B. Meanwhile, specific inhibition of PPAR-γ and LXRα were performed to investigate the mechanism. Results: The results showed that Sal B significantly accelerated apoA-I- and HDL-mediated cholesterol efflux in both dose- and time-dependent manners. Meanwhile, Sal B treatment also enhanced the expression of ABCA1 at both mRNA and protein levels. Then the data demonstrated that Sal B increased the expression of PPAR-γ and LXRα. And the application of specific agonists and inhibitors of further confirmed that Sal exert the function through PPAR-γ and LXRα. Conclusion: These results demonstrate that Sal B promotes cholesterol efflux in THP-1 macrophages through ABCA1/PPAR-γ/LXRα pathway. - Highlights: • Sal B promotes the expression of ABCA1. • Sal B promotes cholesterol efflux in macrophages. • Sal B promotes the expression of ABCA1 and cholesterol efflux through PPAR-γ/LXRα signaling pathway.« less

  12. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells

    PubMed Central

    Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon

    2015-01-01

    Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537

  13. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-02-08

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Department of Infectious Diseases, Peking University Third Hospital, Beijing; Zhang, Yuan

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1βmore » (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.« less

  15. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-α dependent manner.

    PubMed

    Saini, Neeraj Kumar; Sinha, Rajesh; Singh, Pooja; Sharma, Monika; Pathak, Rakesh; Rathor, Nisha; Varma-Basil, Mandira; Bose, Mridula

    2016-11-01

    Mycobacterium tuberculosis subverts the host immune response through numerous immune-evasion strategies. Apoptosis has been identified as one such mechanism and has been well studied in M. tuberculosis infection. Here, we demonstrate that the Mce4A protein of mce4 operon is involved in the induction of host cell apoptosis. Earlier we have shown that the Mce4A was required for the invasion and survival of M. tuberculosis. In this report we present evidence to establish a role for Mce4A in the modulation of THP-1 cell survival. Recombinant Mce4A was expressed and purified from Escherichia coli as inclusion bodies and then refolded. Viability of THP-1 cells decreased in a dose-dependent manner when treated with Mce4A. The secretion of pro-inflammatory cytokines like tumor necrosis factor (TNF-α) or interferon gamma (IFN-γ), and enhanced nitric oxide release was observed when the THP-1 cells, were treated with Mce4A protein. The Mce4A induced apoptosis of the THP-1 cells was TNF-α dependent since blocking with anti TNF-α antibody abrogated this phenomenon. Collectively, these data suggest that Mce4A can induce the THP-1 cells to undergo apoptosis which primarily follows a TNF- α dependent pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E.

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation.more » In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.« less

  17. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  18. Targeting the MIR34C-5p-ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin.

    PubMed

    Wu, Yaran; Ni, Zhenhong; Yan, Xiaojing; Dai, Xufang; Hu, Changjiang; Zheng, Yingru; He, Fengtian; Lian, Jiqin

    2016-07-02

    Pirarubicin (THP) is a newer generation anthracycline anticancer drug. In the clinic, THP and THP-based combination therapies have been demonstrated to be effective against various tumors without severe side effects. However, previous clinical studies have shown that most patients with cervical cancer are not sensitive to THP treatment, and the associated mechanisms are not clear. Consistent with the clinical study, we confirmed that cervical cancer cells were resistant to THP in vitro and in vivo. Our data demonstrated that THP induced a protective macroautophagy/autophagy response in cervical cancer cells, and suppression of this autophagy dramatically enhanced the cytotoxicity of THP. By scanning the mRNA level change of autophagy-related genes, we found that the upregulation of ATG4B (autophagy-related 4B cysteine peptidase) plays an important role in THP-induced autophagy. Moreover, THP increased the mRNA level of ATG4B in cervical cancer cells by promoting mRNA stability without influencing its transcription. Furthermore, THP triggered a downregulation of MIR34C-5p, which was associated with the upregulation of ATG4B and autophagy induction. Overexpression of MIR34C-5p significantly decreased the level of ATG4B and attenuated autophagy, accompanied by enhanced cell death and apoptosis in THP-treated cervical cancer cells. These results for the first time reveal the presence of a MIR34C-5p-ATG4B-autophagy signaling axis in THP-treated cervical cancer cells in vitro and in vivo, and the axis, at least partially, accounts for the THP nonsensitivity in cervical cancer patients. This study may provide a new insight for improving the chemotherapeutic effect of THP, which may be beneficial to the further clinical application of THP in cervical cancer treatment.

  19. Targeting the MIR34C-5p-ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin

    PubMed Central

    Wu, Yaran; Ni, Zhenhong; Yan, Xiaojing; Dai, Xufang; Hu, Changjiang; Zheng, Yingru; He, Fengtian; Lian, Jiqin

    2016-01-01

    ABSTRACT Pirarubicin (THP) is a newer generation anthracycline anticancer drug. In the clinic, THP and THP-based combination therapies have been demonstrated to be effective against various tumors without severe side effects. However, previous clinical studies have shown that most patients with cervical cancer are not sensitive to THP treatment, and the associated mechanisms are not clear. Consistent with the clinical study, we confirmed that cervical cancer cells were resistant to THP in vitro and in vivo. Our data demonstrated that THP induced a protective macroautophagy/autophagy response in cervical cancer cells, and suppression of this autophagy dramatically enhanced the cytotoxicity of THP. By scanning the mRNA level change of autophagy-related genes, we found that the upregulation of ATG4B (autophagy-related 4B cysteine peptidase) plays an important role in THP-induced autophagy. Moreover, THP increased the mRNA level of ATG4B in cervical cancer cells by promoting mRNA stability without influencing its transcription. Furthermore, THP triggered a downregulation of MIR34C-5p, which was associated with the upregulation of ATG4B and autophagy induction. Overexpression of MIR34C-5p significantly decreased the level of ATG4B and attenuated autophagy, accompanied by enhanced cell death and apoptosis in THP-treated cervical cancer cells. These results for the first time reveal the presence of a MIR34C-5p-ATG4B-autophagy signaling axis in THP-treated cervical cancer cells in vitro and in vivo, and the axis, at least partially, accounts for the THP nonsensitivity in cervical cancer patients. This study may provide a new insight for improving the chemotherapeutic effect of THP, which may be beneficial to the further clinical application of THP in cervical cancer treatment. PMID:27097054

  20. Anti-inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK-475 active metabolite-I, in immune cells simulating mevalonate kinase deficiency (MKD)-like condition.

    PubMed

    Suzuki, Nobutaka; Ito, Tatsuo; Matsui, Hisanori; Takizawa, Masayuki

    2016-01-01

    TAK-475 (lapaquistat acetate) and its active metabolite-I (TAK-475 M-I) inhibit squalene synthase, which catalyzes the conversion of farnesyl diphosphate (FPP) to squalene. FPP is a substrate for synthesis of other mevalonate-derived isoprenoids (MDIs) such as farnesol (FOH), geranlygeranyl diphosphate (GGPP), and geranylgeraniol. In patients with MKD, a rare autosomal recessive disorder, defective activity of mevalonate kinase leads to a shortage of MDIs. MDIs especially GGPP are required for prenylation of proteins, which is a posttranslation modification necessary for proper functioning of proteins like small guanosine triphosphatases. Malfunction of prenylation of proteins results in upregulation of the inflammatory cascade, leading to increased production of proinflammatory cytokines like interleukin-1β (IL-1β), eventually leading to episodic febrile attacks. In vitro, TAK-475 M-I incubation in a concentration dependent manner increased levels of FPP, GGPP, and FOH in human monocytic THP-1 cells. In subsequent experiments, THP-1 cells or human peripheral blood mononuclear cells (PBMCs) were incubated with simvastatin, which inhibits hydroxymethylglutaryl-coenzyme A reductase and thereby decreases levels of the precursors of MDIs, leading to the depletion of MDIs as expected in MKD patients. Increased levels of GGPP and FPP attenuated lipopolysaccharide (LPS)-induced IL-1β production in THP-1 cells and human PBMCs in statin-treated conditions. The MDIs also significantly reduced the damaged cell ratio in this active MKD-like condition. Moreover, TAK-475 M-I directly inhibited LPS-induced IL-1β production from statin-treated THP-1 cells. These results show anti-inflammatory and cytoprotective effects of MDIs via TAK-475 M-I treatment in statin-treated immune cells, suggesting that possible therapeutic effects of TAK-475 treatment in MKD patients.

  1. Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates.

    PubMed

    Valdinocci, Dario; Grant, Gary D; Dickson, Tracey C; Pountney, Dean L

    2018-04-16

    Multiple System Atrophy (MSA) is a progressive neurodegenerative disease characterized by chronic neuroinflammation and widespread α-synuclein (α-syn) cytoplasmic inclusions. Neuroinflammation associated with microglial cells is typically located in brain regions with α-syn deposits. The potential link between microglial cell migration and the transport of pathological α-syn protein in MSA was investigated. Qualitative analysis via immunofluorescence of MSA cases (n = 4) revealed microglial cells bearing α-syn inclusions distal from oligodendrocytes bearing α-syn cytoplasmic inclusions, as well as close interactions between microglia and oligodendrocytes bearing α-syn, suggestive of a potential transfer mechanism between microglia and α-syn bearing cells in MSA and the possibility of microglia acting as a mobile vehicle to spread α-syn between anatomically connected brain regions. Further In vitro experiments using microglial-like differentiated THP-1 cells were conducted to investigate if microglial cells could act as potential transporters of α-syn. Monomeric or aggregated α-syn was immobilized at the centre of glass coverslips and treated with either cell free medium, undifferentiated THP-1 cells or microglial-like phorbol-12-myristate-13-acetate differentiated THP-1 cells (48 h; n = 3). A significant difference in residual immobilized α-syn density was observed between cell free controls and differentiated (p = 0.016) as well as undifferentiated and differentiated THP-1 cells (p = 0.032) when analysed by quantitative immunofluorescence. Furthermore, a significantly greater proportion of differentiated cells were observed bearing α-syn aggregates distal from the immobilized protein than their non-differentiated counterparts (p = 0.025). Similar results were observed with Highly Aggressive Proliferating Immortalised (HAPI) microglial cells, with cells exposed to aggregated α-syn yielding lower residual immobilized α-syn (p = 0.004) and a higher proportion of α-syn positive distal cells (p = 0.001) than cells exposed to monomeric α-syn. Co-treatment of THP-1 groups with the tubulin depolymerisation inhibitor, Epothilone D (EpoD; 10 nM), was conducted to investigate if inhibition of microtubule activity had an effect on cell migration and residual immobilized α-syn density. There was a significant increase in both residual immobilized α-syn between EpoD treated and non-treated differentiated cells exposed to monomeric (p = 0.037) and aggregated (p = 0.018) α-syn, but not with undifferentiated cells. Differentiated THP-1 cells exposed to immobilized aggregated α-syn showed a significant difference in the proportion of distal aggregate bearing cells between EpoD treated and untreated (p = 0.027). The results suggest microglia could play a role in α-syn transport in MSA, a role which could potentially be inhibited therapeutically by EpoD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Abrasive Endoprosthetic Wear Particles Inhibit IFN-γ Secretion in Human Monocytes Via Upregulating TNF-α-Induced miR-29b.

    PubMed

    Bu, Yan-Min; Zheng, De-Zhi; Wang, Lei; Liu, Jun

    2017-02-01

    The adverse biological responses to prostheses wear particles commonly led to the failure of total hip arthroplasty. Among the released cytokines, interferon-γ (IFN-γ) has been found to be a critical functional factor during osteoclast differentiation. However, the molecular mechanism underlying the regulation of IFN-γ in wear particles-induced cells still needs to be determined. Four kinds of abrasive endoprosthetic wear particle were used to treat THP-1 cells, including polymethylmethacrylate (PMMA), zirconiumoxide (ZrO 2 ), commercially pure titanium (cpTi), and titanium alloy (Ti-6Al-7Nb), with a concentration of 0.01, 0.05, 0.1, or 0.2 mg/ml for 48 h. The expression of IFN-γ and miR-29b was detected by real-time RT-PCR or ELISA. Luciferase reporter assay was performed to determine the regulation of miR-29b on IFN-γ. The effect of miR-29b inhibitor on the expression of wear particle-induced IFN-γ was detected. The expression of miR-29b was examined in THP-1 cells treated with tumor necrosis factor-alpha (TNF-α). The expression of IFN-γ was downregulated and the level of miR-29b was increased in THP-1 cells pretreated with wear particles. IFN-γ was a target of miR-29b. Wear particles inhibited the expression of IFN-γ through miR-29b. The expression of miR-29b was significantly reduced in THP-1 cells treated with TNF-α neutralizing antibody and particles comparing to that in the cells treated with particles alone. Wear particles inhibit the IFN-γ secretion in human monocytes, which was associated with the upregulating TNF-α-induced miR-29b.

  3. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line.

    PubMed

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β2-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. FC-99 ameliorates sepsis-induced liver dysfunction by modulating monocyte/macrophage differentiation via Let-7a related monocytes apoptosis

    PubMed Central

    Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan

    2018-01-01

    Background The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N1-[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. Results FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6Chi monocytes in the peripheral blood and CD11b+F4/80lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b+ cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V+ cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo, whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Materials and Methods Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. Conclusions FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels. PMID:29599918

  5. Human galectin-9 on the porcine cells affects the cytotoxic activity of M1-differentiated THP-1 cells through inducing a shift in M2-differentiated THP-1 cells.

    PubMed

    Jung, Sung Han; Hwang, Jeong Ho; Kim, Sang Eun; Kim, Young Kyu; Park, Hyo Chang; Lee, Hoon Taek

    2017-07-01

    In xenotransplantation, immune rejection by macrophages occurs rapidly and remains a major obstacle. Studies to control immune rejection in macrophages have been continuing to date. Recent studies have reported that human galectin-9 (hGal-9) can regulate the function of regulatory T cells (Treg), as well as cytotoxicity T cells (CTL) and natural killer cells (NK). Although the effect of hGal-9 on lymphocytes has been well studied, the relationship between hGal-9 and myeloid cells has been scarcely studied. To confirm the decreased cytotoxic activity effect by hGal-9 in M1-differentiated THP-1 cells, we established the hGal-9 expressing transgenic porcine cell line. hGal-9 siRNA was transfected to transgenic cells and recombinant hGal-9 (rhGal-9) was treated to co-culturing condition, and then, flow cytometry assay was conducted for analyzing the cytotoxic activity of M1-differentiated THP-1 cells. Related inflammatory cytokines (IL-1β, IL-10, TNF-α, IL-6, IL-12, IL-23, and TGF-β) and related enzymes (iNOS and Arginase 1) were analyzed by qPCR and Western blot assay. To identify the shift in M1/M2-differentiated THP-1 cells, expression levels of CCR7, CD163, iNOS, and Arginase 1 and population of M2 marker positive cells were analyzed. The expression levels of pro-inflammatory cytokines in M1-differentiated THP-1 cells co-cultured with hGal-9-expressing porcine kidney epithelial cells were decreased, but not in co-cultured THP-1 cells. However, the expression levels of anti-inflammatory cytokines were also increased in co-cultured M1-differentiated THP-1 cells. The cytotoxicity effect of M1-differentiated THP-1 cells on transgenic cells was decreased while the expression levels of anti-inflammatory cytokines and M2 macrophages-related molecules were increased. M2 differentiation program was turned on while M1 program was turned down by enhancing the phosphorylation levels of Akt and PI3K and the expression level of PPAR-γ. Due to these changes, differentiation of M2 program was enhanced in cells co-cultured with hGal-9. These data suggested that hGal-9 has a reduction in M1-differentiated THP-1 cell cytotoxic activity-related acute immune rejection in pig-to-human xenotransplantation in addition to its role in lymphoid lineage immune cell regulation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line.

    PubMed

    Patel, Mikita; Yarlagadda, Vidhush; Adedoyin, Oreoluwa; Saini, Vikram; Assimos, Dean G; Holmes, Ross P; Mitchell, Tanecia

    2018-05-01

    Monocytes/macrophages are thought to be recruited to the renal interstitium during calcium oxalate (CaOx) kidney stone disease for crystal clearance. Mitochondria play an important role in monocyte function during the immune response. We recently determined that monocytes in patients with CaOx kidney stones have decreased mitochondrial function compared to healthy subjects. The objective of this study was to determine whether oxalate, a major constituent found in CaOx kidney stones, alters cell viability, mitochondrial function, and redox homeostasis in THP-1 cells, a human derived monocyte cell line. THP-1 cells were treated with varying concentrations of CaOx crystals (insoluble form) or sodium oxalate (NaOx; soluble form) for 24h. In addition, the effect of calcium phosphate (CaP) and cystine crystals was tested. CaOx crystals decreased cell viability and induced mitochondrial dysfunction and redox imbalance in THP-1 cells compared to control cells. However, NaOx only caused mitochondrial damage and redox imbalance in THP-1 cells. In contrast, both CaP and cystine crystals did not affect THP-1 cells. Separate experiments showed that elevated oxalate also induced mitochondrial dysfunction in primary monocytes from healthy subjects. These findings suggest that oxalate may play an important role in monocyte mitochondrial dysfunction in CaOx kidney stone disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Optimization, validation, and application of a real-time PCR protocol for quantification of viable bacterial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli.

    PubMed

    van Frankenhuyzen, Jessica K; Trevors, Jack T; Flemming, Cecily A; Lee, Hung; Habash, Marc B

    2013-11-01

    Biosolids result from treatment of sewage sludge to meet jurisdictional standards, including pathogen reduction. Once government regulations are met, materials can be applied to agricultural lands. Culture-based methods are used to enumerate pathogen indicator microorganisms but may underestimate cell densities, which is partly due to bacteria existing in a viable but non-culturable physiological state. Viable indicators can also be quantified by realtime polymerase chain reaction (qPCR) used with propidium monoazide (PMA), a dye that inhibits amplification of DNA found extracellularly or in dead cells. The objectives of this study were to test an optimized PMA-qPCR method for viable pathogen detection in wastewater solids and to validate it by comparing results to data obtained by conventional plating. Reporter genes from genetically marked Pseudomonas sp. UG14Lr and Agrobacterium tumefaciens 542 cells were spiked into samples of primary sludge, and anaerobically digested and Lystek-treated biosolids as cell-free DNA, dead cells, viable cells, and mixtures of live and dead cells, followed by DNA extraction with and without PMA, and qPCR. The protocol was then used for Escherichia coli quantification in the three matrices, and results compared to plate counts. PMA-qPCR selectively detected viable cells, while inhibiting signals from cell-free DNA and DNA found in membrane-compromised cells. PMA-qPCR detected 0.5-1 log unit more viable E. coli cells in both primary solids and dewatered biosolids than plate counts. No viable E. coli was found in Lystek-treated biosolids. These data suggest PMA-qPCR may more accurately estimate pathogen cell numbers than traditional culture methods.

  8. Uremic Conditions Drive Human Monocytes to Pro-Atherogenic Differentiation via an Angiotensin-Dependent Mechanism

    PubMed Central

    Trojanowicz, Bogusz; Ulrich, Christof; Seibert, Eric; Fiedler, Roman; Girndt, Matthias

    2014-01-01

    Aims Elevated expression levels of monocytic-ACE have been found in haemodialysis patients. They are not only epidemiologically linked with increased mortality and cardiovascular disease, but may also directly participate in the initial steps of atherosclerosis. To further address this question we tested the role of monocytic-ACE in promotion of atherosclerotic events in vitro under conditions mimicking those of chronic renal failure. Methods and Results Treatment of human primary monocytes or THP-1 cells with uremic serum as well as PMA-induced differentiation led to significantly up-regulated expression of ACE, further increased by additional treatment with LPS. Functionally, these monocytes revealed significantly increased adhesion and transmigration through endothelial monolayers. Overexpression of ACE in transfected monocytes or THP-1 cells led to development of more differentiated, macrophage-like phenotype with up-regulated expression of Arg1, MCSF, MCP-1 and CCR2. Expression of pro-inflammatory cytokines TNFa and IL-6 were also noticeably up-regulated. ACE overexpression resulted in significantly increased adhesion and transmigration properties. Transcriptional screening of ACE-overexpressing monocytes revealed noticeably increased expression of Angiotensin II receptors and adhesion- as well as atherosclerosis-related ICAM-1 and VCAM1. Inhibition of monocyte ACE or AngII-receptor signalling led to decreased adhesion potential of ACE-overexpressing cells. Conclusions Taken together, these data demonstrate that uremia induced expression of monocytic-ACE mediates the development of highly pro-atherogenic cells via an AngII-dependent mechanism. PMID:25003524

  9. Anti-inflammatory activities of fenoterol through β-arrestin-2 and inhibition of AMPK and NF-κB activation in AICAR-induced THP-1 cells.

    PubMed

    Wang, Wei; Chen, Jing; Li, Xiao Guang; Xu, Jie

    2016-12-01

    The AMP-activated protein kinase (AMPK) pathway has been shown to be able to regulate inflammation in several cell lines. We reported that fenoterol, a β 2 -adrenergic receptor (β 2 -AR) agonist, inhibited lipopolysaccharide (LPS)-induced AMPK activation and inflammatory cytokine production in THP-1 cells, a monocytic cell line in previous studies. 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an agonist of AMPK. Whether AICAR induced AMPK activation and inflammatory cytokine production in THP-1 cells can be inhibited by fenoterol is unknown. In this study, we explored the mechanism of β 2 -AR stimulation with fenoterol in AICAR-induced inflammatory cytokine secretion in THP-1 cells. We studied AMPK activation using p-AMPK and AMPK antibodies, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion in THP-1 cells stimulated by β 2 -AR in the presence or absence of AICAR and small interfering RNA (siRNA)-mediated knockdown of β-arrestin-2 or AMPKα1 subunit. AICAR-induced AMPK activation, NF-κB activation and tumor necrosis factor (TNF)-α release were reduced by fenoterol. In addition, siRNA-mediated knockdown of β-arrestin-2 abolished fenoterol's inhibition of AICAR-induced AMPK activation and TNF-α release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol in AICAR-treated THP-1 cells. Furthermore, siRNA-mediated knockdown of AMPKα1 significantly attenuated AICAR-induced NF-κB activation and TNF-α release, so AMPKα1 was a key signaling molecule involved in AICAR-induced inflammatory cytokine production. These data suggested that fenoterol inhibited AICAR-induced AMPK activation and TNF-α release through β-arrestin-2 in THP-1 cells. Management especially inhibition of AMPK signaling may provide new approaches and strategies for the treatments of immune diseases including inflammatory diseases and other critical illness. Published by Elsevier Masson SAS.

  10. An in vitro test to screen skin sensitizers using a stable THP-1-derived IL-8 reporter cell line, THP-G8.

    PubMed

    Takahashi, Toshiya; Kimura, Yutaka; Saito, Rumiko; Nakajima, Yoshihiro; Ohmiya, Yoshihiro; Yamasaki, Kenshi; Aiba, Setsuya

    2011-12-01

    Several studies have suggested that interleukin (IL)-8 can serve as a biomarker for discrimination of skin sensitizers from nonsensitizers. We established a stable THP-1-derived IL-8 reporter cell line, THP-G8, which harbors SLO and SLR luciferase genes under the control of IL-8 and glyceraldehyde 3-phosphate dehydrogenase promoters, respectively. After 6 h treatment with chemicals, normalized SLO luciferase activity (nSLO-LA) was calculated by dividing SLO-LA by SLR-LA, and the fold induction of nSLO-LA (FInSLO-LA) was calculated by dividing nSLO-LA of chemically treated cells by that of nontreated cells. The nSLO-LA of THP-G8 cells increased in response to lipopolysaccharide (LPS) and several sensitizers. The FInSLO-LA in THP-G8 cells induced by LPS or sensitizers positively correlated with their induction of IL-8 messenger RNA in THP-1 cells. The nSLO-LA value of THP-G8 cells was significantly increased (FInSLO-LA ≥ 1.4) by 13 of the 15 sensitizers as well as by 5 of the 7 nonsensitizers. Interestingly, pretreatment with N-acetylcysteine suppressed the increase in FInSLO-LA induced by all sensitizers (inhibition index (II) ≤ 0.8) but did not suppress that induced by most of the nonsensitizers. We then evaluated the performance of this assay using values of FInSLO-LA ≥ 1.4 and II ≤ 0.8 in at least two of three independent experiments as the criteria of a sensitizer, which resulted in test accuracies of 82% for the 22 chemicals used and of 88% for the chemicals proposed by European Center for the Validation of Alternative Methods. This newly developed assay is a candidate replacement for animal tests of skin sensitization because of its accuracy, convenience, and high throughput performance.

  11. Signal Regulatory Protein α Negatively Regulates β2 Integrin-Mediated Monocyte Adhesion, Transendothelial Migration and Phagocytosis

    PubMed Central

    Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke

    2008-01-01

    Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737

  12. Expression and regulation of complement C1q by human THP-1-derived macrophages.

    PubMed

    Walker, D G

    1998-01-01

    The regulation of C1q expression was examined in the human monocytic cell line THP-1. Since these cells can be differentiated into cells with macrophage properties and induced to express C1q, they were used as models for mature human monocyte/macrophages and indirectly microglia. Interferon-gamma (IFN-gamma) and the anti-inflammatory steroid agents dexamethasone and prednisone were powerful stimulators of C1q production, alone or in combination. Interleukin-6 (IL-6) and lipopolysaccharide (LPS) also had significant stimulatory activity. Phorbol myristate acetate, a protein kinase C activator, reduced C1q expression. Four additional classes of pharmacological agents were tested for their effect on C1q secretion. Tacrine, but not indomethacin, cimetidine, or propentofylline, showed activity in inhibiting C1q secretion by IFN-gamma treated THP-1-derived macrophages.

  13. Estrogen biosynthesis in THP1 cells is regulated by promoter switching of the aromatase (CYP19) gene.

    PubMed

    Shozu, M; Zhao, Y; Simpson, E R

    1997-12-01

    The expression of aromatase, the enzyme responsible for estrogen biosynthesis, has been studied in THP-1 cells of human mononuclear leukemic origin, which exhibit high rates of aromatase activity. These cells have the capacity to differentiate in the presence of vitamin D into cells with osteoclast-like properties. Differentiated cells displayed higher rates of aromatase than undifferentiated cells, and, in both cases, activity was stimulated 10- to 20-fold by dexamethasone. Phorbol esters also increased aromatase activity, but the effect was the same in differentiated as in undifferentiated cells. In a similar fashion to adipose stromal cells, serum potentiated the response to dexamethasone but had no effect on phorbol ester-stimulated activity. By contrast to its action in adipose stromal cells, (Bu)2cAMP markedly inhibited aromatase activity of THP-1 cells, as did factors whose actions are mediated by cAMP, such as PTH and PTH-related peptide. This was true of control cells, as well as of dexamethasone- and phorbol ester-stimulated cells. Previously we have shown that type 1 cytokines as well as tumor necrosis factor-alpha stimulate aromatase activity of adipose stromal cells in the presence of dexamethasone. By contrast, interleukin-6, interleukin-11, and leukemia-inhibitory factor had no effect on aromatase activity of THP-1 cells, whereas tumor necrosis factor-alpha, oncostatin M, and platelet-derived growth factor were slightly inhibitory of aromatase activity. Exon-specific Southern analysis of rapid amplification of cDNA ends-amplified transcripts was employed to examine the distribution of the various 5'-termini of aromatase transcripts. In the control group, most of the clones contained transcripts specific for the proximal promoter II, whereas in dexamethasone-treated cells, most transcripts contained exon I.4. In the phorbol ester-treated cells, a broader spectrum of transcripts was present, with equal proportions of I.4, II, and I.3-containing clones. Additionally, one clone containing a new sequence, exon I.6, was found. This was shown to be located about 1 kb upstream of exon II. By contrast, all clones from cells treated with (Bu)2cAMP contained promoter II-specific sequences. In addition to these transcripts, two clones in the library from the dexamethasone-treated cells contained the sequence previously defined as the brain-specific sequence, 1f. In one of these, the 1f sequence was fused downstream of exon I.4, indicative that its expression likely employed promoter I.4. These results point to similarities and important differences between aromatase expression in THP-1 cells and other cells such as adipose stromal cells, indicative of unique regulatory pathways governing aromatase expression in these cells.

  14. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.

    PubMed

    Mizuno, Katsuhiko; Fukami, Tatsuki; Toyoda, Yasuyuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2010-10-23

    Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Dexamethasone inhibits inflammatory response via down regulation of AP-1 transcription factor in human lung epithelial cells.

    PubMed

    Patil, Rajeshwari H; Naveen Kumar, M; Kiran Kumar, K M; Nagesh, Rashmi; Kavya, K; Babu, R L; Ramesh, Govindarajan T; Chidananda Sharma, S

    2018-03-01

    The production of inflammatory mediators by epithelial cells in inflammatory lung diseases may represent an important target for the anti-inflammatory effects of glucocorticoids. Activator protein-1 is a major activator of inflammatory genes and has been proposed as a target for inhibition by glucocorticoids. We have used human pulmonary type-II A549 cells to examine the effect of dexamethasone on the phorbol ester (PMA)/Lipopolysaccharide (LPS) induced pro-inflammatory cytokines and AP-1 factors. A549 cells were treated with and without PMA or LPS or dexamethasone and the cell viability and nitric oxide production was measured by MTT assay and Griess reagent respectively. Expression of pro-inflammatory cytokines and AP-1 factors mRNA were measured using semi quantitative RT-PCR. The PMA/LPS treated cells show significant 2-3 fold increase in the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8 and TNF-α), cyclo‑oxygenase-2 (COX-2) and specific AP-1 factors (c-Jun, c-Fos and Jun-D). Whereas, pretreatment of cells with dexamethasone significantly inhibited the LPS induced nitric oxide production and PMA/LPS induced mRNAs expression of above pro-inflammatory cytokines, COX-2 and AP-1 factors. Cells treated with dexamethasone alone at both the concentrations inhibit the mRNAs expression of IL-1β, IL-6 and TNF-α compared to control. Our study reveals that dexamethasone decreased the mRNAs expression of c-Jun and c-Fos available for AP-1 formation suggested that AP-1 is the probable key transcription factor involved in the anti-inflammatory activity of dexamethasone. This may be an important molecular mechanism of steroid action in asthma and other chronic inflammatory lung diseases which may be useful for treatment of lung inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    PubMed

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [Effect of LPXN Overexpression on the Proliferation, Adhesion and Invasion of THP-1 Cells and Its Mechamisms].

    PubMed

    Dai, Hai-Ping; Zhu, Guo-Hua; Wu, Li-Li; Wang, Qian; Yao, Hong; Wang, Qin-Rong; Wen, Li-Jun; Qiu, Hui-Ying; Shen, Qun; Chen, Su-Ning; Wu, De-Pei

    2017-06-01

    To explore the effect of LPXN overexpression on the proliferation, adhesion and invasion of THP-1 cells and its possible mechanism. A THP-1 cell line with stable overexpression of LPXN was constucted by using a lentivirus method, CCK-8 was used to detect the proliferation of cells, adhesion test was used to evaluate adhesion ablity of cells to Fn. Transwell assay was used to detect the change of invasion capability. Western blot was used to detect expression of LPXN, ERK, pERK and integrin α4, α5, β1, the Gelatin zymography was applied to detect activity of MMP2/MMP9 secreted by the THP-1 cells. Successful establishment of THP-1 cells with LPXN overexpression (THP-1 LPXN) was confirmed with Western blot. THP-1 LPXN cells were shown to proliferate faster than the control THP-1 vector cells. Adhesion to Fn and expression of ERK, integrin α4, α5 and β1 in the THP-1 LPXN cells were higher than that in the control cells. Invasion across matrigel and enhanced activity of MMP2 could be detected both in the THP-1 LPXN cells as compared with the control cells. Ectopically ovexpression of LPXN may promote proliferation of THP-1 cells through up-regulation of ERK; promote adhesion of THP-1 cells through up-regulating the integrin α4/β1 as well as integrin α5/β1 complex; promote invasion of THP-1 cells through activating MMP2.

  18. Activation of l-arginine transport by protein kinase C in rabbit, rat and mouse alveolar macrophages

    PubMed Central

    Racké, Kurt; Hey, Claudia; Mössner, Jutta; Hammermann, Rainer; Stichnote, Christina; Wessler, Ignaz

    1998-01-01

    The role of protein kinase C in controlling L-arginine transport in alveolar macrophages was investigated. L-[3H]Arginine uptake in rabbit alveolar macrophages declined by 80 % after 20 h in culture. 4β-Phorbol 12-myristate 13-acetate (PMA), but not 4α-phorbol 12-myristate 13-acetate (α-PMA), present during 20 h culture, enhanced L-[3H]arginine uptake more than 10-fold. Staurosporine and chelerythrine opposed this effect. L-[3H]Arginine uptake was saturable and blockable by L-lysine. After PMA treatment Vmax was increased more than 5-fold and Km was reduced from 0.65 to 0.32 mM. Time course experiments showed that PMA increased L-[3H]arginine uptake almost maximally within 2 h. This short-term effect was not affected by cycloheximide or actinomycin D. L-[3H]Arginine uptake and its stimulation by PMA was also observed in sodium-free medium. L-Leucine (0.1 mM) inhibited L-[3H]arginine uptake by 50 % in sodium-containing medium, but not in sodium-free medium. At 1 mM, L-leucine caused significant inhibition in sodium-free medium also. L-Leucine showed similar effects on PMA-treated cells. N-Ethylmaleimide (200 μm, 10 min) reduced L-[3H]arginine uptake by 70 % in control cells, but had no effect on PMA-treated (20 or 2 h) cells. In alveolar macrophages, multiple transport systems are involved in L-arginine uptake, which is markedly stimulated by protein kinase C, probably by modulation of the activity of already expressed cationic amino acid transporters. PMID:9714862

  19. Homeopathic potencies of Arnica montana L. change gene expression in a Tamm-Horsfall protein-1 cell line in vitro model: the role of ethanol as a possible confounder and statistical bias.

    PubMed

    Chirumbolo, Salvatore; Bjørklund, Geir

    2017-07-01

    Marzotto et al. showed that homeopathic preparations of Arnica montana L. acted directly on gene expression of Tamm-Horsfall protein-1 (THP-1) monocyte/macrophage cell lines activated with phorbol12-myristate13-acetate and interleukin-4 (IL-4). A. montana homeopathic dilutions are used in complementary and alternative medicine to treat inflammation disorders and post-traumatic events as well as for wound repair. The French Pharmacopoeia of these remedies uses 0.3% ethanol in each centesimal dilution. In this paper, we discuss how ethanol-containing A. montana homeopathic centesimal dilutions can change gene expression in IL-4-treated monocyte/macrophage THP-1. We assessed the role of ethanol in the Arnica homeopathic dilutions containing this alcohol by investigating its action on gene expression of THP-1 cell. Evidence would strongly suggest that the presence of ethanol in these remedies might play a fundamental role in the dilutions ability to affect gene expression, particularly for doses from 5c to 15c. Where, rather than playing a major role in the mesoscopic structure of water, the ethanol might have a chemical-physical role in the induction of THP-1 gene expression, apoptosis, and deoxyribonucleic acid function. This evidence generates a debate about the suggestion that the use of a binary-mixed solvent in homeopathic chemistry, used by Hahnemann since 1810, may be fundamental to explain the activity of homeopathy on cell models.

  20. RasGRP1 confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells.

    PubMed

    Han, Shujie; Knoepp, Stewart M; Hallman, Mark A; Meier, Kathryn E

    2007-01-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to the tumor promoter phorbol 12-myristate 13-acetate (PMA). In sensitive EL4 cells, PMA causes robust Erk mitogen-activated protein kinase activation that results in growth arrest. In resistant cells, PMA induces minimal Erk activation, without growth arrest. PMA stimulates IL-2 production in sensitive, but not resistant, cells. The role of RasGRP1, a PMA-activated guanine nucleotide exchange factor for Ras, in EL4 phenotype was examined. Endogenous RasGRP1 protein is expressed at much higher levels in sensitive than in resistant cells. PMA-induced Ras activation is observed in sensitive cells but not in resistant cells lacking Ras-GRP1. PMA induces down-regulation of RasGRP1 protein in sensitive cells but increases RasGRP1 in resistant cells. Transfection of RasGRP1 into resistant cells enhances PMA-induced Erk activation. In the reverse experiment, introduction of small interfering RNA (siRNA) for RasGRP1 suppresses PMA-induced Ras and Erk activations in sensitive cells. Sensitive cells incubated with siRNA for RasGRP1 exhibit the PMA-resistant phenotype, in that they are able to proliferate in the presence of PMA and do not secrete IL-2 when stimulated with PMA. These studies indicate that the PMA-sensitive phenotype, as previously defined for the EL4 cell line, is conferred by endogenous expression of RasGRP1 protein.

  1. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose.

    PubMed

    Miwa, Hiroshi; Shikami, Masato; Goto, Mineaki; Mizuno, Shohei; Takahashi, Miyuki; Tsunekawa-Imai, Norikazu; Ishikawa, Takamasa; Mizutani, Motonori; Horio, Tomohiro; Gotou, Mayuko; Yamamoto, Hidesuke; Wakabayashi, Motohiro; Watarai, Masaya; Hanamura, Ichiro; Imamura, Akira; Mihara, Hidetsugu; Nitta, Masakazu

    2013-05-01

    The shift in energy metabolism from oxidative phosphorylation to glycolysis can serve as a target for the inhibition of cancer growth. Here, we examined the metabolic changes induced by 2-deoxyglucose (2-DG), a glycolysis inhibitor, in leukemia cells by metabolome analysis. NB4 cells mainly utilized glucose as an energy source by glycolysis and oxidative phosphorylation in mitochondria, since metabolites in the glycolytic pathway and in the tricarboxylic acid (TCA) cycle were significantly decreased by 2-DG. In THP-1 cells, metabolites in the TCA cycle were not decreased to the same extent by 2-DG as in NB4 cells, which indicates that THP-1 utilizes energy sources other than glucose. TCA cycle metabolites in THP-1 cells may be derived from acetyl-CoA by fatty acid β-oxidation, which was supported by abundant detection of carnitine and acetylcarnitine in THP-1 cells. 2-DG treatment increased the levels of pentose phosphate pathway (PPP) metabolites and augmented the generation of NADPH by glucose-6-phosphate dehydrogenase. An increase in NADPH and upregulation of glutathione synthetase expression resulted in the increase in the reduced form of glutathione by 2-DG in NB4 cells. We demonstrated that a combination of 2-DG and inhibition of PPP by dehydroepiandrosterone (DHEA) effectively suppressed the growth of NB4 cells. The replenishment of the TCA cycle by fatty acid oxidation by carnitine palmitoyltransferase in THP-1 cells, treated by 2-DG, might be regulated by AMPK, as the combination of 2-DG and inhibition of AMPK by compound C potently suppressed the growth of THP-1 cells. Although 2-DG has been effective in preclinical and clinical studies, this treatment has not been fully explored due to concerns related to potential toxicities such as brain toxicity at high doses. We demonstrated that a combination of 2-DG and DHEA or compound C at a relatively low concentration effectively inhibits the growth of NB4 and THP-1 cells, respectively. These observations may aid in the identification of appropriate combinations of metabolic inhibitors at low concentrations which do not cause toxicities.

  2. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partiallymore » blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.« less

  3. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells.

    PubMed

    Weng, Chia-Jui; Wu, Cheng-Feng; Huang, Hsiao-Wen; Ho, Chi-Tang; Yen, Gow-Chin

    2010-11-01

    Hepatocellular carcinoma is the most common type of liver cancer and is highly metastatic. Metastasis is considered to be the major cause of death in cancer patients. Ginger is a natural dietary rhizome with anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. The aims of this study were to evaluate the anti-invasion activity of 6-shogaol and 6-gingerol, two compounds found in ginger, on hepatoma cells. The migratory and invasive abilities of phorbol 12-myristate 13-acetate (PMA)-treated HepG2 and PMA-untreated Hep3B cells were both reduced in a dose-dependent manner by treatment with 6-shogaol and 6-gingerol. Upon incubation of PMA-treated HepG2 cells and PMA-untreated Hep3B cells with 6-shogaol and 6-gingerol, matrix metalloproteinase (MMP)-9 activity decreased, whereas the expression of tissue inhibitor metalloproteinase protein (TIMP)-1 increased in both cell types. Additionally, urokinase-type plasminogen activator activity was dose-dependently decreased in Hep3B cells after incubation with 6-shogaol for 24 h. Analysis with semi-quantitative reverse transcription-PCR showed that the regulation of MMP-9 by 6-shogaol and 6-gingerol and the regulation of TIMP-1 by 6-shogaol in Hep3B cells may on the transcriptional level. These results suggest that 6-shogaol and 6-gingerol might both exert anti-invasive activity against hepatoma cells through regulation of MMP-9 and TIMP-1 and that 6-shogaol could further regulate urokinase-type plasminogen activity.

  4. Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer’s Disease

    PubMed Central

    Cacciatore, Ivana; Marinelli, Lisa; Fornasari, Erika; Cerasa, Laura S.; Eusepi, Piera; Türkez, Hasan; Pomilio, Cristina; Reale, Marcella; D’Angelo, Chiara; Costantini, Erica; Di Stefano, Antonio

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL4–9) that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S)-naproxen and (R)-flurbiprofen, with (R)-α-lipoic acid (LA) through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R)-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA)-stimulated U937 cells (lymphoblast lung from human) and Aβ(25–35)-treated THP-1 cells (leukemic monocytes). Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD. PMID:27376271

  5. Violet/blue light activates Nrf2 signaling and modulates the inflammatory response of THP-1 monocytes.

    PubMed

    Trotter, L A; Patel, D; Dubin, S; Guerra, C; McCloud, V; Lockwood, P; Messer, R; Wataha, J C; Lewis, J B

    2017-06-14

    Several studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory and antioxidative. These effects have been attributed to Nrf2-mediated upregulation of "phase 2" genes such as heme oxygenase-1 (HO-1) that neutralize oxidative stress and metabolize electrophiles. Proteomics analysis previously had shown that small doses of blue light (400-500 nm) increased levels of peroxiredoxin phase 2 proteins in THP-1 monocytes, which led to our hypothesis that blue light activates Nrf2 signaling and thus may serve as an anti-inflammatory agent. THP-1 monocytes were treated with doses of blue light with and without lipopolysaccharide (LPS) inflammatory challenge. Cell lysates were tested for Nrf2 activation and HO-1 production. Treated cells were assessed for viability/mitochondrial activity via trypan blue exclusion and MTT assay, and secretion of two major pro-inflammatory cytokines, interleukin 8 (IL8) and tumor necrosis factor alpha (TNFα) was measured using ELISA. Blue light activated the phase 2 response in cultured THP-1 cells and was protective against LPS-induced cytotoxicity. Light pre-treatment also significantly reduced cytokine secretion in response to 0.1 μg ml -1 LPS, but had no anti-inflammatory effect at high LPS levels. This study is the first to report these effects using a light source that is approved for routine use on dental patients. Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi

    Background: Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. Methods and Results: In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partiallymore » abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Conclusion: Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. - Highlights: • E-selectin ligand (ESL)-1 was identified as an adiponectin (APN)-binding protein. • ESL-1 bound to APN at its N-terminal 6th-10th amino acids. • shESL-1 reduced the suppressive effect of APN on adhesion of THP-1 cells to HUVECs. • Interaction with ESL may be involved in the anti-atherogenic effects of APN.« less

  7. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease.

    PubMed

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia; Nekhai, Sergei

    2016-12-27

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.

  8. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease

    PubMed Central

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia

    2016-01-01

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription. PMID:28203649

  9. THP-1 cell line: an in vitro cell model for immune modulation approach.

    PubMed

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  10. E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion.

    PubMed

    Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi; Kochi, Ikoi; Matsumoto, Akane; Niinaga, Ryu; Funahashi, Tohru; Shimomura, Iichiro; Kihara, Shinji

    2016-02-05

    Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity.

    PubMed

    Peng, Qiuxian; Cai, Hongbing; Sun, Xuegang; Li, Xin; Mo, Zhixian; Shi, Jue

    2013-01-01

    Chinese herbal medicines have long been used to treat various illnesses by modulating the human immune response. In this study, we investigate the immuno-modulating effect and antitumor activity of Alocasia Cucullata (AC), a Chinese herb traditionally used to treat infection and cancer. We found that the whole water extract of AC roots could significantly attenuate tumor growth in mouse tumor models. The median survival time of the AC-treated mice was 43 days, 16 days longer than that of the control group. Moreover, the AC-treated mice showed substantially higher induction of key antitumor cytokines, such as IL-2, IFN-γ, and TNF-α, indicating that AC may exert antitumor effect by activating antitumor immunity. To further pinpoint the cellular and molecular mechanism of AC, we studied the dose response of a human monocytic cell line, THP-1, to the whole water extract of AC. Treatment of the AC extract significantly induced THP-1 differentiation into macrophage-like cells and the differentiated THP-1 showed expression of specific macrophage surface markers, such as CD11b and CD14, as well as productions of antitumor cytokines, e.g. IFN-γ and TNF-α. Our data thus point to AC as potentially a new, alternative immuno-modulating herbal remedy for anticancer treatment.

  12. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    PubMed Central

    Hu, Chenxia; Niestroj, Martin; Yuan, Daniel; Chang, Steven; Chen, Jie

    2015-01-01

    Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design therapeutic strategies to target cancer stem cells and cancer metastasis. PMID:25844037

  13. Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to alpha 1-adrenergic and phorbol ester stimulation.

    PubMed

    Henrich, C J; Simpson, P C

    1988-12-01

    Both alpha 1-adrenergic agonists (e.g. norepinephrine, NE*) and tumor-promoting phorbol esters (e.g. phorbol myristate acetate, PMA) are known to activate protein kinase C (PKC) (Abdel-Latif, 1986, Niedel and Blackshear, 1986). However, alpha 1 agonists and PMA produce very different effects on cardiac function (see Simpson, 1985; Benfey, 1987; Meidell et al., 1986; Leatherman et al., 1987; Yuan et al., 1987; for examples). PKC activation in heart cells has been studied only for PMA treated perfused heart (Yuan et al., 1987). Therefore, acute activation and chronic regulation of PKC by NE and PMA were compared in cultured neonatal rat heart myocytes. NE acutely and transiently activated PKC, as measured by translocation of PKC activity to the cell particulate fraction (Niedel and Blackshear, 1986). Particulate PKC activity peaked at 23% of total after NE for 30 s, as compared with 8% for control (P less than 0.001). By contrast, acute PKC activation by PMA was more pronounced and persistent, with particulate PKC activity 62% of total at 5 min (P less than 0.001). Calcium/lipid-independent kinase activity increased acutely with PMA, but not with NE. Chronic treatment with NE (24 to 48 h) increased total per cell PKC activity and 3H-phorbol dibutyrate (PDB) binding sites, an index of the number of PKC molecules (Niedel and Blackshear, 1986), by 30 to 60% over control (all P less than 0.05 to 0.01). In contrast with NE, chronic treatment with PMA down-regulated PKC, reducing total per cell PKC activity and 3H-PDB binding sites to 3% and 12% of control, respectively (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Cyanidin-3-O-beta-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IkappaBalpha phosphorylation in THP-1 cells.

    PubMed

    Zhang, Yinghui; Lian, Fuzhi; Zhu, Yanna; Xia, Min; Wang, Qing; Ling, Wenhua; Wang, Xiang-Dong

    2010-09-01

    As a common phytochemical, cyanidin 3-O-beta-glucoside (C3G) has a role in inhibiting inflammatory mediators; however, its mechanism of action remains unclear. The purpose of this study was to explore the effect of C3G on lipopolysaccharide (LPS)-stimulated TNFalpha and IL-6 expression in the human monocyte/macrophage cell line THP-1, and to explore the mechanisms involved. Differentiated THP-1 cells were treated with different concentrations of C3G (0.005, 0.05, 0.5,10 microM) in the absence or presence of 1 ng/mL LPS. mRNA expression levels were detected by real time PCR, and secretion of TNFalpha and IL-6, phosphorylated IkappaBalpha, and nuclear factor-kappa B (NF-kappaB) P65 were monitored by ELISA or Western blotting analysis. The role of an inhibitor of IkappaBalpha phosphorylation, BAY 11-7082, in C3G inhibition of LPS-induced cytokines expression was investigated. C3G (0.05-0.5 microM) treatment significantly inhibited LPS-stimulated TNFalpha and IL-6 mRNA expression and secretion of these proteins by THP-1 cells. Phosphorylation of IkappaBalpha and NF-kappaB nuclear translocation could be blocked by 0.5 microM C3G. BAY 11-7082 treatment abolished C3G-induced reduction of TNFalpha and IL-6. Our results suggest that C3G exerts its anti-inflammatory effect through inhibiting IkappaBalpha phosphorylation, thereby suppressing NF-kappaB activity in THP-1 cells.

  15. Viscum articulatum Burm. f. aqueous extract exerts antiproliferative effect and induces cell cycle arrest and apoptosis in leukemia cells.

    PubMed

    Mishra, Ruchi; Sharma, Saurabh; Sharma, Radhey Shyam; Singh, Savita; Sardesai, Milind Madhav; Sharma, Sadhna; Mishra, Vandana

    2018-06-12

    Viscum articulatum Burm. f. (leafless mistletoe) has been used in traditional system of medicines in India, China, Taiwan, Cambodia, Laos, and Vietnam, to treat blood-related diseases and various inflammatory and degenerative diseases including cancer. Anticancer activities of some phytomolecules purified from Viscum articulatum Burm. f. have been tested. However scientific evidence for the anticancerous potential of aqueous extract of V. articularum (VAQE) used in traditional medicine is lacking. To study the antiproliferative and apoptotic effect of VAQE on Jurkat E6.1 and THP1 leukemia cells. The aqueous extract of the whole plant of Viscum articulatum Burm. f. was prepared in phosphate buffer saline. In VAQE, total soluble protein was estimated using Bradford's dye-binding assay; flavonoid content was determined using aluminum chloride colorimetric assay; and phenolic content was estimated following Folin-Ciocalteu colorimetric assay. XTT cell viability assay was used to test VAQE induced cytotoxicity in Jurkat E6.1 and THP1 leukemia cells and peripheral blood mononuclear cells (PBMC). The effect of VAQE on cell cycle progression was analyzed by PI staining using flow cytometry. Annexin-V-FITC/PI differential staining method was used for detecting the onset of apoptosis in leukemia cells. Rhodamine 123 dye was used to detect the change in mitochondrial membrane potential (MMP) using flow cytometry. DCF-DA fluorescence dye was used to estimate the level of reactive oxygen species (ROS). The ROS inhibitors were used to evaluate the role of ROS in mediating DNA degradation in VAQE-treated leukemia cells. The molecular mechanisms underlying VAQE induced apoptosis induction was studied by analyzing the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) proteins, caspase-8 and caspase-3 enzymes using western blot. Diphenylamine (DPA) assay was used to determine the DNA fragmentation and conclusion of apoptosis. VAQE triggered cytotoxic effect on Jurkat E6.1 (IC 50 -2.4 µg/ml; 24 h) and THP1 (IC 50 -1.0 µg/ml; 24 h) cells in a dose- and time-dependent manner. The apoptosis induction and G2/M arrest of the cell cycle are the cause of VAQE-induced cytotoxicity in leukemia cells. The apoptosis in VAQE-treated Jurkat E6.1 and THP1 cells was mediated via a reduction in MMP, elevation of intracellular ROS, decreased expression of the anti-apoptotic (Bcl-2) and increased expression of the pro-apoptotic (Bax) protein, activation of caspase-8 and caspase-3 and DNA fragmentation. VAQE has a high efficacy to exert a cytotoxic effect in Jurkat E6.1 and THP1 cells and to induce apoptosis and G2/M cell cycle arrest. VAQE induces extrinsic pathway of apoptosis in both the leukemia cell lines via disruption of MMP, intracellular ROS imbalance, increased ratio of Bax/Bcl-2, activation of caspase-8, caspase-3 and ROS-mediated DNA fragmentation. The knowledge gained from the outcomes of the study may encourage the identification of novel chemotherapeutic agent from Viscum articulatum Burm. f. to treat leukemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Reversible structural alterations of undifferentiated and differentiated human neuroblastoma cells induced by phorbol ester.

    PubMed Central

    Tint, I S; Bonder, E M; Feder, H H; Reboulleau, C P; Vasiliev, J M; Gelfand, I M

    1992-01-01

    Morphological alterations in the structure of undifferentiated and morphologically differentiated human neuroblastoma cells induced by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were examined by video microscopy and immunomorphology. In undifferentiated cells, PMA induced the formation of motile actin-rich lamellas and of stable cylindrical processes rich in microtubules. Formation of stable processes resulted either from the collapse of lamellas or the movement of the cell body away from the base of a process. In differentiated cells, PMA induced the rapid extension of small lamellas and subsequent formation of short-lived elongated processes from the lateral edges of neurites. Additionally, growth cones exhibited enhanced modulation in shape after PMA treatment. These reversible reorganizations were similar to the actinoplast-tubuloplast transformations exhibited by PMA-treated fibroblasts. We suggest that actinoplast-tubuloplast reorganizations play essential roles in morphogenesis where stable cytoplasmic extensions are induced by external stimuli. In particular, PMA-induced reorganizations of neural cells in culture may be a model for morphological modulations that occur in nerve tissue. Images PMID:1518842

  17. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    PubMed Central

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  18. HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: role of the Keap1/Nrf2 pathway.

    PubMed

    Ade, Nadège; Leon, Fanny; Pallardy, Marc; Peiffer, Jean-Luc; Kerdine-Romer, Saadia; Tissier, Marie-Hélène; Bonnet, Pierre-Antoine; Fabre, Isabelle; Ourlin, Jean-Claude

    2009-02-01

    Electrophilicity is one of the most common features of skin contact sensitizers and is necessary for protein haptenation. The Keap1 (Kelch-like ECH-associated protein 1)/Nrf2 -signaling pathway is dedicated to the detection of electrophilic stress in cells leading to the upregulation of genes involved in protection or neutralization of chemical reactive species. Signals provided by chemical stress could play an important role in dendritic cell activation and the aim of this work was to test whether contact sensitizers were specific activators of the Keap1/Nrf2 pathway. CD34-derived dendritic cells (CD34-DC) and the THP-1 myeloid cell line were treated by a panel of sensitizers (Ni, 1-chloro 2,4-dinitrobenzene, cinnamaldehyde, 7-hydroxycitronellal, 1,4-dihydroquinone, alpha-methyl-trans-cinnamaldehyde, 2-4-tert-(butylbenzyl)propionaldehyde or Lilial, and 1,4-phenylenediamine), irritants (sodium dodecyl sulfate, benzalkonium chloride), and a nonsensitizer molecule (chlorobenzene). Three well-known Nrf2 activators (tert-butylhydroquinone, lipoic acid, sulforaphane) were also tested. Expression of hmox1 and nqo1 was measured using real-time PCR and cellular accumulation of Nrf2 was assessed by Western blot. Our results showed an increased expression at early time points of hmox1 and nqo1 mRNAs in response to sensitizers but not to irritants. Accumulation of the Nrf2 protein was also observed only with chemical sensitizers. A significant inhibition of the expression of hmox1 and nqo1 mRNAs and CD86 expression was found in 1-chloro 2,4-dinitrobenzene-treated THP-1 cells preincubated with N-acetyl cysteine, a glutathione precursor. Altogether, these data suggested that the Keap1/Nrf2-signaling pathway was activated by electrophilic molecules including sensitizers in dendritic cells and in the THP-1 cell line. Monitoring of this pathway may provide new biomarkers (e.g., Nrf2, hmox1) for the detection of the sensitization potential of chemicals.

  19. In vitro assessment of silver nanoparticles immunotoxicity.

    PubMed

    Galbiati, Valentina; Cornaghi, Laura; Gianazza, Elisabetta; Potenza, Marco A; Donetti, Elena; Marinovich, Marina; Corsini, Emanuela

    2018-02-01

    This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modulation of the human equilibrative nucleoside transporter1 (hENT1) activity by IL-4 and PMA in B cells from chronic lymphocytic leukemia.

    PubMed

    Fernández Calotti, Paula; Galmarini, Carlos María; Cañones, Cristian; Gamberale, Romina; Saénz, Daniel; Avalos, Julio Sánchez; Chianelli, Mónica; Rosenstein, Ruth; Giordano, Mirta

    2008-02-15

    Nucleoside transporters (NTs) are essential for the uptake of therapeutic nucleoside analogs, broadly used in cancer treatment. The mechanisms responsible for NT regulation are largely unknown. IL-4 is a pro-survival signal for chronic lymphocytic leukemia (CLL) cells and has been shown to confer resistance to nucleoside analogs. The aim of this study was to investigate whether IL-4 is able to modulate the expression and function of the human equilibrative NT1 (hENT1) in primary cultures of CLL cells and, consequently, to affect cytotoxicity induced by therapeutic nucleosides analogs. We found that treatment with IL-4 (20 ng/ml for 24 h) increased mRNA hENT1 expression in CLL cells without affecting that of normal B cells. Given that the enhanced mRNA levels of hENT1 in CLL cells did not result in increased transport activity, we examined the possibility that hENT1 induced by IL-4 may require post-translational modifications to become active. We found that the acute stimulation of PKC in IL-4-treated CLL cells by short-term incubation with PMA significantly increased hENT1 transport activity and favoured fludarabine-induced apoptosis. By contrast, and in line with previous reports, IL-4 plus PMA protected CLL cells from a variety of cytotoxic agents. Our findings indicate that the combined treatment with IL-4 and PMA enhances hENT1 activity and specifically sensitizes CLL cells to undergo apoptosis induced by fludarabine.

  1. Replication of Mycobacterium tuberculosis in retinal pigment epithelium.

    PubMed

    Nazari, Hossein; Karakousis, Petros C; Rao, Narsing A

    2014-06-01

    Mycobacterium tuberculosis is an important cause of posterior uveitis in tuberculosis-endemic regions. Clinical and histopathologic evidence suggests that retinal pigment epithelium (RPE) can harbor M tuberculosis. However, the mechanism of M tuberculosis phagocytosis and its growth in RPE is not clear. To investigate M tuberculosis phagocytosis, replication, and cytopathic effects in RPE cells compared with macrophages. Human fetal RPE and monocytic leukemia macrophage (THP-1) cell lines were cultured, and RPE and THP-1 cells were exposed to avirulent M tuberculosis H37Ra. Mycobacteria were added to RPE and THP-1 cells with a 5:1 multiplicity of infection. Nonphagocytized M tuberculosis was removed after 12 hours of exposure (day 0). Cells were harvested at days 0, 1, and 5 to count live and dead cells and intracellular mycobacteria. Toll-like receptor 2 (TLR2) and TLR4 expression was determined by immunohistochemistry; intracellular bacillary load, following TLR2 and TLR4 blockade. Number of intracellular M tuberculosis, cell survival, and TLR2 and TLR4 expression in RPE and THP-1 cells following exposure to M tuberculosis. At day 0, an equal number of intracellular M tuberculosis was observed per THP-1 and RPE cells (0.45 and 0.35 M tuberculosis per RPE and THP-1 cells, respectively). Mean (SD) number of intracellular M tuberculosis at day 5 was 1.9 (0.03) and 3.3 (0.01) per RPE and THP-1 cells, respectively (P < .001). Viability of infected RPE was significantly greater than that of THP-1 cells at day 5 (viable cells: 17 [8%] THP-1 vs 73% [4%] RPE; P < .05). Expression of TLR2 and TLR4 was detected in both cell types after 12 hours of exposure. Inhibition of TLR2 and TLR4 reduced intracellular M tuberculosis counts in RPE but not in THP-1 cells. Mycobacterium tuberculosis is phagocytized by RPE to a similar extent as in macrophages. However, RPE cells are better able to control bacillary growth and RPE cell survival is greater than that of THP-1 cells following mycobacterial infection, suggesting that RPE can serve as a reservoir for intraocular M tuberculosis infection.

  2. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages

    PubMed Central

    Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  3. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.

  4. Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, J. Allen; Chen, Janice S.; Culotta, Valeria C., E-mail: vculott1@jhu.edu

    2015-07-03

    In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain.more » This “synthetic lethality” was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection. - Highlights: • In yeast, the anti-oxidant enzyme SOD1 promotes activity of the proton ATPase Pma1p. • Cells expressing a T912D variant of Pma1p are not viable without SOD1. • SOD1 is needed to protect Pma1-T912D expressing cells from severe oxidative damage. • SOD1 activates Pma1p through casein kinase signaling and oxidative stress protection.« less

  5. microRNA-212 promotes lipid accumulation and attenuates cholesterol efflux in THP-1 human macrophages by targeting SIRT1.

    PubMed

    Miao, Haiwei; Zeng, Honghui; Gong, Hui

    2018-02-15

    Macrophage foam cell formation is a key initiating event in the pathogenesis of atherosclerosis. This work was conducted to determine the role of microRNA (miR)-212 in the transformation of foam cells from macrophages. We examined the expression of miR-212 in atherosclerotic lesions in an apoE-deficient (apoE -/- ) mouse model. The effects of miR-212 overexpression and knockdown on lipid accumulation and cholesterol homeostasis in THP-1 macrophages after exposure to oxidized low-density lipoprotein (oxLDL). The mechanism underlying the activity of miR-212 was explored. It was found that miR-212 was downregulated in atherosclerotic lesions and macrophages from apoE -/- mice fed high-fat diet, compared to the equivalents from apoE -/- mice fed standard diet. Overexpression of miR-212 promoted lipid accumulation in oxLDL-treated THP-1 macrophages, whereas miR-212 depletion exerted an opposite effect. Macrophage cholesterol efflux to apolipoprotein A-I was significantly reduced by miR-212, which was accompanied by reduced ABCA1 expression. Mechanistically, miR-212 targeted sirtuin 1 (SIRT1) to repress the expression of ABCA1 in THP-1 macrophages. Rescue experiments confirmed that co-expression of SIRT1 attenuated lipid accumulation and restored cholesterol efflux in miR-212-overexpressing THP-1 macrophages. Collectively, miR-212 facilitates macrophage foam cell formation and suppresses ABCA1-dependent cholesterol efflux through downregulation of SIRT1. Targeting miR-212 may provide a potential therapeutic strategy for atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. M2 polarization enhances silica nanoparticle uptake by macrophages.

    PubMed

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2 polarized macrophages.

  7. M2 polarization enhances silica nanoparticle uptake by macrophages

    PubMed Central

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K.

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2 polarized macrophages. PMID:25852557

  8. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma.

    PubMed

    Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian

    2016-01-01

    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  9. Toll-like receptor (TLR)-4 mediates anti-β2GPI/β2GPI-induced tissue factor expression in THP-1 cells

    PubMed Central

    Zhou, H; Yan, Y; Xu, G; Zhou, B; Wen, H; Guo, D; Zhou, F; Wang, H

    2011-01-01

    Our previous study demonstrated that annexin A2 (ANX2) on cell surface could function as a mediator and stimulate tissue factor (TF) expression of monocytes by anti-β2-glycoprotein I/β2-glycoprotein I complex (anti-β2GPI/β2GPI). However, ANX2 is not a transmembrane protein and lacks the intracellular signal transduction pathway. Growing evidence suggests that Toll-like receptor 4 (TLR-4) might act as an ‘adaptor’ for intracellular signal transduction in anti-β2GPI/β2GPI-induced TF expressing cells. In the current study, we investigated the roles of TLR-4 and its related molecules, myeloid differentiation protein 2 (MD-2) and myeloid differentiation factor 88 (MyD88), in anti-β2GPI/β2GPI-induced TF expressing human monocytic-derived THP-1 (human acute monocytic leukaemia) cells. The relationship of TLR-4 and ANX2 in this process was also explored. Along with TF, expression of TLR-4, MD-2 and MyD88 in THP-1 cells increased significantly when treated by anti-β2GPI (10 µg/ml)/β2GPI (100 µg/ml) complex. The addition of paclitaxel, which competes with the MD-2 ligand, could inhibit the effects of anti-β2GPI/β2GPI on TLR-4, MD-2, MyD88 and TF expression. Both ANX2 and TLR-4 in THP-1 cell lysates could bind to β2GPI that had been conjugated to a column (β2GPI-Affi-Gel). Furthermore, TLR-4, MD-2, MyD88 and TF expression was remarkably diminished in THP-1 cells infected with ANX2-specific RNA interference (RNAi) lentivirus (LV-RNAi-ANX2), in spite of treatment with a similar concentration of anti-β2GPI/β2GPI complex. These results indicate that TLR-4 and its signal transduction pathway contribute to anti-β2GPI/β2GPI-induced TF expression in THP-1 cells, and the effects of TLR-4 with ANX2 are tightly co-operative. PMID:21091668

  10. Exposure of T lymphocytes to leflunomide but not to dexamethasone favors the production by monocytic cells of interleukin-1 receptor antagonist and the tissue-inhibitor of metalloproteinases-1 over that of interleukin-1beta and metalloproteinases.

    PubMed

    Déage, V; Burger, D; Dayer, J M

    1998-12-01

    On direct cell-cell contact, stimulated T lymphocytes potently trigger the production of pro-inflammatory factors such as interleukin-1beta (IL-1beta) and matrix metalloproteinases (MMP-1 and MMP-9), as well as anti-inflammatory factors such as IL-1 receptor antagonist (IL-1Ra) and the tissue inhibitor of metalloproteinases (TIMP-1) in peripheral blood monocytes and the monocytic cell line THP-1. Such mechanisms might play an important part in many inflammatory diseases where tissue destruction occurs. To assess whether anti-inflammatory agents such as dexamethasone (DEX) and leflunomide (LF) would affect contact-activation of monocytic cells, T lymphocytes were stimulated by PMA and PHA in the presence or absence of increasing concentrations of drug. LF and DEX (10- 4 M) inhibited the ability of stimulated T lymphocytes to activate monocytic cells by 66-97% and 43-70%, respectively, depending on the readout product. Upon contact with T lymphocytes stimulated in the presence of 10- 5 M LF, the molar ratio of IL-1Ra/IL-1beta and TIMP-1/MMP-1 produced by THP-1 cells was enhanced 3.6- and 1.9-fold, respectively, whereas it was enhanced only 1.3- and 1.4-fold upon contact with T lymphocytes stimulated in the presence of 10- 4 M DEX. Therefore, LF tends to favor the inhibition of pro-inflammatory and matrix-destructive factors over that of anti-inflammatory factors and metalloproteinase inhibitors, thus interfering with both inflammation and tissue destruction. These experiments indicate that LF and DEX have the potential to affect the capacity of stimulated T lymphocytes to activate, on direct cell-cell contact, monocytic cells. Furthermore, flow cytometric analysis revealed that surface molecules of T lymphocytes that were partially involved in contact-signaling of monocytes (i.e., CD69 and CD11) were not modulated by either LF or DEX, suggesting that factors which remain to be identified were mainly involved in the activation of monocytes on direct cell-cell contact.

  11. Adiponectin limits monocytic microparticle-induced endothelial activation by modulation of the AMPK, Akt and NFκB signaling pathways.

    PubMed

    Ehsan, Mehroz; Singh, Krishna K; Lovren, Fina; Pan, Yi; Quan, Adrian; Mantella, Laura-Eve; Sandhu, Paul; Teoh, Hwee; Al-Omran, Mohammed; Verma, Subodh

    2016-02-01

    Monocyte-derived microparticles (mono-MPs) are emerging as critical transducers of inflammatory signals, and have been suggested to link cardiovascular risk factors to vascular injury. Since adiponectin has been proposed to exert multiple anti-inflammatory and vasculoprotective effects, we hypothesized that it might serve to limit the production and/or action of mono-MPs. Flow cytometry and western blot studies were conducted on THP-1 cells, THP-1-derived MPs, human umbilical vein endothelial cells (HUVECs), peripheral blood CD14+ monocytes and mice to evaluate the effects of adiponectin on mono-MPs. Adiponectin attenuated lipopolysaccharide (LPS)-evoked MP release from THP-1 monocytes (30% difference) and peripheral blood monocytes (both P < 0.05) as well as dampened LPS-induced mono-MP generation in vivo. Furthermore, peritoneal monocytes from Adipoq(-/-) mice generated significantly greater MPs than those from Adipoq(+/+) littermates in the absence (2.3 fold difference, P < 0.05) and presence (1.6 fold difference, P < 0.05) of LPS. LPS-induced MP expression of NLRP3 inflammasome and its key components, namely cleaved ASC, caspase-1 and IL-1β (pro- and cleaved), were markedly attenuated by adiponectin. HUVECs incubated with MPs from LPS-treated THP-1 cells exhibited increased VCAM-1 levels and adhesion to THP-1 cells. Adiponectin abrogated these effects. From a mechanistic standpoint, the effects of adiponectin on MP release and molecular signaling occurred at least in part through the AMPK, Akt and NFκB pathways. Adiponectin exerts novel effects to limit the production and action of mono-MPs, underscoring yet another pleiotropic effect of this adipokine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion

    PubMed Central

    Oberoi, Raghav; Schuett, Jutta; Schuett, Harald; Koch, Ann-Kathrin; Luchtefeld, Maren

    2016-01-01

    Objective It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF)-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab–which is approved for several inflammatory disorders–on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions. Methods and Results Phorbol myristate acetate (PMA) differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM) revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC) as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice. Conclusion Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation. PMID:27467817

  13. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages.

    PubMed

    Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke

    2017-09-15

    It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    PubMed

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  15. Effect of bisphosphonates on macrophagic THP-1 cell survival in bisphosphonate-related osteonecrosis of the jaw (BRONJ).

    PubMed

    Hoefert, Sebastian; Sade Hoefert, Claudia; Munz, Adelheid; Schmitz, Inge; Grimm, Martin; Yuan, Anna; Northoff, Hinnak; Reinert, Siegmar; Alexander, Dorothea

    2016-03-01

    Immune deficiency and bacterial infection have been suggested to play a role in the pathophysiology of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Zoledronate was previously found to promote THP-1 cell death. To examine this hypothesis with all commonly prescribed bisphosphonates, we tested the effect of (nitrogen-containing) ibandronate, risedronate, alendronate, pamidronate, and (non-nitrogen-containing) clodronate on macrophagic THP-1 cells. Activated THP-1 cells were exposed to .5 to 50 μM of nitrogen-containing bisphosphonates and .5 to 500 μM of clodronate. Cell adherence and survival were assessed in vitro using the xCELLigence real-time monitoring system. Results were confirmed histologically and verified with Live/Dead staining. All bisphosphonates inhibited THP-1 cell adherence and survival dose and time dependently, significant for zoledronate, alendronate, pamidronate, and clodronate in high concentrations (50 μM and 500 μM; P < .05). Low concentrations (0.5 μM) of risedronate, alendronate, and pamidronate prolonged the inflexion points of THP-1 cell survival compared with controls (P < .05). THP-1 cells exhibited no cytomorphologic changes at all concentrations. Commonly prescribed bisphosphonates inhibit the survival of macrophagic THP-1 cells dose-dependently without altering morphology. This may suggest a local immune dysfunction reflective of individual bisphosphonate potency leading to the pathogenesis of BRONJ. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    PubMed

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO 2 method for delipidation and decellularization of adipose tissue whilst retaining its ECM and its subsequent utilization as a bioactive surface coating material for soft tissue engineering, angiogenesis and wound healing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development of a co-culture of keratinocytes and immune cells for in vitro investigation of cutaneous sulfur mustard toxicity.

    PubMed

    Balszuweit, Frank; Menacher, Georg; Bloemeke, Brunhilde; Schmidt, Annette; Worek, Franz; Thiermann, Horst; Steinritz, Dirk

    2014-11-05

    Sulfur mustard (SM) is a chemical warfare agent causing skin blistering, ulceration and delayed wound healing. Inflammation and extrinsic apoptosis are known to have an important role in SM-induced cytotoxicity. As immune cells are involved in those processes, they may significantly modulate SM toxicity, but the extent of those effects is unknown. We adapted a co-culture model of immortalized keratinocytes (HaCaT) and immune cells (THP-1) and exposed this model to SM. Changes in necrosis, apoptosis and inflammation, depending on SM challenge, absence or presence and number of THP-1 cells were investigated. THP-1 were co-cultured for 24h prior to SM exposure in order to model SM effects on immune cells continuously present in the skin. Our results indicate that the presence of THP-1 strongly increased necrosis, apoptosis and inflammation. This effect was already significant when the ratio of THP-1 and HaCaT cells was similar to the ratio of Langerhans immune cells and keratinocytes in vivo. Any further increases in the number of THP-1 had only slight additional effects on SM-induced cytotoxicity. In order to assess the effects of immune cells migrating into skin areas damaged by SM, we added non-exposed THP-1 to SM-exposed HaCaT. Those THP-1 had only slight effects on SM-induced cytotoxicity. Notably, in HaCaT exposed to 300μM SM, necrosis and inflammation were slightly reduced by adding intact THP-1. This effect was dependent on the number of immune cells, steadily increasing with the number of unexposed THP-1 added. In summary, we have demonstrated that (a) the presented co-culture is a robust model to assess SM toxicity and can be used to test the efficacy of potential antidotes in vitro; (b) immune cells, damaged by SM strongly amplified cytotoxicity, (c) in contrast, unexposed THP-1 (simulating migration of immune cells into affected areas after exposure in vivo) had no pronounced adverse, but exhibited some protective effects. Thus, protecting immune cells from SM toxicity may help to reduce overall injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Triglyceride-rich lipoprotein regulates APOB48 receptor gene expression in human THP-1 monocytes and macrophages.

    PubMed

    Bermudez, Beatriz; Lopez, Sergio; Varela, Lourdes M; Ortega, Almudena; Pacheco, Yolanda M; Moreda, Wenceslao; Moreno-Luna, Rafael; Abia, Rocio; Muriana, Francisco J G

    2012-02-01

    The postprandial metabolism of dietary fats implies that the production of TG-rich lipoproteins (TRL) contributes to the progression of plaque development. TRL and their remnants cause rapid receptor-mediated monocyte/macrophage lipid engorgement via the cell surface apoB48 receptor (apoB48R). However, the mechanistic basis for apoB48 receptor (APOB48R) regulation by postprandial TRL in monocytes and macrophages is not well established. In this study, we investigated the effects of postprandial TRL from healthy volunteers on the expression of APOB48R mRNA and lipid uptake in human THP-1 monocytes and THP-1-derived macrophages. The expression of APOB48R mRNA was upregulated in THP-1 monocytes, but downregulated in THP-1-derived macrophages when treated with postprandial TRL (P < 0.05), in a dose- and time-dependent manner. TG and free cholesterol were dramatically increased in THP-1-derived macrophages (140 and 50%, respectively; P < 0.05) and in THP-1 monocytes (160 and 95%, respectively; P < 0.05). This lipid accumulation was severely decreased (~50%; P < 0.05) in THP-1-derived macrophages by small interfering RNA (siRNA) targeting of APOB48R. Using PPAR and retinoid X receptor (RXR) agonists, antagonists, and siRNA, our data indicate that PPARα, PPARγ, and RXRα are involved in postprandial TRL-induced APOB48R transcriptional regulation. Co-incubation with acyl-CoA synthetase or acyl-CoA:cholesterol acyltransferase inhibitors potentiated the effects of postprandial TRL on the expression of APOB48R mRNA in THP-1 monocytes and THP-1-derived macrophages. Our findings collectively suggest that APOB48R represents a molecular target of postprandial TRL via PPAR-dependent pathways in human THP-1 monocytes and macrophages and advance a potentially important link between postprandial metabolism of dietary fats and atherogenesis.

  19. Virus-producing cells determine the host protein profiles of HIV-1 virion cores

    PubMed Central

    2012-01-01

    Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN. PMID:22889230

  20. LDL oxidation by THP-1 monocytes: implication of HNP-1, SgIII and DMT-1.

    PubMed

    He, Chunyan; Huang, Rui; Du, Fen; Zheng, Fang; Wei, Lei; Wu, Junzhu

    2009-04-01

    Oxidized low-density lipoprotein (oxLDL) plays an important role in the pathogenesis of atherosclerosis. However, the mechanisms of the initiation and progression of LDL oxidation by cells are still unknown. We investigated the molecular mechanism underlying THP-1 cell-mediated LDL oxidation. LDL oxidation was monitored at 234 nm by detecting the formation of conjugated dienes. cDNA array analysis was applied to profile changes in gene expression of human THP-1 monocytes in response to LDL stimulation. The mRNA and protein levels of secretogranin III (SgIII), divalent metal transporter (DMT-1) and human alpha-defensin 1 (HNP-1) were determined by real-time RT-PCR and Western blotting respectively. Eukaryotic expression vectors containing full-length cDNA sequence of HNP-1 (pEGFP-C1/HNP-1) SgIII (pEGFP-C1/SgIII) or DMT-1 (pEGFP-C1/DMT-1) were constructed and transfected to THP-1 cells. The effects of overexpression of these three genes on THP-1 cell-mediated LDL oxidation were observed. LDL oxidation was most pronounced after LDL was incubated with THP-1 cells for 9 h. 1651 genes in total were detected by cDNA array analysis in THP-1 cells with or without LDL treatment for 9 h. Thirteen genes with >2-fold relative expression difference were identified, including nine genes whose expression was up-regulated and four genes whose expression was down-regulated. Among the up-regulated genes, SgIII, DMT-1 and HNP-1 were reported to be associated with atherosclerosis. The increased mRNA expressions of these three genes were confirmed by real-time RT-PCR. Western blotting analysis demonstrated that protein expressions of SgIII and DMT-1 were also enhanced in THP-1 cells in response to LDL. Furthermore, transient overexpression of HNP-1, SgIII or DMT-1 in THP-1 cells significantly increased THP-1 cell-mediated LDL oxidation. Our data suggest that SgIII, DMT-1 and HNP-1 are implicated in cell-mediated LDL oxidation.

  1. Low-level expression of human ACAT2 gene in monocytic cells is regulated by the C/EBP transcription factors

    PubMed Central

    Guo, Dongqing; Lu, Ming; Hu, Xihan; Xu, Jiajia; Hu, Guangjing; Zhu, Ming; Zhang, Xiaowei; Li, Qin; Chang, Catherine C. Y.; Chang, Tayuan; Song, Baoliang; Xiong, Ying; Li, Boliang

    2016-01-01

    Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion. PMID:27688151

  2. Serum Levels of IL-1β, IL-6, TGF-β, and MMP-9 in Patients Undergoing Carotid Artery Stenting and Regulation of MMP-9 in a New In Vitro Model of THP-1 Cells Activated by Stenting

    PubMed Central

    Zhang, Rongrong; Jiang, Fan; Chen, Cindy Si; Wang, Tianzhu; Feng, Jinzhou; Tao, Tao; Qin, Xinyue

    2015-01-01

    Inflammation plays an important role in the pathophysiological process after carotid artery stenting (CAS). Monocyte is a significant source of inflammatory cytokines in vascular remodeling. Telmisartan could reduce inflammation. In our study, we first found that, after CAS, the serum IL-1β, IL-6, TGF-β, and MMP-9 levels were significantly increased, but only MMP-9 level was elevated no less than 3 months. Second, we established a new in vitro model, where THP-1 monocytes were treated with the supernatants of human umbilical vein endothelial cells (HUVECs) that were scratched by pipette tips, which mimics monocytes activated by mechanical injury of stenting. The treatment enhanced THP-1 cell adhesion, migration and invasion ability, and the phosphorylation of ERK1/2 and Elk-1 and MMP-9 expression were significantly increased. THP-1 cells pretreated with PD98095 (ERK1/2 inhibitor) attenuated the phosphorylation of ERK1/2 and Elk-1 and upregulation of MMP-9, while pretreatment with telmisartan merely decreased the phosphorylation of Elk-1 and MMP-9 expression. These results suggested that IL-1β, IL-6, TGF-β, and MMP-9 participate in the pathophysiological process after CAS. Our new in vitro model mimics monocytes activated by stenting. MMP-9 expression could be regulated through ERK1/2/Elk-1 pathway, and the protective effects of telmisartan after stenting are partly attributed to its MMP-9 inhibition effects via suppression of Elk-1. PMID:26113783

  3. Effect of dexamethasone on expression of glucocorticoid receptor in human monocyte cell line THP-1.

    PubMed

    Li, Bo; Bai, Xiangjun; Wanh, Haiping

    2006-01-01

    The effect of dexamethasone with different concentrations and different stimulating periods on the expression of glucocorticoid receptors (GRalpha, GRbeta) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRalpha and GRbeta protein was detected by Western blotting. The results showed that the expression of GRalpha and GRbeta was detected in the THP-1 cells. The quantity of GRalpha expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRbeta expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRalpha expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRbeta expression in THP-1 cells. The expression of GRalpha and GRbeta was regulated by glucocorticoid.

  4. [Primary investigation of the relationship between glucocorticoid induced leucine zipper and inflammatory reaction].

    PubMed

    Bai, Xiang-jun; Li, Bo; Wang, Hai-ping; Yang, Zhao-hui; Li, Si-qi

    2007-01-01

    To investigate the mechanism of the action of glucocorticoid induced leucine zipper (GILZ) in inflammatory reaction. Human monocyte cell line THP-1 cells were divided into two groups and cultured in non-serum RPMI1640 medium.In one group the cells were treated with dexamethasone (DEX). Twelve hours later total RNA and total protein were abstracted in both two groups. The mRNA encoding for expression of GILZ was semiquantitatively detected by reserve transcriptase-polymerase chain reaction (RT-PCR). Protein expression of nuclear factor-KappaB (NF-KappaB) p65 and activator protein-1 (AP-1) were assessed by Western blotting. Peripheral blood of 10 trauma patients [injury severity score (ISS) >or=16 scores] were collected and the leukocytes were isolated within 24 hours after trauma. The leukocytes were divided into two groups and cultured in non-serum medium. In one group the cells were treated with DEX. Twelve hours later total RNA and total protein were abstracted in both two groups. The mRNA encoding for expression of GILZ was semiquantitatively detected by RT-PCR. Protein expression of NF-KappaB p65 and AP-1 were assessed by Western blotting. Stimulated by DEX, the expression of GILZ mRNA was increased both in THP-1 cells and the leukocytes of trauma patients compared with those of control groups (both P<0.01). Whereas, protein expressions of NF-KappaB p65 and AP-1 of THP-1 cells and leukocytes in peripheral blood of trauma patients were decreased in the stimulation groups compared with those of control groups (all P<0.01). The expression of GILZ gene is up-regulated by glucocorticoid. Overexpression of GILZ inhibits NF-KappaB and AP-1 activities, suggesting that GILZ possesses anti-inflammatory function.

  5. S6K1 is involved in polyploidization through its phosphorylation at Thr421/Ser424.

    PubMed

    Ma, Dongchu; Yu, Huiying; Lin, Di; Sun, Yinghui; Liu, Liping; Liu, Yage; Dai, Bing; Chen, Wei; Cao, Jianping

    2009-04-01

    Studies on polyploidization of megakaryocytes have been hampered by the lack of synchronized polyploid megakaryocytes. In this study, a relatively synchronized polyploid cell model was successfully established by employing Dami cells treated with nocodazole. In nocodazole-induced cells, cyclin B expression oscillated normally as in diploid cells and polyploid megakaryocytes. By using the nocodazole-induced Dami cell model, we found that 4E-BP1 and Thr421/Ser424 of ribosomal S6 kinase 1(S6K1) were phosphorylated mostly at M-phase in cytoplasm and oscillated in nocodazole-induced polyploid Dami cells, concomitant with increased expression of p27 and cyclin D3. However, phosphorylation of 4E-BP1 and S6K1 on Thr421/Ser424 was significantly decreased in differentiated Dami cells induced by phorbol 12-myristate 13-acetate (PMA), concomitant with increased expression of cyclin D1 and p21 and cyclin D3. Overexpression of the kinase dead form of S6K1 containing the mutation Lys 100 --> Gln in PMA-induced Dami cells increased ploidy whereas overexpression of rapamycin-resistant form of S6K1 containing the mutations Thr421 --> Glu and Ser424 --> Asp significantly dephosphorylated 4E-BP1 and reduced expression of cyclin D1, cyclin D3, p21 and p27, and slightly decreased the ploidy of PMA-induced Dami cells, compared with treatment with PMA alone. Moreover, overexpression of rapamycin-resistant form of S6K1 significantly reversed polyploidization of nocodazole-induced Dami cells. Furthermore, MAP (a novel compound synthesized recently) partly blocked the phosphorylation of S6K1 on Thr421/Ser424 and decreased the expression of p27 and polyploidization in nocodazole-induced Dami cells. Taken together, these data suggested that S6K1/4E-BP1 pathway may play an important role in polyploidization of megakaryocytes. (c) 2008 Wiley-Liss, Inc.

  6. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    PubMed

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    PubMed

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  8. Suppressive effects of metformin on T-helper 1-related chemokines expression in the human monocytic leukemia cell line THP-1.

    PubMed

    Chen, Yen-Chun; Kuo, Chang-Hung; Tsai, Ying-Ming; Lin, Yi-Ching; Hsiao, Hui-Pin; Chen, Bai-Hsiun; Chen, Yi-Ting; Wang, Shih-Ling; Hung, Chih-Hsing

    2018-04-09

    Type 1 and type 2 diabetes mellitus (DM) are chronic T-cell-mediated inflammatory diseases. Metformin is a widely used drug for type 2 DM that reduces the need for insulin in type 1 DM. However, whether metformin has an anti-inflammatory effect for treating DM is unknown. We investigated the anti-inflammatory mechanism of metformin in the human monocytic leukemia cell line THP-1. The human monocytic leukemia cell line THP-1 was pretreated with metformin and stimulated with lipopolysaccharide (LPS). The production of T-helper (Th)-1-related chemokines including interferon-γ-induced protein-10 (IP-10) and monocyte chemoattractant protein-1 (MCP-1), Th2-related chemokine macrophage-derived chemokine, and the proinflammatory chemokine tumor necrosis factor-α was measured using enzyme-linked immunosorbent assay. Intracellular signaling pathways were investigated using Western blot analysis and chromatin immunoprecipitation assay. Metformin suppressed LPS-induced IP-10 and MCP-1 production as well as LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB). Moreover, metformin suppressed LPS-induced acetylation of histones H3 and H4 at the IP-10 promoter. Metformin suppressed the production of Th1-related chemokines IP-10 and MCP-1 in THP-1 cells. Suppressive effects of metformin on IP-10 production might be attributed at least partially to the JNK, p38, ERK, and NF-κB pathways as well as to epigenetic regulation through the acetylation of histones H3 and H4. These results indicated the therapeutic anti-inflammatory potential of metformin.

  9. Rabbit notochordal cells modulate the expression of inflammatory mediators by human annulus fibrosus cells cocultured with activated macrophage-like THP-1 cells.

    PubMed

    Kim, Joo Han; Moon, Hong Joo; Lee, Jin Hoon; Kim, Jong Hyun; Kwon, Taek Hyun; Park, Youn Kwan

    2012-10-15

    We evaluated the influence of rabbit notochordal cells on the expression of inflammatory mediators by human annulus fibrosus (AF) cells cocultured with macrophage-like cells. To identify the protective effect of rabbit notochordal cells on AF during in vitro inflammation. Discogenic pain, which is an important cause of intractable lower back pain, is associated with macrophage-mediated inflammation in the AF. Although rabbit notochordal cells prevent intervertebral disc degeneration, their effects on human AF inflammation remain unknown. Human AF pellets were cocultured for 48 hours with notochordal cell clusters from adult New Zealand White rabbits and phorbol myristate acetate (PMA)-stimulated human macrophage-like THP-1 cells. Conditioned media (CM) from the cocultures were assayed by enzyme-linked immunosorbent assay. The expression of inflammatory mediators in the AF pellets was evaluated by real-time reverse-transcription polymerase chain reaction. The levels of mRNA for interleukin (IL)-6, IL-8, and inducible nitric oxide synthase (iNOS) in the AF pellets cocultured with notochordal cells and macrophages (hAF[rNC-M]) were significantly lower than those in the AF pellets cultured with macrophages alone (hAF[M]) (P < 0.05). The levels of IL-6 and IL-8 proteins in the CM of hAF(rNC-M) were significantly lower than those in the CM of hAF(M) (P < 0.05). Coculturing with notochordal cells significantly decreased the levels of mRNA for IL-6, IL-8, and iNOS in the macrophage-exposed AF pellets (P < 0.05). After 1 ng/mL IL-1β stimulation, the levels of IL-6 and IL-8 mRNA and the level of IL-8 protein production were significantly decreased in the AF pellets with notochordal cells compared with naïve AF pellets (P < 0.05). In an in vitro coculture system, rabbit notochordal cells reduced the levels of main inflammatory mediators and gene expression in the human AF during inflammation. Therefore, rabbit notochordal cells may constitute an important protective tool against symptomatic disc development.

  10. Kimchi methanol extract and the kimchi active compound, 3'-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, downregulate CD36 in THP-1 macrophages stimulated by oxLDL.

    PubMed

    Yun, Ye-Rang; Kim, Hyun-Ju; Song, Yeong-Ok

    2014-08-01

    Macrophage foam cell formation by oxidized low-density lipoprotein (oxLDL) is a key step in the progression of atherosclerosis, which is involved in cholesterol influx and efflux in macrophages mediated by related proteins such as peroxisome proliferator-activated receptor γ (PPARγ), CD36, PPARα, liver-X receptor α (LXRα), and ATP-binding cassette transporter A1 (ABCA1). The aim of this study was to investigate the beneficial effects of kimchi methanol extract (KME) and a kimchi active compound, 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA) on cholesterol flux in THP-1-derived macrophages treated with oxLDL. The effects of KME and HDMPPA on cell viability and lipid peroxidation were determined. Furthermore, the protein expression of PPARγ, CD36, PPARα, LXRα, and ABCA1 was examined. OxLDL strongly induced cell death and lipid peroxidation in THP-1-derived macrophages. However, KME and HDMPPA significantly improved cell viability and inhibited lipid peroxidation induced by oxLDL in THP-1-derived macrophages (P<.05). Moreover, KME and HDMPPA suppressed CD36 and PPARγ expressions, both of which participate in cholesterol influx. In contrast, KME and HDMPPA augmented LXRα, PPARα, and ABCA1 expression, which are associated with cholesterol efflux. Consequently, KME and HDMPPA suppressed lipid accumulation. These results indicate that KME and HDMPPA may inhibit lipid accumulation, in part, by regulating cholesterol influx- and efflux-related proteins. These findings will thus be useful for future prevention strategies against atherosclerosis.

  11. The effects of exogenous lipid on THP-1 cells: an in vitro model of airway aspiration?

    PubMed

    Hayman, Yvette A; Sadofsky, Laura R; Williamson, James D; Hart, Simon P; Morice, Alyn H

    2017-01-01

    Chronic inflammatory diseases of the airways are associated with gastro-oesophageal reflux (GOR) and aspiration events. The observation of lipid-laden macrophages (LLMs) within the airway may indicate aspiration secondary to GOR. The proposed mechanism, that lipid droplets from undigested or partially digested food are aspirated leading to accumulation in scavenging macrophages, led us to hypothesise that an activated population of LLMs could interact with other immune cells to induce bronchial inflammation. To test this, we generated an in vitro model using differentiated THP-1 cells, which were treated with a high-fat liquid feed. Here, we show that THP-1 cells can take up lipid from the high-fat feed independent of actin polymerisation or CD36-dependent phagocytosis. These cells did not exhibit M1 or M2 polarisation. Gene array analysis confirmed over 8000 genes were upregulated by at least twofold following high fat exposure, and IL-8 was the most upregulated gene. Pathway analysis revealed upregulation of genes known to be involved in chronic obstructive pulmonary disease (COPD) pathophysiology. We suggest that aspiration and macrophage phagocytosis may be important mechanisms in the aetiology of diseases such as COPD and cystic fibrosis that are characterised by high levels of IL-8 within the airways.

  12. Quantitative Detection of Viable Bifidobacterium bifidum BF-1 Cells in Human Feces by Using Propidium Monoazide and Strain-Specific Primers

    PubMed Central

    Fujimoto, Junji

    2013-01-01

    We developed a PCR-based method to detect and quantify viable Bifidobacterium bifidum BF-1 cells in human feces. This method (PMA-qPCR) uses propidium monoazide (PMA) to distinguish viable from dead cells and quantitative PCR using a BF-1-specific primer set designed from the results of randomly amplified polymorphic DNA analysis. During long-term culture (10 days), the number of viable BF-1 cells detected by counting the number of CFU on modified MRS agar, by measuring the ATP contents converted to CFU, and by using PMA-qPCR decreased from about 1010 to 106 cells/ml; in contrast, the total number of (viable and dead) BF-1 cells detected by counting 4′,6-diamidino-2-phenylindolee (DAPI)-stained cells and by using qPCR without PMA and reverse transcription-qPCR remained constant. The number of viable BF-1 cells in fecal samples detected by using PMA-qPCR was highly and significantly correlated with the number of viable BF-1 cells added to the fecal samples, within the range of 105.3 to 1010.3 cells/g feces (wet weight) (r > 0.99, P < 0.001). After 12 healthy subjects ingested 1010.3 to 1011.0 CFU of BF-1 in a fermented milk product daily for 28 days, 104.5 ± 1.5 (mean ± standard deviation [SD]) BF-1 CFU/g was detected in fecal samples by using strain-specific selective agar; in contrast, 106.2 ± 0.4 viable BF-1 cells/g were detected by using PMA-qPCR, and a total of 107.6 ± 0.7 BF-1 cells/g were detected by using qPCR without PMA. Thus, the number of viable BF-1 cells detected by PMA-qPCR was about 50 times higher (P < 0.01) than that detected by the culture-dependent method. We conclude that strain-specific PMA-qPCR can be used to quickly and accurately evaluate viable BF-1 in feces. PMID:23354719

  13. Lipoteichoic Acid Isolated from Weissella cibaria Increases Cytokine Production in Human Monocyte-Like THP-1 Cells and Mouse Splenocytes.

    PubMed

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Kim, Seongjae; Lee, Youn-Woo; Jeon, Boram; Jagdish, Deepa; Kim, Hangeun; Chung, Dae Kyun

    2016-07-28

    Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heatkilled W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappalight-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases.

  14. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation.

    PubMed

    Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M

    2007-01-01

    Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.

  15. [Erythromycin restores oxidative stress-induced corticosteroid responsiveness of human THP-1 cells by up-regulating the expression of histone deacetylase 2].

    PubMed

    Zhang, Yang; He, Zhiyi; Sun, Xuejiao; Li, Zhanhua; Zhao, Lin; Mao, Congzheng; Huang, Dongmei; Zhang, Jianquan; Zhong, Xiaoning

    2014-04-01

    To investigate the effect of erythromycin (EM) on corticosteroid insensitivity of human THP-1 cells induced by cigarette smoke extract (CSE) and its mechanism. THP-1 cells were treated with EM followed by CSE stimulation. Histone deacetylase-2 (HDAC2) short interference RNA (HDAC2-siRNA) was transfected into the cells using Lipofectamine(TM); 2000. Interleukin-8 (IL-8) level in supernatants was measured by ELISA and HDAC2 expression was determined by real-time quantitative PCR (qRT-PCR) and Western blotting. The inhibition ratio of IL-8 in the EM group was significantly higher than that in the CSE group, but lower than that in the control group (P<0.05). The half-maximal inhibitory concentration of dexamethasone (IC50;-Dex) in the EM group was lower than that in the CSE group, but higher than that in the control group (P<0.05). The expression of HDAC2 protein in the EM group was higher than that in the CSE group, but lower than that in the control group (P<0.05). Besides, HDAC2 mRNA and HDAC2 protein expressions were lower in the HDAC2-siRNA group than in the scrambled oligonucleotide (SC) group. EM could reverse HDAC2 mRNA and HDAC2 protein reduction induced by HDAC2-siRNA (P<0.05). Corticosteroid sensitivity of THP-1 cells could be reduced by CSE. EM could reverse the corticosteroid insensitivity by up-regulating the expression of HDAC2 protein.

  16. Integrated modulation of phorbol ester-induced Raf activation in EL4 lymphoma cells.

    PubMed

    Han, Shujie; Meier, Kathryn E

    2009-05-01

    The EL4 murine lymphoma cell line exists in variant phenotypes that differ with respect to responses to the tumor promoter phorbol 12-myristate 13-acetate (PMA1). Previous work showed that "PMA-sensitive" cells, characterized by a high magnitude of PMA-induced Erk activation, express RasGRP, a phorbol ester receptor that directly activates Ras. In "PMA-resistant" and "intermediate" EL4 cell lines, PMA induces Erk activation to lesser extents, but with a greater response in intermediate cells. In the current study, these cell lines were used to examine mechanisms of Raf-1 modulation. Phospho-specific antibodies were utilized to define patterns and kinetics of Raf-1 phosphorylation on several sites. Further studies showed that Akt is constitutively activated to a greater extent in PMA-resistant than in PMA-sensitive cells, and also to a greater extent in resistant than intermediate cells. Akt negatively regulates Raf-1 activation (Ser259), partially explaining the difference between resistant and intermediate cells. Erk activation exerts negative feedback on Raf-1 (Ser289/296/301), thus resulting in earlier termination of the signal in cells with a higher level of Erk activation. RKIP, a Raf inhibitory protein, is expressed at higher levels in resistant cells than in sensitive or intermediate cells. Knockdown of RKIP increases Erk activation and also negative feedback. In conclusion, this study delineates Raf-1 phosphorylation events occurring in response to PMA in cell lines with different extents of Erk activation. Variations in the levels of expression and activation of multiple signaling proteins work in an integrated fashion to modulate the extent and duration of Erk activation.

  17. INTEGRATED MODULATION OF PHORBOL ESTER-INDUCED RAF ACTIVATION IN EL4 LYMPHOMA CELLS

    PubMed Central

    Han, Shujie; Meier, Kathryn E.

    2009-01-01

    The EL4 murine lymphoma cell line exists in variant phenotypes that differ with respect to responses to the tumor promoter phorbol 12-myristate 13-acetate (PMA1). Previous work showed that “PMA-sensitive” cells, characterized by a high magnitude of PMA-induced Erk activation, express RasGRP, a phorbol ester receptor that directly activates Ras. In “PMA-resistant” and “intermediate” EL4 cell lines, PMA induces Erk activation to lesser extents, but with a greater response in intermediate cells. In the current study, these cell lines were used to examine mechanisms of Raf-1 modulation. Phospho-specific antibodies were utilized to define patterns and kinetics of Raf-1 phosphorylation on several sites. Further studies showed that Akt is constitutively activated to a greater extent in PMA-resistant than in PMA-sensitive cells, and also to a greater extent in resistant than intermediate cells. Akt negatively regulates Raf-1 activation (Ser259), partially explaining the difference between resistant and intermediate cells. Erk activation exerts negative feedback on Raf-1 (Ser289/296/301), thus resulting in earlier termination of the signal in cells with a higher level of Erk activation. RKIP, a Raf inhibitory protein, is expressed at higher levels in resistant cells than in sensitive or intermediate cells. Knockdown of RKIP increases Erk activation and also negative feedback. In conclusion, this study delineates Raf-1 phosphorylation events occurring in response to PMA in cell lines with different extents of Erk activation. Variations in the levels of expression and activation of multiple signaling proteins work in an integrated fashion to modulate the extent and duration of Erk activation. PMID:19263515

  18. Manipulation of necroptosis by Porphyromonas gingivalis in periodontitis development.

    PubMed

    Ke, Xiaojing; Lei, Lang; Li, Huang; Li, Houxuan; Yan, Fuhua

    2016-09-01

    To eliminate invading pathogens and keep homeostasis, host employs multiple approaches such as the non-inflammation associated-apoptosis, inflammation associated-necroptosis and pyroptosis, etc. Necroptosis is known as a highly pro-inflammatory form of cell death due to the release of massive damage-associated molecular patterns (DAMPs). For the first time, we reported that Porphyromonas gingivalis induced cellular necroptosis through receptor-interacting protein 1 (RIP1)/RIP3/mixed lineage kinase domain-like (MLKL) signaling pathway in monocytes. Necroptosis in THP-1 cells was induced by MLKL phosphorylation in vitro. P. gingivalis treated-THP-1 cells exhibited lower cell death rate with pretreatment of inhibitors RIP1 and MLKL, accompanied with attenuated TNF-α and IL-6 expressions. Moreover, the necroptosis risk was also reduced via gene silencing by RIP3 or MLKL in the P. gingivalis treated-THP-1 cell lines. We further explored P. gingivalis-induced necroptosis in animal models in vivo. Firstly, C57BL/6 mice were injected with P. gingivalis in the subcutaneous chamber model. Animals pretreated with MLKL inhibitor exhibited significantly enhanced P. gingivalis clearance; in addition, levels of TNF-α and IL-6 were notably decreased by 60% via MLKL inhibition. Secondly, P. gingivalis-induced periodontitis was utilized to investigate necroptosis related-periodontopathogensis. Positive staining of phosphorylated MLKL in mice periodontitis biopsies was detected to a higher degree, while larger amount of alveolar bone loss was observed in MLKL (-) group comparing to those in the MLKL (+) group. These findings may suggest that P. gingivalis play essential roles in necroptosis process during periodontitis, and our research may shed light on the further work on the related periodontopathogenesis investigation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Quercetin manipulates the expression of genes involved in the reactive oxygen species (ROS) processin chicken heterophils.

    PubMed

    Nambooppha, Boondarika; Photichai, Kornravee; Wongsawan, Kanreuthai; Chuammitri, Phongsakorn

    2018-06-06

    Chicken heterophils generate reactive oxygen species (ROS) molecules to defend against invading pathogens. The present study examined effects of quercetin on chicken heterophils. Heterophils were stimulated with PBS, 50 μM quercetin (QH), PMA or Escherichia coli (EC) and the resulting intracellular ROS molecules were determined. Flow cytometry results showed that cells stimulated with QH, PMA and EC had a higher ROS production. Increases in intracellular ROS molecules were identified in all treatment groups by fluorescence microscopy. Determination of the ability of quercetin to manipulate mRNA expression of ROS subunits was assessed using real-time RT-PCR. Quercetin and other stimulants up-regulated the majority of genes involved in ROS production: CYBB (NOX2), NCF1 (p47 phox ), NCF2 (p67 phox ), NOX1 and RAC2. The antioxidant property of QH was explored by measuring mRNA expression of CAT and SOD1. The data indicate increased levels of CAT with all treatments; however, only QH attenuated the expression ofthe SOD1 gene. To further investigate the effects of ROS-driven inflammation or cell death, IL6, CASP8, and MCL1 genes were preferentially tested. The inflammatory gene (IL6) was profoundly down-regulated in the QH- and PMA-treated groups while EC induced a strikingly high IL6 expression level. Investigation of the known apoptotic (CASP8) and anti-apoptotic (MCL1) genes found down-regulation of CASP8 in the QH- and PMA-treated groups which were contradicted to the MCL1 gene. In conclusion, quercetin can enhance ROS production by regulating the expression of genes involved in ROS production as well as in subsequent processes.

  20. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone.

    PubMed

    Yang, Li; Yang, Jin Bo; Chen, Jia; Yu, Guang Yao; Zhou, Pei; Lei, Lei; Wang, Zhen Zhen; Cy Chang, Catherine; Yang, Xin Ying; Chang, Ta Yuan; Li, Bo Liang

    2004-08-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study, with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP-1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-1-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP-1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner. Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1 gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex, which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  1. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  2. Alterations in protein glycosylation in PMA-differentiated U-937 cells exposed to mineral particles.

    PubMed Central

    Trabelsi, N; Greffard, A; Pairon, J C; Bignon, J; Zanetti, G; Fubini, B; Pilatte, Y

    1997-01-01

    Carbohydrate moieties of cell glycoconjugates play a pivotal role in molecular recognition phenomena involved in the regulation of most biological systems and the changes observed in cell surface carbohydrates during cell activation or differentiation frequently modulate certain cell functions. Consequently, some aspects of macrophage response to particle exposure might conceivably result from alterations in glycosylation. Therefore, the effect of mineral particles on protein glycosylation was investigated in phorbol myristate acetate (PMA)-differentiated U-937. Jacalin, a lectin specific for O-glycosylated structures, showed a global increase in O-glycosylation in particle-treated cells. In contrast, no significant modifications were observed with concanavalin A, a lectin that recognizes certain N-glycosylated structures. The sialic acid-specific lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin and the galactose-specific lectin Ricinus communis agglutinin revealed a complex pattern of alterations in glycoprotein glycosylation after crystalline silica or manganese dioxide treatments. Expression of sialyl Lewis(x), a glycosylated structure implicated in leukocyte trafficking, could not be detected in control or treated cells. This finding was consistent with the decrease in sialyl Lewis(x) expression observed during PMA-induced differentiation. In conclusion, various treatments used in this study induced quantitative as well as qualitative changes in protein glycosylation. Whether these changes are due to glycosidase release or to an alteration in glycosyltransferase expression remains to be determined. The potential functional implications of these changes are currently under investigation. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 3. C Figure 4. PMID:9400716

  3. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF.

    PubMed

    Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang

    2011-08-01

    We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.

  4. Assessing NLRP3 Inflammasome Activation by Nanoparticles.

    PubMed

    Sharma, Bhawna; McLeland, Christopher B; Potter, Timothy M; Stern, Stephan T; Adiseshaiah, Pavan P

    2018-01-01

    NLRP3 inflammasome activation is one of the initial steps in an inflammatory cascade against pathogen/danger-associated molecular patterns (PAMPs/DAMPs), such as those arising from environmental toxins or nanoparticles, and is essential for innate immune response. NLRP3 inflammasome activation in cells can lead to the release of IL-1β cytokine via caspase-1, which is required for inflammatory-induced programmed cell death (pyroptosis). Nanoparticles are commonly used as vaccine adjuvants and drug delivery vehicles to improve the efficacy and reduce the toxicity of chemotherapeutic agents. Several studies indicate that different nanoparticles (e.g., liposomes, polymer-based nanoparticles) can induce NLRP3 inflammasome activation. Generation of a pro-inflammatory response is beneficial for vaccine delivery to provide adaptive immunity, a necessary step for successful vaccination. However, similar immune responses for intravenously injected, drug-containing nanoparticles can result in immunotoxicity (e.g., silica nanoparticles). Evaluation of NLRP3-mediated inflammasome activation by nanoparticles may predict pro-inflammatory responses in order to determine if these effects may be mitigated for drug delivery or optimized for vaccine development. In this protocol, we outline steps to monitor the release of IL-1β using PMA-primed THP-1 cells, a human monocytic leukemia cell line, as a model system. IL-1β release is used as a marker of NLRP3 inflammasome activation.

  5. Association of RANTES with the replication of severe acute respiratory syndrome coronavirus in THP-1 cells.

    PubMed

    Li, D; Wu, N; Yao, H; Bader, A; Brockmeyer, Norbert H; Altmeyer, P

    2005-03-29

    Severe acute respiratory syndrome (SARS) is a novel infectious disease which is characterized by an overaggressive immune response. Chemokines are important inflammatory mediators and regulate disease due to viral infection. In previous study, we found that SARS-CoV has the ability to replicate in mononuclear cells. In present work, we sought to characterize the replication of SARS-CoV at the presence of RANTES in THP-1 cells. To determine whether RANTES play an role in the process of SARS, THP-1 cells were incubated with heat-inactivated SARS-CoV and ELISA was used to test RANTES levels in the supernatants; Then the effect of dexamethasone on the induced secretion was evaluated. Real-time PCR was used to investigate the effort of RANTES on the replication of SARS-CoV in vitro. Macrophages, induced by THP-1 cells, were used as cell model. Inactive SARS-CoV could induce THP-1 cells secret RANTES and this increase effect could not be suppressed by DXM. RANTES itself could inhibit the replication of SARS-CoV in THP-1 cells when it was added into the culture before or at the same time with the virus; No inhibition effect was shown when RANTES were added into the culture after SARS-CoV infected the cells.

  6. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme.

    PubMed

    Moriau, L; Michelet, B; Bogaerts, P; Lambert, L; Michel, A; Oufattole, M; Boutry, M

    1999-07-01

    The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.

  7. Lipopolysaccharide induces autotaxin expression in human monocytic THP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Song; Zhang Junjie

    2009-01-09

    Autotaxin (ATX) is a secreted enzyme with lysophospholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive phospholipid involved in numerous biological activities, including cell proliferation, differentiation, and migration. In the present study, we found that bacterial lipopolysaccharide (LPS), a well-known initiator of the inflammatory response, induced ATX expression in monocytic THP-1 cells. The activation of PKR, JNK, and p38 MAPK was required for the ATX induction. The LPS-induced ATX in THP-1 cells was characterized as the {beta} isoform. In the presence of LPC, ATX could promote the migrations of THP-1 and Jurkat cells, which wasmore » inhibited by pertussis toxin (PTX), an inhibitor of Gi-mediated LPA receptor signaling. In summary, LPS induces ATX expression in THP-1 cells via a PKR, JNK and p38 MAPK-mediated mechanism, and the ATX induction is likely to enhance immune cell migration in proinflammatory response by regulating LPA levels in the microenvironment.« less

  8. Active lipids of Ganoderma lucidum spores-induced apoptosis in human leukemia THP-1 cells via MAPK and PI3K pathways.

    PubMed

    Wang, Jia-He; Zhou, Yi-Jun; Zhang, Meng; Kan, Liang; He, Ping

    2012-01-31

    Ganoderma lucidum (Lingzhi) is traditionally drug, which has been traditionally effective used in the treatment of chronic hepatopathy, hypertension, hyperglycemia and cancer. THP-1 and HL-60 apoptosis induced by active lipids of Ganoderma lucidum spores was quantified by flow cytometry using FITC-conjugated annexin V and PI; MAPK and Akt were measured by Western blot, and caspase-3, -8 and -9 activities were also detected by spectrophotometric assay. Our results showed that active lipids of Ganoderma lucidum spores decreased phosphorylation-ERK1/2 (P-ERK1/2), P-Akt and increased P-JNK1/2, but did not affect expressions of P-p38 MAPK in THP-1 cells. Moreover, treatment of THP-1 cells with active lipids of Ganoderma lucidum spores resulted in activation of caspase-3, -8 and -9. Furthermore, LY294002 (Akt inhibitor) or PD98059 (ERK1/2 inhibitor) significantly enhanced active lipids of Ganoderma lucidum spores-induced apoptosis in THP-1 cells, whereas caspase inhibitors or SP600125 (JNK inhibitor), decreased apoptosis in THP-1 cells. Taken together, our study for the first time suggests that active lipids of Ganoderma lucidum spores is able to enhance apoptosis in THP-1 cells, at least in part, through inhibition of ERK1/2, Akt and activation of JNK1/2 signaling pathways. Moreover, it also triggers caspase-3, -8 and -9 activation mediated apoptotic induction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    PubMed

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  10. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it; Germini, Diego; Rodighiero, Isabella

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promotingmore » cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.« less

  11. Effects of monascin on anti-inflammation mediated by Nrf2 activation in advanced glycation end product-treated THP-1 monocytes and methylglyoxal-treated wistar rats.

    PubMed

    Lee, Bao-Hong; Hsu, Wei-Hsuan; Huang, Tao; Chang, Yu-Ying; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-02-13

    Hyperglycemia is associated with advanced glycation end products (AGEs). This study was designed to evaluate the inhibitory effects of monascin on receptor for advanced glycation end product (RAGE) signal and THP-1 monocyte inflammation after treatment with S100b, a specific ligand of RAGE. Monascin inhibited cytokine production by S100b-treated THP-1 monocytes via up-regulation of nuclear factor-erythroid 2-related factor-2 (Nrf2) and alleviated p47phox translocation to the membrane. Methylglyoxal (MG, 600 mg/kg bw) was used to induce diabetes in Wistar rats. Inhibitions of RAGE and p47phox by monascin were confirmed by peripheral blood mononuclear cells (PBMCs) of MG-induced rats. Silymarin (SM) was used as a positive control group. It was found that monascin promoted heme oxygenase-1 (HO-1) expression mediated by Nrf2. Suppressions of AGEs, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-β) in serum of MG-induced rats were attenuated in the monascin administration group treated with retinoic acid (RA). RA treatment resulted in Nrf2 inactivation by increasing RA receptor-α (RARα) activity, suggesting that RA acts as an inhibitor of Nrf2. The results showed that monascin exerted anti-inflammatory and antioxidative effects mediated by Nrf2 to prevent the development of diseases such as type 2 diabetes caused by inflammation.

  12. Macrolide Antibiotics Improve Phagocytic Capacity and Reduce Inflammation In Sulfur Mustard-Exposed Monocytes

    DTIC Science & Technology

    2008-12-01

    phagocytotic function and on inflammatory cytokines/mediators production in vitro using SM-exposed monocyte THP - 1 cells. Using flow cytometry we found...in vitro using SM-exposed monocyte THP - 1 cells. 2. MATERIALS AND METHODS 2.1 Reagents Sulfur mustard (2,2’-dichlorodiethyl sulfide; 4 mM) was...monocyte THP - 1 cells were obtained from ATCC (Manassas, VA). Cells were grown as suspension in the optimized media as formulated by the manufacturer and

  13. Novel leads from Heliotropium ovalifolium, 4,7,8-trimethoxy-naphthalene-2-carboxylic acid and 6-hydroxy-5,7-dimethoxy-naphthalene-2-carbaldehyde show specific IL-6 inhibitory activity in THP-1 cells and primary human monocytes.

    PubMed

    Kulkarni-Almeida, Asha; Suthar, Ashish; Goswami, Hitesh; Vishwakarma, Ram; Chauhan, Vijay Singh; Balakrishnan, Arun; Sharma, Somesh

    2008-12-01

    From our screening program, we identified the anti-inflammatory effects of the extracts of Heliotropium ovalifolium in its ability to inhibit specific cytokines. The H. ovalifolium extract was found to be moderately active with an IC(50) equaling 10 microg/ml for inhibition of interleukin-6 (IL-6) in a human monocytic cell line. Interleukin-6 is a pleiotropic cytokine with implications in the regulation of the immune response, inflammation and hematopoiesis. This prompted us to examine and identify the active molecules that are responsible for the bioactivity in THP-1 cells. Bioassay guided fractionation identified two compounds 4,7,8-trimethoxy-naphthalene-2-carboxylic acid and 6-hydroxy-5,7-dimethoxy-naphthalene-2-carbaldehyde with an IC(50) of 2.4 and 2.0 microM for IL-6 inhibition and an IC(50) of 15.6 and 7.0 microM for tumor necrosis factor-alpha (TNF-alpha) inhibition in THP-1 cells. The protein expression data were supported by the inhibitory effect on mRNA gene expression. The compounds isolated from H. ovalifolium were also non-toxic in human peripheral blood monocytes from normal donors and the activity profile was similar to that obtained on THP-1 cells. Thus, we believe that these scaffolds may be of interest to develop leads for treating rheumatoid arthritis, psoriasis, ulcerative colitis, Crohn's disease and other inflammatory disorders. However, more detailed investigations need to be carried out to explain the efficacy of these compounds as drugs.

  14. Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins

    PubMed Central

    Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh

    2016-01-01

    Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at P<0.05. Results: The results showed that the ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551

  15. Amino acids exhibit anti-inflammatory effects in human monocytic leukemia cell line, THP-1 cells.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Sonaka, Ichiro; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Hara, Masami; Furukawa, Susumu

    2011-11-01

    The elemental diet is one of the effective therapies for inflammatory bowel disease. However, the mechanism remains unclear, and there have never been reports about the inhibitory effects of amino acids in human monocytes/macrophages. We investigated the inhibitory effects of amino acids on cytokine production or expression of adhesion molecules that are involved in inflammatory diseases, in human monocytes/macrophages. We examined the inhibitory effects of cysteine, histidine or glycine on the induction of nuclear factor-κB (NF-κB) activation, expression of intracellular adhesion molecule-1 (ICAM-1, CD54) and production of interleukin-8 (IL-8) in THP-1 cells, a human monocytic leukemia cell line, and peripheral blood mononuclear cells (PBMCs) stimulated with tumor necrosis factor-α (TNF-α). Cysteine, histidine and glycine significantly reduced the activation of NF-κB in THP-1 cells stimulated with TNF-α. In addition, cysteine and histidine significantly inhibited the expression of ICAM-1 and production of IL-8 in THP-1 cells and PBMCs. Our results suggest that cysteine and histidine exhibit anti-inflammatory effects in THP-1 cells, and may be responsible for the efficacy of treatment in inflammatory bowel diseases.

  16. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells.

    PubMed

    Chen, L; Smith, L; Johnson, M R; Wang, K; Diasio, R B; Smith, J B

    2000-10-13

    Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.

  17. P2Y(2)R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production.

    PubMed

    Eun, So Young; Park, Sang Won; Lee, Jae Heun; Chang, Ki Churl; Kim, Hye Jung

    2014-04-01

    Lipoprotein oxidation, inflammation, and immune responses involving the vascular endothelium and immune cells contribute to the pathogenesis of atherosclerosis. In an atherosclerotic animal model, P2Y2 receptor (P2Y2R) upregulation and stimulation were previously shown to induce intimal hyperplasia and increased intimal monocyte infiltration. Thus, we investigated the role of P2Y2R in oxidized low-density lipoprotein (oxLDL)-mediated oxidative stress and the subsequent interaction between endothelial cells (ECs) and immune cells. The treatment of human ECs with oxLDL caused the rapid release of ATP (maximum after 5 min). ECs treated with oxLDL or the P2Y2R agonists ATP/UTP for 1h exhibited significant reactive oxygen species (ROS) production, but this effect was not observed in P2Y2R siRNA-transfected ECs. In addition, oxLDL and ATP/UTP both induced RAGE expression, which was P2Y2R dependent. Oxidized LDL- and ATP/UTP-mediated ROS production was diminished in RAGE siRNA-transfected ECs, suggesting that RAGE is an important mediator in P2Y2R-mediated ROS production. Treatment with oxLDL for 24h induced P2Y2R expression in the human monocyte cell line THP-1 and increased THP-1 cell migration toward ECs. The addition of apyrase, an enzyme that hydrolyzes nucleotides, or diphenyleneiodonium (DPI), a well-known inhibitor of NADPH oxidase, significantly inhibited the increase in cell migration caused by oxLDL. P2Y2R siRNA-transfected THP-1 cells did not migrate in response to oxLDL or ATP/UTP treatment, indicating a critical role for P2Y2R and nucleotide release in oxLDL-induced monocyte migration. Last, oxLDL and ATP/UTP effectively increased ICAM-1 and VCAM-1 expression and the subsequent binding of THP-1 cells to ECs, which was inhibited by pretreatment with DPI or by siRNA against P2Y2R or RAGE, suggesting that P2Y2R is an important mediator in oxLDL-mediated monocyte adhesion to ECs through the regulation of ROS-dependent adhesion molecule expression in ECs. Taken together, our findings suggest that P2Y2R could be a therapeutic target for the prevention of vascular disorders, including atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    PubMed

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2017-07-01

    : Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  19. Uncoupling between CD1d upregulation induced by retinoic acid and conduritol-B-epoxide and iNKT cell responsiveness.

    PubMed

    Balreira, Andrea; Cavallari, Marco; Sá Miranda, Maria Clara; Arosa, Fernando A

    2010-06-01

    Gaucher disease (GD) is associated with upregulation of CD1d and MHC-class II expression by monocytes. While the physiological impact of CD1d upregulation remains uncertain, it has been proposed that MHC-class II upregulation is associated with inflammation. Hereby, we show that the decrease in MHC-class II expression seen in GD patients under therapy correlates positively with chitotriosidase activity, a marker of inflamed macrophages. We also show that retinoic acid (RA) and the beta-glucocerebrosidase inhibitor conduritol-B-epoxide (CBE) lead to upregulation of CD1d expression by THP-1 cells, which correlated with an increase in mRNA expression. In vitro co-culture experiments showed that RA treated THP-1 cells were more stimulatory for CD4(+) than for CD8(+) T cells, as determined by CFSE loss, in comparison to untreated THP-1 cells. Interestingly, even though addition of exogenous isoglobotrihexosylceramide (iGb3), a physiological CD1d ligand, augmented the percentage of dividing CD4(+) T cells, we could not detect a significant expansion of CD4(+)Valpha24(+) invariant Natural Killer T (iNKT) cells. In contrast, addition of alpha-galactosylceramide (alpha-GC) induced expansion of Valpha24(+) iNKT cells as determined by using alpha-GC-loaded human CD1d dimers. These results strengthen the existence of a cross-talk between monocyte lipid accumulation, inflammation and changes in cell surface CD1d and MHC-class II in monocytes, which may result in inappropriate recognition events by immune cells and perpetuate chronic inflammation. Copyright 2009 Elsevier GmbH. All rights reserved.

  20. NLRP3 Inflammasome Activation in THP-1 Target Cells Triggered by Pathogenic Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Yoo, Jong-Kyun; Kang, Heekyoung; Seong, Gi-Sang; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2016-09-01

    Naegleria fowleri, known as the brain-eating amoeba, causes acute primary amoebic meningoencephalitis. During swimming and other recreational water activities, N. fowleri trophozoites penetrate the nasal mucosa and invade the olfactory bulbs, resulting in intense inflammatory reactions in the forebrain tissue. To investigate what kinds of inflammasome molecules are expressed in target cells due to N. fowleri infection, human macrophage cells (THP-1 cells) were cocultured with N. fowleri trophozoites in a noncontact system, and consequently, interleukin-1β (IL-1β) production was estimated. Caspase-1 activation and IL-1β production from THP-1 cells by Western blotting and the culture supernatant by enzyme-linked immunosorbent assay analysis were observed at 3 h after cocultivation. In addition, the increased expression of ASC and NLRP3, which make up an inflammasome complex, was also observed at 3 h after cocultivation. To confirm the caspase-1 activation and IL-1β production via the NLRP3 inflammasome in THP-1 cells triggered by N. fowleri trophozoites, THP-1 cells were pretreated with several inhibitors. The inhibition assay showed that CA-074 (a cathepsin B inhibitor), glybenclamide (an NLRP3 molecule inhibitor), and N-benzyloxycarbony-Val-Ala-Asp(O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) reduced the levels of caspase-1 activation and IL-1β production from THP-1 cells. This study suggests that N. fowleri infection induces the NLRP3 inflammasome, which activates caspase-1 and subsequently produces IL-1β, thus resulting in inflammation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. NLRP3 Inflammasome Activation in THP-1 Target Cells Triggered by Pathogenic Naegleria fowleri

    PubMed Central

    Kim, Jong-Hyun; Sohn, Hae-Jin; Yoo, Jong-Kyun; Kang, Heekyoung; Seong, Gi-Sang; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun

    2016-01-01

    Naegleria fowleri, known as the brain-eating amoeba, causes acute primary amoebic meningoencephalitis. During swimming and other recreational water activities, N. fowleri trophozoites penetrate the nasal mucosa and invade the olfactory bulbs, resulting in intense inflammatory reactions in the forebrain tissue. To investigate what kinds of inflammasome molecules are expressed in target cells due to N. fowleri infection, human macrophage cells (THP-1 cells) were cocultured with N. fowleri trophozoites in a noncontact system, and consequently, interleukin-1β (IL-1β) production was estimated. Caspase-1 activation and IL-1β production from THP-1 cells by Western blotting and the culture supernatant by enzyme-linked immunosorbent assay analysis were observed at 3 h after cocultivation. In addition, the increased expression of ASC and NLRP3, which make up an inflammasome complex, was also observed at 3 h after cocultivation. To confirm the caspase-1 activation and IL-1β production via the NLRP3 inflammasome in THP-1 cells triggered by N. fowleri trophozoites, THP-1 cells were pretreated with several inhibitors. The inhibition assay showed that CA-074 (a cathepsin B inhibitor), glybenclamide (an NLRP3 molecule inhibitor), and N-benzyloxycarbony-Val-Ala-Asp(O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) reduced the levels of caspase-1 activation and IL-1β production from THP-1 cells. This study suggests that N. fowleri infection induces the NLRP3 inflammasome, which activates caspase-1 and subsequently produces IL-1β, thus resulting in inflammation. PMID:27297387

  2. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.

  3. Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation

    PubMed Central

    Bases, Robert

    2006-01-01

    Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens. PMID:17009597

  4. DNase I and Proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses.

    PubMed

    Villarreal, Jessica Varela; Jungfer, Christina; Obst, Ursula; Schwartz, Thomas

    2013-09-01

    Molecular techniques, such as polymerase chain reaction (PCR) and quantitative PCR (qPCR), are very sensitive, but may detect total DNA present in a sample, including extracellular DNA (eDNA) and DNA coming from live and dead cells. DNase I is an endonuclease that non-specifically cleaves single- and double-stranded DNA. This enzyme was tested in this study to analyze its capacity of digesting DNA coming from dead cells with damaged cell membranes, leaving DNA from living cells with intact cell membranes available for DNA-based methods. For this purpose, an optimized DNase I/Proteinase K (DNase/PK) protocol was developed. Intact Staphylococcus aureus cells, heat-killed Pseudomonas aeruginosa cells, free genomic DNA of Salmonella enterica, and a mixture of these targets were treated according to the developed DNase/PK protocol. In parallel, these samples were treated with propidium monoazide (PMA) as an already described assay for live-dead discrimination. Quantitative PCR and PCR-DGGE of the eubacterial 16S rDNA fragment were used to test the ability of the DNase/PK and PMA treatments to distinguish DNA coming from cells with intact cell membranes in the presence of DNA from dead cells and free genomic DNA. The methods were applied to three months old autochthonous drinking water biofilms from a pilot facility built at a German waterworks. Shifts in the DNA patterns observed after DGGE analysis demonstrated the applicability of DNase/PK as well as of the PMA treatment for natural biofilm investigation. However, the DNase/PK treatment demonstrated some practical advantages in comparison with the PMA treatment for live/dead discrimination of bacterial targets in drinking water systems. © 2013 Elsevier B.V. All rights reserved.

  5. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT.

    PubMed

    Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H

    2006-08-01

    Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen/non-allergen, especially using THP-1 cells. These results suggest that our method, human Cell Line Activation Test (h-CLAT), using human cell lines THP-1 and U-937, but especially THP-1 cells at 24h treatment, may be a useful in vitro skin sensitization model to predict various contact allergens.

  6. Differential Activation of Enkephalin, Galanin, Somatostatin, NPY, and VIP Neuropeptide Production by Stimulators of Protein Kinases A and C in Neuroendocrine Chromaffin Cells

    PubMed Central

    Hook, Vivian; Toneff, Thomas; Baylon, Sheley; Sei, Catherine

    2009-01-01

    Neuropeptides function as peptide neurotransmitters and hormones to mediate cell-cell communication. The goal of this study was to understand how different neuropeptides may be similarly or differentially regulated by protein kinase A (PKA) and protein kinase C (PKC) intracellular signaling mechanisms. Therefore, this study compared the differential effects of treating neuroendocrine chromaffin cells with stimulators of PKA and PKC on the production of the neuropeptides (Met)enkephalin, galanin, somatostatin, NPY, and VIP. Significantly, selective increases in production of these neuropeptides was observed by forskolin or PMA (phorbol myristate acetate) which stimulate PKA and PKC mechanisms, respectively. (Met)enkephalin production was stimulated by up to 2-fold by forskolin treatment, but not by PMA. In contrast, PMA treatment (but not forskolin) resulted in a 2-fold increase in production of galanin and somatostatin, and a 3-fold increase in NPY production. Notably, VIP production was highly stimulated by forskolin and PMA, with increases of 3-fold and 10–15-fold, respectively. Differences in elevated neuropeptides occurred in cell extracts compared to secretion media, which consisted of (i) increased NPY primarily in cell extracts, (ii) increased (Met)enkephalin and somatostatin in secretion media (not cell extracts), and (iii) increased galanin and VIP in both cell extracts and secretion media. Involvement of PKA or PKC for forskolin or PMA regulation of neuropeptide biosynthesis, respectively, was confirmed with direct inhibitors of PKA and PKC. The selective activation of neuropeptide production by forskolin and PMA demonstrates that PKA and PKC pathways are involved in the differential regulation of neuropeptide production. PMID:18619673

  7. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  8. Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages.

    PubMed

    Masoudian, M; Derakhshandeh, A; Ghahramani Seno, M M

    2015-01-01

    Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts' defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host's killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defining therapeutic approaches. Brucellosis, caused by the Brucella strains, is a zoonotic bacterial disease that affects thousands of humans and animals around the world inflicting discomfort and huge economic losses. Similar to many other intracellular dwelling bacteria, infections caused by Brucella are difficult to treat, and hence any attempt at identifying new and common therapeutic targets would prove beneficial for the purpose of curing infections caused by the intracellular bacteria. In THP-1 macrophage infected with Brucella melitensis we studied the expression levels of four host's genes, i.e. EMP2, ST8SIA4, HCP5 and FRMD5 known to be involved in pathogenesis of Mycobacterium tuberculosis. Our data showed that at this molecular level, except for FRMD5 that was downregulated, the other three genes were upregulated by B. melitensis. Brucella melitensis and M. tuberculosis go through similar intracellular processes and interestingly two of the investigated genes, i.e. EMP2 and ST4SIA8 were upregulated in THP-1 cell infected with B. melitensis similar to that reported for THP-1 cells infected with M. tuberculosis. At the host-pathogen interaction interface, this study depicts overlapping changes for different bacteria with common survival strategies; a fact that implies designing therapeutic approaches based on common targets may be possible.

  9. Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70

    PubMed Central

    Bases, Robert

    2005-01-01

    Pretreatment of human leukemia THP-1 cells with heat shock protein Hsp70 (Hsp70) protected them from the cell-lethal effects of the topoisomerase II inhibitor, lucanthone and from ionizing radiation. Cell viability was scored in clonogenic assays of single cells grown in liquid medium containing 0.5% methyl cellulose. Colonies were observed and rapidly scored after staining with the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. The frequency of abasic sites in the deoxyribonucleic acid (DNA) of THP-1 cells was reduced when these cells were treated with Hsp70. Hsp70 is presumed to have protected the cells by promoting repair of cell DNA, in agreement with previous studies that showed that Hsp70 enhanced base excision repair by purified enzymes. The shoulders of radiation dose-response curves were enhanced by pretreatment of cells with Hsp70 and, importantly, were reduced when cells were transfected with ribonucleic acid designed to silence Hsp70. Hsp70 influenced repair of sublethal damage after radiation. PMID:15832946

  10. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    PubMed

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these results suggest that VDAC1 plays a crucial role in ALA-SDT-induced THP-1 macrophages apoptosis, and targeting VDAC1 is a potential way regulating macrophages apoptosis, a finding that may be relevant to therapeutic strategies against atherosclerosis.

  11. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice.

    PubMed

    Gao, Shuang; Li, Wencai; Lin, Guochao; Liu, Guangrong; Deng, Wenjuan; Zhai, Chuntao; Bian, Chunliang; He, Gaiying; Hu, Zhenlin

    2016-10-01

    The nuclear factor of activated T-cells (NFAT) is a family of transcription factors, essential for T-cell activation. Norisoboldine (NOR), an isoquinoline alkaloid from Radix linderae, has been demonstrated to possess anti-inflammatory activity. This study examines NOR's effect on NFAT activation and its therapeutic potential for atopic dermatitis (AD). The transcriptional activity of NFAT was examined with luciferase reporter assay, using K562-luc cells, stimulated with 20 ng/mL PMA plus 1 μM ionomycin. NFAT dephosphorylation was examined by immuno-blotting in K562-luc cells and Jurkat cells. Interleukin-2 (IL-2) expression in Jurkat cells was examined by real-time PCR. A mouse model of dermatitis, induced by 2,4-dinitrochlorobenzene (DNCB), was used to test NOR's therapeutic potential for AD. NOR, dose-dependently, inhibited PMA and ionomycin-induced NFAT reporter gene expression in K562-luc cells in the range of 2-50 μM. NOR also inhibited PMA and ionomycin-induced NFAT dephosphorylation in K562-luc cells and Jurkat cells. Consequently, NOR suppressed PMA plus ionomycin-induced IL-2 expression in Jurkat cells. The administration of NOR (10 mg/kg, i.p.), alleviated DNCB-induced dermatitis in mice, by the reduction of ear swelling and attenuation of inflammatory infiltration into ear tissue. Moreover, mRNA levels of INF-γ, TNF-α, IL-4 and IL-6 in ears of NOR-treated mice were reduced by 78.4, 77.8, 72.3 and 73.9%, respectively, compared with untreated controls. This study demonstrates that NOR inhibits NFAT activation in T-cells and alleviates AD-like inflammatory reaction in a DNCB-induced dermatitis model, highlighting NOR as a potential therapeutic agent for AD.

  12. Expression of toll-like receptors 2 and 4 and CD14 during differentiation of HL-60 cells induced by phorbol 12-myristate 13-acetate and 1 alpha, 25-dihydroxy-vitamin D(3).

    PubMed

    Li, Changlin; Wang, Yibing; Gao, Li; Zhang, Jingsong; Shao, Jie; Wang, Shengnian; Feng, Weiguo; Wang, Xingyu; Li, Minglie; Chang, Zongliang

    2002-01-01

    Macrophages form a crucial bridge between the innate and adaptive immune response. One of their most important functions is to recognize infectious microorganisms. Toll-like receptors (TLRs) are key elements in pathogen recognition, and among them, TLR2 and TLR4 are most discussed. However, expression patterns of TLRs during myeloid cell differentiation to macrophage are unknown. In this study, we examined differentiation in the model human myeloid cell line, HL-60, treated with phorbol 12-myristate 13-acetate (PMA) or VitD(3). Expression of TLR2, TLR4, and CD14 were measured by reverse transcription-PCR, RNase protection assay, and fluorescence-activated cell sorter assays. After treatment by PMA (1, 10, and 100 nM) for 12, 24, and 48 h, expression of TLR2 and CD14 mRNA was increased in a time- and dose-dependent manner. However, VitD(3) only induced expression of CD14 but not TLR2 in HL-60 cells. TLR4 was expressed constitutively before differentiation and increased slightly after that. Thus, PMA-mediated differentiation of HL-60 cells to macrophages is associated largely with TLR2 expression and, to a much lesser extent, with TLR4. Furthermore, up-regulation of TLR2 and CD14 mRNA expression by PMA was abrogated by a protein kinase C inhibitor, Calphostine C, suggesting the up-regulation of TLR2 and CD14 mRNA is dependent on the activation of protein kinase C. Coexpression of CD14/TLR2 and/or CD14/TLR4 may be essential but not sufficient for the production of tumor necrosis factor-alpha in response to lipopolysaccharide in our system.

  13. Evaluation of the sensitizing potential of antibiotics in vitro using the human cell lines THP-1 and MUTZ-LC and primary monocyte‐derived dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Katrin, E-mail: ksebastian@ukaachen.de; Ott, Hagen; Zwadlo-Klarwasser, Gabriele

    Since the 7th amendment to the EU cosmetics directive foresees a complete ban on animal testing, alternative in vitro methods have been established to evaluate the sensitizing potential of small molecular weight compounds. To find out whether these novel in vitro assays are also capable to predict the sensitizing potential of small molecular weight drugs, model compounds such as beta-lactams and sulfonamides – which are the most frequent cause of adverse drug reactions – were co-incubated with THP-1, MUTZ-LC, or primary monocyte‐derived dendritic cells for 48 h and subsequent expression of selected marker genes (IL-8, IL-1β, CES1, NQO1, GCLM, PIRmore » and TRIM16) was studied by real time PCR. Benzylpenicillin and phenoxymethylpenicillin were recognized as sensitizing compounds because they are capable to induce the mRNA expression of these genes in moDCs and, except for IL-8, in THP-1 cells but not in MUTZ-LC. Ampicillin stimulated the expression of some marker genes in moDCs and THP-1 cells. SMX did not affect the expression of these genes in THP-1, however, in moDCs, at least PIR was enhanced and there was an increase of the release of IL-8. These data reveal that novel in vitro DC based assays might play a role in the evaluation of the allergenic potential of novel drug compounds, but these systems seem to lack the ability to detect the sensitizing potential of prohaptens that require metabolic activation prior to sensitization and moDCs seem to be superior with regard to the sensitivity compared with THP-1 and MUTZ-3 cell lines. -- Highlights: ► We tested the sensitizing potential of small molecular weight drugs in vitro. ► In vitro assays were performed with moDCs and THP-1 cells. ► Beta-lactam antibiotics can be recognized as sensitizing compounds. ► They affect the expression of metabolic enzymes, cytokines and transcription factors. ► Sulfamethoxazole has no measurable effect on THP-1 cells and moDCs.« less

  14. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index.

    PubMed

    Wang, Li; Chen, Wei-Zhong; Wu, Man-Ping

    2010-02-01

    The anti-inflammatory effects of high density lipoprotein (HDL) are well described, however, such effects of Apolipoprotein A-I (ApoA-I) are less studied. Building on our previous study, we further explored the mechanism of anti-inflammatory effects of ApoA-I, and focused especially on the interaction between monocyte and endothelial cells and plasma HDL inflammatory index in LPS-challenged rabbits. Our results show that ApoA-I significantly decreased LPS-induced MCP-1 release from THP-1 cells and ox-LDL-induced THP-1 migration ratio (P<0.01, respectively). ApoA-I significantly decreased sL-selectin, sICAM-1 and sVCAM-1 release (P<0.01, P<0.01, P<0.05, respectively) from LPS-stimulated THP-1 cells. Furthermore, ApoA-I significantly inhibited LPS-induced CD11b and VCAM-1 expression on THP-1 cells (P<0.01, P<0.05, respectively). ApoA-I diminished LPS-induced mCD14 expression (P<0.01) and NFkappaB nuclear translocation in THP-1 cells. After single dose treatment of ApoA-I, the value of plasma HDL inflammatory index in LPS-challenged rabbits was improved significantly (P<0.05). These results suggest that ApoA-I can inhibit chemotaxis, adhesion and activation of human monocytes and improve plasma HDL inflammatory index with presenting beneficial anti-inflammatory effects. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells.

    PubMed

    Lodge, Robert; Gilmore, Julian C; Ferreira Barbosa, Jérémy A; Lombard-Vadnais, Félix; Cohen, Éric A

    2017-12-30

    Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4 R ) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4 R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.

  16. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells

    PubMed Central

    Gilmore, Julian C.; Ferreira Barbosa, Jérémy A.; Lombard-Vadnais, Félix

    2017-01-01

    Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary. PMID:29301198

  17. Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia.

    PubMed

    Wu, Muzo; Gibbons, John G; DeLoid, Glen M; Bedugnis, Alice S; Thimmulappa, Rajesh K; Biswal, Shyam; Kobzik, Lester

    2017-07-01

    Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia. Copyright © 2017 the American Physiological Society.

  18. Serum amyloid A secretion from monocytic leukaemia cell line THP-1 and cultured human peripheral monocytes.

    PubMed

    Yamada, T; Wada, A; Itoh, K; Igari, J

    2000-07-01

    Serum amyloid A (SAA), an acute-phase protein and a precursor of fibrous components in reactive amyloid deposits, is synthesized mainly in the liver under the stimulation of inflammation-related cytokines. In addition, the SAA gene is expressed in monocytes/macrophages, which are believed to play a central role in amyloid fibrillogenesis. Consequently, the pathogenic implication of SAA produced from these cells has been of major concern. Because SAA synthesis at the protein level in such cells has never been analyzed quantitatively, in this study an enzyme-linked immunosorbent assay was generated with a detection level sufficiently high to measure SAA concentrations in the culture supernatants of the human monocytic leukaemia cell line THP-1. SAA secretion by THP-1 with interleukin (IL)-1beta required the presence of dexamethasone as proposed previously. We also found that unidentified components in fetal calf serum (FCS) could induce SAA production by THP-1 in the presence of dexamethasone. These findings are in contrast to the results obtained from hepatoma cell line HepG2, in which IL-1beta alone could induce SAA secretion, while dexamethasone-supplemented FCS could not. The method was able to quantify SAA secreted from cultured human peripheral monocytes. The findings suggest that monocytes produce SAA in almost the same manner as THP-1. Thus, THP-1 cells can be utilized to investigate a distinctive manner of SAA production from monocytes.

  19. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    PubMed Central

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  20. Mechanisms of protein kinase C signaling in the modulation of 3',5'-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells.

    PubMed

    Manna, Pulak R; Huhtaniemi, Ilpo T; Stocco, Douglas M

    2009-07-01

    The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in regulating the steroidogenic response in mouse gonadal cells.

  1. Optimization of PMA-qPCR for Staphylococcus aureus and determination of viable bacteria in indoor air.

    PubMed

    Chang, C-W; Lin, M-H

    2018-01-01

    Staphylococcus aureus may cause infections in humans from mild skin disorders to lethal pneumonia. Rapid and accurate monitoring of viable S. aureus is essential to characterize human exposure. This study evaluated quantitative PCR (qPCR) with propidium monoazide (PMA) to quantify S. aureus. The results showed comparable S. aureus counts between exclusively live cells and mixtures of live/dead cells by qPCR with 1.5 or 2.3 μg/mL PMA (P>.05), illustrating the ability of PMA-qPCR to detect DNA exclusively from viable cells. Moreover, qPCR with 1.5 or 2.3 μg/mL PMA performed optimally with linearity over 10 3 -10 8  CFU/mL (R 2 ≥0.9), whereas qPCR with 10, 23 or 46 μg/mL PMA significantly underestimated viable counts. Staphylococcus aureus and total viable bacteria were further determined with PMA-qPCR (1.5 μg/mL) from 48 samples from a public library and two university dormitories and four from outside. Viable bacteria averaged 1.9×10 4 cells/m 3 , and S. aureus were detected in 22 (42%) samples with a mean of 4.4×10 3 cells/m 3 . The number of S. aureus and viable bacteria were positively correlated (r=.61, P<.005), and percentages of S. aureus relative to viable bacteria averaged 12-44%. The results of field samples suggest that PMA-qPCR can be used to quantify viable S. aureus cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. CD20+ T cell numbers are decreased in untreated HIV-1 patients and recover after HAART.

    PubMed

    Förster, Friederike; Singla, Anuj; Arora, Sunil K; Schmidt, Reinhold E; Jacobs, Roland

    2012-08-30

    To elucidate if CD20(+) T cells are affected by HIV-1 infection and may have a prognostic value for the course of disease, numbers of CD20(+) T cells were determined in healthy controls, untreated and HAART-treated HIV-1 patients. Coexpression patterns of CD4, CD8, and CD38 were analysed on CD3(+)CD20(+) and CD3(+)CD20(-) T cells. We found a significant decrease of CD20(+) T cell numbers in untreated HIV-1 patients (1.4%) as compared to healthy controls (2.5%) which recovered under HAART (1.9%). Particularly, the CD8(+) T cell compartment was affected revealing significant differences between healthy controls (3.4%) and both treated (1.7%) and untreated (1.1%) patients. CD38 was expressed on a few CD20(+) T cells but preferentially on CD20(-) cells in all three groups. IFN-γ production was measured upon cell activation using PMA alone or in combination with ionomycin in order to assess functional capacities of the cells. PMA alone was much more effective in CD20(+) cells regardless of CD38 coexpression, indicating a supportive role of CD20 but not CD38 in T cell activation. Here we present data showing that CD3(+)CD20(+) T cells are decreased in untreated HIV-1 patients and normal numbers are restored under HAART. Expression of CD20 and CD38 is independently regulated on T cells. Contrary to CD38, CD20 can substitute ionophores for Ca(2+) flux in early T cell activation and also strongly amplify cell stimulation in the presence of Ca(2+) ionophores, indicating that CD20 contributes to T cell activation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. ROCK mediates phorbol ester-induced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK.

    PubMed

    Xiao, Liqing; Eto, Masumi; Kazanietz, Marcelo G

    2009-10-23

    It is established that androgen-dependent prostate cancer cells undergo apoptosis upon treatment with phorbol esters and related analogs, an effect primarily mediated by PKCdelta. Treatment of LNCaP prostate cancer cells with phorbol 12-myristate 13-acetate (PMA) causes a strong and sustained activation of RhoA and its downstream effector ROCK (Rho kinase) as well as the formation of stress fibers. These effects are impaired in cells subjected to PKCdelta RNA interference depletion. Functional studies revealed that expression of a dominant negative RhoA mutant or treatment with the ROCK inhibitor Y-27632 inhibits the apoptotic effect of PMA in LNCaP cells. Remarkably, the cytoskeleton inhibitors cytochalasin B and blebbistatin blocked not only PMA-induced apoptosis but also the activation of JNK, a mediator of the cell death effect by the phorbol ester. In addition, we found that up-regulation of the cell cycle inhibitor p21(Cip1) is required for PMA-induced apoptosis and that inhibitors of ROCK or the cytoskeleton organization prevent p21(Cip1) induction. Real time PCR analysis and reporter gene assay revealed that PMA induces p21(Cip1) transcriptionally in a ROCK- and cytoskeleton-dependent manner. p21(Cip1) promoter analysis revealed that PMA induction is dependent on Sp1 elements in the p21(Cip1) promoter but independent of p53. Taken together, our studies implicate ROCK-mediated up-regulation of p21(Cip1) and the cytoskeleton in PKCdelta-dependent apoptosis in prostate cancer cells.

  4. Resveratrol increases phagocytosis and lipopolysaccharide-induced interleukin-1β production, but decreases surface expression of Toll-like receptor 2 in THP-1 monocytes.

    PubMed

    Zunino, Susan J; Hwang, Daniel H; Huang, Shurong; Storms, David H

    2018-02-01

    THP-1 monocytes were used to evaluate the effects of physiological levels of resveratrol aglycone, resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate on phagocytosis, IL-1β, IL-1α, and IL-18 production, viability, and TLR2 and TLR4 expression. THP-1 cells were treated with 1, 5, 10, and 15μM resveratrol or metabolites. Resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate had no effect on the functional parameters tested. Resveratrol aglycone increased phagocytosis at concentrations of 5, 10, and 15μM and LPS-induced IL-1β production at concentrations of 10 and 15μM. Expression of TLR4 increased slightly after resveratrol treatment, but surface expression of TLR2 was reduced as resveratrol concentrations increased. Our data suggest that resveratrol may be effective in modulating monocyte function in an environment where there is direct exposure to the aglycone, such as at the gut epithelium. Published by Elsevier Ltd.

  5. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  6. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane.

    PubMed

    Ayala-Torres, Carlos; Novoa-Aponte, Lorena; Soto, Carlos Y

    2015-07-01

    Mycobacterium smegmatis Pma1 is the orthologue of M. tuberculosis P-type ATPase cation transporter CtpF, which is activated under stress conditions, such as hypoxia, starvation and response to antituberculous and toxic substances. The function of Pma1 in the mycobacterial processes across the plasma membrane has not been characterised. In this work, bioinformatic analyses revealed that Pma1 likely contains potential sites for, Na(+), K(+) and Ca(2+) binding and transport. Accordingly, RT-qPCR experiments showed that M. smegmatis pma1 transcription is stimulated by sub-lethal doses of Na(+), K(+) and Ca(2+); in addition, the ATPase activity of plasma membrane vesicles in recombinant Pma1-expressing M. smegmatis cells is stimulated by treatment with these cations. In contrast, M. smegmatis cells homologously expressing Pma1 displayed tolerance to high doses of Na(+) and K(+) but not to Ca(2+) ions. Consistently, the recombinant protein Km embedded in plasma membrane demonstrated that Ca(2+) has more affinity for Pma1 than Na(+) and K(+) ions; furthermore, the estimation of Vmax/Km suggests that Na(+) and K(+) ions are more efficiently translocated than Ca(2+). Thus, these results strongly suggest that Pma1 is a promiscuous alkali/alkaline earth cation ATPase that preferentially transports Na(+) and/or K(+) across the mycobacterial plasma membrane. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    PubMed

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  8. Lipopolysaccharide and Lipoteichoic Acid Virulence Deactivation by Stannous Fluoride.

    PubMed

    Haught, Chris; Xie, Sancai; Circello, Ben; Tansky, Cheryl S; Khambe, Deepa; Klukowska, Malgorzata; Huggins, Tom; White, Donald J

    2016-09-01

    Oral bacterial pathogens promote gingivitis and periodontal disease. Bacterial endotoxins, also known as lipopolysaccharides (LPSs) and lipoteichoic acids (LTAs), are known to enhance bacterial pathogenicity through binding with Toll-like receptors (TLRs), a group of pattern recognition receptors critical to the activation of innate immunity, that are expressed on host cells. Both LPS and LTA contain lipophilic domains and anionic charges that may be susceptible to reactivity with stannous fluoride, a commonly used ingredient clinically proven for the treatment and prevention of gingivitis. This study examined the effects of stannous fluoride on Toll-like receptor activation in response to bacterially derived LPS and LTA in select cell lines and secretion of inflammatory cytokines from human primary peripheral monocytes likewise exposed to LPS. TLR4 and TLR2 transfected HEK293 cells and THP1-Dual™ cells were exposed to bacterial LPS and LTA in the presence of increasing concentrations of stannous fluoride. Gene expression was assessed by measurement of secreted embryonic alkaline phosphatase (SEAP) reporter gene for HEK293 cells and SEAP and luciferase for THP-1 cells. Cell viability was confirmed using PrestoBlue. Human primary monocytes were treated with LPS with various concentrations of supplemented stannous fluoride, and cytokine expression was directly measured. Stannous fluoride inhibited gene expression response of TLR4 and TLR2 in HEK293 cells and THP1-Dual™ cells in a dose response fashion, producing complete inhibition at micromolar concentrations. The addition of stannous fluoride suppressed production of TNF-a, IFN-g, IL12p70, IL10, IL-1b, IL2, and IL-6, and also increased secretion of Il-8 in dose response fashion. Viability assays confirmed no effects of LPS or stannous fluoride on viability of HEK293, THP-1, and primary human monocytes. These results support the potential for stannous fluoride to provide clinical gingivitis benefits by directly decreasing the pathogenicity of plaque biofilms by blocking reactivity of LPS and LTA ligands with tissue receptors associated with inflammation. These learnings may influence recommendations for patients at risk for plaque-related diseases.

  9. [Effect of P38MAPK signal transduction pathway on apoptosis of THP-1 induced by allicin].

    PubMed

    Liao, Yang; Chen, Jianbin; Tang, Weixue; Ge, Qunfang; Lu, Qianwei; Yang, Zesong

    2009-06-01

    The objective of this paper was to study the change of P38MAPK and Fas in the apoptosis of THP-1 cells induced by allicin. The proliferation inhibition rates of THP-1 cells after various treatments were examined by MTT assay. Apoptosis rate was determined with Annexin V- FITC/PI double staining by flow cytometry. The expression and distribution change of the phosphorylation p38MAPK (P-p38MAPK) were detected by immunohistochemical staining. The changes of P-p38 MAPK and Fas proteins were detected by Western blot. The proliferations of leukemia cell line THP-1 are inhibited by allicin. MTT assay showed that allicin can inhibit the proliferation of the THP-1 cell, and the inhibition was dependent on both dose and time. The IC50 of 72 hours was 12.8 mg x L(-1). Apoptosis rate detected by Annexin V-FITC/PI was proportional to the concentration of the allicin. After the immunohistochemical staining test, the P-p38MAPK was located in the cell nucleus and plasma, showing deep brown, when adding allicin to THP-1 cell. Western blot test showed that the P-p38MAPK proteins expression was proportional to the concentration of Allicin and was also dose dependent. The levels of P-p38MAPK in negative control group, 1/2 IC50 of 72 hours group and IC50 of 72 hours group were 0.259 8 +/- 0.013 2, 0.61 2 +/- 0.008 3 and 0.505 6 +/- 0.005 5 respectively, and the levels of Fas proteins were 0.287 4 +/- 0.008 9, 0.426 8 +/- 0.007 9 and 0.597 1 +/- 0.010 9 respectively. The difference was statistically significant when compared with the negative control group (P < 0.01). Allicin can significantly induce THP-1 cells apoptosis, and its mechanism may be related to the activation of P38MAPK/Fas.

  10. Induction of functional Fc receptors in P388 leukemia cells. Requirement for multiple differentiation signals.

    PubMed

    Cohen, D A; Stotelmyer, N L; Kaplan, A M

    1985-04-01

    The development of functional Fc receptors (FcR) during induced differentiation with the tumor promoter, phorbol myristate acetate (PMA), was studied in the murine tumor cell line, P388. PMA induced the appearance of FcR on the membranes of P388 cells as indicated by the binding of IgG-coated sheep red blood cells (IgG-SRBC). Concentrations of PMA as low as 1 ng/ml were sufficient to induce the expression of FcR as well as to inhibit cellular division and to induce adherence in the P388 tumor cell line; however, optimal FcR induction occurred at PMA concentrations of 10-100 ng/ml. Immunofluorescent analysis with heat-aggregated myeloma proteins indicated that PMA induced FcR which were capable of binding IgG2a and IgG2b immunoglobulins, but not IgG1. Adherence to a substratum was determined to be a second required signal for expression of FcR, since PMA induction of P388 tumor cells in teflon dishes failed to fully develop FcR and adherence of P388 cells to poly-L-lysine-coated culture dishes in the absence of PMA was insufficient for FcR expression. FcR which appeared after PMA induction were non-functional in the sense that membrane-bound IgG-SRBC were not ingested to any significant extent by the tumor cells. However, if FcR induction occurred in the presence conA-induced rat spleen cell culture supernatants, phagocytosis of membrane-bound erythrocytes occurred. These findings suggest that for the expression of FcR which are capable of particle internalization, at least three identifiable membrane-transmitted signals are required during differentiation.

  11. miR-758-5p regulates cholesterol uptake via targeting the CD36 3'UTR.

    PubMed

    Li, Bi-Rong; Xia, Lin-Qin; Liu, Jing; Liao, Lin-Ling; Zhang, Yang; Deng, Min; Zhong, Hui-Juan; Feng, Ting-Ting; He, Ping-Ping; Ouyang, Xin-Ping

    2017-12-09

    miR-758-3p plays an important role via regulting ABCA1-mediated cholesterol efflux in atherosclerosis. However, the mechanism of miR-758-5p in cholesterol metabolism is still unclear. Here, we revealed that miR-758-5p decreased total cholesterol accumulation in THP-1 macrophage derived foam cells through markedly reducing cholesterol uptake, and no effect on the cholesterol efflux. Interestingly, computational analysis suggests that CD36 may be a target gene of miR-758-5p. Our study further demonstrated that miR-758-5p decreased CD36 expression at both protein and mRNA levels via targeting the CD36 3'UTR in THP-1 macrophage derived foam cells. The present present study concluded that miR-758-5p decreases lipid accumulation of foam cell via regulating CD36-mediated the cholesterol uptake. Therefore, targeting miR-758-5p may offer a promising strategy to treat atherosclerotic vascular disease. Copyright © 2017. Published by Elsevier Inc.

  12. A herbal formula comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits the production of inflammatory mediators and the IRAK-1/TAK1 and TBK1/IRF3 pathways in RAW 264.7 and THP-1 cells.

    PubMed

    Cheng, Brian Chi Yan; Yu, Hua; Su, Tao; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Cao, Hui-Hui; Tse, Anfernee Kai-Wing; Kwan, Hiu-Yee; Yu, Zhi-Ling

    2015-11-04

    As documented in the Chinese Materia Medica Grand Dictionary (), a herbal formula (RL) consisting of Rosae Multiflorae Fructus (multiflora rose hips) and Lonicerae Japonicae Flos (Japanese honeysuckle flowers) has traditionally been used in treating inflammatory disorders. RL was previously reported to inhibit the expression of various inflammatory mediators regulated by NF-κB and MAPKs that are components of the TLR4 signalling pathways. This study aims to provide further justification for clinical application of RL in treating inflammatory disorders by further delineating the involvement of the TLR4 signalling cascades in the effects of RL on inflammatory mediators. RL consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos (in 5:3 ratio) was extracted using absolute ethanol. We investigated the effect of RL on the production of cytokines and chemokines that are regulated by three key transcription factors of the TLR4 signalling pathways AP-1, NF-κB and IRF3 in LPS-stimulated RAW264.7 cells using the multiplex biometric immunoassay. Phosphorylation of AP-1, NF-κB, IRF3, IκB-α, IKKα/β, Akt, TAK1, TBK1, IRAK-1 and IRAK-4 were examined in LPS-stimulated RAW264.7 cells and THP-1 cells using Western blotting. Nuclear localizations of AP-1, NF-κB and IRF3 were also examined using Western blotting. RL reduced the secretion of various pro-inflammatory cytokines and chemokines regulated by transcription factors AP-1, NF-κB and IRF3. Phosphorylation and nuclear protein levels of these transcription factors were decreased by RL treatment. Moreover, RL inhibited the activation/phosphorylation of IκB-α, IKKα/β, TAK1, TBK1 and IRAK-1. Suppression of the IRAK-1/TAK1 and TBK1/IRF3 signalling pathways was associated with the effect of RL on inflammatory mediators in LPS-stimulated RAW264.7 and THP-1 cells. This provides further pharmacological basis for the clinical application of RL in the treatment of inflammatory disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. S-adenosylmethionine lowers the inflammatory response in macrophages associated with changes in DNA methylation

    USDA-ARS?s Scientific Manuscript database

    S-adenosylmethionine (SAM), the unique methyl donor in DNA methylation, has been shown to lower inflammation. We assessed whether epigenetic mechanisms mediate this effect. Human THP-1 cells were differentiated into macrophages and treated with 0 micromole/L, 500 micromole/L or 1000 micromole/L SAM ...

  14. ST2 suppresses IL-6 production via the inhibition of I{kappa}B degradation induced by the LPS signal in THP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takezako, Naoki; Hayakawa, Morisada; Hayakawa, Hiroko

    2006-03-10

    LPS induces the production of inflammatory cytokines via the stimulation of Toll-like receptors. In this study, we demonstrated that a soluble secreted form of the ST2 gene product (ST2), a member of the interleukin-1 receptor family, suppressed the production of IL-6 in an LPS-stimulated human monocytic leukemia cell line, THP-1. Immunofluorescence confocal microscopy revealed the binding of ST2 to the surface of the THP-1 cells, in which ST2 led to decreased binding of nuclear factor-{kappa}B to the IL-6 promoter. Furthermore, the degradation of I{kappa}B in the cytoplasm after LPS stimulation was reduced by pretreatment with ST2. These results demonstrated thatmore » ST2 negatively regulates LPS-induced IL-6 production via the inhibition of I{kappa}B degradation in THP-1 cells.« less

  15. Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation.

    PubMed

    Suganuma, Kazuto; Miwa, Hiroshi; Imai, Norikazu; Shikami, Masato; Gotou, Mayuko; Goto, Mineaki; Mizuno, Shohei; Takahashi, Miyuki; Yamamoto, Hidesuke; Hiramatsu, Akihito; Wakabayashi, Motohiro; Watarai, Masaya; Hanamura, Ichiro; Imamura, Akira; Mihara, Hidetsugu; Nitta, Masakazu

    2010-11-01

    For generation of energy, cancer cells utilize glycolysis more vigorously than oxidative phosphorylation in mitochondria (Warburg effect). We examined the energy metabolism of four leukemia cell lines by using glycolysis inhibitor, 2-deoxy-d-glucose (2-DG) and inhibitor of oxidative phosphorylation, oligomycin. NB4 was relatively sensitive to 2-DG (IC(50): 5.75 mM), consumed more glucose and produced more lactate (waste product of glycolysis) than the three other cell lines. Consequently, NB4 was considered as a "glycolytic" leukemia cell line. Dependency on glycolysis in NB4 was confirmed by the fact that glucose (+) FCS (-) medium showed more growth and survival than glucose (-) FCS (+) medium. Alternatively, THP-1, most resistant to 2-DG (IC(50): 16.14 mM), was most sensitive to oligomycin. Thus, THP-1 was recognized to be dependent on oxidative phosphorylation. In THP-1, glucose (-) FCS (+) medium showed more growth and survival than glucose (+) FCS (-) medium. The dependency of THP-1 on FCS was explained, at least partly, by fatty acid oxidation because inhibitor of fatty acid β-oxidation, etomoxir, augmented the growth suppression of THP-1 by 2-DG. We also examined the mechanisms by which THP-1 was resistant to, and NB4 was sensitive to 2-DG treatment. In THP-1, AMP kinase (AMPK), which is activated when ATP becomes limiting, was rapidly phosphorylated by 2-DG, and expression of Bcl-2 was augmented, which might result in resistance to 2-DG. On the other hand, AMPK phosphorylation and augmentation of Bcl-2 expression by 2-DG were not observed in NB4, which is 2-DG sensitive. These results will facilitate the future leukemia therapy targeting metabolic pathways.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Wu, Jian-Feng; Tang, Yan-Yan

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated withmore » U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.« less

  17. Effect of PGE2 on the cell surface molecule expression in PMA treated thymocytes.

    PubMed

    Daculsi, R; Vaillier, D; Carron, J C; Gualde, N

    1998-02-01

    PGE2 is produced by cells of the thymic microenvironment. The effects of PGE2 are mediated by cAMP through binding to its intracellular receptor protein kinase A (PKA). Phorbol 12-myristate 13-acetate (PMA) is known to modulate CD molecule expression on thymocytes, probably through activation of protein kinase C (PKC). We have hypothesized that cross-talk between these two signalling pathways may affect modulation of the CD molecules on the cell surface of thymocytes. For this purpose, we compare the effects of PMA alone or combined with PGE2 on CD3, CD4 and CD8 expression on mouse thymocytes by flow-cytometric analysis. PMA treatment almost completely abolished CD4 expression and slightly decreased CD3 and CD8 expression. PGE2 alone did not change the CD3, CD4 and CD8 molecule expression. Combined with PMA, PGE2 can overcome the decrease induced by PMA of the CD3 expression and partially reduced the disappearance of the CD4 molecule. On the other hand PGE2 accelerated the loss of CD8 molecule expression. These events occurred only in CD4+ CD8+ immature thymocytes. An analogue of cAMP (dibutyryl cAMP) mimics the effect of PGE2, but not Br-cGMP. This differential regulation by PGE2 of the CD molecule expression on immature thymocytes may provide additional evidence on the role of PGE2 during the process of thymic differentiation.

  18. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis.

    PubMed

    Madrigal-Matute, Julio; Lindholt, Jes Sandal; Fernandez-Garcia, Carlos Ernesto; Benito-Martin, Alberto; Burillo, Elena; Zalba, Guillermo; Beloqui, Oscar; Llamas-Granda, Patricia; Ortiz, Alberto; Egido, Jesus; Blanco-Colio, Luis Miguel; Martin-Ventura, Jose Luis

    2014-08-05

    Galectin-3 (Gal-3) participates in different mechanisms involved in atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Thus, there have been committed intensive efforts to elucidate the function of Gal-3 in cardiovascular (CV) diseases. The role of Gal-3 as a circulating biomarker has been demonstrated in patients with heart failure, but its importance as a biomarker in atherothrombosis is still unknown. Because Gal-3 is involved in monocyte-to-macrophage transition, we used fresh isolated monocytes and the in vitro model of macrophage differentiation of THP-1 cells stimulated with phorbol myristate acetate (PMA). Gal-3 release is increased by PMA in human monocytes and macrophages, a process involving exosomes and regulated by reactive oxygen species/NADPH oxidase activity. In asymptomatic subjects (n=199), Gal-3 plasma levels are correlated with NADPH oxidase activity in peripheral blood mononuclear cells (r=0.476; P<0.001) and carotid intima-media thickness (r=0.438; P<0.001), a surrogate marker of atherosclerosis. Accordingly, Gal-3 plasma concentrations are increased in patients with carotid atherosclerosis (n=158), compared to control subjects (n=115; 14.3 [10.7 to 16.9] vs. 10.4 [8.6 to 12.5] ng/mL; P<0.001). Finally, on a 5-year follow-up study in patients with peripheral artery disease, Gal-3 concentrations are significantly and independently associated with an increased risk for CV mortality (hazard ratio=2.24, 95% confidence interval: 1.06 to 4.73, P<0.05). Gal-3 extracellular levels could reflect key underlying mechanisms involved in atherosclerosis etiology, development, and plaque rupture, such as inflammation, infiltration of circulating cells and oxidative stress. Moreover, circulating Gal-3 concentrations are associated with clinical outcomes in patients with atherothrombosis. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line.

    PubMed

    Gonnella, Roberta; Santarelli, Roberta; Farina, Antonella; Granato, Marisa; D'Orazi, Gabriella; Faggioni, Alberto; Cirone, Mara

    2013-10-23

    Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates multiple cellular processes such as cell proliferation, evasion from apoptosis, migration, glucose metabolism, protein synthesis and proper differentiation in immune cells. Kaposi sarcoma-associated herpesvirus (KSHV), an oncogenic virus associated with several human malignancies, expresses a variety of latent and lytic proteins able to activate PI3K/AKT pathway, promoting the growth of infected cells and a successful viral infection. We found that KSHV latent infection of THP-1 cells, a human monocytic cell line derived from an acute monocytic leukemia patient, resulted in an increase of AKT phoshorylation, not susceptible to bortezomib-induced dephosphorylation, compared to the mock-infected THP-1. Accordingly, THP-1-infected cells displayed increased resistance to the bortezomib cytotoxic effect in comparison to the uninfected cells, which was counteracted by pre-treatment with AKT-specific inhibitors. Finally, AKT hyperactivation by KSHV infection correlated with plasma membrane exposure of glucose transporter GLUT1, particularly evident during bortezomib treatment. GLUT1 membrane trafficking is a characteristic of malignant cells and underlies a change of glucose metabolism that ensures the survival to highly proliferating cells and render these cells highly dependent on glycolysis. GLUT1 membrane trafficking in KSHV-infected THP-1 cells indeed led to increased sensitivity to cell death induced by the glycolysis inhibitor 2-Deoxy-D-glucose (2DG), further potentiated by its combination with bortezomib. KSHV confers to the THP-1 infected cells an oncogenic potential by altering the phosphorylation, expression and localization of key molecules that control cell survival and metabolism such as AKT and GLUT1. Such modifications in one hand lead to resistance to cell death induced by some chemotherapeutic drugs such as bortezomib, but on the other hand, offer an Achilles heel, rendering the infected cells more sensitive to other treatments such as AKT or glycolysis inhibitors. These therapeutic strategies can be exploited in the anticancer therapy of KSHV-associated malignancies.

  20. Both Leukotoxin and Poly-N-Acetylglucosamine Surface Polysaccharide Protect Aggregatibacter actinomycetemcomitans Cells from Macrophage Killing

    PubMed Central

    Venketaraman, Vishwanath; Lin, Albert K.; Le, Amy; Kachlany, Scott C.; Connell, Nancy D.; Kaplan, Jeffrey B.

    2008-01-01

    Two virulence factors produced by the periodontopathogen Aggregatibacter actinomycetemcomitans are leukotoxin, a secreted lipoprotein that kills human polymorphonuclear leukocytes and macrophages, and poly-N-acetylglucosamine (PGA), a surface polysaccharide that mediates intercellular adhesion, biofilm formation and detergent resistance. In this study we examined the roles of leukotoxin and PGA in protecting A. actinomycetemcomitans cells from killing by the human macrophage cell line THP-1. Monolayers of THP-1 cells were infected with single-cell suspensions of a wild-type A. actinomycetemcomitans strain, or of isogenic leukotoxin or PGA mutant strains. After 48 h, viable bacteria were enumerated by dilution plating, macrophage morphology was evaluated microscopically, and macrophage viability was measured by a Trypan blue dye exclusion assay. The number of A. actinomycetemcomitans CFUs increased approximately 2-fold in wells infected with the wild-type strain, but decreased by approximately 70–90% in wells infected with the leukotoxin and PGA mutant strains. Infection with the wild-type or leukotoxin mutant strain caused a significant decrease in THP-1 cell viability, whereas infection with the PGA mutant strain did not result in any detectable changes in THP-1 viability. Pre-treatment of wild-type A. actinomycetemcomitans cells with the PGA-hydrolyzing enzyme dispersin B rendered them sensitive to killing by THP-1 cells. We concluded that both leukotoxin and PGA are necessary for evasion of macrophage killing by A. actinomycetemcomitans. PMID:18573331

  1. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Hui; Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing; Wang, Huihui

    2016-02-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As{sub 2}O{sub 3}), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide,more » that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As{sub 2}O{sub 3}-challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As{sub 2}O{sub 3}-induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As{sub 2}O{sub 3}-induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As{sub 2}O{sub 3} in AML cells. • Sensitization of THP-1 cells to As{sub 2}O{sub 3} toxicity by ethionamide is NRF2-dependent.« less

  2. The Role of AIRE in the Immunity Against Candida Albicans in a Model of Human Macrophages.

    PubMed

    de Albuquerque, Jose Antonio Tavares; Banerjee, Pinaki Prosad; Castoldi, Angela; Ma, Royce; Zurro, Nuria Bengala; Ynoue, Leandro Hideki; Arslanian, Christina; Barbosa-Carvalho, Marina Uchoa Wall; Correia-Deur, Joya Emilie de Menezes; Weiler, Fernanda Guimarães; Dias-da-Silva, Magnus Regios; Lazaretti-Castro, Marise; Pedroza, Luis Alberto; Câmara, Niels Olsen Saraiva; Mace, Emily; Orange, Jordan Scott; Condino-Neto, Antonio

    2018-01-01

    Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene ( AIRE ). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans .

  3. Novel Role for p21-activated Kinase 2 in Thrombin-induced Monocyte Migration*

    PubMed Central

    Gadepalli, Ravisekhar; Kotla, Sivareddy; Heckle, Mark R.; Verma, Shailendra K.; Singh, Nikhlesh K.; Rao, Gadiparthi N.

    2013-01-01

    To understand the role of thrombin in inflammation, we tested its effects on migration of THP-1 cells, a human monocytic cell line. Thrombin induced THP-1 cell migration in a dose-dependent manner. Thrombin induced tyrosine phosphorylation of Pyk2, Gab1, and p115 RhoGEF, leading to Rac1- and RhoA-dependent Pak2 activation. Downstream to Pyk2, Gab1 formed a complex with p115 RhoGEF involving their pleckstrin homology domains. Furthermore, inhibition or depletion of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, or Pak2 levels substantially attenuated thrombin-induced THP-1 cell F-actin cytoskeletal remodeling and migration. Inhibition or depletion of PAR1 also blocked thrombin-induced activation of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2, resulting in diminished THP-1 cell F-actin cytoskeletal remodeling and migration. Similarly, depletion of Gα12 negated thrombin-induced Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2 activation, leading to attenuation of THP-1 cell F-actin cytoskeletal remodeling and migration. These novel observations reveal that thrombin induces monocyte/macrophage migration via PAR1-Gα12-dependent Pyk2-mediated Gab1 and p115 RhoGEF interactions, leading to Rac1- and RhoA-targeted Pak2 activation. Thus, these findings provide mechanistic evidence for the role of thrombin and its receptor PAR1 in inflammation. PMID:24025335

  4. Phorbol ester phorbol-12-myristate-13-acetate promotes anchorage-independent growth and survival of melanomas through MEK-independent activation of ERK1/2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Kjersti; Skrede, Martina; Cruciani, Veronique

    2005-04-01

    The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotidesmore » against PKC-{alpha}, or the PKC inhibitor Goe6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.« less

  5. AGEs and HMGB1 Increase Inflammatory Cytokine Production from Human Placental Cells, Resulting in an Enhancement of Monocyte Migration.

    PubMed

    Shirasuna, Koumei; Seno, Kotomi; Ohtsu, Ayaka; Shiratsuki, Shogo; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Nagayama, Shiho; Iwata, Hisataka; Kuwayama, Takehito

    2016-05-01

    Advanced glycation end products (AGEs) and high-mobility group box-1 (HMGB1) are considered contributing to placental inflammation. We examined the effect of AGEs and HMGB1 on cytokines from Sw.71 human trophoblast cell lines and the interactions between Sw.71 cells and THP-1-monocytes. Sw.71 cells were cultured with/without AGEs or HMGB1. We examined the role of AGEs or HMGB1 on THP1 migration and effect of AGEs on IL-6 from Sw.71 cells using co-cultures or conditioned medium from THP-1 cells. AGEs and HMGB1 increased interleukin (IL)-6, IL-8, and chemokine C-C motif ligand 2 (CCL2) secretion from Sw.71 cells. The secretion of IL-6 was dependent on reactive oxygen species (ROS) and NF-κB. AGEs stimulated IL-6 secretion through receptor RAGE and TLR4, whereas HMGB1 stimulated it through TLR4. AGEs, but not HMGB1, increased monocyte migration via IL-8 and CCL2 from Sw.71 cells. THP-1 monocytes induced IL-6 secretion from Sw.71 cells, and AGEs further stimulated it. AGEs and HMGB1 may promote sterile placental inflammation cooperating with monocytes/macrophages. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream.

    PubMed

    Panonnummal, Rajitha; Jayakumar, R; Sabitha, M

    2017-01-01

    In the present study chitin nanogel loaded with anti-psoriatic drug clobetasol was developed (CLCNG) for its topical delivery in psoriasis. CLCNG had the particle size of 132±14nm, with gel like consistency, stability in refrigerator, having higher drug release properties at acidic pH. CLCNG exhibited significant toxicity towards HaCaT and THP-1cell lines by MTT assay. The uptake of nanogel by HaCaT cell lines was confirmed by fluorescent microscopy. CLCNG at 0.35mg/ml exhibited significant anti-inflammatory activity with an average of 65% and 70% inhibition in COX and LOX activities expressed in THP-1 cells. In vitro skin permeation studies revealed the increased transdermal flux with fragmented stratum corneum and loosened epidermal layers in CLCNG treated samples, compared with control drug solution. The in vivo anti-psoriatic studies done on imiquimod model confirmed the potential benefits of the nanogel for the topical delivery of clobetasol in psoriasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    PubMed

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  8. Differential regulation of cyclo-oxygenase-2 and 5-lipoxygenase-activating protein (FLAP) expression by glucocorticoids in monocytic cells.

    PubMed

    Goppelt-Struebe, M; Schaefer, D; Habenicht, A J

    1997-10-01

    1. The objective of the present study was to determine the effects of dexamethasone on key constituents of prostaglandin and leukotriene biosynthesis, cyclo-oxygenase-2 (COX-2) and 5-lipoxygenase activating protein (FLAP). The human monocytic cell line THP-1 was used as a model system. mRNA and protein levels of COX-2 and FLAP were determined by Northern and Western blot analyses, respectively. 2. Low levels of COX-2 and FLAP mRNA were expressed in undifferentiated THP-1 cells, but were induced upon differentiation of the cells along the monocytic pathway by treatment with phorbol ester (TPA, 5 nM). Maximal expression was observed after two days. 3. Coincubation of the undifferentiated cells with dexamethasone (10(-9) - 10(-6) M) and phorbol ester prevented induction of COX-2 mRNA, but did not affect the induction of FLAP mRNA. 4. Dexamethasone downregulated COX-2 mRNA and protein in differentiated, monocyte-like THP-1 cells. In contrast, FLAP mRNA and protein were upregulated by dexamethasone in differentiated THP-1 cells. After 24 h, FLAP mRNA levels were increased more than 2 fold. Dexamethasone did not change 5-lipoxygenase mRNA expression. 5. Release of prostaglandin E2 (PGE2) and peptidoleukotrienes was determined in cell culture supernatants of differentiated THP-1 cells by ELISA. Calcium ionophore-dependent PGE2 synthesis was associated with COX-2 expression, whereas COX-1 and COX-2 seemed to participate in arachidonic acid-dependent PGE2 synthesis. Very low levels of peptidoleukotrienes were released from differentiated THP-1 cells upon incubation with ionophore. Treatment with dexamethasone did not significantly affect leukotriene release. 6. These data provide evidence that prostaglandin synthesis is consistently downregulated by glucocorticoids. However, the glucocorticoid-mediated induction of FLAP may provide a mechanism to maintain leukotriene biosynthesis through more efficient transfer of arachidonic acid to the 5-lipoxygenase reaction, in spite of inhibitory effects on other enzymes of the biosynthetic pathway.

  9. Cell Activation Mediated by Glycosylphosphatidylinositol-Anchored or Transmembrane Forms of CD14†

    PubMed Central

    Pugin, J.; Kravchenko, V. V.; Lee, J.-D.; Kline, L.; Ulevitch, R. J.; Tobias, P. S.

    1998-01-01

    CD14 is a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein which functions as a receptor on myeloid cells for ligands derived from microbial pathogens such as lipopolysaccharide (LPS). We have studied the importance of the GPI tail of CD14 in signalling with the promonocytic cell line THP-1 expressing recombinant CD14 in a GPI-anchored form (THP1-wtCD14 cells) or in a transmembrane form (THP1-tmCD14). We found that, like other GPI-anchored molecules, GPI-anchored CD14 was recovered mainly from a Triton X-100-insoluble fraction, whereas transmembrane CD14 was fully soluble in Triton X-100. LPS induced cell activation of THP1-wtCD14 and of THP1-tmCD14 (protein tyrosine kinase phosphorylation, NF-κB activation, and cytokine production) in a very similar manner. However, anti-CD14 antibody-induced cross-linking caused a rapid calcium mobilization signal only in GPI-anchored CD14 cells. Studies with pharmacologic inhibitors of intracellular signalling events implicate phospholipase C and protein tyrosine kinases in the genesis of this antibody-induced calcium signal. Our results suggest that GPI anchoring and CD14 targeting to glycolipid-rich membrane microdomains are not required for LPS-mediated myeloid cell activation. GPI anchoring may however be important for other signalling functions, such as those events reflected by antibody cross-linking. PMID:9488411

  10. [Inclusion Bodies are Formed in SFTSV-infected Human Macrophages].

    PubMed

    Jin, Cong; Song, Jingdong; Han, Ying; Li, Chuan; Qiu, Peihong; Liang, Mifang

    2016-01-01

    The severe fever with thrombocytopenia syndrome virus (SFTSV) is a new member in the genus Phlebovirus of the family Bunyaviridae identified in China. The SFTSV is also the causative pathogen of an emerging infectious disease: severe fever with thrombocytopenia syndrome. Using immunofluorescent staining and confocal microscopy, the intracellular distribution of nucleocapsid protein (NP) in SFTSV-infected THP-1 cells was investigated with serial doses of SFTSV at different times after infection. Transmission electron microscopy was used to observe the ultrafine intracellular structure of SFTSV-infected THP-1 cells at different times after infection. SFTSV NP could form intracellular inclusion bodies in infected THP-1 cells. The association between NP-formed inclusion bodies and virus production was analyzed: the size of the inclusion body formed 3 days after infection was correlated with the viral load in supernatants collected 7 days after infection. These findings suggest that the inclusion bodies formed in SFTSV-infected THP-1 cells could be where the SFTSV uses host-cell proteins and intracellular organelles to produce new viral particles.

  11. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Ye, C.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in CaR protein expression, occurring at a translational level during their differentiation into cells with a monocyte/macrophage phenotype in response to treatment with PMA or 1, 25(OH)(2)D(3), which is functionally linked to activation of a nonselective cation channel.

  12. Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages.

    PubMed

    Reiss, Allison B; Carsons, Steven E; Anwar, Kamran; Rao, Soumya; Edelman, Sari D; Zhang, Hongwei; Fernandez, Patricia; Cronstein, Bruce N; Chan, Edwin S L

    2008-12-01

    To determine whether methotrexate (MTX) can overcome the atherogenic effects of cyclooxygenase 2 (COX-2) inhibitors and interferon-gamma (IFNgamma), both of which suppress cholesterol efflux protein and promote foam cell transformation in human THP-1 monocyte/macrophages. Message and protein levels of the reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP-binding cassette transporter A1 (ABCA1) in THP-1 cells were evaluated by real-time polymerase chain reaction and immunoblot, respectively. Expression was evaluated in cells incubated in the presence or absence of the COX-2 inhibitor NS398 or IFNgamma, with and without MTX. Foam cell transformation of lipid-laden THP-1 macrophages was detected with oil red O staining and light microscopy. MTX increased 27-hydroxylase message and completely blocked NS398-induced down-regulation of 27-hydroxylase (mean +/- SEM 112.8 +/- 13.1% for NS398 plus MTX versus 71.1 +/- 4.3% for NS398 alone; P < 0.01). MTX also negated COX-2 inhibitor-mediated down-regulation of ABCA1. The ability of MTX to reverse inhibitory effects on 27-hydroxylase and ABCA1 was blocked by the adenosine A2A receptor-specific antagonist ZM241385. MTX also prevented NS398 and IFNgamma from increasing transformation of lipid-laden THP-1 macrophages into foam cells. This study provides evidence supporting the notion of an atheroprotective effect of MTX. Through adenosine A2A receptor activation, MTX promotes reverse cholesterol transport and limits foam cell formation in THP-1 macrophages. This is the first reported evidence that any commonly used medication can increase expression of antiatherogenic reverse cholesterol transport proteins and can counteract the effects of COX-2 inhibition. Our results suggest that one mechanism by which MTX protects against cardiovascular disease in rheumatoid arthritis patients is through facilitation of cholesterol outflow from cells of the artery wall.

  13. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less

  14. Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice

    PubMed Central

    Maldonado-Devincci, Antoniette M.; Beattie, Matthew C.; Morrow, Danielle H.; McKinley, Raechel E.; Cook, Jason B.; O’Buckley, Todd K.

    2014-01-01

    Rationale Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models. Objectives The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice. Methods Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 µm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures. Results FSS decreased circulating 3α,5α-THP (−41.6± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (−15.2±5.7 %), lateral amygdala (LA, −31.1±13.4 %), and nucleus accumbens (NAcc) shell (−31.9±14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells. Conclusions The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/ metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity. PMID:24744202

  15. Atheroprotective Effects of Methotrexate on Reverse Cholesterol Transport Proteins and Foam Cell Transformation in THP-1 Human Monocytes/Macrophages

    PubMed Central

    Reiss, Allison B.; Carsons, Steven E.; Anwar, Kamran; Rao, Soumya; Edelman, Sari D.; Zhang, Hongwei; Fernandez, Patricia; Cronstein, Bruce N.; Chan, Edwin S.L.

    2008-01-01

    OBJECTIVE: To determine whether MTX can overcome the atherogenic effect of COX-2 inhibitors and IFN-γ, both of which suppress cholesterol efflux protein levels and promote foam cell transformation in THP-1 human monocytes/macrophages. METHODS: Message and protein level of the reverse cholesterol transport (RCT) proteins cholesterol 27-hydroxylase and ABCA1 in THP-1 cells were evaluated by real-time polymerase chain reaction and immunoblot, respectively. Expression was evaluated in cells incubated in the presence or absence of the COX-2 inhibitor NS398 or IFN-γ with/without MTX. Foam cell transformation of lipid-loaded THP-1 macrophages was detected with oil red O staining and light microscopy. RESULTS: MTX increased 27-hydroxylase message and completely blocked NS398-induced downregulation of 27-hydroxylase (112.8±13.1% for NS398+MTX versus 71.1±4.3% for NS398 alone, with untreated as 100%, n=3, p<0.01). MTX also negated COX-2 inhibitor-mediated downregulation of ABCA1. Reversal of inhibitory effects on 27-hydroxylase and ABCA1 in the presence of MTX were blocked by the adenosine A2A receptor-specific antagonist ZM-241385. MTX also prevented NS398 and IFN-γ from increasing transformation of lipid-loaded THP-1 macrophages into foam cells. CONCLUSIONS: This study provides evidence supporting the atheroprotective effect of MTX. Through adenosine A2A receptor activation, MTX promotes RCT and limits foam cell formation in THP-1 macrophages. This is the first evidence that any commonly used medication can increase expression of anti-atherogenic RCT proteins and can counteract the effects of COX-2 inhibition. Our results suggest that one mechanism by which MTX protects against cardiovascular mortality in RA patients is through facilitation of cholesterol outflow from cells of the artery wall. PMID:19035488

  16. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    PubMed Central

    2012-01-01

    Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1) were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or other inflammatory conditions. PMID:23140489

  17. Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into d-lactic acid.

    PubMed

    Lee, Bao-Hong; Hsu, Wei-Hsuan; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-07-01

    This study was designed to evaluate the effects of dimerumic acid (DMA) on receptor for advanced glycation endproducts (RAGE) signal activation and THP-1 monocyte inflammation treated with S100b, a specific ligand of RAGE. We found that DMA inhibited inflammatory cytokine production via upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and alleviated oxidative stress through attenuation of p47phox translocation to the membrane of S100b-treated THP-1 monocytes. We found that DMA activated Nrf2 mediated by the p38 kinase pathway in THP-1 monocytes. However, anti-inflammatory activity of DMA was attenuated by Nrf2 siRNA treatment. In an animal model, methylglyoxal (MG; 200mg/kg bw) was chosen to induce diabetes in Balb/C mice (6 weeks) in this work. The in vivo verification of anti-inflammation in peripheral blood mononuclear cells by DMA treatment was confirmed by tumor necrosis factor-α and interleukin-1β measurements. Oral glucose tolerance test, insulin tolerance test, hyperinsulinemia, and hyperglycemia were improved in MG-treated mice by DMA treatment and these effects were greater than those of silymarin and N-acetylcysteine. Furthermore, DMA increased hepatic glyoxalase mRNA and glutathione mediated by Nrf2 activation to metabolize MG into d-lactic acid, thereby reducing serum and hepatic AGE levels and suppressing inflammatory factor generation in MG-treated mice. However, DMA did not exert the antiglycation activity in MG-bovine serum albumin incubation. Taken together, the results indicate that DMA is a novel antioxidant and Nrf2 activator that lowers AGE levels and may prove to be an effective treatment for diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks.

    PubMed

    Percival, Susan S; Vanden Heuvel, John P; Nieves, Carmelo J; Montero, Cindy; Migliaccio, Andrew J; Meadors, Joanna

    2012-08-01

    The aim of this work was to determine the bioavailability of herbs and spices after human consumption by measuring the ability to protect lymphocytes from an oxidative injury and by examining the impact on inflammatory biomarkers in activated THP-1 cells. Ten to 12 subjects in each of 13 groups consumed a defined amount of herb or spice for 7 days. Blood was drawn from subjects before consumption and 1 hour after taking the final herb or spice capsules. Subject serum and various extractions of the herbs and spices were analyzed for antioxidant capacity by oxygen radical absorbance capacity (ORAC) analysis or by 1,1-diphenyl-2-picrylhydrzyl (DPPH). Subject peripheral blood mononuclear cells (PBMCs) in medium with10% autologous serum were incubated with hydrogen peroxide to induce DNA strand breaks. Subject serum was also used to treat activated THP-1 cells to determine relative quantities of 3 inflammatory cytokine (tumor necrosis factor-α [TNF-α], interleukin-1α [IL-1α], and IL-6) mRNAs. Herbs and spices that protected PBMCs against DNA strand breaks were paprika, rosemary, ginger, heat-treated turmeric, sage, and cumin. Paprika also appeared to protect cells from normal apoptotic processes. Of the 3 cytokine mRNAs studied (TNF-α, IL-1α, and IL-6), TNF-α was the most sensitive responder to oxidized LDL-treated macrophages. Clove, ginger, rosemary, and turmeric were able to significantly reduce oxidized LDL-induced expression of TNF-α. Serum from those consuming ginger reduced all three inflammatory biomarkers. Ginger, rosemary, and turmeric showed protective capacity by both oxidative protection and inflammation measures. DNA strand breaks and inflammatory biomarkers are a good functional measure of a food's bioavailability.

  19. A Transcriptional Regulatory Role for the Membrane Type-1 Matrix Metalloproteinase in Carcinogen-Induced Inflammasome Gene Expression.

    PubMed

    Sheehy, Samuel; Annabi, Borhane

    2017-01-01

    Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP's role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal-regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.

  20. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2015-09-01

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  1. Contribution of the Major ND10 Proteins PML, hDaxx and Sp100 to the Regulation of Human Cytomegalovirus Latency and Lytic Replication in the Monocytic Cell Line THP-1

    PubMed Central

    Wagenknecht, Nadine; Reuter, Nina; Scherer, Myriam; Reichel, Anna; Müller, Regina; Stamminger, Thomas

    2015-01-01

    Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence and Western blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency. PMID:26057166

  2. Effects of combined treatments with CTLA4-IG (abatacept), dexamethasone and methotrexate on cultured human macrophages.

    PubMed

    Cutolo, Maurizio; Paolino, Sabrina; Pizzorni, Carmen; Sulli, Alberto; Seriolo, Bruno; Cimmino, Marco Amedeo; Montagna, Paola; Soldano, Stefano; Contini, Paola; Brizzolara, Renata

    2016-01-01

    To evaluate the anti-inflammatory effect of CTLA4-Ig (abatacept) and dexamethasone (DEX) monotreatment versus their combination and adding methotrexate (MTX) on cultured human macrophages. THP-1 cells, activated into macrophages (PMA 0.05 μg/ml), were cultured for 3 and 24 hrs with CTLA4-Ig (500 μg/ml), DEX (10-8 M), MTX (0.05 μg/ml), and CTLA4-Ig combined with DEX or CTLA4-Ig combined with DEX plus MTX. CTLA4-Ig/CD86 interaction was evaluated by FACS analysis. Quantitative real time-PCR (qRT-PCR), immunocytochemistry (ICC) and immunoassay (ELISA) analysis for inflammatory cytokine (IL-1β, TNF-α, IL-6) expression were performed. FACS analysis showed in macrophages treated with CTLA4-Ig alone, CTLA4-Ig-DEX and CTLA4-Ig-DEX-MTX a CD86 decrease of almost 35%, versus untreated cells (CNT). After 3 hrs, macrophages treated with DEX alone or with CTLA4-Ig-DEX or CTLA4-Ig-DEX-MTX showed a significant reduction (p<0.05) for all cytokines gene expression, that was still significant for IL-1β after 24 hrs (p<0.05). After 3 hrs, CTLA4-Ig alone significantly (p<0.05) reduced all cytokine genes; however, after 24 hrs still evident only for TNF-α (p<0.05). After 24 hrs CTLA4-Ig-DEX induced a significant decrease of gene expression (p<0.05) for TNF-α and IL-6, whereas CTLA4-Ig-DEX-MTX induced a decrease (p<0.05) limited to IL-6, versus CNT. Finally, ICC showed, after 24 hrs of CTLA4-Ig-DEX or CTLA4-Ig-DEX-MTX treatment a reduction (p<0.05) of IL-1β and IL-6 expression, versus CNT; DEX alone reduced only IL-1β (p<0.05). ELISA analysis confirmed these results. CTLA4-Ig-DEX and CTLA4-Ig-DEX-MTX combined treatments, decreased at any level the inflammatory cytokine expression more efficiently then monotreatments on activated cultured human macrophages.

  3. Inhibition of Macrophage CD36 Expression and Cellular Oxidized Low Density Lipoprotein (oxLDL) Accumulation by Tamoxifen: A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)γ-DEPENDENT MECHANISM.

    PubMed

    Yu, Miao; Jiang, Meixiu; Chen, Yuanli; Zhang, Shuang; Zhang, Wenwen; Yang, Xiaoxiao; Li, Xiaoju; Li, Yan; Duan, Shengzhong; Han, Jihong; Duan, Yajun

    2016-08-12

    Macrophage CD36 binds and internalizes oxidized low density lipoprotein (oxLDL) to facilitate foam cell formation. CD36 expression is activated by peroxisome proliferator-activated receptor γ (PPARγ). Tamoxifen, an anti-breast cancer medicine, has demonstrated pleiotropic functions including cardioprotection with unfully elucidated mechanisms. In this study, we determined that treatment of ApoE-deficient mice with tamoxifen reduced atherosclerosis, which was associated with decreased CD36 and PPARγ expression in lesion areas. At the cellular level, we observed that tamoxifen inhibited CD36 protein expression in human THP-1 monocytes, THP-1/PMA macrophages, and human blood monocyte-derived macrophages. Associated with decreased CD36 protein expression, tamoxifen reduced cellular oxLDL accumulation in a CD36-dependent manner. At the transcriptional level, tamoxifen decreased CD36 mRNA expression, promoter activity, and the binding of the PPARγ response element in CD36 promoter to PPARγ protein. Tamoxifen blocked ligand-induced PPARγ nuclear translocation and CD36 expression, but it increased PPARγ phosphorylation, which was due to that tamoxifen-activated ERK1/2. Furthermore, deficiency of PPARγ expression in macrophages abolished the inhibitory effect of tamoxifen on CD36 expression or cellular oxLDL accumulation both in vitro and in vivo Taken together, our study demonstrates that tamoxifen inhibits CD36 expression and cellular oxLDL accumulation by inactivating the PPARγ signaling pathway, and the inhibition of macrophage CD36 expression can be attributed to the anti-atherogenic properties of tamoxifen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids

    PubMed Central

    Crow, J. Allen; Herring, Katye L.; Xie, Shuqi; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2009-01-01

    Summary Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC50=8.1 μM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (Kiapp=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (Kiapp=1.7 μM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo. PMID:19761868

  5. Upregulation of osteopontin expression via the interaction of macrophages and fibroblasts under IL-1b stimulation.

    PubMed

    Shimodaira, Takahiro; Matsuda, Kazuyuki; Uchibori, Takaaki; Sugano, Mitsutoshi; Uehara, Takeshi; Honda, Takayuki

    2018-04-25

    Fibrosis is attributed to dysregulation of tissue-remodeling. In remodeling areas, fibroblasts and macrophages actively make contact with each other. Osteopontin (OPN) is a pro-fibrotic molecule, whose expression is upregulated by interleukin (IL)-1β via secretion of its downstream cytokines, such as IL-6. Here, we investigated the effect of interaction between fibroblasts and macrophages under IL-1β stimulation on the expression of OPN. We used human lung fibroblasts and THP-1 macrophages differentiated from THP-1 cells using phorbol 12-myristate 13-acetate. These cells were either cultured alone or co-cultured under IL-1β stimulation. Secretion of OPN and IL-6 were examined by enzyme-linked immunosorbent assay, and mRNA expression was assessed by quantitative real-time PCR. The effects of siRNA against IL-6 or OPN on OPN expression were evaluated. OPN expression increased when fibroblasts and THP-1 macrophages were co-cultured under IL-1β stimulation. The siRNA against IL-6 in fibroblasts suppressed the upregulation of OPN expression during co-culture, whereas siRNA against IL-6 in THP-1 macrophages did not. The upregulation of expression of OPN mRNA in fibroblasts or THP-1 macrophages when co-cultured under IL-1β stimulation was mediated by IL-6 from fibroblasts. OPN from THP-1 macrophages was involved in the increase of OPN expression in fibroblasts. The present study revealed the crosstalk between fibroblasts and THP-1 macrophages under IL-1β stimulation, where IL-6 from fibroblasts, stimulated by IL-1β, upregulated OPN expression in fibroblasts themselves via increase in OPN from THP-1 macrophages. The fibroblasts/macrophages network may induce activation or qualitative changes in both cells, which contributes to inflammation-associated fibrosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterationsmore » correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.« less

  7. Combination Treatments with Luteolin and Fisetin Enhance Anti-Inflammatory Effects in High Glucose-Treated THP-1 Cells Through Histone Acetyltransferase/Histone Deacetylase Regulation.

    PubMed

    Kim, Arang; Yun, Jung-Mi

    2017-08-01

    Hyperglycemia leads to diabetes and its diabetic complications. In this study, we investigated the synergistic effects of luteolin and fisetin on proinflammatory cytokine secretion and its underlying epigenetic regulation in human monocytes exposed to hyperglycemic (HG) concentrations. Human monocytic cells (THP-1) were cultured under controlled (14.5 mM mannitol), normoglycemic (5.5 mM glucose), or HG (20 mM glucose) conditions in the absence or presence of the two phytochemicals for 48 h. Whereas HG conditions significantly induced histone acetylation, nuclear factor-kappa B (NF-κB) activation, interleukin 6, and tumor necrosis factor-α release from THP-1 cells; combination treatments with the two phytochemicals (500 nM fisetin, and l μM and 500 nM luteolin) suppressed NF-κB activity and inflammatory cytokine release. Fisetin, luteolin, and their combination treatments also significantly decreased the activity of histone acetyltransferase, a known NF-κB coactivator; inhibited reactive oxygen species production; and activated sirtuin (SIRT)1 and forkhead box O3a (FOXO3a) expressions (P < .05). Thus, combination treatments with the two phytochemicals inhibited HG condition-induced cytokine production in monocytes, through epigenetic changes involving NF-κB activation. We, therefore, suggest that combination treatments with luteolin and fisetin may be a potential candidate for the treatment and prevention of diabetes and its complications.

  8. Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines.

    PubMed

    Bundscherer, Lena; Wende, Kristian; Ottmüller, Katja; Barton, Annemarie; Schmidt, Anke; Bekeschus, Sander; Hasse, Sybille; Weltmann, Klaus-Dieter; Masur, Kai; Lindequist, Ulrike

    2013-10-01

    In the field of wound healing research non-thermal plasma (NTP) increasingly draws attention. Next to its intensely studied antibacterial effects, some studies already showed stimulating effects on eukaryotic cells. This promises a unique potential in healing of chronic wounds, where effective therapies are urgently needed. Immune cells do play an important part in the process of wound healing and their reaction to NTP treatment has yet been rarely examined. Here, we studied the impact of NTP treatment using the kinpen on apoptotic and proliferative cell signaling pathways of two human immune cell lines, the CD4(+)T helper cell line Jurkat and the monocyte cell line THP-1. Depending on NTP treatment time the number of apoptotic cells increased in both investigated cell types according to a caspase 3 assay. Western blot analysis pointed out that plasma treatment activated pro-apoptotic signaling proteins like p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase 1 and 2 (JNK 1/2) in both cell types. Stronger signals were detected in Jurkat cells at comparable plasma treatment times. Intriguingly, exposure of Jurkat and THP-1 cells to plasma also activated the pro-proliferative signaling molecules extracellular signal-regulated kinase 1/2 (ERK 1/2) and MAPK/ERK kinase 1 and 2 (MEK 1/2). In contrast to Jurkat cells, the anti-apoptotic heat shock protein 27 (HSP27) was activated in THP-1 cells after plasma treatment, indicating a possible mechanism how THP-1 cells may reduce programmed cell death. In conclusion, several signaling cascades were activated in the examined immune cell lines after NTP treatment and in THP-1 monocytes a possible defense mechanism against plasma impacts could be revealed. Therefore, plasma might be a treatment option for wound healing. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Withaferin A Associated Differential Regulation of Inflammatory Cytokines.

    PubMed

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.

  10. Withaferin A Associated Differential Regulation of Inflammatory Cytokines

    PubMed Central

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases. PMID:29479354

  11. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling.

    PubMed

    Ye, Kai; Chen, Qi-Wei; Sun, Ya-Feng; Lin, Jian-An; Xu, Jian-Hua

    2018-02-01

    Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment created by immune cells facilitates tumor migration. Epithelial-mesenchymal transition (EMT) is involved in the progression of cancer invasion and metastasis in an inflammatory microenvironment. B-lymphoma Moloney murine leukemia virus insertion region 1 (BMI-1) acts as an oncogene in various tumors. Ectopic expression of Bmi-1 have an effect on EMT and invasiveness. The purpose of this study was to investigate the efficacy of BMI-1 on inflammation-induced tumor migration and EMT and the underlying mechanism. We observed that the expression of BMI-1, TNF-α, and IL-1β was significantly increased in HT29 and HCT116 cells after THP-1 Conditioned-Medium (THP-1-CM) stimulation. Additionally, inhibition of BMI-1 impeded cell invasion induced by THP-1-CM-stimulation in both HT29 and HCT116 cells. BMI-1 knockdown remarkably repressed THP-1-CM-induced EMT by regulating the expression of EMT biomarkers with an increase in E-cadherin accompanied by decrease in N-cadherin and vimentin. Furthermore, downregulation of BMI-1 dramatically impeded THP-1-CM-triggered Toll-like receptor 4(TLR4)/myeloid differentiation protein 2(MD-2)/myeloid differentiation factor 88(MyD88) activity by repressing the expression of the TLR4/MD-2 complex and MyD88. Further data demonstrated that knockout of BMI-1 also dampened NF-κB THP-1-CM-triggered activity. Taken all data together, our findings established that BMI-1 modulated TLR4/MD-2/MyD88 complex-mediated NF-κB signaling involved in inflammation-induced cancer cells invasion and EMT, and therefore, could be a potential chemopreventive agent against inflammation-associated colorectal cancer. Establishment of an inflammatory microenvironment. Suppression of BMI-1 reverses THP-1-CM-induced inflammatory cytokine production in CRC. Loss of BMI-1 suppressed TLR4/MD-2/MyD88 complex-mediated NF-κB signaling. © 2017 Wiley Periodicals, Inc.

  12. Differential Expression of FAK and Pyk2 in Metastatic and Non-metastatic EL4 Lymphoma Cell Lines

    PubMed Central

    Zhang, Zhihong; Knoepp, Stewart M.; Ku, Hsun; Sansbury, Heather M.; Xie, Yuhuan; Chahal, Manpreet S.; Tomlinson, Stephen; Meier, Kathryn E.

    2011-01-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell-substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells. PMID:21533871

  13. Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines.

    PubMed

    Zhang, Zhihong; Knoepp, Stewart M; Ku, Hsun; Sansbury, Heather M; Xie, Yuhuan; Chahal, Manpreet S; Tomlinson, Stephen; Meier, Kathryn E

    2011-08-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell-substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells.

  14. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found thatmore » vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.« less

  15. Cytokine response of human THP-1 macrophages to Trichomonas tenax.

    PubMed

    Govro, Emily J; Stuart, Melissa K

    2016-10-01

    Trichomonas tenax is a protozoan that inhabits the oral cavity of humans, most often those with poor oral hygiene. Although T. tenax is widely considered a commensal, recent studies have suggested a pathogenic role for the protozoan in persons with periodontitis. Here we investigated the capacity of T. tenax to induce pro-inflammatory cytokine secretion in human macrophages, with the idea that elicitation of inflammation may be one mechanism by which T. tenax contributes to oral pathology. Human THP-1 cells differentiated to the macrophage phenotype (dTHP-1) were incubated with live or sonicated T. tenax at trophozoite:dTHP-1 ratios of 1:5, 1:10, and 1:20. Culture media removed from the wells after 4, 8, and 16 h of stimulation were assayed by ELISA for tumor necrosis factor alpha, interleukin-1 beta, interleukin-8, and the immunoregulatory cytokine interleukin-10. Live T. tenax trophozoites failed to induce production of any of the cytokines tested, regardless of trophozoite:dTHP-1 cell ratio or length of co-incubation. T. tenax lysates stimulated interleukin-8 synthesis, but only after 16 h of incubation at the 1:5 trophozoite:dTHP-1 cell ratio. These results suggest that pro-inflammatory cytokine synthesis by human macrophages in direct response to T. tenax contributes little to oral pathology. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Regulation of HSD17B1 and SRD5A1 in lymphocytes.

    PubMed

    Zhou, Z; Speiser, P W

    1999-11-01

    We previously reported lymphocyte expression of genes encoding enzymes required for steroid metabolism; however, only 17beta-HSD and 5alpha-reductase showed significant enzyme activity. We now investigate regulation of lymphocyte expression for genes encoding 17beta-HSD and 5alpha-reductase. Cultured human T and B lymphoid cell lines and peripheral blood mononuclear cells were treated with known regulators of steroidogenic gene expression including forskolin, PMA, ionomycin, various steroids, interleukin (IL)-4, and IL-6. Treatment with 10 or 50 microM forskolin resulted in a 20-60% reduction of expression for HSD17B1 (encoding 17beta-HSD I) in T and B lymphoid cell lines and peripheral blood mononuclear cells, although such a change was not observed in the expression of SRD5A1 (encoding 5alpha-reductase I). No significant changes were found when cells were treated for 24 h with various concentrations of PMA or ionomycin. Incubation with 10(-9) to 10(-7) M androstenedione or estradiol increased expression of HSD17B1, while testosterone decreased the expression of this gene. SRD5A1 expression was increased in the presence of 5alpha-DHT although no consistent changes were observed when the cells were treated with testosterone. Other steroids, including dexamethasone, progesterone, and 6-hydroxypregnanolone, produced no effects on expression of either HSD17B1 or SRD5A1. Treatment with 0.1-10 ng/ml of IL-4 or IL-6 also did not effect significant changes in gene expression. These data implicate the involvement of the cAMP-protein kinase signal transduction pathway in regulating lymphocyte expression of HSD17B1. Furthermore, it appears that lymphocyte HSD17B1 and SRD5A1 are regulated to some extent by specific steroids. Copyright 1999 Academic Press.

  17. Macrophages promote coal tar pitch extract-induced tumorigenesis of BEAS-2B cells and tumor metastasis in nude mice mediated by AP-1.

    PubMed

    Zhang, Peng; Jin, Yue-Fei; Zhang, Qiao; Wu, Yi-Ming; Wu, Wei-Dong; Yao, Wu; Wu, Yong-Jun; Li, Zhi-Tao; Zhao, Yong; Liu, Yu; Feng, Fei-Fei

    2014-01-01

    We sought to evaluate the role of tumor associated macrophages (TAMs) on the promotion of coal tar pitch extract (CTPE)-induced tumorigenesis of human bronchial epithelial cells (BEAS-2B) and tumor metastasis in nude mice, and related mechanisms. BEAS-2B cells were first treated with 2.4 mg/mL CTPE for 72 hours. After removal of CTPE, the cells were continuously cultured and passaged using trypsin-EDTA. THP-1 cells were used as macrophage-like cells. BEAS-2B cells under different conditions (n=6/ group) were injected into the back necks of nude mice, and alterations of tumor xenograft growth, indicative of tumorigenicity, and tumor metastasis were determined. Pathological changes (tumor nests and microvascular lesions) of HE-stained tumor tissues were also evaluated. The expression of AP-1(c-Jun) in xenografts and metastatic tumors was determined using immunohistochemistry. Tumor size and weight in nude mice transplanted with the mixture of CTPE-induced passage 30 BEAS-2B and THP-1 cells (2:1) were increased compared to those from the CTPE-treated BEAS-2B cells at passage 30 alone at different observation time points. Tumor metastasis to lymph nodes and liver was only detected after transplantation of a mixture the two kinds of cells. The numbers of tumor nests and microvascular lesions, and the expression levels of AP-1 (c-Jun) in tumors from the mixture of two kinds of cells were increased apparently in contrast to those in tumor from the CTPE-treated BEAS-2B cells of passage 30 alone. In addition, there was positive correlation between AP-1 (c-Jun) expression level and the number of microvascular lesions, or between AP-1 (c-Jun) expression level and tumor metastasis in these two groups. TAMs not only facilitate tumorigenesis transformation of CTPE-induced BEAS-2B cells, but also promote tumor growth, angiogenesis and metastasis in nude mice in vivo, which may be mediated by AP-1.

  18. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans.

    PubMed

    Wang, Yongkang; Song, Xiaodan; Zhang, Yongjun; Wang, Bochu; Zou, Xiang

    2016-08-22

    Polymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries. Its monomer, L-malic acid, is also a potential C4 platform chemical. However, little is known about the mechanism of PMA biosynthesis in the yeast-like fungus, Aureobasidium pullulans. In this study, the effects of different nitrogen concentration on cell growth and PMA biosynthesis were investigated via comparative transcriptomics and proteomics analyses, and a related signaling pathway was also evaluated. A high final PMA titer of 44.00 ± 3.65 g/L (49.9 ± 4.14 g/L of malic acid after hydrolysis) was achieved in a 5-L fermentor under low nitrogen concentration (2 g/L of NH4NO3), which was 18.3 % higher yield than that obtained under high nitrogen concentration (10 g/L of NH4NO3). Comparative transcriptomics profiling revealed that a set of genes, related to the ribosome, ribosome biogenesis, proteasome, and nitrogen metabolism, were significantly up- or down-regulated under nitrogen sufficient conditions, which could be regulated by the TOR signaling pathway. Fourteen protein spots were identified via proteomics analysis, and were found to be associated with cell division and growth, energy metabolism, and the glycolytic pathway. qRT-PCR further confirmed that the expression levels of key genes involved in the PMA biosynthetic pathway (GLK, CS, FUM, DAT, and MCL) and the TOR signaling pathway (GS, TOR1, Tap42, and Gat1) were upregulated due to nitrogen limitation. Under rapamycin stress, PMA biosynthesis was obviously inhibited in a dose-dependent manner, and the transcription levels of TOR1, MCL, and DAT were also downregulated. The level of nitrogen could regulate cell growth and PMA biosynthesis. Low concentration of nitrogen was beneficial for PMA biosynthesis, which could upregulate the expression of key genes involved in the PMA biosynthesis pathway. Cell growth and PMA biosynthesis might be mediated by the TOR signaling pathway in response to nitrogen. This study will help us to deeply understand the molecular mechanisms of PMA biosynthesis, and to develop an effective process for the production of PMA and malic acid chemicals.

  19. Effectiveness of EDTA and Modified Salt Solution to Detach and Kill Cells from Enterococcus faecalis Biofilm.

    PubMed

    de Almeida, Josiane; Hoogenkamp, Michel; Felippe, Wilson T; Crielaard, Wim; van der Waal, Suzette V

    2016-02-01

    Disruption of the matrix of endodontic biofilms will aid in their removal from a root canal. Therefore, the aim of this study was to investigate the efficacy of EDTA and a modified salt solution (MSS) to detach bacteria from biofilms. Forty-eight-hour-old Enterococcus faecalis biofilms were grown on glass coverslips and then treated for 1 hour by immersion in 17% EDTA or MSS. Phosphate-buffered saline served as a negative control. Then, residual biofilm cells on the substrate and the detached cells in the supernatant were collected. Viability was verified by the colony-forming unit (CFU) counting method. Propidium monoazide (PMA) treatment in conjunction with quantitative polymerase chain reaction (qPCR) was also performed to detect the presence of E. faecalis 16S ribonucleic RNA genes. Data were analyzed using 1-way analysis of variance and Tukey or Kruskal-Wallis and Dunn tests. The Pearson R test evaluated the correlation between results from CFU and PMA (α = 5%). qPCR showed that EDTA detached 99% of biofilm cells, and MSS detached 94% of biofilm cells (both P < .001). In contrast to EDTA, MSS was highly antimicrobial. The treatment promoted an ample log 7 reduction of the attached cells (P < .001), and almost no live cells were detected in the supernatant (P < .001). Positive correlations between CFU and qPCR with PMA were observed (r = 0.959 and r = 0.729). EDTA detached cells in biofilms with a minor antimicrobial effect. Besides a great antimicrobial effect, MSS also detached biofilm cells. These dispersals of biofilms give insights into new endodontic biofilm removal strategies. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.

    PubMed

    Sahingur, S E; Xia, X-J; Alamgir, S; Honma, K; Sharma, A; Schenkein, H A

    2010-04-01

    Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.

  1. PTEN deficiency promotes macrophage infiltration and hypersensitivity of prostate cancer to IAP antagonist/radiation combination therapy

    PubMed Central

    Armstrong, Chris W.D.; Maxwell, Pamela J.; Ong, Chee Wee; Redmond, Kelly M.; McCann, Christopher; Neisen, Jessica; Ward, George A.; Chessari, Gianni; Johnson, Christopher; Crawford, Nyree T.; LaBonte, Melissa J.; Prise, Kevin M.; Robson, Tracy; Salto-Tellez, Manuel; Longley, Daniel B.; Waugh, David J.J.

    2016-01-01

    PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy. PMID:26799286

  2. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein

    PubMed Central

    Viswanathan, Pragasam; Rimer, Jeffrey D.; Kolbach, Ann M.; Kleinman, Jack G.

    2011-01-01

    Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 µg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation. PMID:21229239

  3. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) mediates repression of TNF-{alpha} by decreasing levels of acetylated histone H3 and H4 at its promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engdahl, Ryan; Monroy, M. Alexandra; Temple University School of Medicine, Department of Anatomy and Cell Biology, 3400 North Broad Street, Philadelphia, PA 19140

    2007-07-20

    Prostaglandin metabolite 15-Deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) is known to inhibit a number of pro-inflammatory cytokines as well as being a ligand for nuclear receptor PPAR{gamma}. We investigated the ability of 15d-PGJ2 to inhibit TNF-{alpha} gene expression through mechanisms that involve histone modification. Pretreatment with 15d-PGJ2 (10 {mu}M) inhibited LPS-stimulated TNF-{alpha} mRNA in THP-1 monocytes or PMA-differentiated cells to nearly basal levels. A specific PPAR{gamma} ligand, GW1929, failed to inhibit LPS-induced TNF-{alpha} mRNA expression nor did a PPAR{gamma} antagonist, GW9662, alter the repression of TNF-{alpha} mRNA in LPS-stimulated cells pretreated with 15d-PGJ2 suggesting a PPAR{gamma}-independent inhibition of TNF-{alpha} mRNA in THP-1more » cells. Transfection studies with a reporter construct and subsequent treatment with 15d-PGJ2 demonstrated a dose-dependent inhibition of the TNF-{alpha} promoter. Additional studies demonstrated that inhibition of histone deacetylases with trichostatin A (TSA) or overexpression of histone acetyltransferase CBP could overcome 15d-PGJ2-mediated repression of the TNF-{alpha} promoter, suggesting that an important mechanism whereby 15d-PGJ2 suppresses a cytokine is through factors that regulate histone modifications. To examine the endogenous TNF-{alpha} promoter, chromatin immunoprecipitations (ChIP) were performed. ChIP assays demonstrated that LPS stimulation induced an increase in histone H3 and H4 acetylation at the TNF-{alpha} promoter, which was reduced in cells pretreated with 15d-PGJ2. These results highlight the ability of acetylation and deacetylation factors to affect the TNF-{alpha} promoter and demonstrate that an additional important mechanism whereby 15d-PGJ2 mediates TNF-{alpha} transcriptional repression by altering levels of acetylated histone H3 and H4 at its promoter.« less

  4. Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells

    PubMed Central

    Wang, Mingyong; Chen, Yue; Zhang, Yani; Zhang, Liyun; Lu, Xiao; Chen, Zhengliang

    2011-01-01

    Mannan-binding lectin (MBL) plays a key role in the lectin pathway of complement activation and can influence cytokine expression. Toll-like receptor 4 (TLR4) is expressed extensively and has been demonstrated to be involved in lipopolysaccharide (LPS)-induced signaling. We first sought to determine whether MBL exposure could modulate LPS-induced inflammatory cytokine secretion and nuclear factor-κB (NF-κB) activity by using the monocytoid cell line THP-1. We then investigated the possible mechanisms underlying any observed regulatory effect. Using ELISA and reverse transcriptase polymerase chain reaction (RT-PCR) analysis, we found that at both the protein and mRNA levels, treatment with MBL suppresses LPS-induced tumor-necrosis factor (TNF)-α and IL-12 production in THP-1 cells. An electrophoretic mobility shift assay and western blot analysis revealed that MBL treatment can inhibit LPS-induced NF-κB DNA binding and translocation in THP-1 cells. While the binding of MBL to THP-1 cells was evident at physiological calcium concentrations, this binding occurred optimally in response to supraphysiological calcium concentrations. This binding can be partly inhibited by treatment with either a soluble form of recombinant TLR4 extracellular domain or anti-TLR4 monoclonal antibody (HTA125). Activation of THP-1 cells by LPS treatment resulted in increased MBL binding. We also observed that MBL could directly bind to the extracellular domain of TLR4 in a dose-dependent manner, and this interaction could attenuate the binding of LPS to cell surfaces. Taken together, these data suggest that MBL may affect cytokine expression through modulation of LPS-/TLR-signaling pathways. These findings suggest that MBL may play an important role in both immune regulation and the signaling pathways involved in cytokine networks. PMID:21383675

  5. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    PubMed

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of (E)-2-(3,4-dimethoxyphenyl)-4-oxo-4H-chromen-7-yl-3-(3,4-dimethoxyphenyl) acrylate on the development of atopic dermatitis-like lesions.

    PubMed

    Kim, In Sik; Song, Gyu-Yong; Kim, Dong-Hee; Cho, Soo Hyun; Yun, Chi-Young; Lee, Ji-Sook

    2012-09-24

    In this study, we synthesized a novel chemical, (E)-2-(3,4-dimethoxyphenyl)-4-oxo-4H-chromen-7-yl-3-(3,4-dimethoxyphenyl) acrylate (CSH) and investigated the effect of CSH on atopic dermatitis (AD) by evaluating the anti-inflammatory effect of CSH on immune cells in vitro and on atopic dermatitis-like lesions in vivo. Human monocytic THP-1 cells and human eosinophilic EoL-1 cells were treated with house dust mite extract in the absence and presence of CSH. Nc/Nga mice were sensitized to 2,4-dinitrochlorobenzne (DNCB) for 5 weeks and then orally and dorsally administered with CSH or dexamethasone for 3 weeks. CSH inhibited the secretion of monocyte chemotactic protein-1 (MCP-1), interleukin (IL)-6 and IL-8 due to house dust mite extract in THP-1 cells. CSH also suppressed the secretion of MCP-1 and IL-8 in EoL-1 cells. In vivo, the skin severity score decreased after CSH treatment as compared to the control group. CSH suppressed the inflammatory cell infiltration into the dermis and thickened the epidermis. CSH reduced serum IgE level as compared to the control group. The levels of IL-4, IL-5, IL-13 and eotaxin in mouse splenocytes increased after treatment with concanavalin A and the increase of the cytokines was decreased by pre-treatment with CSH. The inhibitory effects of CSH on atopic lesions of DNCB-treated Nc/Nga mice were similar to those of dexamethasone, despite differing degrees depending on results evaluated in this study. These results may contribute to the development of a therapeutic drug for the treatment of AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis.

    PubMed

    Mahmoud, Shima; Planes, María Dolores; Cabedo, Marc; Trujillo, Cristina; Rienzo, Alessandro; Caballero-Molada, Marcos; Sharma, Sukesh C; Montesinos, Consuelo; Mulet, José Miguel; Serrano, Ramón

    2017-07-01

    We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H + -ATPase Pma1 (which drives nutrient and K + uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K + uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K + transport. © 2017 Federation of European Biochemical Societies.

  8. Failure of matrix metalloproteinase-9 dimer induction by phorbol 12-myristate 13-acetate in normal human cell lines.

    PubMed

    Waheed Roomi, Mohd; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2015-06-01

    Increasing experimental and clinical data has identified an association between increased levels of matrix metalloproteinase (MMP)-9 and shortened patient survival, cancer progression and metastasis. MMP-9 has a significant role in tumor cell invasion and metastasis, as it digests the basement membrane and components of the extracellular matrix. MMP-9 is secreted in either a monomeric or dimeric form. Although limited evidence exists concerning MMP-9 dimers, certain studies have demonstrated that the dimer is associated with aggressive tumor progression. This is believed to be due to the fact that cellular migration depends upon the MMP-9 dimer, and not the monomer. Our previous study revealed that cancer cell MMP-9 dimer secretion patterns could be divided into different categories, and that high MMP-9 and MMP-9 dimer secretion levels were correlated with the most aggressive cancer cell lines. It has been established that signal transduction pathways and cytokines, including those activated by phorbol 12-myristate 13-acetate (PMA), regulate the expression of MMPs. The aim of the present study was to analyze the expression patterns of MMP-2, MMP-9 and MMP-9 dimer in normal human cells from a number of tissues treated with PMA. Muscle, epithelial and connective tissues were selected for use in the present study, since adenosarcomas, carcinomas and sarcomas are derived from these tissue types, respectively. The cell lines were first cultured in 24-well tissue culture plates containing recommended media that was supplemented with 10% fetal bovine serum and antibiotics. When at confluency, the cells were washed and fresh medium was added. In addition, a parallel set of cultures was treated with PMA. Subsequent to a 24-h incubation period, the media were collected and analyzed using gelatinase zymography for the expression of MMP-2 and MMP-9 monomer and dimer forms. The results revealed that the cellular expression of MMP-2 and MMP-9 was dependent upon the primary tissue subtype. All cell lines, regardless of tissue origin, expressed MMP-2. PMA induced the expression of MMP-9 in muscle tissue, glandular epithelia and supportive connective tissue cell lines. By contrast, cell lines of endothelial origin and proper connective tissue were insensitive to treatment with PMA. MMP-9 dimer secretion was not observed in any of the cell lines, which indicated that cellular migration is not supported by these cells.

  9. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated in the dark. Thereafter, the sample is exposed to visible light for five minutes, so that the DNA from dead cells will be cross-linked. Following this PMA treatment step, the sample is concentrated by centrifugation and washed (to remove excessive PMA) before DNA is extracted. The 16S rRNA gene fragments will be amplified by PCR to screen the total microbial community using PhyloChip DNA microarray analysis. This approach will detect only the viable microbial community since the PMA intercalated DNA from dead cells would be unavailable for PCR amplification. The total detection time including PCR reaction for low biomass samples will be a few hours. Numerous markets may use this technology. The food industry uses spore detection to validate new alternative food processing technologies, sterility, and quality. Pharmaceutical and medical equipment companies also detect spores as a marker for sterility. This system can be used for validating sterilization processes, water treatment systems, and in various public health and homeland security applications.

  10. Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells

    PubMed Central

    McFarland, A. J.

    2017-01-01

    The anti-inflammatory effects of statins (HMG-CoA reductase inhibitors) within the cardiovascular system are well-established; however, their neuroinflammatory potential is unclear. It is currently unknown whether statins' neurological effects are lipid-dependent or due to pleiotropic mechanisms. Therefore, the assumption that all statin compounds will have the same effect within the central nervous system is potentially inappropriate, with no studies to date having compared all statins in a single model. Thus, the aim of this study was to compare the effects of the six statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) within a single in vitro model of neuroinflammation. To achieve this, PMA-differentiated THP-1 cells were used as surrogate microglial cells, and LPS was used to induce inflammatory conditions. Here, we show that pretreatment with all statins was able to significantly reduce LPS-induced interleukin (IL)-1β and tumour necrosis factor (TNF)-α release, as well as decrease LPS-induced prostaglandin E2 (PGE2). Similarly, global reactive oxygen species (ROS) and nitric oxide (NO) production were decreased following pretreatment with all statins. Based on these findings, it is suggested that more complex cellular models should be considered to further compare individual statin compounds, including translation into in vivo models of acute and/or chronic neuroinflammation. PMID:28546657

  11. PKC-dependent stimulation of the human MCT1 promoter involves transcription factor AP2.

    PubMed

    Saksena, Seema; Dwivedi, Alka; Gill, Ravinder K; Singla, Amika; Alrefai, Waddah A; Malakooti, Jaleh; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2009-02-01

    Monocarboxylate transporter (MCT1) plays an important role in the absorption of short-chain fatty acids (SCFA) such as butyrate in the human colon. Previous studies from our laboratory have demonstrated that phorbol ester, PMA (1 microM, 24 h), upregulates butyrate transport and MCT1 protein expression in human intestinal Caco-2 cells. However, the molecular mechanisms involved in the transcriptional regulation of MCT1 gene expression by PMA in the intestine are not known. In the present study, we showed that PMA (0.1 microM, 24 h) increased the MCT1 promoter activity (-871/+91) by approximately fourfold. A corresponding increase in MCT1 mRNA abundance in response to PMA was also observed. PMA-induced stimulation of MCT1 promoter activity was observed as early as 1 h and persisted until 24 h, suggesting that the effects of PMA are attributable to initial PKC activation. Kinase inhibitor and phosphorylation studies indicated that these effects may be mediated through activation of the atypical PKC-zeta isoform. 5'-deletion studies demonstrated that the MCT1 core promoter region (-229/+91) is the PMA-responsive region. Site-directed mutagenesis studies showed the predominant involvement of potential activator protein 2 (AP2) binding site in the activation of MCT1 promoter activity by PMA. In addition, overexpression of AP2 in Caco-2 cells significantly increased MCT1 promoter activity in a dose-dependent manner. These findings showing the regulation of MCT1 promoter by PKC and AP2 are of significant importance for an understanding of the molecular regulation of SCFA absorption in the human intestine.

  12. Centella asiatica modulates cancer cachexia associated inflammatory cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC's).

    PubMed

    Naidoo, Dhaneshree Bestinee; Chuturgoon, Anil Amichund; Phulukdaree, Alisa; Guruprasad, Kanive Parashiva; Satyamoorthy, Kapaettu; Sewram, Vikash

    2017-08-01

    Cancer cachexia is associated with increased pro-inflammatory cytokine levels. Centella asiatica (C. asiatica) possesses antioxidant, anti-inflammatory and anti-tumour potential. We investigated the modulation of antioxidants, cytokines and cell death by C. asiatica ethanolic leaf extract (C LE ) in leukaemic THP-1 cells and normal peripheral blood mononuclear cells (PBMC's). Cytotoxcity of C LE was determined at 24 and 72 h (h). Oxidant scavenging activity of C LE was evaluated using the 2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay. Glutathione (GSH) levels, caspase (-8, -9, -3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were then assayed. The levels of tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 were also assessed using enzyme-linked immunosorbant assay. C LE decreased PBMC viability between 33.25-74.55% (24 h: 0.2-0.8 mg/ml C LE and 72 h: 0.4-0.8 mg/ml C LE ) and THP-1 viability by 28.404% (72 h: 0.8 mg/ml C LE ) (p < 0.0001). Oxidant scavenging activity was increased by C LE (0.05-0.8 mg/ml) (p < 0.0001). PBMC TNF-α and IL-10 levels were decreased by C LE (0.05-0.8 mg/ml) (p < 0.0001). However, PBMC IL-6 and IL-1β concentrations were increased at 0.05-0.2 mg/ml C LE but decreased at 0.4 mg/ml C LE (p < 0.0001). In THP-1 cells, C LE (0.2-0.8 mg/ml) decreased IL-1β and IL-6 whereas increased IL-10 levels (p < 0.0001). In both cell lines, C LE (0.05-0.2 mg/ml, 24 and 72 h) increased GSH concentrations (p < 0.0001). At 24 h, caspase (-9, -3/7) activities was increased by C LE (0.05-0.8 mg/ml) in PBMC's whereas decreased by C LE (0.2-0.4 mg/ml) in THP-1 cells (p < 0.0001). At 72 h, C LE (0.05-0.8 mg/ml) decreased caspase (-9, -3/7) activities and ATP levels in both cell lines (p < 0.0001). In PBMC's and THP-1 cells, C LE proved to effectively modulate antioxidant activity, inflammatory cytokines and cell death. In THP-1 cells, C LE decreased pro-inflammatory cytokine levels whereas it increased anti-inflammatory cytokine levels which may alleviate cancer cachexia.

  13. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10-100 μg mL(-1) attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL(-1)). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  14. Regulation of the macrophage oxytocin receptor in response to inflammation

    PubMed Central

    Szeto, Angela; Sun-Suslow, Ni; Mendez, Armando J.; Hernandez, Rosa I.; Wagner, Klaus V.

    2017-01-01

    It has been demonstrated that the neuropeptide oxytocin (OT) attenuates oxidative stress and inflammation in macrophages. In the current study, we examined the role of inflammation on the expression of the oxytocin receptor (OXTR). We hypothesized that OXTR expression is increased during the inflammation through a nuclear factor-κB (NF-κB)-mediated pathway, thus responding as an acute-phase protein. Inflammation was induced by treating macrophages (human primary, THP-1, and murine) with lipopolysaccharide (LPS) and monitored by expression of IL-6. Expression of OXTR and vasopressin receptors was assessed by qPCR, and OXTR expression was confirmed by immunoblotting. Inflammation upregulated OXTR transcription 10- to 250-fold relative to control in THP-1 and human primary macrophages and increased OXTR protein expression. In contrast, vasopressin receptor-2 mRNA expression was reduced following LPS treatment. Blocking NF-κB activation prevented the increase in OXTR transcription. OT treatment of control cells and LPS-treated cells increased ERK1/2 phosphorylation, demonstrating activation of the OXTR/Gαq/11 signaling pathway. OT activation of OXTR reduced secretion of IL-6 in LPS-activated macrophages. Collectively, these findings suggest that OXTR is an acute-phase protein and that its increased expression is regulated by NF-κB and functions to attenuate cellular inflammatory responses in macrophages. PMID:28049625

  15. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    PubMed Central

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S.; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K.; Dikshit, Madhu; Barthwal, Manoj K.

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia. PMID:27504095

  16. CHOP or THP-COP regimens in the treatment of newly diagnosed peripheral T-cell lymphoma, not otherwise specified: a comparison of doxorubicin and pirarubicin.

    PubMed

    Shibata, Yuhei; Hara, Takeshi; Kasahara, Senji; Yamada, Toshiki; Sawada, Michio; Mabuchi, Ryoko; Matsumoto, Takuro; Nakamura, Nobuhiko; Nakamura, Hiroshi; Ninomiya, Soranobu; Kitagawa, Junichi; Kanemura, Nobuhiro; Kito, Yusuke; Goto, Naoe; Miyazaki, Tatsuhiko; Takami, Tsuyoshi; Takeuchi, Tamotsu; Shimizu, Masahito; Tsurumi, Hisashi

    2017-06-01

    The CHOP regimen consisting of cyclophosphamide, doxorubicin (DOX), vincristine and prednisolone has been the most used regimen for peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS). Pirarubicin [tetrahydropyranyladriamycin (THP)], a derivative of DOX, is an anthracycline with reportedly less cardiotoxicity than DOX. Here, we confirmed the efficacy of THP-COP using THP instead of DOX in the treatment of PTCL-NOS. The study protocol employed a retrospective, consecutive entry design. We retrospectively analysed 56 patients with PTCL-NOS who had received THP-COP or CHOP. These regimens were performed every 21 days. Twenty-nine patients received THP-COP, and 27 received CHOP. There were no significant differences in known prognostic factors, including in the International Prognostic Index (IPI) and the prognostic index for T-cell lymphoma (PIT), between the two groups. Complete remission rates in patients with THP-COP and CHOP were 52% in both groups; the 3-year overall survival (OS) rates were 67% and 52% (p = 0.074), and the 3-year progression-free survival (PFS) rates were 51% and 29% (p = 0.070), respectively. In patients with low IPI (low or low-intermediate), THP-COP had significantly better 3-year OS (100% vs. 64%; p < 0.001) and 3-year PFS (75% vs. 33%; p < 0.05) than CHOP. Similar differences between THP-COP and CHOP were observed in patients with a low PIT (groups 1 or 2). Our study showed that THP-COP produced results equivalent to CHOP regarding efficacy and safety in patients with PTCL-NOS. In patients with low IPI or PIT, THP-COP resulted in significantly better prognosis. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    PubMed

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Compensatory Internalization of Pma1 in V-ATPase Mutants in Saccharomyces cerevisiae Requires Calcium- and Glucose-Sensitive Phosphatases.

    PubMed

    Velivela, Swetha Devi; Kane, Patricia M

    2018-02-01

    Loss of V-ATPase activity in organelles, whether through V-ATPase inhibition or V-ATPase ( vma ) mutations, triggers a compensatory downregulation of the essential plasma membrane proton pump Pma1 in Saccharomyces cerevisiae We have previously determined that the α-arrestin Rim8 and ubiquitin ligase Rsp5 are essential for Pma1 ubiquination and endocytosis in response to loss of V-ATPase activity. Here, we show that Pma1 endocytosis in V-ATPase mutants does not require Rim101 pathway components upstream and downstream of Rim8, indicating that Rim8 is acting independently in Pma1 internalization. We find that two phosphatases, the calcium-responsive phosphatase calcineurin and the glucose-sensitive phosphatase Glc7 (PP1), and one of the Glc7 regulatory subunits Reg1, exhibit negative synthetic genetic interactions with vma mutants, and demonstrate that both phosphatases are essential for ubiquitination and endocytic downregulation of Pma1 in these mutants. Although both acute and chronic loss of V-ATPase activity trigger the internalization of ∼50% of surface Pma1, a comparable reduction in Pma1 expression in a pma1-007 mutant neither compensates for loss of V-ATPase activity nor stops further Pma1 endocytosis. The results indicate that the cell surface level of Pma1 is not directly sensed and that internalized Pma1 may play a role in compensating for loss of V-ATPase-dependent acidification. Taken together, these results provide new insights into cross talk between two major proton pumps central to cellular pH control. Copyright © 2018 by the Genetics Society of America.

  19. Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation.

    PubMed

    Dai, Yao; Cao, Yongxiang; Zhang, Zhigao; Vallurupalli, Srikanth; Mehta, Jawahar L

    2017-02-01

    Xanthine oxidase catalyzes the oxidation of xanthine to uric acid. This process generates excessive reactive oxygen species (ROS) that play an important role in atherogenesis. Recent studies show that LRR and PYD domains-containing protein 3 (NLRP3), a component of the inflammasome, may be involved in the formation of foam cells, a hallmark of atherosclerosis. This study was designed to study the role of various scavenger receptors and NLRP3 inflammasome in xanthine oxidase and uric acid-induced foam cell formation. Human vascular smooth muscle cells (VSMCs) and THP-1 macrophages were treated with xanthine oxidase or uric acid. Xanthine oxidase treatment (of both VSMCs and THP-1 cells) resulted in foam cell formation in concert with generation of ROS and expression of cluster of differentiation 36 (CD36) and oxidized low density lipoprotein (lectin-like) receptor 1 (LOX-1), but not of scavenger receptor A (SRA). Uric acid treatment resulted in foam cell formation, ROS generation and expression of CD36, but not of LOX-1 or SRA. Further, treatment of cells with xanthine oxidase, but not uric acid, activated NLRP3 and its downstream pro-inflammatory signals- caspase-1, interleukin (IL)-1β and IL-18. Blockade of LOX-1 or NLRP3 inflammasome with specific siRNAs reduced xanthine oxidase-induced foam cell formation, ROS generation and activation of NLRP3 and downstream signals. Xanthine oxidase induces foam cell formation in large part through activation of LOX-1 - NLRP3 pathway in both VSMCs and THP-1 cells, but uric acid-induced foam cell formation is exclusively through CD36 pathway. Further, LOX-1 activation is upstream of NLRP3 activation. Graphical Abstract Steps in the formation of foam cells in response to xanthine oxidase and uric acid. Xanthine oxidase stimulates LOX-1 expression on the cell membrane of macrophages and vascular smooth muscle cells (VSMCs) and increases generation of ROS, which activate NLRP3 inflammasome and downstream pro-inflammatory mediators such as Caspase-1, IL-1β and IL-18. Xanthine oxidase also induces CD36 expression. Activation of both LOX-1 and CD36 (LOX-1> > CD36) participates in the transformation of macrophages and VSMCs into foam cells. Uric acid formed from xanthine-xanthine oxidase interaction stimulates CD36 expression and triggers foam cell formation independent of NLRP3 activation.

  20. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line.

    PubMed

    Mohammadi, Saeed; Seyedhosseini, Fakhri Sadat; Behnampour, Nasser; Yazdani, Yaghoub

    2017-10-01

    The role of aryl hydrocarbon receptor (AhR) in carcinogenesis has been studied recently. Indole-3-carbinol (I3C) is an AhR agonist and a potential anticancer agent. Here, we investigated the effects of I3C on cell cycle progression and apoptosis through activation of AhR on THP-1 acute myeloid leukemia (AML) cell line. MTT viability assay was used to measure the cytotoxic effects of I3C on THP-1 cells. Apoptosis and cell cycle assays were investigated using flow cytometry. Real time RT-PCR was conducted to measure the alterations in the expression of AhR gene, key genes associated with AhR activation (IL1β and CYP1A1) and major genes involved in cell cycle regulation and apoptosis including P27, P21, CDK2, P53, BCL2 and FasR. Our findings revealed that I3C inhibits the proliferation of THP-1 cells in a dose- and time-dependent manner with minimal toxicity over normal monocytes. The AhR target genes (CYP1A1, IL1β) were overexpressed upon I3C treatment (p < .05 to p < .001). The antiproliferative effects of I3C were in association with programed cell death. I3C downregulated BCL2 and upregulated FasR in THP-1 cells (p < .05 to p < .001). G1 cell cycle arrest was also observed using flow cytometry. G1-acting cell cycle genes (P21, P27 and P53) were overexpressed (p < .05 to p < .001), while CDK2 was downregulated upon I3C treatment (p < .01 to p < .001). I3C could exert its antileukemic effects through AhR activation which is associated with programed cell death and G1 cell cycle arrest in a dose- and time-dependent manner. Therefore, AhR could be targeted as a novel treatment possibility in AML.

  1. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like proteinmore » (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.« less

  2. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection.

    PubMed

    Komi, Komi Koukoura; Ge, Yu-Mei; Xin, Xiao-Yang; Ojcius, David M; Sun, Dexter; Hu, Wei-Lin; Zhao, Xin; Lin, Xu'ai; Yan, Jie

    2015-01-01

    Pathogenic Leptospira species are the causative agents of leptospirosis, a global zoonotic infectious disease. Toxin-antitoxin (TA) modules have been confirmed as stress-response elements that induce prokaryotic and eukaryotic cell-growth arrest or death, but their role in the virulence of Leptospira has not been reported. Here, we confirmed that all the tested leptospiral strains had the chpIK and mazEF TA modules with highly-conserved sequences. The transcription and expression of the chpI, chpK, mazE, and mazF genes of Leptospira interrogans strain Lai were significantly increased during infection of phorbol 12-myristate 13-acetate-induced human THP-1 macrophages. The toxic ChpK and MazF but not the antitoxic ChpI and MazE proteins were detectable in the cytoplasmic fraction of leptospire-infected THP-1 cells, indicating the external secretion of ChpK and MazF during infection. Transfection of the chpK or mazF gene caused decreased viability and necrosis in THP-1 cells, whereas the chpI or mazE gene transfection did not affect the viability of THP-1 cells but blocked the ChpK or MazF-induced toxicity. Deletion of the chpK or mazF gene also decreased the late-apoptotic and/or necrotic ratios of THP-1 cells at the late stages of infection. The recombinant protein MazF (rMazF) cleaved the RNAs but not the DNAs from Leptospira and THP-1 cells, and this RNA cleavage was blocked by rMazE. However, the rChpK had no RNA or DNA-degrading activity. All these findings indicate that the ChpK and MazF proteins in TA modules are involved in the virulence of L. interrogans during infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Induction of an interleukin-1 receptor (IL-1R) on monocytic cells. Evidence that the receptor is not encoded by a T cell-type IL-1R mRNA.

    PubMed

    Spriggs, M K; Lioubin, P J; Slack, J; Dower, S K; Jonas, U; Cosman, D; Sims, J E; Bauer, J

    1990-12-25

    Primary human monocytes and the human monocytic cell line THP-1 were induced to express receptors for interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Treatment of primary monocytes with dexamethasone resulted in a 10-fold increase in receptor number over untreated cells, to approximately 2,000 receptors/cell. Treatment of THP-1 cells with phorbol ester followed by prostaglandin E2 and dexamethasone resulted in the expression of approximately 30,000 receptors/cell. Competitive binding assays on THP-1 cells showed that both IL-1 alpha and IL-1 beta bind to the same receptor. The monocyte IL-1R is significantly smaller (63 kDa) than the T cell IL-1R (80 kDa) and is immunologically distinct. However, induction of monocytes and monocytic cell lines leads to the appearance of an abundant mRNA of approximately 5,000 bases which hybridizes to a cDNA probe from the T cell-type IL-1R. Sequence data obtained from a cDNA clone of this mRNA indicate that the message is identical to the T cell IL-1R mRNA throughout the coding region. A smaller mRNA, also homologous to the T cell IL-1R mRNA, accumulated in induced THP-1 cells and has a shorter 3'-untranslated region than the larger. Data are presented which suggest that neither form of this message encodes the 63-kDa IL-1R, but rather that this protein is the product of a separate nonhomologous mRNA.

  4. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    PubMed Central

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  5. Oxidized Low-Density Lipoprotein Suppresses Expression of Prostaglandin E Receptor Subtype EP3 in Human THP-1 Macrophages

    PubMed Central

    Sui, Xuxia; Liu, Yanmin; Li, Qi; Liu, Gefei; Song, Xuhong; Su, Zhongjing; Chang, Xiaolan; Zhou, Yingbi; Liang, Bin; Huang, Dongyang

    2014-01-01

    EP3, one of four prostaglandin E2 (PGE2) receptors, is significantly lower in atherosclerotic plaques than in normal arteries and is localized predominantly in macrophages of the plaque shoulder region. However, mechanisms behind this EP3 expression pattern are still unknown. We investigated the underlying mechanism of EP3 expression in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages with oxidized low-density lipoprotein (oxLDL) treatment. We found that oxLDL decreased EP3 expression, in a dose-dependent manner, at both the mRNA and protein levels. Moreover, oxLDL inhibited nuclear factor-κB (NF-κB)-dependent transcription of the EP3 gene by the activation of peroxisome proliferator-activated receptor-γ (PPAR-γ). Finally, chromatin immunoprecipitation revealed decreased binding of NF-κB to the EP3 promoter with oxLDL and PPAR-γ agonist treatment. Our results show that oxLDL suppresses EP3 expression by activation of PPAR-γ and subsequent inhibition of NF-κB in macrophages. These results suggest that down-regulation of EP3 expression by oxLDL is associated with impairment of EP3-mediated anti-inflammatory effects, and that EP3 receptor activity may exert a beneficial effect on atherosclerosis. PMID:25333975

  6. Effect of Bee Venom and Its Fractions on the Release of Pro-Inflammatory Cytokines in PMA-Differentiated U937 Cells Co-Stimulated with LPS

    PubMed Central

    Tusiimire, Jonans; Wallace, Jennifer; Woods, Nicola; Dufton, Mark J.; Parkinson, John A.; Abbott, Grainne; Clements, Carol J.; Young, Louise; Park, Jin Kyu; Jeon, Jong Woon; Ferro, Valerie A.; Watson, David G.

    2016-01-01

    The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractions and crude BV without LPS were not significantly different from negative control values. However, co-stimulation of the cells with LPS and Fraction 4 (F-4) induced a 1.6-fold increase in TNF-α level (p < 0.05) compared to LPS alone. Likewise, LPS-induced IL-1β production was significantly synergised in the presence of F-1 (nine-fold), F-2 (six-fold), F-3 (four-fold) and F-4 (two-fold) fractions, but was only slightly enhanced with crude BV (1.5-fold) relative to LPS. Furthermore, the LPS-stimulated production of IL-6 was not significantly increased in cells co-treated with F-2 and F-3, but the organic fraction (F-4) showed an inhibitory effect (p < 0.05) on IL-6 production. The latter was elucidated by NMR spectroscopy and found to contain(Z)-9-eicosen-1-ol. The effects observed with the purified BV fractions were more marked than those obtained with the crude sample. PMID:27104574

  7. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation.

    PubMed

    Benard, Claudine; Cultrone, Antonietta; Michel, Catherine; Rosales, Carlos; Segain, Jean-Pierre; Lahaye, Marc; Galmiche, Jean-Paul; Cherbut, Christine; Blottière, Hervé M

    2010-01-13

    Carrageenan (CGN) is a high molecular weight sulphated polysaccharide derived from red seaweeds. In rodents, its degraded forms (dCGN) can induce intestinal inflammation associated with macrophage recruitment and activation. The aim of this study was: 1) to analyze the size-dependent effects of dCGN on colon inflammation in vivo, and 2) to correlate these effects with monocyte/macrophage proliferation, cytokine production and expression of various cell surface antigens including ICAM-1 adhesion molecule. Peripheral blood monocytes (PBM) and THP-1 monocytic cells were cultured in the presence of either 10 or 40 kDa, dCGN. The 40 kDa, but not the 10 kDa dCGN, induced colitis in in vivo. Degraded CGN inhibited THP-1 cell proliferation in vitro, arresting the cells in G1 phase. In addition, dCGN increased ICAM-1 expression in both PBM and THP-1 cells with a major effect seen after 40 kDa dCGN exposure. Also, dCGN stimulated monocyte aggregation in vitro that was prevented by incubation with anti-ICAM-1 antibody. Finally, dCGN stimulated TNF-alpha expression and secretion by both PBM and THP-1 cells. All these effects were linked to NF-kappaB activation. These data strongly suggest that the degraded forms of CGN have a pronounced effect on monocytes, characteristic of an inflammatory phenotype.

  8. In vitro immunotoxicity assessment of culture-derived extracellular vesicles in human monocytes

    PubMed Central

    Rosas, Lucia E.; Elgamal, Ola A.; Mo, Xiaokui; Phelps, Mitch A.; Schmittgen, Thomas D.; Papenfuss, Tracey L.

    2016-01-01

    The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16–24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated. PMID:27075513

  9. GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway

    PubMed Central

    Wang, Yajing; Lu, Ping; Zhang, Weifeng; Du, Qianming; Tang, Jingjing; Wang, Hong; Lu, Jinrong; Hu, Rong

    2016-01-01

    Nonresolving inflammation is one of the consistent features of the tumor microenvironment in the intestine and plays a critical role in the initiation and development of colon cancer. Here we reported the inhibitory effects of GEN-27, a new derivative of genistein, on the inflammation-related colon cancer cell proliferation and delineated the mechanism of its action. The results indicated that GEN-27 inhibited the proliferation of human colon tumor HCT116 cells stimulated by culture supernatants of LPS-induced human monocytes THP-1 cells and significantly decreased LPS-induced secretion of proinflammatory cytokines interleukin-6 and interleukin-1β in THP-1 cells. The HCT116 cell proliferation elicited by THP-1-conditioned medium could be blocked by the interleukin-1 receptor antagonist (IL-1RA). Further mechanistic study revealed that GEN-27 remarkably inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β in both HCT116 and THP-1 cells. In addition, GEN-27 markedly suppressed the HCT116 cell proliferation stimulated by IL-1β treatment, which was dependent on the inhibition of NF-κB/p65 nuclear localization, as verified by p65 overexpression and BAY 11-7082, an NF-κB inhibitor. Taken together, our findings established that GEN-27 modulated NF-κB signaling pathway involved in inflammation-induced cancer cells proliferation and therefore could be a potential chemopreventive agent against inflammation-associated colon cancer. PMID:27057094

  10. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    PubMed

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Potential role for IL-5 and IL-6 in enhanced IgA secretion by Peyer's patch cells isolated from mice acutely exposed to vomitoxin.

    PubMed

    Yan, D; Zhou, H R; Brooks, K H; Pestka, J J

    1997-09-26

    Dietary exposure to vomitoxin (VT) results in hyperelevated serum IgA and IgA nephropathy in mice. To assess the possible role of cytokines in this IgA dysregulation, the effects of a single oral exposure in B6C3F1 male mice to 0, 5 or 25 mg/kg BW VT on production of IgA and cytokines in Peyer's patch (PP) and spleen cell cultures were evaluated. IgA levels were increased significantly in PP cell cultures prepared from mice at 2 or 24 h after oral exposure to VT and subsequently stimulated with phorbol myristate acetate (PMA) and ionomycin (ION) or with lipopolysaccharide (LPS). Significant effects on IgA production were not observed in spleen cell cultures. Since cytokines such as IL-2, IL-4, IL-5 and IL-6 have been shown to promote IgA production, the effect of the same VT exposure regimen on secretion of these mediators was determined in PP and spleen cultures. Supernatant IL-2 and IL-4 levels were unaffected by the prior treatment of animals with VT. In contrast, IL-5 levels were increased significantly in 7-day PP cell cultures obtained 2 h after VT exposure both with and without PMA + ION exposure but not in other cultures. IL-6 levels were increased significantly in LPS-treated cultures prepared from PP at 2 and 24 h following exposure to VT. IL-6 levels were also elevated significantly in both PMA + ION or LPS treated cultures from spleen isolated at 2 h but not 24 h post VT exposure. To determine whether IL-5 or IL-6 play a role in IgA hyperelevation in vitro, PP and spleen cells from mice obtained 2 h after exposure to 25 mg/kg VT were cultured in the presence of neutralizing cytokine antibodies (Abs) and IgA production was monitored. Consistent with IL-5's previously documented role in IgA production, anti-IL-5 decreased IgA levels to background in cultures of both control and VT-exposed PP or spleen cells in the presence of either PMA + ION or LPS. Similar results were seen with addition of anti-IL-6. IgA levels were decreased to a lesser extent in PP cells cultured with LPS and in spleen cells cultured with PMA + ION from VT-exposed mice to which anti-IL-2 Ab was added. Thus, the potential for enhanced IgA production exists in lymphocytes as early as 2 h and as late as 24 h after a single oral exposure to VT and this may be related to the increased capacity to secrete helper cytokines of T cell and macrophage origin. Taken together, the results suggest that the superinduction of cytokine expression may, in part, be responsible for upregulation of IgA secretion in mice exposed orally to VT.

  12. Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line.

    PubMed

    Popovich, David G; Kitts, David D

    2002-10-01

    Ginsenosides of the 20(S)-protopanaxadiol and 20(S)-protopanaxatriol classifications including the aglycones, protopanaxadiol (PD), protopanaxatriol (PT), and ginsenosides Rh2 and Rh1 were shown to posses characteristic effects on the proliferation of human leukemia cells (THP-1). A similar efficacy was not apparent for ginsenoside Rg3. The concentrations to inhibit 50% of cells (LC50) for PD, Rh2, PT, and Rh1 were 13, 15, 19, and 210 microg/mL, respectively. PD and PT induced DNA fragmentation at the LC50 after 72 h of treatment, compared to Rh2, Rh1, dexamethasone, and untreated cells. Cell-cycle analysis confirmed apoptosis with PD and PT treatment of THP-1 cells resulting in a buildup of sub-G1 cells after 24, 48, and 72 h of treatment. Rh2 and dexamethasone treatments also increased apoptotic cells after 24 h, whereas Rh1 did not. After 48 and 72 h, Rh2, Rh1, and dexamethasone similarly increased apoptosis, but these effects were significantly (P<0.05) lower than those observed for both PD and PT treatments. Furthermore, treatments that produced the largest buildup of apoptotic cells were also found to have the largest release of lactate dehydrogenase. It can be concluded from these studies that the presence of sugars in PD and PT aglycone structures reduces the potency to induce apoptosis, and alternately alter membrane integrity. These cytotoxic effects were different to THP-1 cells than dexamethasone.

  13. Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity.

    PubMed

    Choi, Jin Myung; Kim, Hyun Jung; Lee, Kwang Youl; Choi, Hyun Jin; Lee, Ik-Soo; Kang, Bok Yun

    2009-01-01

    Xanthohumol (XN) is a major chalcone found in hop, which is used to add bitterness and flavor to beer. In this study, we investigated the effects of XN on the production of interlukin-2 (IL-2), a potent T cell growth factor. Treatment with XN significantly increased IL-2 production in mouse EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) in a dose-dependent manner. To further characterize its regulatory mechanism of XN on increased IL-2 production, the effects of XN on IL-2 promoter activity and the activity of several transcription factors modulating IL-2 expression were analyzed. XN enhanced activity of the IL-2 promoter, which contains distal and proximal regulatory elements in PMA/Io-activated EL-4 T cells. Furthermore, the activity of NF-AT and AP-1 was enhanced but NF-kappaB activity was not influenced by XN in PMA/Io-activated EL-4 T cells. These results suggest that XN increased IL-2 production at the transcriptional levels via the up-regulation of NF-AT and AP-1 in PMA/Io-activated EL-4 T cells.

  14. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were usedmore » to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co-cultures. • Potential new multi-subunit coactivator complexes for AR in CaP bone metastasis.« less

  15. Fibronectin-mediation cell adhesion is required for induction of 92-kDa type IV collagenase/gelatinase (MMP-9) gene expression during macrophage differentiation : the signaling role of protein kinase C-{beta}.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, B.; Laouar, A.; Huberman, E.

    1998-05-08

    Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-betamore » -deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor {alpha}5{beta}1 integrin. HL-525 cells, which constitutively display high levels of surface {alpha}5{beta}1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that {alpha}5{beta}1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.« less

  16. Inhibition of P2X Receptors Protects Human Monocytes against Damage by Leukotoxin from Aggregatibacter actinomycetemcomitans and α-Hemolysin from Escherichia coli

    PubMed Central

    Skals, Marianne

    2016-01-01

    α-Hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans are important virulence factors in ascending urinary tract infections and aggressive periodontitis, respectively. The extracellular signaling molecule ATP is released immediately after insertion of the toxins into plasma membranes and, via P2X receptors, is essential for the erythrocyte damage inflicted by these toxins. Moreover, ATP signaling is required for the ensuing recognition and phagocytosis of damaged erythrocytes by the monocytic cell line THP-1. Here, we investigate how these toxins affect THP-1 monocyte function. We demonstrate that both toxins trigger early ATP release and a following increase in the intracellular Ca2+ concentration ([Ca2+]i) in THP-1 monocytes. The HlyA- and LtxA-induced [Ca2+]i response is diminished by the P2 receptor antagonist in a pattern that fits the functional P2 receptor expression in these cells. Both toxins are capable of lysing THP-1 cells, with LtxA being more aggressive. Either desensitization or blockage of P2X1, P2X4, or P2X7 receptors markedly reduces toxin-induced cytolysis. This pattern is paralleled in freshly isolated human monocytes from healthy volunteers. Interestingly, only a minor fraction of the toxin-damaged THP-1 monocytes eventually lyse. P2X7 receptor inhibition generally prevents cell damage, except from a distinct cell shrinkage that prevails in response to the toxins. Moreover, we find that preexposure to HlyA preserves the capacity of THP-1 monocytes to phagocytose damaged erythrocytes and may induce readiness to discriminate between damaged and healthy erythrocytes. These findings suggest a new pharmacological target for protecting monocytes during exposure to pore-forming cytolysins during infection or injury. PMID:27528275

  17. Phorbol ester inhibits arginine vasopressin activation of phospholipase C and promotes contraction of, and prostaglandin production by, cultured mesangial cells.

    PubMed Central

    Troyer, D A; Gonzalez, O F; Douglas, J G; Kreisberg, J I

    1988-01-01

    We have previously shown that arginine vasopressin (AVP) causes a rapid (5-10 min) contractile response in cultured mesangial cells plated onto slippery substrata such as poly(hydroxyethyl methacrylate)-coated dishes. This contraction is associated with an increase in the levels of inositol trisphosphate (InsP3), diacylglycerol and prostaglandin E2 (PGE2). We now report that agents which are known to activate protein kinase C, i.e. phorbol 12-myristate 13-acetate (PMA) and oleolylacetylglycerol (OAG), also contract mesangial cells; however, the contractile response is slow to develop (15-30 min). The inactive phorbol ester, 4 alpha -phorbol 12,13-didecanoate, did not elicit contraction. PMA and OAG did not increase InsP3 release in mesangial cells. However, pretreatment of mesangial cells with PMA inhibited the formation of InsP3. This inhibition could not be explained by a reduction in AVP binding since PMA treatment did not influence the number or affinity of [3H]AVP binding sites in intact cells. PMA alone stimulated PGE2 production in mesangial cells to a degree similar to AVP. Contrary to what was seen with InsP3, pretreatment of cells with PMA before AVP had an additive effect on arachidonic acid release and PGE2 production. Thus, there is an apparent dissociation of phospholipase C activity from that of phospholipase A2. Images Fig. 1. Fig. 2. PMID:3046605

  18. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    PubMed

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  19. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    PubMed Central

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  20. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    NASA Astrophysics Data System (ADS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  1. THP-1 monocytes but not macrophages as a potential alternative for CD34{sup +} dendritic cells to identify chemical skin sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambrechts, Nathalie; Verstraelen, Sandra; Lodewyckx, Hanne

    2009-04-15

    Early detection of the sensitizing potential of chemicals is an emerging issue for chemical, pharmaceutical and cosmetic industries. In our institute, an in vitro classification model for prediction of chemical-induced skin sensitization based on gene expression signatures in human CD34{sup +} progenitor-derived dendritic cells (DC) has been developed. This primary cell model is able to closely mimic the induction phase of sensitization by Langerhans cells in the skin, but it has drawbacks, such as the availability of cord blood. The aim of this study was to investigate whether human in vitro cultured THP-1 monocytes or macrophages display a similar expressionmore » profile for 13 predictive gene markers previously identified in DC and whether they also possess a discriminating capacity towards skin sensitizers and non-sensitizers based on these marker genes. To this end, the cell models were exposed to 5 skin sensitizers (ammonium hexachloroplatinate IV, 1-chloro-2,4-dinitrobenzene, eugenol, para-phenylenediamine, and tetramethylthiuram disulfide) and 5 non-sensitizers (L-glutamic acid, methyl salicylate, sodium dodecyl sulfate, tributyltin chloride, and zinc sulfate) for 6, 10, and 24 h, and mRNA expression of the 13 genes was analyzed using real-time RT-PCR. The transcriptional response of 7 out of 13 genes in THP-1 monocytes was significantly correlated with DC, whereas only 2 out of 13 genes in THP-1 macrophages. After a cross-validation of a discriminant analysis of the gene expression profiles in the THP-1 monocytes, this cell model demonstrated to also have a capacity to distinguish skin sensitizers from non-sensitizers. However, the DC model was superior to the monocyte model for discrimination of (non-)sensitizing chemicals.« less

  2. Rapid kit-based (68)Ga-labelling and PET imaging with THP-Tyr(3)-octreotate: a preliminary comparison with DOTA-Tyr(3)-octreotate.

    PubMed

    Ma, Michelle T; Cullinane, Carleen; Waldeck, Kelly; Roselt, Peter; Hicks, Rodney J; Blower, Philip J

    2015-12-01

    Ge/(68)Ga generators provide an inexpensive source of a PET isotope to hospitals without cyclotron facilities. The development of new (68)Ga-based molecular imaging agents and subsequent clinical translation would be greatly facilitated by simplification of radiochemical syntheses. We report the properties of a tris(hydroxypyridinone) conjugate of the SSTR2-targeted peptide, Tyr(3)-octreotate (TATE), and compare the (68)Ga-labelling and biodistribution of [(68)Ga(THP-TATE)] with the clinical radiopharmaceutical [(68)Ga(DOTATATE)]. A tris(hydroxypyridinone) with a pendant isothiocyanate group was conjugated to the primary amine terminus of H2N-PEG2-Lys(iv-Dde)(5)-TATE, and the resulting conjugate was deprotected to provide THP-TATE. THP-TATE was radiolabelled with (68)Ga(3+) from a (68)Ge/(68)Ga generator. In vitro uptake was assessed in SSTR2-positive 427-7 cells and SSTR2-negative 427 (parental) cells. Biodistribution of [(68)Ga(THP-TATE)] was compared with that of [(68)Ga(DOTATATE)] in Balb/c nude mice bearing SSTR2-positive AR42J tumours. PET scans were obtained 1 h post-injection, after which animals were euthanised and tissues/organs harvested and counted. [(68)Ga(THP-TATE)] was radiolabelled and formulated rapidly in <2 min, in ≥95 % radiochemical yield at pH 5-6.5 and specific activities of 60-80 MBq nmol(-1) at ambient temperature. [(68)Ga(THP-TATE)] was rapidly internalised into SSTR2-positive cells, but not SSTR2-negative cells, and receptor binding and internalisation were specific. Animals administered [(68)Ga(THP-TATE)] demonstrated comparable SSTR2-positive tumour activity (11.5 ± 0.6 %ID g(-1)) compared to animals administered [(68)Ga(DOTATATE)] (14.4 ± 0.8 %ID g(-1)). Co-administration of unconjugated Tyr(3)-octreotate effectively blocked tumour accumulation of [(68)Ga(THP-TATE)] (2.7 ± 0.6 %ID g(-1)). Blood clearance of [(68)Ga(THP-TATE)] was rapid and excretion was predominantly renal, although compared to [(68)Ga(DOTATATE)], [(68)Ga(THP-TATE)] exhibited comparatively longer kidney retention. Radiochemical synthesis of [(68)Ga(THP-TATE)] is significantly faster, proceeds under milder conditions, and requires less manipulation than that of [(68)Ga(DOTATATE)]. A (68)Ga-labelled tris(hydroxypyridinone) conjugate of Tyr(3)-octreotate demonstrates specificity and targeting affinity for SSTR2 receptors, with comparable in vivo targeting affinity to the clinical PET tracer, [(68)Ga(DOTATATE)]. Thus, peptide conjugates based on tris(hydroxypyridinones) are conducive to translation to kit-based preparation of PET tracers, enabling the expansion and adoption of (68)Ga PET in hospitals and imaging centres without the need for costly automated synthesis modules.

  3. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chen-Si; School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; He, Pei-Juin

    2010-06-25

    Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cellsmore » and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLC{beta}2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLC{beta}2/Ca2+ signal transduction in endothelial cells.« less

  4. Regulation of sphingomyelin phosphodiesterase acid-like 3A gene (SMPDL3A) by liver X receptors.

    PubMed

    Noto, Paul B; Bukhtiyarov, Yuri; Shi, Meng; McKeever, Brian M; McGeehan, Gerard M; Lala, Deepak S

    2012-10-01

    Liver X receptor (LXR) α and LXRβ function as physiological sensors of cholesterol metabolites (oxysterols), regulating key genes involved in cholesterol and lipid metabolism. LXRs have been extensively studied in both human and rodent cell systems, revealing their potential therapeutic value in the contexts of atherosclerosis and inflammatory diseases. The LXR genome landscape has been investigated in murine macrophages but not in human THP-1 cells, which represent one of the frequently used monocyte/macrophage cell systems to study immune responses. We used a whole-genome screen to detect direct LXR target genes in THP-1 cells treated with two widely used LXR ligands [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)-ethyl]phenyl]-benzenesulfonamide (T0901317) and 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy] phenylacetic acid hydrochloride (GW3965)]. This screen identified the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene as a novel LXR-regulated gene, with an LXR response element within its promoter. We investigated the regulation of SMPDL3A gene expression by LXRs across several human and mouse cell types. These studies indicate that the induction of SMPDL3A is LXR-dependent and is restricted to human blood cells with no induction observed in mouse cellular systems.

  5. Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection.

    PubMed

    Sabharwal, Harshana; Cichon, Christoph; Ölschläger, Tobias A; Sonnenborn, Ulrich; Schmidt, M Alexander

    2016-09-01

    Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Actinobacillus actinomycetemcomitans Y4 capsular polysaccharide induces IL-1β mRNA expression through the JNK pathway in differentiated THP-1 cells

    PubMed Central

    Iwata, T; Mitani, A; Ishihara, Y; Tanaka, S; Yamamoto, G; Kikuchi, T; Naganawa, T; Matsumura, Y; Suga, T; Koide, M; Sobue, T; Suzuki, T; Noguchi, T

    2005-01-01

    Capsular polysaccharide from Actinobacillus actinomycetemcomitans Y4 (Y4 CP) induces bone resorption in a mouse organ culture system and osteoclast formation in mouse bone marrow cultures, as reported in previous studies. We also found that Y4 CP inhibits the release of interleukin (IL)-6 and IL-8 from human gingival fibroblast (HGF). Thus Y4 CP induces various responses in localized tissue and leads to the secretion of several cytokines. However, the effects of Y4 CP on human monocytes/macrophages are still unclear. In this study, THP-1 cells, which are a human monocytic cell line, were stimulated with Y4 CP, and we measured gene expression in inflammatory cytokine and signal transduction pathways. IL-1β and tumour necrosis factor (TNF)-α mRNA were induced from Y4 CP-treated THP-1 cells. IL-1β mRNA expression was increased according to the dose of Y4 CP, and in a time-dependent manner. IL-1β mRNA expression induced by Y4 CP (100 µg/ml) was approximately 7- to 10-fold greater than that in the control by real-time PCR analysis. Furthermore, neither PD98059, a specific inhibitor of extracellular signal-regulated kinase nor SB203580, a specific inhibitor of p38 kinase prevented the IL-1β expression induced by Y4 CP. However, JNK Inhibitor II, a specific inhibitor of c-Jun N-terminal kinase (JNK) prevented the IL-1β mRNA expression induced by Y4 CP in a concentration-dependent manner. These results indicate that Y4 CP-mediated JNK pathways play an important role in the regulation of IL-1β mRNA. Therefore, Y4 CP-transduced signals for IL-1β induction in the antibacterial action of macrophages may provide a therapeutic strategy for periodontitis. PMID:15996190

  7. Regulatory elements involved in constitutive and phorbol ester-inducible expression of the plasminogen activator inhibitor type 2 gene promoter.

    PubMed Central

    Cousin, E; Medcalf, R L; Bergonzelli, G E; Kruithof, E K

    1991-01-01

    Gene transcription rates and mRNA levels of plasminogen activator inhibitor type 2 (PAI-2) are markedly induced by the tumor promoting agent phorbol 12-myristate 13-acetate (PMA) in human HT1080 fibrosarcoma cells. To identify promoter elements required for basal-, and phorbol ester-inducible expression, deletion mutants of the PAI-1 promoter fused to the chloramphenicol acetyl transferase (CAT) reporter gene, were transiently expressed in HT1080 cells. Constitutive CAT activity was expressed from constructs containing more than 215 bp of promoter sequence, whereas deletion to position -91 bp abolished CAT gene expression. Treatment of transfected cells with PMA resulted in a three- to ten-fold increase in CAT expression from all constructs except from the construct shortened to position -91. DNAse1 protection analysis of the promoter region between -215 and the transcription initiation site revealed numerous protected regions, including two AP1-like binding sites (AP1a and AP1b) and one CRE-like element. Site-directed mutagenesis of the AP1a site or of the CRE-like site resulted in the loss of basal CAT activity and abolished the PMA effect, whereas mutagenesis of AP1b only partially inhibited basal and PMA-mediated expression. Our results suggest that the PAI-2 promoter contains at least two elements required for basal gene transcription and PMA-mediated induction. Images PMID:1650454

  8. SOX12: a novel potential target for acute myeloid leukaemia.

    PubMed

    Wan, Haixia; Cai, Jiayi; Chen, Fangyuan; Zhu, Jianyi; Zhong, Jihua; Zhong, Hua

    2017-02-01

    The role of SRY-related high-mobility-group box (SOX) 12 in leukaemia progression and haematopoiesis remains elusive. This study aimed to examine the expression and function of SOX12 in acute myeloid leukaemia (AML) using human myeloid leukaemia samples and the acute myeloid cell line THP1. Mononuclear cells were isolated from the bone marrow of AML patients and healthy donors. SOX12 expression in haematopoietic cells was evaluated by reverse transcription polymerase chain reaction (RT-PCR). SOX12 short hairpin RNAs (shRNAs) were transduced into THP1 cells, and gene knockdown was confirmed by quantitative RT-PCR and Western blot analysis. SOX12 was preferentially expressed in CD34 + cells in AML patients. The THP1 cells transduced with SOX12 shRNAs exhibited significantly reduced SOX12 expression and cell proliferation. SOX12 knockdown had no effect on apoptosis, but it induced cell cycle arrest at G1 phase and reduced the number of colonies. The transduced THP1 and primary AML cells were reconstituted in non-obese diabetic-severe combined immunodeficient (NOD/SCID) mice, and their numbers were significantly reduced 6-12 weeks after transplantation. The mRNA and protein levels of β-catenin were significantly diminished following SOX12 knockdown, accompanied by a decrease in TCF/Wnt activity. SOX12 may be involved in leukaemia progression by regulating the expression of β-catenin and then interfering with TCF/Wnt pathway, which may be a target for AML. © 2016 John Wiley & Sons Ltd.

  9. Wine polyphenols exert antineoplasic effect on androgen resistant PC-3 cell line through the inhibition of the transcriptional activity of COX-2 promoter mediated by NF-kβ.

    PubMed

    Ferruelo, A; de Las Heras, M M; Redondo, C; Ramón de Fata, F; Romero, I; Angulo, J C

    2014-09-01

    Mediterranean diet may play a role in the prevention of prostate cancer (PCa) development and progression. Cyclooxygenase-2 (COX-2) expression is associated with increased cellular proliferation, prevents apoptosis and favors tumor invasion. We intend to clarify whether resveratrol and other polyphenols effectively inhibit COX-2 activity and induce apoptosis in hormone-resistant PC-3 cell line. PC-3 cells were cultured and treated with different concentrations of gallic acid, tannic acid, quercetin, and resveratrol in presence of phorbol myristate acetate (PMA; 50 μg/ml) that induces COX-2 expression. Total RNA was extracted and COX-2 expression was analyzed by relative quantification real-time PCR (ΔΔCt method). COX-2 activity was determined by PGE-2 detection using ELISA. Caspase 3/7 luminescence assay was used to disclose apoptosis. Transitory transfection with short human COX-2 (phPES2 -327/+59) and p5xNF-kβ-Luc plasmids determined COX-2 promoter activity and specifically that dependant of NF-kβ. COX-2 expression was not modified in media devoid of PMA. However, under PMA induction tannic acid (2.08 ±.21), gallic acid (2.46 ±.16), quercetin (1.78 ±.14) and resveratrol (1.15 ±.16) significantly inhibited COX-2 mRNA with respect to control (3.14 ±.07), what means a 34%, 23%, 46% and 61% reduction, respectively. The inhibition in the levels of PGE-2 followed a similar pattern. All compounds studied induced apoptosis at 48 h, although at a different rate. PMA caused a rise in activity 7.4 ±.23 times phPES2 -327/+59 and 2.0 ±.1 times p5xNF-kβ-Luc at 6h compared to basal. Resveratrol suppressed these effects 17.1 ±.21 and 32.4 ±.18 times, respectively. Similarly, but to a lesser extent, the rest of evaluated polyphenols diminished PMA inductor effect on the activity of both promoters. Polyphenols inhibit transcriptional activity of COX-2 promoter mediated by NF-kβ. This effect could explain, at least in part, the induction of apoptosis in vitro by these substances in castration resistant PCa. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  10. Bilirubin Decreases Macrophage Cholesterol Efflux and ATP-Binding Cassette Transporter A1 Protein Expression.

    PubMed

    Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G

    2017-04-28

    Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line.

    PubMed

    Kulkarni, Nikhil Nitin; Gunnarsson, Hörður Ingi; Yi, Zhiqian; Gudmundsdottir, Steinunn; Sigurjonsson, Olafur E; Agerberth, Birgitta; Gudmundsson, Gudmundur H

    2016-02-01

    Glucocorticoids (GCs) have been extensively used as the mainstream treatment for chronic inflammatory disorders. The persistent use of steroids in the past decades and the association with secondary infections warrants for detailed investigation into their effects on the innate immune system and the therapeutic outcome. In this study, we analyse the effect of GCs on antimicrobial polypeptide (AMP) expression. We hypothesize that GC related side effects, including secondary infections are a result of compromised innate immune responses. Here, we show that treatment with dexamethasone (Dex) inhibits basal mRNA expression of the following AMPs; human cathelicidin, human beta defensin 1, lysozyme and secretory leukocyte peptidase 1 in the THP-1 monocytic cell-line (THP-1 monocytes). Furthermore, pre-treatment with Dex inhibits vitamin D3 induced cathelicidin expression in THP-1 monocytes, primary monocytes and in the human bronchial epithelial cell line BCi NS 1.1. We also demonstrate that treatment with the glucocorticoid receptor (GR) inhibitor RU486 counteracts Dex mediated down-regulation of basal and vitamin D3 induced cathelicidin expression in THP-1 monocytes. Moreover, we confirmed the anti-inflammatory effect of Dex. Pre-treatment with Dex inhibits dsRNA mimic poly IC induction of the inflammatory chemokine IP10 (CXCL10) and cytokine IL1B mRNA expression in THP-1 monocytes. These results suggest that GCs inhibit innate immune responses, in addition to exerting beneficial anti-inflammatory effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Pretreatment with propidium monoazide/sodium lauroyl sarcosinate improves discrimination of infectious waterborne virus by RT-qPCR combined with magnetic separation.

    PubMed

    Lee, Hae-Won; Lee, Hee-Min; Yoon, So-Ra; Kim, Sung Hyun; Ha, Ji-Hyoung

    2018-02-01

    RT-qPCR allows sensitive detection of viral particles of both infectious and noninfectious viruses in water environments, but cannot discriminate non-infectious from infectious viruses. In this study, we aimed to optimize RT-qPCR-based detection of chlorine-inactivated human norovirus (NoV) and pepper mild mottle virus (PMMoV) in suspension by pretreatment with an optimal combination of a monoazide and a detergent that can efficiently penetrate damaged viral capsids. Four methods were compared to determine the efficacy of chlorine disinfection (at 1, 3, and 5 min mg/L): (A) RT-qPCR alone, (B) RT-qPCR assay preceded by magnetic bead separation for enrichment of viral particles (MBS-RT-qPCR), (C) MBS-RT-qPCR assay with pretreatment with propidium monoazide (PMA-MBS-RT-qPCR), and (D) PMA-MBS-RT-qPCR assay with pretreatment with sodium lauroyl sarcosinate (INCI-PMA-MBS-RT-qPCR). On the basis of a PMA optimization assay, 200 and 300 μM PMA were used in subsequent experiments for NoV GII.4 and PMMoV, respectively. Optimal INCI concentrations, having minimal influence on NoV GII.4 and PMMoV, were found to be 0.5% and 0.2% INCI, respectively. For NoV GII.4, there were significant differences (P < 0.05) in log 10 genome copies between the PMA-treated and the INCI + PMA-treated samples (log 10 genome copies differed by 1.11 and 0.59 log 10 for 3 and 5 min mg/L of chlorine, respectively). For PMMoV, INCI induced differences in log 10 genome copies of 0.92, 1.18, and 1.86, for 1, 3, and 5 min mg/L of chlorine, respectively. Overall, the results of this study indicate that an optimal combination of PMA and INCI could be very useful for evaluating disinfection methods in water treatment strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Role of the Chemokine MCP-1 in Sensitization of PKC-Mediated Apoptosis in Prostate Cancer Cells

    DTIC Science & Technology

    2010-02-01

    component. As phorbol esters are strong inducers of gene expression, we analyzed changes in gene expression using Affymetrix microarrays. These studies...were carried out at the UPenn Microarray Facility. We studied the dynamics of changes in gene expression by PMA at different times between 0 and 24 h...after PMA treatment. We identified ~ 5,000 PMA- genes up- or down-regulated by PMA (> 2-fold change), identified early and late genes , and classified

  14. [Distribution diversity of integrins and calcium channels on major human and mouse host cells of Leptospira species].

    PubMed

    Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie

    2012-07-01

    To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.

  15. PKC delta activation increases neonatal rat retinal cells survival in vitro: Involvement of neurotrophins and M1 muscarinic receptors.

    PubMed

    Braga, Luis Eduardo Gomes; Miranda, Renan Lyra; Granja, Marcelo Gomes; Giestal-de-Araujo, Elizabeth; Dos Santos, Aline Araujo

    2018-06-12

    Protein kinase C (PKC) is a family of serine/threonine kinases related to several phenomena as cell proliferation, differentiation and survival. Our previous data demonstrated that treatment of axotomized neonatal rat retinal cell cultures for 48 h with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increases retinal ganglion cells (RGCs) survival. Moreover, this treatment decreases M1 receptors (M1R) and modulates BDNF levels. The aim of this work was to assess the possible involvement of neurotrophins BDNF and NGF in the modulation of M1R levels induced by PKC activation, and its involvement on RGCs survival. Our results show that PMA (50 ng/mL) treatment, via PKC delta activation, modulates NGF, BDNF and M1R levels. BDNF and NGF mediate the decrease of M1R levels induced by PMA treatment. M1R activation is essential to PMA neuroprotective effect on RGCs as telenzepine (M1R selective antagonist) abolished it. Based on our results we suggest that PKC delta activation modulates neurotrophins levels by a signaling pathway that involves M1R activation and ultimately leading to an increase in RGCs survival in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Zhang, Suhua, E-mail: drsuhuangzhang@qq.com

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulationmore » of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell formation by targeting AdipoR2.« less

  17. Development of an in vitro skin sensitization test based on ROS production in THP-1 cells.

    PubMed

    Saito, Kazutoshi; Miyazawa, Masaaki; Nukada, Yuko; Sakaguchi, Hitoshi; Nishiyama, Naohiro

    2013-03-01

    Recently, it has been reported that reactive oxygen species (ROS) produced by contact allergens can affect dendritic cell migration and contact hypersensitivity. The aim of the present study was to develop a new in vitro assay that could predict the skin sensitizing potential of chemicals by measuring ROS production in THP-1 (human monocytic leukemia cell line) cells. THP-1 cells were pre-loaded with a ROS sensitive fluorescent dye, 5-(and 6-)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), for 15min, then incubated with test chemicals for 30min. The fluorescence intensity was measured by flow cytometry. For the skin sensitizers, 25 out of 30 induced over a 2-fold ROS production at more than 90% of cell viability. In contrast, increases were only seen in 4 out of 20 non-sensitizers. The overall accuracy for the local lymph node assay (LLNA) was 82% for 50 chemicals tested. A correlation was found between the estimated concentration showing 2-fold ROS production in the ROS assay and the EC3 values (estimated concentration required to induce positive response) of the LLNA. These results indicated that the THP-1 cell-based ROS assay was a rapid and highly sensitive detection system able to predict skin sensitizing potentials and potency of chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium

    PubMed Central

    Xia, Tian; Hamilton, Raymond F.; Bonner, James C.; Crandall, Edward D.; Elder, Alison; Fazlollahi, Farnoosh; Girtsman, Teri A.; Kim, Kwang; Mitra, Somenath; Ntim, Susana A.; Orr, Galya; Tagmount, Mani; Taylor, Alexia J.; Telesca, Donatello; Tolic, Ana; Vulpe, Christopher D.; Walker, Andrea J.; Wang, Xiang; Witzmann, Frank A.; Wu, Nianqiang; Xie, Yumei; Zink, Jeffery I.; Nel, Andre

    2013-01-01

    Background: Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity. Objectives: Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability. Methods: Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different species (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1β (IL-1β) release] using only THP-1 cells. Results: The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at ≥ 50 μg/mL, but did not induce IL-1β. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1β production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1β production in THP-1 cells, with the original MWCNT producing the most IL-1β. Conclusions: The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity. PMID:23649538

  19. Monocyte-macrophage membrane possesses free radicals scavenging activity: stimulation by polyphenols or by paraoxonase 1 (PON1).

    PubMed

    Rosenblat, M; Elias, A; Volkova, N; Aviram, M

    2013-04-01

    In the current study, we analysed free radicals scavenging activity of monocytes-macrophages in the absence or presence of antioxidants such as polyphenols or paraoxonase 1 (PON1). THP-1 human monocytic cell line, murine J774A.1 macrophages, as well as human primary monocytes have the capability to scavenge free radicals, as measured by the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. This effect (which could be attributed to the cell's membrane) was cell number and incubation time dependent. Upon incubation of J774A.1 macrophages with acetylated LDL (Ac-LDL), with VLDL, or with the radical generator, AAPH, the cells' lipid peroxides content, and paraoxonase 2 (PON2) activity were significantly increased. While non-treated cells decreased DPPH absorbance by 65%, the Ac-LDL-, VLDL- or AAPH-treated cells, decreased it by only 33%, 30%, or 45%, respectively. We next analysed the effect of J774A.1 macrophage enrichment with antioxidants, such as polyphenols or PON1 on the cells' free radicals scavenging activity. Non-treated cells decreased DPPH absorbance by 50%, whereas vitamin E-, punicalagin- or PJ-treated cells significantly further decreased it, by 75%. Similarly, in PON1-treated cells DPPH absorbance was further decreased by 63%, in association with 23% increment in PON1 catalytic activity. In cells under oxidative stress [treated with AAPH-, or with oxidized LDL], PON1 activity was decreased by 31% or 40%, as compared to the activity observed in PON1 incubated with non-treated cells. We conclude that monocytes-macrophages possess free radicals scavenging activity, which is decreased under atherogenic conditions, and increased upon cell enrichment with potent antioxidants such as nutritional polyphenols, or PON1.

  20. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor

    PubMed Central

    Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  1. Generation of choline for acetylcholine synthesis by phospholipase D isoforms

    PubMed Central

    Zhao, Di; Frohman, Michael A; Blusztajn, Jan Krzysztof

    2001-01-01

    Dedication This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. Abstract Background In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. Results PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMA-stimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. Conclusions These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose. PMID:11734063

  2. Frondoside A potentiates the effects of conventional therapeutic agents in acute leukemia.

    PubMed

    Sajwani, F H; Collin, P; Adrian, T E

    2017-12-01

    Acute leukemia is the major cause of mortality in hematological malignancies. Despite improvement of survival with current chemotherapies, patients die from the disease or side-effects of treatment. Thus, new therapeutic agents are needed. Frondoside A is a triterpenoid glycoside originally isolated from the sea cucumber, Cucumaria frondosa that has potent antitumor effects in various cancers. The current study investigated the effects of frondoside A in acute leukemia cell lines alone and in combination with drugs used for this malignancy. This study is the first comparing the efficacy of frondoside A to available conventional drugs. The acute leukemia cell lines used were CCRF-CEM, HL-60 and THP-1. Cells were cultured and treated with different concentrations of vincristine sulphate, asparaginase and prednisolone alone and in combination with frondoside A. The inhibitory concentration 50 (IC 50 ) for each compound was determined for the cell lines. CCRF-CEM cells were very sensitive to frondoside A treatment while HL-60 and THP1 were less sensitive. Frondoside A markedly enhanced the anticancer effects of all of the conventional drugs. Synergistic effects were seen with most of the combinations. Frondoside A may be valuable in the treatment of acute leukemia, particularly when used in combination with current therapeutic drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Aluminium based adjuvants and their effects on mitochondria and lysosomes of phagocytosing cells.

    PubMed

    Ohlsson, Lars; Exley, Christopher; Darabi, Anna; Sandén, Emma; Siesjö, Peter; Eriksson, Håkan

    2013-11-01

    Aluminium oxyhydroxide, Al(OH)3 is one of few compounds approved as an adjuvant in human vaccines. However, the mechanism behind its immune stimulating properties is still poorly understood. In vitro co-culture of an aluminium adjuvant and the human monocytic cell line THP-1 resulted in reduced cell proliferation. Inhibition occurred at concentrations of adjuvant several times lower than would be found at the injection site using a vaccine formulation containing an aluminium adjuvant. Based on evaluation of the mitochondrial membrane potential, THP-1 cells showed no mitochondrial rupture after co-culture with the aluminium adjuvant, instead an increase in mitochondrial activity was seen. The THP-1 cells are phagocytosing cells and after co-culture with the aluminium adjuvant the phagosomal pathway was obstructed. Primary or early phagosomes mature into phagolysosomes with an internal pH of 4.5 - 5 and carry a wide variety of hydrolysing enzymes. Co-culture with the aluminium adjuvant yielded a reduced level of acidic vesicles and cathepsin L activity, a proteolytic enzyme of the phagolysosomes, was almost completely inhibited. THP-1 cells are an appropriate in vitro model in order to investigate the mechanism behind the induction of a phagocytosing antigen presenting cell into an inflammatory cell by aluminium adjuvants. Much information will be gained by investigating the phagosomal pathway and what occurs inside the phagosomes and to elucidate the ultimate fate of phagocytosed aluminium particles. © 2013.

  4. Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells

    PubMed Central

    Choi, In-Wook; Ismail, Hassan Ahmed Hassan Ahmed; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Yuk, Jae-Min; Jo, Eun-Kyeong; Lee, Young-Ha

    2015-01-01

    Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells. PMID:26528819

  5. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes.

    PubMed

    Kloesch, Burkhard; Becker, Tatjana; Dietersdorfer, Elisabeth; Kiener, Hans; Steiner, Guenter

    2013-02-01

    It has recently been reported that the polyphenol curcumin has pronounced anti-carcinogenic, anti-inflammatory and pro-apoptotic properties. This study investigated possible anti-inflammatory and apoptotic effects of curcumin on the human synovial fibroblast cell line MH7A, and on fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis (RA). MH7A cells and RA-FLS were stimulated either with interleukin (IL)-1β or phorbol 12-myristate 13 acetate (PMA), and treated simultaneously or sequentially with increasing concentrations of curcumin. Release of interleukin (IL)-6 and vascular endothelial growth factor (VEGF)-A was quantified by enzyme-linked immunosorbent assays (ELISAs). In MH7A cells, modulation of the transcription factor nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs) such as p38 and extracellular-signal regulated kinase (ERK1/2) were analysed by a reporter gene assay and Western blot, respectively. Pro-apoptotic events were monitored by Annexin-V/7-AAD based assay. Cleavage of pro-caspase-3 and -7 was checked with specific antibodies. Curcumin effectively blocked IL-1β and PMA-induced IL-6 expression both in MH7A cells and RA-FLS. VEGF-A expression could only be detected in RA-FLS and was induced by PMA, but not by IL-1β. Furthermore, curcumin inhibited activation of NF-κB and induced dephosphorylation of ERK1/2. Treatment of FLS with high concentrations of curcumin was associated with a decrease in cell viability and induction of apoptosis. The natural compound curcumin represents strong anti-inflammatory properties and induces apoptosis in FLS. This study provides an insight into possible molecular mechanisms of this substance and suggests it as a natural remedy for the treatment of chronic inflammatory diseases like RA. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Heparin conjugated quantum dots for in vitro imaging applications.

    PubMed

    Maguire, Ciaran Manus; Mahfoud, Omar Kazem; Rakovich, Tatsiana; Gerard, Valerie Anne; Prina-Mello, Adriele; Gun'ko, Yurii; Volkov, Yuri

    2014-11-01

    In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated quantum dots (QDgel) for utilisation in in vitro imaging experiments on live and fixed permeabilised THP-1, A549 and Caco-2 cell lines. Exposure of live THP-1 cells to QDgel/hep resulted in localisation of the QDs to the nucleus of the cells. QDgel/hep show affinity for the nuclear compartment of fixed permeabilised THP-1 and A549 cells but remain confined to cytoplasm of fixed permeabilised Caco-2 cells. It is postulated that heparin binding to the CD11b receptor facilitates the internalisation of the QDs into the nucleus of THP-1 cells. In addition, the heparin layer may reduce the unfavourable thrombogenic nature of quantum dots observed in vivo. In this study, heparin conjugated quantum dots were found to have superior imaging properties compared to its native counterparts. The authors postulate that heparin binding to the CD11b receptor facilitates QD internalization to the nucleus, and the heparin layer may reduce the in vivo thrombogenic properties of quantum dots. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H(+)-ATPase, and one of which is induced by mechanical stress.

    PubMed

    Oufattole, M; Arango, M; Boutry, M

    2000-04-01

    To analyze in detail the multigene family encoding the plasma-membrane H(+)-ATPase (pma) in Nicotiana plumbaginifolia Viv., five new pma genes (pma 5-9) were isolated. Three of these (pma 6, 8, 9) were fully characterized and classified into new and independent subfamilies. Their cell-type expression was followed by the beta-glucuronidase (gusA) reporter-gene method. While the pma8-gusA transgene was not expressed in transgenic tobacco, expression of the two other transgenes (pma6- and pma9-gusA) was found to be restricted to particular cell types. In the vegetative tissues, pma6-gusA expression was limited to the head cells of the leaf short trichomes, involved in secretion, and to the cortical parenchyma of the young nodes where the developing leaves and axillary flowering stalks join the stem. In the latter tissues, gene expression was enhanced by mechanical stress, suggesting that H(+)-ATPase might be involved in the strength of the tissues and their resistance to mechanical trauma. The pma9-gusA transgene was mainly expressed in the apical meristem of adventitious roots and axillary buds as well as in the phloem tissues of the stem, in which expression depended on the developmental stage. In flowers, pma9-gusA expression was limited to the mature pollen grains and the young fertilized ovules, while that of pma6-gusA was identified in most of the organs. Reverse transcription-polymerase chain reaction of leaf and stem RNA confirmed the expression of pma 6 and 9, while pma8 was found to be expressed in both organs at a lower level. In conclusion, although pma 6 and 9 had a more restricted expression pattern than the previously characterized pma genes, they were nevertheless expressed in cell types in which H(+)-ATPase had not been previously detected.

  8. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    PubMed

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. CD200 Positive Human Mesenchymal Stem Cells Suppress TNF-Alpha Secretion from CD200 Receptor Positive Macrophage-Like Cells

    PubMed Central

    Pietilä, Mika; Lehtonen, Siri; Tuovinen, Elina; Lähteenmäki, Kaarina; Laitinen, Saara; Leskelä, Hannu-Ville; Nätynki, Antti; Pesälä, Juha; Nordström, Katrina; Lehenkari, Petri

    2012-01-01

    Human mesenchymal stem cells (hMSCs) display immunosuppressive properties in vitro and the potential has also been transferred successfully to clinical trials for treatment of autoimmune diseases. OX-2 (CD200), a member of the immunoglobulin superfamily, is widely expressed in several tissues and has recently been found from hMSCs. The CD200 receptor (CD200R) occurs only in myeloid-lineage cells. The CD200-CD200R is involved in down-regulation of several immune cells, especially macrophages. The present study on 20 hMSC lines shows that the CD200 expression pattern varied from high (CD200Hi) to medium (CD200Me) and low (CD200Lo) in bone marrow-derived mesenchymal stem cell (BMMSC) lines, whereas umbilical cord blood derived mesenchymal stem cells (UCBMSCs) were constantly negative for CD200. The role of the CD200-CD200R axis in BMMSCs mediated immunosuppression was studied using THP-1 human macrophages. Interestingly, hMSCs showed greater inhibition of TNF-α secretion in co-cultures with IFN-γ primed THP-1 macrophages when compared to LPS activated cells. The ability of CD200Hi BMMSCs to suppress TNF-α secretion from IFN-γ stimulated THP-1 macrophages was significantly greater when compared to CD200Lo whereas UCBMSCs did not significantly reduce TNF-α secretion. The interference of CD200 binding to the CD200R by anti-CD200 antibody weakened the capability of BMMSCs to inhibit TNF-α secretion from IFN-γ activated THP-1 macrophages. This study clearly demonstrated that the efficiency of BMMSCs to suppress TNF-α secretion of THP-1 macrophages was dependent on the type of stimulus. Moreover, the CD200-CD200r axis could have a previously unidentified role in the BMMSC mediated immunosuppression. PMID:22363701

  10. Individual and combined tumoricidal effects of dexamethasone and interferons on human leukocyte cell lines.

    PubMed

    Pan, L Y; Guyre, P M

    1988-02-01

    We investigated the influence of glucocorticoids on two effects of interferons (IFNs) which are thought to relate to their antitumor actions: cytotoxic activity and induction of HLA antigen expression. We treated human myeloid cell lines (U-937, HL-60, THP-1, K-562, and KG-1a), and T-(MOLT-4) and B- (Daudi) lymphoblastic cell lines with concentrations of IFN-alpha, IFN-gamma, and dexamethasone (Dex) which are commonly achieved in the circulation following therapeutic administration. The results show that for every cell line except Daudi, the greatest inhibition of cell growth occurred when IFN-gamma and Dex treatments were combined. The advantage of combined IFN-gamma and Dex treatment over treatment with either agent alone was most dramatic for the three cell lines (U-937, HL-60, and THP-1) which have monocytoid characteristics. There was also more growth inhibition by the combination of IFN-alpha and Dex than by either agent alone for all seven cell lines tested. The induction of HLA antigen expression by IFN-alpha and IFN-gamma, an effect which could increase recognition of the tumor cells by the immune system, was as great or greater in the presence of Dex as in its absence. These results demonstrate that glucocorticoids do not inhibit, and in some cases enhance, two effects of IFNs that appear to be related to their antitumor actions: inhibition of tumor cell proliferation and enhancement of HLA antigen expression.

  11. Coordinated activation of AMP-activated protein kinase, extracellular signal-regulated kinase, and autophagy regulates phorbol myristate acetate-induced differentiation of SH-SY5Y neuroblastoma cells.

    PubMed

    Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir

    2015-04-01

    We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering the autophagic response that counteracts differentiation process. © 2014 International Society for Neurochemistry.

  12. Hydroxyoctadecadienoic acids regulate apoptosis in human THP-1 cells in a PPARγ-dependent manner.

    PubMed

    Vangaveti, Venkat N; Shashidhar, Venkatesh M; Rush, Catherine; Malabu, Usman H; Rasalam, Roy R; Collier, Fiona; Baune, Bernhard T; Kennedy, Richard L

    2014-12-01

    Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP-1 monocytes and adherent THP-1 cells were compared with other C18 fatty acids, LA and α-linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9-HODE (p < 0.01, 30 μM) and 13 HODE (p < 0.01, 30 μM), and the equivalent cell viability was also decreased (p < 0.001). Both 9-HODE and 13-HODE (but not LA or ALA) markedly increased caspase-3/7 activity (p < 0.001) in both monocytes and adherent THP-1 cells, with 9-HODE the more potent. In addition, 9-HODE and 13-HODE both increased Annexin-V labelling of cells (p < 0.001). There was no effect of LA, ALA, or the PPARγ agonist rosiglitazone (1 μM), but the effect of HODEs was replicated with apoptosis-inducer camptothecin (10 μM). Only 9-HODE increased DNA fragmentation. The pro-apoptotic effect of HODEs was blocked by the caspase inhibitor DEVD-CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ-regulated apoptotic effects induced by 9-HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9-HODE and 13-HODE are potent--and specific--regulators of apoptosis in THP-1 cells. Their action is PPARγ-dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.

  13. Myristoylated alanine-rich C kinase substrate-mediated neurotensin release via protein kinase C-delta downstream of the Rho/ROK pathway.

    PubMed

    Li, Jing; O'Connor, Kathleen L; Greeley, George H; Blackshear, Perry J; Townsend, Courtney M; Evers, B Mark

    2005-03-04

    Myristoylated alanine-rich protein kinase C substrate (MARCKS) is a cellular substrate for protein kinase C (PKC). Recently, we have shown that PKC isoforms-alpha and -delta, as well as the Rho/Rho kinase (ROK) pathway, play a role in phorbol 12-myristate 13-acetate (PMA)-mediated secretion of the gut peptide neurotensin (NT) in the BON human endocrine cell line. Here, we demonstrate that activation of MARCKS protein is important for PMA- and bombesin (BBS)-mediated NT secretion in BON cells. Small interfering RNA (siRNA) to MARCKS significantly inhibited, whereas overexpression of wild-type MARCKS significantly increased PMA-mediated NT secretion. Endogenous MARCKS and green fluorescent protein-tagged wild-type MARCKS were translocated from membrane to cytosol upon PMA treatment, further confirming MARCKS activation. MARCKS phosphorylation was inhibited by PKC-delta siRNA, ROKalpha siRNA, and C3 toxin (a Rho protein inhibitor), suggesting that the PKC-delta and the Rho/ROK pathways are necessary for MARCKS activation. The phosphorylation of PKC-delta was inhibited by C3 toxin, demonstrating that the role of MARCKS in NT secretion was regulated by PKC-delta downstream of the Rho/ROK pathway. BON cell clones stably transfected with the receptor for gastrin releasing peptide, a physiologic stimulant of NT, and treated with BBS, the amphibian equivalent of gastrin releasing peptide, demonstrated a similar MARCKS phosphorylation as noted with PMA. BBS-mediated NT secretion was attenuated by MARCKS siRNA. Collectively, these findings provide evidence for novel signaling pathways, including the sequential regulation of MARCKS activity by Rho/ROK and PKC-delta proteins, in stimulated gut peptide secretion.

  14. Effect of phorbol esters on the macrophage-mediated biodegradation of polyurethanes via protein kinase C activation and other pathways.

    PubMed

    McBane, Joanne Eileen; Santerre, J P; Labow, Rosalind

    2009-01-01

    It was previously found that re-seeding monocyte-derived macrophages (MDM) on polycarbonate-based polyurethanes (PCNUs) in the presence of the protein kinase C (PKC) activator phorbol myristate acetate (PMA) inhibited MDM-mediated degradation of PCNUs synthesized with 1,6-hexane diisocyanate (HDI), as well as esterase activity and monocyte-specific esterase (MSE) protein. However, no effect on the degradation of a 4,4'-methylene bisphenyl (MDI)-derived PCNU (MDI321) occurred. This finding suggested that oxidation, a process linked to the PKC pathway, was not activated in the same manner for all PCNUs. In the current study MDM were re-seeded onto the above PCNU surfaces with PMA, PKC-inactive 4alphaPMA and the PKC inhibitor bisindolylmaleimide I hydrochloride (BIM) for 48 h before assaying for PCNU degradation, esterase activity, MSE protein, DNA, cell viability and cell morphology. 4alphaPMA did not alter MDM-mediated HDI PCNU degradation but MDI321 degradation increased in this condition. BIM alone had no effect on any parameter; however, when BIM and PMA were added together, the PMA inhibition of biodegradation, esterase activity and MSE protein was partially reversed for MDM on HDI PCNUs only. Adding PMA to MDM on HDI PCNUs increased intercellular connections, whereas 4alphaPMA or BIM+PMA increased cell size. Although this study demonstrated a role for oxidation via a PKC-activated pathway in MDM-mediated PCNU degradation, phorbol esters appear to also activate non-PKC pathways that have roles in biodegradation. Moreover, the sensitivity to material surface chemistry in the MDM response to each PCNU dictates a multi-factorial degradative process involving alternate material specific oxidative and hydrolytic mechanisms.

  15. Development of PMA real-time PCR method to quantify viable cells of Pantoea agglomerans CPA-2, an antagonist to control the major postharvest diseases on oranges.

    PubMed

    Soto-Muñoz, Lourdes; Teixidó, Neus; Usall, Josep; Viñas, Inmaculada; Crespo-Sempere, Ana; Torres, Rosario

    2014-06-16

    Dilution plating is the quantification method commonly used to estimate the population level of postharvest biocontrol agents, but this method does not permit a distinction among introduced and indigenous strains. Recently, molecular techniques based on DNA amplification such as quantitative real-time PCR (qPCR) have been successfully applied for their high strain-specific detection level. However, the ability of qPCR to distinguish viable and nonviable cells is limited. A promising strategy to avoid this issue relies on the use of nucleic acid intercalating dyes, such as propidium monoazide (PMA), as a sample pretreatment prior to the qPCR. The objective of this study was to optimize a protocol based on PMA pre-treatment samples combined with qPCR to distinguish and quantify viable cells of the biocontrol agent P. agglomerans CPA-2 applied as a postharvest treatment on orange. The efficiency of PMA-qPCR method under the established conditions (30μM PMA for 20min of incubation followed by 30min of LED light exposure) was evaluated on an orange matrix. Results showed no difference in CFU or cells counts of viable cells between PMA-qPCR and dilution plating. Samples of orange matrix inoculated with a mixture of viable/dead cells showed 5.59log10 CFU/ml by dilution plating, 8.25log10 cells/ml by qPCR, and 5.93log10 cells/ml by PMA-qPCR. Furthermore, samples inoculated with heat-killed cells were not detected by dilution plating and PMA-qPCR, while by qPCR was of 8.16log10 cells/ml. The difference in quantification cycles (Cq) among qPCR and PMA-qPCR was approximately 16cycles, which means a reduction of 65,536 fold of the dead cells detected. In conclusion, PMA-qPCR method is a suitable tool for quantify viable CPA-2 cells, which could be useful to estimate the ability of this antagonist to colonize the orange surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Regulation of aromatase activity in bone-derived cells: possible role of mitogen-activated protein kinase.

    PubMed

    Shozu, M; Sumitani, H; Murakami, K; Segawa, T; Yang, H J; Inoue, M

    2001-12-01

    Fetal human osteoblast-like cells and the THP-1 cell line that differentiates into macrophage/osteoblast-like cells in the presence of Vitamin D3 and which possesses high aromatase activity, constitute a useful model with which to study the regulation of aromatase in bone. We showed that dexamethasone (DEX)-induced aromatase activity in the THP-1 cell line is completely suppressed by forskolin and by dibutyryl cAMP. We therefore investigated the contribution of mitogen-activated protein kinase (MAPK) to the regulation of aromatase, because cAMP inhibits MAPK in many cells. We examined the role of MAPK on aromatase activity using PD98059, a selective inhibitor of MEK-1. PD98059 (100 microM) reduced DEX+interleukin (IL)-1beta-induced aromatase activity in human osteoblast-like cells by more than 90%, whereas 50% of the aromatase mRNA concentration was retained compared with the control incubated with DEX+IL-1beta. PD98059 (50 microM) reduced the activity of aromatase in THP-1 cells by 80% without significantly affecting the mRNA level. These results indicated that MAPK plays an important role in aromatase activation at the post-transcriptional level.

  17. Defining a Role for Acid Sphingomyelinase in the p38/Interleukin-6 Pathway*

    PubMed Central

    Perry, David M.; Newcomb, Benjamin; Adada, Mohamad; Wu, Bill X.; Roddy, Patrick; Kitatani, Kazuyuki; Siskind, Leah; Obeid, Lina M.; Hannun, Yusuf A.

    2014-01-01

    Acid sphingomyelinase (ASM) is one of the key enzymes involved in regulating the metabolism of the bioactive sphingolipid ceramide in the sphingolipid salvage pathway, yet defining signaling pathways by which ASM exerts its effects has proven difficult. Previous literature has implicated sphingolipids in the regulation of cytokines such as interleukin-6 (IL-6), but the specific sphingolipid pathways and mechanisms involved in inflammatory signaling need to be further elucidated. In this work, we sought to define the role of ASM in IL-6 production because our previous work showed that a parallel pathway of ceramide metabolism, acid β-glucosidase 1, negatively regulates IL-6. First, silencing ASM with siRNA abrogated IL-6 production in response to the tumor promoter, 4β-phorbol 12-myristate 13-acetate (PMA), in MCF-7 cells, in distinction to acid β-glucosidase 1 and acid ceramidase, suggesting specialization of the pathways. Moreover, treating cells with siRNA to ASM or with the indirect pharmacologic inhibitor desipramine resulted in significant inhibition of TNFα- and PMA-induced IL-6 production in MDA-MB-231 and HeLa cells. Knockdown of ASM was found to significantly inhibit PMA-dependent IL-6 induction at the mRNA level, probably ruling out mechanisms of translation or secretion of IL-6. Further, ASM knockdown or desipramine blunted p38 MAPK activation in response to TNFα, revealing a key role for ASM in activating p38, a signaling pathway known to regulate IL-6 induction. Last, knockdown of ASM dramatically blunted invasion of HeLa and MDA-MB-231 cells through Matrigel. Taken together, these results demonstrate that ASM plays a critical role in p38 signaling and IL-6 synthesis with implications for tumor pathobiology. PMID:24951586

  18. Evaluation of gold nanoparticles biocompatibility: a multiparametric study on cultured endothelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Corsi, Fabio; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2016-03-01

    Colloidal gold nanoparticles (AuNPs) have been considered an established advanced tool in biomedicine thanks to their physicochemical properties combined with nanoscale size ideal for the interrogation of biological systems. However, such properties are believed to be a possible major cause of "unsafety" of these materials. For this reason, increasing attention has been due to assess how AuNPs affect cell behaviour in cultures. In the present work, we investigate the effects of PMA polymer-coated Au@PMA PEGylated (8.9 ± 0.2 nm) or not (6.6 ± 0.6 nm) on HUVECs and macrophages, which are model cell types likely to interact with Au@PMA after systemic administration in vivo, using a multiparametric approach. Testing different NPs concentrations and incubation times, we analysed the effect of such NPs on cell viability, oxidative stress, inflammatory processes, and cell uptake. Our data suggested that Au@PMA reduced the cell viability mostly through oxidative stress and TNF-α production after the uptake by HUVECs and macrophages, respectively. PEGylation conferred improved biocompatibility to Au@PMA in particular, no significant effects on any parameter tested could be observed at a concentration of 20 µg mL-1. This approach allowed us to explore different aspects of cell-NPs interaction and to suggest that these NPs could be potentially used for the in vivo studies.

  19. Does oral supplementation of a fermented papaya preparation correct respiratory burst function of innate immune cells in type 2 diabetes mellitus patients?

    PubMed

    Dickerson, Ryan; Banerjee, Jaideep; Rauckhorst, Adam; Pfeiffer, Douglas R; Gordillo, Gayle M; Khanna, Savita; Osei, Kwame; Roy, Sashwati

    2015-02-01

    Fermented papaya preparation (FPP) is a nutritional supplement reported to act as an antioxidant by scavenging reactive oxygen species (ROS) and removing "bad ROS," while inducing "respiratory burst" production of necessary "good ROS." We sought to investigate the safety of oral administration of FPP (9 g/day, 6 weeks) to T2D patients with regard to its effect on the hyperglycemia status of these patients. Peripheral blood was collected during a baseline visit, followed by subsequent collections both during and after supplementation. Induced "respiratory burst" ROS production was measured at each visit in addition to fasting blood glucose, lipid profile, glycated hemoglobin (HbA1c), and lipid/protein peroxidation. Oral FPP supplementation induced "respiratory burst" in peripheral blood mononuclear cells while not influencing other blood parameters studied. When human monocytic THP-1 cells were supplemented with sugar-based FPP, cellular ATP and NADPH concentrations were increased while matched glucose alone did not produce similar effects, suggesting a glucose-independent component of FPP to be responsible for increasing cellular energetics. THP-1 cells supplemented with FPP also exhibited higher mitochondrial membrane potential (Δψm) and oxygen consumption as compared with cells treated with glucose alone. Taken together, our observations lead to the hypothesis that FPP corrects inducible "respiratory burst" function in type 2 diabetes patients.

  20. R-THP-COP versus R-CHOP in patients younger than 70 years with untreated diffuse large B cell lymphoma: A randomized, open-label, noninferiority phase 3 trial.

    PubMed

    Hara, Takeshi; Yoshikawa, Takeshi; Goto, Hideko; Sawada, Michio; Yamada, Toshiki; Fukuno, Kenji; Kasahara, Senji; Shibata, Yuhei; Matsumoto, Takuro; Mabuchi, Ryoko; Nakamura, Nobuhiko; Nakamura, Hiroshi; Ninomiya, Soranobu; Kitagawa, Junichi; Kanemura, Nobuhiro; Nannya, Yasuhito; Katsumura, Naoki; Takahashi, Takeshi; Kito, Yusuke; Takami, Tsuyoshi; Miyazaki, Tatsuhiko; Takeuchi, Tamotsu; Shimizu, Masahito; Tsurumi, Hisashi

    2018-06-08

    Pirarubicin (tetrahydropyranyl adriamycin [THP]) is an anthracyclin with less cardiotoxicity than doxorubicin (DOX). We previously reported the efficacy and safety of R-THP-COP consisting of rituximab (R), THP, cyclophosphamide (CPA), vincristine (VCR), and prednisolone (PSL) for diffuse large B cell lymphoma (DLBCL) in phase 2 studies. Here, we prospectively compared the efficacy and safety of the R-THP-COP and standard R-CHOP regimen (consisting of R, CPA, DOX, VCR, and PSL) in a noninferiority phase 3 trial. This prospective, randomized phase 3 study included patients younger than 70 years of age with previously untreated DLBCL. The regimen consisted of R (day 1), DOX, or THP (day 3), CPA (day 3), VCR (day 3), and PSL for 5 days every 3 weeks for 6 to 8 cycles. Between July 5, 2006 and June 11, 2013, 81 patients were randomly assigned to the treatment groups (R-CHOP group, 40 patients; R-THP-COP group, 41 patients). R-THP-COP was noninferior to R-CHOP, as assessed by the primary endpoint of complete response rate (85% vs 85% respectively). With a median follow-up of 75.2 months, the 5-year overall survival was 87% in the R-CHOP group and 82% in the R-THP-COP group (hazard ratio [HR]: 0.89, 95% confidence interval [CI]: 0.31-2.49; P = .82). The 5-year progression-free survival was 74% in the R-CHOP group and 79% in the R-THP-COP group (HR: 1.37, 95% CI: 0.56-3.55; P = .49). No grade 3 cardiac side effects were observed in either group. No serious late adverse reactions were observed in either group, with the exception of therapy-related acute myeloid leukemia in the R-THP-COP group. These data indicate that R-THP-COP is noninferior to R-CHOP with regard to clinical response, and has an acceptable safety profile. Thus, this regimen may be an alternative therapy to R-CHOP. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.

    PubMed

    Schultze, Nadin; Wanka, Heike; Zwicker, Paula; Lindequist, Ulrike; Haertel, Beate

    2017-02-15

    The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC 10 and IC 50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC 50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC 50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Myelomonocytic THP-1 cells for in vitro testing of immunomodulatory properties of nanoparticles.

    PubMed

    Schroecksnadel, Sebastian; Jenny, Marcel; Fuchs, Dietmar

    2011-02-01

    The use of nanoparticles for new therapeutic and diagnostics options represents a new risk for individuals exposed to such compounds. The myelomonocytic cell line THP-1 could be a useful alternative to human peripheral blood mononuclear cells (PBMC) to test for effects of drugs and compounds. Stimulation degree of cells can be monitored by measurement of neopterin and/or the kynurenine to tryptophan ratio. The method is robust and reproducible in the range of 0.1-1.0 microg/ml of LPS. However, compared to the PBMC assay it will not reveal any effect on the T-cell interaction.

  3. Leukocyte-associated immunoglobulin-like receptor-1 is expressed on human megakaryocytes and negatively regulates the maturation of primary megakaryocytic progenitors and cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Jiangnan, E-mail: xuejinagnan@263.net; Zhang, Xiaoshu; Zhao, Haiya

    Research highlights: {yields} LAIR-1 is expressed on human megakaryocytes from an early stage. {yields} Up-regulation of LAIR-1 negatively regulates megakaryocytic differentiation of cell line. {yields} LAIR-1 negatively regulates the differentiation of primary megakaryocytic progenitors. -- Abstract: Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory collagen receptor which belongs to the immunoglobulin (Ig) superfamily. Although the inhibitory function of LAIR-1 has been extensively described in multiple leukocytes, its role in megakaryocyte (MK) has not been explored so far. Here, we show that LAIR-1 is expressed on human bone marrow CD34{sup +}CD41a{sup +} and CD41a{sup +}CD42b{sup +} cells. LAIR-1 is also detectable inmore » a fraction of human cord blood CD34{sup +} cell-derived MK that has morphological characteristics of immature MK. In megakaryoblastic cell line Dami, the membrane protein expression of LAIR-1 is up-regulated significantly when cells are treated with phorbol ester phorbol 12-myristate 13-acetate (PMA). Furthermore, cross-linking of LAIR-1 in Dami cells with its natural ligand or anti-LAIR-1 antibody leads to the inhibition of cell proliferation and PMA-promoted differentiation when examined by the MK lineage-specific markers (CD41a and CD42b) and polyploidization. In addition, we also observed that cross-linking of LAIR-1 results in decreased MK generation from primary human CD34{sup +} cells cultured in a cytokines cocktail that contains TPO. These results suggest that LAIR-1 is a likely candidate for an early marker of MK differentiation, and provide initial evidence indicating that LAIR-1 serves as a negative regulator of megakaryocytopoiesis.« less

  4. 1 alpha, 25-dihydroxylvitamin D3 promotes Bacillus Calmette-Guérin immunotherapy of bladder cancer

    PubMed Central

    Hsu, Jong-Wei; Yin, Peng-Nien; Wood, Ronald; Messing, James; Messing, Edward; Lee, Yi-Fen

    2013-01-01

    Bacillus Calmette-Guérin (BCG), a vaccine against tuberculosis(TB), has been used and proven to be one of the most effective treatments for non-muscle invasive bladder cancer (BCa). However, the mechanisms of BCG action have not been completely understood, thereby limiting the improvement of BCG therapy. Vitamin D deficiency has been associated with a high risk of TB infection, and the beneficial effect of UV exposure in TB patients was proven to be mediated via activation of vitamin D signals of innate immune cells. Thus, vitamin D signals might be involved in mediating BCG immunotherapy. To test this hypothesis, we examined the impact of 1alpha, 25-dihydroxyvitamin D3 (1,25-VD) on BCG-induced response in BCa cells and macrophage cells. Our data revealed that 1,25-VD promotes BCG-induced interleukin 8 (IL-8) secretion by BCa cells, consequently inducing the migration of macrophage, THP-1. This THP-1 cell migration promoted by 1,25-VD can be blocked by IL-8 neutralized antibody. Furthermore, 1,25-VD increased BCG-induced expression of macrophage markers in THP-1 cell, and enhanced the BCG-induced THP-1 cytotoxicity against low-grade BCa cells. Importantly, a pre-clinical trial using the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced BCa mouse model revealed that intravesical co-treatment of 1,25-VD with BCG can prolong mice survival. These data demonstrate a novel mechanism by which 1,25-VD promotes BCG-mediated anti-BCa pathways and provides a platform for improving BCG efficacy with combination of 1,25-VD. PMID:24353168

  5. Stimulus specific effect of ibuprofen on chemiluminescence of sheep neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahamont, M.V.; Margiotta, M.; Gee, M.H.

    1986-03-05

    The authors have shown that pretreatment with ibuprofen inhibits free radical release from complement stimulated neutrophils. To further examine the effect of ibuprofen on neutrophil free radical release, they stimulated neutrophils with the synthetic peptide, FMLP, phorbol myristate acetate (PMA), or zymosan-activated plasma (ZAP). Pure (>95%), viable (>95%) sheep neutrophils (2 x 10/sup 6/) were placed in HEPES buffer, luminol, drug or vehicle and stimulated in the luminometer with one of the stimuli. The chemiluminescence (CL) response was recorded and the drug treated samples were compared to vehicle treated controls. Ibuprofen had a dose dependent effect on CL in ZAPmore » stimulated neutrophils. At the highest dose (10/sup -2/M) these cells produced only 37 +/- 7% of the CL response observed in the control cells. In contrast, at the same dose, ibuprofen did not significantly attenuate CL seen in FMLP stimulated cells, with these cells producing 79 +/- 7% of the control cells; nor did ibuprofen effect PMA stimulated CL, as these cells produced a CL response that was 85 +/- 8% of the control cells. Ibuprofen appears to have a stimulus specific effect on free radical release in activated neutrophils. It is also apparent that ibuprofen inhibits complement stimulated free radical release by some mechanism independent of its cyclooxygenase inhibitory effect.« less

  6. Dexamethasone increases expression of 5-lipoxygenase and its activating protein in human monocytes and THP-1 cells.

    PubMed

    Riddick, C A; Ring, W L; Baker, J R; Hodulik, C R; Bigby, T D

    1997-05-15

    The aim of this study was to assess the effect of dexamethasone on 5-lipoxygenase pathway expression in human peripheral blood monocytes and the acute monocytic leukemia cell line, THP-1. Cells were conditioned over a period of days with dexamethasone, at concentrations relevant in vivo, to study the effect of the glucocorticoid on calcium-ionophore-stimulated 5-lipoxygenase product and arachidonic acid release. The effect of dexamethasone on levels of immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and its activating protein (5-LAP) was also assessed. Dexamethasone increased the stimulated release of 5-lipoxygenase products from both monocytes and THP-1 cells in a dose-dependent fashion. The increase in product generation was not due to changes in the availability of arachidonic acid. However, immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP were increased by conditioning with dexamethasone. There was no apparent effect of the glucocorticoid on LTA4-hydrolase-immunoreactive protein levels or specific activity. We conclude that dexamethasone increases 5-lipoxygenase pathway expression in both monocytes and in THP-1 cells. This effect is due, at least in part, to increases in immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP. These results suggest a role for glucocorticoids in the regulation of 5-lipoxygenase pathway expression in mononuclear phagocytes.

  7. The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages

    PubMed Central

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170

  8. The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.

    PubMed

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

  9. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung.

    PubMed

    Klein, Sebastian G; Serchi, Tommaso; Hoffmann, Lucien; Blömeke, Brunhilde; Gutleb, Arno C

    2013-07-26

    Exposure to fine and ultra-fine ambient particles is still a problem of concern in many industrialised parts of the world and the intensified use of nanotechnology may further increase exposure to small particles. Complex in vitro coculture systems may be valuable tools to study particle-induced processes and to extrapolate effects of particles on the lung. A system consisting of four different human cell lines which mimics the cell response of the alveolar surface in vitro was developed to study native aerosol exposure (Vitrocell™ chamber). The system is composed of an alveolar type-II cell line (A549), differentiated macrophage-like cells (THP-1), mast cells (HMC-1) and endothelial cells (EA.hy 926), seeded in a 3D-orientation on a microporous membrane. The spatial distribution of the cells in the tetraculture was analysed by confocal laser scanning microscopy (CLSM), showing a confluent layer of endothelial and epithelial cells on both sides of the transwell. Macrophage-like cells and mast cells can be found on top of the epithelial cells. The cells formed colonies under submerged conditions, which disappeared at the ALI. To evaluate the response to oxidative stress, the dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used together with 2,2'-azobis-2-methyl-propanimidamide-dihydrochloride (AAPH) as inducer of oxidative stress. The tetraculture showed less induction of reactive oxygen species (ROS) production after being treated with a positive control compared to the monocultures of EA.hy 926, THP-1 and HMC-1. Submerged cultures showed elevated ROS and IL-8 levels compared to ALI cultures. The Vitrocell™ aerosol exposure system was not significantly influencing the viability. Using this system, cells were exposed to an aerosol of 50 nm SiO2-Rhodamine NPs in PBS. The distribution of the NPs in the tetraculture after exposure was evaluated by CLSM. Fluorescence from internalized particles was detected in CD11b-positive THP-1 cells only. The system can be used in conjunction with a native aerosol exposure system and may finally lead to a more realistic judgement regarding the hazard of new compounds and/or new nano-scaled materials in the future. The results for the ROS production and IL-8 secretion suggest that submerged exposure may lead to an overestimation of observed effects.

  10. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    PubMed

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  11. [Role of phosphoinositide 3 kinase/protein kinase B signal pathway in monocyte-endothelial adhesion induced by serum of rats with electrical burn].

    PubMed

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Zhang, Weidong; Xie, Qionghui; Xie, Weiguo

    2014-06-01

    To observe the change in phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signal pathway in monocytes as induced by serum of rats with electrical burn, and to explore the effects of PI3K/Akt pathway on monocyte-endothelial cell adhesion. Sixty-four SD rats of clean grade were inflicted with electrical burn for the collection of serum of rats with electrical burn; another group of twenty-four SD rats were used to obtain normal serum without treatment. (1) Human monocyte line THP-1 was routinely cultured. The THP-1 cells in logarithmic phase were divided into normal serum group (resuspended in RPMI 1640 medium with 20% normal rat serum) and burn serum group (resuspended with RPMI 1640 medium with 20% serum of rats with electrical burn) according to the random number table, with 6 wells in each group. Morphology of THP-1 cells in normal serum group was observed at post culture hour (PCH) 24, and that in burn serum group at PCH 3, 6, 24. The contents of TNF-α in culture supernatant were determined by double-antibody sandwich ELISA at the corresponding time point in each group. The state of Akt activation was determined by Western blotting at PCH 3, 6, 24. (2) Another portion of THP-1 cells were divided into 4 groups according to the random number table, with 6 wells in each group. Cells in normal serum group and burn serum group were given with the same culture condition as above; cells in normal serum+inhibitor group and burn serum+inhibitor group were cultured with the same culture conditions as in the former two groups correspondingly with addition of 100 nmol/L wortmannin in the nutrient solution. At PCH 3 and 6, THP-1 cells were added into the well with a monolayer of endothelial cell line EA.hy926 to observe the monocyte-endothelial cell adhesion. Data were processed with one-way analysis of variance and LSD- t test. (1) In normal serum group, THP-1 cells showed growth in suspension, with uniform shape at PCH 24. In burn serum group, the cell shape became irregular though the membrane was complete at PCH 3; cellular size became irregular and cell membrane and cytoplasm were swollen at PCH 6; cell membrane was disrupted with death of cells at PCH 24. The contents of TNF-α in culture supernatant in normal serum group at PCH 24 and in burn serum group at PCH 3, 6, 24 were respectively (38.5 ± 1.4), (75.1 ± 1.5), (91.5 ± 1.8), (117.0 ± 1.4) pg/mL (F = 1 415.306, P < 0.01). The contents of TNF-α in culture supernatant in burn serum group at PCH 3, 6, 24 were all significantly higher than the content of TNF-α in normal serum group at PCH 24 (with t values respectively 29.614, 42.852, 63.485, P values below 0.01). The ratio values of phosphorylated Akt to Akt in burn serum group at PCH 3, 6, 24 were respectively 2.66, 3.69, 1.17 times of those in normal serum group at the corresponding time point. (2) In normal serum group, normal serum+inhibitor group, burn serum group, and burn serum+inhibitor group at PCH 3 and 6, the numbers of THP-1 cells adherent to endothelial cells were respectively (231 ± 45), (280 ± 47), (703 ± 169), (335 ± 85) per 100-time field; (219 ± 49), (235 ± 21), (562 ± 123), (226 ± 29) per 100-time field (with F values respectively 25.630 and 18.975, P values below 0.01). The number of THP-1 cells adhered to EA.hy926 cells was significantly more in burn serum group than in normal serum group at PCH 3 and 6 (with t values respectively 6.189 and 6.601, P values below 0.01). The number of THP-1 cells adherent to EA.hy926 cells was significantly fewer in burn serum+inhibitor group than in burn serum group at PCH 3 and 6 (with t values respectively 6.821 and 6.465, P values below 0.01). The serum of rats suffering from electrical burn can induce the monocytes to secrete TNF-α, thus enhancing monocyte-endothelial cell adhesion, but it can be inhibited by blocking PI3K/Akt signal pathway.

  12. Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function.

    PubMed

    Dudimah, Fred D; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M

    2010-10-01

    Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263-277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function ((51)Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.

  13. Activation of p44/42 MAPK Plays a Role in the TBT-induced Loss of Human Natural Killer (NK) Cell Function

    PubMed Central

    Dudimah, Fred D.; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M.

    2009-01-01

    Natural Killer (NK) cells destroy (lyse) tumor cells, virally infected cells and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as Phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function (51Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1 h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1 h exposure to 5 nM PMA caused a 6 fold increase in phospho-p44/42 levels. Previous studies showed a 5 fold increase in phospho-p44/42 in response to a 1 h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function. PMID:20213532

  14. Electrogenic NBCe1 (SLC4A4), but not electroneutral NBCn1 (SLC4A7), cotransporter undergoes cholinergic-stimulated endocytosis in salivary ParC5 cells.

    PubMed

    Perry, Clint; Quissell, David O; Reyland, Mary E; Grichtchenko, Irina I

    2008-11-01

    Cholinergic agonists are major stimuli for fluid secretion in parotid acinar cells. Saliva bicarbonate is essential for maintaining oral health. Electrogenic and electroneutral Na(+)-HCO(3)(-) cotransporters (NBCe1 and NBCn1) are abundant in parotid glands. We previously reported that angiotensin regulates NBCe1 by endocytosis in Xenopus oocytes. Here, we studied cholinergic regulation of NBCe1 and NBCn1 membrane trafficking by confocal fluorescent microscopy and surface biotinylation in parotid epithelial cells. NBCe1 and NBCn1 colocalized with E-cadherin monoclonal antibody at the basolateral membrane (BLM) in polarized ParC5 cells. Inhibition of constitutive recycling with the carboxylic ionophore monensin or the calmodulin antagonist W-13 caused NBCe1 to accumulate in early endosomes with a parallel loss from the BLM, suggesting that NBCe1 is constitutively endocytosed. Carbachol and PMA likewise caused redistribution of NBCe1 from BLM to early endosomes. The PKC inhibitor, GF-109203X, blocked this redistribution, indicating a role for PKC. In contrast, BLM NBCn1 was not downregulated in parotid acinar cells treated with constitutive recycling inhibitors, cholinergic stimulators, or PMA. We likewise demonstrate striking differences in regulation of membrane trafficking of NBCe1 vs. NBCn1 in resting and stimulated cells. We speculate that endocytosis of NBCe1, which coincides with the transition to a steady-state phase of stimulated fluid secretion, could be a part of acinar cell adjustment to a continuous secretory response. Stable association of NBCn1 at the membrane may facilitate constitutive uptake of HCO(3)(-) across the BLM, thus supporting HCO(3)(-) luminal secretion and/or maintaining acid-base homeostasis in stimulated cells.

  15. Functional Relevance of Protein Glycosylation to the Pro-Inflammatory Effects of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) on Monocytes/Macrophages

    PubMed Central

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Background and Objective Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. Methods The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. Results 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Conclusions Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages. PMID:25658763

  16. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment.

    PubMed

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M

    2016-03-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278.

  17. Cytokine-like Activity of Liver Type Fatty Acid Binding Protein (L-FABP) Inducing Inflammatory Cytokine Interleukin-6

    PubMed Central

    Kim, Hyunwoo; Gil, Gaae; Lee, Siyoung; Kwak, Areum; Jo, Seunghyun; Kim, Ensom; Nguyen, Tam T.; Kim, Sinae; Jhun, Hyunjhung; Kim, Somi; Kim, Miyeon; Lee, Youngmin

    2016-01-01

    It has been reported that fatty acid binding proteins (FABPs) do not act only as intracellular mediators of lipid responses but also have extracellular functions. This study aimed to investigate whether extracellular liver type (L)-FABP has a biological activity and to determined serum L-FABP levels in patients with end-stage renal disease (ESRD). We isolated L-FABP complementary deoxyribonucleic acid (cDNA) from the Huh7 human hepatocarcinoma cell line and expressed the recombinant L-FABP protein in Escherichia coli. A549 lung carcinoma and THP-1 monocytic cells were stimulated with the human recombinant L-FABP. Human whole blood cells were also treated with the human recombinant L-FABP or interleukin (IL)-1α. IL-6 levels were measured in cell culture supernatants using IL-6 enzyme-linked immunosorbent assay (ELISA). Human recombinant L-FABP induced IL-6 in a dose-dependent manner in A549, THP-1 cells, and whole blood cells. The blood samples of healthy volunteers and patients with ESRD were taken after an overnight fast. The serum levels of L-FABP in healthy volunteers and ESRD patients were quantified with L-FABP ELISA. The values of L-FABP in patients with ESRD were significantly lower than those in the control group. Our results demonstrated the biological activity of L-FABP in human cells suggesting L-FABP can be a mediator of inflammation. PMID:27799875

  18. Long-term trihexyphenidyl exposure alters neuroimmune response and inflammation in aging rat: relevance to age and Alzheimer's disease.

    PubMed

    Huang, Yuqi; Zhao, Zhe; Wei, Xiaoli; Zheng, Yong; Yu, Jianqiang; Zheng, Jianquan; Wang, Liyun

    2016-07-01

    Clinical studies have shown an association between long-term anticholinergic (AC) drug exposure and Alzheimer's disease (AD) pathogenesis, which has been primarily investigated in Parkinson's disease (PD). However, long-term AC exposure as a risk factor for developing neurodegenerative disorders and the exact mechanisms and potential for disease progression remain unclear. Here, we have addressed the issue using trihexyphenidyl (THP), a commonly used AC drug in PD patients, to determine if THP can accelerate AD-like neurodegenerative progression and study potential mechanisms involved. Male Sprague-Dawley rats (SD) were intraperitoneally injected with THP (0.3 and 1.0 mg/kg) or normal saline (NS) for 7 months. Alterations in cognitive and behavioral performance were assessed using the Morris water maze (MWM) and open field tests. After behavior tests, whole genome oligo microarrays, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence-confocal were used to investigate the global mechanisms underlying THP-induced neuropathology with aging. Compared with NS controls, the MWM test results showed that THP-treated rats exhibited significantly extended mean latencies during the initial 3 months of testing; however, this behavioral deficit was restored between the fourth and sixth month of MWM testing. The same tendencies were confirmed by MWM probe and open field tests. Gene microarray analysis identified 68 (47 %) upregulated and 176 (53 %) downregulated genes in the "THP-aging" vs. "NS-aging" group. The most significant populations of genes downregulated by THP were the immune response-, antigen processing and presentation-, and major histocompatibility complex (MHC)-related genes, as validated by qRT-PCR. The decreased expression of MHC class I in THP-treated aging brains was confirmed by confocal analysis. Notably, long-term THP treatment primed hippocampal and cortical microglia to undergo an inflammatory phenotypic switch, causing microgliosis and microglia activation, which were positively accompanied by pathological misfolded tau lesions. Our findings suggest that immune response and neuroinflammation represent a pivotal mechanism in THP-induced AD-like neuropathology processes with long-term exposure to AC drugs.

  19. Melatonin induces neuritogenesis at early stages in N1E-115 cells through actin rearrangements via activation of protein kinase C and Rho-associated kinase.

    PubMed

    Bellon, Alfredo; Ortíz-López, Leonardo; Ramírez-Rodríguez, Gerardo; Antón-Tay, Fernando; Benítez-King, Gloria

    2007-04-01

    Melatonin increases neurite formation in N1E-115 cells through microtubule enlargement elicited by calmodulin antagonism and vimentin intermediate filament reorganization caused by protein kinase C (PKC) activation. Microfilament rearrangement is also a necessary process in growth cone formation during neurite outgrowth. In this work, we studied the effect of melatonin on microfilament rearrangements present at early stages of neurite formation and the possible participation of PKC and the Rho-associated kinase (ROCK), which is a downstream kinase in the PKC signaling pathway. The results showed that 1 nm melatonin increased both the number of cells with filopodia and with long neurites. Similar results were obtained with the PKC activator phorbol 12-myristate 13-acetate (PMA). Both melatonin and PMA increased the quantity of filamentous actin. In contrast, the PKC inhibitor bisindolylmaleimide abolished microfilament organization elicited by either melatonin or PMA, while the Rho inhibitor C3, or the ROCK inhibitor Y27632, abolished the bipolar neurite morphology of N1E-115 cells. Instead, these inhibitors prompted neurite ramification. ROCK activity measured in whole cell extracts and in N1E-115 cells was increased in the presence of melatonin and PMA. The results indicate that melatonin increases the number of cells with immature neurites and suggest that these neurites can be susceptible to differentiation by incoming extracellular signals. Data also indicate that PKC and ROCK are involved at initial stages of neurite formation in the mechanism by which melatonin recruits cells for later differentiation.

  20. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  1. Prediction of the contact sensitizing potential of chemicals using analysis of gene expression changes in human THP-1 monocytes.

    PubMed

    Arkusz, Joanna; Stępnik, Maciej; Sobala, Wojciech; Dastych, Jarosław

    2010-11-10

    The aim of this study was to find differentially regulated genes in THP-1 monocytic cells exposed to sensitizers and nonsensitizers and to investigate if such genes could be reliable markers for an in vitro predictive method for the identification of skin sensitizing chemicals. Changes in expression of 35 genes in the THP-1 cell line following treatment with chemicals of different sensitizing potential (from nonsensitizers to extreme sensitizers) were assessed using real-time PCR. Verification of 13 candidate genes by testing a large number of chemicals (an additional 22 sensitizers and 8 nonsensitizers) revealed that prediction of contact sensitization potential was possible based on evaluation of changes in three genes: IL8, HMOX1 and PAIMP1. In total, changes in expression of these genes allowed correct detection of sensitization potential of 21 out of 27 (78%) test sensitizers. The gene expression levels inside potency groups varied and did not allow estimation of sensitization potency of test chemicals. Results of this study indicate that evaluation of changes in expression of proposed biomarkers in THP-1 cells could be a valuable model for preliminary screening of chemicals to discriminate an appreciable majority of sensitizers from nonsensitizers. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast*

    PubMed Central

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M.; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A. Ulises; McMaster, Christopher R.; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-01-01

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane. PMID:23335509

  3. Galectin-3 expression in response to LPS, immunomodulatory drugs and exogenously added galectin-3 in monocyte-like THP-1 cells.

    PubMed

    Dabelic, Sanja; Novak, Ruder; Goreta, Sandra Supraha; Dumic, Jerka

    2012-09-01

    Galectin-3, a structurally unique beta-galactoside-binding lectin, through the specific protein-protein and protein-carbohydrate interactions participates in numerous biological processes, such as cell proliferation and apoptosis, adhesion and activation. Its expression and secretion by until now an unknown mechanism are modulated by diverse molecules and are dependent on different physiological and pathophysiological conditions. By autocrine and paracrine actions, galectin-3 modulates many immune reactions and affects various immune cells, particularly those of monocyte-macrophage lineage. This is why galectin-3 has recently become an attractive therapeutic target. However, molecular mechanisms of its actions as well as regulatory mechanism of its expression and activation are still largely unknown. In this study, we show that lipopolysaccharide (LPS) provokes upregulation of galectin-3 expression on both gene and protein level in monocyte-like THP-1 cells, which can be inhibited by dexamethasone, but not with non-steroidal anti-inflammatory drugs aspirin and indomethacin. Resting and LPS-challenged monocyte-like THP-1 cells do not have detectable amount of surface-bound galectin-3, but are able to bind exogenously added galectin-3 with the same capacity. Although galectin-3 is generally considered to be a pro-inflammatory molecule, here we show that the exogenously added galectin-3 does not affect interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF-α production in resting and LPS-activated monocyte-like THP-1 cells nor influences its own gene expression level in those cells.

  4. The Immune Effects of an African Traditional Energy Tonic in In Vitro and In Vivo Models

    PubMed Central

    Ngcobo, Mlungisi; Naidoo, Vinny; Cele, Protus

    2017-01-01

    Most of the African traditional medicines (ATM) are formulated as energy tonics to boost and maintain immune defences. In this study, we aimed to evaluate the immune effects of a traditional energy tonic using peripheral blood mononuclear cells (PBMCs), THP-1 monocytes, and bacteria infected rats. When tested in mitogen and peptidoglycan stimulated PBMCs, this energy tonic showed minimal cytotoxicity, while in acute toxicity studies in rats it did not exhibit any significant toxicity at doses up to 2000 mg/mL/kg. The energy tonic doses between 100 and 10 μg/mL were shown to stimulate secretion of cytokines and increase sIL-2R levels in PHA-treated PBMCs. Similar doses in PG-S. aureus-stimulated PBMCs significantly (p < 0.05) increased IL-1α, IL-2, and GM-CSF while causing a significant (p < 0.05) decrease in sIL-2R levels. NF-κβ transcriptional activity was increased in LPS stimulated THP-1 cells. In Sprague Dawley rats pretreated with the energy tonic and then infected with S. aureus, there were insignificant increases in cytokines and sIL-2R when compared to bacteria infected only and 5% Enrofloxacin treated rats. Posttreatment with energy tonic doses after infection with S. aureus did not enhance inflammatory cytokines significantly but changed the immune response profile and decreased corticosterone levels. This ATM showed promising immunomodulatory effects on isolated immune cells and modulated the immune response of rat models infected with S. aureus. PMID:28408939

  5. Site-Specific Protein Adducts of 4-Hydroxy-2(E)-Nonenal in Human THP-1 Monocytic Cells: Protein Carbonylation Is Diminished by Ascorbic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Juan; Chung, Woon-Gye; Miranda, Cristobal L.

    2010-01-18

    The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multipronged proteomic approach involving electrophoretic, immunoblotting, and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction,more » and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses, and enzymes of the glycolytic and other metabolic pathways. Finally, this study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin α-1B chain, Cys-351 and Cys-499 in α-actinin-4, Cys-328 in vimentin, Cys-369 in d-3-phosphoglycerate dehydrogenase, and His-246 in aldolase A.« less

  6. PMA Induces SnoN Proteolysis and CD61 Expression through an Autocrine Mechanism

    PubMed Central

    Li, Chonghua; Peart, Natoya; Xuan, Zhenyu; Lewis, Dorothy E; Xia, Yang; Jin, Jianping

    2014-01-01

    Phorbol-12-myristate-13-acetate, also called PMA, is a small molecule that activates protein kinase C and functions to differentiate hematologic lineage cells. However, the mechanism of PMA-induced cellular differentiation is not fully understood. We found that PMA triggers global enhancement of protein ubiquitination in K562, a myelogenous leukemia cell line and one of the enhanced-ubiquitination targets is SnoN, an inhibitor of the Smad signaling pathway. Our data indicated that PMA stimulated the production of Activin A, a cytokine of the TGF-β family. Activin A then activated the phosphorylation of both Smad2 and Smad3. In consequence, SnoN is ubiquitinated by the APCCdh1 ubiquitin ligase with the help of phosphorylated Smad2. Furthermore, we found that SnoN proteolysis is important for the expression of CD61, a marker of megakaryocyte. These results indicate that protein ubiquitination promotes megakaryopoiesis via degrading SnoN, an inhibitor of CD61 expression, strengths the roles of ubiquitination in cellular differentiation. PMID:24637302

  7. Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tian; Hamilton, Raymond F.; Bonner, James C.

    2013-06-01

    Background: Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity. Objectives: Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability. Methods: Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different speciesmore » (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1β (IL-1β) release] using only THP-1 cells. Results: The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at ≥ 50 μ g/mL, but did not induce IL-1β. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1β production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1β production in THP-1 cells, with the original MWCNT producing the most IL-1β. Conclusions: The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity.« less

  8. Cytotoxicity of Vitex agnus-castus fruit extract and its major component, casticin, correlates with differentiation status in leukemia cell lines.

    PubMed

    Kikuchi, Hidetomo; Yuan, Bo; Nishimura, Yoshio; Imai, Masahiko; Furutani, Ryota; Kamoi, Saki; Seno, Misako; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Hu, Xiao-Mei; Takagi, Norio; Hirano, Toshihiko; Toyoda, Hiroo

    2013-12-01

    We have demonstrated that an extract from the ripe fruit of Vitex agnus-castus (Vitex) exhibits cytotoxic activities against various types of solid tumor cells, whereas its effects on leukemia cells has not been evaluated to date. In this study, the effects of Vitex and its major component, casticin, on leukemia cell lines, HL-60 and U-937, were investigated by focusing on proliferation, induction of apoptosis and differentiation. Identification and quantitation by NMR spectroscopy showed that casticin accounted for approximate 1% weight of Vitex. Dose-dependent cytotoxicity of Vitex and casticin was observed in both cell lines, and HL-60 cells were more sensitive to the cytotoxicity of Vitex/casticin compared to U-937 cells. Furthermore, compared to unstimulated HL-60 cells, phorbol 12-myristate 13-acetate (PMA)- and 1,25-dihydroxyvitamin D₃ (VD₃)-differentiated HL-60 cells acquired resistance to Vitex/casticin based on the results from cell viability and apoptosis induction analysis. Since the HL-60 cell line is more immature than the U-937 cell line, these results suggested that the levels of cytotoxicity of Vitex/casticin were largely attributed to the degree of differentiation of leukemia cells; that is, cell lines with less differentiated phenotype were more susceptible than the differentiated ones. RT-PCR analysis demonstrated that PMA upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in HL-60 cells, and that anti-ICAM-1 monoclonal antibody not only abrogated PMA-induced aggregation and adhesion of the cells but also restored its sensitivity to Vitex. These results suggested that ICAM-1 plays a crucial role in the acquired resistance in PMA-differentiated HL-60 cells by contributing to cell adhesion. These findings provide fundamental insights into the clinical application of Vitex/casticin for hematopoietic malignancy.

  9. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis

    PubMed Central

    Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen

    2016-01-01

    Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486

  10. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroecksnadel, Sebastian; Jenny, Marcel; Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced bymore » ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin formation and trp degradation in monocytic THP-1 cells, which is elicited by pro-inflammatory triggers like LPS during innate immune responses.« less

  11. Targeting Androgen Receptor to Suppress Macrophage-induced EMT and Benign Prostatic Hyperplasia (BPH) Development

    PubMed Central

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi

    2012-01-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68+ macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways. PMID:22915828

  12. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development.

    PubMed

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi; Jin, Jie; Chang, Chawnshang

    2012-10-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68(+) macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways.

  13. Involvement of Resveratrol and ω-3 Polyunsaturated Fatty Acids on Sirtuin 1 Gene Expression in THP1 Cells.

    PubMed

    Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko

    2017-10-01

    Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene expression, in those cells. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  14. Decreased OxLDL uptake and cholesterol efflux in THP1 cells elicited by cortisol and by cortisone through 11β-hydroxysteroid dehydrogenase type 1.

    PubMed

    Ledda, Angelo; González, Marina; Gulfo, José; Díaz Ludovico, Ivo; Ramella, Nahuel; Toledo, Juan; Garda, Horacio; Grasa, Mar; Esteve, Montserrat

    2016-07-01

    Data about glucocorticoids role in the development of atherosclerosis are controversial showing different effects in human than in experimental animal models. Atherosclerosis is the result of a chronic inflammatory response to an injured endothelium where an uncontrolled uptake of OxLDL by macrophages triggers the development of foam cells, the main component of fatty streaks in atherosclerotic plaque. There are few data about the direct effect of glucocorticoids in macrophages of atherosclerotic plaque. The aim of the study was to elucidate the role of glucocorticoids in the development of foam cells in atherosclerosis initiation. For this purpose we used THP1 cells differentiated to macrophages with phorbol esters and incubated with OxLDL alone or with cortisol or cortisone. THP1 cells were also incubated with cortisone plus an inhibitor of 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) activity to determine the role of this enzyme on glucocorticoid action in this process. Ours results showed that cortisol and cortisone decreased significantly the inflammation promoted by OxLDL, and also diminished the expression of genes involved in influx and efflux of cholesterol resulting in a reduced lipid accumulation. Likewise cortisol and cortisone decreased 11βHSD1 expression in THP1 cells. The presence of the inhibitor of 11βHSD1 abolished all the effects elicited by cortisone. Our results indicate a direct effect of glucocorticoids on macrophages braking atherosclerosis initiation, reducing pro-inflammatory markers and OxLDL uptake and cholesterol re-esterification, but also inhibiting cholesterol output. These effects appear to be mediated, at least in part, by 11βHSD1 activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Legionella in water samples: how can you interpret the results obtained by quantitative PCR?

    PubMed

    Ditommaso, Savina; Ricciardi, Elisa; Giacomuzzi, Monica; Arauco Rivera, Susan R; Zotti, Carla M

    2015-02-01

    Evaluation of the potential risk associated with Legionella has traditionally been determined from culture-based methods. Quantitative polymerase chain reaction (qPCR) is an alternative tool that offers rapid, sensitive and specific detection of Legionella in environmental water samples. In this study we compare the results obtained by conventional qPCR (iQ-Check™ Quanti Legionella spp.; Bio-Rad) and by culture method on artificial samples prepared in Page's saline by addiction of Legionella pneumophila serogroup 1 (ATCC 33152) and we analyse the selective quantification of viable Legionella cells by the qPCR-PMA method. The amount of Legionella DNA (GU) determined by qPCR was 28-fold higher than the load detected by culture (CFU). Applying the qPCR combined with PMA treatment we obtained a reduction of 98.5% of the qPCR signal from dead cells. We observed a dissimilarity in the ability of PMA to suppress the PCR signal in samples with different amounts of bacteria: the effective elimination of detection signals by PMA depended on the concentration of GU and increasing amounts of cells resulted in higher values of reduction. Using the results from this study we created an algorithm to facilitate the interpretation of viable cell level estimation with qPCR-PMA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells.

    PubMed

    Ku, H; Meier, K E

    2000-04-14

    Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.

  17. Differential roles of PKC isoforms (PKCs) and Ca2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells.

    PubMed

    Mugami, Shany; Kravchook, Shani; Rahamim-Ben Navi, Liat; Seger, Rony; Naor, Zvi

    2017-01-05

    We examined the role of PKCs and Ca 2+ in GnRH-stimulated p38MAPK phosphorylation in the gonadotrope derived αT3-1 and LβT2 cell lines. GnRH induced a slow and rapid increase in p38MAPK phosphorylation in αT3-1 and LβT2 cells respectively, while PMA gave a slow response. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs), has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in p38MAPK phosphorylation may be explained by differential localization of the PKCs. Basal, GnRH- and PMA- stimulation of p38MAPK phosphorylation in αT3-1 cells is mediated by Ca 2+ influx via voltage-gated Ca 2+ channels and Ca 2+ mobilization, while in the differentiated LβT2 gonadotrope cells it is mediated only by Ca 2+ mobilization. p38MAPK resides in the cell membrane and is relocated to the nucleus by GnRH (∼5 min). Thus, we have identified the PKCs and the Ca 2+ pools involved in GnRH stimulated p38MAPK phosphorylation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Urokinase–urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication

    PubMed Central

    Alfano, Massimo; Sidenius, Nicolai; Panzeri, Barbara; Blasi, Francesco; Poli, Guido

    2002-01-01

    Elevated levels of soluble urokinase-type plasminogen activator (uPA) receptor, CD87/u-PAR, predict survival in individuals infected with HIV-1. Here, we report that pro-uPA (or uPA) inhibits HIV-1 expression in U937-derived chronically infected promonocytic U1 cells stimulated with phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-α (TNF-α). However, pro-uPA did not inhibit PMA or TNF-α-dependent activation of nuclear factor-kB or activation protein-1 in U1 cells. Cell-associated HIV protein synthesis also was not decreased by pro-uPA, although the release of virion-associated reverse transcriptase activity was substantially inhibited, suggesting a functional analogy between pro-uPA and the antiviral effects of IFNs. Indeed, cell disruption reversed the inhibitory effect of pro-uPA on activated U1 cells, and ultrastructural analysis confirmed that virions were preferentially retained within cell vacuoles in pro-uPA treated cells. Neither expression of endogenous IFNs nor activation of the IFN-inducible Janus kinase/signal transducer and activator of transcription pathway were induced by pro-uPA. Pro-uPA also inhibited acute HIV replication in monocyte-derived macrophages and activated peripheral blood mononuclear cells, although with great inter-donor variability. However, pro-uPA inhibited HIV replication in acutely infected promonocytic U937 cells and in ex vivo cultures of lymphoid tissue infected in vitro. Because these effects occurred at concentrations substantially lower than those affecting thrombolysis, pro-uPA may represent a previously uncharacterized class of antiviral agents mimicking IFNs in their inhibitory effects on HIV expression and replication. PMID:12084931

  19. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages.

    PubMed

    Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori

    2017-08-19

    Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles.

    PubMed

    Klasson, Anna; Ahrén, Maria; Hellqvist, Eva; Söderlind, Fredrik; Rosén, Anders; Käll, Per-Olov; Uvdal, Kajsa; Engström, Maria

    2008-01-01

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s(-1) mm(-1) for cell culture medium. The r2 was 17.4 and 12.9 s(-1) mm(-1), respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (p(r1) = 0.36), but r2 was significantly different for the two different series (p(r2) = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells. Copyright 2008 John Wiley & Sons, Ltd.

  1. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA

    PubMed Central

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-01-01

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. PMID:23770036

  2. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    PubMed

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Establishment of an in vitro photoassay using THP-1 cells and IL-8 to discriminate photoirritants from photoallergens.

    PubMed

    Martínez, V; Galbiati, V; Corsini, E; Martín-Venegas, R; Vinardell, M P; Mitjans, M

    2013-09-01

    At present, there are no in vivo or in vitro methods developed which has been adopted by regulatory authorities to assess photosensitization induced by chemicals. Recently, we have proposed the use of THP-1 cells and IL-8 release to identify the potential of chemicals to induce skin sensitization. Based on the assumption that sensitization and photosensitization share common mechanisms, the aim of this work was to explore the THP-1 model as an in vitro model to identify photoallergenic chemicals. THP-1 cells were exposed to 7 photoallergens and 3 photoirritants and irradiated with UVA light or kept in dark. Non phototoxic allergens or irritants were also included as negative compounds. Following 24h of incubation, cytotoxicity and IL-8 release were measured. At subtoxic concentrations, photoallergens produced a dose-related increase in IL-8 release after irradiation. Some photoirritants also produced a slight increase in IL-8 release. However, when the overall stimulation indexes of IL-8 were calculated for each chemical, 6 out of 7 photoallergens tested reached a stimulation index above 2, while the entire set of negative compounds had stimulation indexes below 2. Our data suggest that this assay may become a useful cell-based in vitro test for evaluating the photosensitizing potential of chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. TGF-beta1 stimulates expression of the aromatase (CYP19) gene in human osteoblast-like cells and THP-1 cells.

    PubMed

    Shozu, M; Zhao, Y; Simpson, E R

    2000-02-25

    Recent evidence has shown that bone is not only a target of estrogen action but also a source of local estrogen production. Bone cells such as osteoblasts express aromatase (P450arom) and the expression of P450arom in osteoblasts is positively regulated in a tissue specific fashion, as in the case of other tissues which express P450arom. To clarify the physiological factors regulating expression of P450arom in bone, we tested TGF-beta1 using osteoblast-like cells obtained from human fetuses as well as THP-1 cells. TGF-beta1 increased IL-1beta+DEX- induced aromatase activity in osteoblast-like cells, while it inhibited activity in skin fibroblasts. Similar enhancement of aromatase activity by TGF-beta1 was found in DEX-stimulated THP-1 cells and this cell line was used for further experiments. In THP-1 cells, TGF-beta1 enhanced DEX-induced aromatase activity almost linearly by 12 h and thereafter. Increased levels of P450arom transcripts were also demonstrated by RT-PCR at 3 h of TGF-beta1 treatment and thereafter. Cyclohexamide abolished enhancement of activity but did not inhibit the accumulation of P450arom transcripts induced by TGF-beta1. Increase in P450arom expression by TGF-beta1 was attributable to expression driven by promoter I.4. TGF-beta1 did not change the half life of P450arom transcripts. To identify the cis-acting elements responsible for TGF-beta1 action on aromatase expression, transient transfection assays were performed using a series of deletion constructs for promoter I.4 (P450-I.4/Luc). Two constructs (-410/+14 and-340/+14) that contain a functional glucocorticoid response element (GRE) and downstream sequence showed significant increase of luciferase activity in response to TGF-beta1. Deletion and mutation of the GRE in P450-I.4/Luc (-340/+14) abolished the TGF-beta1. The luciferase activity of a (GRE)(1)-SV40/Luc construct was also stimulated by TGF-beta1. These results indicate that TGF-beta1 increases the expression of P450arom at the level of transcription through promoter I.4, at least in part via an enhancement of transactivation activity of the GR in THP-1 cells. TGF-beta1 is suggested to be one of the physiological up-regulatory factors of bone aromatase.

  5. Down-Regulation of Protein Kinase C-ε by Prolonged Incubation with PMA Inhibits the Proliferation of Vascular Smooth Muscle Cells.

    PubMed

    Zhou, Huixuan; Wang, Yan; Zhou, Quanhong; Wu, Bin; Wang, Aizhong; Jiang, Wei; Wang, Li

    2016-01-01

    Phorbol myristate acetate (PMA) exerts a pleiotropic effect on the growth and differentiation of various cells. Protein kinase Cs (PKCs) plays a central role in mediating the effects of PMA on cells. The present study investigated whether the down-regulation of protein kinase C-ε (PKC-ε) is involved in the inhibition of vascular smooth muscle cell (VSMC) proliferation caused by prolonged PMA incubation. Using cell counting, Cell Counting Kit-8 (CCK-8) and EdU incorporation assay on VSMCs, we evaluated the inhibitory effects of prolonged incubation of PMA, of lentiviruses carrying the short-hairpin RNAs (shRNA) of PKC-ε and of the PKC-ε inhibitor peptide on the proliferation and viability of cells. The effect of PKC-ε down-regulation on growth of rat breast cancer SHZ-88 cells was also measured. The prolonged incubation of VSMCs with PMA for up to 72 hours resulted in attenuated cell growth rates in a time-dependent manner. The expression of PKC-ε, as assessed by Western blotting, was also decreased accordingly. Notably, the number of EdU-positive cells and the cell viability of VSMCs were decreased by shRNA of PKC-ε and the PKC-ε inhibitor peptide, respectively. The proliferation of rat breast cancer SHZ-88 cells was also attenuated by lentivirus-induced shRNA silencing of PKC-ε. Prolonged incubation of PMA can inhibit the expression of PKC-ε. The effect results in the inhibition of VSMC proliferation. PKC-ε silencing can also attenuate breast cancer cell growth, suggesting that PKC-ε may be a potential target for anti-cancer drugs. © 2016 The Author(s) Published by S. Karger AG, Basel.

  6. Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265.

    PubMed

    Sorrell, Tania C; Juillard, Pierre-Georges; Djordjevic, Julianne T; Kaufman-Francis, Keren; Dietmann, Anelia; Milonig, Alban; Combes, Valery; Grau, Georges E R

    2016-01-01

    Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg) cause neurological disease and cross the BBB as free cells or in mononuclear phagocytes via the Trojan horse mechanism, although evidence for the latter is indirect. There is emerging evidence that Cn and the North American outbreak Cg strain (R265) more commonly cause neurological and lung disease, respectively. We have employed a widely validated in vitro model of the BBB, which utilizes the hCMEC/D3 cell line derived from human brain endothelial cells (HBEC) and the human macrophage-like cell line, THP-1, to investigate whether transport of dual fluorescence-labelled Cn and Cg across the BBB occurs within macrophages. We showed that phagocytosis of Cn by non-interferon (IFN)-γ stimulated THP-1 cells was higher than that of Cg. Although Cn and Cg-loaded THP-1 bound similarly to TNF-activated HBECs under shear stress, more Cn-loaded macrophages were transported across an intact HBEC monolayer, consistent with the predilection of Cn for CNS infection. Furthermore, Cn exhibited a higher rate of expulsion from transmigrated THP-1 compared with Cg. Our results therefore provide further evidence for transmigration of both Cn and Cg via the Trojan horse mechanism and a potential explanation for the predilection of Cn to cause CNS infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors.

    PubMed

    Bliss, Bishop; Tran, Kevin Ivan; Sioutas, Constantinos; Campbell, Arezoo

    2018-02-01

    Exposure to ambient particulate matter (PM) has been linked to adverse pulmonary and cardiovascular health effects. Activation of both inflammatory and oxidative stress pathways has been observed and may be a probable cause of these outcomes. We tested the hypothesis that in human monocytes, PM-induced oxidative and inflammatory responses are interrelated. A human monocytic cell line (THP-1) was used to determine if dose and differentiation state plays a role in the cellular response after a 24hr exposure to particles. Primary human monocytes derived from eight female, non-smoker donors (aged: 21, 24, 27, 28, 48, 49, 54 & 60yo) were used to determine if the age of donors modulates the response. Cells were treated with aqueous suspensions of ambient ultrafine particles (UFP, defined as smaller than 0.2µm in size) or a media control for 24hr. After exposure, reactive oxygen species (ROS) formation was increased irrespective of dose or differentiation state of THP-1 cells. In the primary human monocytes, ROS formation was not significantly changed. The release of the proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), was dose-dependent and greatest in differentiated compared to undifferentiated THP-1 cells exposed to UFP. In the Primary human monocytes, TNF-α secretion was increased irrespective of the age of the donor. Our results suggest that after a 24hr exposure to particles, general reactive oxygen species formation was nonspecific and uncorrelated to cytokine secretion which was consistently enhanced. Cytokines play an important role in orchestrating many immune responses and thus the ability of ambient particles to enhance robust secretion of a proinflammatory cytokine from primary human monocytes, and how this may influence the response to pathogens and alter disease states, needs to be further evaluated. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Designing primers and evaluation of the efficiency of propidium monoazide - Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius.

    PubMed

    Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang

    2017-07-01

    The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.

  9. Magnetic tunnel transistor with a perpendicular Co/Ni multilayer sputtered on a Si/Cu(1 0 0) Schottky diode

    NASA Astrophysics Data System (ADS)

    Vautrin, C.; Lu, Y.; Robert, S.; Sala, G.; Lenoble, O.; Petit-Watelot, S.; Devaux, X.; Montaigne, F.; Lacour, D.; Hehn, M.

    2016-09-01

    We have studied a magnetic tunnel transistor (MTT) structure based on a MgO tunnelling barrier emitter and a [Co/Ni]5/Cu multilayer base on a Si (0 0 1) substrate. Evident links between the Schottky barrier preparation techniques and the properties of perpendicular magnetic anisotropy (PMA) in the [Co/Ni] multilayer have been revealed by combined x-ray diffraction and magnetometry analyses. The Si surface treated by hydrofluoric acid (HF) is found to favour a Cu [1 0 0] texture growth which is detrimental to the [Co/Ni]5 PMA properties. However, a Ta layer insertion can restore the [1 1 1] texture required for the PMA appearance. By carefully engineering the base crystallographic texture structure, we obtain both a good quality of Schottky barrier and PMA property; a magneto-current ratio of 162% has been measured for MTTs with a spin-valve base composed of one magnetic layer having in-plane anisotropy and another one with out-of-plane anisotropy.

  10. Saccharomyces cerevisiae Hsp30 is necessary for homeostasis of a set of thermal stress response functions.

    PubMed

    Thakur, Suresh; Chakrabarti, Amitabha

    2010-02-01

    Saccharomyces cerevisiae Hsp30 is a plasma membrane heat shock protein which is induced by various environmental stress conditions. However functional role of Hsp30 during diverse environmental stressors is not presently known. To gain insight into its function during thermal stress, we have constructed and characterized a hsp30 strain during heat stress. BY4741Deltahsp30 cells were found to be more sensitive compared to BY4741 cells when exposed to a lethal heat stress at 50 degrees Celsius. When budding yeast is exposed to either heat shock or weak organic acid, it inhibits Pma1p activity. In this study we measured the levels of Pma1p in mutant and Wt cells both during optimal temperature and heat shock temperature. We observed that BY4741Deltahsp30 cells showed constitutive reduction of Pma1p. To gain further insights into the role of Hsp30 during heat stress, we compared total protein profile by 2D gel electrophoresis followed by identification of differentially expressed spots by LC-MS. We observed that contrary to that expected from thermal stress induced changes in gene expression, the Deltahsp30mutant maintained elevated levels of Pdc1p, Trx1p and Nbp35p and reduced levels of Atp2p and Sod1p during heat shock. In conclusion, Hsp30 is necessary during lethal heat stress, for the maintenance of Pma1p and a set of thermal stress response functions.

  11. Dihydroartemisinin-induced apoptosis in human acute monocytic leukemia cells

    PubMed Central

    Cao, Jia-Tian; Mo, Hui-Min; Wang, Yue; Zhao, Kai; Zhang, Tian-Tian; Wang, Chang-Qian; Xu, Kai-Lin; Han, Zhi-Hua

    2018-01-01

    Dihydroartemisinin (DHA) is a derivative of artemisinin. The present study aimed to investigate whether DHA induces apoptosis in the THP-1 human acute monocytic leukemia cell line (AMoL), and to identify the relative molecular mechanisms. The results of the present study demonstrated that the viability of THP-1 cells were inhibited by DHA in a dose- and time-dependent manner, which was accompanied by morphological characteristics associated with apoptosis. After 24 h of 200 µM DHA treatment, the proportion of apoptotic cells was significantly increased compared with the untreated controls (P<0.01). In addition, DHA downregulated the levels of B-cell lymphoma (Bcl)-2, protein kinase B (Akt)1, Akt2 and Akt3 gene expression, and increased the expression of the Bcl-2-associated X protein apoptosis regulator. The protein expression of phospho-Akt and phospho-extracellular signal-regulated kinase (ERK) was also decreased, and the protein expression level of cleaved caspase-3 was increased following treatment with DHA. Therefore, DHA may induce apoptosis in the AMoL THP-1 cell line via currently unknown underlying molecular mechanisms, including the downregulation of ERK and Akt, and the activation of caspase-3. PMID:29435054

  12. The role of HSP27 in RACK1-mediated PKC activation in THP-1 cells.

    PubMed

    Corsini, Emanuela; Galbiati, Valentina; Papale, Angela; Kummer, Elena; Pinto, Antonella; Guaita, Antonio; Racchi, Marco

    2016-08-01

    Receptor for Activated C Kinase 1 (RACK1) pseudosubstrate is a commercially available peptide that directly activates protein kinase C-β (PKCβ). We have recently shown that RACK1 pseudosubstrate, alone or in combination with classical immune activators, results in increased cytokine production and CD86 upregulation in primary leukocytes. Furthermore, we demonstrated a role of PKCβ and RACK1 in chemical allergen-induced CD86 expression and IL-8 production in both THP-1 cells and primary human dendritic cells. Aim of this study was to shed light on the mechanisms underlying RACK1 pseudosubstrate-induced immune activation and to compare it to lipopolysaccharide (LPS). The human promyelocytic cell line THP-1 was used throughout the study. RACK1 pseudosubstrate induced rapid (5 min) and dose-related PKCβ activation as assessed by its membrane translocation. Among the proteins phosphorylated, we identified Hsp27. Both RACK1 pseudosubstrate and LPS induce its phosphorylation and release in culture medium. The release of Hsp27 induced by RACK1 pseudosubstrate was also confirmed in peripheral blood mononuclear cells. To evaluate the role of Hsp27 in RACK1 pseudosubstrate or LPS-induced cell activation, we conducted Hsp27 silencing and neutralization experiments. Both strategies confirmed the central role of Hsp27 in RACK1 pseudosubstrate or LPS-induced cell activation, as assessed by IL-8 production and upregulation of CD86.

  13. Agaricus blazei Extract Induces Apoptosis through ROS-Dependent JNK Activation Involving the Mitochondrial Pathway and Suppression of Constitutive NF-κB in THP-1 Cells

    PubMed Central

    Kim, Mun-Ock; Moon, Dong-Oh; Jung, Jin Myung; Lee, Won Sup; Choi, Yung Hyun; Kim, Gi-Young

    2011-01-01

    Agaricus blazei is widely accepted as a traditional medicinal mushroom, and it has been known to exhibit immunostimulatory and anti-cancer activity. However, the apoptotic mechanism in cancer cells is poorly understood. In this study, we have investigated whether A. blazei extract (ABE) exerts antiproliferative and apoptotic effects in human leukemic THP-1 cells. We observed that ABE-induced apoptosis is associated with the mitochondrial pathway, which is mediated by reactive oxygen species (ROS) generation and prolonged c-Jun N-terminal kinase (JNK) activation. In addition, the ABE treatment resulted in the accumulation of cytochrome c in the cytoplasm, an increase in caspase activity, and an upregulation of Bax and Bad. With those results in mind, we found that ABE decreases constitutive NF-κB activation and NF-κB-regulated gene products such as IAP-1 and -2. We concluded that ABE induces apoptosis with ROS-dependent JNK activation and constitutive activated NF-κB inhibition in THP-1 cells. PMID:19861509

  14. Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.

    PubMed

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-07-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.

  15. Design and Validation of PEG-Derivatized Vitamin E Copolymer for Drug Delivery into Breast Cancer.

    PubMed

    Li, Yanping; Liu, Qinhui; Li, Wenyao; Zhang, Ting; Li, Hanmei; Li, Rui; Chen, Lei; Pu, Shiyun; Kuang, Jiangying; Su, Zhiguang; Zhang, Zhirong; He, Jinhan

    2016-08-17

    This study examined the ability of amphiphilic poly(ethylene glycol) (PEG) derivatives to assemble into micelles for drug delivery. Linear PEG chains were modified on one end with hydrophobic vitamin E succinate (VES), and PEG and VES were mixed in different molar ratios to make amphiphiles, which were characterized in terms of critical micelle concentration (CMC), drug loading capacity (DLC), serum stability, tumor spheroid penetration and tumor targeting in vitro and in vivo. The amphiphile PEG5K-VES6 (PAMV6), which has a wheat-like structure, showed a CMC of 3.03 × 10(-6) M, good serum stability, and tumor accumulation. The model drug, pirarubicin (THP), could be efficiently loaded into PAMV6 micelles at a DLC of 24.81%. PAMV6/THP micelles were more effective than THP solution at inducing cell apoptosis and G2/M arrest in 4T1 cells. THP-loaded PAMV6 micelles also inhibited tumor growth much more than free THP in a syngeneic mouse model of breast cancer. PAMV6-based micellar systems show promise as nanocarriers for improved anticancer chemotherapy.

  16. Immunomodulatory/inflammatory effects of geopropolis produced by Melipona fasciculata Smith in combination with doxorubicin on THP-1 cells.

    PubMed

    Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício

    2016-12-01

    Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.

  17. Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress

    PubMed Central

    2011-01-01

    Background Gum of Chios mastic (Pistacia lentiscus var. chia) is a natural antimicrobial agent that has found extensive use in pharmaceutical products and as a nutritional supplement. The molecular mechanisms of its anti-inflammatory activity, however, are not clear. In this work, the potential role of antioxidant activity of Chios mastic gum has been evaluated. Methods Scavenging of superoxide radical was investigated by electron spin resonance and spin trapping technique using EMPO spin trap in xanthine oxidase system. Superoxide production in endothelial and smooth muscle cells stimulated with TNF-α or angiotensin II and treated with vehicle (DMSO) or mastic gum (0.1-10 μg/ml) was measured by DHE and HPLC. Cellular H2O2 was measured by Amplex Red. Inhibition of protein kinase C (PKC) with mastic gum was determined by the decrease of purified PKC activity, by inhibition of PKC activity in cellular homogenate and by attenuation of superoxide production in cells treated with PKC activator phorbol 12-myristate 13-acetate (PMA). Results Spin trapping study did not show significant scavenging of superoxide by mastic gum itself. However, mastic gum inhibited cellular production of superoxide and H2O2 in dose dependent manner in TNF-α treated rat aortic smooth muscle cells but did not affect unstimulated cells. TNF-α significantly increased the cellular superoxide production by NADPH oxidase, while mastic gum completely abolished this stimulation. Mastic gum inhibited the activity of purified PKC, decreased PKC activity in cell homogenate, and attenuated superoxide production in cells stimulated with PKC activator PMA and PKC-dependent angiotensin II in endothelial cells. Conclusion We suggest that mastic gum inhibits PKC which attenuates production of superoxide and H2O2 by NADPH oxidases. This antioxidant property may have direct implication to the anti-inflammatory activity of the Chios mastic gum. PMID:21645369

  18. Effects of an anti-oxidative ACAT inhibitor on apoptosis/necrosis and cholesterol accumulation under oxidative stress in THP-1 cell-derived foam cells.

    PubMed

    Miike, Tomohiro; Shirahase, Hiroaki; Jino, Hiroshi; Kunishiro, Kazuyoshi; Kanda, Mamoru; Kurahashi, Kazuyoshi

    2008-01-02

    THP-1 cell-derived foam cells were exposed to oxidative stress through combined treatment with acetylated LDL (acLDL) and copper ions (Cu2+). The foam cells showed caspase-dependent apoptotic changes on exposure to oxidative stress for 6 h, and necrotic changes with the leakage of LDH after 24 h. KY-455, an anti-oxidative ACAT inhibitor, and ascorbic acid (VC) but not YM-750, an ACAT inhibitor, prevented apoptotic and necrotic changes. These preventive effects of KY-455 and VC were accompanied by the inhibition of lipid peroxidation in culture medium containing acLDL and Cu2+, suggesting the involvement of oxidized acLDL in apoptosis and necrosis. Foam cells accumulated esterified cholesterol (EC) for 24 h in the presence of acLDL without Cu2+, which was suppressed by KY-455 and YM-750. Foam cells showed necrotic changes and died in the presence of acLDL and Cu2+. KY-455 but not YM-750 prevented cell death and reduced the amount of EC accumulated. The foam cells treated with VC further accumulated EC without necrotic changes for 24 h even in the presence of acLDL and Cu2+. YM-750 as well as KY-455 inhibited lipid accumulation when co-incubated with VC in foam cells exposed to oxidative stress. It is concluded that an anti-oxidative ACAT inhibitor or the combination of an antioxidant and an ACAT inhibitor protects foam cells from oxidative stress and effectively reduces cholesterol levels, which would be a promising approach in anti-atherosclerotic therapy.

  19. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS.

    PubMed

    Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan

    2008-04-01

    Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.

  20. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes

    PubMed Central

    Loose, David S.; Gottipati, Koteswara R.; Natarajan, Kartiga; Mitchell, Courtney T.

    2016-01-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells. PMID:26884459

  1. Effect of recombinant human gamma interferon on intracellular activities of antibiotics against Listeria monocytogenes in the human macrophage cell line THP-1.

    PubMed Central

    Scorneaux, B; Ouadrhiri, Y; Anzalone, G; Tulkens, P M

    1996-01-01

    Listeria monocytogenes is a facultative intracellular pathogen which enters cells by endocytosis and reaches phagolysosomes from where it escapes and multiplies in the cytosol of untreated cells. Exposure of macrophages to gamma interferon (IFN-gamma) restricts L. monocytogenes to phagosomes and prevents its intracellular multiplication. We have tested whether IFN-gamma also modulates the susceptibility of L. monocytogenes to antibiotics. We selected drugs from three different classes displaying marked properties concerning their cellular accumulation and subcellular distribution, namely, ampicillin (not accumulated by cells but present in cytosol), azithromycin (largely accumulated by cells but mostly restricted to lysosomes), and sparfloxacin (accumulated to a fair extent but detected only in cytosol). We used a continuous line of myelomonocytic cells (THP-1 macrophages), which display specific surface receptors for IFN-gamma, and examined the activity of these antibiotics against L. monocytogenes Hly+ (virulent variant) and L. monocytogenes Hly- (a nonvirulent variant defective in hemolysin production). Untreated THP-1 and phorbol myristate acetate-differentiated THP-1 were permissive for infection and multiplication of intracellular L. monocytogenes Hly+ (virulent variant). All three antibiotics tested were bactericidal against this Listeria strain when added to an extracellular concentration of 10x their MIC. After preexposure of THP-1 to IFN-gamma, L. monocytogenes Hly+ was still phagocytosed but no longer grew intracellularly. The activity of ampicillin became almost undetectable (antagonistic effect), and that of azithromycin was unchanged (additive effect with that of IFN-gamma), whereas that of sparfloxacin was markedly enhanced (synergy). A similar behavior (lack of bacterial growth, associated with a loss of activity of ampicillin, an enhanced activity of sparfloxacin, and unchanged activity of azithromycin) was observed in cells infected with L. monocytogenes Hly-. This modulation of antibiotic activity, which we ascribe to the change of subcellular localization of L. monocytogenes caused by IFN-gamma or by the lack of virulence factor, could result from a change in bacterial responsiveness to antibiotics, a modification of the drug activity, or differences in drug bioavailabilities between cytosol and phagosomes. PMID:8723471

  2. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  3. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells.

    PubMed

    Jafari, A R; Mosavi, T; Mosavari, N; Majid, A; Movahedzade, F; Tebyaniyan, M; Kamalzadeh, M; Dehgan, M; Jafari, S; Arastoo, S

    2016-12-01

    Humans have been in a constant battle with tuberculosis (TB). Currently, overuse of antibiotics has resulted in the spread of multidrug-resistant Mycobacterium tuberculosis (MDR), leading to antibiotic ineffectiveness at controlling the spread of TB infection in host cells and especially macrophages. Additionally, the Mycobacterium tuberculosis (Mtb) has developed methods to evade the immune system and survive. With the discovery of nanoparticle (NP)-based drugs, it is necessary to research their anti-mycobacterial properties and bactericidal mechanisms. In this study, we synthesized mixed metal oxide NPs and tested their ability to inhibit Mtb growth into macrophages and investigated the cytotoxic effects of NPs in THP-1 cells. Silver (Ag) NPs and zinc oxide (ZnO) NPs were synthesized by chemical reduction and chemical deposition in aqueous solution, and the diffraction light scattering, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible light-absorption spectra were used to identify NP properties. Ag and ZnO NPs were mixed together at a ratio of 8 ZnO /2 Ag and diluted into Löwenstein-Jensen medium followed by the addition of bacteria and incubation for 28days at 37°C. The toxicity of NPs to THP-1 cells was assessed by MTT test, and macrophages were infected with Mtb for 4h at 37°C under 5% CO 2 . Nano-sized particles were estimated at ∼30-80nm, and the initial concentration of Ag NPs and ZnO NPs were estimated at ∼20ppm and ∼60ppm. The minimal inhibitory concentration ratio of 8 ZnO /2 Ag NPs against Mtb was detected at ∼1/32 of the initial concentration. Ag NPs in the range of concentrations exhibited no anti-Mtb effects, whereas ZnO NPs showed potent antibacterial activity at ∼1/128 of the initial concentration. ZnO NPs at all concentrations showed cytotoxic activity, whereas 100% of THP-1 cells remained viable in the presence of Ag NPs at ∼1/32 and ∼1/64 of the initial concentrations. However, at ratios of 8 ZnO /2 Ag , ∼39.94% of the cells at ∼1/16 of the initial concentration remained viable, with 100% of THP-1 cells at ∼1/32 of the initial concentration remaining viable. Although Ag NPs exhibited low cytotoxicity, they were unable to inhibit Mtb growth in vitro. ZnO NPs exhibited strong anti-Mtb activity and inhibited bacterial growth, but exhibited high cytotoxicity to human macrophage cells. By mixing Ag and ZnO NPs at a ratio of 8 ZnO /2 Ag , we acquired a mixture that exhibited potent antibacterial activity against Mtb and no cytotoxic effects on THP-1 cells, resulting in inhibition of both in vitro and ex vivo Mtb growth Figs. 1-3, Tables 1-3. Copyright © 2016.

  4. Valsartan independent of AT1 receptor inhibits tissue factor, TLR-2 and-4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions

    PubMed Central

    Ha, Yu Mi; Park, Eun Jung; Kang, Young Jin; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2014-01-01

    Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)-1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll-like receptor (TLR)-2 and-4 by regulating Egr-1 in THP-1 cells and aorta in streptozotocin-induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr-1, TF, TLR-2 and-4 which were significantly reduced by valsartan. HG increased Egr-1 expression by activation of PKC and ERK1/2 in THP-1 cells. Valsartan increased AMPK phosphorylation in a concentration and time-dependent manner via activation of LKB1. Valsartan inhibited Egr-1 without activation of PKC or ERK1/2. The reduced expression of Egr-1 by valsartan was reversed by either silencing Egr-1, or compound C, or DN-AMPK-transfected cells. Valsartan inhibited binding of NF-κB and Egr-1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF-α, IL-6 and IL-1β) production and NF-κB activity in HG-activated THP-1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP-1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr-1, TLR-2,-4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin-induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr-1 regulation. PMID:25109475

  5. Valsartan independent of AT₁ receptor inhibits tissue factor, TLR-2 and -4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions.

    PubMed

    Ha, Yu Mi; Park, Eun Jung; Kang, Young Jin; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2014-10-01

    Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)-1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll-like receptor (TLR)-2 and -4 by regulating Egr-1 in THP-1 cells and aorta in streptozotocin-induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr-1, TF, TLR-2 and -4 which were significantly reduced by valsartan. HG increased Egr-1 expression by activation of PKC and ERK1/2 in THP-1 cells. Valsartan increased AMPK phosphorylation in a concentration and time-dependent manner via activation of LKB1. Valsartan inhibited Egr-1 without activation of PKC or ERK1/2. The reduced expression of Egr-1 by valsartan was reversed by either silencing Egr-1, or compound C, or DN-AMPK-transfected cells. Valsartan inhibited binding of NF-κB and Egr-1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF-α, IL-6 and IL-1β) production and NF-κB activity in HG-activated THP-1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP-1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr-1, TLR-2, -4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin-induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr-1 regulation. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaolin; Li, Qian; Pang, Liewen

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-densitymore » lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.« less

  7. Purmorphamine as a Shh Signaling Activator Small Molecule Promotes Motor Neuron Differentiation of Mesenchymal Stem Cells Cultured on Nanofibrous PCL Scaffold.

    PubMed

    Bahrami, Naghmeh; Bayat, Mohammad; Mohamadnia, Abdolreza; Khakbiz, Mehrdad; Yazdankhah, Meysam; Ai, Jafar; Ebrahimi-Barough, Somayeh

    2017-09-01

    There is variety of stem cell sources but problems in ethical issues, contamination, and normal karyotype cause many limitations in obtaining and using these cells. The cells in Wharton's jelly region of umbilical cord are abundant and available stem cells with low immunological incompatibility, which could be considered for cell replacement therapy. Small molecules have been presented as less expensive biologically active compounds that can regulate different developmental process. Purmorphamine (PMA) is a small molecule that, according to some studies, possesses certain differentiation effects. In this study, we investigated the effect of the PMA on Wharton's jelly mesenchymal stem cell (WJ-MSC) differentiation into motor neuronal lineages instead of sonic hedgehog (Shh) on PCL scaffold. After exposing to induction media for 15 days, the cells were characterized for expression of motor neuron markers including PAX6, NF-H, Islet1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription (PCR) and immunocytochemistry. Our results demonstrated that induced WJ-MSCs with PMA could significantly express motor neuron markers in RNA and protein levels 15 days post induction. These results suggested that WJ-MSCs can differentiate to motor neuron-like cells with PMA on PCL scaffold and might provide a potential source in cell therapy for nervous system.

  8. Cytotoxic, anti-cancer, and anti-microbial effects of different extracts obtained from Artemisia rupestris.

    PubMed

    Nokerbek, Shamshabanu; Sakipova, Zuriyadda; Chalupová, Marta; Nejezchlebová, Marcela; Hošek, Jan

    2017-01-01

    Artemisia rupestris is a part of traditional Kazakh folk medicine. Extracts obtained from this plant are used to treat various diseases, including cancer. This study evaluates the anti-microbial, cytotoxic, and anti-cancer effects of different extracts of the plant. Different extraction techniques were used and the resultant activities were compared. Extracts of A. rupestris were prepared from the flowers plus the leaves and from the stems. The antimicrobial activity against Candida albicans and Staphylococcus aureus was quantified. Cell lines L1210 and THP-1 were used to evaluate the cytotoxic potential of these extracts in vitro. The anti-cancer effect was tested using L1210-induced tumorgenesis in mouse model. The aqueous extract of stems was the most active against C. albicans, whereas the methanolic extract of flowers plus leaves especially inhibited the growth of S. aureus. The aqueous extracts were found to be non-cytotoxic for both cell lines, whereas the lipophilic extracts showed cytotoxic effects. The extract obtained from flowers plus leaves was more cytotoxic than that from stems. The tested extracts showed no anti-cancer potential. The results obtained testify to the relatively safe consumption of aqueous extracts of A. rupestris, but lipophilic extracts showed toxic effects and their consumption should be considered more carefully.Key words: L1210 cell line THP-1 cell line microwave-assisted extraction ultrasonic-assisted extraction Candida albicans Staphylococcus aureus.

  9. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide

    PubMed Central

    Vellani, Vittorio; Mapplebeck, Sarah; Moriondo, Andrea; Davis, John B; McNaughton, Peter A

    2001-01-01

    The effects of activation of protein kinase C (PKC) on membrane currents gated by capsaicin, protons, heat and anandamide were investigated in primary sensory neurones from neonatal rat dorsal root ganglia (DRG) and in HEK293 cells (human embryonic kidney cell line) transiently or stably expressing the human vanilloid receptor hVR1. Maximal activation of PKC by a brief application of phorbol 12-myristate 13-acetate (PMA) increased the mean membrane current activated by a low concentration of capsaicin by 1.65-fold in DRG neurones and 2.18-fold in stably transfected HEK293 cells. Bradykinin, which activates PKC, also enhanced the response to capsaicin in DRG neurones. The specific PKC inhibitor RO31-8220 prevented the enhancement caused by PMA. Activation of PKC did not enhance the membrane current at high concentrations of capsaicin, showing that PKC activation increases the probability of channel opening rather than unmasking channels. Application of PMA alone activated an inward current in HEK293 cells transiently transfected with VR1. The current was suppressed by the VR1 antagonist capsazepine. PMA did not, however, activate a current in the large majority of DRG neurones nor in HEK293 cells stably transfected with VR1. Removing external Ca2+ enhanced the response to a low concentration of capsaicin 2.40-fold in DRG neurones and 3.42-fold in HEK293 cells. Activation of PKC in zero Ca2+ produced no further enhancement of the response to capsaicin in either DRG neurones or HEK293 cells stably transfected with VR1. The effects of PKC activation on the membrane current gated by heat, anandamide and low pH were qualitatively similar to those on the capsaicin-gated current. The absence of a current activated by PMA in most DRG neurones or in stably transfected HEK293 cells suggests that activation of PKC does not directly open VR1 channels, but instead increases the probability that they will be activated by capsaicin, heat, low pH or anandamide. Removal of calcium also potentiates activation, and PKC activation then has no further effect. The results are consistent with a model in which phosphorylation of VR1 by PKC increases the probability of channel gating by agonists, and in which dephosphorylation occurs by a calcium-dependent process. PMID:11483711

  10. Induction of Pro-Inflammatory Response via Activated Macrophage-Mediated NF-κB and STAT3 Pathways in Gastric Cancer Cells.

    PubMed

    Zhou, Yujuan; Xia, Longzheng; Liu, Qiang; Wang, Heran; Lin, Jingguan; Oyang, Linda; Chen, Xiaoyan; Luo, Xia; Tan, Shiming; Tian, Yutong; Su, Min; Wang, Ying; Chen, Pan; Wu, Yang; Wang, Hui; Liao, Qianjin

    2018-06-19

    Chronic inflammation plays an important role in the initiation and progression of gastric cancer (GC). However, the role and relationship of activated macrophages with gastric mucous epithelium cells in initiating and maintaining the inflammatory process during gastric carcinogenesis remains unclear. The tumour associated macrophages (TAMs) density of gastric cancer was characterized by immunohistochemistry, and the relationship between macrophages and gastric epithelium cells was analysed using an in vitro culture system that imitates the inflammatory microenvironment. The production of pro-inflammatory cytokines was detected by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR). MTT assays, Western blotting, qRT-PCR, and luciferase reporter assays were used to detect the effects of cell proliferation, as well as the NF-κB and STAT3 signalling pathways. TAMs infiltrated with a high intensity in GC and were significantly correlated with histology grade (P = 0.012), metastasis (P = 0.001), TNM stage (P = 0.002), and poor prognosis in patients (PFS, P = 0.005; OS, P = 0.028). In addition, IL-6 and IL-8 were elevated in the serum of GC patients and significantly promoted the growth of GC. The exposure of BGC823 gastric cancer cells to a conditioned medium from LPS-treated D-THP-1 cells significantly induced the production of TNF-α, IL-6, IL-1β and IL-8 (P< 0.01). LPS and LPS-treated D-THP-1-conditioned media promoted gastric cancer cell proliferation and triggered the significant activation of NF-κB and STAT3 with a concomitant degradation of IκBα and an increase in JAK2 phosphorylation (P < 0.05). Moreover, gastric cancer cells markedly expressed cell membrane LPS receptors, such as TLR1, TLR4, TLR6, CD14 and MD2. TAMs are closely associated with the growth of GC and prognosis in GC patients. GC cells may directly sustain and amplify the local pro-inflammatory response upon encountering activated macrophages and LPS via NF-κB and STAT3 signalling pathways, thereby promoting tumour progression. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression.

    PubMed

    Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok

    2002-11-15

    Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.

  12. Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes.

    PubMed

    Ahmed, Shahid; Adamidis, Ananea; Jan, Louis C; Gibbons, Nora; Mattana, Joseph

    2003-10-01

    In response to infection or in immune complex-mediated diseases, inflammatory cells may oxidatively damage extracellular matrix (ECM) proteins. In this study we evaluated whether human monocytes could oxidize ECM and whether this could be modulated by exposure to LPS, IgG complexes, and dexamethasone (DEX). Wells in tissue culture plates were coated with the ECM preparation Matrigel. Porous inserts with or without the human monocyte cell line THP-1 were placed into ECM-containing wells and cells were exposed to control conditions or to LPS (10 ng/ml), IgG complexes (200 and 500 microg/ml), or DEX (10(-7) and 10(-6) M). ECM was then subjected to Western blot analysis using an antibody to oxidized protein. In addition, Western blot analysis was carried out on DEX-treated cells to evaluate expression of the NADPH oxidase components p67-phox and gp91-phox. THP-1 cells enhanced ECM oxidation and this effect was augmented by LPS and by IgG aggregates. Preincubation of cells with DEX attenuated ECM oxidation and was also associated with decreased expression of p67-phox and gp91-phox. These findings suggest that human monocytes can oxidize ECM proteins and that this may be modulated by IgG complexes and LPS. Dexamethasone appears to attenuate ECM oxidation and a better understanding of this mechanism might allow for interventions to minimize oxidative damage to ECM proteins by monocytes in infectious and inflammatory states.

  13. Sulforaphane inhibits endothelial protein C receptor shedding in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Han, Min-Su; Bae, Jong-Sup

    2014-10-01

    Sulforaphane (SFN), a natural isothiocyanate present in cruciferous vegetables such as broccoli and cabbage, is effective in preventing carcinogenesis, diabetes, and inflammatory responses. Increasing evidence has demonstrated that beyond its role in the activation of protein C, endothelial cell protein C receptor (EPCR) is also involved in vascular inflammation. EPCR activity is markedly changed by ectodomain cleavage and its release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of SFN on EPCR shedding. Our results demonstrated that SFN induced potent inhibition of phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1β, and cecal ligation and puncture (CLP)-induced EPCR shedding. SFN also inhibited the expression and activity of PMA-induced TACE in endothelial cells. In addition, treatment with SFN resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of SFN as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Investigation of impact of post-metallization annealing on reliability of 65 nm NOR floating-gate flash memories

    NASA Astrophysics Data System (ADS)

    Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Yan, Feng

    2016-12-01

    This paper investigates the impact of post-metallization annealing (PMA) in pure nitrogen ambient on the reliability of 65 nm NOR-type floating-gate flash memory devices. The experimental results show that, with PMA process, the cycling performance of flash cells, especially for the erasing speed is obviously degraded compared to that without PMA. It is found that the bulk oxide traps and tunnel oxide/Si interface traps are significantly increased with PMA treatment. The water/moisture residues left in the interlayer dielectric layers diffuse to tunnel oxide during PMA process is considered to be responsible for these traps generation, which further enhances the degradation of erase performance. Skipping PMA treatment is proposed to suppress the water diffusion effect on erase performance degradation of flash cells.

  15. Survival and persistence of fecal host-specific Bacteroidales cells and their DNA assessed by PMA-qPCR

    NASA Astrophysics Data System (ADS)

    Bae, S.; Bombardelli, F.; Wuertz, S.

    2008-12-01

    Understanding and managing microbial pollutions in water is one of the foremost challenges of establishing effective managements and remediation strategies to impaired water bodies polluted by uncharacterized fecal sources. Quantitative microbial source tracking (MST) approaches using fecal Bacteroidales and quantitative PCR (qPCR) assays to measure gene copies of host-specific 16S rRNA genetic markers are promising because they can allow for identifying and quantifying fecal loadings from a particular animal host and understanding the fate and transport of host-specific Bacteroidales over a range of conditions in water bodies. Similar to the case of traditional fecal indicator bacteria, a relatively long persistence of target DNA may hamper applied MST studies, if genetic markers cannot be linked to recent fecal pollution in water. We report a successful approach to removing the qPCR signal derived from free DNA and dead host-specific Bacteroidales cells by selectively binding the DNA and consequently inhibiting PCR amplification using light- activated propidium monoazide (PMA). Optimal PMA-qPCR conditions were determined as 100 µM of PMA concentration and a 10-min light exposure time at different solids concentrations in order to mimic a range of water samples. Under these conditions, PMA-qPCR resulted in the selective exclusion of DNA from heat- treated cells of non-culturable Bacteroidales in human feces and wastewater influent and effluent samples. Also, the persistence of feces-derived host-specific Bacteroidales DNA and their cells (determined by universal, human-, cow- and dog-specific Bacteroidales qPCR assays) in seawater was investigated in microcosms at environmental conditions. The average T99 (two log reduction) value for host-specific viable Bacteroidales cells was 28 h, whereas that for total host-specific Bacteroidales DNA was 177 h. Natural sunlight did not have a strong influence on the fate of fecal Bacteroidales cells and their DNA, presumably because the presence of oxygen significantly affected the viability and persistence of these obligate anaerobes. In conclusion, measuring Bacteroidales DNA in viable cells is recommended in applied MST studies because extracellular Bacteroidales DNA persists longer in the environment. The methods and results presented are helpful to improve the accuracy of MST applications, to develop a model of fate and transport of host-specific Bacteroidales, and to implement management practices to protect water quality.

  16. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells.

    PubMed

    Kouzel, Ivan U; Pohlentz, Gottfried; Storck, Wiebke; Radamm, Lena; Hoffmann, Petra; Bielaszewska, Martina; Bauwens, Andreas; Cichon, Christoph; Schmidt, M Alexander; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-03-01

    Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.

  17. CD86 expression as a surrogate cellular biomarker for pharmacological inhibition of the histone demethylase lysine-specific demethylase 1.

    PubMed

    Lynch, James T; Cockerill, Mark J; Hitchin, James R; Wiseman, Daniel H; Somervaille, Tim C P

    2013-11-01

    There is a lack of rapid cell-based assays that read out enzymatic inhibition of the histone demethylase LSD1 (lysine-specific demethylase 1). Through transcriptome analysis of human acute myeloid leukemia THP1 cells treated with a tranylcypromine-derivative inhibitor of LSD1 active in the low nanomolar range, we identified the cell surface marker CD86 as a sensitive surrogate biomarker of LSD1 inhibition. Within 24h of enzyme inhibition, there was substantial and dose-dependent up-regulation of CD86 expression, as detected by quantitative polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assay. Thus, the use of CD86 expression may facilitate screening of compounds with putative LSD1 inhibitory activities in cellular assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1beta-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes.

    PubMed

    Nehmé, Alissar; Edelman, Jeffrey

    2008-05-01

    To characterize the effects of dexamethasone in human retinal pericytes (HRMPs), monocytes (THP-1), and retinal endothelial cells (HRECs) treated with high glucose, TNF-alpha, or IL-1beta. HRMP and HREC phenotypes were verified by growth factor stimulation of intracellular calcium-ion mobilization. Glucocorticoid receptor phosphorylation was assessed with an anti-phospho-Ser(211) glucocorticoid receptor antibody. Secretion of 89 inflammatory and angiogenic proteins were compared in cells incubated with (1) normal (5 mM) or high (25 mM) D-glucose and (2) control medium, TNF-alpha (10 ng/mL), or IL-1beta (10 ng/mL), with or without dexamethasone (1 nM to 1 microM). The proteins were compared by using multianalyte profile testing. HRMPs and HRECs expressed functional PDGFB-R and VEGFR-2, respectively. Dexamethasone induction of glucocorticoid receptor phosphorylation was dose-dependent in all cell types. High glucose increased secretion of inflammatory mediators in HRMPs, but not in HRECs. Dexamethasone dose dependently inhibited secretion of these mediators in HRMPs. For all cells, TNF-alpha and IL-1beta induced a fivefold or more increase in inflammatory and angiogenic mediators; HRMPs secreted the greatest number and level of mediators. Dexamethasone dose dependently inhibited the secretion of multiple proteins from HRMPs and THP-1 cells, but not from HRECs (IC(50) 2 nM to 1 microM). High glucose, TNF-alpha, and IL-1beta induced an inflammatory phenotype in HRMPs, characterized by hypersecretion of inflammatory and angiogenic mediators. Dexamethasone at various potencies blocked hypersecretion of several proteins. Pericytes may be a key therapeutic target in retinal inflammatory diseases, including diabetic retinopathy. Inhibition of pathologic mediators may depend on delivering high levels ( approximately 1 microM) of glucocorticoid to the retina.

  19. Acute Ethanol Exposure Prevents PMA-mediated Augmentation of N-methyl-d-aspartate Receptor Function in Primary Cultured Cerebellar Granule Cells

    PubMed Central

    Reneau, Jason; Reyland, Mary E.; Popp, R. Lisa

    2011-01-01

    Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-d-aspartate receptors (NMDARs). One putative protein is the serine / threonine kinase, Protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (INMDA) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50 or 100 mM ethanol of NMDA-induced steady-state (ISS) or peak current amplitudes (IPk) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37° C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of IPk in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol co-applied with agonists, and this suppression of enhanced receptor function was observed for up to eight minutes post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of INMDA of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50 and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of INMDA may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved. PMID:21624785

  20. Human serum amyloid A genes are expressed in monocyte/macrophage cell lines.

    PubMed

    Urieli-Shoval, S; Meek, R L; Hanson, R H; Eriksen, N; Benditt, E P

    1994-09-01

    Serum amyloid A (apoSAA) is a family of proteins found, mainly associated with high density lipoproteins, in the blood plasma of mammals and at least one avian species, the Pekin duck. These proteins are present in small amounts under normal circumstances, but their concentration is capable of rising 100- to 1,000-fold in situations involving tissue injury or infection. Like classic acute phase proteins they are produced in the liver; however, expression of one of the apoSAA genes is known to occur in activated macrophages of mice. We examined three human macrophage precursor cell lines (THP-1, U-937, and HL-60), before and after differentiation with phorbol 12-myristate 13-acetate or 1 alpha,25-dihydroxy-vitamin D3, for apoSAA messenger (m)-RNA expression and found that: 1) induction of steady-state apoSAA mRNA by lipopolysaccharide, interleukin-1, or interleukin-6 required the presence of the synthetic glucocorticoid dexamethasone; 2) the three known active genes, apoSAA1, apoSAA2, and apoSAA4, were induced in THP-1 cells, whereas the pseudogene apoSAA3 was not; 3) differentiated and undifferentiated THP-1 cells expressed apoSAA mRNA, but U-937 cells expressed apoSAA mRNA (low levels) only after phorbol 12-myristate 13-acetate differentiation and HL-60 cells did not express apoSAA mRNA whether differentiated or not; 4) apoSAA protein was detectable immunologically at a low level in lyophilized medium from induced THP-1 cells. Our findings are compatible with the hypotheses that 1) apoSAA gene expression in human monocytes/macrophages in vivo is differentiation dependent; 2) activated macrophages provide a local source of apoSAA at sites of tissue injury or inflammation; 3) apoSAA is induced in tissue macrophages by local stimuli, under conditions that may not evoke the systemic acute phase response.

  1. 6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NFκB activation in airway epithelial cells.

    PubMed

    Kurakula, Kondababu; Hamers, Anouk A; van Loenen, Pieter; de Vries, Carlie J M

    2015-06-19

    Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown. Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus. 6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP. Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases.

  2. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    PubMed

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  3. Caffeic acid phenethyl ester suppresses monocyte adhesion to the endothelium by inhibiting NF-κB/NOX2-derived ROS signaling

    PubMed Central

    Nakahara, Risa; Makino, Junya; Kamiya, Tetsuro; Hara, Hirokazu; Adachi, Tetsuo

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), one of the major polyphenols, exhibits anti-oxidative, anti-bacterial, and anti-cancer properties. Atherosclerosis is a chronic inflammatory disease, the progression of which is closely related to the accumulated adhesion of inflammatory monocytes/macrophages to the endothelium. We herein determined whether CAPE and its derivatives suppressed THP-1 cell adhesion to human umbilical vein endothelial cells (HUVEC). Of the four polyphenols tested, CAPE significantly suppressed the 12-O-tetradecanoylphorbol 13-acetate (TPA)-elicited expression of cluster for differentiation (CD) 11b, 14, and 36, and this was accompanied by the inhibition of THP-1 cell adhesion to HUVEC. CAPE also suppressed the activation of TPA-elicited nuclear factor-κB (NF-κB) and accumulation of NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS), but did not affect extracellular signal-regulated kinase (ERK) phosphorylation. Taken together, these results demonstrated that CAPE suppressed THP-1 cell adhesion to HUVEC through, at least in part, the NF-κB, NOX2, and ROS-derived signaling axis. PMID:27257341

  4. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages.

    PubMed

    Lara-Guzmán, Oscar J; Gil-Izquierdo, Ángel; Medina, Sonia; Osorio, Edison; Álvarez-Quintero, Rafael; Zuluaga, Natalia; Oger, Camille; Galano, Jean-Marie; Durand, Thierry; Muñoz-Durango, Katalina

    2018-05-01

    Oxidized low-density lipoprotein (oxLDL) is a well-recognized proatherogenic particle that functions in atherosclerosis. In this study, we established conditions to generate human oxLDL, characterized according to the grade of lipid and protein oxidation, particle size and oxylipin content. The induction effect of the cellular proatherogenic response was assessed in foam cells by using an oxLDL-macrophage interaction model. Uptake of oxLDL, reactive oxygen species production and expression of oxLDL receptors (CD36, SR-A and LOX-1) were significantly increased in THP-1 macrophages. Analyses of 35 oxylipins revealed that isoprostanes (IsoP) and prostaglandins (PGs) derived from the oxidation of arachidonic, dihomo gamma-linolenic and eicosapentaenoic acids were strongly and significantly induced in macrophages stimulated with oxLDL. Importantly, the main metabolites responsible for the THP1-macrophage response to oxLDL exposure were the oxidative stress markers 5-epi-5-F 2t -IsoP, 15-E 1t -IsoP, 8-F 3t -IsoP and 15-keto-15-F 2t -IsoP as well as inflammatory markers PGDM, 17-trans-PGF 3α , and 11β-PGF 2α , all of which are reported here, for the first time, to function in the interaction of oxLDL with THP-1 macrophages. By contrast, a salvage pathway mediated by anti-inflammatory PGs (PGE 1 and 17-trans-PGF 3α ) was also identified, suggesting a response to oxLDL-induced injury. In conclusion, when THP-1 macrophages were treated with oxLDL, a specific induction of biomarkers related to oxidative stress and inflammation was triggered. This work contributes to our understanding of initial atherogenic events mediated by oxLDL-macrophage interactions and helps to generate new approaches for their modulation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Suppressive Effects of Pelargonidin on Endothelial Protein C Receptor Shedding via the Inhibition of TACE Activity and MAP Kinases.

    PubMed

    Kang, Hyejin; Lee, Taeho; Bae, Jong-Sup

    2016-01-01

    Beyond its role in the activation of protein C, the endothelial cell protein C receptor (EPCR) plays an important role in the cytoprotective pathway. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-[Formula: see text] converting enzyme (TACE). Pelargonidin is a well-known red pigment found in plants, and has been reported to have important biological activities that are potentially beneficial to human health. However, little is known about the effects of pelargonidin on EPCR shedding. We investigated this issue by monitoring the effects of pelargonidin on phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-[Formula: see text]-, interleukin (IL)-1β-, and cecal ligation and puncture (CLP)-mediated EPCR shedding and by investigating the underlying mechanism of pelargonidin action. Data demonstrate that pelargonidin induced potent inhibition of PMA-, TNF-[Formula: see text]-, IL-1β-, and CLP-induced EPCR shedding by inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) such as p38, janus kinase (JNK), and extracellular signal-regulated kinase (ERK) 1/2. Pelargonidin also inhibited the expression and activity of PMA-induced TACE in endothelial cells. These results demonstrate the potential of pelargonidin as an anti-EPCR shedding reagent against PMA- and CLP-mediated EPCR shedding.

  6. Transcription factor REST negatively influences the protein kinase C-dependent up-regulation of human mu-opioid receptor gene transcription.

    PubMed

    Bedini, Andrea; Baiula, Monica; Carbonari, Gioia; Spampinato, Santi

    2010-01-01

    Mu-opioid receptor expression increases during neurogenesis, regulates the survival of maturing neurons and is implicated in ischemia-induced neuronal death. The repressor element 1 silencing transcription factor (REST), a regulator of a subset of genes in differentiating and post-mitotic neurons, is involved in its transcriptional repression. Extracellular signaling molecules and mechanisms that control the human mu-opioid receptor (hMOR) gene transcription are not clearly understood. We examined the role of protein kinase C (PKC) on hMOR transcription in a model of neuronal cells and in the context of the potential influence of REST. In native SH-SY5Y neuroblastoma cells, PKC activation with phorbol 12-myristate 13-acetate (PMA, 16 nM, 24h) down-regulated hMOR transcription and concomitantly elevated the REST binding activity to repressor element 1 of the hMOR promoter. In contrast, PMA activated hMOR gene transcription when REST expression was knocked down by an antisense strategy or by retinoic acid-induced cell differentiation. PMA acts through a PKC-dependent pathway requiring downstream MAP kinases and the transcription factor AP-1. In a series of hMOR-luciferase promoter/reporter constructs transfected into SH-SY5Y cells and PC12 cells, PMA up-regulated hMOR transcription in PC12 cells lacking REST, and in SH-SY5Y cells either transfected with constructs deficient in the REST DNA binding element or when REST was down-regulated in retinoic acid-differentiated cells. These findings help explain how hMOR transcription is regulated and may clarify its contribution to epigenetic modifications and reprogramming of differentiated neuronal cells exposed to PKC-activating agents. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Hydrogen Sulfide Suppresses Oxidized Low-density Lipoprotein (Ox-LDL)-stimulated Monocyte Chemoattractant Protein 1 generation from Macrophages via the Nuclear Factor κB (NF-κB) Pathway*

    PubMed Central

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X.; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation. PMID:24550391

  8. Phase II study of the tetrahydropyranyl adriamycin-cyclophosphamide, vincristine, and prednisolone regimen combined with rituximab as first-line treatment for elderly patients with diffuse large B-cell lymphoma.

    PubMed

    Kasahara, Senji; Hara, Takeshi; Tsurumi, Hisashi; Goto, Naoe; Kitagawa, Jun-Ichi; Kanemura, Nobuhiro; Yoshikawa, Takeshi; Goto, Hideko; Fukuno, Kenji; Yamada, Toshiki; Sawada, Michio; Takahashi, Takeshi; Takami, Tsuyoshi; Moriwaki, Hisataka

    2011-04-01

    The anthracycline drug pirarubicin (tetrahydropyranyl adriamycin; THP) apparently has fewer cardiotoxic effects than doxorubicin. We previously described the benefit of the THP-COP regimen comprising cyclophosphamide, THP, vincristine, and prednisolone for elderly patients with diffuse large B-cell lymphoma (DLBCL). However, that study was completed before rituximab (R) was introduced into clinical practice. Here we report a phase II study of the THP-COP regimen combined with R (R-THP-COP) every 3 weeks. The complete response and 3-year overall survival rates was 63% and 53%, respectively, and no deaths were related to the regimen. We conclude that the R-THP-COP regimen is safe and effective for patients with DLBCL. Based on these results, a randomized controlled trial of rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) and R-THP-COP as a phase III study is ongoing.

  9. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1.

    PubMed

    Lv, Yun-cheng; Yang, Jing; Yao, Feng; Xie, Wei; Tang, Yan-yan; Ouyang, Xin-ping; He, Ping-ping; Tan, Yu-lin; Li, Liang; Zhang, Min; Liu, Dan; Cayabyab, Francisco S; Zheng, Xi-Long; Tang, Chao-ke

    2015-05-01

    Diosgenin (Dgn), a structural analogue of cholesterol, has been reported to have the hypolipidemic and antiatherogenic properties, but the underlying mechanisms are not fully understood. Given the key roles of macrophages in cholesterol metabolism and atherogenesis, it is critical to investigate macrophage cholesterol efflux and development of atherosclerotic lesion after Dgn treatment. This study was designed to evaluate the potential effects of Dgn on macrophage cholesterol metabolism and the development of aortic atherosclerosis, and to explore its underlying mechanisms. Dgn significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) protein, but didn't affect liver X receptor α levels in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by western blotting. The miR-19b levels were markedly down-regulated in Dgn-treated THP-1 macrophages/MPM-derived foam cells. Cholesterol transport assays revealed that treatment with Dgn alone or together with miR-19b inhibitor notably enhanced ABCA1-dependent cholesterol efflux, resulting in the reduced levels of total cholesterol, free cholesterol and cholesterol ester as determined by high-performance liquid chromatography. The fecal 3H-sterol originating from cholesterol-laden MPMs was increased in apolipoprotein E knockout mice treated with Dgn or both Dgn and antagomiR-19b. Treatment with Dgn alone or together with antagomiR-19b elevated plasma high-density lipoprotein levels, but reduced plasma low-density lipoprotein levels. Accordingly, aortic lipid deposition and plaque area were reduced, and collagen content and ABCA1 expression were increased in mice treated with Dgn alone or together with antagomiR-19b. However, miR-19b overexpression abrogated the lipid-lowering and atheroprotective effects induced by Dgn. The present study demonstrates that Dgn enhances ABCA1-dependent cholesterol efflux and inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Insights on wood combustion generated proinflammatory ultrafine particles (UFP).

    PubMed

    Corsini, Emanuela; Ozgen, Senem; Papale, Angela; Galbiati, Valentina; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Becagli, Silvia; Caruso, Donatella; Vecchi, Roberta; Galli, Corrado L; Marinovich, Marina

    2017-01-15

    This study aimed to collect, characterize ultrafine particles (UFP) generated from the combustion of wood pellets and logs (softwood and hardwood) and to evaluate their pro-inflammatory effects in THP-1 and A549 cells. Both cell lines responded to UFP producing interleukin-8 (IL-8), with wood log UFP being more active compared to pellet UFP. With the exception of higher effect observed with beech wood log UFP in THP-1, the ability of soft or hard woods to induce IL-8 release was similar. In addition, on weight mass, IL-8 release was similar or lower compared to diesel exhaust particles (DEP), arguing against higher biological activity of smaller size particles. UFP-induced IL-8 could be reduced by SB203580, indicating a role of p38MAPK activation in IL-8 production. The higher activity of beech wood log UFP in THP-1 was not due to higher uptake or endotoxin contamination. Qualitatively different protein adsorption profiles were observed, with less proteins bound to beech UFP compared to conifer UFP or DEP, which may provide higher intracellular availability of bioactive components, i.e. levoglucosan and galactosan, toward which THP-1 were more responsive compared to A549 cells. These results contribute to our understanding of particles emitted by domestic appliances and their biological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. [The influence of stinging nettle (Urtica dioica L.) extracts on the activity of catalase in THP1 monocytes/macrophages].

    PubMed

    Wolska, Jolanta; Janda, Katarzyna; Szkyrpan, Sylwia; Gutowska, Izabela

    2015-01-01

    Stinging nettle (Urtica dioicd L.) is one of the most valuable plants used in phytotherapy. The herbal raw material is a herb (Urticae herba), leaves (Urticae folium), roots (Urticae radix) and seeds (Urticae semina). This plant is a good source of vitamins, minerals, fibre, protein and biologically active compounds with antioxidant properties. The literature provides limited information about the chemical composition and properties of the seed heads. No papers are available on the effect of extracts of this plant on catalase activity in human cells. The aim of this study was to investigate the impact of stinging nettle (Urtica dioica L.) extracts on the antioxidant activity of catalase in THP1 macrophages. Two types of extracts: water and alcohol, at two different concentrations, were used in experiments. Nettle was collected in September and October in 2012 in the area of Szczecin. The collected plant material was frozen and lyophilized. After those procedures water and alcohol extracts of nettle were prepared and then added to THP1 cells. The antioxidant activity of catalase was established with the spectrophotometric method. The study showed that both extracts (water and alcohol) significantly increased the antioxidant activity of catalase in THP1 cells. The increase in catalase was directly proportional to the concentration of the added alcohol extract.

  12. Pleiotropic Effects of Blastocystis spp. Subtypes 4 and 7 on Ligand-Specific Toll-Like Receptor Signaling and NF-κB Activation in a Human Monocyte Cell Line

    PubMed Central

    Teo, Joshua D. W.; MacAry, Paul A.; Tan, Kevin S. W.

    2014-01-01

    Blastocystis spp. is a common enteric stramenopile parasite that colonizes the colon of hosts of a diverse array of species, including humans. It has been shown to compromise intestinal epithelial cell barrier integrity and mediate the production of pro-inflammatory cytokines and chemokines. Mucosal epithelial surfaces, including the intestinal epithelium, are increasingly recognized to perform a vital surveillance role in the context of innate immunity, through the expression of pathogen recognition receptors, such as Toll-like receptors (TLRs). In this study, we use the human TLR reporter monocytic cell line, THP1-Blue, which expresses all human TLRs, to investigate effects of Blastocystis on TLR activation, more specifically the activation of TLR-2, -4 and -5. We have observed that live Blastocystis spp. parasites and whole cell lysate (WCL) alone do not activate TLRs in THP1-Blue. Live ST4-WR1 parasites inhibited LPS-mediated NF-κB activation in THP1-Blue. In contrast, ST7-B WCL and ST4-WR1 WCL induced pleiotropic modulation of ligand-specific TLR-2 and TLR-4 activation, with no significant effects on flagellin-mediated TLR-5 activation. Real time-qPCR analysis on SEAP reporter gene confirmed the augmenting effect of ST7-B on LPS-mediated NF-κB activation in THP1-Blue. Taken together, this is the first study to characterize interactions between Blastocystis spp. and host TLR activation using an in vitro reporter model. PMID:24551212

  13. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Shao, Yuyu; Wang, Zhaoxia; Bao, Qiuhua; Zhang, Heping

    2016-12-01

    In this study, a combination of propidium monoazide (PMA) and quantitative real-time PCR (qPCR) was used to develop a method to determine the viability of cells of Lactobacillus delbrueckii ssp. bulgaricus ND02 (L. bulgaricus) that may have entered into a viable but nonculturable state. This can happen due to its susceptibility to cold shock during lyophilization and storage. Propidium monoazide concentration, PMA incubation time, and light exposure time were optimized to fully exploit the PMA-qPCR approach to accurately assess the total number of living L. bulgaricus ND02. Although PMA has little influence on living cells, when concentrations of PMA were higher than 30μg/mL the number of PCR-positive living bacteria decreased from 10 6 to 10 5 cfu/mL in comparison with qPCR enumeration. Mixtures of living and dead cells were used as method verification samples for enumeration by PMA-qPCR, demonstrating that this method was feasible and effective for distinguishing living cells of L. bulgaricus when mixed with a known number of dead cells. We suggest that several conditions need to be studied further before PMA-qPCR methods can be accurately used to distinguish living from dead cells for enumeration under more realistic sampling situations. However, this research provides a rapid way to enumerate living cells of L. bulgaricus and could be used to optimize selection of cryoprotectants in the lyophilization process and develop technologies for high cell density cultivation and optimal freeze-drying processes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines.

    PubMed

    Gulec, Cagri; Coban, Neslihan; Ozsait-Selcuk, Bilge; Sirma-Ekmekci, Sema; Yildirim, Ozlem; Erginel-Unaltuna, Nihan

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection.

    PubMed

    Hong, Danping; Ding, Jiongyan; Li, Ouyang; He, Quan; Ke, Minxia; Zhu, Mengyi; Liu, Lili; Ou, Wen-Bin; He, Yulong; Wu, Yuehong

    2018-02-26

    Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P < 0.01) by using Annexin V-FITC Apoptosis Detection. Additionally, the rate of apoptosis of BCG-treated THP-1-Mφ was 37.1 ± 2.84% compared to that of the untreated group at 6.19 ± 1.68% (P < 0.001). The expression of TNF-α and the production of NO were significantly increased (P < 0.001), and the activity of Caspase-3 was increased. However, the expression of Bcl-2 was inhibited (P < 0.001). Our results demonstrate that Mφ derived from hiPS perform the immunological function in response to Bacillus Calmette-Guérin infection by undergoing apoptosis, increasing the production of NO and expression of TNF-α. Thus, our study may help to overcome the limitations of research into certain rare diseases due to the lack of adequate supply of disease-specific primary cells.

  16. Antioxidant and selective anticancer activities of two Euphorbia species in human acute myeloid leukemia.

    PubMed

    Ben Jannet, Soumaya; Hymery, Nolwenn; Bourgou, Soumaya; Jdey, Ahmed; Lachaal, Mokhtar; Magné, Christian; Ksouri, Riadh

    2017-06-01

    In this study, two Euphorbia species (i.e. terracina and paralias) were investigated for their cytotoxic and antioxidant activities. Cytotoxicity of plant methanol and chloroform fractions was examined towards human acute myeloid leukemia (THP1) and human colon epithelial (Caco2) cancer cell lines, as well as CD 14 and IEC-6 normal cells by targeting various modulators of apoptosis or inflammation. Moreover, secondary metabolite pools (phenolic classes, alkaloids, terpenes, saponins) and antioxidant activities (DPPH, ABTS and O 2 - scavenging, as well as FRAP tests) were assessed in plant extracts. Both Euphorbia species appeared to be rich in phenolic compounds and terpenoids, Moreover, E. terracina polar and apolar fractions and E. paralias polar fraction were highly active against THP1 cells, with IC 50 values of 2.08, 14.43 and 54.58μg/mL, respectively. However, no cytotoxicity was found against normal cells (CD14 + monocytes). The results indicate that the three fractions induce apoptosis in THP1 cell line after 6h of exposure. Furthermore, apoptosis caused by apolar fraction was related to a caspase-dependent process, whereas other death pathways seemed to be involved with the polar fractions. An enhanced production of reactive oxygen species was detected upon cell treatment with plant extracts. Interestingly, they have no effect on cytokine TNF-α secretion in THP1 and normal cells compared to untreated cells, indicating that the three fractions caused no inflammation. Euphorbia terracina and E. paralias polar fractions showed strong antioxidant activity with potent scavenging capacity against DPPH, ABTS and superoxide radicals. Moreover, these fractions displayed a very high ferric reducing power. These findings confirm the strong antioxidant capacity of Euphorbia plants and suggest a targeted anti-cancer effect with a potent anti-proliferative property of E. terracina and E. paralias extracts, which induce programmed cell death in leukemia cell lines but not in normal monocytes cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Shiga Toxins Activate the NLRP3 Inflammasome Pathway To Promote Both Production of the Proinflammatory Cytokine Interleukin-1β and Apoptotic Cell Death

    PubMed Central

    Lee, Moo-Seung; Kwon, Haenaem; Lee, Eun-Young; Kim, Dong-Jae; Park, Jong-Hwan; Tesh, Vernon L.; Oh, Tae-Kwang

    2015-01-01

    Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death. PMID:26502906

  18. Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells.

    PubMed

    Ishola, I O; Chaturvedi, J P; Rai, S; Rajasekar, N; Adeyemi, O O; Shukla, R; Narender, T

    2013-03-27

    Cnestisferruginea (CF) Vahl ex DC (Connaraceae) is a shrub widely used in traditional African medicine for the treatment of various psychiatric illness and inflammatory conditions. This study was carried out to investigate the effect of amentoflavone isolated from methanolic root extract of CF on lipopolysaccharide (LPS)-induced neuroinflammatory cascade of events associated to the oxidative and nitrative stress, and TNF-α production in rat astrocytoma cell line (C6) and human monocytic leukemia cell line (THP-1), respectively. Rat astrocytoma cells (C6) were stimulated with LPS (10μg/ml) alone and in the presence of different concentrations of amentoflavone (0.1-3μg/ml) for 24h incubation period. Nitrite release, reactive oxygen species (ROS), malondialdehyde (MDA) and reduced-glutathione (GSH) in C6 cells were estimated; while the TNF-α level was estimated in THP-1 cell lysate. In vivo analgesic activity was evaluated using mouse writhing and hot plate tests while the anti-inflammatory effect was investigated using carrageenan-induced oedema test. LPS (10μg/ml) significantly (P<0.05) stimulated C6 cells to release nitrite, ROS, MDA, and TNF-α generation while GSH was down regulated in comparison to control. However, amentoflavone significantly (P<0.05) attenuated nitrite, ROS, MDA and TNF-α generation and also up regulated the level of GSH. Amentoflavone per se did not have any significant effect on C6 and THP-1 cells. Amentoflavone (6.25-50mg/kg) significantly (P<0.05) reduced number of writhes and also increase pain threshold in hot plate test. It produced time course significant (P<0.05) decrease in oedema formation in rodents. Findings in this study demonstrate the anti-neuroinflammatory and antinoceptive effects of amentoflavone which may suggest its beneficial roles in neuroinflammation associated disorders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Prostaglandins induce vascular endothelial growth factor in a human monocytic cell line and rat lungs via cAMP.

    PubMed

    Höper, M M; Voelkel, N F; Bates, T O; Allard, J D; Horan, M; Shepherd, D; Tuder, R M

    1997-12-01

    Prostaglandins have emerged as a therapeutic option for patients with peripheral vascular disease as well as pulmonary hypertension as a means to increase blood flow. We tested the hypothesis that prostaglandins regulate vascular endothelial growth factor (VEGF) expression in the human monocytic THP-1 cell line and in isolated perfused rat lungs. Our data show that the stable PGI2-analogue iloprost induces VEGF gene expression (predominantly VEGF121, but also VEGF165 isoforms) and VEGF protein synthesis in THP-1 cells. This effect is abolished by dexamethasone and by Rp-cAMP, a specific inhibitor of cAMP-dependent protein kinase (PKA) activation. The calcium channel blocker diltiazem has no effect on the iloprost-induced VEGF gene expression, and depletion of intracellular Ca2+ stores by long-term exposure (16 h) of THP-1 cells to thapsigargin does not inhibit iloprost-induced VEGF gene expression, suggesting that an increase in intracellular Ca2+ is not essential for VEGF gene induction by iloprost. However, an increase of intracellular Ca2+ by a short-term (2 h) exposure of THP-1 cells to thapsigargin or to the calcium-ionophore A23187 increases VEGF mRNA levels, indicating that a change in intracellular Ca2+ by itself can alter VEGF gene expression. The effects of thapsigargin or A23187 on VEGF gene expression are also mediated via cAMP-PKA since they are inhibited by Rp-cAMP. In isolated perfused rat lungs, PGI2 and PGE2 increases VEGF mRNA abundance whereas Rp-cAMP inhibits the prostaglandin-induced VEGF gene activation. Thus, our data suggest that prostaglandins stimulate VEGF gene expression in monocytic cells and in rat lungs via a cAMP-dependent mechanism.

  20. Involvement of adhesion molecules (CD11a-ICAM-1) in vascular endothelial cell injury elicited by PMA-stimulated neutrophils.

    PubMed

    Fujita, H; Morita, I; Murota, S

    1991-06-14

    Protective effect of anti-CD11a and anti-ICAM-1 antibodies on the cytotoxicity induced by PMA-stimulated neutrophils was studied using cultured endothelial cells isolated from bovine carotid artery. Anti-CD11a antibody and anti-ICAM-1 antibody inhibited the endothelial cell injury induced by the activated neutrophils in a dose dependent manner. On the other hand, both antibodies themselves had no effect on either the luminol chemiluminescence released out of the activated neutrophils or the adhesion of the neutrophils to the endothelial cell monolayer. These data suggest that these adhesion molecules play some important roles in the vascular endothelial cell injury elicited by activated neutrophils.

  1. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine.

    PubMed

    Bobik, Krzysztof; Duby, Geoffrey; Nizet, Yannick; Vandermeeren, Caroline; Stiernet, Patrick; Kanczewska, Justyna; Boutry, Marc

    2010-04-01

    The plasma membrane H(+)-ATPases PMA2 and PMA4 are the most widely expressed in Nicotiana plumbaginifolia, and belong to two different subfamilies. Both are activated by phosphorylation of a Thr at the penultimate position and the subsequent binding of 14-3-3 proteins. Their expression in Saccharomyces cerevisiae revealed functional and regulatory differences. To determine whether different regulatory properties between PMA2 and PMA4 exist in plants, we generated two monoclonal antibodies able to detect phosphorylation of the penultimate Thr of either PMA2 or PMA4 in a total protein extract. We also raised Nicotiana tabacum transgenic plants expressing 6-His-tagged PMA2 or PMA4, enabling their individual purification. Using these tools we showed that phosphorylation of the penultimate Thr of both PMAs was high during the early exponential growth phase of an N. tabacum cell culture, and then progressively declined. This decline correlated with decreased 14-3-3 binding and decreased plasma membrane ATPase activity. However, the rate and extent of the decrease differed between the two isoforms. Cold stress of culture cells or leaf tissues reduced the Thr phosphorylation of PMA2, whereas no significant changes in Thr phosphorylation of PMA4 were seen. These results strongly suggest that PMA2 and PMA4 are differentially regulated by phosphorylation. Analysis of the H(+)-ATPase phosphorylation status in leaf tissues indicated that no more than 44% (PMA2) or 32% (PMA4) was in the activated state under normal growth conditions. Purification of either isoform showed that, when activated, the two isoforms did not form hetero-oligomers, which is further support for these two H(+)-ATPase subfamilies having different properties.

  2. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.

    PubMed

    Kodali, Vamsi K; Roberts, Jenny R; Shoeb, Mohammad; Wolfarth, Michael G; Bishop, Lindsey; Eye, Tracy; Barger, Mark; Roach, Katherine A; Friend, Sherri; Schwegler-Berry, Diane; Chen, Bean T; Stefaniak, Aleksandr; Jordan, Kevin C; Whitney, Roy R; Porter, Dale W; Erdely, Aaron D

    2017-10-01

    Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 µg/ml and C57BL/6 J male mice were treated with 40 µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1β and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute inflammation and toxicity in vitro and in vivo following exposure to sonicated BNNT-M was in part due to NLRP3 inflammasome activation.

  3. Necroptotic cells release find-me signal and are engulfed without proinflammatory cytokine production.

    PubMed

    Wang, Qiang; Ju, Xiaoli; Zhou, Yang; Chen, Keping

    2015-11-01

    Necroptosis is a form of caspase-independent programmed cell death which is mediated by the RIP1-RIP3 complex. Although phagocytosis of apoptotic cells has been extensively investigated, how necroptotic cells are engulfed has remained elusive. Here, we investigated how necroptotic cells attracted and were engulfed by macrophages. We found that necroptotic cells induced the migration of THP-1 cells in a transwell migration assay. Further analysis showed that ATP released from necroptotic cells acted as a find-me signal that induced the migration of THP-1 cells. We also found that Annexin V blocked phagocytosis of necroptotic cells by macrophages. Furthermore, necroptotic cells were shown to be silently cleared by macrophages without any proinflammatory cytokine production. These data uncover an evolutionarily conserved mechanism of the find-me signal in different types of cell death and immunological consequences between apoptotic and necroptotic cells during phagocytosis.

  4. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics.

    PubMed

    Wei, Peilian; Cheng, Chi; Lin, Meng; Zhou, Yipin; Yang, Shang-Tian

    2017-01-01

    Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Phorbol ester and hydrogen peroxide synergistically induce the interaction of diacylglycerol kinase gamma with the Src homology 2 and C1 domains of beta2-chimaerin.

    PubMed

    Yasuda, Satoshi; Kai, Masahiro; Imai, Shin-ichi; Kanoh, Hideo; Sakane, Fumio

    2008-01-01

    DGKgamma (diacylglycerol kinase gamma) was reported to interact with beta2-chimaerin, a GAP (GTPase-activating protein) for Rac, in response to epidermal growth factor. Here we found that PMA and H2O2 also induced the interaction of DGKgamma with beta2-chimaerin. It is noteworthy that simultaneous addition of PMA and H2O2 synergistically enhanced the interaction. In this case, PMA was replaceable by DAG (diacylglycerol). The beta2-chimaerin translocation from the cytoplasm to the plasma membrane caused by PMA plus H2O2 was further enhanced by the expression of DGKgamma. Moreover, DGKgamma apparently enhanced the beta2-chimaerin GAP activity upon cell stimulation with PMA. PMA was found to be mainly required for a conversion of beta2-chimaerin into an active form. On the other hand, H2O2 was suggested to induce a release of Zn2+ from the C1 domain of beta2-chimaerin. By stepwise deletion analysis, we demonstrated that the SH2 (Src homology 2) and C1 domains of beta2-chimaerin interacted with the N-terminal half of catalytic region of DGKgamma. Unexpectedly, the SH2 domain of beta2-chimaerin contributes to the interaction independently of phosphotyrosine. Taken together, these results suggest that the functional link between DGKgamma and beta2-chimaerin has a broad significance in response to a wide range of cell stimuli. Our work offers a novel mechanism of protein-protein interaction, that is, the phosphotyrosine-independent interaction of the SH2 domain acting in co-operation with the C1 domain.

  6. Regulation of neurosteroid allopregnanolone biosynthesis in the rat spinal cord by glycine and the alkaloidal analogs strychnine and gelsemine.

    PubMed

    Venard, C; Boujedaini, N; Belon, P; Mensah-Nyagan, A G; Patte-Mensah, C

    2008-04-22

    The neurosteroid allopregnanolone (3alpha,5alpha-THP) is well characterized as a potentially therapeutic molecule which exerts important neurobiological actions including neuroprotective, antidepressant, anxiolytic, anesthetic and analgesic effects. We have recently observed that neurons and glial cells of the rat spinal cord (SC) contain various key steroidogenic enzymes such as 5alpha-reductase and 3alpha-hydroxysteroid oxido-reductase which are crucial for 3alpha,5alpha-THP biosynthesis. Furthermore, we demonstrated that the rat SC actively produces 3alpha,5alpha-THP. As the key factors regulating neurosteroid production by nerve cells are unknown and because glycine is one of the pivotal inhibitory neurotransmitters in the SC, we investigated glycine effects on 3alpha,5alpha-THP biosynthesis in the rat SC. Glycine markedly stimulated [(3)H]-progesterone conversion into [(3)H]3alpha,5alpha-THP by SC slices. The alkaloid strychnine, well-known as a glycine receptor (Gly-R) antagonist, blocked glycine stimulatory effect on 3alpha,5alpha-THP formation. Gelsemine, another alkaloid containing the same functional groups as strychnine, increased 3alpha,5alpha-THP synthesis. The stimulatory effects of glycine and gelsemine on 3alpha,5alpha-THP production were additive when the two drugs were combined. These results demonstrate that glycine and gelsemine, acting via Gly-R, upregulate 3alpha,5alpha-THP biosynthesis in the SC. The data also revealed a structure-activity relationship of the analogs strychnine and gelsemine on neurosteroidogenesis. Possibilities are opened for glycinergic agents and gelsemine utilization to stimulate selectively 3alpha,5alpha-THP biosynthetic pathways in diseases evoked by a decreased neurosteroidogenic activity of nerve cells.

  7. [6]-Gingerol Induces Caspase-Dependent Apoptosis and Prevents PMA-Induced Proliferation in Colon Cancer Cells by Inhibiting MAPK/AP-1 Signaling

    PubMed Central

    Narayanan, Sai Shyam; Nath, Lekshmi R.; Thulasidasan, Arun Kumar T.; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer. PMID:25157570

  8. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    PubMed

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  9. [Effect of Corydalis yanhusuo and L-THP on Gastrointestinal Dopamine System in Morphine-Dependent Rats].

    PubMed

    Xu, Jing-yu; Bai, Wei-feng; Qiu, Cheng-kai; Tu, Ping; Yu, Shou-yang; Luo, Su-yuan

    2015-12-01

    To investigate the protective mechanism of Corydalis yanhuso and L-THP in morphine-dependent gastrointestinal injury rats. 180 male rats were randomly divided into nine groups, 20 rats for each group: saline group (N), model group (M), NS treatment group and three different dosage of Corydalis yanhusuo and L-THP groups (low dose group,middle dose group and high dose group). The rat CPP (conditioned place preference) model was established by injecting the rats with an increasing dosage of morphine, all groups received CPP training in a black compartments and white ones (drug-paired compartment) for ten days. At 48 h after the final training, the performance of CPP models were assessed to make sure all models were exported correctly. Then the treatment groups were administered with different concentration of Corydalis yanhuso (0.5, 1 and 2 g/kg) and L-THP (0.94, 1.88 and 3.76 mg/kg) for six days. All rats were immediately killed after finish the last CPP test. For each group, ten rats were killed to detect the contents of DA in the stomach and duodenum through the fluorescence spectrophotometer. The expression levels of D2 receptor( D2R) in different tissues (gastric cardia, gastric body, pylorus and duodenum) were checked by Western-blot in the other rats. In the NS treatment group, the time when rats stay in the white ones were significantly decreased compared with the Corydalis yanhusuo treated groups (1 and 2 g/kg) and L-THP treated groups (1.88 and 3.76 mg/kg) (P < 0.01), the high expression of DA contents in the stomach and duodenum were significantly decreased (P < 0.01). However the protein level of D2R were notably lower in gastric cardia, gastric body, pylorus and duodenum (P < 0.01). Injuries of the gastrointestinal tract followed lower DA contents and an abnormal increase of D2R in the stomach and duodenum of rats, which induced by morphine-dependent could be reversed by treatment with Corydalis yanhusuo and L-THP. This is one of mechanism underlying the protective effects of gastrointestinal tract in morphine-dependent rats.

  10. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    PubMed

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Inhibitory effect of midazolam on MMP-9, MMP-1 and MMP-13 expression in PMA-stimulated human chondrocytes via recovery of NF-κB signaling.

    PubMed

    Wang, Jen-Jui; Huan, Steven Kuan-Hua; Hsieh, Kuo-Hsien; Chou, Hsiu-Chu; Hsiao, George; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2013-04-20

    Midazolam, a benzodiazepine, has a hypnotic effect and is widely used as an intravenous sedative. Past studies have clearly established that midazolam has beneficial effects in attenuating ischemia-reperfusion injury more than other currently used sedative drugs. However, the role of midazolam on chondroprotection via inhibition of matrix metalloproteinases (MMPs) is warrant investigation. The aim of this study was to examine the mechanisms of action of midazolam on MMP expression via nuclear factor κB (NF-κB) signaling in activated chondrosarcoma cells maintained in vitro. Chondrocytes, SW1353 cells, were stimulated with phorbol 12-myristate 13-acetate (PMA) in the absence or presence of various concentrations of midazolam (5-20 µM). Release of MMP-9 into the culture media was determined by gelatin zymography. The expressions of MMP-1, MMP-9 and MMP-13, phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinases and degradation of IκB-α were determined by western blotting assay. Midazolam significantly down-regulated PMA-induced MMP-9 protein expression at concentrations of 5, 10 and 20 µM, the values were 1.95 ±0.09 (p < 0.01), 1.71 ±0.12 (p < 0.01) and 1.35 ±0.20 (p < 0.001), respectively. At concentrations of 5, 10 and 20 µM, it was significantly inhibited the PMA-induced expressions of MMP-1 (2.27 ±0.10, 1.98 ±0.11 and 1.56 ±0.15; p < 0.001) and MMP-13 (0.89 ±0.04, 0.81 ±0.07, and 0.74 ±0.09; p < 0.001), respectively. Midazolam at concentrations of 10 and 20 µM for 15 min significantly reversed the rate of degradation (0.895 ±0.051; p < 0.05 and 0.926 ±0.060; p < 0.01, respectively) of IκB-α in PMA-chondrocyte cells. In addition, this sedative drug inhibited PMA-induced levels of phos-ERK (1.243 ±0.12, 1.108 ±0.16 and 0.903 ±0.19, respectively) and phos-p38 (1.146 ±0.10, 1.063 ±0.13 and 0.946 ±0.18, at concentrations of (5, 10 and 20 µM), respectively. These results are important for understanding the mechanism of midazolam in inhibiting PMA-induced MMP expression through the signaling pathways of either NF-κB or ERK/p38 MAPKs down-regulation.

  12. Role of Protein Kinase C in Endothelin Converting Enzyme-1 trafficking and shedding from endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@med.monash.edu.au; Tochon-Danguy, Natalie; Ian Smith, A.

    2010-07-23

    Research highlights: {yields} PKC activation increases the trafficking of ECE-1 to the cell surface. {yields} This in turn leads to an increase in the amount of ECE-1 shed. {yields} Only the catalytically active C-terminal region is shed from the cell surface. -- Abstract: This study aimed to determine the consequences of Protein Kinase C (PKC) mediated Endothelin Converting Enzyme-1 (ECE-1) phosphorylation and its relationship to ECE-1 expression and shedding. The proteins on the surface of EA.hy926 cells were labelled with EZ-Link NHS-SS-Biotin both prior to (control) and following stimulation by 2 {mu}M phorbol 12-myristate 13-acetate (PMA) which activates PKC. Themore » biotinylated proteins were isolated using neutravidin beads, resolved by gel electrophoresis and analysed by western blotting using anti-ECE-1 antibodies. Significant increase in ECE-1 expression at the cell surface was observed following stimulation by PMA, compared to unstimulated control cells (170 {+-} 32.3% of control, n = 5). The ECE-1 activity (expressed as {mu}M substrate cleaved/min) was determined by monitoring the cleavage of a quenched fluorescent substrate. The specificity of cleavage was confirmed using the ECE-1 inhibitor (CGS35066). The stimulation of cells by PMA (1 {mu}M, 6 h) significantly increased the ECE-1 activity (0.28 {+-} 0.02; n = 3) compared to the control (0.07 {+-} 0.02; n = 3). This increase was prevented by prior incubation with the PKC inhibitor bisindolymaleimide (BIM; 2 {mu}M for 1 h; 0.10 {+-} 0.01; n = 3). Treatment with PMA also increased the activity of ECE-1 in the media (0.18 {+-} 0.01; n = 3) compared to control (0.08 {+-} 0.01; n = 3). In addition, this study confirmed by western immunoblotting that only the extracellular region of ECE-1 is released from the cell surface. These data indicate for the first time that PKC activation induces the trafficking and shedding of ECE to and from the cell surface, respectively.« less

  13. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.

    PubMed

    Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M

    2009-02-01

    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.

  14. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

    PubMed

    Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas

    2014-03-01

    The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Oxytocin inhibits ox-LDL-induced adhesion of monocytic THP-1 cells to human brain microvascular endothelial cells.

    PubMed

    Liu, Shuyan; Pan, Shengying; Tan, Jing; Zhao, Weina; Liu, Fengguo

    2017-12-15

    The attachment of monocytes to human brain microvascular endothelial cells (HBMVEs) caused by oxidized low-density lipoprotein (ox-LDL) is associated with an early event and the pathological progression of cerebrovascular diseases. Oxytocin (OT) is a human peptide hormone that is traditionally used as a medication to facilitate childbirth. However, little information is available regarding the physiological function of OT in brain endothelial dysfunction. In the present study, our results indicate that the oxytocin receptor (OTR) was expressed in human brain microvascular endothelial cells (HBMVEs) and was upregulated in response to ox-LDL in a concentration-dependent manner. Notably, OT significantly suppressed ox-LDL-induced attachment of THP-1 monocytes to HBMVEs. Furthermore, we found that OT reduced the expression of adhesion molecules, such as VCAM-1 and E-selectin. Interestingly, it was shown that OT could restore ox-LDL-induced reduction of KLF4 in HBMVEs. Importantly, knockdown of KLF4 abolished the inhibitory effects of OT on ox-LDL-induced expressions of VCAM-1 and E-selectin as well as the adhesion of human monocytic THP-1 cells to endothelial HBMVEs. Mechanistically, we found that the stimulatory effects of OT on KLF4 expression are mediated by the MEK5/MEF2A pathway. Copyright © 2017. Published by Elsevier Inc.

  16. Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells

    PubMed Central

    Naji, Abderrahim; Muzembo, Basilua André; Yagyu, Ken-ichi; Baba, Nobuyasu; Deschaseaux, Frédéric; Sensebé, Luc; Suganuma, Narufumi

    2016-01-01

    The biological effects of indium-tin-oxide (ITO) are of considerable importance because workers exposed to indium compounds have been diagnosed with interstitial lung disease or pulmonary alveolar proteinosis; however, the pathophysiology of these diseases is undefined. Here, mice intraperitoneally inoculated with ITO-nanoparticles (ITO-NPs) resulted in peritonitis dependent in NLRP3 inflammasome, with neutrophils recruitment and interleukin-1β (IL-1β) production. Withal peritoneal macrophages exposed ex vivo to ITO-NPs caused IL-1β secretion and cytolysis. Further, alveolar macrophages exposed to ITO-NPs in vitro showed ITO-NP endocytosis and production of tumor necrosis factor-α (TNF-α) and IL-1β, ensued cell death by cytolysis. This cell death was RIPK1-independent but caspase1-dependent, and thus identified as pyroptosis. Endocytosis of ITO-NPs by activated THP-1 cells induced pyroptosis with IL-1β/TNF-α production and cytolysis, but not in activated THP-1 cells with knockdown of NLRP3, ASC, or caspase1. However, exposing activated THP-1 cells with NLRP3 or ASC knockdown to ITO-NPs resulted in cell death but without cytolysis, with deficiency in IL-1β/TNF-α, and revealing features of apoptosis. While, mesenchymal stem cells (MSCs) co-cultured with macrophages impaired both inflammation and cell death induced by ITO-NPs. Together, our findings provide crucial insights to the pathophysiology of respiratory diseases caused by ITO particles, and identify MSCs as a potent therapeutic. PMID:27194621

  17. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  18. Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages

    PubMed Central

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-01-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499

  19. Toll-like receptor 7 promotes the apoptosis of THP-1-derived macrophages through the CHOP-dependent pathway.

    PubMed

    Yu, Xiaochen; Wang, Yang; Zhao, Wenhui; Zhou, Haizhou; Yang, Wei; Guan, Xiuru

    2014-09-01

    Macrophage apoptosis is a prominent characteristic of advanced atherosclerotic plaques and leads to plaque destabilization. Certain studies have confirmed that influenza virus A (IVA) infection is related to acute myocardial infarction (AMI). However, it remains unknown as to whether this phenomenon is associated with Toll-like receptor (TLR)7, since single-stranded RNA (ssRNA) of IVA is a natural ligand of TLR7. Thus, in the present study, THP-1‑derived macrophages were infected with IVA or treated with imiquimod (IMQ) in the presence or absence of pre-treatment with oxidized low-density lipoprotein (oxLDL). The macrophages were pre-treated with oxLDL (5 µg/ml) for 24 h to mimic high lipid conditions. Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazol-2-y-1)‑2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. Our results revealed that TLR7 played an important role in macrophage apoptosis and cytokine secretion. Both IVA infection and IMQ treatment increased TLR7 expression, as well as the secretion of pro-inflammatory cytokines [interleukin (IL)-6, monocyte chemotactic protein (MCP)-1] and apoptosis. However, this increase in cytokine secretion occurred independently of cell apoptosis. oxLDL had potential synergistic pro-apoptotic effects combined with TLR7 activation. To determine whether endoplasmic reticulum (ER) stress plays a role in cell apoptosis, the mRNA and protein expression of known markers of ER stress [glucose-regulated protein (GRP)78 and C/EBP homologous protein (CHOP)] was detected by reverse transcription PCR (RT-PCR), quantitative reverse transcription PCR (qRT-PCR) and western blot analysis. Our results revealed that apoptosis aggravated ER stress, as shown by the overexpression of the pro-apoptotic sensor, CHOP. In conclusion, our study demonstrates the converging role of oxLDL pre-treatment, IVA infection and IMQ in ER stress-induced cell apoptosis.

  20. Properties of herbal extracts against Propionibacterium acnes for biomedical application

    NASA Astrophysics Data System (ADS)

    Lim, Youn-Mook; Kim, Sung Eun; Kim, Yong Soo; Shin, Young Min; Jeong, Sung In; Jo, Sun-Young; Gwon, Hui-Jeong; Park, Jong-seok; Nho, Young-Chang; Kim, Jong-Cheol; Kim, Seong-Jang; Shin, HeungSoo

    2012-10-01

    Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, causes inflammatory acne. To find a novel medication for treating the inflammation caused by P. acnes, we investigated the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The aqueous extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thunb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were prepared and mixed. In this experiment, 1 mg/ml of the herbal extract mixture caused a decrease in the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-α, IL-8, IL-1β and IL-6, in human monocytic THP-1 cells treated with heat-killed P. acnes. Therefore, this herbal extract mixture may possess both anti-bacterial and anti-inflammatory activities against P. acnes and can be a novel therapeutic agent for treating inflammatory acne.

  1. PMA-LAMP for rapid detection of Escherichia coli and shiga toxins from viable but non-culturable state.

    PubMed

    Yan, Muxia; Xu, Ling; Jiang, Hua; Zhou, Zhenwen; Zhou, Shishui; Zhang, Li

    2017-04-01

    In exposure to outer pressure, microorganisms are capable of entry into the Viable But Non-Culturable (VBNC) state, and thus survive under various elimination processing. The survival microorganisms may yield negative results on culturing, and cause false negative for this golden standard methodology. In this study, a novel PMA-LAMP assay on the detection of Enterohemorrhage E. coli and shiga toxins has been developed and evaluated, with further application on a number of food borne E. coli strains. LAMP primers were designed on the target of rfbe for Enterohemorrhage E. coli and stx1with stx2 for shiga toxins. Via specific penetration through the damaged cell membrane of dead cells and intercalating into DNA, PMA could prevent DNA amplification of dead bacteria from LAMP, which enabled the differentiation of bacteria between VBNC state and dead state. The established PMA-LAMP showed significant advantage in rapidity, sensitivity and specificity, compared with regular PCR assay. The applicability had also been verified, demonstrating the PMA-LAMP was capable of detection on Enterohemorrhage E. coli and shiga toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    PubMed Central

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  3. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  4. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages.

    PubMed

    McCanna, David Joseph; Barthod-Malat, Aurore V; Gorbet, Maud B

    2015-01-01

    Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.

  5. Fenoterol, a beta(2)-adrenoceptor agonist, inhibits LPS-induced membrane-bound CD14, TLR4/CD14 complex, and inflammatory cytokines production through beta-arrestin-2 in THP-1 cell line.

    PubMed

    Wang, Wei; Xu, Ming; Zhang, You-yi; He, Bei

    2009-11-01

    To investigate the molecular mechanism and signaling pathway by which fenoterol, a beta(2)-adrenergic receptor (beta(2)-AR) agonist, produces anti-inflammatory effects. THP-1, a monocytic cell line, was used to explore the mechanism of beta(2)-AR stimulation in LPS-induced secretion of inflammatory cytokines and changes of toll-like receptors (TLRs). We labeled TLR4 and CD14 using monoclonal anti-TLR4 PE-conjugated and anti-CD14 FITC-conjugated antibodies in THP-1 cells stimulated by beta(2)-AR in the presence or absence of lipopolysaccharide (LPS) and small, interfering RNA (siRNA)-mediated knockdown of beta-arrestin-2, and then analyzed their changes in distribution by flow cytometry, Western blotting and confocal analysis. LPS-induced membrane-bound CD14, TLR4/CD14 complex levels and elevation of inflammatory cytokines were all significantly reduced by pre-incubation of fenoterol (P<0.05). However, the total level of CD14 and TLR4 was not significantly changed. Interestingly, confocal microscopy revealed redistribution of CD14 and TLR4/CD14 complex under beta(2)-AR stimulation. Furthermore, siRNA-mediated knockdown of beta-arrestin-2 eliminated the anti-inflammatory effects and redistribution of CD14 and TLR4/CD14 complex stimulated by beta(2)-AR. beta(2)-AR agonist exerts its anti-inflammatory effects by down-regulating TLR signaling in THP-1 cells, potentially resulting from beta-arrestin-2 mediated redistribution of CD14 and TLR14/CD14 complex.

  6. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways.

    PubMed

    Ni, Jing; Li, Yuanmin; Li, Weiming; Guo, Rong

    2017-10-10

    Foam cell formation and apoptosis are closely associated with atherosclerosis pathogenesis. We determined the effect of salidroside on oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation and apoptosis in THP1 human acute monocytic leukemia cells and investigated the associated molecular mechanisms. THP1-derived macrophages were incubated with salidroside for 5 h and then exposed to ox-LDL for 24 h to induce foam cell formation. Cytotoxicity, lipid deposition, apoptosis, and the expression of various proteins were tested using the CCK8 kit, Oil Red O staining, flow cytometry, and western blotting, respectively. Ox-LDL treatment alone promoted macrophage-derived foam cell formation, while salidroside treatment alone inhibited it (p < 0.05). The number of early/late apoptotic cells decreased with salidroside treatment in a dose-dependent manner (p < 0.05). Salidroside dramatically upregulated nuclear factor erythroid 2-related factor 2, but had no effect on heme oxygenase-1 expression; moreover, it markedly downregulated ox-LDL receptor 1 and upregulated ATP-binding cassette transporter A1. Salidroside also obviously decreased the phosphorylation of JNK, ERK, p38 MAPK, and increased that of Akt. However, the total expression of these proteins was not affected. Based on our findings, we speculate that salidroside can suppress ox-LDL-induced THP1-derived foam cell formation and apoptosis, partly by regulating the MAPK and Akt signaling pathways.

  7. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells[S

    PubMed Central

    Kouzel, Ivan U.; Pohlentz, Gottfried; Storck, Wiebke; Radamm, Lena; Hoffmann, Petra; Bielaszewska, Martina; Bauwens, Andreas; Cichon, Christoph; Schmidt, M. Alexander; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-01-01

    Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin. PMID:23248329

  8. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1.

    PubMed

    Martínez-Bonet, Marta; Clemente, Maria Isabel; Serramía, Maria Jesús; Muñoz, Eduardo; Moreno, Santiago; Muñoz-Fernández, Maria Ángeles

    2015-11-13

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these combinations an attractive novel and safe option for future clinical trials.

  9. Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNF-α expression upon lipopolysaccharide stimulation in human monocytes.

    PubMed

    Murata, H; Hattori, T; Maeda, H; Takashiba, S; Takigawa, M; Kido, J; Nagata, T

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a major cytokine implicated in various inflammatory diseases. The nature of the nuclear factors associated with human TNF-α gene regulation is not well elucidated. We previously identified a novel region located from -550 to -487 in human TNF-α promoter that did not contain the reported binding sites for nuclear factor kappa B (NF-κB) but showed lipopolysaccharide (LPS)-induced transcriptional activity. The purpose of this study is to identify novel factors that bind to the promoter region and regulate TNF-α expression. To identify DNA-binding proteins that bound to the target region of TNF-α promoter, a cDNA library from LPS-stimulated human monocytic cell line THP-1 was screened using a yeast one-hybrid system. Cellular localizations of the DNA-binding protein in the cells were examined by subcellular immunocytochemistry. Nuclear amounts of the protein in LPS-stimulated THP-1 cells were identified by western blot analysis. Expression of mRNA of the protein in the cells was quantified by real-time polymerase chain reaction. Electrophoretic mobility shift assays were performed to confirm the DNA-binding profile. Overexpression of the protein and knockdown of the gene were also performed to investigate the role for TNF-α expression. Several candidates were identified from the cDNA library and transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) was focused on. Western blot analysis revealed that nuclear TDP-43 protein was increased in the LPS-stimulated THP-1 cells. Expression of TDP-43 mRNA was already enhanced before TNF-α induction by LPS. Electrophoretic mobility shift assay analysis showed that nuclear extracts obtained by overexpressing FLAG-tagged TDP-43 bound to the -550 to -487 TNF-α promoter fragments. Overexpression of TDP-43 in THP-1 cells resulted in an increase of TNF-α expression. Knockdown of TDP-43 in THP-1 cells downregulated TNF-α expression. We identified TDP-43 as one of the novel TNF-α factors and found that it bound to the LPS-responsive element in the TNF-α promoter to increase TNF-α expression. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    PubMed

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  11. Population pharmacokinetics of intravenous acyclovir in preterm and term infants.

    PubMed

    Sampson, Mario R; Bloom, Barry T; Lenfestey, Robert W; Harper, Barrie; Kashuba, Angela D; Anand, Ravinder; Benjamin, Daniel K; Capparelli, Edmund; Cohen-Wolkowiez, Michael; Smith, P Brian

    2014-01-01

    Acyclovir is used to treat herpes infections in preterm and term infants; however, the influence of maturation on drug disposition and dosing requirements is poorly characterized in this population. We administered intravenous acyclovir to preterm and term infants <31 days postnatal age and collected plasma samples. We performed a population pharmacokinetic analysis. The primary pharmacodynamic target was acyclovir concentration ≥3 mg/L for ≥50% of the dosing interval. The final model was simulated using infant data from a clinical database. The analysis included 28 infants (median 30 weeks gestation). Acyclovir pharmacokinetics was described by a 1-compartment model: clearance (L/h/kg) = 0.305 × [postmenstrual age (PMA)/31.3 weeks]. This equation predicts a 4.5-fold increase in clearance from 25 to 41 weeks PMA. With proposed dosing, the pharmacodynamic target was achieved in 91% of infants: 20 mg/kg every 12 hours in infants <30 weeks PMA; 20 mg/kg every 8 hours in infants 30 to <36 weeks PMA and 20 mg/kg every 6 hours in infants 36-41 weeks PMA. Acyclovir clearance increased with infant maturation. A dosing strategy based on PMA accounted for developmental changes in acyclovir disposition to achieve the surrogate pharmacodynamic target in many infants.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttlingmore » of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.« less

  13. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    PubMed

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  14. Anti-TNF-α Activity of Brazilian Medicinal Plants and Compounds from Ouratea semiserrata.

    PubMed

    Campana, Priscilla R V; Mansur, Daniel S; Gusman, Grasielle S; Ferreira, Daneel; Teixeira, Mauro M; Braga, Fernão C

    2015-10-01

    Several plant species are used in Brazil to treat inflammatory diseases and associated conditions. TNF-α plays a pivotal role on inflammation, and several plant extracts have been assayed against this target, both in vitro and in vivo. The effect of 11 Brazilian medicinal plants on TNF-α release by LPS-activated THP-1 cells was evaluated. The plant materials were percolated with different solvents to afford 15 crude extracts, whose effect on TNF-α release was determined by ELISA. Among the evaluated extracts, only Jacaranda caroba (Bignoniaceae) presented strong toxicity to THP-1 cells. Considering the 14 non-toxic extracts, TNF-α release was significantly reduced by seven of them (inhibition > 80%), originating from six plants, namely Cuphea carthagenensis (Lythraceae), Echinodorus grandiflorus (Alismataceae), Mansoa hirsuta (Bignoniaceae), Ouratea semiserrata (Ochnaceae), Ouratea spectabilis and Remijia ferruginea (Rubiaceae). The ethanol extract from O. semiserrata leaves was fractionated over Sephadex LH-20 and RP-HPLC to give three compounds previously reported for the species, along with agathisflavone and epicatechin, here described for the first time in the plant. Epicatechin and lanceoloside A elicited significant inhibition of TNF-α release, indicating that they may account for the effect produced by O. semiserrata crude extract. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Expression of phosphatidylserine-specific phospholipase A(1) mRNA in human THP-1-derived macrophages.

    PubMed

    Hosono, Hiroyuki; Homma, Masato; Ogasawara, Yoko; Makide, Kumiko; Aoki, Junken; Niwata, Hideaki; Watanabe, Machiko; Inoue, Keizo; Ohkohchi, Nobuhiro; Kohda, Yukinao

    2010-01-01

    The expression of phosphatidylserine-specific phospholipase A(1) (PS-PLA(1)) is most upregulated in the genes of peripheral blood cells from chronic rejection model rats bearing long-term surviving cardiac allografts. The expression profile of PS-PLA(1) in peripheral blood cells responsible for the immune response may indicate a possible biological marker for rejection episodes. In this study, PS-PLA(1) mRNA expression was examined in human THP-1-derived macrophages. The effects of several immunosuppressive agents on this expression were also examined in in vitro experiments. A real-time RT-PCR analysis revealed that PS-PLA(1) mRNA expression was found in human THP-1-derived macrophages. This expression was enhanced in the cells stimulated with lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 ligand. Other TLR ligands (TLR2, 3, 5, 7, and 9) did not show a significant induction of PS-PLA(1) mRNA. The time course of the mRNA expression profiles was different between PS-PLA(1) and tumor necrosis factor-α (TNF-α), which showed a maximal expression at 12 and 1 h after LPS stimulation, respectively. Among the observed immunosuppressive agents, corticosteroids, prednisolone, 6α-methylprednisolone, dexamethasone, and beclomethasone inhibited PS-PLA(1) expression with half-maximal inhibitory concentrations less than 3.0 nM, while methotrexate, cyclosporine A, tacrolimus, 6-mercaptopurine, and mycophenoic acid showed either a weak or moderate inhibition. These results suggest that the expression of PS-PLA(1) mRNA in THP-1-derived macrophages is activated via TLR4 and it is inhibited by corticosteroids, which are used at high dosages to suppress chronic allograft rejection.

  16. Optimization of PMA-PCR Protocol for Viability Detection of Pathogens

    NASA Technical Reports Server (NTRS)

    Mikkelson, Brian J.; Lee, Christine M.; Ponce, Adrian

    2011-01-01

    This presented study demonstrates the need that PMA-PCR can be used to capture the loss of viability of a sample that is much more specific and time-efficient than alternative methods. This protocol is particularly useful in scenarios in which sterilization treatments may inactivate organisms but not degrade their DNA. The use of a PCR-based method of pathogen detection without first inactivating the DNA of nonviable cells will potentially lead to false positives. The loss of culturability, by heat-killing, did not prevent amplified PCR products, which supports the use of PMA to prevent amplification and differentiate between viable and dead cells. PMA was shown to inhibit the amplification of DNA by PCR in vegetative cells that had been heat-killed.

  17. Stimulation of progesterone production by phorbol-12-myristate 13-acetate (PMA) in cultured Leydig tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, L.R.; Raju, V.S.; Stocco, D.M.

    1987-05-01

    It has been shown that addition of hCG or c-AMP to cultured Leydig tumor cells (MA-10) increases synthesis of progesterone as the major steroid. To investigate the possible involvement of protein kinase C (PK-C) in the regulation of steroid synthesis, the authors have studied the effect of PMA, an activator of PK-C, on progesterone production in MA-10 cells. The addition of PMA (100 ng/ml) stimulated steroid production whereas 4 -phorbol-12,13-didecanoate, an inactive phorbol ester, did not have any effects. Like hCG and c-AMP, PMA-stimulated progesterone production was inhibited by cycloheximide. hCG-stimulated steroid synthesis was inhibited by PMA. The addition ofmore » PMA to MA-10 Leydig cells further increased the c-AMP-stimulated progesterone production. To determine whether c-AMP has a obligatory role in the regulation of steroid production, the effect of adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (TFA), was studied on progesterone production in the presence of hCG. At lower dose (17 ng/ml) hCG-stimulated intracellular c-AMP levels and steroid production were inhibited by TFA (300 M). At higher dose of hCG (34 ng/ml) TFA did not inhibit the hCG-stimulated intracellular c-AMP levels, however, progesterone production was inhibited. Results suggest that the action of hCG, c-AMP and PMA in controlling steroidogenesis might be regulated by similar but different mechanisms.« less

  18. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.

    PubMed

    Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin

    2012-02-05

    Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Serum Opacity Factor Enhances HDL-Mediated Cholesterol Efflux, Esterification and Anti Inflammatory Effects

    PubMed Central

    Tchoua, Urbain; Rosales, Corina; Tang, Daming; Gillard, Baiba K.; Vaughan, Ashley; Lin, Hu Yu; Courtney, Harry S.

    2011-01-01

    Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport. PMID:20972840

  20. Assessment of late cardiotoxicity of pirarubicin (THP) in children with acute lymphoblastic leukemia.

    PubMed

    Shimomura, Yasuto; Baba, Reizo; Watanabe, Arata; Horikoshi, Yasuo; Asami, Keiko; Hyakuna, Nobuyuki; Iwai, Asayuki; Matsushita, Takeshi; Yamaji, Kazutaka; Hori, Toshinori; Tsurusawa, Masahito

    2011-09-01

    Pirarubicin (tetrahydropyranyl-adriamycin: THP) is a derivative of doxorubicin with reportedly less cardiotoxicity in adults. However no studies of cardiotoxicity in children treated with THP have been reported. This study was performed to assess the THP-induced cardiotoxicity for children with acute lymphoblastic leukemia (ALL). This study comprised 61 asymptomatic patients aged from 7.6 to 25.7 years old. Median follow-up time after completion of anthracycline treatment was 8.1 years (range: 1.7-12.5). The cumulative dose of THP ranged from 120 to 740 mg/m(2) with a median of 180 mg/m(2) . Patients underwent electrocardiogram (ECG), echocardiography, the 6-min walk test (6MWT), and measurements of serum brain natriuretic peptide (BNP) before and after exercise. All subjects showed normal left ventricular function assessed by echocardiography. Ventricular premature contraction in Holter ECG and reduced exercise tolerance in the 6MWT were detected in 2/46 (3.3%) and 5/41(12.2%), respectively. Abnormal BNP levels were detected in 6/60 (10%) both before and after exercise. The cumulative dose of THP was significantly correlated with BNP levels after exercise (r = 0.27, P = 0.03), but not with any other cardiac measurements. Further analysis revealed that subjects with a high cumulative dose ≧300 mg/m(2) had significantly higher BNP levels after exercise compared with subjects with a low cumulative dose <300 mg/m(2) (P = 0.04). No significant cardiac dysfunction was detected in long-term survivors who received THP treatment. The use of post-exercise BNP level to indicate high cardiotoxicity risk should be verified by further study. Copyright © 2011 Wiley-Liss, Inc.

  1. The Role of FAK in the Secretion of MMP9 after CD147 Stimulation in Macrophages.

    PubMed

    Yu, Chen; Lixia, Yang; Ruiwei, Guo; Yankun, Shi; Jinshan, Ye

    2018-03-30

    To investigate whether focal adhesion kinase (FAK) can participate in the secretion of matrix metalloproteinase 9 (MMP9) after CD147 stimulation in THP-1 induced macrophages; thus, to explore the potential treatment perspectives for acute coronary syndrome (ACS).Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages. To confirm the peak mRNA and protein expression of FAK and MMP9 after the stimulation of CD147, the macrophages were divided into 5 groups (0, 3, 6, 9, and 12 hours), with 0 hours group as control group. To investigate the role of FAK in the secretion of MMP9, with stimulation of CD147 for 9 hours, FAK inhibitor 14 was used to inhibit FAK Y397 phosphorylation. The mRNA and protein expressions were quantified by qRT-PCR and western blotting, respectively. (1) Relative mRNA expression of FAK and MMP9 were both significantly up-regulated (all P < 0.05) after stimulation of CD147, FAK peaked at 9 hours (3.908 ± 0.106 versus 1, P < 0.05), whereas MMP9 peaked at 6 hours (2.522 ± 0.062 versus 1, P < 0.05). (2) Relative protein expression of FAK, pFAK, and MMP9 were all significantly increased after CD147 stimulation (all P < 0.05), FAK (1.930 ± 0.024 versus 1, P < 0.05) and pFAK (1.737 ± 0.021 versus 1, P < 0.05) peaked at 9 hours, whereas MMP9 peaked at 6 hours (1.527 ± 0.033 versus 1, P < 0.05). (3) CD147 up-regulates FAK, pFAK, and MMP9 mRNA and protein expressions in a dose-dependent manner. (4) FAK inhibitor 14 significantly reduced the relative protein expression level of pFAK (0.077 ± 0.012 versus 1, P < 0.05) and MMP9 (0.133 ± 0.012) at 9 hours after CD147 stimulation.The results demonstrated that FAK Y397 phosphorylation was involved in the secretion of MMP9 after CD147 stimulation in macrophages and may play a role in the regulation of ACS.

  2. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    PubMed

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  3. Progranulin expression in advanced human atherosclerotic plaque.

    PubMed

    Kojima, Yoji; Ono, Koh; Inoue, Katsumi; Takagi, Yasushi; Kikuta, Ken-ichiro; Nishimura, Masaki; Yoshida, Yoshinori; Nakashima, Yasuhiro; Matsumae, Hironobu; Furukawa, Yutaka; Mikuni, Nobuhiro; Nobuyoshi, Masakiyo; Kimura, Takeshi; Kita, Toru; Tanaka, Makoto

    2009-09-01

    Progranulin (PGRN) is a unique growth factor that plays an important role in cutaneous wound healing. It has an anti-inflammatory effect and promotes cell proliferation. However, when it is degraded to granulin peptides (GRNs) by neutrophil proteases, a pro-inflammatory reaction occurs. Since injury, inflammation and repair are common features in the progression of atherosclerosis, it is conceivable that PGRN plays a role in atherogenesis. Immunohistochemical analysis of human carotid endoatherectomy specimens indicated that vascular smooth muscle cells (vSMCs) in the intima expressed PGRN. Some macrophages in the plaque also expressed PGRN. We assessed the effect of PGRN on a human monocytic leukemia cell line (THP-1) and human aortic smooth muscle cells (HASMCs). PGRN alone had no effect on HASMC or THP-1 proliferation or migration. However, when THP-1 cells were stimulated with MCP-1, the number of migrated cells decreased in a PGRN-dose-dependent manner. TNF-alpha-induced HASMC migration was enhanced only at 10nM of PGRN. Interleukin-8 (IL-8) secretion from HASMCs was reduced by forced expression of PGRN and increased by RNAi-mediated knockdown of PGRN. While exogenous treatment with recombinant PGRN decreased IL-8 secretion, degraded recombinant GRNs increased IL-8 secretion from HASMCs. The expression of PGRN mainly reduces inflammation and its degradation into GRNs enhances inflammation in atherosclerotic plaque and may contribute to the progression of atherosclerosis.

  4. Production of poly(β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation.

    PubMed

    Xia, Jun; Li, Rongqing; He, Aiyong; Xu, Jiaxing; Liu, Xiaoyan; Li, Xiangqian; Xu, Jiming

    2017-11-01

    Poly(β-l-malic acid) (PMA) production by Aureobasidium pullulans HA-4D was carried out through solid-state fermentation (SSF) using agro-industrial residues. Maximum PMA production (75.4mg/g substrate) was obtained from a mixed substrate of sweet potato residue and wheat bran (1:1, w/w) supplemented with NaNO 3 (0.8%, w/w) and CaCO 3 (2%, w/w), with an initial moisture content of 70% and inoculum size of 13% (v/w) for 8days. Repeated-batch SSF was successfully conducted for 5 cycles with a high productivity. The scanning electron microscopy showed that the yeast-like cells of A. pullulans HA-4D could grow well on the solid substrate surface. Moreover, the cost analysis showed that the unit price of PMA in SSF was much lower than that of SmF. This is the first report on PMA production via SSF, and this study provided a new method to produce PMA from inexpensive agro-industrial residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR.

    PubMed

    Yáñez, M Adela; Nocker, Andreas; Soria-Soria, Elena; Múrtula, Raquel; Martínez, Lorena; Catalán, Vicente

    2011-05-01

    One of the greatest challenges of implementing fast molecular detection methods as part of Legionella surveillance systems is to limit detection to live cells. In this work, a protocol for sample treatment with propidium monoazide (PMA) in combination with quantitative PCR (qPCR) has been optimized and validated for L. pneumophila as an alternative of the currently used time-consuming culture method. Results from PMA-qPCR were compared with culture isolation and traditional qPCR. Under the conditions used, sample treatment with 50 μM PMA followed by 5 min of light exposure were assumed optimal resulting in an average reduction of 4.45 log units of the qPCR signal from heat-killed cells. When applied to environmental samples (including water from cooling water towers, hospitals, spas, hot water systems in hotels, and tap water), different degrees of correlations between the three methods were obtained which might be explained by different matrix properties, but also varying degrees of non-culturable cells. It was furthermore shown that PMA displayed substantially lower cytotoxicity with Legionella than the alternative dye ethidium monoazide (EMA) when exposing live cells to the dye followed by plate counting. This result confirmed the findings with other species that PMA is less membrane-permeant and more selective for the intact cells. In conclusion, PMA-qPCR is a promising technique for limiting detection to intact cells and makes Legionella surveillance data substantially more relevant in comparison with qPCR alone. For future research it would be desirable to increase the method's capacity to exclude signals from dead cells in difficult matrices or samples containing high numbers of dead cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corsini, Emanuela, E-mail: emanuela.corsini@unimi.it; Avogadro, Anna; Galbiati, Valentina

    2011-01-15

    There is evidence from both epidemiology and laboratory studies that perfluorinated compounds may be immunotoxic, affecting both cell-mediated and humoral immunity. The overall goal of this study was to investigate the mechanisms underlying the immunotoxic effects of perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA), using in vitro assays. The release of the pro-inflammatory cytokines IL-6, IL-8, and TNF-{alpha} was evaluated in lipolysaccharide (LPS)-stimulated human peripheral blood leukocytes and in the human promyelocytic cell line THP-1, while the release of IL-4, IL-10 and IFN-{gamma} was evaluated in phytohaemagglutinin (PHA)-stimulated peripheral blood leukocytes. PFOA and PFOS suppressed LPS-induced TNF-{alpha} production in primarymore » human cultures and THP-1 cells, while IL-8 was suppressed only in THP-1 cells. IL-6 release was decreased only by PFOS. Both PFOA and PFOS decreased T-cell derived, PHA-induced IL-4 and IL-10 release, while IFN-{gamma} release was affected only by PFOS. In all instances, PFOS was more potent than PFOA. Mechanistic investigations carried out in THP-1 cells demonstrated that the effect on cytokine release was pre-transcriptional, as assessed by a reduction in LPS-induced TNF-{alpha} mRNA expression. Using siRNA, a role for PPAR-{alpha} could be demonstrated for PFOA-induced immunotoxicity, while an inhibitory effect on LPS-induced I-{kappa}B degradation could explain the immunomodulatory effect of PFOS. The dissimilar role of PPAR-{alpha} in PFOA and PFOS-induced immunotoxicity was consistent with the differing effects observed on LPS-induced MMP-9 release: PFOA, as the PPAR-{alpha} agonist fenofibrate, modulated the release, while PFOS had no effect. Overall, these studies suggest that PFCs directly suppress cytokine secretion by immune cells, and that PFOA and PFOS have different mechanisms of action.« less

  7. Immunomodulatory role for membrane vesicles released by THP-1 macrophages and respiratory pathogens during macrophage infection.

    PubMed

    Volgers, Charlotte; Benedikter, Birke J; Grauls, Gert E; Savelkoul, Paul H M; Stassen, Frank R M

    2017-11-13

    During infection, inflammation is partially driven by the release of mediators which facilitate intercellular communication. Amongst these mediators are small membrane vesicles (MVs) that can be released by both host cells and Gram-negative and -positive bacteria. Bacterial membrane vesicles are known to exert immuno-modulatory and -stimulatory actions. Moreover, it has been proposed that host cell-derived vesicles, released during infection, also have immunostimulatory properties. In this study, we assessed the release and activity of host cell-derived and bacterial MVs during the first hours following infection of THP-1 macrophages with the common respiratory pathogens non-typeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa. Using a combination of flow cytometry, tunable resistive pulse sensing (TRPS)-based analysis and electron microscopy, we demonstrated that the release of MVs occurs by both host cells and bacteria during infection. MVs released during infection and bacterial culture were found to induce a strong pro-inflammatory response by naive THP-1 macrophages. Yet, these MVs were also found to induce tolerance of host cells to secondary immunogenic stimuli and to enhance bacterial adherence and the number of intracellular bacteria. Bacterial MVs may play a dual role during infection, as they can both trigger and dampen immune responses thereby contributing to immune defence and bacterial survival.

  8. Activation of syntaxin 1C, an alternative splice variant of HPC-1/syntaxin 1A, by phorbol 12-myristate 13-acetate (PMA) suppresses glucose transport into astroglioma cells via the glucose transporter-1 (GLUT-1).

    PubMed

    Nakayama, Takahiro; Mikoshiba, Katsuhiko; Yamamori, Tetsuo; Akagawa, Kimio

    2004-05-28

    Syntaxin 1C is an alternative splice variant lacking the transmembrane domain of HPC-1/syntaxin 1A. We found previously that syntaxin 1C is expressed as a soluble protein in human astroglioma (T98G) cells, and syntaxin 1C expression is enhanced by stimulation with phorbol 12-myristate 13-acetate (PMA). However, the physiological function of syntaxin 1C is not known. In this study, we examined the relationship between syntaxin 1C and glucose transport. First, we discovered that glucose transporter-1 (GLUT-1) was the primary isoform in T98G cells. Second, we demonstrated that glucose uptake in T98G cells was suppressed following an increase in endogenous syntaxin 1C after stimulation with PMA, which did not alter the expression levels of other plasma membrane syntaxins. We further examined glucose uptake and intracellular localization of GLUT-1 in cells that overexpressed exogenous syntaxin 1C; glucose uptake via GLUT-1 was inhibited without affecting sodium-dependent glucose transport. The value of Vmax for the dose-dependent uptake of glucose was reduced in syntaxin 1C-expressing cells, whereas there was no change in Km. Immunofluorescence studies revealed a reduction in the amount of GLUT-1 in the plasma membrane in cells that expressed syntaxin 1C. Based on these results, we postulate that syntaxin 1C regulates glucose transport in astroglioma cells by changing the intracellular trafficking of GLUT-1. This is the first report to indicate that a syntaxin isoform that lacks a transmembrane domain can regulate the intracellular transport of a plasma membrane protein.

  9. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages

    PubMed Central

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H.; Oberlies, Nicholas H.; Dirsch, Verena M.; Atanasov, Atanas G.

    2016-01-01

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease. PMID:26729088

  10. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages.

    PubMed

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H; Oberlies, Nicholas H; Dirsch, Verena M; Atanasov, Atanas G

    2015-12-31

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease.

  11. Suppression of Coronary Atherosclerosis by Helix B Surface Peptide, a Nonerythropoietic, Tissue-Protective Compound Derived from Erythropoietin

    PubMed Central

    Ueba, Hiroto; Shiomi, Masashi; Brines, Michael; Yamin, Michael; Kobayashi, Tsutomu; Ako, Junya; Momomura, Shin-ichi; Cerami, Anthony; Kawakami, Masanobu

    2013-01-01

    Erythropoietin (EPO), a type I cytokine originally identified for its critical role in hematopoiesis, has been shown to have nonhematopoietic, tissue-protective effects, including suppression of atherosclerosis. However, prothrombotic effects of EPO hinder its potential clinical use in nonanemic patients. In the present study, we investigated the antiatherosclerotic effects of helix B surface peptide (HBSP), a nonerythropoietic, tissue-protective compound derived from EPO, by using human umbilical vein endothelial cells (HUVECs) and human monocytic THP-1 cells in vitro and Watanabe heritable hyperlipidemic spontaneous myocardial infarction (WHHLMI) rabbits in vivo. In HUVECs, HBSP inhibited apoptosis (≈70%) induced by C-reactive protein (CRP), a direct mediator of atherosclerosis. By using a small interfering RNA approach, Akt was shown to be a key molecule in HBSP-mediated prevention of apoptosis. HBSP also attenuated CRP-induced production of tumor necrosis factor (TNF)-α and matrix metalloproteinase-9 in THP-1 cells. In the WHHLMI rabbit, HBSP significantly suppressed progression of coronary atherosclerotic lesions as assessed by mean cross-sectional stenosis (HBSP 21.3 ± 2.2% versus control peptide 38.0 ± 2.7%) and inhibited coronary artery endothelial cell apoptosis with increased activation of Akt. Furthermore, TNF-α expression and the number of M1 macrophages and M1/M2 macrophage ratio in coronary atherosclerotic lesions were markedly reduced in HBSP-treated animals. In conclusion, these data demonstrate that HBSP suppresses coronary atherosclerosis, in part by inhibiting endothelial cell apoptosis through activation of Akt and in association with decreased TNF-α production and modified macrophage polarization in coronary atherosclerotic lesions. Because HBSP does not have the prothrombotic effects of EPO, our study may provide a novel therapeutic strategy that prevents progression of coronary artery disease. PMID:23648638

  12. In Vitro Interleukin-1 and 2 Production and Interleukin 2 Receptor Expression in the Rhesus Monkey

    NASA Technical Reports Server (NTRS)

    Schmitt, Didier A.; Sonnenfeld, Gerald; Husson, David; Tkaczuk, Jean; Andre, Eric; Schaffar, Laurance

    1996-01-01

    Anti-human monoclonal antibodies were used to detect and quantify interleukins-1 and 2 and interleukin-2 receptor expression in peripheral blood mononuclear cells from a rhesus monkey. Interleukin-1 production could be induced by phorbol esters (PMA) and was potentiated by phytohemagglutinin (PHA). Interleukin-2 secretion could also be induced by the combination of PHA and PMA, but only weakly with PHA alone. Interleukin-2 receptor expression was present in a subpopulation of unstimulated lymphocytes and could be enhanced by PHA or PMA. These data show once again that the rhesus monkey immune system is cross-reactive with the human one and that rhesus macaque could be a good model to study interleukin therapy.

  13. C-type natriuretic peptide is synthesized and secreted from leukemia cell lines, peripheral blood cells, and peritoneal macrophages.

    PubMed

    Kubo, A; Isumi, Y; Ishizaka, Y; Tomoda, Y; Kangawa, K; Dohi, K; Matsuo, H; Minamino, N

    2001-05-01

    C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Cultured endothelial cells secrete CNP, and its secretion rate from the endothelial cells is augmented by lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha, which participate in the pathophysiology of inflammation. In this study, we investigated the regulation of CNP secretion from monocytes and macrophages to estimate its contribution to the progression of inflammation. CNP secretion rates from two human leukemia cell lines (THP-1 and HL-60), human peripheral blood lymphocytes, granulocytes, monocytes, monocyte-derived macrophages, and mouse peritoneal macrophages were measured under conditions with or without stimulation. Immunoreactive CNP levels in the culture media of these cells were measured by a specific radioimmunoassay. The secretion rates of CNP from THP-1 and HL-60 cells were augmented according to the degree of their differentiation into macrophage-like cells under the stimulation with phorbol ester. Peripheral blood monocytes also increased the CNP secretion rate after their differentiation into macrophages. Retinoic acid elicited synergistic effects on the CNP secretion rate from HL-60 cells when administered with lipopolysaccharide, interferon-gamma, interleukin-1beta, tumor necrosis factor-alpha, or phorbol ester. In contrast, the phorbol ester-stimulated CNP secretion rate from THP-1 cells was suppressed with dexamethasone, which inhibits monocyte differentiation into macrophage. The secretion rate of CNP from monocytes was shown to be regulated based on the degree of their differentiation. This study provides evidence that the monocyte/macrophage system is one of the sources of CNP, especially under inflammatory conditions.

  14. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells.

    PubMed

    Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander

    2016-10-13

    Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis , permeabilizes the blood-brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218's effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB.

  15. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells

    PubMed Central

    Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander

    2016-01-01

    Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood–brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218’s effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB. PMID:27754355

  16. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    PubMed

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by blocking the PI3K signaling pathway. Our results indicate that VEGF is implicated in the pathogenesis of inflammation after electrical burns. Inhibition of VEGF activity could attenuate monocyte-endothelial cells adhesion by suppressing the state of phosphorylation of AKT, which is downstream of the PI3K signaling pathway. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  17. Evaluation of selected biomarkers for the detection of chemical sensitization in human skin: a comparative study applying THP-1, MUTZ-3 and primary dendritic cells in culture.

    PubMed

    Hitzler, Manuel; Bergert, Antje; Luch, Andreas; Peiser, Matthias

    2013-09-01

    Dendritic cells (DCs) exhibit the unique capacity to induce T cell differentiation and proliferation, two processes that are crucially involved in allergic reactions. By combining the exclusive potential of DCs as the only professional antigen-presenting cells of the human body with the well known handling advantages of cell lines, cell-based alternative methods aimed at detecting chemical sensitization in vitro commonly apply DC-like cells derived from myeloid cell lines. Here, we present the new biomarkers programmed death-ligand 1 (PD-L1), DC immunoreceptor (DCIR), IL-16, and neutrophil-activating protein-2 (NAP-2), all of which have been detectable in primary human DCs upon exposure to chemical contact allergens. To evaluate the applicability of DC-like cells in the prediction of a chemical's sensitization potential, the expression of cell surface PD-L1 and DCIR was analyzed. In contrast to primary DCs, only minor subpopulations of MUTZ-3 and THP-1 cells presented PD-L1 or DCIR at their surface. After exposure to increasing concentrations of nickel and cinnamic aldehyde, the expression level of PD-L1 and DCIR revealed much stronger affected on monocyte-derived DCs (MoDCs) or Langerhans cells (MoLCs) when compared to THP-1 and MUTZ-3 cells. Applying protein profiler arrays we further identified the soluble factors NAP-2, IL-16, IL-8 and MIP-1α as sensitive biomarkers showing the capacity to discriminate sensitizing from non-sensitizing chemicals or irritants. An allergen-specific release of IL-8 and MIP-1α could be detected in the supernatants of MoDCs and MoLCs and also in MUTZ-3 and THP-1 cells, though at much lower levels. On the protein and transcriptional level, NAP-2 and IL-16 indicated sensitizers most sensitively and specifically in MoDCs. Altogether, we have proven the reciprocal regulated surface molecules PD-L1 and DCIR and the soluble factors MIP-1α, NAP-2 and IL-16 as reliable biomarkers for chemical sensitization. We further show that primary DCs are significantly different in their phenotype and function compared to DC-like cell lines. Since they demonstrated higher absolute values and a broader range in biomarker expression, we propose that MoDCs represent an optimal and robust sensor test system well suited to identify and classify chemicals with an allergic potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Protein kinase Cδ oxidation contributes to ERK inactivation in lupus T cells.

    PubMed

    Gorelik, Gabriela J; Yarlagadda, Sushma; Patel, Dipak R; Richardson, Bruce C

    2012-09-01

    CD4+ T cells from patients with active lupus have impaired ERK pathway signaling that decreases DNA methyltransferase expression, resulting in DNA demethylation, overexpression of immune genes, and autoimmunity. The ERK pathway defect is due to impaired phosphorylation of T(505) in the protein kinase Cδ (PKCδ) activation loop. However, the mechanisms that prevent PKCδ T(505) phosphorylation in lupus T cells are unknown. Others have reported that oxidative modifications, and nitration in particular, of T cells as well as serum proteins correlate with lupus disease activity. We undertook this study to test our hypothesis that nitration inactivates PKCδ, contributing to impaired ERK pathway signaling in lupus T cells. CD4+ T cells were purified from lupus patients and controls and then stimulated with phorbol myristate acetate (PMA). Signaling protein levels, nitration, and phosphorylation were quantitated by immunoprecipitation and immunoblotting of T cell lysates. Transfections were performed by electroporation. Treating CD4+ T cells with peroxynitrite nitrated PKCδ, preventing PKCδ T(505) phosphorylation and inhibiting ERK pathway signaling similar to that observed in lupus T cells. Patients with active lupus had higher nitrated T cell PKCδ levels than did controls, which correlated directly with disease activity, and antinitrotyrosine immunoprecipitations demonstrated that nitrated PKCδ, but not unmodified PKCδ, was refractory to PMA-stimulated T(505) phosphorylation, similar to PKCδ in peroxynitrite-treated cells. Oxidative stress causes PKCδ nitration, which prevents its phosphorylation and contributes to the decreased ERK signaling in lupus T cells. These results identify PKCδ as a link between oxidative stress and the T cell epigenetic modifications in lupus. Copyright © 2012 by the American College of Rheumatology.

  19. Indole-3-carbinol inhibits LPS-induced inflammatory response by blocking TRIF-dependent signaling pathway in macrophages.

    PubMed

    Jiang, Jun; Kang, Tae Bong; Shim, Do Wan; Oh, Na Hyun; Kim, Tack Joong; Lee, Kwang Ho

    2013-07-01

    Indole-3-carbinol (I3C), a natural hydrolysis product of glucobrassicin, is a member of the Brassica family of vegetables and is known to have various anti-cancer activities. In the present study, we assessed in vitro and in vivo anti-inflammatory effects of I3C and its molecular mechanisms. I3C attenuated the production of pro-inflammatory mediators such as NO, IL-6, and IL-1β in LPS-induced Raw264.7 cells and THP-1 cells through attenuation of the TRIF-dependent signaling pathway. Furthermore, I3C suppressed the infiltration of immune cells into the lung and pro-inflammatory cytokine production such as IL-6, TNF-α in broncho-alveolar lavage fluid (BALF) in the LPS-induced acute lung injury mouse model. I3C also suppressed IL-1β secretion in nigericin treated in vivo model. I3C has potent anti-inflammatory effects through regulating TRIF-dependent signaling pathways, suggesting that I3C may provide a valuable therapeutic strategy in treating various inflammatory diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Tamm-Horsfall Protein Regulates Circulating and Renal Cytokines by Affecting Glomerular Filtration Rate and Acting as a Urinary Cytokine Trap*

    PubMed Central

    Liu, Yan; El-Achkar, Tarek M.; Wu, Xue-Ru

    2012-01-01

    Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this “trapping” effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity. PMID:22451664

Top