Science.gov

Sample records for pms2 mutation positive

  1. PMS2 monoallelic mutation carriers: the known unknown

    PubMed Central

    Goodenberger, McKinsey L.; Thomas, Brittany C.; Riegert-Johnson, Douglas; Boland, C. Richard; Plon, Sharon E.; Clendenning, Mark; Ko Win, Aung; Senter, Leigha; Lipkin, Steven M.; Stadler, Zsofia K.; Macrae, Finlay A.; Lynch, Henry T.; Weitzel, Jeffrey N.; de la Chapelle, Albert; Syngal, Sapna; Lynch, Patrick; Parry, Susan; Jenkins, Mark A.; Gallinger, Steven; Holter, Spring; Aronson, Melyssa; Newcomb, Polly A.; Burnett, Terrilea; Le Marchand, Loïc; Pichurin, Pavel; Hampel, Heather; Terdiman, Jonathan P.; Lu, Karen H.; Thibodeau, Stephen; Lindor, Noralane M.

    2016-01-01

    Germline mutations in MLH1, MSH2, MSH6 and PMS2 have been shown to cause Lynch syndrome. The penetrance for cancer and tumor spectrum has been repeatedly studied and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared to the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age of onset and frequency of colonic screening. Published reports of PMS2 germline mutations were combined with unpublished cases from the authors’ research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with CRC were diagnosed under age 30 and each of these tumors presented on the left-side of the colon. As it is currently unknown what causes the early-onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the documented reduced penetrance. PMID:25856668

  2. Recurrent and founder mutations in the PMS2 gene.

    PubMed

    Tomsic, J; Senter, L; Liyanarachchi, S; Clendenning, M; Vaughn, C P; Jenkins, M A; Hopper, J L; Young, J; Samowitz, W; de la Chapelle, A

    2013-03-01

    Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. © 2012 John Wiley & Sons A/S.

  3. The E705K mutation in hPMS2 exerts recessive, not dominant, effects on mismatch repair

    PubMed Central

    Deschênes, Suzanne M.; Tomer, Guy; Nguyen, Megan; Erdeniz, Naz; Juba, Nicole C.; Sepúlveda, Natalia; Pisani, Jenna E.; Liskay, R. Michael

    2008-01-01

    The hPMS2 mutation E705K is associated with Turcot syndrome. To elucidate the pathogenesis of hPMS2-E705K, we modeled this mutation in yeast and characterized its expression and effects on mutation avoidance in mammalian cells. We found that while hPMS2-E705K (pms1-E738K in yeast) did not significantly affect hPMS2 (Pms1p in yeast) stability or interaction with MLH1, it could not complement the mutator phenotype in MMR-deficient mouse or yeast cells. Further-more, hPMS2-E705K/pms1-E738K inhibited MMR in wild-type (WT) mammalian cell extracts or yeast cells only when present in excess amounts relative to WT PMS2. Our results strongly suggest that hPMS2-E705K is a recessive loss-of-function allele. PMID:17029773

  4. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome

    PubMed Central

    Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A

    2015-01-01

    Background When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (<2% of all identified mutations), yet the immunohistochemical analysis of tumour samples indicates that approximately 5% of Lynch syndrome cases are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Methods Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. Results We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency <0.05) at a single nucleotide polymorphism (SNP) in exon 11, and have been shown to possess a short common haplotype, allowing us to calculate that the mutation arose around 1625 years ago (65 generations; 95% confidence interval 22 to 120). Conclusion Ancestral analysis indicates that this mutation is enriched in individuals with British and Swedish ancestry. We estimate that there are >10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands’ families, would suggest that this is a prevalent mutation with reduced penetrance. PMID:18178629

  5. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome.

    PubMed

    Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A

    2008-06-01

    When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (<2% of all identified mutations), yet the immunohistochemical analysis of tumour samples indicates that approximately 5% of Lynch syndrome cases are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency <0.05) at a single nucleotide polymorphism (SNP) in exon 11, and have been shown to possess a short common haplotype, allowing us to calculate that the mutation arose around 1625 years ago (65 generations; 95% confidence interval 22 to 120). Ancestral analysis indicates that this mutation is enriched in individuals with British and Swedish ancestry. We estimate that there are >10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands' families, would suggest that this is a prevalent mutation with reduced penetrance.

  6. Refining the role of PMS2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants.

    PubMed

    Borràs, Ester; Pineda, Marta; Cadiñanos, Juan; Del Valle, Jesús; Brieger, Angela; Hinrichsen, Inga; Cabanillas, Ruben; Navarro, Matilde; Brunet, Joan; Sanjuan, Xavier; Musulen, Eva; van der Klift, Helen; Lázaro, Conxi; Plotz, Guido; Blanco, Ignacio; Capellá, Gabriel

    2013-08-01

    The majority of mismatch repair (MMR) gene mutations causing Lynch syndrome (LS) occur either in MLH1 or MSH2. However, the relative contribution of PMS2 is less well defined. The aim of this study was to evaluate the role of PMS2 in LS by assessing the pathogenicity of variants of unknown significance (VUS) detected in the mutational analysis of PMS2 in a series of Spanish patients. From a cohort of 202 LS suspected patients, 13 patients showing loss of PMS2 expression in tumours were screened for germline mutations in PMS2, using a long range PCR based strategy and multiplex ligation dependent probe amplification (MLPA). Pathogenicity assessment of PMS2 VUS was performed evaluating clinicopathological data, frequency in control population and in silico and in vitro analyses at the RNA and protein level. Overall 25 different PMS2 DNA variants were detected. Fourteen were classified as polymorphisms. Nine variants were classified as pathogenic: seven alterations based on their molecular nature and two after demonstrating a functional defect (c.538-3C>G affected mRNA processing and c.137G>T impaired MMR activity). The c.1569C>G variant was classified as likely neutral while the c.384G>A remained as a VUS. We have also shown that the polymorphic variant c.59G>A is MMR proficient. Pathogenic PMS2 mutations were detected in 69% of patients harbouring LS associated tumours with loss of PMS2 expression. In all, PMS2 mutations account for 6% of the LS cases identified. The comprehensive functional analysis shown here has been useful in the classification of PMS2 VUS and contributes to refining the role of PMS2 in LS.

  7. Germline MLH1 Mutations Are Frequently Identified in Lynch Syndrome Patients With Colorectal and Endometrial Carcinoma Demonstrating Isolated Loss of PMS2 Immunohistochemical Expression.

    PubMed

    Dudley, Beth; Brand, Randall E; Thull, Darcy; Bahary, Nathan; Nikiforova, Marina N; Pai, Reetesh K

    2015-08-01

    Current guidelines on germline mutation testing for patients suspected of having Lynch syndrome are not entirely clear in patients with tumors demonstrating isolated loss of PMS2 immunohistochemical expression. We analyzed the clinical and pathologic features of patients with tumors demonstrating isolated loss of PMS2 expression in an attempt to (1) determine the frequency of germline MLH1 and PMS2 mutations and (2) correlate mismatch-repair protein immunohistochemistry and tumor histology with germline mutation results. A total of 3213 consecutive colorectal carcinomas and 215 consecutive endometrial carcinomas were prospectively analyzed for DNA mismatch-repair protein expression by immunohistochemistry. In total, 32 tumors from 31 patients demonstrated isolated loss of PMS2 immunohistochemical expression, including 16 colorectal carcinomas and 16 endometrial carcinomas. Microsatellite instability (MSI) polymerase chain reaction was performed in 29 tumors from 28 patients with the following results: 28 tumors demonstrated high-level MSI, and 1 tumor demonstrated low-level MSI. Twenty of 31 (65%) patients in the study group had tumors demonstrating histopathology associated with high-level MSI. Seventeen patients underwent germline mutation analysis with the following results: 24% with MLH1 mutations, 35% with PMS2 mutations, 12% with PMS2 variants of undetermined significance, and 29% with no mutations in either MLH1 or PMS2. Three of the 4 patients with MLH1 germline mutations had a mutation that results in decreased stability and quantity of the MLH1 protein that compromises the MLH1-PMS2 protein complex, helping to explain the presence of immunogenic but functionally inactive MLH1 protein within the tumor. The high frequency of MLH1 germline mutations identified in our study has important implications for testing strategies in patients suspected of having Lynch syndrome and indicates that patients with tumors demonstrating isolated loss of PMS2 expression

  8. Café-au-lait macules and pediatric malignancy caused by biallelic mutations in the DNA mismatch repair (MMR) gene PMS2.

    PubMed

    Jackson, Carl-Christian; Holter, Spring; Pollett, Aaron; Clendenning, Mark; Chou, Shirley; Senter, Leigha; Ramphal, Raveena; Gallinger, Steven; Boycott, Kym

    2008-06-01

    A 14-year-old male presented with a T4 sigmoid adenocarcinoma, <10 colonic adenomas and multiple café-au-lait macules. Family history was not suggestive of a dominant hereditary form of colorectal cancer. Evaluation of the tumor revealed abnormal immunohistochemical staining of the PMS2 protein and high frequency microsatellite instability. Germline analysis identified biallelic PMS2 missense mutations. A new cancer syndrome caused by biallelic mutations in the mismatch repair genes, including PMS2, is now emerging and is characterized by café-au-lait macules, colonic polyps and a distinctive tumor spectrum.

  9. Germline PMS2 and somatic POLEexo mutations cause hypermutability of the leading DNA strand in Biallelic Mismatch Repair Deficiency syndrome brain tumors.

    PubMed

    Andrianova, Maria A; Chetan, Ghati Kasturirangan; Sibin, Madathan Kandi; Mckee, Thomas; Merkler, Doron; Narasinga, Rao Kvl; Ribaux, Pascale; Blouin, Jean-Louis; Makrythanasis, Periklis; Seplyarskiy, Vladimir B; Antonarakis, Stylianos E; Nikolaev, Sergey I

    2017-08-14

    Biallelic Mismatch Repair Deficiency (bMMRD) in tumors is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1 and results to a characteristic mutational profile. In this study we describe the genetic basis of ultramutated high grade brain tumors in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant R802X in the PMS2 gene. Additionally, by genome sequencing of these tumors we have observed extremely high somatic mutation rates (237 and 123 mut/Mb) as well as somatic mutations in the proofreading domain of POLE polymerase (P436H and L424V), that replicates the leading DNA strand. Most interestingly, we have observed in both cancers that the vast majority of mutations were consistent with the signature of PolE exo-, i.e. the abundance of C > A and C > T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumor suppressor genes is more than 2-fold lower in ultramutated tumors compared to other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumors due to a combination of PMS2 germline and POLE somatic variants and confirmed them as a bMMRD/POLEexo- disorder. This article is protected by copyright. All rights reserved.

  10. Paediatric intestinal cancer and polyposis due to bi-allelic PMS2 mutations: case series, review and follow-up guidelines.

    PubMed

    Herkert, Johanna C; Niessen, Renée C; Olderode-Berends, Maria J W; Veenstra-Knol, Hermine E; Vos, Yvonne J; van der Klift, Heleen M; Scheenstra, Rene; Tops, Carli M J; Karrenbeld, Arend; Peters, Frans T M; Hofstra, Robert M W; Kleibeuker, Jan H; Sijmons, Rolf H

    2011-05-01

    Bi-allelic germline mutations of one of the DNA mismatch repair genes, so far predominantly found in PMS2, cause constitutional MMR-deficiency syndrome. This rare disorder is characterised by paediatric intestinal cancer and other malignancies. We report the clinical, immunohistochemical and genetic characterisation of four families with bi-allelic germline PMS2 mutations. We present an overview of the published gastrointestinal manifestations of CMMR-D syndrome and propose recommendations for gastro-intestinal screening. The first proband developed a cerebral angiosarcoma at age 2 and two colorectal adenomas at age 7. Genetic testing identified a complete PMS2 gene deletion and a frameshift c.736_741delinsTGTGTGTGAAG (p.Pro246CysfsX3) mutation. In the second family, both the proband and her brother had multiple intestinal adenomas, initially wrongly diagnosed as familial adenomatous polyposis. A splice site c.2174+1G>A, and a missense c.137G>T (p.Ser46Ile) mutation in PMS2 were identified. The third patient was diagnosed with multiple colorectal adenomas at age 11; he developed a high-grade dysplastic colorectal adenocarcinoma at age 21. Two intragenic PMS2 deletions were found. The fourth proband developed a cerebral anaplastic ganglioma at age 9 and a high-grade colerectal dysplastic adenoma at age 10 and carries a homozygous c.2174+1G>A mutation. Tumours of all patients showed microsatellite instability and/or loss of PMS2 expression. Our findings show the association between bi-allelic germline PMS2 mutations and severe childhood-onset gastrointestinal manifestations, and support the notion that patients with early-onset gastrointestinal adenomas and cancer should be investigated for CMMR-D syndrome. We recommend yearly follow-up with colonoscopy from age 6 and simultaneous video-capsule small bowel enteroscopy from age 8. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome.

    PubMed

    Wang, Zuoyun; Sun, Yihua; Gao, Bin; Lu, Yi; Fang, Rong; Gao, Yijun; Xiao, Tian; Liu, Xin-Yuan; Pao, William; Zhao, Yun; Chen, Haiquan; Ji, Hongbin

    2014-01-01

    Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development.

  12. Ovarian metastasis from uveal melanoma with MLH1/PMS2 protein loss in a patient with germline MLH1 mutated Lynch syndrome: consequence or coincidence?

    PubMed

    Lobo, João; Pinto, Carla; Freitas, Micaela; Pinheiro, Manuela; Vizcaino, Rámon; Oliva, Esther; Teixeira, Manuel R; Jerónimo, Carmen; Bartosch, Carla

    2017-03-01

    Currently, uveal melanoma is not considered within the Lynch syndrome tumor spectrum. However, there are studies suggesting a contribution of microsatellite instability in sporadic uveal melanoma tumorigenesis. We report a 45-year-old woman who was referred for genetic counseling due to a family history of Lynch syndrome caused by a MLH1 mutation. She originally underwent enucleation of the right eye secondary to a uveal spindle cell melanoma diagnosed at age 25. The tumor recurred 22 years later presenting as an ovarian metastasis and concurrently a microscopic endometrial endometrioid carcinoma, grade 1/3 was diagnosed. Subsequent studies highlighted that the uveal melanoma showed high microsatellite instability and loss of MLH1 and PMS2 protein expression, with no MLH1 promoter methylation or BRAF mutation. Additionally, a GNAQ mutation was found. We conclude that our patient's uveal melanoma is most likely related to MLH1 germline mutation and thus Lynch syndrome related. To the best of our knowledge, this is the first report of uveal melanoma showing MLH1/PMS2 protein loss in the context of Lynch syndrome.

  13. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD).

    PubMed

    Ramchander, N C; Ryan, N A J; Crosbie, E J; Evans, D G

    2017-04-05

    Constitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of the founder PMS2 mutation - NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11 and its associated cancers in this family. The proband is 30 years old and is alive today. She is of Pakistani ethnic origin and a product of consanguinity. She initially presented aged 24 with painless bleeding per-rectum from colorectal polyps and was referred to clinical genetics. Clinical examination revealed two café-au-lait lesions, lichen planus, and a dermoid cyst. Her sister had been diagnosed in childhood with an aggressive brain tumour followed by colorectal cancer. During follow up, the proband developed 37 colorectal adenomatous polyps, synchronous ovarian and endometrial adenocarcinomas, and ultimately a metachronous gastric adenocarcinoma. DNA sequencing of peripheral lymphocytes revealed a bi-allelic inheritance of the PMS2 mutation NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11. Ovarian tumour tissue demonstrated low microsatellite instability. To date, she has had a total abdominal hysterectomy, bilateral salpingo-oophorectomy, and a total gastrectomy. Aspirin and oestrogen-only hormone replacement therapy provide some chemoprophylaxis and manage postmenopausal symptoms, respectively. An 18-monthly colonoscopy surveillance programme has led to the excision of three high-grade dysplastic colorectal tubular adenomatous polyps. The proband's family pedigree displays multiple relatives with cancers including a likely case of 'true' Turcot syndrome. Constitutional mismatch repair

  14. An intact Pms2 ATPase domain is not essential for male fertility

    PubMed Central

    Fischer, Jared M; Dudley, Sandra; Miller, Ashleigh J; Liskay, R Michael

    2016-01-01

    The DNA mismatch repair (MMR) machinery in mammals plays critical roles in both mutation avoidance and spermatogenesis. Meiotic analysis of knockout mice of two different MMR genes, Mlh1 and Mlh3, revealed both male and female infertility associated with a defect in meiotic crossing over. In contrast, another MMR gene knockout, Pms2 (Pms2ko/ko), which contained a deletion of a portion of the ATPase domain, produced animals that were male sterile but female fertile. However, the meiotic phenotype of Pms2ko/ko males was less clear-cut than for Mlh1- or Mlh3-deficient meiosis. More recently, we generated a different Pms2 mutant allele (Pms2cre), which results in deletion of the same portion of the ATPase domain. Surprisingly, Pms2cre/cre male mice were completely fertile, suggesting that the ATPase domain of Pms2 is not required for male fertility. To explore the difference in male fertility, we examined the Pms2 RNA and found that alternative splicing of the Pms2cre allele results in a predicted Pms2 containing the C-terminus, which contains the Mlh1-interaction domain, a possible candidate for stabilizing Mlh1 levels. To study further the basis of male fertility, we examined Mlh1 levels in testes and found that whereas Pms2 loss in Pms2ko/ko mice results in severely reduced levels of Mlh1 expression in the testes, Mlh1 levels in Pms2cre/cre testes were reduced to a lesser extent. Thus, we propose that a primary function of Pms2 during spermatogenesis is to stabilize Mlh1 levels prior to its critical crossing over function with Mlh3. PMID:26753533

  15. Mutagenesis in PMS2- and MSH2-deficient mice indicates differential protection from transversions and frameshifts.

    PubMed

    Andrew, S E; Xu, X S; Baross-Francis, A; Narayanan, L; Milhausen, K; Liskay, R M; Jirik, F R; Glazer, P M

    2000-07-01

    DNA mismatch repair (MMR) deficiency leads to an increased mutation frequency and a predisposition to neoplasia. 'Knockout' mice deficient in the MMR proteins Msh2 and Pms2 crossed with mutation detection reporter (supF, lacI and cII) transgenic mice have been used to facilitate a comparison of the changes in mutation frequency and spectra. We find that the mutation frequency was consistently higher in Msh2-deficient mice than Pms2-deficient mice. The lacI target gene, which is highly sensitive to point mutations, demonstrated that both Msh2- and Pms2-deficient mice accumulate transition mutations as the predominant mutation. However, when compared with Msh2(-/-) mice, lacI and cII mutants from Pms2-deficient mice revealed an increased proportion of +/-1 bp frameshift mutations and a corresponding decrease in transversion mutations. The supF target gene, which is sensitive to frameshift mutations, and the cII target gene revealed a strong tendency for -1 bp deletions over +1 bp insertions in Msh2(-/-) compared with Pms2(-/-) mice. These data indicate that Msh2 and Pms2 deficiency have subtle but differing effects on mutation avoidance which may contribute to the differences in tumor spectra observed in the two 'knockout' mouse models. These variances in mutation accumulation may also play a role, in part, in the differences seen in prevalence of MSH2 and PMS2 germline mutations in hereditary non-polyposis colorectal cancer patients.

  16. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.

    PubMed

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro

    2015-06-30

    DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.

  17. Detection of large scale 3' deletions in the PMS2 gene amongst Colon-CFR participants: have we been missing anything?

    PubMed

    Clendenning, Mark; Walsh, Michael D; Gelpi, Judith Balmana; Thibodeau, Stephen N; Lindor, Noralane; Potter, John D; Newcomb, Polly; LeMarchand, Loic; Haile, Robert; Gallinger, Steve; Hopper, John L; Jenkins, Mark A; Rosty, Christophe; Young, Joanne P; Buchanan, Daniel D

    2013-09-01

    Current screening practices have been able to identify PMS2 mutations in 78 % of cases of colorectal cancer from the Colorectal Cancer Family Registry (Colon CFR) which showed solitary loss of the PMS2 protein. However the detection of large-scale deletions in the 3' end of the PMS2 gene has not been possible due to technical difficulties associated with pseudogene sequences. Here, we utilised a recently described MLPA/long-range PCR-based approach to screen the remaining 22 % (n = 16) of CRC-affected probands for mutations in the 3' end of the PMS2 gene. No deletions encompassing any or all of exons 12 through 15 were identified; therefore, our results suggest that 3' deletions in PMS2 are not a frequent occurrence in such families.

  18. Relationship between MLH-1, MSH-2, PMS-2,MSH-6 expression and clinicopathological features in colorectal cancer.

    PubMed

    Karahan, Birgül; Argon, Asuman; Yıldırım, Mehmet; Vardar, Enver

    2015-01-01

    Colorectal cancers are the third most common in both sexes and they are the second most common cause of cancer-related death. 12-15% of colorectal cancers develop through microsatellite instability (the hereditary mutation in at least one of DNA mismatch repair genes) pathway and they are 2-5% hereditary. In this study, we investigated the correlation between the clinicopathological features themselves and also the correlation between them and the immunohistochemical MLH-1, MSH-2, PMS-2, MSH-6 expressions in a total of 186 resection materials with colorectal adenocarcinoma between 2008 and 2012. All the cases were retrospectively evaluated in terms of age, sex, localization, size, accompanying polyp, multiple tumor, arising from polyp, differentiation, mucinous differentiation, pathological tumor stage, lymphovascular and perineural invasion, lymphocyte amount in the tumor microenvironment, surgical border and lymph node metastasis. We prepared multiple tissue blocks which had 4-millimeter tumor. Immunohistochemically, MLH-1, MSH-2, PMS-2, MSH-6 primary antibodies were studied. Statistically, "Kruskal-Wallis" ve "Pearson's chi-squared" tests were used. We found a positive correlation between loss of MLH-1 and PMS-2 expressions and the right-colon location, poor and mucinous differentiation and dense lymphocytic infiltration. In addition, loss of MSH-2 and MSH-6 expressions was correlated with the right-colon location, poor and mucinous differentiation. We found a meaningful relationship between immunohistochemical markers and clinicopathological features usually observed in tumors with microsatellite instability. This finding may arouse suspicion for MSI. However, the findings in our study must be supported with studies conducted in large series including molecular methods.

  19. [Introduction of mutations in insulin molecule: positive and negative mutations].

    PubMed

    Ksenofontova, O I

    2014-01-01

    Introduction of mutations in an insulin molecule is one of the important approaches to drug development for treatment of diabetes mellitus. Generally, usage of mutations is aimed at activation of insulin and insulin receptor interaction. Such mutations can be considered as positive. Mutations that reduce the binding efficacy are negative. There are neutral mutations as well. This article considers both natural mutations that are typical for various members of the insulin superfamily and artificial ones which are introduced to improve the insulin pharmacological characteristics. Data presented here can be useful in developing new effective insulin analogues for treatment of diabetes mellitus.

  20. Elucidating the clinical significance of two PMS2 missense variants coexisting in a family fulfilling hereditary cancer criteria.

    PubMed

    González-Acosta, Maribel; Del Valle, Jesús; Navarro, Matilde; Thompson, Bryony A; Iglesias, Sílvia; Sanjuan, Xavier; Paúles, María José; Padilla, Natàlia; Fernández, Anna; Cuesta, Raquel; Teulé, Àlex; Plotz, Guido; Cadiñanos, Juan; de la Cruz, Xavier; Balaguer, Francesc; Lázaro, Conxi; Pineda, Marta; Capellá, Gabriel

    2017-04-01

    The clinical spectrum of germline mismatch repair (MMR) gene variants continues increasing, encompassing Lynch syndrome, Constitutional MMR Deficiency (CMMRD), and the recently reported MSH3-associated polyposis. Genetic diagnosis of these hereditary cancer syndromes is often hampered by the presence of variants of unknown significance (VUS) and overlapping phenotypes. Two PMS2 VUS, c.2149G>A (p.V717M) and c.2444C>T (p.S815L), were identified in trans in one individual diagnosed with early-onset colorectal cancer (CRC) who belonged to a family fulfilling clinical criteria for hereditary cancer. Clinico-pathological data, multifactorial likelihood calculations and functional analyses were used to refine their clinical significance. Likelihood analysis based on cosegregation and tumor data classified the c.2444C>T variant as pathogenic, which was supported by impaired MMR activity associated with diminished protein expression in functional assays. Conversely, the c.2149G>A variant displayed MMR proficiency and protein stability. These results, in addition to the conserved PMS2 expression in normal tissues and the absence of germline microsatellite instability (gMSI) in the biallelic carrier ruled out a CMMRD diagnosis. The use of comprehensive strategies, including functional and clinico-pathological information, is mandatory to improve the clinical interpretation of naturally occurring MMR variants. This is critical for appropriate clinical management of cancer syndromes associated to MMR gene mutations.

  1. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    NASA Astrophysics Data System (ADS)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  2. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination

    PubMed Central

    Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.

    2001-01-01

    Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399

  3. HUMAN KINASES DISPLAY MUTATIONAL HOTSPOTS AT COGNATE POSITIONS WITHIN CANCER.

    PubMed

    Gallion, Jonathan; Wilkins, Angela D; Lichtarge, Olivier

    2016-01-01

    The discovery of driver genes is a major pursuit of cancer genomics, usually based on observing the same mutation in different patients. But the heterogeneity of cancer pathways plus the high background mutational frequency of tumor cells often cloud the distinction between less frequent drivers and innocent passenger mutations. Here, to overcome these disadvantages, we grouped together mutations from close kinase paralogs under the hypothesis that cognate mutations may functionally favor cancer cells in similar ways. Indeed, we find that kinase paralogs often bear mutations to the same substituted amino acid at the same aligned positions and with a large predicted Evolutionary Action. Functionally, these high Evolutionary Action, non-random mutations affect known kinase motifs, but strikingly, they do so differently among different kinase types and cancers, consistent with differences in selective pressures. Taken together, these results suggest that cancer pathways may flexibly distribute a dependence on a given functional mutation among multiple close kinase paralogs. The recognition of this "mutational delocalization" of cancer drivers among groups of paralogs is a new phenomena that may help better identify relevant mechanisms and therefore eventually guide personalized therapy.

  4. [Afatinib as first-line therapy in mutation-positive EGFR. Results by type of mutation].

    PubMed

    Vidal, Óscar Juan

    2016-04-01

    The discovery of endothelial growth factor receptor (EGFR) mutations has laid the foundations for personalized medicine in non-small cell lung carcinoma (NSCLC). In phase III trials, the first-generation tyrosine kinase inhibitors (TKI), gefitinib and erlotinib, demonstrated greater efficacy compared with chemotherapy in patients with EGFR mutations, achieving progression-free survival of 8-13.5 months. Afatinib, a second-generation irreversible pan-ErbB inhibitor, is the first TKI that has shown a benefit in overall survival (OS) compared with chemotherapy in EGFR mutation-positive NSCLC when used as first-line treatment. Exon 19 deletion (Del19) and the single-point substitution mutation (L858R) in exon 21, called activating mutations due to their ability to confer sensitivity to TKI, represent approximately 90% of the EGFR mutations in NSCLC. Distinct sensitivity to TKI has been observed depending on the type of mutation, with greater progression-free survival in patients with the Del19 mutation. The analysis of OS in the LUX-Lung 3 and LUX-Lung 6 trials showed a statistically significant increase in survival in afatinib-treated patients with the Del 19 mutation, but no significant increase in that of patients with the L858R mutation. Direct comparison of afatinib and gefitinib as first-line therapy (LUX-Lung 7 trial) showed a statistically-significant increase in progression-free survival (hazard ratio: 0.73; 95% confidence interval, 0.57-0.95; p=0.0165) with afatinib. In the analysis by type of mutation, this benefit was observed for both the Del19 and the L858R mutations.

  5. Variation in Cancer Risks, by Mutation Position, in BRCA2 Mutation Carriers

    PubMed Central

    Thompson, Deborah; Easton, Douglas

    2001-01-01

    Cancer occurrence in 164 families with breast/ovarian cancer and germline BRCA2 mutations was studied to evaluate the evidence for genotype-phenotype correlations. Mutations in a central portion of the gene (the “ovarian cancer cluster region” [OCCR]) were associated with a significantly higher ratio of cases of ovarian:breast cancer in female carriers than were mutations 5′ or 3′ of this region (P<.0001), extending previous observations. The optimal definition of the OCCR, as judged on the basis of deviance statistics, was bounded by nucleotides 3059–4075 and 6503–6629. The relative and absolute risks of breast and ovarian cancer associated with OCCR and non-OCCR mutations were estimated by a conditional likelihood approach, conditioning on the set of mutations observed in the families. OCCR mutations were associated both with a highly significantly lower risk of breast cancer (relative risk [RR] 0.63; 95% confidence interval (95% CI) 0.46–0.84; P=.0012) and with a significantly higher risk of ovarian cancer (RR = 1.88; 95% CI = 1.08–3.33; P=.026). No other differences in breast or ovarian cancer risk, by mutation position, were apparent. There was some evidence for a lower risk of prostate cancer in carriers of an OCCR mutation (RR = 0.52; 95% CI = 0.24–1.00; P=.05), but there was no evidence of a difference in breast cancer risk in males. By age 80 years, the cumulative risk of breast cancer in male carriers of a BRCA2 mutation was estimated as 6.92% (95% CI = 1.20%–38.57%). Possible mechanisms for the variation in cancer risk are suggested by the coincidence of the OCCR with the RAD51-binding domain. PMID:11170890

  6. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers.

    PubMed

    Thompson, D; Easton, D

    2001-02-01

    Cancer occurrence in 164 families with breast/ovarian cancer and germline BRCA2 mutations was studied to evaluate the evidence for genotype-phenotype correlations. Mutations in a central portion of the gene (the "ovarian cancer cluster region" [OCCR]) were associated with a significantly higher ratio of cases of ovarian:breast cancer in female carriers than were mutations 5' or 3' of this region (P<.0001), extending previous observations. The optimal definition of the OCCR, as judged on the basis of deviance statistics, was bounded by nucleotides 3059-4075 and 6503-6629. The relative and absolute risks of breast and ovarian cancer associated with OCCR and non-OCCR mutations were estimated by a conditional likelihood approach, conditioning on the set of mutations observed in the families. OCCR mutations were associated both with a highly significantly lower risk of breast cancer (relative risk [RR] 0.63; 95% confidence interval (95% CI) 0.46-0.84; P=.0012) and with a significantly higher risk of ovarian cancer (RR = 1.88; 95% CI = 1.08-3.33; P=.026). No other differences in breast or ovarian cancer risk, by mutation position, were apparent. There was some evidence for a lower risk of prostate cancer in carriers of an OCCR mutation (RR = 0.52; 95% CI = 0.24-1.00; P=.05), but there was no evidence of a difference in breast cancer risk in males. By age 80 years, the cumulative risk of breast cancer in male carriers of a BRCA2 mutation was estimated as 6.92% (95% CI = 1.20%-38.57%). Possible mechanisms for the variation in cancer risk are suggested by the coincidence of the OCCR with the RAD51-binding domain.

  7. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

    PubMed Central

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  8. Increased mitochondrial mutation frequency after an island colonization: positive selection or accumulation of slightly deleterious mutations?

    PubMed

    Hardouin, Emilie A; Tautz, Diethard

    2013-04-23

    Island colonizations are excellent models for studying early processes of evolution. We found in a previous study on mice that had colonized the sub-Antarctic Kerguelen Archipelago about 200 years ago that they were derived from a single founder lineage and that this showed an unexpectedly large number of new mutations in the mitochondrial D-loop. To assess whether positive selection has played a role in the emergence of these variants, we have obtained 16 full mitochondrial genome sequences from these mice. For comparison, we have compiled 57 mitochondrial genome sequences from laboratory inbred lines that became established about 100 years ago, also starting from a single founder lineage. We find that the island mice and the laboratory lines show very similar mutation frequencies and patterns. None of the patterns in the Kerguelen mice provides evidence for positive selection. We conclude that nearly neutral evolutionary processes that assume the presence of slightly deleterious variants can fully explain the patterns. This supports the notion of time-dependency of molecular evolution and provides a new calibration point. Based on the observed mutation frequency, we calculate an average evolutionary rate of 0.23 substitutions per site per Myr for the earliest time frame of divergence, which is about six times higher than the long-term rate of 0.037 substitutions per site per Myr.

  9. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer.

    PubMed

    Pearlman, Rachel; Frankel, Wendy L; Swanson, Benjamin; Zhao, Weiqiang; Yilmaz, Ahmet; Miller, Kristin; Bacher, Jason; Bigley, Christopher; Nelsen, Lori; Goodfellow, Paul J; Goldberg, Richard M; Paskett, Electra; Shields, Peter G; Freudenheim, Jo L; Stanich, Peter P; Lattimer, Ilene; Arnold, Mark; Liyanarachchi, Sandya; Kalady, Matthew; Heald, Brandie; Greenwood, Carla; Paquette, Ian; Prues, Marla; Draper, David J; Lindeman, Carolyn; Kuebler, J Philip; Reynolds, Kelly; Brell, Joanna M; Shaper, Amy A; Mahesh, Sameer; Buie, Nicole; Weeman, Kisa; Shine, Kristin; Haut, Mitchell; Edwards, Joan; Bastola, Shyamal; Wickham, Karen; Khanduja, Karamjit S; Zacks, Rosemary; Pritchard, Colin C; Shirts, Brian H; Jacobson, Angela; Allen, Brian; de la Chapelle, Albert; Hampel, Heather

    2017-04-01

    Hereditary cancer syndromes infer high cancer risks and require intensive cancer surveillance, yet the prevalence and spectrum of these conditions among unselected patients with early-onset colorectal cancer (CRC) is largely undetermined. To determine the frequency and spectrum of cancer susceptibility gene mutations among patients with early-onset CRC. Overall, 450 patients diagnosed with colorectal cancer younger than 50 years were prospectively accrued from 51 hospitals into the Ohio Colorectal Cancer Prevention Initiative from January 1, 2013, to June 20, 2016. Mismatch repair (MMR) deficiency was determined by microsatellite instability and/or immunohistochemistry. Germline DNA was tested for mutations in 25 cancer susceptibility genes using next-generation sequencing. Mutation prevalence and spectrum in patients with early-onset CRC was determined. Clinical characteristics were assessed by mutation status. In total 450 patients younger than 50 years were included in the study, and 75 gene mutations were found in 72 patients (16%). Forty-eight patients (10.7%) had MMR-deficient tumors, and 40 patients (83.3%) had at least 1 gene mutation: 37 had Lynch syndrome (13, MLH1 [including one with constitutional MLH1 methylation]; 16, MSH2; 1, MSH2/monoallelic MUTYH; 2, MSH6; 5, PMS2); 1 patient had the APC c.3920T>A, p.I1307K mutation and a PMS2 variant; 9 patients (18.8%) had double somatic MMR mutations (including 2 with germline biallelic MUTYH mutations); and 1 patient had somatic MLH1 methylation. Four hundred two patients (89.3%) had MMR-proficient tumors, and 32 patients (8%) had at least 1 gene mutation: 9 had mutations in high-penetrance CRC genes (5, APC; 1, APC/PMS2; 2, biallelic MUTYH; 1, SMAD4); 13 patients had mutations in high- or moderate-penetrance genes not traditionally associated with CRC (3, ATM; 1, ATM/CHEK2; 2, BRCA1; 4, BRCA2; 1, CDKN2A; 2, PALB2); 10 patients had mutations in low-penetrance CRC genes (3, APC c.3920T>A, p.I1307K; 7

  10. People with "MECP2" Mutation-Positive Rett Disorder Who Converse

    ERIC Educational Resources Information Center

    Kerr, A. M.; Archer, H. L.; Evans, J. C.; Prescott, R. J.; Gibbon, F.

    2006-01-01

    Background: People with useful speech after regression constitute a distinct group of those with mutation-positive Rett disorder, 6% (20/331) reported among mutation-positive people in the British Survey. We aimed to determine the physical, mental and genetic characteristics of this group and to gain insight into their experience of Rett syndrome.…

  11. People with "MECP2" Mutation-Positive Rett Disorder Who Converse

    ERIC Educational Resources Information Center

    Kerr, A. M.; Archer, H. L.; Evans, J. C.; Prescott, R. J.; Gibbon, F.

    2006-01-01

    Background: People with useful speech after regression constitute a distinct group of those with mutation-positive Rett disorder, 6% (20/331) reported among mutation-positive people in the British Survey. We aimed to determine the physical, mental and genetic characteristics of this group and to gain insight into their experience of Rett syndrome.…

  12. Mutation position within evolutionary subclonal architecture in AML.

    PubMed

    Welch, John S

    2014-10-01

    Cytogenetic data suggest that acute myeloid leukemia (AML) develops through a process of branching evolution, especially during relapse and progression. Recent genomic data from AML cases using digital sequencing, temporal comparisons, xenograft cloning, and single-cell analysis indicate that most, if not all, AML cases emerge through branching evolution. According to a review of the current literature, the balanced translocations (t[15;17], t[8;21], and inv[16]) and nucleotide variants in DNMT3A and TET2 most commonly occur in the founding clone at diagnosis. These mutations are rarely gained or lost at relapse, and the latter 2 mutations are observed in elderly subjects with mosaic hematopoiesis antedating overt leukemia. In contrast, +8, +13, +22, -X, -Y, and nucleotide variants in FLT3, NRAS/KRAS, WT1, and KIT frequently occur in subclones and are observed either to emerge or to be lost at relapse. Because drugs that target mutations within a subclone are unlikely to eliminate all leukemic cells, it will be essential to understand not only which mutations a patient has but also how they organize within the leukemic subclonal architecture.

  13. Spectrum of mutations in CRM-positive and CRM-reduced hemophilia A

    SciTech Connect

    McGinniss, M.J.; Kazazian, H.H. Jr.; Bi, L.; Antonarakis, S.E. ); Hoyer, L.W. ); Inaba, H. )

    1993-02-01

    Hemophilia A is due to the functional deficiency of factor VIII (FVIII, gene locus F8C). Although half the patients have no detectable FVIII protein in their plasma, the more rare patients ([approximately]5%) have normal levels of a dysfunctional FVIII and are termed cross-reacting material (CRM)-positive. More commonly ([approximately]45%), patients have plasma FVIII protein reduced to an extent roughly comparable to the level of FVIII activity and are designated CRM-reduced. We used denaturing gradient gel electrophoresis to screen for mutations within the F8C gene of 11 patients (6CRM-positive, 5 CRM-reduced) and identified 9 different mutations in 9 patients after analyses of all 26 exons, the promoter region, and the polyadenylation site. Six mutations have not been described previously. Five weree missense (Ser289Leu, Ser558Phe, Val634Ala, Val634Met, Asn1441Lys), and the sixth was a 3-bp deletion ([Delta]Phe652). A review of the literature and the assay of FVIII antigen in 5 hemophilia A patients with previously identified missense mutations from this laboratory yielded a total of 20 other unique CRM-reduced and CRM-positive mutations. Almost all CRM-positive/reduced mutations (24/26) were missense, and many (12/26) occurred at CpG dinucleotides. We examined 19 missense mutation for evolutionary conservation using the portions of the porcine and murine F8C sequences that are known, and 18/19 amino acid residue altered by mutation in these patients wer conserved. Almost 50% of mutations (11/26) clustered in the A2 domain, suggesting that this region is critical for the function of FVIII. The results indicate a nonrandom distribution of mutations and suggest that mutations in a limited number of FVIII regions may cause CRM-positive and CRM-reduced heomphilia A. 48 refs., 1 fig., 1 tab.

  14. Prospective study of breast cancer risk for mutation negative women from BRCA1 or BRCA2 mutation positive families.

    PubMed

    Harvey, S L; Milne, R L; McLachlan, S A; Friedlander, M L; Birch, K E; Weideman, P; Goldgar, D; Hopper, J L; Phillips, K A

    2011-12-01

    Published studies have reached contradictory conclusions regarding breast cancer risk for women from families segregating a BRCA1 or BRCA2 mutation who do not carry the family-specific mutation. Accurate estimation of breast cancer risk is crucial for appropriate counselling regarding risk management. The aim of this study is to prospectively assess whether breast cancer risk for mutation negative women from families segregating BRCA1 or BRCA2 mutations is greater than for women in the general population. Eligible women were 722 first-, second- and third-degree relatives of a BRCA1 or BRCA2 mutation carrier from 224 mutation positive (128 BRCA1, 96 BRCA2) families, had no personal cancer history at baseline, and had been tested and found not to carry the family-specific mutation. Self-reported family history of cancer, preventive interventions and verified cancer diagnoses were collected at baseline, and every 3 years thereafter. Median follow-up was 6.1 years (range 0.1-12.4 years). Time at risk of breast cancer was censored at cancer diagnosis or risk-reducing surgery. Standardised incidence ratios (SIR) were estimated by comparing observed to population incidences of invasive breast cancer using Australian Cancer Incidence and Mortality Books. Six cases of invasive breast cancer were observed. The estimated SIRs were 1.14 (95% CI: 0.51-2.53) overall (n = 722), 1.29 (95% CI: 0.58-2.88) when restricted to first- and second-degree relatives of an affected mutation carrier (n = 442) and 0.48 (95% CI: 0.12-1.93) when restricted to those with no family history of breast cancer in the non-mutation carrying parental lineage (n = 424). There was no evidence that mutation negative women from families segregating BRCA1 or BRCA2 mutations are at increased risk of breast cancer. Despite this being the largest prospective cohort to assess this issue, moderately increased breast cancer risk (2-fold) cannot be ruled out.

  15. High frequency strand slippage mutations in CTCF in MSI-positive endometrial cancers.

    PubMed

    Zighelboim, Israel; Mutch, David G; Knapp, Amy; Ding, Li; Xie, Mingchao; Cohn, David E; Goodfellow, Paul J

    2014-01-01

    Tumors with defective mismatch repair acquire large numbers of strand slippage mutations including frameshifts in coding sequence repeats. We identified a mutational hotspot, p.T204fs, in the insulator-binding protein (CTCF) in MSI-positive endometrial cancers. Although CTCF was described as a significantly mutated gene by the endometrial cancer TCGA, the A₇ track variants leading to T204 frameshifts were not reported. Reanalysis of TCGA data using Pindel revealed frequent T204fs mutations, confirming CTCF is an MSI target gene and revealed the same frameshifts in tumors with intact mismatch repair. We show that T204fs transcripts are subject to nonsense-mediated decay and as such, T204fs mutations are unlikely to act as dominant negatives. The spectrum and pattern of mutations observed is consistent with CTCF acting as a haploinsufficient tumor suppressor.

  16. Hyperactive Arg39Lys mutated mnemiopsin: implication of positively charged residue in chromophore binding cavity.

    PubMed

    Mahdavi, Atiyeh; Sajedi, Reza H; Hosseinkhani, Saman; Taghdir, Majid

    2015-04-01

    Mnemiopsin, a Ca(2+)-regulated photoprotein isolated from Mnemiopsis leidyi, belongs to the family of ctenophore photoproteins. These proteins emit blue light from a chromophore, which is tightly but non-covalently bound in their central hydrophobic core that contains 21 conserved residues. In an effort to investigate the role of Arg39 (the sole charged residue in coelenterazine binding cavity of ctenophore photoproteins) in bioluminescence properties of these photoproteins, three mutated forms of mnemiopsin 1 (R39E, R39K and R39M) were constructed and characterized. The results indicate that while the luminescence activity of R39K mutated mnemiopsin has increased about nine fold compared to the wild type, R39M and R39E mutated mnemiopsins have entirely lost their activities. The most distinguished properties of R39K mutated photoprotein are its high activity, slow rate of luminescence decay and broad pH profile compared to the wild type. The complete loss of bioluminescence activity in mutated photoproteins with negatively charged and aliphatic residues (R39E and R39M, respectively) shows that the presence of a positively charged residue at this position is necessary. The results of spectroscopic studies, including CD, intrinsic and extrinsic fluorescence measurements and acrylamide quenching studies show that, while the substitutions lead to structural rigidity in R39E and R39M mutated mnemiopsins, structural flexibility is obvious in R39K mutated mnemiopsin. The presence of a more localized positive charge on ε-amino group of Lys compared to guanidinium group of Arg residue in close proximity to the choromophre might affect its fixation in the binding cavity and result in increased bioluminescence activity in this mutated photoprotein. It appears that the polarity and flexibility of positively charged residue at this position finely tunes the luminescence properties of ctenophore photoproteins.

  17. Functional analysis of 'a' determinant mutations associated with occult HBV in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Boyce, Ceejay L; Gededzha, Maemu P; Selabe, Selokela G; Mphahlele, M Jeffrey; Blackard, Jason T

    2016-07-01

    Occult hepatitis B is defined by the presence of hepatitis B virus (HBV) DNA in the absence of hepatitis B surface antigen (HBsAg). Occult HBV is associated with the development of hepatocellular carcinoma, reactivation during immune suppression, and virus transmission. Viral mutations contribute significantly to the occult HBV phenotype. Mutations in the 'a' determinant of HBsAg are of particular interest, as these mutations are associated with immune escape, vaccine escape and diagnostic failure. We examined the effects of selected occult HBV-associated mutations identified in a population of HIV-positive South Africans on HBsAg production in vitro. Mutations were inserted into two different chronic HBV backbones and transfected into a hepatocyte-derived cell line. HBsAg levels were quantified by enzyme-linked immunosorbent assay (ELISA), while the detectability of mutant HBsAg was determined using an HA-tagged HBsAg expression system. Of the seven mutations analysed, four (S132P, C138Y, N146D and C147Y) resulted in decreased HBsAg expression in one viral background but not in the second viral background. One mutation (N146D) led to a decrease in HBsAg detected as compared to HA-tag, indicating that this mutation compromises the ability of the ELISA to detect HBsAg. The contribution of occult-associated mutations to the HBsAg-negative phenotype of occult HBV cannot be determined adequately by testing the effect of the mutation in a single viral background, and rigorous analysis of these mutations is required.

  18. Detection of false positive mutations in BRCA gene by next generation sequencing.

    PubMed

    Suryavanshi, Moushumi; Kumar, Dushyant; Panigrahi, Manoj Kumar; Chowdhary, Meenakshi; Mehta, Anurag

    2016-11-15

    BRCA1 and BRCA2 genes are implicated in 20-25% of hereditary breast and ovarian cancers. New age sequencing platforms have revolutionized massively parallel sequencing in clinical practice by providing cost effective, rapid, and sensitive sequencing. This study critically evaluates the false positives in multiplex panels and suggests the need for careful analysis. We employed multiplex PCR based BRCA1 and BRCA2 community Panel with ion torrent PGM machine for evaluation of these mutations. Out of all 41samples analyzed for BRCA1 and BRCA2 five were found with 950_951 insA(Asn319fs) at Chr13:32906565 position and one sample with 1032_1033 insA(Asn346fs) at Chr13:32906647, both being frame-shift mutations in BRCA2 gene. 950_951 insA(Asn319fs) mutation is reported as pathogenic allele in NCBI dbSNP. On examination of IGV for all these samples, it was seen that both mutations had 'A' nucleotide insertion at 950, and 1032 position in exon 10 of BRCA2 gene. Sanger Sequencing did not confirm these insertions. Next-generation sequencing shows great promise by allowing rapid mutational analysis of multiple genes in human cancer but our results indicate the need for careful sequence analysis to avoid false positive results.

  19. Mismatch Repair Proteins and Microsatellite Instability in Colorectal Carcinoma (MLH1, MSH2, MSH6 and PMS2): Histopathological and Immunohistochemical Study

    PubMed Central

    Ismael, Nour El Hoda S.; El Sheikh, Samar A.; Talaat, Suzan M.; Salem, Eman M.

    2017-01-01

    BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide. Microsatellite instability (MSI) is detected in about 15% of all colorectal cancers. CRC with MSI has particular characteristics such as improved survival rates and better prognosis. They also have a distinct sensitivity to the action of chemotherapy. AIM: The aim of the study was to detect microsatellite instability in a cohort of colorectal cancer Egyptian patients using the immunohistochemical expression of mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2). MATERIAL AND METHODS: Cases were divided into Microsatellite stable (MSS), Microsatellite unstable low (MSI-L) and Microsatellite unstable high (MSI-H). This Microsatellite stability status was correlated with different clinicopathological parameters. RESULTS: There was a statistically significant correlation between the age of cases, tumor site & grade and the microsatellite stability status. There was no statistically significant correlation between the gender of patients, tumor subtype, stage, mucoid change, necrosis, tumor borders, lymphocytic response, lymphovascular emboli and the microsatellite stability status. CONCLUSION: Testing for MSI should be done for all colorectal cancer patients, especially those younger than 50 years old, right sided and high-grade CRCs. PMID:28293308

  20. Identification of the mismatch repair genes PMS2 and MLH1 as p53 target genes by using serial analysis of binding elements

    PubMed Central

    Chen, Jiguo; Sadowski, Ivan

    2005-01-01

    The ability to determine the global location of transcription factor binding sites in vivo is important for a comprehensive understanding of gene regulation in human cells. We have developed a technology, called serial analysis of binding elements (SABE), involving subtractive hybridization of chromatin immunoprecipitation-enriched DNA fragments followed by the generation and analysis of concatamerized sequence tags. We applied the SABE technology to search for p53 target genes in the human genome, and have identified several previously described p53 targets in addition to numerous potentially novel targets, including the DNA mismatch repair genes MLH1 and PMS2. Both of these genes were determined to be responsive to DNA damage and p53 activation in normal human fibroblasts, and have p53-response elements within their first intron. These two genes may serve as a sensor in DNA repair mechanisms and a critical determinant for the decision between cell-cycle arrest and apoptosis. These results also demonstrate the potential for use of SABE as a broadly applicable means to globally identify regulatory elements for human transcription factors in vivo. PMID:15781865

  1. Mutations associated with occult hepatitis B in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Gededzha, Maemu P; Rentz, Michael; Rakgole, Nare J; Selabe, Selokela G; Seleise, Tebogo A; Mphahlele, M Jeffrey; Blackard, Jason T

    2015-03-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations-those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references-were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro. © 2014 Wiley Periodicals, Inc.

  2. High burden and pervasive positive selection of somatic mutations in normal human skin

    PubMed Central

    Martincorena, Iñigo; Roshan, Amit; Gerstung, Moritz; Ellis, Peter; Van Loo, Peter; McLaren, Stuart; Wedge, David C.; Fullam, Anthony; Alexandrov, Ludmil B.; Tubio, Jose M.; Stebbings, Lucy; Menzies, Andrew; Widaa, Sara; Stratton, Michael R.; Jones, Philip H.; Campbell, Peter J.

    2015-01-01

    How somatic mutations accumulate in normal cells is central to understanding cancer development, but is poorly understood. We performed ultra-deep sequencing of 74 cancer genes in small (0.8-4.7mm2) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged 2-6 mutations/megabase/cell, similar to many cancers, and exhibited characteristic signatures of ultraviolet light exposure. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected ‘driver’ mutations were found in 18-32% of normal skin cells at a density of ~140/cm2. We observed variability in the driver landscape among individuals and variability in sizes of clonal expansions across genes. Thus, aged, sun-exposed skin is a patchwork of thousands of evolving clones, with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis. PMID:25999502

  3. Nicotinic Acetylcholine Receptor Transmembrane Mutations Convert Ivermectin from a Positive to a Negative Allosteric Modulator

    PubMed Central

    Collins, Toby

    2010-01-01

    Ivermectin is a macrocyclic lactone that acts as a positive allosteric modulator of α7 nicotinic acetylcholine receptors (nAChRs) but has no modulatory activity on 5-hydroxytryptamine (5-HT) type 3 (5-HT3) receptors. By examining the influence of ivermectin on subunit chimeras containing domains from the nAChR α7 subunit and the 5-HT3A subunit, we have concluded that the transmembrane domains play a critical role in influencing allosteric modulation by ivermectin. A series of mutations located within the α-helical transmembrane domains of the α7 subunit were examined, and seven were found to have significant effects on allosteric modulation by ivermectin. Four mutations (A225D, Q272V, T456Y, and C459Y) caused a significant reduction in the potency of ivermectin as an allosteric potentiator. Compared with wild-type α7 nAChRs, potentiation by ivermectin was reduced dramatically (by 89–97%) by these mutations. Somewhat unexpectedly, three mutations (S222M, M253L, and S276V located in TM1, TM2, and TM3) converted ivermectin from a positive allosteric modulator into an antagonist. Levels of inhibition of 56, 84, and 89% were observed on M253L, S276V, and S222M, respectively. Antagonism by ivermectin was insurmountable and had no effect on EC50 of acetylcholine, indicating that it is acting noncompetitively. The seven mutations that influence allosteric modulation by ivermectin are located near a predicted intrasubunit transmembrane cavity. Computer docking simulations provide support for the hypothesis that ivermectin binds in close proximity to this cavity. We conclude that transmembrane mutations in α7 nAChRs are able to convert ivermectin from a positive to a negative allosteric modulator. PMID:20463059

  4. Improving Mutation Screening in Patients with Colorectal Cancer Predisposition Using Next-Generation Sequencing.

    PubMed

    Rey, Jean-Marc; Ducros, Vincent; Pujol, Pascal; Wang, Qing; Buisine, Marie-Pierre; Aissaoui, Hanaa; Maudelonde, Thierry; Olschwang, Sylviane

    2017-07-01

    Identification of genetic alterations is important for family risk assessment in colorectal cancers. Next-generation sequencing (NGS) technologies provide useful tools for single-nucleotide and copy number variation (CNV) identification in many genes and samples simultaneously. Herein, we present the validation of current Multiplicom MASTR designs of mismatch repair combined to familial adenomatous polyposis genes in a single PCR reamplification test for eight DNA samples simultaneously on a MiSeq apparatus. Blood samples obtained from 224 patients were analyzed. We correctly identified the 97 mutations selected among 48 samples tested in a validation cohort. PMS2 NGS analysis of the eight positive controls identified single-nucleotide variations not detected with targeted referent methods. As NGS method could not discriminate if some of them were assigned to PMS2 or pseudogenes, only CNV analysis with multiplex ligand probe-dependent amplification confirmation was retained for clinical use. Twenty-seven new variants of unknown significance, 21 disease-causing variants, and two CNVs were detected among the 176 patient samples analyzed in diagnosis routine. MUTYH disease-causing mutations were identified in two patient samples assessed for mismatch repair testing, confirming that this method facilitates accurate and rapid individual risk assessments. In one sample, the MUTYH mutation was associated with a MSH6 disease-causing mutation, suggesting that this method is helpful to identify additional cancer risk modifiers and provides a useful tool to optimize clinical issues. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  5. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects.

    PubMed

    Hasselberg, Nina E; Edvardsen, Thor; Petri, Helle; Berge, Knut E; Leren, Trond P; Bundgaard, Henning; Haugaa, Kristina H

    2014-04-01

    Mutations in the Lamin A/C gene may cause atrioventricular block, supraventricular arrhythmias, ventricular arrhythmias (VA), and dilated cardiomyopathy. We aimed to explore the predictors and the mechanisms of VA in Lamin A/C mutation-positive subjects. We included 41 Lamin A/C mutation-positive subjects. PR-interval and occurrence of VA were recorded. Left ventricular (LV) myocardial function was assessed as ejection fraction and speckle tracking longitudinal strain by echocardiography. Magnetic resonance imaging was performed to assess fibrosis in a selection of subjects. Ventricular arrhythmias were documented in 21 patients (51%). Prolonged PR-interval was the best predictor of VA (P < 0.001). Myocardial function by strain was reduced in the interventricular septum compared with the rest of the LV segments (-16.7% vs. -18.7%, P = 0.001) and correlated to PR-interval (R = 0.41, P = 0.03). Myocardial fibrosis was found exclusively in the interventricular septum and only in patients with VA (P = 0.007). PR-interval was longer in patients with septal fibrosis compared with those without (320 ± 66 vs. 177 ± 40 ms, P < 0.001). Prolonged PR-interval was the best predictor of VA in Lamin A/C mutation-positive subjects. Electrical, mechanical, and structural cardiac properties were related in these subjects. Myocardial function was most reduced in the interventricular septum and correlated to prolonged PR-interval. Myocardial septal fibrosis was associated with prolonged PR-interval and VA. Localized fibrosis in the interventricular septum may be the mechanism behind reduced septal function, atrioventricular block and VA in Lamin A/C mutation-positive subjects.

  6. Acquired Resistance to Erlotinib in EGFR Mutation-Positive Lung Adenocarcinoma among Hispanics (CLICaP).

    PubMed

    Cardona, Andrés F; Arrieta, Oscar; Zapata, Martín Ignacio; Rojas, Leonardo; Wills, Beatriz; Reguart, Noemí; Karachaliou, Niki; Carranza, Hernán; Vargas, Carlos; Otero, Jorge; Archila, Pilar; Martín, Claudio; Corrales, Luis; Cuello, Mauricio; Ortiz, Carlos; Pino, Luis E; Rosell, Rafael; Zatarain-Barrón, Zyanya Lucia

    2017-08-01

    Lung cancer harboring epidermal growth factor receptor (EGFR) mutations and treated with EGFR tyrosine kinase inhibitors (TKIs) all eventually develop acquired resistance to the treatment, with half of the patients developing EGFR T790M resistance mutations. The purpose of this study was to assess histological and clinical characteristics and survival outcomes in Hispanic EGFR mutated lung cancer patients after disease progression. EGFR mutation-positive lung cancer patients (n = 34) with acquired resistance to the EGFR-TKI erlotinib were identified from 2011 to 2015. Post-progression tumor specimens were collected for molecular analysis. Post-progression interventions, response to treatment, and survival were assessed and compared among all patients and those with and without T790M mutations. Mean age was 59.4 ± 13.9 years, 65% were never-smokers, and 53% had a performance status 0-1. All patients received erlotinib as first-line treatment. Identified mutations included: 60% DelE19 (Del746-750) and 40% L858R. First-line erlotinib overall response rate (ORR) was 61.8% and progression free survival (PFS) was 16.8 months (95% CI: 13.7-19.9). Acquired resistance mutations identified were T790M mutation (47.1%); PI3K mutations (14.7%); EGFR amplification (14.7%); KRAS mutation (5.9%); MET amplification (8.8%); HER2 alterations (5.9%, deletions/insertions in e20); and SCLC transformation (2.9%). Of patients, 79.4% received treatment after progression. ORR for post-erlotinib treatment was 47.1% (CR 2/PR 14) and median PFS was 8.3 months (95% CI: 2.2-36.6). Median overall survival (OS) from treatment initiation was 32.9 months (95% CI: 30.4-35.3), and only the use of post-progression therapy affected OS in a multivariate analysis (p = 0.05). Hispanic patients with acquired resistance to erlotinib continued to be sensitive to other treatments after progression. The proportion of T790M+ patients appears to be similar to that previously reported in Caucasians.

  7. Dihydropteroate synthase gene mutation rates in Pneumocystis jirovecii strains obtained from Iranian HIV-positive and non-HIV-positive patients.

    PubMed

    Sheikholeslami, Maryam-Fatemeh; Sadraei, Javid; Farnia, Parisa; Forozandeh Moghadam, Mehdi; Emadikochak, Hamid

    2015-05-01

    The dihydropteroate sulfate (DHPS) gene is associated with resistance to sulfa/sulfone drugs in Pneumocystis jirovecii. We investigated the DHPS mutation rate in three groups of Iranian HIV-positive and HIV-negative patients by polymerase chain reaction-restricted fragment length polymorphism analysis. Furthermore, an association between P. jirovecii DHPS mutations and strain typing was investigated based on direct sequencing of internal transcribed spacer region 1 (ITS1) and ITS2. The overall P. jirovecii DHPS mutation rate was (5/34; 14.7%), the lowest rate identified was in HIV-positive patients (1/16; 6.25%) and the highest rate was in malignancies patients (3/11; 27.3%). A moderate rate of mutation was detected in chronic obstructive pulmonary disease (COPD) patients (1/7; 14.3%). Most of the isolates were wild type (29/34; 85.3%). Double mutations in DHPS were detected in patients with malignancies, whereas single mutations at codons 55 and 57 were identified in the HIV-positive and COPD patients, respectively. In this study, two new and rare haplotypes were identified with DHPS mutations. Additionally, a positive relationship between P. jirovecii strain genotypes and DHPS mutations was identified. In contrast, no DHPS mutations were detected in the predominant (Eg) haplotype. This should be regarded as a warning of an increasing incidence of drug-resistant P. jirovecii strains.

  8. Cross-reactivity of EGFR mutation-specific immunohistochemistry assay in HER2-positive tumors.

    PubMed

    Verdu, Montse; Trias, Isabel; Roman, Ruth; Rodon, Natalia; Pubill, Carme; Arraiza, Nuria; Martinez, Begonya; Garcia-Pelaez, Beatriz; Serrano, Teresa; Puig, Xavier

    2015-09-01

    The coexpression of HER2 and EGFR L858R in a solitary nodule removed from the lung, whose mutation was not confirmed by molecular techniques, made us think about the possible existence of a cross-reaction between HER2 and the EGFR L858R-specific antibody. Our study was designed to further analyze the existence of this cross-reaction and stress the need to exclude a metastatic breast cancer when dealing with EGFR L858R-positive cases. The series consists of 42 primary breast carcinomas, 22 HER2 positive for overexpression and amplification, and 20 negative for both. EGFR mutations were studied by immunohistochemistry and confirmed using real-time PCR when positive. Immunohistochemistry assay with EGFR L858R was positive in 19 (86%) of the HER2-positive breast carcinomas and negative in all HER2-negative carcinomas. The EGFR L858R antibody gives false-positive results in most of the breast carcinomas with HER2 overexpression/amplification. As a consequence, it is essential to confirm any EGFR L858R-positive cases by molecular methods or at least discard the presence of HER2 overexpression/amplification before rendering a diagnosis. It is also important to consider that HER2 has been described in other carcinomas such as urothelial, gastric or ovarian, as well as lung, although infrequently.

  9. Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus

    PubMed Central

    Lalić, J; Elena, S F

    2012-01-01

    How epistatic interactions between mutations determine the genetic architecture of fitness is of central importance in evolution. The study of epistasis is particularly interesting for RNA viruses because of their genomic compactness, lack of genetic redundancy, and apparent low complexity. Moreover, interactions between mutations in viral genomes determine traits such as resistance to antiviral drugs, virulence and host range. In this study we generated 53 Tobacco etch potyvirus genotypes carrying pairs of single-nucleotide substitutions and measured their separated and combined deleterious fitness effects. We found that up to 38% of pairs had significant epistasis for fitness, including both positive and negative deviations from the null hypothesis of multiplicative effects. Interestingly, the sign of epistasis was correlated with viral protein–protein interactions in a model network, being predominantly positive between linked pairs of proteins and negative between unlinked ones. Furthermore, 55% of significant interactions were cases of reciprocal sign epistasis (RSE), indicating that adaptive landscapes for RNA viruses maybe highly rugged. Finally, we found that the magnitude of epistasis correlated negatively with the average effect of mutations. Overall, our results are in good agreement to those previously reported for other viruses and further consolidate the view that positive epistasis is the norm for small and compact genomes that lack genetic robustness. PMID:22491062

  10. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer

    PubMed Central

    Reinert, Tomas; Saad, Everardo D.; Barrios, Carlos H.; Bines, José

    2017-01-01

    Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress. PMID:28361033

  11. Mutations in Mgi Genes Convert Kluyveromyces Lactis into a Petite-Positive Yeast

    PubMed Central

    Chen, X. J.; Clark-Walker, G. D.

    1993-01-01

    Following targeted disruption of the unique CYC1 gene, the petite-negative yeast, Kluyveromyces lactis, was found to grow fermentatively in the absence of cytochrome c-mediated respiration. This observation encouraged us to seek mitochondrial mutants by treatment of K. lactis with ethidium bromide at the highest concentration permitting survival. By this technique, we isolated four mtDNA mutants, three lacking mtDNA and one with a deleted mitochondrial genome. In the three isolates lacking mtDNA, a nuclear mutation is present that permits petite formation. The three mutations occur at two different loci, designated MGI1 and MGI2 (for Mitochondrial Genome Integrity). The mgi mutations convert K. lactis into a petite-positive yeast. Like bakers' yeast, the mgi mutants spontaneously produce petites with deletions in mtDNA and lose this genome at high frequency on treatment with ethidium bromide. We suggest that the MGI gene products are required for maintaining the integrity of the mitochondrial genome and that, petite-positive yeasts may be naturally altered in one or other of these genes. PMID:8454202

  12. Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome.

    PubMed

    Ponti, G; Castellsagué, E; Ruini, C; Percesepe, A; Tomasi, A

    2015-06-01

    Founder mutations in specific populations are common in several Mendelian disorders. They are shared by apparently unrelated families that inherited them from a common ancestor that existed hundreds to thousands of years ago. They have been proven to impact in molecular diagnostics strategies in specific populations, where they can be assessed as the first screening step and, if positive, avoid further expensive gene scanning. In Lynch syndrome (LS), a dominantly inherited colorectal cancer disease, more than 50 founder pathogenic mutations have been described so far in the mismatch repair (MMR) genes (MLH1, MSH2, MSH6 and PMS2). We here provide a comprehensive summary of the founder mutations found in the MMR genes and an overview of their main characteristics. At a time when high-throughput strategies are being introduced in the molecular diagnostics of cancer, genetic testing for founder mutations can complement next generation sequencing (NGS) technologies to most efficiently identify MMR gene mutations in any given population. Additionally, special attention is paid to MMR founder mutations with interesting anthropological significance. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Lack of positive allosteric modulation of mutated alpha(1)S267I glycine receptors by cannabinoids.

    PubMed

    Foadi, Nilufar; Leuwer, Martin; Demir, Reyhan; Dengler, Reinhard; Buchholz, Vanessa; de la Roche, Jeanne; Karst, Matthias; Haeseler, Gertrud; Ahrens, Jörg

    2010-05-01

    Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Ajulemic acid and HU210 are non-psychotropic, synthetic cannabinoids. Cannabidiol is a non-psychotropic plant constituent of cannabis sativa. There are hints that non-cannabinoid receptor mechanisms of these cannabinoids might be mediated via glycine receptors. In this study, we investigated the impact of the amino acid residue serine at position 267 on the glycine-modulatory effects of ajulemic acid, cannabidiol and HU210. Mutated alpha(1)S267I glycine receptors transiently expressed in HEK293 cells were studied by utilising the whole-cell clamp technique. The mutation of the alpha(1) subunit TM2 serine residue to isoleucine abolished the co-activation and the direct activation of the glycine receptor by the investigated cannabinoids. The nature of the TM2 (267) residue of the glycine alpha(1) subunit is crucial for the glycine-modulatory effect of ajulemic acid, cannabidiol and HU210. An investigation of the impact of such mutations on the in vivo interaction of cannabinoids with glycine receptors should permit a better understanding of the molecular determinants of action of cannabinoids.

  14. LYN-activating mutations mediate antiestrogen resistance in estrogen receptor–positive breast cancer

    PubMed Central

    Schwarz, Luis J.; Fox, Emily M.; Balko, Justin M.; Garrett, Joan T.; Kuba, María Gabriela; Estrada, Mónica Valeria; González-Angulo, Ana María; Mills, Gordon B.; Red-Brewer, Monica; Mayer, Ingrid A.; Abramson, Vandana; Rizzo, Monica; Kelley, Mark C.; Meszoely, Ingrid M.; Arteaga, Carlos L.

    2014-01-01

    Estrogen receptor–positive (ER+) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER+ tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER+ breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER+ LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYND189Y has higher catalytic activity than WT protein. Further, LYND189Y exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYNWT. Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYND189Y overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER+ breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER+ xenografts but not LYND189Y-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER+ breast cancers. PMID:25401474

  15. Survey of unaffected BRCA and mismatch repair (MMR) mutation positive individuals

    PubMed Central

    Banks, Kimberly C.; Skelly, Joan; Kohlmann, Wendy; Bennett, Robin; Shannon, Kristen; Larson-Haidle, Joy; Ashakaga, Taka; Weitzel, Jeffrey N.; Wood, Marie

    2012-01-01

    Many individuals do not proceed with cancer predisposition testing due to fears of genetic discrimination (GD). We report the results of a survey of 47 unaffected, mutation positive individuals regarding insurance outcomes. Participants recruited from six different Cancer Risk Programs across the country were queried about their experiences with health, life, and disability insurance, as well as employment issues. Eighty-seven percent of participants carried a BRCA mutation and 87% were part of a group insurance plan at the time of testing. Forty-seven percent of participants self-paid for testing. Less than 10% of participants reported that their results were placed in the general medical record, while 43% did not know where their results were placed. Due to concerns about GD, 13% of participants stated they avoided changing jobs. Thirteen percent stated that their at-risk relatives had not undergone testing for the familial mutation due to fears about GD. Adverse events following genetic testing included two denials from private health insurers, one denial for average life insurance coverage and one denial for additional disability insurance. There were no reports of job discrimination. Results suggest fear of GD is prevalent, yet data do not support evidence that GD exists. PMID:19466581

  16. High Incidence of Germline BRCA Mutation in Patients with ER low positive/PR low positive/HER-2 neu negative Tumors

    PubMed Central

    Sanford, Rachel Ann; Song, Juhee; Gutierrez-Barrera, Angelica M.; Profato, Jessica; Woodson, Ashley; Litton, Jennifer Keating; Bedrosian, Isabelle; Albarracin, Constance T.; Valero, Vicente; Arun, Banu

    2016-01-01

    Purpose 2015 NCCN guidelines recommend genetic counseling and germline BRCA mutation testing be offered to women under age 60 with triple negative breast cancer (TNBC). As a result of the 2010 ASCO/CAP guidelines in breast cancer, patients with breast cancers that are ER or PR low-positive (1–9% on immunohistochemistry) are no longer strictly considered to have TNBC and may not be referred for genetic counseling. However, the incidence of BRCA mutation in patients with hormone receptor (HR) low-positive breast cancers remains unknown, and current ASCO/CAP guidelines may result in under-testing for BRCA mutation. Methods We reviewed a prospectively maintained research database of breast cancer patients evaluated at UT MD Anderson Cancer Center between 2004 and 2014, identifying 314 patients with ER<10%, PR<10%, HER-2 neu negative breast cancers with known BRCA mutation status. Results 314 patients had breast cancers expressing ER and PR <10%; 238 (75.8%) had HR negative (ER and PR <1%) cancers and 76 (24.2%) had HR low-positive (ER and/or PR 1–9%) cancers. Among patients with HR negative tumors, 86 of 238 (36.1%) had a BRCA 1/2 mutation, while among the HR low-positive group, 30 of 76 (39.5%) had a BRCA 1/2 mutation. In multivariate analysis, HR status (HR<1% vs. HR 1–9%) was not significantly associated with BRCA 1/2 mutation. Conclusion The incidence of BRCA 1/2 mutation is similar in patients with HR low-positive and HR negative breast cancers. We recommend offering genetic counseling and BRCA testing to patients under age 60 with ER low-positive breast cancers. PMID:26280679

  17. OSPREY Predicts Resistance Mutations using Positive and Negative Computational Protein Design

    PubMed Central

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M.; Georgiev, Ivelin; Anderson, Amy C.; Donald, Bruce R.

    2016-01-01

    Summary Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (1), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme’s catalytic function but selectively ablate binding of an inhibitor. PMID:27914058

  18. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.

    PubMed

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M; Georgiev, Ivelin; Anderson, Amy C; Donald, Bruce R

    2017-01-01

    Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749-754, 2015), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme's catalytic function but selectively ablate binding of an inhibitor.

  19. Excess positional mutual information predicts both local and allosteric mutations affecting beta lactamase drug resistance.

    PubMed

    Cortina, George A; Kasson, Peter M

    2016-11-15

    Bacterial resistance to antibiotics, particularly plasmid-encoded resistance to beta lactam drugs, poses an increasing threat to human health. Point mutations to beta-lactamase enzymes can greatly alter the level of resistance conferred, but predicting the effects of such mutations has been challenging due to the large combinatorial space involved and the subtle relationships of distant residues to catalytic function. Therefore we desire an information-theoretic metric to sensitively and robustly detect both local and distant residues that affect substrate conformation and catalytic activity. Here, we report the use of positional mutual information in multiple microsecond-length molecular dynamics (MD) simulations to predict residues linked to catalytic activity of the CTX-M9 beta lactamase. We find that motions of the bound drug are relatively isolated from motions of the protein as a whole, which we interpret in the context of prior theories of catalysis. In order to robustly identify residues that are weakly coupled to drug motions but nonetheless affect catalysis, we utilize an excess mutual information metric. We predict 31 such residues for the cephalosporin antibiotic cefotaxime. Nine of these have previously been tested experimentally, and all decrease both enzyme rate constants and empirical drug resistance. We prospectively validate our method by testing eight high-scoring mutations and eight low-scoring controls in bacteria. Six of eight predicted mutations decrease cefotaxime resistance greater than 2-fold, while only one control shows such an effect. The ability to prospectively predict new variants affecting bacterial drug resistance is of great interest to clinical and epidemiological surveillance. Excess mutual information code is available at https://github.com/kassonlab/positionalmi CONTACT: kasson@virginia.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency.

    PubMed Central

    Ito-Harashima, Sayoko; Hartzog, Phillip E; Sinha, Himanshu; McCusker, John H

    2002-01-01

    Extensive phenotypic diversity or variation exists in clonal populations of microorganisms and is thought to play a role in adaptation to novel environments. This phenotypic variation or instability, which occurs by multiple mechanisms, may be a form of cellular differentiation and a stochastic means for modulating gene expression. This work dissects a case of phenotypic variation in a clinically derived Saccharomyces cerevisiae strain involving a cox15 ochre mutation, which acts as a reporter. The ochre mutation reverts to sense at a low frequency while tRNA-Tyr ochre suppressors (SUP-o) arise at a very high frequency to produce this phenotypic variation. The SUP-o mutations are highly pleiotropic. In addition, although all SUP-o mutations within the eight-member tRNA-Tyr gene family suppress the ochre mutation reporter, there are considerable phenotypic differences among the different SUP-o mutants. Finally, and of particular interest, there is a strong position effect on mutation frequency within the eight-member tRNA-Tyr gene family, with one locus, SUP6, mutating at a much higher than average frequency and two other loci, SUP2 and SUP8, mutating at much lower than average frequencies. Mechanisms for the position effect on mutation frequency are evaluated. PMID:12196388

  1. Screening for germline mutations in mismatch repair genes in patients with Lynch syndrome by next generation sequencing.

    PubMed

    Soares, Barbara Luísa; Brant, Ayslan Castro; Gomes, Renan; Pastor, Tatiane; Schneider, Naye Balzan; Ribeiro-Dos-Santos, Ândrea; de Assumpção, Paulo Pimentel; Achatz, Maria Isabel W; Ashton-Prolla, Patrícia; Moreira, Miguel Angelo Martins

    2017-09-20

    Lynch syndrome (LS) is an autosomal dominant disorder, with high penetrance that affects approximately 3% of the cases of colorectal cancer. Affected individuals inherit germline mutations in genes responsible for DNA mismatch repair, mainly at MSH2, MLH1, MSH6 and PMS2. The molecular screening of these individuals is frequently costly and time consuming due to the large size of these genes. In addition, PMS2 mutation detection is often a challenge because there are 16 different pseudogenes identified until now. In the present work we evaluate a molecular screening strategy based in next generation sequencing (NGS) in order to optimize the mutation detection in LS patients. We established 16 multiplex PCRs for MSH2, MSH6 and MLH1 and 5 Long-Range PCRs for PMS2, coupled with NGS. The strategy was validated by screening 66 patients who filled Bethesda and Amsterdam criteria for LS from health institutions of Brazil. The mean depth of coverage for MSH2, MSH6, MLH1 and PMS2 genes was 7.988, 36.313, 11.899 and 4.772 times, respectively. Ninety-four variants were found in exons and flanking intron/exon regions for the four MMR genes. Twenty-five were pathogenic or VUS and found in 32 patients (7 in MSH2, 5 in MSH6, 12 in MLH1 e 1 in PMS2). All variants were confirmed by Sanger sequencing. The strategy was efficient to reduce time consuming and costs to identify genetic changes at these MMR genes, reducing in three times the number of PCR reactions performed per patient and was efficient in identifying variants at PMS2 gene.

  2. Allogeneic Transplant in ELANE and MEFV Mutation Positive Severe Cyclic Neutropenia: Review of Prognostic Factors for Secondary Severe Events

    PubMed Central

    2017-01-01

    Objective and Importance. Cyclic neutropenia (CyN) is a rare autosomal dominant inherited disorder due to the mutation ELANE primarily affecting bone marrow stem cells and is characterized by recurrent neutropenia every 2 to 4 weeks. Symptoms vary from benign to severe, including death. Postulations on the cause of wide spectrum in symptom presentation include the possibility of other genetic mutations, such as MEFV. Recommended treatment for CyN is G-CSF to keep ANC higher to minimize risk of infection. Case. A 25-year-old male diagnosed with CyN, on G-CSF but worsening quality of life. Pretransplant investigations revealed ELANE mutation positive severe CyN along with familial Mediterranean fever (MEFV) mutation. Intervention. Bone marrow transplantation as treatment for dual mutation (ELANE and MEFV mutation) positive severe CyN. Conclusion. BMT may be considered as an alternative treatment for severe CyN in patients who are refractory to G-CSF. It is postulated that in our patient the combined mutations (CyN and MEFV) may have contributed to the severity of this individual's symptoms. We suggest CyN patients who present with severe symptoms have evaluation with ELANE mutation testing, Periodic Fever Syndromes Panel, and routine marrow assessment with FISH, conventional cytogenetics, and morphological evaluation for MDS/AML. PMID:28197346

  3. Development of positive control materials for DNA-based detection of cystic fibrosis: Cloning and sequencing of 31 mutations

    SciTech Connect

    Iovannisci, D.; Brown, C.; Winn-Deen, E.

    1994-09-01

    The cloning and sequencing of the gene associated with cystic fibrosis (CF) now provides the opportunity for earlier detection and carrier screening through DNA-based detection schemes. To date, over 300 mutations have been reported to the CF Consortium; however, only 30 mutations have been observed frequently enough world-wide to warrant routine screening. Many of these mutations are not available as cloned material or as established tissue culture cell lines to aid in the development of DNA-based detection assays. We have therefore cloned the 30 most frequently reported mutations, plus the mutation R347H due to its association with male infertility (31 mutations, total). Two approaches were employed: direct PCR amplification, where mutations were available from patient sources, and site-directed PCR mutagenesis of normal genomic DNA to generate the remaining mutations. After amplification, products were cloned into a sequencing vector, bacterial transformants were screened by a novel method (PCR/oligonucleotide litigation assay/sequence-coded separation), and plamid DNA sequences determined by automated fluorescent methods on the Applied Biosystems 373A. Mixing of the clones allows the construction of artificial genotypes useful as positive control material for assay validation. A second round of mutagenesis, resulting in the construction of plasmids bearing multiple mutations, will be evaluated for their utility as reagent control materials in kit development.

  4. Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate

    PubMed Central

    Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou

    2017-01-01

    Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259

  5. Positive fragile X microsatellite associations point to a common mechanism of dynamic mutation evolution

    SciTech Connect

    Brown, W.T.; Zhong, N.; Dobkin, C.

    1996-03-01

    We recently reported that the size of fragile X gene (FMR1) triplet repeats and two nearby microsatellites show positive allele-size associations. The larger alleles of microsatellite DXS548, located {approximately}150 kb proximal to the FMR1 CGG repeat, and of FRAXAC1 (AC1), located 7 kb proximal to the FMR1 CGG repeat, tend to occur together, and smaller alleles also tend to occur together. Also, fragile X chromosomes are more commonly found on the larger combined microsatellite-allele haplotypes. We now have extended these observations to include two other nearby repeats, FRAXAC2 (AC2), a complex three-part polymorphism located 12 kb distal, and the FRAXE triplet repeat, located 600 kb distal. We divided the chromosomes into controls with FMR1 repeats of <60 and fragile X chromosomes with repeats {>=}60, since FMR1 alleles with repeats {>=}60 show high intergenerational instability. In the 133 controls, previously analyzed for AGG interspersions, and in 119 fragile X chromosomes, we found that these repeats show nonrandom size associations. To describe this numerically, we calculated correlation coefficients for the repeat lengths. These repeats showed significantly positive correlations with each other. Although FRAXE alleles showed no correlation with the control repeats, they did have positive correlations with fragile X chromosome microsatellites (AC1 and AC2 but not DXS548), which may reflect the larger recombinational distances involved and the possibly more recent origin of the fragile X mutations. The correlations tended to be higher for the number of 3{prime} pure CGGs than for total FMR1 repeats in controls. These findings strengthen our hypothesis that there may be a common underlying mutational mechanism that simultaneously affects these repeat loci. 13 refs., 1 tab.

  6. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations.

    PubMed

    Levin, Liron; Blumberg, Amit; Barshad, Gilad; Mishmar, Dan

    2014-01-01

    Most cell functions are carried out by interacting factors, thus underlying the functional importance of genetic interactions between genes, termed epistasis. Epistasis could be under strong selective pressures especially in conditions where the mutation rate of one of the interacting partners notably differs from the other. Accordingly, the order of magnitude higher mitochondrial DNA (mtDNA) mutation rate as compared to the nuclear DNA (nDNA) of all tested animals, should influence systems involving mitochondrial-nuclear (mito-nuclear) interactions. Such is the case of the energy producing oxidative phosphorylation (OXPHOS) and mitochondrial translational machineries which are comprised of factors encoded by both the mtDNA and the nDNA. Additionally, the mitochondrial RNA transcription and mtDNA replication systems are operated by nDNA-encoded proteins that bind mtDNA regulatory elements. As these systems are central to cell life there is strong selection toward mito-nuclear co-evolution to maintain their function. However, it is unclear whether (A) mito-nuclear co-evolution befalls only to retain mitochondrial functions during evolution or, also, (B) serves as an adaptive tool to adjust for the evolving energetic demands as species' complexity increases. As the first step to answer these questions we discuss evidence of both negative and adaptive (positive) selection acting on the mtDNA and nDNA-encoded genes and the effect of both types of selection on mito-nuclear interacting factors. Emphasis is given to the crucial role of recurrent ancient (nodal) mutations in such selective events. We apply this point-of-view to the three available types of mito-nuclear co-evolution: protein-protein (within the OXPHOS system), protein-RNA (mainly within the mitochondrial ribosome), and protein-DNA (at the mitochondrial replication and transcription machineries).

  7. LYN-activating mutations mediate antiestrogen resistance in estrogen receptor-positive breast cancer.

    PubMed

    Schwarz, Luis J; Fox, Emily M; Balko, Justin M; Garrett, Joan T; Kuba, María Gabriela; Estrada, Mónica Valeria; González-Angulo, Ana María; Mills, Gordon B; Red-Brewer, Monica; Mayer, Ingrid A; Abramson, Vandana; Rizzo, Monica; Kelley, Mark C; Meszoely, Ingrid M; Arteaga, Carlos L

    2014-12-01

    Estrogen receptor-positive (ER(+)) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER(+) tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER(+) breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER(+) LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYN(D189Y) has higher catalytic activity than WT protein. Further, LYN(D189Y) exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYN(WT). Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYN(D189Y) overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER(+) breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER(+) xenografts but not LYN(D189Y)-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER(+) breast cancers.

  8. Dermatologic Findings in 61 Mutation-Positive Individuals with Cardio-facio-cutaneous Syndrome

    PubMed Central

    Siegel, D.H.; McKenzie, J.; Frieden, I.J.; Rauen, K.A.

    2010-01-01

    Background The RASopathies are a class of human genetic syndromes that are caused by germline mutations in genes which encode components of the Ras/MAPK pathway. Cardio-facio-cutaneous (CFC) syndrome is characterized by distinctive craniofacial features, congenital heart defects, and abnormalities of the skin and hair. Objective To systematically characterize the spectrum of dermatologic findings in mutation-positive individuals with cardio-facio-cutaneous (CFC) syndrome. Methods Dermatologic surveys were designed by the authors and distributed to the study participants through CFC International or directly by the authors (KAR and DHS) between July 2006 and August 2009. A second follow up survey was collected between December 2007 and August 2009. When available, digital images and medical records of the participants were obtained. Study participants included individuals with CFC who have a mutation in BRAF, MEK1, MEK2 or KRAS. Results Individuals with CFC have a variety of dermatologic manifestations caused by dysregulation of the mitogen-activated protein kinase pathway in development. Numerous acquired melanocytic nevi were one of the most striking features; greater than 50 nevi were reported by 23 % (14/61) of participants and of those, greater than 100 nevi were reported by 36% (5/14). Keratosis pilaris was reported in 80% (49/61) of cases. Ulerythema ophryogenes was common occurring in 55/61 (90%). Infantile hemangiomas occurred at a greater frequency, 26% (16/61), as compared to the general population. Conclusions CFC syndrome has a complex dermatologic phenotype with many cutaneous features, some of which allow it to be differentiated from the other Ras/MAPK pathway syndromes. Multiple café au lait macules and papillomata were not identified in this CFC cohort helping to distinguish CFC from other RASopathies, such as neurofibromatosis type 1 and Costello syndrome. PMID:21062266

  9. Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation.

    PubMed

    Kostova, Zlatka; Wolf, Dieter H

    2005-04-01

    In the endoplasmic reticulum (ER), N-linked glycans (N-glycans) function as signals to recruit the lectin chaperones involved in protein folding, quality control and ER-associated degradation. We undertook a systematic study of the four N-glycans of mutated carboxypeptidase yscY (CPY*) to determine whether there are positional differences between the glycans in ER-associated degradation. We constructed hypoglycosylated CPY* variants containing one, two or three N-glycans in various combinations and studied their degradation kinetics. We found that the four carbohydrate chains on CPY* are not equal in their signaling function: presence of the Asn368-linked glycan is necessary and sufficient for efficient degradation of CPY*. We also analysed the involvement of the ER lectins Htm1p and Cne1p (yeast calnexin) in the glycan-based recognition process with respect to number and position of N-glycans. We observed that Htm1p function depends on the presence of N-glycans in general but that there is no positional preference for a particular glycan. Cne1p, however, is selective with respect to substrate, and participates in the quality control only of some underglycosylated variants. For cases in which both lectins are involved, Cne1p and Htm1p play competing roles in targeting the substrate for degradation: loss of Cne1p accelerates degradation, whereas loss of Htm1p stabilizes the substrate.

  10. Secretion-Positive LGI1 Mutations Linked to Lateral Temporal Epilepsy Impair Binding to ADAM22 and ADAM23 Receptors

    PubMed Central

    Dazzo, Emanuela; Belluzzi, Elisa; Malacrida, Sandro; Vitiello, Libero; Greggio, Elisa; Tosatto, Silvio C. E.

    2016-01-01

    Autosomal dominant lateral temporal epilepsy (ADTLE) is a focal epilepsy syndrome caused by mutations in the LGI1 gene, which encodes a secreted protein. Most ADLTE-causing mutations inhibit LGI1 protein secretion, and only a few secretion-positive missense mutations have been reported. Here we describe the effects of four disease-causing nonsynonymous LGI1 mutations, T380A, R407C, S473L, and R474Q, on protein secretion and extracellular interactions. Expression of LGI1 mutant proteins in cultured cells shows that these mutations do not inhibit protein secretion. This finding likely results from the lack of effects of these mutations on LGI1 protein folding, as suggested by 3D protein modelling. In addition, immunofluorescence and co-immunoprecipitation experiments reveal that all four mutations significantly impair interaction of LGI1 with the ADAM22 and ADAM23 receptors on the cell surface. These results support the existence of a second mechanism, alternative to inhibition of protein secretion, by which ADLTE-causing LGI1 mutations exert their loss-of-function effect extracellularly, and suggest that interactions of LGI1 with both ADAM22 and ADAM23 play an important role in the molecular mechanisms leading to ADLTE. PMID:27760137

  11. High incidence of germline BRCA mutation in patients with ER low-positive/PR low-positive/HER-2 neu negative tumors.

    PubMed

    Sanford, Rachel A; Song, Juhee; Gutierrez-Barrera, Angelica M; Profato, Jessica; Woodson, Ashley; Litton, Jennifer Keating; Bedrosian, Isabelle; Albarracin, Constance T; Valero, Vicente; Arun, Banu

    2015-10-01

    The 2015 National Comprehensive Cancer Network guidelines recommend that genetic counseling and germline BRCA mutation testing be offered to women under age 60 with triple-negative breast cancer (TNBC). As a result of the 2010 American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines for breast cancer, patients with breast cancers that are estrogen receptor (ER) or progesterone receptor (PR) low-positive (1%-9% on immunohistochemistry) are no longer strictly considered to have TNBC and may not be referred for genetic counseling. However, the incidence of BRCA mutation in patients with hormone receptor (HR) low-positive breast cancers remains unknown, and current ASCO/CAP guidelines may result in undertesting for BRCA mutations. A prospectively maintained research database of breast cancer patients evaluated at The University of Texas MD Anderson Cancer Center between 2004 and 2014 was reviewed; 314 patients were identified with HER2/neu-negative breast cancers expressing ER and PR <10% with known BRCA mutation status. Three hundred fourteen patients had breast cancers expressing ER and PR <10%; 238 (75.8%) had HR-negative cancers (<1% ER and PR), and 76 (24.2%) had HR-low-positive cancers (1%-9% ER and/or PR). Among patients with HR-negative tumors, 86 of 238 (36.1%) had a BRCA1/2 mutation, whereas in the HR-low-positive group, 30 of 76 (39.5%) had a BRCA1/2 mutation. In multivariate analysis, HR status (<1% vs 1%-9%) was not significantly associated with BRCA1/2 mutations. The incidence of BRCA1/2 mutations is similar in patients with HR-low-positive breast cancer and patients with HR-negative breast cancer. Genetic counseling and BRCA testing should be offered to patients under age 60 who have HR-low-positive breast cancers. Cancer 2015;121:3435-43. © 2015 American Cancer Society. © 2015 American Cancer Society.

  12. Positive selection during the evolution of the blood coagulation factors in the context of their disease-causing mutations.

    PubMed

    Rallapalli, Pavithra M; Orengo, Christine A; Studer, Romain A; Perkins, Stephen J

    2014-11-01

    Blood coagulation occurs through a cascade of enzymes and cofactors that produces a fibrin clot, while otherwise maintaining hemostasis. The 11 human coagulation factors (FG, FII-FXIII) have been identified across all vertebrates, suggesting that they emerged with the first vertebrates around 500 Ma. Human FVIII, FIX, and FXI are associated with thousands of disease-causing mutations. Here, we evaluated the strength of selective pressures on the 14 genes coding for the 11 factors during vertebrate evolution, and compared these with human mutations in FVIII, FIX, and FXI. Positive selection was identified for fibrinogen (FG), FIII, FVIII, FIX, and FX in the mammalian Primates and Laurasiatheria and the Sauropsida (reptiles and birds). This showed that the coagulation system in vertebrates was under strong selective pressures, perhaps to adapt against blood-invading pathogens. The comparison of these results with disease-causing mutations reported in FVIII, FIX, and FXI showed that the number of disease-causing mutations, and the probability of positive selection were inversely related to each other. It was concluded that when a site was under positive selection, it was less likely to be associated with disease-causing mutations. In contrast, sites under negative selection were more likely to be associated with disease-causing mutations and be destabilizing. A residue-by-residue comparison of the FVIII, FIX, and FXI sequence alignments confirmed this. This improved understanding of evolutionary changes in FVIII, FIX, and FXI provided greater insight into disease-causing mutations, and better assessments of the codon sites that may be mutated in applications of gene therapy.

  13. Positive Selection during the Evolution of the Blood Coagulation Factors in the Context of Their Disease-Causing Mutations

    PubMed Central

    Rallapalli, Pavithra M.; Orengo, Christine A.; Studer, Romain A.; Perkins, Stephen J.

    2014-01-01

    Blood coagulation occurs through a cascade of enzymes and cofactors that produces a fibrin clot, while otherwise maintaining hemostasis. The 11 human coagulation factors (FG, FII–FXIII) have been identified across all vertebrates, suggesting that they emerged with the first vertebrates around 500 Ma. Human FVIII, FIX, and FXI are associated with thousands of disease-causing mutations. Here, we evaluated the strength of selective pressures on the 14 genes coding for the 11 factors during vertebrate evolution, and compared these with human mutations in FVIII, FIX, and FXI. Positive selection was identified for fibrinogen (FG), FIII, FVIII, FIX, and FX in the mammalian Primates and Laurasiatheria and the Sauropsida (reptiles and birds). This showed that the coagulation system in vertebrates was under strong selective pressures, perhaps to adapt against blood-invading pathogens. The comparison of these results with disease-causing mutations reported in FVIII, FIX, and FXI showed that the number of disease-causing mutations, and the probability of positive selection were inversely related to each other. It was concluded that when a site was under positive selection, it was less likely to be associated with disease-causing mutations. In contrast, sites under negative selection were more likely to be associated with disease-causing mutations and be destabilizing. A residue-by-residue comparison of the FVIII, FIX, and FXI sequence alignments confirmed this. This improved understanding of evolutionary changes in FVIII, FIX, and FXI provided greater insight into disease-causing mutations, and better assessments of the codon sites that may be mutated in applications of gene therapy. PMID:25158795

  14. Positional cloning of Kreisler, a mutation that causes deafness and segmentation abnormalities in mice

    SciTech Connect

    Cordes, S.P.; Barsh, G.S.

    1994-09-01

    The identification and analysis of mouse deafness mutations is of great interest to human geneticists, not only because deafness is a common problem in clinical genetics, but also because the molecular mechanisms leading to deafness can underly fundamental aspects of mammalian development. Approximately 10 to 20 genes when mutated can lead to deafness in mice or in humans, but none have yet been identified at the molecular level. In mice homozygous for the kreisler (kr) mutation, abnormal development of the hindbrain and otic vesicle leads to neurosensory deafness and loss of vestibular function. Using the techniques of positional cloning combined with ENU mutagenesis, we have now cloned the kr gene and find that it predicts a transcription factor whose absence leads to defects in Hox gene expression and hindbrain segmentation. We used a backcross between different strains of laboratory mice to sublocalize kr on the meiotic map close to the Src gene on mouse chromosome 2. A probe from the Src gene detected high molecular weight restriction fragments of altered size in kr/kr DNA, suggesting that kr was due to a chromosomal rearrangement. Based on the meiotic map location of kr{sup ENU}, a new kr allele that we generated by ENU mutagenesis, cDNAs were selected from 8.5 day mouse embryos using genomic clones that spanned the distal inversion breakpoint. One cDNA that predicted a basic domain leucine zipper (bZIP) transcription factor was found to be expressed in the caudal hindbrain, and was confirmed to encode the kr gene by analysis of the kr{sup ENU} allele, in which a Ser was substituted for an Asn residue conserved in the DNA binding domain of all known bZip family members. kr is not expressed in the otic vesicle, suggesting that abnormal otic development is a consequence of defects in hindbrain segmentation. kr is the first mammalian deafness gene to be isolated, and should provide insights into embryologic mechanisms that underly hindbrain and otic development.

  15. Familial hyperproinsulinaemia due to a mutation substituting histidine for arginine at position 65 in proinsulin: identification of the mutation by restriction enzyme mapping.

    PubMed

    Collinet, M; Berthelon, M; Bénit, P; Laborde, K; Desbuquois, B; Munnich, A; Robert, J J

    1998-06-01

    Familial hyperproinsulinaemia is a rare genetic disorder characterized by point mutations in the insulin gene which impair the conversion of proinsulin to insulin. We report here three members of a two-generation Caucasian family in whom this syndrome was identified by unexplained hyperinsulinism associated with normal glucose tolerance and normal insulin sensitivity. Plasma insulin immunoreactivity showed a reduced affinity for the insulin receptor and eluted mainly, on Biogel chromatography, at the position of proinsulin. Analysis of the PCR-amplified insulin gene by restriction enzyme mapping revealed a new recognition site for the enzyme Nla III, indicating a Arg65 to His mutation. Sequence analysis of exon 3 confirmed this mutation in one allele of the gene. This study reports a two-generation European-Caucasian family with hyperproinsulinaemia due to a substitution of His for Arg at position 65 in proinsulin, the seventh now identified worldwide and the second from Europe. The mutation generated a new restriction site on the insulin gene suggesting the usefulness of restriction enzyme mapping as a screening procedure.

  16. Drug response to HER2 gatekeeper T798M mutation in HER2-positive breast cancer.

    PubMed

    Meng, Xuli; Li, Yongfeng; Tang, Hongchao; Mao, Weimin; Yang, Hongjian; Wang, Xiaojia; Ding, Xianfeng; Xie, Shangnao

    2016-02-01

    The gatekeeper T798M mutation in HER2 kinase domain has been observed to considerably shift drug sensitivity to HER2 in breast cancer therapy. Here, drug response of clinical tyrosine kinase inhibitors (TKIs) to the mutation was profiled using a synthetic biology protocol. It was found that TKIs can be grouped into three classes in terms of their response behavior to T798M mutation: class I inhibitors exhibit drug resistance upon the mutation, such as lapatinib, TAK-285 and AEE788; class II inhibitors are insensitive to the mutation, such as erlotinib and gefitinib; and class III inhibitors can be sensitized by the mutation, such as staurosporine. However, kinetic study indicated that the mutation has only a modest effect on the binding of substrate ATP to HER2. Binding free energy analysis revealed that the drug response is primarily determined by direct interaction between the kinase and inhibitors, but not by indirect kinase interaction with competitive ATP. This is different to the molecular mechanism of "generic" drug resistance conferring from EGFR gatekeeper T790M mutation, which is caused by increased ATP affinity upon the mutation. Structural analysis of kinase-inhibitor complexes unraveled that HER2 T798M mutation induces significant steric hindrance to class I inhibitors, but can establish additional nonbonded interactions for class III inhibitors.

  17. Microfluidic Deletion/Insertion Analysis for Rapid Screening of KIT and PDGFRA Mutations in CD117-Positive Gastrointestinal Stromal Tumors

    PubMed Central

    Zamò, Alberto; Bertolaso, Anna; Franceschetti, Ilaria; Weirich, Gregor; Capelli, Paola; Pecori, Sara; Chilosi, Marco; Hoefler, Heinz; Menestrina, Fabio; Scarpa, Aldo

    2007-01-01

    Gastrointestinal stromal tumors (GISTs) frequently harbor mutations in the KIT and PDGFRA genes, the presence and type of which correlate with the response to the kinase inhibitor imatinib mesylate. Because most GIST mutations are deletions/insertions, we used a microfluidic apparatus to detect these size variations in polymerase chain reaction-amplified DNA. This approach, termed microfluidic deletion/insertion analysis (MIDIA), identified mutations in 30 of 50 DNA samples from paraffin-embedded CD117-positive GISTs (60%), comprising 25 deletions and five insertions. Sequencing of 14 MIDIA-positive samples confirmed the deletions/insertions, including two 3-bp alterations. Sequencing of all 20 MIDIA-negative samples also showed highly consistent results with MIDIA because 10 cases were wild type and eight displayed a single base substitution in which detection by MIDIA was not expected. Sequencing also revealed a 3-bp deletion undetected by MIDIA, thus establishing the resolution limit of MIDIA at deletions/insertions ≥3 bp. Denaturing high-pressure liquid chromatography analysis confirmed all mutations detected by MIDIA and sequencing. We propose MIDIA as the first step in mutational screening of GIST because it allowed the detection of 75% of mutated cases (94% of deletions/insertions) in less than 30 minutes after polymerase chain reaction amplification and at a lower cost compared with denaturing high-pressure liquid chromatography and sequencing, which might then be used only for MIDIA-negative cases. PMID:17384206

  18. Cancer Signature Investigation: ERBB2 (HER2)-Activating Mutation and Amplification-Positive Breast Carcinoma Mimicking Lung Primary.

    PubMed

    Shih, Jennifer; Bashir, Babar; Gustafson, Karen S; Andrake, Mark; Dunbrack, Roland L; Goldstein, Lori J; Boumber, Yanis

    2015-08-01

    Next-generation sequencing of primary and metachronous metastatic cancer lesions may impact patient care. We present a case of relapsed metastatic breast cancer with a dominant pulmonary lesion originally identified as lung adenocarcinoma. A 72-year-old, never-smoker woman with a protracted cough was found to have a large lung mass and regional lymphadenopathy on a chest CT. Lung mass biopsy showed adenocarcinoma with focal TTF-1 (thyroid transcription factor 1) positivity, favoring a lung primary. In addition to stereotactic brain radiation for cerebral metastases, she was started on carboplatin/pemetrexed. As part of the workup, the tumor was analyzed by a 50-gene targeted mutation panel, which detected 3 somatic mutations: ERBB2 (HER2) D769H activating missense mutation, TP53 Y126 inactivating truncating mutation, and SMARCB1 R374Q missense mutation. Of note, the patient had a history of stage IIA triple-negative grade 3 invasive ductal carcinoma of the left breast 1.5 years ago and received neoadjuvant chemotherapy and adjuvant radiation, and underwent a lumpectomy. Further analysis of her primary breast tumor showed a mutational profile identical to that of the lung tumor. Fluorescence in situ hybridization revealed HER2 amplification in the lung tumor, with a HER2/CEP17 ratio of 3.9. The patient was diagnosed with recurrent HER2-positive metastatic breast carcinoma with a coexisting ERBB2 (HER2) activating mutation. Chemotherapy was adjusted to include dual HER2-targeted therapy containing trastuzumab and pertuzumab, resulting in an ongoing partial response. This case demonstrates that a unique genetic mutational profile can clarify whether a tumor represents a metastatic lesion or new malignancy when conventional morphological and immunohistochemical methods are indeterminate, and can directly impact treatment decisions.

  19. Elevated Plasma Succinate Among PTEN, SDHB and SDHD Mutation Positive Individuals

    PubMed Central

    Hobert, Judith A.; Mester, Jessica L.; Moline, Jessica; Eng, Charis

    2014-01-01

    Purpose Cowden Syndrome (CS) results from germline mutations in phosphatase and tensin homologue deleted on chromosome ten (PTEN) and from variants in succinate dehydrogenase (SDH) B and D subunits. We hypothesized that succinate accumulation may be common among individuals with SDH variants/mutations and those with PTEN mutations. Methods Urine and blood were collected from individuals meeting full or partial CS diagnostic criteria, those with paraganglioma or a known susceptibility PGL-associated gene mutation and succinate was measured. PTEN, SDHB, SDHC, and SDHD-genes were sequenced from genomic DNA. Results Elevated plasma succinate was observed in 13/21 (62%) individuals with germline PTEN, SDHB or SDHD mutations compared to 5/32 (16%) controls (p<0.001); 10/15 (67%) individuals with pathogenic PTEN mutations, but in <20% of mutation negative individuals meeting identical criteria; and among individuals with mutations in SDHB (1/1, 100%) and SDHD (2/5, 40%). Conclusions Our data suggest that mutations in PTEN, SDHB and SDHD reduce catalytic activity of SDH and result in succinate accumulation and identify a common biochemical alteration between these two patient populations. Plasma organic acid analysis may provide an effective and inexpensive screening method to determine when more expensive gene sequencing of PTEN and SDH-genes is warranted. PMID:22261759

  20. Mutations in the Drosophila melanogaster gene encoding S-adenosylmethionine suppress position-effect variegation

    SciTech Connect

    Larsson, J.; Rasmuson-Lestander, A.; Zhang, Jingpu

    1996-06-01

    In Drosophila melanogaster, the study of trans-acting modifier mutations of position-effect variegation and Polycomb group (Pc-G) genes have been useful tools to investigate genes involved in chromatin structure. We have cloned a modifier gene, Suppressor of zeste 5 (Su(z)5), which encodes S-adenosylmethionine synthetase, and we present here molecular results and data concerning its expression in mutants and genetic interactions. The mutant alleles Su(z)5, l(2)R23 and l(2)M6 show suppression of w{sup m4} and also of two white mutants induced by roo element insertions in the regulatory region i.e., w{sup is} (in combination with z{sup 1}) and w{sup sp1}. Two of the Su(z)5 alleles, as well as a deletion of the gene, also act as enhancers of Polycomb by increasing the size of sex combes on midleg. The results suggest that Su(z)5 is connected with regulation of chromatin structure. The enzyme S-adenosylmethionine synthetase is involved in the synthesis of S-adenosylmethionine, a methyl group donor and also, after decarboxylation, a propylamino group donor in the biosynthesis of polyamines. Our results from HPLC analysis show that in ovaries from heterozygous Su(z)5 mutants the content of spermine is significantly reduced. Results presented here suggest that polyamines are an important molecule class in the regulation of chromatin structure. 50 refs., 5 figs., 3 tabs.

  1. Positional cloning of a gene responsible for the cts mutation of the silkworm, Bombyx mori.

    PubMed

    Ito, Katsuhiko; Kidokoro, Kurako; Katsuma, Susumu; Shimada, Toru; Yamamoto, Kimiko; Mita, Kazuei; Kadono-Okuda, Keiko

    2012-07-01

    The larval head cuticle and anal plates of the silkworm mutant cheek and tail spot (cts) have chocolate-colored spots, unlike the entirely white appearance of the wild-type (WT) strain. We report the identification and characterization of the gene responsible for the cts mutation. Positional cloning revealed a cts candidate on chromosome 16, designated BmMFS, based on the high similarity of the deduced amino acid sequence between the candidate gene from the WT strain and the major facilitator superfamily (MFS) protein. BmMFS likely encodes a membrane protein with 11 putative transmembrane domains, while the putative structure deduced from the cts-type allele possesses only 10-pass transmembrane domains owing to a deletion in its coding region. Quantitative RT-PCR analysis showed that BmMFS mRNA was strongly expressed in the integument of the head and tail, where the cts phenotype is observed; expression markedly increased at the molting and newly ecdysed stages. These results indicate that the novel BmMFS gene is cts and the membrane structure of its protein accounts for the cts phenotype. These expression profiles and the cts phenotype are quite similar to those of melanin-related genes, such as Bmyellow-e and Bm-iAANAT, suggesting that BmMFS is involved in the melanin synthesis pathway.

  2. Pooled analysis of clinical outcome for EGFR TKI-treated patients with EGFR mutation-positive NSCLC.

    PubMed

    Paz-Ares, Luis; Soulières, Denis; Moecks, Joachim; Bara, Ilze; Mok, Tony; Klughammer, Barbara

    2014-08-01

    Patients with non-small-cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation-positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation-positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression-free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6-13.4) for erlotinib-treated patients; 9.4 months (95% AI 9.0-9.8) for gefitinib-treated patients; and 5.6 months (95% AI 5.3-6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time-point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation-positive NSCLC with erlotinib or gefitinib compared with chemotherapy.

  3. EGFR kinase domain mutation positive lung cancers are sensitive to intrapleural perfusion with hyperthermic chemotherapy (IPHC) complete treatment.

    PubMed

    Zhang, Hongjuan; Zhan, Cheng; Ke, Ji; Xue, Zhiqiang; Zhang, Aiqun; Xu, Kaifeng; Shen, Zhirong; Yu, Lei; Chen, Liang

    2016-01-19

    Lung cancer is the global leading cause of cancer-related deaths. A significant portion of lung cancer patients harbor kinase domain mutations in the epidermal growth factor receptor (EGFR). While EGFR tyrosine kinase inhibitors (TKI) effectively shrink tumors harboring mutant EGFR, clinical efficacy is limited by the development of TKI resistance. Effective alternatives are desperately needed in clinic for treating EGFR kinase domain mutation positive lung cancer. In our clinic in treating M1a lung cancer patients through intrapleural perfusion with hyperthermic chemotherapy (IPHC) followed by cycles of systemic chemotherapy (we termed this procedure IPHC complete treatment, IPHC-CT), we found dramatic tumor shrinkage in mutant EGFR-positive patients. We further confirmed the sensitivity of EGFR mutation-positive lung cancer cell lines derived from patients to HC (hyperthermic chemotherapy) treatment. We found that hyperthermia promoted accumulation of cisplatin in lung cancer cells. Hyperthermia and cisplatin synergistically downregulated the EGFR protein level, leading to quenching of signal from EGFR and induction of apoptosis. Our work therefore showed IPHC-CT is an effective treatment for EGFR kinase domain mutation positive lung cancer patients.

  4. Impact of mutational profiles on response of primary oestrogen receptor-positive breast cancers to oestrogen deprivation

    PubMed Central

    Gellert, Pascal; Segal, Corrinne V.; Gao, Qiong; López-Knowles, Elena; Martin, Lesley-Ann; Dodson, Andrew; Li, Tiandao; Miller, Christopher A.; Lu, Charles; Mardis, Elaine R.; Gillman, Alexa; Morden, James; Graf, Manuela; Sidhu, Kally; Evans, Abigail; Shere, Michael; Holcombe, Christopher; McIntosh, Stuart A.; Bundred, Nigel; Skene, Anthony; Maxwell, William; Robertson, John; Bliss, Judith M.; Smith, Ian; Dowsett, Mitch; Johnston, Stephen; Todd, Radha; Horgan, Kieran; Chan, Stephen; Holt, Simon D. H.; Parton, Marina; Laidlaw, Ian; Vaidya, Jayant S.; Irvine, Tracey; Hoar, Fiona; Khattak, Ilyas; Kothari, Ashutosh; Brazil, Lucy; Gallegos, Nicholas; Wheatley, Duncan; Johnson, Tayo; Sparrow, Geoffrey; Ledwidge, Serena; Mortimer, Caroline; Ornstein, Marcus; Ferguson, Douglas; Adamson, Douglas; Cutress, Ramsey; Johnson, Richard; Crowley, Clare; Winters, Zoe; Hamed, Hisham; Burcombe, Russell; Cleator, Susan; Kelleher, Muireann; Roberts, Jonathan; Vesty, Sarah; Hadaki, Maher; Quigley, Mary; Doughty, Julie; Laws, Siobhan; Seetharam, Seema; Thorne, Amanda; Donnelly, Peter

    2016-01-01

    Pre-surgical studies allow study of the relationship between mutations and response of oestrogen receptor-positive (ER+) breast cancer to aromatase inhibitors (AIs) but have been limited to small biopsies. Here in phase I of this study, we perform exome sequencing on baseline, surgical core-cuts and blood from 60 patients (40 AI treated, 20 controls). In poor responders (based on Ki67 change), we find significantly more somatic mutations than good responders. Subclones exclusive to baseline or surgical cores occur in ∼30% of tumours. In phase II, we combine targeted sequencing on another 28 treated patients with phase I. We find six genes frequently mutated: PIK3CA, TP53, CDH1, MLL3, ABCA13 and FLG with 71% concordance between paired cores. TP53 mutations are associated with poor response. We conclude that multiple biopsies are essential for confident mutational profiling of ER+ breast cancer and TP53 mutations are associated with resistance to oestrogen deprivation therapy. PMID:27827358

  5. Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations.

    PubMed

    Gromiha, M Michael; Oobatake, Motohisa; Kono, Hidetoshi; Uedaira, Hatsuho; Sarai, Akinori

    2002-08-05

    Understanding the mechanisms by which mutations affect protein stability is one of the most important problems in molecular biology. In this work, we analyzed the relationship between changes in protein stability caused by surface mutations and changes in 49 physicochemical, energetic, and conformational properties of amino acid residues. We found that the hydration entropy was the major contributor to the stability of surface mutations in helical segments; other properties responsible for size and volume of molecule also correlated significantly with stability. Classification of coil mutations based on their locations in the (phi-psi) map improved the correlation significantly, demonstrating the existence of a relationship between stability and strain energy, which indicates that the role of strain energy is very important for the stability of surface mutations. We observed that the inclusion of sequence and structural information raised the correlation, indicating the influence of surrounding residues on the stability of surface mutations. Further, we examined the previously reported "inverse relationship" between stability and hydrophobicity, and observed that the inverse hydrophobic effect was generally applicable only to coil mutations. The present study leads to a simple method for predicting protein stability changes caused by amino acid substitutions, which will be useful for protein engineering in designing novel proteins with increased stability and altered function.

  6. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

    PubMed

    Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas

    2014-09-08

    Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome.

  7. Predicting residue contacts using pragmatic correlated mutations method: reducing the false positives.

    PubMed

    Kundrotas, Petras J; Alexov, Emil G

    2006-11-16

    Predicting residues' contacts using primary amino acid sequence alone is an important task that can guide 3D structure modeling and can verify the quality of the predicted 3D structures. The correlated mutations (CM) method serves as the most promising approach and it has been used to predict amino acids pairs that are distant in the primary sequence but form contacts in the native 3D structure of homologous proteins. Here we report a new implementation of the CM method with an added set of selection rules (filters). The parameters of the algorithm were optimized against fifteen high resolution crystal structures with optimization criterion that maximized the confidentiality of the predictions. The optimization resulted in a true positive ratio (TPR) of 0.08 for the CM without filters and a TPR of 0.14 for the CM with filters. The protocol was further benchmarked against 65 high resolution structures that were not included in the optimization test. The benchmarking resulted in a TPR of 0.07 for the CM without filters and to a TPR of 0.09 for the CM with filters. Thus, the inclusion of selection rules resulted to an overall improvement of 30%. In addition, the pair-wise comparison of TPR for each protein without and with filters resulted in an average improvement of 1.7. The methodology was implemented into a web server http://www.ces.clemson.edu/compbio/recon that is freely available to the public. The purpose of this implementation is to provide the 3D structure predictors with a tool that can help with ranking alternative models by satisfying the largest number of predicted contacts, as well as it can provide a confidence score for contacts in cases where structure is known.

  8. Human Slack potassium channel mutations increase positive cooperativity between individual channels

    PubMed Central

    Barcia, Giulia; Quraishi, Imran H.; Martin, Hilary C.; Blair, Edward; Taylor, Jenny C.; Dulac, Olivier; Colleaux, Laurence

    2015-01-01

    Summary Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation or voltage-dependence. We examined nine different mutations of the KCNT1 (Slack) Na+-activated K+ channel that give rise to three distinct forms of epilepsy. All produced many fold-increases in current amplitude over that of the wild type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gives rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of the mutations is to alter channel-channel interactions. PMID:25482562

  9. Human slack potassium channel mutations increase positive cooperativity between individual channels.

    PubMed

    Kim, Grace E; Kronengold, Jack; Barcia, Giulia; Quraishi, Imran H; Martin, Hilary C; Blair, Edward; Taylor, Jenny C; Dulac, Olivier; Colleaux, Laurence; Nabbout, Rima; Kaczmarek, Leonard K

    2014-12-11

    Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation, and voltage dependence. We examined nine different mutations of the KCNT1 (Slack) Na(+)-activated K(+) channel that give rise to three distinct forms of epilepsy. All produced many-fold increases in current amplitude compared to the wild-type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild-type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gave rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of these mutations is to alter channel-channel interactions.

  10. Acquired Gitelman Syndrome in an Anti-SSA Antibody-positive Patient with a SLC12A3 Heterozygous Mutation

    PubMed Central

    Kusuda, Takeshi; Hosoya, Tadashi; Mori, Takayasu; Ihara, Katsuhito; Nishida, Hidenori; Chiga, Motoko; Sohara, Eisei; Rai, Tatemitsu; Koike, Ryuji; Uchida, Shinichi; Kohsaka, Hitoshi

    2016-01-01

    A 36-year-old woman developed hypokalemic metabolic alkalosis after anti SS-A antibody was found to be positive. Diuretic loading test results were compatible with Gitelman syndrome (GS). The patient had a heterozygous mutation in SLC12A3, which encodes for thiazide-sensitive NaCl cotransporter (NCCT). While the mutation may be responsible for a latent hypofunction of NCCTs, the underlying anti-SSA antibody-associated autoimmunity induced the manifestation of its hypofunction. To the best of our knowledge, this is the first report to demonstrate that anti SS-A antibody-associated autoimmunity may induce GS in a patient with a SLC12A3 heterozygous mutation. PMID:27803420

  11. Naturally occurring accessory gene mutations lead to persistent human immunodeficiency virus type 1 infection of CD4-positive T cells.

    PubMed Central

    Kishi, M; Zheng, Y H; Bahmani, M K; Tokunaga, K; Takahashi, H; Kakinuma, M; Lai, P K; Nonoyama, M; Luftig, R B; Ikuta, K

    1995-01-01

    Proviral DNA from cells surviving severe but transient cytopathic effects, mediated by infection with recombinant human immunodeficiency virus type 1 (HIV-1) carrying a single gene mutation at vif, vpr, or vpu, was characterized by use of HIV-1-specific primer pairs in a two-step PCR. Deletion mutations were detected in a region that spanned the vif and vpr open reading frames. Cloning and sequencing of the amplified DNA from this region revealed frequent large deletions in a limited number of nucleotide positions. Analyses of the deletions suggested that (i) genetic recombination, (ii) template-primer slippage, and (iii) misalignment of the growing point during reverse transcription of the HIV-1 genome might be the mechanisms that generated the mutations. Apart from the large deletions, smaller deletions that gave frameshift mutations in vif and/or vpr prevailed. In addition, cells infected with a triple mutant defective in vif, vpr, and vpu did not show any cytopathic effect. Thus, mutations generating multiple accessory gene defects during HIV-1 replication correlate with viral persistence and loss of cytopathogenicity. PMID:7494257

  12. Evidence of Positive Selection for a Glycogen Synthase (GYS1) Mutation in Domestic Horse Populations

    PubMed Central

    2014-01-01

    A dominantly inherited gain-of-function mutation in the glycogen synthase (GYS1) gene, resulting in excess skeletal muscle glycogen, has been identified in more than 30 horse breeds. This mutation is associated with the disease Equine Polysaccharide Storage Myopathy Type 1, yet persists at high frequency in some breeds. Under historical conditions of daily work and limited feed, excess muscle glycogen may have been advantageous, driving the increase in frequency of this allele. Fine-scale DNA sequencing in 80 horses and genotype assays in 279 horses revealed a paucity of haplotypes carrying the mutant allele when compared with the wild-type allele. Additionally, we found increased linkage disequilibrium, measured by relative extended haplotype homozygosity, in haplotypes carrying the mutation compared with haplotypes carrying the wild-type allele. Coalescent simulations of Belgian horse populations demonstrated that the high frequency and extended haplotype associated with the GYS1 mutation were unlikely to have arisen under neutrality or due to population demography. In contrast, in Quarter Horses, elevated relative extended haplotype homozygosity was associated with multiple haplotypes and may be the result of recent population expansion or a popular sire effect. These data suggest that the GYS1 mutation underwent historical selection in the Belgian, but not in the Quarter Horse. PMID:24215078

  13. Pooled analysis of clinical outcome for EGFR TKI-treated patients with EGFR mutation-positive NSCLC

    PubMed Central

    Paz-Ares, Luis; Soulières, Denis; Moecks, Joachim; Bara, Ilze; Mok, Tony; Klughammer, Barbara

    2014-01-01

    Patients with non-small-cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation-positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation-positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression-free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6–13.4) for erlotinib-treated patients; 9.4 months (95% AI 9.0–9.8) for gefitinib-treated patients; and 5.6 months (95% AI 5.3–6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time-point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation-positive NSCLC with erlotinib or gefitinib compared with chemotherapy. PMID:25100284

  14. High Intellectual Function in Individuals with Mutation-Positive Microform Holoprosencephaly.

    PubMed

    Solomon, B D; Pineda-Alvarez, D E; Gropman, A L; Willis, M J; Hadley, D W; Muenke, M

    2012-09-01

    Holoprosencephaly is the most common malformation of the forebrain and typically results in severe neurocognitive impairment with accompanying midline facial anomalies. Holoprosencephaly is heterogeneous and may be caused by chromosome aberrations or environmental factors, occur in the context of a syndrome or be due to heterozygous mutations in over 10 identified genes. The presence of these mutations may result in an extremely wide spectrum of severity, ranging from brain malformations incompatible with life to individuals with normal brain findings and subtle midline facial differences. Typically, clinicians regard intellectual disability as a sign that a parent or relative of a severely affected patient may be a mildly affected mutation 'carrier' with what is termed microform holoprosencephaly. Here we present 5 patients with clear phenotypic signs of microform holoprosencephaly, all of whom have evidence of above-average intellectual function. In 4 of these 5 individuals, the molecular cause of holoprosencephaly has been identified and includes mutations affecting SHH, SIX3, GLI2, and FGF8. This report expands the phenotypic spectrum of holoprosencephaly and is important in the counseling of patient and affected families.

  15. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer.

    PubMed

    Soejima, Kenzo; Yasuda, Hiroyuki; Hirano, Toshiyuki

    2017-01-01

    Significant advances have been made since the development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) targeting EGFR mutations in non-small-cell lung cancer (NSCLC), however, lung cancer cells eventually acquire resistance to those agents. Osimertinib (AZD9291) has been developed as 3(rd) generation EGFR-TKI with activities against sensitizing mutations and T790 M resistance mutation, which account for about 50% of the mechanisms of acquired resistance to 1(st) or 2(nd) generation EGFR-TKIs. A recent phase I/II clinical trial with osimertinib for advanced NSCLC patients with known sensitizing EGFR mutations and documented disease progression on prior EGFR-TKIs revealed promising effect with acceptable toxicities. Areas covered: This article summarizes current understanding and available preclinical and clinical data on osimertinib and also discusses future directions. The literature search included PubMed and the latest articles from international conferences. Expert commentary: The development of osimertinib has provided new therapeutic options for NSCLC patients harboring T790 M. Compared with other EGFR-TKIs including rociletinib, osimertinib seems to possess an advantage with respect to the effect and safety profile among existing EGFR-TKIs. However, tumor progression still occurs even when treating with osimertinib. A further understanding of the mechanisms of resistance is eagerly anticipated in order to develop next generation EGFR-TKIs.

  16. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma

    PubMed Central

    Goyal, Lipika; Saha, Supriya K.; Liu, Leah Y.; Siravegna, Giulia; Leshchiner, Ignaty; Ahronian, Leanne G.; Lennerz, Jochen K.; Vu, Phuong; Deshpande, Vikram; Kambadakone, Avinash; Mussolin, Benedetta; Reyes, Stephanie; Henderson, Laura; Sun, Jiaoyuan Elisabeth; Van Seventer, Emily E.; Gurski, Joseph M.; Baltschukat, Sabrina; Schacher-Engstler, Barbara; Barys, Louise; Stamm, Christelle; Furet, Pascal; Ryan, David P.; Stone, James R.; Iafrate, A. John; Getz, Gad; Porta, Diana Graus; Tiedt, Ralph; Bardelli, Alberto; Juric, Dejan; Corcoran, Ryan B.; Bardeesy, Nabeel; Zhu, Andrew X.

    2017-01-01

    Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intra-lesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation lead to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide development of future therapeutic strategies. PMID:28034880

  17. [Efficacy of first-line afatinib versus chemotherapy in EGFR mutation positive pulmonary adenocarcinoma].

    PubMed

    Sárosi, Veronika; Balikó, Zoltán

    2014-12-01

    Therapy of patients with advanced NSCLC has lately changed due to the algorithm based on the presence or absence of oncogenic mutations. There is an agreement nowadays that in the presence of activating EGFR mutations, the administration of EGFR TKI (gefitinib, erlotinib, afatinib) is the most efficacious initial treatment. Unlike the first-generation TKIs, afatinib is a new, irreversible ErbB blocker, selectively and effectively blocking signals from the ErbB family receptors. Afatinib's marketing authorization is based on a large, randomized, phase III clinical trial, LUX-Lung 3, where patients in the control arm were treated with the best available chemotherapy (pemetrexed/cisplatin combination). Primary endpoint was progression-free survival (PFS). Patients with common EGFR mutations showed a PFS of 13.6 months when treated with afatinib, while treatment in the control arm resulted in a PFS of 6.9 months. Overall survival (OS) was 31.6 and 28.2 months, respectively. LUX-Lung 3 has been followed by the LUX-Lung 6 trial, comparing afatinib treatment to traditional chemotherapy (gemcitabine/cisplatin) in Asian patients with NSCLC harboring EGFR mutations. This clinical trial has also proved benefit of afatinib: PFS was 11.0 months in the afatinib arm and 5.6 months in the control arm by independent reviewer, while OS was 23.6 months and 23.5 months, respectively. Similarity of the OS values in both trials is explained by the cross-over treatment. When further analyzing OS data, a statistically significant difference between the afatinib and the control arm was seen in the EGFR exon 19 del subgroup (LUX-Lung 3: 33.3 vs. 21.1 months, LUX-Lung 6: 31.4 vs. 18.4 months, respectively).

  18. C-Kit non-mutated metastatic melanoma showing positive response to Nilotinib.

    PubMed

    Alkeraye, S; Dadban, A; Lok, C; Arnault, J P; Chaby, G

    2016-01-15

    Melanoma is an aggressive tumor with advanced disease characterized by widespread metastatic lesions and the tumor has traditionally been resistant to most forms of treatment. Indeed, metastatic melanoma has a very poor prognosis with a median survival time of 8-9 months and an estimated 3-year survival rate of less than 15%. Recent advances in our understanding of the genetic profile of melanoma cells and the molecular factors that drive malignant transformation have resulted in the identification of numerous new therapeutic targets. KIT is an established therapeutic target in cancers with activating mutations of KIT, such as gastrointestinal stromal tumors (GIST), and considerable efficacy has been achieved with various small molecule inhibitors of KIT including imatinib mesylate. Nilotinib is an inhibitor of ligand-induced PDGFRα and PDFGRβ kinase activity and autophosphorylation of constitutively activated KIT harboring exon 13 or exon 11 mutations (IC50 values of 0.2 and 0.027 μmol/L, respectively), with efficacy comparable to that of imatinib. We report a case of non-kit mutated metastatic vaginal melanoma showing impressive response to nilotinib.

  19. Altered expression and new mutations in DNA mismatch repair genes MLH1 and MSH2 in melanoma brain metastases.

    PubMed

    Korabiowska, Monika; König, Fatima; Verheggen, Raphaela; Schlott, Thilo; Cordon-Cardo, Carlos; Romeike, Bernd; Brinck, Ulrich

    2004-01-01

    Brain metastases, including those of malignant melanoma (known for its high genomic instability), are the most common intracranial tumors. The main objective of this study was to investigate expression and mutation in the DNA mismatch repair system in melanoma brain metastases. Expression of MLH1, MSH2, PMS1 and PMS2 was investigated immunohistochemically in 31 melanoma metastatic tumors. Mutational analysis of MLH1 and MSH2 was performed in 17 melanoma brain metastases. Loss of MLH1 and MSH2 expression was found in 10/31 and 12/31 tumors. PMS1 (27/31) and PMS2 (28/31) expression was preserved in the majority of lesions. Potential missense mutation was found in MSH2 (exon 13) in 2/17 melanomas. Mutation in the intron sequence between exon 14 and 15 of MLH1 (exon 15) was observed in 4/17 cases. Our results indicate that the two major DNA mismatch repair genes, MLH1 and MSH2, are more frequently affected by alterations in the DNA mismatch repair system than the helper genes PMS1 and PMS2. The presence of mutations of MSH2 and MLH1 in melanoma brain metastases, which has not been found in primary melanomas, indicates the high genomic instability of melanoma brain metastases.

  20. Origin of mutational effects at the C3 and G8 positions on hammerhead ribozyme catalysis from molecular dynamics simulations.

    PubMed

    Lee, Tai-Sung; York, Darrin M

    2008-06-11

    A series of ten 60 ns molecular dynamics (MD) simulations of the native and mutated full length hammerhead ribozymes in the reactant state and in an activated precursor state (G8:2'OH deprotonated) are reported. Mutant simulations include the C3U, G8A, and G8I single mutants and a C3U/G8A double mutant that exhibits an experimental rescue effect. The results provide critical details into the origin of the observed mutation effects and support a mechanism where the 2'OH of G8 acts as a general acid catalyst that is held in position through Watson-Crick hydrogen bonding between G8 and C3.

  1. Mutational analysis of the residue at position 48 in the Salmonella enterica Serovar Typhimurium PhoQ sensor kinase.

    PubMed

    Sanowar, Sarah; Martel, Alexandre; Moual, Hervé Le

    2003-03-01

    The PhoP/PhoQ two-component regulatory system of Salmonella enterica serovar Typhimurium plays an essential role in controlling virulence by mediating the adaptation to Mg(2+) depletion. The pho-24 allele of phoQ harbors a single amino acid substitution (T48I) in the periplasmic domain of the PhoQ histidine kinase sensor. This mutation has been shown to increase net phosphorylation of the PhoP response regulator. We analyzed the effect on signaling by PhoP/PhoQ of various amino acid substitutions at this position (PhoQ-T48X [X = A, S, V, I, or L]). Mutations T48V, T48I, and T48L were found to affect signaling by PhoP/PhoQ both in vivo and in vitro. Mutations PhoQ-T48V and PhoQ-T48I increased both the expression of the mgtA::lacZ transcriptional fusion and the net phosphorylation of PhoP, conferring to cells a PhoP constitutively active phenotype. In contrast, mutation PhoQ-T48L barely responded to changes in the concentration of external Mg(2+), in vivo and in vitro, conferring to cells a PhoP constitutively inactive phenotype. By analyzing in vitro the individual catalytic activities of the PhoQ-T48X sensors, we found that the PhoP constitutively active phenotype observed for the PhoQ-T48V and PhoQ-T48I proteins is solely due to decreased phosphatase activity. In contrast, the PhoP constitutively inactive phenotype observed for the PhoQ-T48L mutant resulted from both decreased autokinase activity and increased phosphatase activity. Our data are consistent with a model in which the residue at position 48 of PhoQ contributes to a conformational switch between kinase- and phosphatase-dominant states.

  2. Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma.

    PubMed

    Goyal, Lipika; Saha, Supriya K; Liu, Leah Y; Siravegna, Giulia; Leshchiner, Ignaty; Ahronian, Leanne G; Lennerz, Jochen K; Vu, Phuong; Deshpande, Vikram; Kambadakone, Avinash; Mussolin, Benedetta; Reyes, Stephanie; Henderson, Laura; Sun, Jiaoyuan Elisabeth; Van Seventer, Emily E; Gurski, Joseph M; Baltschukat, Sabrina; Schacher-Engstler, Barbara; Barys, Louise; Stamm, Christelle; Furet, Pascal; Ryan, David P; Stone, James R; Iafrate, A John; Getz, Gad; Porta, Diana Graus; Tiedt, Ralph; Bardelli, Alberto; Juric, Dejan; Corcoran, Ryan B; Bardeesy, Nabeel; Zhu, Andrew X

    2017-03-01

    Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.

  3. Effects of an Alkaline Diet on EGFR-TKI Therapy in EGFR Mutation-positive NSCLC.

    PubMed

    Hamaguchi, Reo; Okamoto, Toshihiro; Sato, Masaaki; Hasegawa, Michiko; Wada, Hiromi

    2017-09-01

    The acidic tumor microenvironment is associated with progression of cancers. The purpose of this study was to investigate the association between an alkaline diet and the effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) patients. Eleven advanced or recurrent NSCLC patients with EGFR mutations treated with EGFR-TKI after being instructed to follow an alkaline diet were retrospectively evaluated. The median progression-free survival (PFS) and overall survival (OS) were 19.5 (range=3.1-33.8) and 28.5 (range=15.4-46.6) months. The average dosage of EGFR-TKI was 56±22% of the standard dosage. Urine pH was significantly increased after the alkaline diet (6.00±0.38 vs. 6.95±0.55; p<0.05). An alkaline diet may enhance the effect of EGFR-TKI treatment in NSCLC patients with EGFR mutations. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Targeting the Gatekeeper: Osimertinib in EGFR T790M Mutation-Positive Non-Small Cell Lung Cancer.

    PubMed

    Skoulidis, Ferdinandos; Papadimitrakopoulou, Vassiliki A

    2017-02-01

    In 2015, the FDA approved an unprecedented number of new therapies for non-small cell lung cancer (NSCLC), among them therapies addressing specific genomic tumor subsets in the setting of development of resistance to first-line targeted therapy. Osimertinib (Tagrisso, formerly AZD9291; AstraZeneca) is indicated for patients with metastatic EGFR T790M mutation-positive NSCLC, as detected by an FDA-approved test, who have progressed on or after EGFR tyrosine kinase inhibitor therapy. It received breakthrough therapy designation, priority review status, and accelerated approval from the FDA. Clin Cancer Res; 23(3); 618-22. ©2016 AACR.

  5. Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B.

    PubMed

    Choi, Soo-Kyung; Yoon, Song-Ro; Calabrese, Peter; Arnheim, Norman

    2012-01-01

    Multiple endocrine neoplasia type 2B (MEN2B) is a highly aggressive thyroid cancer syndrome. Since almost all sporadic cases are caused by the same nucleotide substitution in the RET proto-oncogene, the calculated disease incidence is 100-200 times greater than would be expected based on the genome average mutation frequency. In order to determine whether this increased incidence is due to an elevated mutation rate at this position (true mutation hot spot) or a selective advantage conferred on mutated spermatogonial stem cells, we studied the spatial distribution of the mutation in 14 human testes. In donors aged 36-68, mutations were clustered with small regions of each testis having mutation frequencies several orders of magnitude greater than the rest of the testis. In donors aged 19-23 mutations were almost non-existent, demonstrating that clusters in middle-aged donors grew during adulthood. Computational analysis showed that germline selection is the only plausible explanation. Testes of men aged 75-80 were heterogeneous with some like middle-aged and others like younger testes. Incorporating data on age-dependent death of spermatogonial stem cells explains the results from all age groups. Germline selection also explains MEN2B's male mutation bias and paternal age effect. Our discovery focuses attention on MEN2B as a model for understanding the genetic and biochemical basis of germline selection. Since RET function in mouse spermatogonial stem cells has been extensively studied, we are able to suggest that the MEN2B mutation provides a selective advantage by altering the PI3K/AKT and SFK signaling pathways. Mutations that are preferred in the germline but reduce the fitness of offspring increase the population's mutational load. Our approach is useful for studying other disease mutations with similar characteristics and could uncover additional germline selection pathways or identify true mutation hot spots.

  6. In Their Own Words: Treating Very Young BRCA1/2 Mutation-Positive Women with Care and Caution

    PubMed Central

    Hoskins, Lindsey M.; Werner-Lin, Allison; Greene, Mark H.

    2014-01-01

    Purpose Young women who have been identified as carrying a deleterious mutation in BRCA1 or BRCA2 face a unique set of challenges related to managing cancer risk during a demographically-dense stage of life. They may struggle with decision-making in the absence of clear age-specific guidelines for medical management and because they have not yet fully developed the capacity to make life-altering decisions confidently. This study sought a patient-centered perspective on the dilemmas faced by 18–24 year olds who completed BRCA1/2 gene mutation testing prior to their 25th birthdays. Patients and Method This study integrated qualitative data from three independent investigations of BRCA1/2-positive women recruited through cancer risk clinics, hospital-based research centers, and online organizations. All 32 participants were women aged 21–25 who tested positive for a BRCA1/2 gene mutation between 2 and 60 months prior to data collection. Investigators used techniques of grounded theory and interpretive description to conduct both within and cross-study analysis. Results Participants expressed needs for (1) greater clarity in recommendations for screening and prevention before age 25, especially with consideration of early and regular exposure to radiation associated with mammography or to hormones used in birth control, and (2) ongoing contact with providers to discuss risk management protocols as they become available. Conclusions Health care needs during the young adult years evolve with the cognitive capacity to address abrupt and pressing change. Specific needs of women in this population include a desire to balance autonomous decision-making with supportive guidance, a need for clear, accurate and consistent medical recommendations. Optimally, these women are best cared for by a team of genetically-oriented providers as part of a sustained program of ongoing support, rather than seen in an episodic, crisis-driven fashion. A discussion of insurance issues and

  7. The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians.

    PubMed

    Favorova, O O; Andreewski, T V; Boiko, A N; Sudomoina, M A; Alekseenkov, A D; Kulakova, O G; Slanova, A V; Gusev, E I

    2002-11-26

    The authors studied the possible association between the presence of a 32-base pair deletion allele in CC chemokine receptor 5 gene [3p21] (CCR5 Delta 32 allele) and the occurrence of MS. The presence of CCR5 Delta 32 homozygotes among patients with MS indicates that the absence of CCR5 did not protect against MS. Moreover, the CCR5 Delta 32 mutation was associated with MS in HLA-DR4-positive Russians (p(corr) < 0.001, odds ratio [OR] = 25.0). The (CCR5 Delta 32,DR4)-positive phenotype was negatively associated with early MS onset (at ages < or = 18 years) (p = 0.0115, OR = 0.1).

  8. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study

    PubMed Central

    Douillard, J-Y; Ostoros, G; Cobo, M; Ciuleanu, T; McCormack, R; Webster, A; Milenkova, T

    2014-01-01

    Background: Phase-IV, open-label, single-arm study (NCT01203917) to assess efficacy and safety/tolerability of first-line gefitinib in Caucasian patients with stage IIIA/B/IV, epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Methods: Treatment: gefitinib 250 mg day−1 until progression. Primary endpoint: objective response rate (ORR). Secondary endpoints: disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety/tolerability. Pre-planned exploratory objective: EGFR mutation analysis in matched tumour and plasma samples. Results: Of 1060 screened patients with NSCLC (859 known mutation status; 118 positive, mutation frequency 14%), 106 with EGFR sensitising mutations were enrolled (female 70.8% adenocarcinoma 97.2% never-smoker 64.2%). At data cutoff: ORR 69.8% (95% confidence interval (CI) 60.5–77.7), DCR 90.6% (95% CI 83.5–94.8), median PFS 9.7 months (95% CI 8.5–11.0), median OS 19.2 months (95% CI 17.0–NC; 27% maturity). Most common adverse events (AEs; any grade): rash (44.9%), diarrhoea (30.8%); CTC (Common Toxicity Criteria) grade 3/4 AEs: 15% SAEs: 19%. Baseline plasma 1 samples were available in 803 patients (784 known mutation status; 82 positive; mutation frequency 10%). Plasma 1 EGFR mutation test sensitivity: 65.7% (95% CI 55.8–74.7). Conclusion: First-line gefitinib was effective and well tolerated in Caucasian patients with EGFR mutation-positive NSCLC. Plasma samples could be considered for mutation analysis if tumour tissue is unavailable. PMID:24263064

  9. Novel compound heterozygous mutations for lipoprotein lipase deficiency. A G-to-T transversion at the first position of exon 5 causing G154V missense mutation and a 5' splice site mutation of intron 8.

    PubMed

    Ikeda, Y; Takagi, A; Nakata, Y; Sera, Y; Hyoudou, S; Hamamoto, K; Nishi, Y; Yamamoto, A

    2001-07-01

    We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.

  10. 4-Quinolone antibiotics: positive genotoxic screening tests despite an apparent lack of mutation induction.

    PubMed

    Bredberg, A; Brant, M; Riesbeck, K; Azou, Y; Forsgren, A

    1989-03-01

    The effects of different 4-quinolone antibiotic derivatives (4-Qs) in a number of short-term tests commonly employed for the evaluation of genetic toxicity were studied. Incorporation of [3H]thymidine into mitogen-stimulated peripheral blood lymphocytes was strongly enhanced at a low concentration (1.56 micrograms/ml) for most of the tested 4-Qs, whereas DNA strand breakage in lymphoblastoid cells was evident only for ciprofloxacin (10 micrograms/ml and upwards), ofloxacin (80 micrograms/ml) and norfloxacin (160 micrograms/ml). Ciprofloxacin induced a significant amount of unscheduled DNA synthesis, but was found to be negative in a shuttle vector plasmid mutation test. Ciprofloxacin (80 micrograms/ml) did not inhibit enzymes involved in the early steps of pyrimidine biosynthesis. Cell growth was slightly depressed at a concentration of 20 micrograms/ml, becoming marked at 80 micrograms/ml. In conclusion, this study seeks to contribute to an improved evaluation of genotoxic screening test data, by focusing attention on the conflicting effects imposed by the 4-Qs on a battery of such tests.

  11. High frequency of mutations in exon 10 of the porphobilinogen deaminase gene in patients with a CRIM-positive subtype of acute intermittent porphyria

    SciTech Connect

    Gu, X.F.; Rooij, F. de; Voortman, G.; Velde, K.T.; Nordmann, Y.; Grandchamp, B.

    1992-09-01

    Acute intermittent porphyria (AIP) is an autosomal dominant disease characterized by a partial deficiency of porphobilinogen (PBG) deaminase. Different subtypes of the disease have been defined, and more than 10 different mutations have been described. The authors focused their study on exon 10, since they previously found that three different mutations were located in this exon and that two of them seemed to be relatively common. They used denaturing gradient gel electrophoresis (DGGE) after in vitro amplification to detect all possible mutations in exon 10 in 41 unrelated AIP patients. In about one-fourth of these patients they could distinguish three abnormal migration patterns, indicating the presence of various mutations. Additional sequencing demonstrated the presence of three different single-base substitutions. Two of these mutations had already been described. A third one consisted of a C-to-T transition located at position 499 of the PBG deaminase mRNA and resulted in an Arg-to-Trp substitution. All three mutations were found in patients with crossreacting immunological material (CRIM)-positive forms of AlP. The high frequency of these mutations make DGGE analysis of exon 10 a useful approach allowing the direct detection of the DNA abnormality in most of the families with the CRIM-positive subtype of AlP. 23 refs., 3 figs., 1 tab.

  12. TERT Polymorphism rs2736100-C Is Associated with EGFR Mutation-Positive Non-Small Cell Lung Cancer

    PubMed Central

    Zheng, Yonglan; Niu, Xiaomin; Weng, Xiaoling; Zhang, Hong; Favus, Murray; Zhang, Lanjun; Jia, Weihua; Zeng, Yixin; Amos, Christopher I; Lu, Shun; Wang, Hui-Yun; Liu, Yun; Liu, Wanqing

    2015-01-01

    Purpose Epidermal growth factor receptor (EGFR) mutation-positive (EGFRmut+) non-small cell lung cancer (NSCLC) may be a unique orphan disease. Previous studies suggested that the telomerase reverse transcriptase (TERT) gene polymorphism is associated with demographic and clinical features strongly associated with EGFR mutations, e.g. adenocarcinoma histology, never-smoking history and female gender. We aim to test the association between TERT polymorphism and EGFRmut+ NSCLC. Experimental Design We conducted a genetic association study in Chinese NSCLC patients (n=714) and healthy controls (n=2,520), between the rs2736100 polymorphism and EGFRmut+ NSCLC. We further tested the association between the EGFR mutation status and mean leukocyte telomere length (LTL). The potential function of rs2736100 in lung epithelial cells was also explored. Results The rs2736100-C allele was significantly associated with EGFRmut+ NSCLC (OR=1.52, 95%CI=1.28–1.80, p=1.6×10−6) but not EGFRmut− NSCLC (OR=1.07, 95%CI=0.92–1.24, p=0.4). While NSCLC patients as a whole have significantly longer LTL compared to healthy controls (p≤10−13), the EGFRmut+ patients have even longer LTL compared to EGFRmut-patients (p=0.008). Meanwhile, rs2736100 was significantly associated with TERT mRNA expression in both normal and tumor lung tissues. All results remained significant after controlling for age, gender, smoking status and histology (p<0.05 for all tests). Moreover, the rs2736100 DNA sequence has an allele-specific affinity to nuclear proteins extracted from lung epithelial cells, which led to an altered enhancer activity of the sequence in vitro. Conclusion Our study suggests that telomerase and telomere function may be essential for carcinogenesis of EGFRmut+ NSCLC. Further investigation for the underlying mechanism is warranted. PMID:26149460

  13. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation.

    PubMed

    Hofer, Thomas P; Zawada, Adam M; Frankenberger, Marion; Skokann, Kerstin; Satzl, Anna A; Gesierich, Wolfgang; Schuberth, Madeleine; Levin, Johannes; Danek, Adrian; Rotter, Björn; Heine, Gunnar H; Ziegler-Heitbrock, Loems

    2015-12-10

    Human monocytes are subdivided into classical, intermediate, and nonclassical subsets, but there is no unequivocal strategy to dissect the latter 2 cell types. We show herein that the cell surface marker 6-sulfo LacNAc (slan) can define slan-positive CD14(+)CD16(++) nonclassical monocytes and slan-negative CD14(++)CD16(+) intermediate monocytes. Gene expression profiling confirms that slan-negative intermediate monocytes show highest expression levels of major histocompatibility complex class II genes, whereas a differential ubiquitin signature is a novel feature of the slan approach. In unsupervised hierarchical clustering, the slan-positive nonclassical monocytes cluster with monocytes and are clearly distinct from CD1c(+) dendritic cells. In clinical studies, we show a selective increase of the slan-negative intermediate monocytes to >100 cells per microliter in patients with sarcoidosis and a fivefold depletion of the slan-positive monocytes in patients with hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS), which is caused by macrophage colony-stimulating factor (M-CSF) receptor mutations. These data demonstrate that the slan-based definition of CD16-positive monocyte subsets is informative in molecular studies and in clinical settings.

  14. Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation

    PubMed Central

    2005-01-01

    In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4–5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation. PMID:15601595

  15. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    PubMed Central

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI. PMID:28659819

  16. Genetic Testing and Post-Testing Decision Making among BRCA-Positive Mutation Women: A Psychosocial Approach.

    PubMed

    Hesse-Biber, Sharlene; An, Chen

    2016-10-01

    Through an analysis of an online survey of women who tested positive for the BRCA genetic mutation for breast cancer, this research uses a social constructionist and feminist standpoint lens to understand the decision-making process that leads BRCA-positive women to choose genetic testing. Additionally, this research examines how they socially construct and understand their risk for developing breast cancer, as well as which treatment options they undergo post-testing. BRCA-positive women re-frame their statistical medical risk for developing cancer and their post-testing treatment choices through a broad psychosocial context of engagement that also includes their social networks. Important psychosocial factors drive women's medical decisions, such as individual feelings of guilt and vulnerability, and the degree of perceived social support. Women who felt guilty and fearful that they might pass the BRCA gene to their children were more likely to undergo risk reducing surgery. Women with at least one daughter and women without children were more inclined toward the risk reducing surgery compared to those with only sons. These psychosocial factors and social network engagements serve as a "nexus of decision making" that does not, for the most part, mirror the medical assessments of statistical odds for hereditary cancer development, nor the specific treatment protocols outlined by the medical establishment.

  17. Positive selection of transgenic receptor-bearing thymocytes by Kb antigen is altered by Kb mutations that involve peptide binding.

    PubMed Central

    Sha, W C; Nelson, C A; Newberry, R D; Pullen, J K; Pease, L R; Russell, J H; Loh, D Y

    1990-01-01

    A specific interaction between the class I major histocompatibility complex molecule Kb and thymocytes expressing the antigen receptor from the cytolytic T lymphocyte 2C enhances maturation of T cells of the CD8 lineage in transgenic mice. By analyzing transgenic mice backcrossed to Kbm mutant strains of mice, we have identified five bm mutations of the Kb antigen-encoding gene that alter the positive selection of thymocytes induced by Kb antigen. Compared with Kb, Kbm10 and Kbm1 did not induce significant maturation of 2C T-cell receptor-bearing thymocytes, and Kbm8 antigen positively selected for transgenic thymocytes only weakly. Altering residue 77 of Kb molecule from aspartic acid to serine made Kbm3 and Kbm11 allogeneic targets for the 2C antigen receptor and caused deletion of transgenic thymocytes. This deletion spared T cells that expressed low levels of CD8, a result differing from the total deletion of CD8-bearing T cells seen in mice that expressed the original target alloantigen Ld. This evidence indicates that (i) self-peptides bound to thymic major histocompatibility complex molecules can influence the positive selection of thymocytes and (ii) thymocytes with apparently weak interaction with self-major histocompatibility complex antigens can escape clonal deletion. PMID:2117275

  18. Chemical mutagenesis testing in Drosophila. I. Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories

    SciTech Connect

    Woodruff, R.C.; Mason, J.M.; Valencia, R.; Zimmering, S.

    1984-01-01

    As part of the validation phase of the Drosophila melanogaster segment of the National Toxicology Program, a comparison has been made of positive and negative controls for sex-linked recessive lethal mutations and reciprocal translocations from three laboratories. This comparison involves approximately 700,000 spontaneous recessive lethal mutation tests, 70,000 spontaneous translocation tests, and screens for genetic damage induced by N-nitrosodimethylamine and ..beta..-propiolactone. Spontaneous frequencies for lethal mutations and translocations were homogeneous in the laboratories regardless of solvent or broods sampled. Inhomogeneity was observed in induced frequencies among laboratories, but the variation was no greater than that found within a laboratory.

  19. Microfluidic deletion/insertion analysis for rapid screening of KIT and PDGFRA mutations in CD117-positive gastrointestinal stromal tumors: diagnostic applications and report of a new KIT mutation.

    PubMed

    Zamò, Alberto; Bertolaso, Anna; Franceschetti, Ilaria; Weirich, Gregor; Capelli, Paola; Pecori, Sara; Chilosi, Marco; Hoefler, Heinz; Menestrina, Fabio; Scarpa, Aldo

    2007-04-01

    Gastrointestinal stromal tumors (GISTs) frequently harbor mutations in the KIT and PDGFRA genes, the presence and type of which correlate with the response to the kinase inhibitor imatinib mesylate. Because most GIST mutations are deletions/insertions, we used a microfluidic apparatus to detect these size variations in polymerase chain reaction-amplified DNA. This approach, termed microfluidic deletion/insertion analysis (MIDIA), identified mutations in 30 of 50 DNA samples from paraffin-embedded CD117-positive GISTs (60%), comprising 25 deletions and five insertions. Sequencing of 14 MIDIA-positive samples confirmed the deletions/insertions, including two 3-bp alterations. Sequencing of all 20 MIDIA-negative samples also showed highly consistent results with MIDIA because 10 cases were wild type and eight displayed a single base substitution in which detection by MIDIA was not expected. Sequencing also revealed a 3-bp deletion undetected by MIDIA, thus establishing the resolution limit of MIDIA at deletions/insertions >or=3 bp. Denaturing high-pressure liquid chromatography analysis confirmed all mutations detected by MIDIA and sequencing. We pro-pose MIDIA as the first step in mutational screening of GIST because it allowed the detection of 75% of mutated cases (94% of deletions/insertions) in less than 30 minutes after polymerase chain reaction amplification and at a lower cost compared with denaturing high-pressure liquid chromatography and sequencing, which might then be used only for MIDIA-negative cases.

  20. Mutations affecting a putative MutLα endonuclease motif impact multiple mismatch repair functions

    PubMed Central

    Erdeniz, Naz; Nguyen, Megan; Deschênes, Suzanne M.; Liskay, R. Michael

    2008-01-01

    Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLα, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)2E(X)4E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae were both recessive loss of function alleles for mutation avoidance in vivo. Here, we show that mutations impacting this endonuclease motif also significantly affect MMR-dependent suppression of homeologous recombination in yeast and responses to Sn1-type methylating agents in both yeast and mammalian cells. Thus, our in vivo results suggest that the endonuclease activity of MutLα is important not only in MMR-dependent mutation avoidance but also for recombination and damage response functions. PMID:17567544

  1. From Whole Gene Deletion to Point Mutations of EP300-Positive Rubinstein-Taybi Patients: New Insights into the Mutational Spectrum and Peculiar Clinical Hallmarks.

    PubMed

    Negri, Gloria; Magini, Pamela; Milani, Donatella; Colapietro, Patrizia; Rusconi, Daniela; Scarano, Emanuela; Bonati, Maria Teresa; Priolo, Manuela; Crippa, Milena; Mazzanti, Laura; Wischmeijer, Anita; Tamburrino, Federica; Pippucci, Tommaso; Finelli, Palma; Larizza, Lidia; Gervasini, Cristina

    2016-02-01

    Rubinstein-Taybi syndrome (RSTS) is a rare congenital neurodevelopmental disorder characterized by growth deficiency, skeletal abnormalities, dysmorphic features, and intellectual disability. Causative mutations in CREBBP and EP300 genes have been identified in ∼55% and ∼8% of affected individuals. To date, only 28 EP300 alterations in 29 RSTS clinically described patients have been reported. EP300 analysis of 22 CREBBP-negative RSTS patients from our cohort led us to identify six novel mutations: a 376-kb deletion depleting EP300 gene; an exons 17-19 deletion (c.(3141+1_3142-1)_(3590+1_3591-1)del/p.(Ile1047Serfs*30)); two stop mutations, (c.3829A>T/p.(Lys1277*) and c.4585C>T/p.(Arg1529*)); a splicing mutation (c.1878-12A>G/p.(Ala627Glnfs*11)), and a duplication (c.4640dupA/p.(Asn1547Lysfs*3)). All EP300-mutated individuals show a mild RSTS phenotype and peculiar findings including maternal gestosis, skin manifestation, especially nevi or keloids, back malformations, and a behavior predisposing to anxiety. Furthermore, the patient carrying the complete EP300 deletion does not show a markedly severe clinical picture, even if a more composite phenotype was noticed. By characterizing six novel EP300-mutated patients, this study provides further insights into the EP300-specific clinical presentation and expands the mutational repertoire including the first case of a whole gene deletion. These new data will enhance EP300-mutated cases identification highlighting distinctive features and will improve the clinical practice allowing a better genotype-phenotype correlation.

  2. Positive Selection in Bone Morphogenetic Protein 15 Targets a Natural Mutation Associated with Primary Ovarian Insufficiency in Human

    PubMed Central

    Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Géraldine; Persani, Luca; Fabre, Stéphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in

  3. A study in Polish patients with cardiomyopathy emphasizes pathogenicity of phospholamban (PLN) mutations at amino acid position 9 and low penetrance of heterozygous null PLN mutations.

    PubMed

    Truszkowska, Grażyna T; Bilińska, Zofia T; Kosińska, Joanna; Śleszycka, Justyna; Rydzanicz, Małgorzata; Sobieszczańska-Małek, Małgorzata; Franaszczyk, Maria; Bilińska, Maria; Stawiński, Piotr; Michalak, Ewa; Małek, Łukasz A; Chmielewski, Przemysław; Foss-Nieradko, Bogna; Machnicki, Marcin M; Stokłosa, Tomasz; Ponińska, Joanna; Szumowski, Łukasz; Grzybowski, Jacek; Piwoński, Jerzy; Drygas, Wojciech; Zieliński, Tomasz; Płoski, Rafał

    2015-04-03

    In humans mutations in the PLN gene, encoding phospholamban - a regulator of sarcoplasmic reticulum calcium ATPase (SERCA), cause cardiomyopathy with prevalence depending on the population. Our purpose was to identify PLN mutations in Polish cardiomyopathy patients. We studied 161 unrelated subjects referred for genetic testing for cardiomyopathies: 135 with dilated cardiomyopathy, 22 with hypertrophic cardiomyopathy and 4 with other cardiomyopathies. In 23 subjects multiple genes were sequenced by next generation sequencing and in all subjects PLN exons were analyzed by Sanger sequencing. Control group included 200 healthy subjects matched with patients for ethnicity, sex and age. Large deletions/insertions were screened by real time polymerase chain reaction. We detected three different heterozygous mutations in the PLN gene: a novel null c.9_10insA:(p.Val4Serfs*15) variant and two missense variants: c.25C > T:(p.Arg9Cys) and c.26G > T:(p.Arg9Leu). The (p.Val4Serfs*15) variant occurred in the patient with Wolff-Parkinson-White syndrome in whom the diagnosis of cardiomyopathy was not confirmed and his mother who had concentric left ventricular remodeling but normal left ventricular mass and function. We did not detect large deletions/insertions in PLN in cohort studied. In Poland, similar to most populations, PLN mutations rarely cause cardiomyopathy. The 9(th) PLN residue is apparently a mutation hot spot whereas a single dose of c.9_10insA, and likely other null PLN mutations, cause the disease only with low penetrance or are not pathogenic.

  4. Positioning.

    ERIC Educational Resources Information Center

    Conone, Ruth M.

    The key to positioning is the creation of a clear benefit image in the consumer's mind. One positioning strategy is creating in the prospect's mind a position that takes into consideration the company's or agency's strengths and weaknesses as well as those of its competitors. Another strategy is to gain entry into a position ladder owned by…

  5. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer.

    PubMed

    Wang, Shuhang; Tsui, Stella T; Liu, Christina; Song, Yongping; Liu, Delong

    2016-07-22

    T790M mutation is the most common mechanism for resistance to first- and second-generation tyrosine kinase inhibitors (TKI) for epidermal growth factor receptor (EGFR). Several third-generation EGFR mutant selective TKIs are being explored to conquer this resistance. AZD9291 (osimertinib, tagrisso) has been approved for treatment of the metastatic EGFR T790M mutation-positive non-small cell lung cancer. Resistance to AZD9291 has been described. C797S mutation was reported to be a major mechanism for resistance to T790M-targeting EGFR inhibitors. This review summarizes the latest development in identifying the C797S mutation and EAI045, the novel selective inhibitor overcoming the C797S mutant.

  6. A novel GRN mutation (GRN c.708+6_+9delTGAG) in frontotemporal lobar degeneration with TDP-43-positive inclusions: clinicopathologic report of 6 cases.

    PubMed

    Bit-Ivan, Esther N; Suh, Eunran; Shim, Hyung-Sub; Weintraub, Sandra; Hyman, Bradley T; Arnold, Steven E; McCarty-Wood, Elisabeth; Van Deerlin, Viviana M; Schneider, Julie A; Trojanowski, John Q; Frosch, Matthew P; Baker, Matt C; Rademakers, Rosa; Mesulam, Marsel; Bigio, Eileen H

    2014-05-01

    Understanding of frontotemporal lobar degeneration, the underlying pathology most often linked to the clinical diagnosis of frontotemporal dementia, is rapidly increasing. Mutations in 7 known genes (MAPT, GRN, C9orf72, VCP, CHMP2B, and, rarely, TARDBP and FUS) are associated with frontotemporal dementia, and the pathologic classification of frontotemporal lobar degeneration has recently been modified to reflect these discoveries. Mutations in one of these genes (GRN), which encodes progranulin, have been implicated in up to a quarter of cases of frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43)-positive inclusions; currently, there are more than 60 known pathogenic mutations of the gene. We present the clinical, pathologic, and genetic findings on 6 cases from 4 families, 5 of which were shown to have a novel GRN c.708+6_+9delTGAG mutation.

  7. Diversity of the clinical presentation of the MMR gene biallelic mutations.

    PubMed

    Bougeard, Gaëlle; Olivier-Faivre, Laurence; Baert-Desurmont, Stéphanie; Tinat, Julie; Martin, Cosette; Bouvignies, Emilie; Vasseur, Stéphanie; Huet, Frédéric; Couillault, Gérard; Vabres, Pierre; Le Pessot, Florence; Chapusot, Caroline; Malka, David; Bressac-de Paillerets, Brigitte; Tosi, Mario; Frebourg, Thierry

    2014-03-01

    Constitutional mismatch repair-deficiency, due to biallelic mutations of MMR genes, results in a tumour spectrum characterized by leukaemias, lymphomas, brain tumours and adenocarcinomas of the gastro-intestinal tract, occurring mostly in childhood. We report here two families illustrating the phenotypic diversity associated with biallelic MMR mutations. In the first family, two siblings developed six malignancies including glioblastoma, lymphoblastic T cell lymphoma, rectal and small bowel adenocarcinoma with onset as early as 6 years of age. We showed that this dramatic clinical presentation was due to the presence of two complex genomic PMS2 deletions in each patient predicted to result into complete PMS2 inactivation. In the second family, the index case presented with an early form of Lynch syndrome with colorectal adenocarcinomas at ages 17 and 20 years, and urinary tract tumours at the age of 25 years. We identified in this patient two MSH6 mutations corresponding to a frameshift deletion and an in frame deletion. The latter was not predicted to result into complete inactivation of MSH6. These reports show that the clinical expression of biallelic MMR mutations depends on the biological impact of the second MMR mutation and that, in clinical practice, the presence of a second MMR mutation located in trans should also be considered in patients suspected to present a Lynch syndrome with an unusual early-onset of tumours.

  8. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members.

    PubMed

    Saberniak, Jørg; Hasselberg, Nina E; Borgquist, Rasmus; Platonov, Pyotr G; Sarvari, Sebastian I; Smith, Hans-Jørgen; Ribe, Margareth; Holst, Anders G; Edvardsen, Thor; Haugaa, Kristina H

    2014-12-01

    Exercise increases risk of ventricular arrhythmia in subjects with arrhythmogenic right ventricular cardiomyopathy (ARVC). We aimed to investigate the impact of exercise on myocardial function in ARVC subjects. We included 110 subjects (age 42 ± 17 years), 65 ARVC patients and 45 mutation-positive family members. Athletes were defined as subjects with ≥4 h vigorous exercise/week [≥1440 metabolic equivalents (METs × minutes/week)] during a minimum of 6 years. Athlete definition was fulfilled in 37/110 (34%) subjects. We assessed right ventricular (RV) and left ventricular (LV) myocardial function by echocardiography, and by magnetic resonance imaging (MRI). The RV function by RV fractional area change (FAC), RV global longitudinal strain (GLS) by echocardiography, and RV ejection fraction (EF) by MRI was reduced in athletes compared with non-athletes (FAC 34 ± 9% vs. 40 ± 11%, RVGLS -18.3 ± 6.1% vs. -22.0 ± 4.8%, RVEF 32 ± 8% vs. 43 ± 10%, all P < 0.01). LV function by LVEF and LVGLS was reduced in athletes compared with non-athletes (LVEF by echocardiography 50 ± 10% vs. 57 ± 5%, LVEF by MRI 46 ± 6% vs. 53 ± 8%, and LVGLS -16.7 ± 4.2% vs. -19.4 ± 2.9%, all P < 0.01). The METs × minutes/week correlated with reduced RV and LV function by echocardiography and MRI (all P < 0.01). The LVEF by MRI was also reduced in subgroups of athlete index patients (46 ± 7% vs. 54 ± 10%, P = 0.02) and in athlete family members (47 ± 3% vs. 52 ± 6%, P < 0.05). Athletes showed reduced biventricular function compared with non-athletes in ARVC patients and in mutation-positive family members. The amount and intensity of exercise activity was associated with impaired LV and RV function. Exercise may aggravate and accelerate myocardial dysfunction in ARVC. © 2014 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European

  9. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant

    PubMed Central

    Spoerke, Jill M.; Gendreau, Steven; Walter, Kimberly; Qiu, Jiaheng; Wilson, Timothy R.; Savage, Heidi; Aimi, Junko; Derynck, Mika K.; Chen, Meng; Chan, Iris T.; Amler, Lukas C.; Hampton, Garret M.; Johnston, Stephen; Krop, Ian; Schmid, Peter; Lackner, Mark R.

    2016-01-01

    Mutations in ESR1 have been associated with resistance to aromatase inhibitor (AI) therapy in patients with ER+ metastatic breast cancer. Little is known of the impact of these mutations in patients receiving selective oestrogen receptor degrader (SERD) therapy. In this study, hotspot mutations in ESR1 and PIK3CA from ctDNA were assayed in clinical trial samples from ER+ metastatic breast cancer patients randomized either to the SERD fulvestrant or fulvestrant plus a pan-PI3K inhibitor. ESR1 mutations are present in 37% of baseline samples and are enriched in patients with luminal A and PIK3CA-mutated tumours. ESR1 mutations are often polyclonal and longitudinal analysis shows distinct clones exhibiting divergent behaviour over time. ESR1 mutation allele frequency does not show a consistent pattern of increases during fulvestrant treatment, and progression-free survival is not different in patients with ESR1 mutations compared with wild-type patients. ESR1 mutations are not associated with clinical resistance to fulvestrant in this study. PMID:27174596

  10. An integrative analysis of PIK3CA mutation, PTEN, and INPP4B expression in terms of trastuzumab efficacy in HER2-positive breast cancer.

    PubMed

    Sueta, Aiko; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Hayashi, Mitsuhiro; Takeshita, Takashi; Yamamoto, Satoko; Iwase, Hirotaka

    2014-01-01

    The phosphoinositide-3-kinase (PI3K) pathway is commonly deregulated in breast cancer through several mechanisms, including PIK3CA mutation and loss of phosphatase and tensin homolog (PTEN) and inositol polyphosphate 4-phosphatase-II (INPP4B). We aimed to evaluate the predictive relevance of these biomarkers to trastuzumab efficacy in HER2-positive disease. We evaluated the effect of trastuzumab in 43 breast cancer patients with HER2-overexpression who received neoadjuvant treatment. PIK3CA mutation was examined by direct sequencing and digital PCR assay, and PIK3CA copy number was assessed by digital PCR assay of pretreatment tissues. PTEN, pAkt, and INPP4B were assessed by immunohistochemistry. Direct sequencing detected mutant DNA in 21% of all patients, but the incidence increased to 49% using digital PCR. The pathological complete response (pCR) rate in patients with PIK3CA mutations was 29% compared with 67% for those without PIK3CA mutations (P = 0.093), when the mutation was defined as positive if the mutant proportion was more than 10% of total genetic content by digital PCR. Low PTEN expression was associated with less pCR compared to high expression (33% versus 72%, P = 0.034). There were no significant associations of PIK3CA copy number, pAKt, or INPP4B with trastuzumab efficacy. In multivariate analysis, activation of the PI3K pathway due to either PIK3CA mutation or low PTEN were related to poorer response to trastuzumab (OR of predictive pCR was 0.11, 95%CI; 0.03-0.48). In conclusion, activating the PI3K pathway is associated with low pCR to trastuzumab-based treatment in HER2-positive breast cancer. Combined analysis of PIK3CA mutation and PTEN expression may serve as critical indicators to identify patients unlikely to respond to trastuzumab.

  11. Differences of protein expression profiles, KRAS and BRAF mutation, and prognosis in right-sided colon, left-sided colon and rectal cancer.

    PubMed

    Gao, Xian Hua; Yu, Guan Yu; Gong, Hai Feng; Liu, Lian Jie; Xu, Yi; Hao, Li Qiang; Liu, Peng; Liu, Zhi Hong; Bai, Chen Guang; Zhang, Wei

    2017-08-11

    To compare protein expression levels, gene mutation and survival among Right-Sided Colon Cancer (RSCC), Left-Sided Colon Cancer (LSCC) and rectal cancer patients, 57 cases of RSCC, 87 LSCC and 145 rectal cancer patients were included retrospectively. Our results demonstrated significant differences existed among RSCC, LSCC and rectal cancer regarding tumor diameter, differentiation, invasion depth and TNM stage. No significant difference was identified in expression levels of MLH1, MSH2, MSH6, PMS2, β-Tubulin III, P53, Ki67 and TOPIIα, and gene mutation of KRAS and BRAF among three groups. Progression Free Survival (PFS) of RSCC was significantly lower than that of LRCC and rectal cancer. In univariate analyses, RSCC, preoperative chemoradiotherapy, poor differentiation, advanced TNM stage, elevated serum CEA and CA19-9 level, tumor deposit, perineural and vascular invasion were found to be predictive factors of shorter PFS. In multivariate analyses, only differentiation and TNM stages were found to be independent predictors of PFS. In conclusion, compared with LSCC and rectal cancer, RSCC has larger tumor size, poor differentiation, advanced TNM stage and shorter survival. The shorter survival in RSCC might be attributed to the advanced tumor stage caused by its inherent position feature of proximal colon rather than genetic difference.

  12. Clinical and therapeutic implications of Sprouty2 feedback dysregulation in BRAF V600E-mutation-positive papillary thyroid cancer.

    PubMed

    Dultz, Linda A; Dhar, Shumon; Ogilvie, Jennifer B; Heller, Keith S; Bar-Sagi, Dafna; Patel, Kepal N

    2013-12-01

    The BRAF V600E (BRAF+) mutation activates the mitogen-activated protein kinase (MAPK/ERK) pathway and may confer an aggressive phenotype in papillary thyroid cancer (PTC). Clinically, the behavior of BRAF+ PTC, however, varies from an indolent to an aggressive course. SPRY2 is a negative feedback regulator of the MAPK/ERK pathway. We hypothesize that the level of SPRY2 expression contributes to MAPK/ERK pathway output and accounts for BRAF+ and clinical heterogeneity. A tissue microarray with BRAF-positive PTCs (BRAF+ PTCs) was constructed and analyzed for SPRY2 expression and MAPK/ERK output. Data were studied in the context of clinicopathologic factors to develop a risk stratification system predictive of tumor biology. SPRY2 function was studied by silencing SPRY2 in BRAF+ PTC cells. These cells were treated with MAPK/ERK pathway inhibitors and assessed for growth effects. BRAF+ PTCs with an intact MAPK/ERK feedback pathway do not exhibit lymph node metastases. BRAF+ PTCs with dysregulated feedback pathways have nodal metastasis. When SPRY2 is silenced, the BRAF+ PTC cells are significantly more sensitive to MAPK/ERK inhibition. PTC behavior likely is dependent on both the driver of the MAPK/ERK pathway and its regulatory feedback. When the feedback pathway is intact, the tumor phenotype seems to be less aggressive. This observation has direct and important clinical implications and may alter our treatment strategies. Copyright © 2013 Mosby, Inc. All rights reserved.

  13. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response.

    PubMed

    Golding, Sarah E; Rosenberg, Elizabeth; Neill, Steven; Dent, Paul; Povirk, Lawrence F; Valerie, Kristoffer

    2007-02-01

    The accurate joining of DNA double-strand breaks by homologous recombination repair (HRR) is critical to the long-term survival of the cell. The three major mitogen-activated protein (MAP) kinase (MAPK) signaling pathways, extracellular signal-regulated kinase (ERK), p38, and c-Jun-NH(2)-kinase (JNK), regulate cell growth, survival, and apoptosis. To determine the role of MAPK signaling in HRR, we used a human in vivo I-SceI-based repair system. First, we verified that this repair platform is amenable to pharmacologic manipulation and show that the ataxia telangiectasia mutated (ATM) kinase is critical for HRR. The ATM-specific inhibitor KU-55933 compromised HRR up to 90% in growth-arrested cells, whereas this effect was less pronounced in cycling cells. Then, using well-characterized MAPK small-molecule inhibitors, we show that ERK1/2 and JNK signaling are important positive regulators of HRR in growth-arrested cells. On the other hand, inhibition of the p38 MAPK pathway generated an almost 2-fold stimulation of HRR. When ERK1/2 signaling was stimulated by oncogenic RAF-1, an approximately 2-fold increase in HRR was observed. KU-55933 partly blocked radiation-induced ERK1/2 phosphorylation, suggesting that ATM regulates ERK1/2 signaling. Furthermore, inhibition of MAP/ERK kinase (MEK)/ERK signaling resulted in severely reduced levels of phosphorylated (S1981) ATM foci but not gamma-H2AX foci, and suppressed ATM phosphorylation levels >85% throughout the cell cycle. Collectively, these results show that MAPK signaling positively and negatively regulates HRR in human cells. More specifically, ATM-dependent signaling through the RAF/MEK/ERK pathway is critical for efficient HRR and for radiation-induced ATM activation, suggestive of a regulatory feedback loop between ERK and ATM.

  14. A multi-case report of the pathways to and through genetic testing and cancer risk management for BRCA mutation-positive women aged 18–25

    PubMed Central

    Werner-Lin, Allison

    2012-01-01

    Much of the extant literature addressing the psychosocial aspects of BRCA1/2 mutation testing and risk management aggregates mutation carriers of all ages in study recruitment, data analysis, and interpretation. This analytic strategy does not adequately address the needs of the youngest genetic testing consumers, i.e., women aged 18–25. Despite low absolute cancer risk estimates before age 30, BRCA1/2 mutation-positive women aged 18–25 feel vulnerable to a cancer diagnosis but find themselves in a management quandary because the clinical utility of screening and prevention options are not yet well defined for such young carriers. We present three cases, selected from a larger study of 32 BRCA1/2 mutation-positive women who completed or considered genetic testing before age 25, to demonstrate the unique developmental, relational and temporal influences, as well as the challenges, experienced by very young BRCA mutation-positive women as they complete genetic testing and initiate cancer risk management. The first case describes the maturation of a young woman whose family participated in a national cancer registry. The second addresses the experiences and expectations of a young woman who completed genetic testing after learning that her unaffected father was a mutation carrier. The third case highlights the experiences of a young woman parentally bereaved in childhood, who presented for genetic counseling and testing due to intense family pressure. Together, these cases suggest that BRCA1/2-positive women aged 18–25 are challenged to reconcile their burgeoning independence from their families with risk-related support needs. Loved ones acting in ways meant to care for these young women may inadvertently apply pressure, convoluting family support dynamics and autonomous decision-making. Ongoing support from competent healthcare professionals will enable these young women to remain informed and receive objective counsel about their risk-management decisions

  15. Uterine Tumor Resembling Ovarian Sex Cord Tumor (UTROSCT) Commonly Exhibits Positivity With Sex Cord Markers FOXL2 and SF-1 but Lacks FOXL2 and DICER1 Mutations.

    PubMed

    Croce, Sabrina; de Kock, Leanne; Boshari, Talia; Hostein, Isabelle; Velasco, Valerie; Foulkes, William D; McCluggage, W Glenn

    2016-07-01

    Uterine tumor resembling ovarian sex cord tumor (UTROSCT) is a rare neoplasm which morphologically and immunohistochemically exhibits overlap with an ovarian sex cord tumor. Although many of these neoplasms are positive with markers of ovarian sex cord-stromal tumors, staining is often limited and the pathogenesis of UTROSCT is unknown. To further explore the sex cord lineage of UTROSCT, we studied 19 of these neoplasms and examined the expression of 2 recently described markers of ovarian sex cord-stromal tumors, FOXL2, and steroidogenic factor-1. We also undertook FOXL2 and DICER1 mutation analysis in these cases; a somatic missense mutation in codon C134W (402C→G) of FOXL2 gene has been demonstrated in the vast majority (>95%) of ovarian adult granulosa cell tumors and somatic DICER1 mutations are found in approximately 60% of ovarian Sertoli-Leydig cell tumors. Ten of 19 cases (53%) exhibited nuclear immunoreactivity with FOXL2 and 11 of 19 (58%) exhibited nuclear staining with steroidogenic factor-1. Neither FOXL2 nor DICER1 mutations were identified in any case where there was sufficient tumor tissue for analysis (18 and 9 cases, respectively). Despite exhibiting an immunophenotype characteristic of a sex cord-stromal tumor, mutations in FOXL2 and DICER1, the 2 most common mutations hitherto reported in ovarian sex cord-stromal tumors, are not a feature of UTROSCT.

  16. Mutation in the RRM2 domain of TDP-43 in Amyotrophic Lateral Sclerosis with rapid progression associated with ubiquitin positive aggregates in cultured motor neurons.

    PubMed

    Maurel, Cindy; Madji-Hounoum, Blandine; Thepault, Rose-Anne; Marouillat, Sylviane; Brulard, Céline; Danel-Brunaud, Véronique; Camdessanche, Jean-Philippe; Blasco, Helene; Corcia, Philippe; Andres, Christian R; Vourc'h, Patrick

    2017-07-13

    Mutations in the TAR-DNA Binding Protein-43 (TDP-43) encoding the TARDBP gene are present in amyotrophic lateral sclerosis (ALS). TDP-43 is the major component of ubiquitin-positive inclusions in motor neurons in ALS patients. We report here a novel heterozygous missense mutation in TARDBP in an ALS patient presenting a rapid form of ALS. This mutation p.N259S is located within the RNA recognition motif 2 (RRM2) in very close proximity with nucleotides in RNA. It is the first time a mutation was reported in this RRM2 domain of TDP-43. Expression of TDP-43(N259S) in neuronal cells NSC-34 and in primary cultures of motor neurons was associated with cytoplasmic TDP-43/ubiquitin positive inclusions. Our findings identified for the first time a mutation in ALS in the RRM2 domain of TDP-43, reinforcing the link between this RNA-binding protein, perturbations in RNA metabolism, disruption in protein homeostasis and ALS.

  17. Molecular characterization of a novel HEXA mutation at the +3 position of intron 8 in a Tay-Sachs disease patient

    SciTech Connect

    Richard, M.; Triggs-Raine, B.; Natowicz, M.

    1994-09-01

    Tay-Sachs disease is an autosomal recessive lysosomal storage disorder resulting from mutations in the HEXA gene that cause a deficiency in the activity of that enzyme {beta}-hexosaminidase A (Hex A). This deficiency leads to the build-up of G{sub M2} ganglioside, resulting in neurodegeneration and death. Biochemical analysis of a non-Jewish patient with a late-infantile form of Tay-Sachs disease revealed a substantial level of Hex A activity (38.4%) when 4-MUG was used as the substrate. However, when a substrate (4-MUGS) specific for the {alpha}-subunit of Hex A ({alpha}{beta}) was used, almost no activity was detected in the HEXA gene of the patient using SSCP analysis followed by sequencing. The first mutation, a G533A substitution in exon 5, is previously described and associated with the B1 form of Tay-Sachs disease. The second mutation is a novel a-to-g base change at the +3 position of intron 8. This was confirmed using the AIRS method, whereby a MaeIII site was created in the presence of the mutation. Normal and patient mRNA was reverse transcribed and exons 7 to 9 were PCR-amplified from the cDNA. An abnormally sized amplification product detected only in the patient cDNA was sequenced; exon 8 had been deleted and exons 7 and 9 were spliced together. A substantial level of normally-sized PCR product was also detected in the patient`s cDNA. Experiments are in progress to determine if this is produced from the allele harboring the G533A mutation. Given that previous mutations of this type have been associated with 97-100% abnormal splicing, this mutation is likely to be the cause, together with the G533A mutation, of Tay-Sachs disease in this patient.

  18. Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer.

    PubMed

    Surmann, Eva-Maria; Voigt, Anita Y; Michel, Sara; Bauer, Kathrin; Reuschenbach, Miriam; Ferrone, Soldano; von Knebel Doeberitz, Magnus; Kloor, Matthias

    2015-03-01

    Besides being expressed on professional antigen-presenting cells, HLA class II antigens are expressed on various tumors of non-lymphoid origin, including a subset of colorectal cancers (CRC). Information about the regulation of HLA class II antigen expression is important for a better understanding of their role in the interactions between tumor and immune cells. Whether lack of HLA class II antigen expression in tumors reflects the selective immune destruction of HLA class II antigen-expressing tumor cells is unknown. To address this question, we tested whether lack of HLA class II antigen expression in CRC was associated with immune cell infiltration. We selected microsatellite-unstable (MSI-H) CRC, because they show pronounced tumor antigen-specific immune responses and, in a subset of tumors, lack of HLA class II antigen expression due to mutations inactivating HLA class II-regulatory genes. We examined HLA class II antigen expression, mutations in regulatory genes, and CD4-positive T cell infiltration in 69 MSI-H CRC lesions. Mutations in RFX5, CIITA, and RFXAP were found in 13 (28.9%), 3 (6.7%), and 1 (2.2%) out of 45 HLA class II antigen-negative tumors. CD4-positive tumor-infiltrating lymphocyte counts were significantly higher in HLA class II antigen-negative tumors harboring mutations in HLA class II-regulatory genes (107.4 T cells per 0.25 mm(2)) compared to tumors without mutations (55.5 T cells per 0.25 mm(2), p = 0.008). Our results suggest that the outgrowth of tumor cells lacking HLA class II antigen expression due to mutations of regulatory genes is favored in an environment of dense CD4-positive T cell infiltration.

  19. Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae

    PubMed Central

    Bommakanti, Ananth S.; Lindahl, Lasse; Zengel, Janice M.

    2008-01-01

    The macrolide erythromycin binds to the large subunit of the prokaryotic ribosome near the peptidyltransferase center (PTC) and inhibits elongation of new peptide chains beyond a few amino acids. Nucleotides A2058 and A2059 (E. coli numbering) in 23S rRNA play a crucial role in the binding of erythromycin, and mutation of nucleotide A2058 confers erythromycin resistance in both Gram-positive and Gram-negative bacteria. There are high levels of sequence and structural similarity in the PTC of prokaryotic and eukaryotic ribosomes. However, eukaryotic ribosomes are resistant to erythromycin and the presence of a G at the position equivalent to E. coli nucleotide A2058 is believed to be the reason. To test this hypothesis, we introduced a G to A mutation at this position of the yeast Saccharomyces cerevisiae 25S rRNA and analyzed sensitivity toward erythromycin. Neither growth studies nor erythromycin binding assays on mutated yeast ribosomes indicated any erythromycin sensitivity in mutated yeast strains. These results suggest that the identity of nucleotide 2058 is not the only determinant responsible for the difference in erythromycin sensitivity between yeast and prokaryotes. PMID:18218702

  20. Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae.

    PubMed

    Bommakanti, Ananth S; Lindahl, Lasse; Zengel, Janice M

    2008-03-01

    The macrolide erythromycin binds to the large subunit of the prokaryotic ribosome near the peptidyltransferase center (PTC) and inhibits elongation of new peptide chains beyond a few amino acids. Nucleotides A2058 and A2059 (E. coli numbering) in 23S rRNA play a crucial role in the binding of erythromycin, and mutation of nucleotide A2058 confers erythromycin resistance in both gram-positive and gram-negative bacteria. There are high levels of sequence and structural similarity in the PTC of prokaryotic and eukaryotic ribosomes. However, eukaryotic ribosomes are resistant to erythromycin and the presence of a G at the position equivalent to E. coli nucleotide A2058 is believed to be the reason. To test this hypothesis, we introduced a G to A mutation at this position of the yeast Saccharomyces cerevisiae 25S rRNA and analyzed sensitivity toward erythromycin. Neither growth studies nor erythromycin binding assays on mutated yeast ribosomes indicated any erythromycin sensitivity in mutated yeast strains. These results suggest that the identity of nucleotide 2058 is not the only determinant responsible for the difference in erythromycin sensitivity between yeast and prokaryotes.

  1. Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’olorectal carcinomas

    PubMed Central

    Shimada, S; Shiomori, K; Tashima, S; Tsuruta, J; Ogawa, M

    2001-01-01

    ‘de novo’ carcinogenesis has been advocated besides ‘adenoma carcinoma sequence’ as another dominant pathway leading to colorectal carcinoma. Our recent study has demonstrated that the distribution of brain (fetal)-type glycogen phosphorylase (BGP) positive foci (BGP foci) has a close relationship with the location of ‘de novo’ carcinoma. The aims of the present study are to investigate genetic alteration in the BGP foci and to characterize them in the ‘de novo’ carcinogenesis. 17 colorectal carcinomas without any adenoma component expressing both immunoreactive p53 and BGP protein were selected from 96 resected specimens from our previous study. Further investigations to examine the proliferating cell nuclear antigen (PCNA)-labelling index, and the p53 and the codon 12 of K-ras mutation using the polymerase chain reaction-single strand conformation polymorphism were performed in the BGP foci, BGP negative mucosa and carcinoma. The BGP foci were observed sporadically in the transitional mucosa adjacent to the carcinoma in all cases. The PCNA labelling index in the BGP foci was significantly higher than that in the BGP negative mucosa (P< 0.001). p53 mutations were observed in 8 carcinomas, but no K-ras mutation was detected. Interestingly, although none of the overexpressions of p53 protein was detected immunohistochemically in the BGP positive foci, the p53 gene frequently (41.2% of the BGP foci tested) mutated in spite of no K-ras mutation. The present study demonstrates potentially premalignant foci in the colorectal transitional mucosa with frequent p53 gene mutation. It is suggested that BGP foci are promising candidates for the further investigation of ‘de novo’ colorectal carcinogenesis. © 2001Cancer Research Campaign http://www.bjcancer.com PMID:11384100

  2. Mutation from arginine to lysine at the position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine influenza viruses

    PubMed Central

    Ye, Jianqiang; Xu, Yifei; Harris, Jillian; Sun, Hailiang; Bowman, Andrew S.; Cunningham, Fred; Cardona, Carol; Yoon, Kyoungjin J.; Slemons, Richard D.; Wan, Xiu-Feng

    2014-01-01

    Two distinct antigenic clusters were previously identified among the H3N2 swine influenza A viruses (IAVs) and were designated H3N2SIV-alpha and H3N2SIV-beta (Feng et al., 2013, Journal of Virology 87(13), 7655-7667). A consistent mutation was observed at the position 189 of hemagglutinin (R189K) between H3N2SIV-alpha and H3N2SIV-beta fair isolates. To evaluate the contribution of R189K mutation to the antigenic drift from H3N2SIV-alpha to H3N2SIV-beta, four reassortant viruses with 189R or 189K were generated. The antigenic cartography demonstrated that the R189K mutation in the hemagglutinin of H3N2 IAV contributed to the antigenic drift, separating these viruses into H3N2SIV-alpha to H3N2SIV-beta. This R189K mutation was also found to contribute to the cross-reaction with several ferret sera raised against historical human IAVs with hemagglutinin carrying 189K. This study suggests that the R189K mutation plays a vital role in the antigenicity of swine and human H3N2 IAVs and identification of this antigenic determinant will help us rapidly identify antigenic variants in influenza surveillance. PMID:24074585

  3. [Atypical serological profiles in hepatitis B infections: investigation of S gene mutations in cases with concurrently positive for HBsAg and anti-HBs].

    PubMed

    Aydın, Neriman; Kırdar, Sevin; Uzun, Nilgül; Eyigör, Mete; Sayan, Murat

    2016-10-01

    Hepatitis B virus (HBV) causes different clinical manifestations, ranging from asymptomatic carriage to fulminant or chronic hepatitis. Serological tests are widely used for the diagnosis of HBV infections to detect viral markers. However, facing with atypical serological profiles in some patients leads to problems in interpreting of the results and management of the patients. The aims of this study were to investigate the atypical serologic profiles seen in patients screened for HBV infection and the S gene mutations in patients with concurrent positivity of HBsAg and anti-HBs. A total of 592 sera from patients (332 male, 260 female; age range: 13-84 years, mean age: 43.9 years) prediagnosed as HBV infection between January to September 2013, and screened for HBV markers (HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc-IgM, anti-HBc-total and HBV-DNA) were included in the study. Of those samples 364 were screened only for HBsAg and anti-HBs markers. S gene mutations were investigated by direct sequencing method in sera which were concurrent positive for HBsAg and anti-HBs. In our study, 5.2% (31/592) of the sera yielded atypical serologic profiles. Of these 13 cases were concurrently positive for HBsAg and anti-HBs; nine were HBeAg positive, anti-HBe and HBV-DNA negative; eight were HBeAg, anti-HBe and HBV-DNA positive; and one was HBsAg and anti-HBs negative, anti-HBe and HBV-DNA positive. The rate of concurrent positivity of HBsAg and anti-HBs was 3.6% (13/364), while 76.9% (10/13) of those cases were also positive for HBV-DNA. DNA sequencing was performed for seven out of 10 samples which were positive for HBsAg, anti-HBs and HBV-DNA, however three samples were not used because of the low amounts. Sequence analysis of seven samples showed S gene mutations in two samples, one was sS143L with sS193L, a HBV vaccine escape mutation, and the other was sP120R, a HBV immune escape mutation. Of the patients 2.7% (10/364) was negative for both HBsAg and anti-HBs; in which

  4. Analysis of P gene mutations in patients with type II (tyrosinase-positive) oculocutaneous albinism (OCA2)

    SciTech Connect

    Lee, S.T.; Nicholls, R.D.; Schnur, R. ||

    1994-09-01

    OCA2 is an autosomal recessive disorder in which the biosynthesis of melanin pigment is greatly reduced in the skin, hair, and eyes. Recently, we showed that OCA2 results from mutations of the P gene, in chromosome segment 15q11-q13. In addition to OCA2, mutations of P account for OCA associated with the Prader-Willi syndrome and some cases of {open_quotes}autosomal recessive ocular albinism{close_quotes} (AROA). We have now studied 38 unrelated patients with various forms of OCA2 or AROA from a variety of different ethnic groups. None of these patients had detectable abnormalities of the tyrosinase (TYR) gene. Among 8 African-American patients with OCA2 we observed apparent locus homogeneity. We detected abnormalities of the P gene in all 8 patients, including 12 different mutations and deletions, most of which are unique to this group and none of which is predominant. In contrast, OCA2 in other populations appears to be genetically heterogeneous. Among 21 Caucasian patients we detected abnormalities of the P gene in only 8, comprising 9 different point mutations and deletions, some of which also occurred among the African-American patients. Among 3 Middle-Eastern, 3 Indo-Pakistani, and 3 Asian patients we detected mutations of the P gene in only one from each group. In a large Indo-Pakistani kindred with OCA2 we have excluded both the TYR and P genes on the basis of genetic linkage. The prevalence of mutations of the P gene thus appears to be much higher among African-Americans with OCA2 than among patients from other ethnic groups. The incidence of OCA2 in some parts of equatorial Africa is extremely high, as frequent as 1 per 1100, and the disease has been linked to P in South African Bantu. The eventual characterization of P gene mutations in Africans will be informative with regard to the origins of P gene mutations in African-American patients.

  5. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients

    PubMed Central

    Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian

    2016-01-01

    AIM: To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. METHODS: In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. RESULTS: Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). CONCLUSION: Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients. PMID:26900293

  6. Tyrosinase-positive oculocutaneous albinism in Southern African blacks: P gene-associated haplotypes suggest a major mutation in the 5{prime} region of the gene

    SciTech Connect

    Ramsay, M.; Stevens, G.; Beukering, J. van

    1994-09-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA) occurs with a prevalence of 1 in 3900 among Southern African (SA) blacks. The major contributors to morbidity and mortality are skin cancer and decreased visual acuity. Two distinct phenotypes occur, namely individuals with ephelides (darkly pigmented patches) and those without. There is complete concordance with regard to ephelus status among siblings. The disorder is linked to markers on chromosome 15q11.2-q12, and no obligatory cross-overs were observed with polymophic markers at the human homolog, P, of the mouse pink eyed dilute gene, p. Contrary to what has been shown for Caucasoid ty-pos OCA, this condition shows locus homogeneity among SA blacks. The P gene is an excellent candidate for ty-pos OCA and mutations in this gene will confirm its role in causing the common form of albinism in SA. Numerous P gene mutations have been described in other populations. In an attempt to detect mutations, the P gene cDNA was used to search for structural rearrangements or polymorphisms. Six polymorphisms (plR10/Scal, 912/Xbal, 912/HincII, 912/TaqI, 1412/TaqI [two systems] and 1412/HindIII) were detected with subclones of the P cDNA and haplotypes were determined in each family. None were clearly associated with an albinism-related rearrangement. However, strong linkage disequilibrium was observed with alleles at loci toward the 5{prime} region of the gene ({triangle}=0.65, 0.57 and 0.80 for the three polymorphisms detected with the 912 subclone), suggesting a major ty-pos OCA mutation in this region. Haplotype analysis provides evidence for a major mutation associated with the same haplotype in individuals with ephelides (8/12 OCA chromosomes) and those without ephelides (24:30). The presence of other ty-pos OCA associated haplotypes indicates several other less common mutations.

  7. Mutation of the phospholipase C-γ1–binding site of LAT affects both positive and negative thymocyte selection

    PubMed Central

    Sommers, Connie L.; Lee, Jan; Steiner, Kevin L.; Gurson, Jordan M.; DePersis, Corinne L.; El-Khoury, Dalal; Fuller, Claudette L.; Shores, Elizabeth W.; Love, Paul E.; Samelson, Lawrence E.

    2005-01-01

    Linker for activation of T cells (LAT) is a scaffolding adaptor protein that is critical for T cell development and function. A mutation of LAT (Y136F) that disrupts phospholipase C-γ1 activation and subsequent calcium influx causes a partial block in T cell development and leads to a severe lymphoproliferative disease in homozygous knock-in mice. One possible contribution to the fatal disease of LAT Y136F knock-in mice could be from autoreactive T cells generated in these mice because of altered thymocyte selection. To examine the impact of the LAT Y136F mutation on thymocyte positive and negative selection, we bred this mutation onto the HY T cell receptor (TCR) transgenic, recombination activating gene-2 knockout background. Female mice with this genotype showed a severe defect in positive selection, whereas male mice exhibited a phenotype resembling positive selection (i.e., development and survival of CD8hi HY TCR-specific T cells) instead of negative selection. These results support the hypothesis that in non-TCR transgenic, LAT Y136F knock-in mice, altered thymocyte selection leads to the survival and proliferation of autoreactive T cells that would otherwise be negatively selected in the thymus. PMID:15795236

  8. Characteristics of BRCA1/2 Mutation-Positive Breast Cancers in Korea: A Comparison Study Based on Multicenter Data and the Korean Breast Cancer Registry

    PubMed Central

    Yu, Jong-Han; Son, Byung Ho; Kim, Sung-Won; Park, Sue K.; Lee, Min Hyuk; Kim, Lee Su; Noh, Woo-Chul; Kim, Eun-Kyu; Yoon, Dae Sung; Lee, Jeeyeon; Jung, Jin Hyang; Jung, Sang Seol; Gong, Gyungyup; Ahn, Sei-Hyun

    2014-01-01

    Purpose Mutations in BRCA genes are the main cause of hereditary breast cancer in Korea. The aim of this study was to investigate the characteristics of breast cancers involving BRCA1 (BRCA1 group) and BRCA2 (BRCA2 group) mutations. Methods We retrospectively reviewed the medical records of patients with BRCA1 (BRCA1 group) or BRCA2 (BRCA2 group) mutation positive breast cancer from multiple centers and compared the data to that of the Korean Breast Cancer Society registry (registry group). Results The patients of the BRCA1 group were diagnosed at a younger age (median age, 37 years) and had tumors of higher histological (61.3% with histological grade 3) and nuclear (37.5% with nuclear grade 3) grade than those of the registry group. In addition, the frequency of ductal carcinoma in situ in the BRCA1 group was lower (3.7%) than in the registry group, and the BRCA1 group were more likely to be triple-negative breast cancer (61.3%). Patients in the BRCA2 group were also younger at diagnosis (mean age, 41 years) and were more likely to have involvement of the axillary node than the registry group (45.5% vs. 33.5%, p=0.002). The BRCA1 and BRCA2 groups did not show a correlation between tumor size and axillary node involvement. Conclusion We report the characteristics of BRCA mutation positive breast cancer patients in the Korean population through multicenter data and nation-wide breast cancer registry study. However, BRCA-mutated breast cancers appear highly complex, and further research on their molecular basis is needed in Korea. PMID:25013433

  9. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.

    PubMed

    Agarwal, A; MacKenzie, R J; Eide, C A; Davare, M A; Watanabe-Smith, K; Tognon, C E; Mongoue-Tchokote, S; Park, B; Braziel, R M; Tyner, J W; Druker, B J

    2015-06-04

    To understand the role of cytokine and growth factor receptor-mediated signaling in leukemia pathogenesis, we designed a functional RNA interference (RNAi) screen targeting 188 cytokine and growth factor receptors that we found highly expressed in primary leukemia specimens. Using this screen, we identified interleukin-2 gamma receptor (IL2Rγ) as a critical growth determinant for a JAK3(A572V) mutation-positive acute myeloid leukemia cell line. We observed that knockdown of IL2Rγ abrogates phosphorylation of JAK3 and downstream signaling molecules, JAK1, STAT5, MAPK and pS6 ribosomal protein. Overexpression of IL2Rγ in murine cells increased the transforming potential of activating JAK3 mutations, whereas absence of IL2Rγ completely abrogated the clonogenic potential of JAK3(A572V), as well as the transforming potential of additional JAK3-activating mutations such as JAK3(M511I). In addition, mutation at the IL2Rγ interaction site in the FERM domain of JAK3 (Y100C) completely abrogated JAK3-mediated leukemic transformation. Mechanistically, we found IL2Rγ contributes to constitutive JAK3 mutant signaling by increasing JAK3 expression and phosphorylation. Conversely, we found that mutant, but not wild-type JAK3, increased the expression of IL2Rγ, indicating IL2Rγ and JAK3 contribute to constitutive JAK/STAT signaling through their reciprocal regulation. Overall, we demonstrate a novel role for IL2Rγ in potentiating oncogenesis in the setting of JAK3-mutation-positive leukemia. In addition, our study highlights an RNAi-based functional assay that can be used to facilitate the identification of non-kinase cytokine and growth factor receptor targets for inhibiting leukemic cell growth.

  10. No correlation between NF1 mutation position and risk of optic pathway glioma in 77 unrelated NF1 patients.

    PubMed

    Hutter, Sonja; Piro, Rosario M; Waszak, Sebastian M; Kehrer-Sawatzki, Hildegard; Friedrich, Reinhard E; Lassaletta, Alvaro; Witt, Olaf; Korbel, Jan O; Lichter, Peter; Schuhmann, Martin U; Pfister, Stefan M; Tabori, Uri; Mautner, Victor F; Jones, David T W

    2016-05-01

    Neurofibromatosis type 1 (NF1) is a common monogenic disorder whereby affected individuals are predisposed to developing CNS tumors, including optic pathway gliomas (OPGs, occurring in ~15 to 20 % of cases). So far, no definite genotype-phenotype correlation determining NF1 patients at risk for tumor formation has been described, although enrichment for mutations in the 5' region of the NF1 gene in OPG patients has been suggested. We used whole exome sequencing, targeted sequencing, and copy number analysis to screen 77 unrelated NF1 patients with (n = 41) or without (n = 36; age ≥10 years) optic pathway glioma for germline NF1 alterations. We identified germline NF1 mutations in 69 of 77 patients (90 %), but no genotype-phenotype correlation was observed. Our data using a larger patient cohort did not confirm the previously reported clustering of mutations in the 5' region of the NF1 gene in patients with OPG. Thus, NF1 mutation location should not currently be used as a clinical criterion to assess the risk of developing OPGs.

  11. Low prevalence of HER2 positivity amongst BRCA1 and BRCA2 mutation carriers and in primary BRCA screens.

    PubMed

    Evans, D G; Lalloo, F; Howell, S; Verhoef, S; Woodward, E R; Howell, A

    2016-02-01

    The aim of this study is to delineate more clearly the prevalence of HER2+ breast cancer in women with germline BRCA1/2 mutations. For this purpose, we analysed primary mutation screens on women with breast cancer with unequivocal HER2 amplification and assessed the proportion of BRCA1 and BRCA2 breast cancers that were HER2+ comparing this with the existing literature. The results are that 1063 primary BRCA screens had confirmed tumour HER2 status. If HER2+ only 2.5 % (4/156) and 3.2 % (5/156) of women had a BRCA1 or BRCA2 mutation identified respectively; compared to 27.7 % (115/415) and 8.2 % (34/415) with triple negative tumours. Only 2.1 % (4/195) women with BRCA1-related breast cancer had HER2 amplified breast cancers rising to 6.8 % (n = 12, p = 0.04) in BRCA2. These rates are in keeping with most of the existing literature except a recent large multicenter report which documented higher rates but with no control group. The study concluded that true HER2-amplified breast cancers are rare amongst BRCA1 mutation carriers and are less common in BRCA2 than background rates.

  12. Late Diagnosis of E148Q Mutation-Positive Familial Mediterranean Fever in a Kidney Transplant Patient With Fever of Unknown Origin: A Case Report.

    PubMed

    Tatar, Erhan; Uslu, Adam; Simsek, Cenk; Aykas, Ahmet; Bozkaya, Giray; Imamoglu, Cetin

    2017-02-01

    Fever of unknown origin is a rare condition after solid organ transplant and is generally associated with atypical infections (eg, tuberculosis, fungal infections) and/or lymphoproliferative disorders. Here, we present a kidney transplant patient with a late diagnosis of E148Q mutation-positive familial Mediterranean fever as the cause of fever of unknown origin. A 22-year-old female patient with a previous history of 4 years of hemodialysis and unknown primary renal disease received a deceased-donor kidney transplant at our center 5 years previously. She had an uneventful course in the first 3 years following transplant. After this period, she was hospitalized 3 times during a 4-month period with fever, nausea, vomiting, and atypical abdominal pain. At that time, hemogram results were unremarkable, except for mild leukocytosis and slightly elevated acute-phase reactants; blood, urine, and throat cultures were negative, and there were no remarkable findings on imaging tests. Fever was controlled within 48 hours by administering empiric ampicillin-sulbactam therapy and discontinuing immunosuppressive treatment except steroids. Three successive hospital admissions owing to similar complaints suggested periodic fever syndrome, and therapy with 1 g/day colchicine led to an excellent clinical response with no recurrence of fever or other symptoms. An FMF gene mutation analysis revealed heterozygous E148Q mutation positivity. Continuing the current treatment regimen, the patient did well during at approximately 1.5 years of follow-up. In the Mediterranean region population, familial Mediterranean fever should be considered in the diagnosis of fever of unknown origin in patients who have undergone renal transplant. E148Q mutation-positive familial Mediterranean fever has a subclinical course and renal manifestations that differ from AA amyloidosis during childhood and may be responsible for de novo familial Mediterranean fever after renal transplantation.

  13. Chromoendoscopy in combination with random biopsies does not improve detection of gastric cancer foci in CDH1 mutation positive patients

    PubMed Central

    Hüneburg, Robert; Marwitz, Tim; van Heteren, Peer; Weismüller, Tobias J.; Trebicka, Jonel; Adam, Ronja; Aretz, Stefan; Perez Bouza, Alberto; Pantelis, Dimitrios; Kalff, Jörg C.; Nattermann, Jacob; Strassburg, Cristian P.

    2016-01-01

    Background and study aims: Hereditary diffuse gastric cancer (HGGC), an autosomal dominant tumor-syndrome, accounts for 1 % to 3 % of gastric cancers worldwide. Presumably 30 % to 40 % of all patients fulfilling the clinical guidelines for HDGC are carriers of a pathogenic mutation in the CDH1 gene. Patients often show multiple foci of signet ring cell carcinoma at early age and are advised to undergo prophylactic total gastrectomy (PTG). Our aim was to improve the endoscopic detection of HDGC by using an enhanced endoscopic protocol. Patient and methods: Patients with a proven CDH1 germline mutation identified in our institute were prospectively included. Patients were advised to undergo PTG and offered a baseline endoscopic examination prior surgery. Examination was performed by using high-resolution white-light endoscopy and pan-gastric chromoendoscopy with indigo carmine as dye combined with targeted and multiple random biopsies assessed by an expert histopathologist. Postoperative histopathology was compared with results from endoscopic biopsies. Results: Between September 2012 and November 2014 8 patients with a proven CDH1 germline mutation were included. We conducted 44 targeted (6.3/patient) and 225 random (32.1/patient) biopsies in 7 patients. We detected 1 gastric cancer by random biopsy (14 %). All other examinations showed no signs of cancer. Histopathology of gastrectomy specimen revealed multiple foci of gastric carcinoma in 6 patients (86 %) with a total number of 27 cancer foci. Conclusions: Examination with targeted and random biopsies combined with chromoendoscopy is not able to detect small foci of gastric cancer in CDH1 mutation carriers. Therefore PTG is advocated in these patients. PMID:27995193

  14. Single-base mutations at position 2661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading.

    PubMed Central

    Melançon, P; Tapprich, W E; Brakier-Gingras, L

    1992-01-01

    Two single-base substitutions were constructed in the 2660 loop of Escherichia coli 23S rRNA (G2661-->C or U) and were introduced into the rrnB operon cloned in plasmid pKK3535. Ribosomes were isolated from bacteria transformed with the mutated plasmids and assayed in vitro in a poly(U)-directed system for their response to the misreading effect of streptomycin, neomycin, and gentamicin, three aminoglycoside antibiotics known to impair the proofreading control of translational accuracy. Both mutations decreased the stimulation of misreading by these drugs, but neither interfered with their binding to the ribosome. The response of the mutant ribosomes to these drugs suggests that the 2660 loop, which belongs to the elongation factor Tu binding site, is involved in the proofreading step of the accuracy control. In vivo, both mutations reduced read-through of nonsense codons and frameshifting, which can also be related to the increased efficiency in proofreading control which they confer to ribosomes. PMID:1281147

  15. Treatment choice in epidermal growth factor receptor mutation-positive non-small cell lung carcinoma: latest evidence and clinical implications.

    PubMed

    Juan, Oscar; Popat, Sanjay

    2017-03-01

    Discovery of sensitizing mutations in epidermal growth factor receptor (EGFR) and the subsequent development of EGFR tyrosine kinase inhibitors (TKIs) have substantially changed the treatment of lung cancer. First-line treatment with EGFR TKIs (gefitinib, erlotinib and afatinib) has demonstrated a superior response rate and progression-free survival (PFS) compared with chemotherapy in EGFR-mutation positive patients. However, a number of open questions remain, such as choice between the three EGFR TKIs licensed, treatment of patients unsuitable for chemotherapy due to morbidity or advanced age, management of acquired resistance and optimal biological sample to determine EGFR status. Recently the first head-to-head trial comparing gefitinib and afatinib (LUX-Lung 7) has been reported. Moreover, third-generation EGFR TKIs such as osimertinib, rociletinib, olmutinib and ASP8273, with preferential activity against T790M mutant tumours, the commonest resistance mechanism to EGFR TKIs, have shown promising results in early clinical trials, with osimertinib now licensed. In this review, we summarize latest advances in the treatment of EGFR-mutation positive patients focusing on controversial areas and emerging challenges to optimally treat these patients in the future.

  16. Treatment choice in epidermal growth factor receptor mutation-positive non-small cell lung carcinoma: latest evidence and clinical implications

    PubMed Central

    Juan, Oscar; Popat, Sanjay

    2017-01-01

    Discovery of sensitizing mutations in epidermal growth factor receptor (EGFR) and the subsequent development of EGFR tyrosine kinase inhibitors (TKIs) have substantially changed the treatment of lung cancer. First-line treatment with EGFR TKIs (gefitinib, erlotinib and afatinib) has demonstrated a superior response rate and progression-free survival (PFS) compared with chemotherapy in EGFR-mutation positive patients. However, a number of open questions remain, such as choice between the three EGFR TKIs licensed, treatment of patients unsuitable for chemotherapy due to morbidity or advanced age, management of acquired resistance and optimal biological sample to determine EGFR status. Recently the first head-to-head trial comparing gefitinib and afatinib (LUX-Lung 7) has been reported. Moreover, third-generation EGFR TKIs such as osimertinib, rociletinib, olmutinib and ASP8273, with preferential activity against T790M mutant tumours, the commonest resistance mechanism to EGFR TKIs, have shown promising results in early clinical trials, with osimertinib now licensed. In this review, we summarize latest advances in the treatment of EGFR-mutation positive patients focusing on controversial areas and emerging challenges to optimally treat these patients in the future. PMID:28344665

  17. Prevalence of K13 mutation and Day-3 positive parasitaemia in artemisinin-resistant malaria endemic area of Cambodia: a cross-sectional study.

    PubMed

    Kheang, Soy Ty; Sovannaroth, Siv; Ek, Sovann; Chy, Say; Chhun, Phally; Mao, Sokkieng; Nguon, Sokomar; Lek, Dy Soley; Menard, Didier; Kak, Neeraj

    2017-09-13

    The presence of artemisinin-resistant malaria parasites was confirmed in western Cambodia in 2009. In 2013, mutations in the propeller domain of the kelch protein K13 was found to be associated with artemisinin resistance. A cross-sectional study was conducted to determine the prevalence of Day-3 parasitaemia, estimate the frequency of k13 molecular marker and assess their relationship in the context of operational research. Blood smears and filter paper blood spots were collected from febrile patients in Kravanh District, Pursat Province. The blood smears were examined by microscopy, and blood spots by a k13 mutation assay. Data from 92 patients were analysed. Only one was positive for Day-3 parasitaemia. Results of the k13 assay were interpretable for 76 of the 92 samples. The findings were: wild type: 9 (12%), C580Y: 64 (84%), Y493H: 3 (4%). Therefore, despite the high prevalence of k13 mutants (67/76: 88%), only 1 of the 92 patients remained blood smear positive for Plasmodium falciparum on Day-3. These preliminary findings suggest good potency of artemisinin despite the dominance of k13 mutation in Kravanh, but the result is not necessarily representative of the western part of Cambodia. Further investigation should be made to determine if k13 marker remains useful as a tool for tracking artemisinin resistance and predicting the trend of the efficacy of artemisinin combination therapy once the mutant alleles have been well established in the population.

  18. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

    PubMed

    Utzeri, V J; Bertolini, F; Ribani, A; Schiavo, G; Dall'Olio, S; Fontanesi, L

    2016-02-01

    A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource.

  19. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation.

    PubMed

    Mian, A A; Rafiei, A; Haberbosch, I; Zeifman, A; Titov, I; Stroylov, V; Metodieva, A; Stroganov, O; Novikov, F; Brill, B; Chilov, G; Hoelzer, D; Ottmann, O G; Ruthardt, M

    2015-05-01

    Targeting BCR/ABL with tyrosine kinase inhibitors (TKIs) is a proven concept for the treatment of Philadelphia chromosome-positive (Ph+) leukemias. Resistance attributable to either kinase mutations in BCR/ABL or nonmutational mechanisms remains the major clinical challenge. With the exception of ponatinib, all approved TKIs are unable to inhibit the 'gatekeeper' mutation T315I. However, a broad spectrum of kinase inhibition increases the off-target effects of TKIs and may be responsible for cardiovascular issues of ponatinib. Thus, there is a need for more selective options for the treatment of resistant Ph+ leukemias. PF-114 is a novel TKI developed with the specifications of (i) targeting T315I and other resistance mutations in BCR/ABL; (ii) achieving a high selectivity to improve safety; and (iii) overcoming nonmutational resistance in Ph+ leukemias. PF-114 inhibited BCR/ABL and clinically important mutants including T315I at nanomolar concentrations. It suppressed primary Ph+ acute lymphatic leukemia-derived long-term cultures that either displayed nonmutational resistance or harbor the T315I. In BCR/ABL- or BCR/ABL-T315I-driven murine leukemia as well as in xenograft models of primary Ph+ leukemia harboring the T315I, PF-114 significantly prolonged survival to a similar extent as ponatinib. Our work supports clinical evaluation of PF-114 for the treatment of resistant Ph+ leukemia.

  20. Circulating-free DNA Mutation Associated with Response of Targeted Therapy in Human Epidermal Growth Factor Receptor 2-positive Metastatic Breast Cancer

    PubMed Central

    Ye, Qing; Qi, Fan; Bian, Li; Zhang, Shao-Hua; Wang, Tao; Jiang, Ze-Fei

    2017-01-01

    Background: The addition of anti-human epidermal growth factor receptor 2 (HER2)-targeted drugs, such as trastuzumab, lapatinib, and trastuzumab emtansine (T-DM1), to chemotherapy significantly improved prognosis of HER2-positive breast cancer patients. However, it was confused that metastatic patients vary in the response of targeted drug. Therefore, methods of accurately predicting drug response were really needed. To overcome the spatial and temporal limitations of biopsies, we aimed to develop a more sensitive and less invasive method of detecting mutations associated with anti-HER2 therapeutic response through circulating-free DNA (cfDNA). Methods: From March 6, 2014 to December 10, 2014, 24 plasma samples from 20 patients with HER2-positive metastatic breast cancer who received systemic therapy were eligible. We used a panel for detection of hot-spot mutations from 50 oncogenes and tumor suppressor genes, and then used targeted next-generation sequencing (NGS) to identify somatic mutation of these samples in those 50 genes. Samples taken before their first trastuzumab administration and subsequently proven with clinical benefit were grouped into sensitive group. The others were collected after disease progression of the trastuzumab-based therapy and were grouped into the resistant group. Results: A total of 486 single-nucleotide variants from 46 genes were detected. Of these 46 genes, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), proto-oncogene c-Kit (KIT), and tumor protein p53 (TP53) were the most common mutated genes. Seven genes, including epidermal growth factor receptor (EGFR), G protein subunit alpha S (GNAS), HRas proto-oncogene (HRAS), mutL homolog 1 (MLH1), cadherin 1 (CDH1), neuroblastoma RAS viral oncogene homolog (NRAS), and NOTCH1, that only occurred mutations in the resistant group were associated with the resistance of targeted therapy. In addition, we detected a HER2 S855I mutation in two patients who had

  1. Mutation at positively selected positions in the binding site for HLA-C shows that KIR2DL1 is a more refined but less adaptable NK cell receptor than KIR2DL3.

    PubMed

    Hilton, Hugo G; Vago, Luca; Older Aguilar, Anastazia M; Moesta, Achim K; Graef, Thorsten; Abi-Rached, Laurent; Norman, Paul J; Guethlein, Lisbeth A; Fleischhauer, Katharina; Parham, Peter

    2012-08-01

    Through recognition of HLA class I, killer cell Ig-like receptors (KIR) modulate NK cell functions in human immunity and reproduction. Although a minority of HLA-A and -B allotypes are KIR ligands, HLA-C allotypes dominate this regulation, because they all carry either the C1 epitope recognized by KIR2DL2/3 or the C2 epitope recognized by KIR2DL1. The C1 epitope and C1-specific KIR evolved first, followed several million years later by the C2 epitope and C2-specific KIR. Strong, varying selection pressure on NK cell functions drove the diversification and divergence of hominid KIR, with six positions in the HLA class I binding site of KIR being targets for positive diversifying selection. Introducing each naturally occurring residue at these positions into KIR2DL1 and KIR2DL3 produced 38 point mutants that were tested for binding to 95 HLA- A, -B, and -C allotypes. Modulating specificity for HLA-C is position 44, whereas positions 71 and 131 control cross-reactivity with HLA-A*11:02. Dominating avidity modulation is position 70, with lesser contributions from positions 68 and 182. KIR2DL3 has lower avidity and broader specificity than KIR2DL1. Mutation could increase the avidity and change the specificity of KIR2DL3, whereas KIR2DL1 specificity was resistant to mutation, and its avidity could only be lowered. The contrasting inflexibility of KIR2DL1 and adaptability of KIR2DL3 fit with C2-specific KIR having evolved from C1-specific KIR, and not vice versa. Substitutions restricted to activating KIR all reduced the avidity of KIR2DL1 and KIR2DL3, further evidence that activating KIR function often becomes subject to selective attenuation.

  2. Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load.

    PubMed

    Arias, Armando; Isabel de Ávila, Ana; Sanz-Ramos, Marta; Agudo, Rubén; Escarmís, Cristina; Domingo, Esteban

    2013-04-01

    Low fidelity replication and the absence of error-repair activities in RNA viruses result in complex and adaptable ensembles of related genomes in the viral population, termed quasispecies, with important implications for natural infections. Theoretical predictions suggested that elevated replication error rates in RNA viruses might be near to a maximum compatible with viral viability. This fact encouraged the use of mutagenic nucleosides as a new antiviral strategy to induce viral extinction through increased replication error rates. Despite extensive evidence of lethal mutagenesis of RNA viruses by different mutagenic compounds, a detailed picture of the infectivity of individual genomes and its relationship with the mutations accumulated is lacking. Here, we report a molecular analysis of a foot-and-mouth disease virus population previously subjected to heavy mutagenesis to determine whether a correlation between increased mutagenesis and decreased fitness existed. Plaque-purified viruses isolated from a ribavirin-treated quasispecies presented decreases of up to 200-fold in infectivity relative to clones in the reference population, associated with an overall eightfold increase in the mutation frequency. This observation suggests that individual infectious genomes of a quasispecies subjected to increased mutagenesis lose infectivity by their continuous mutagenic 'poisoning'. These results support the lethal defection model of virus extinction and the practical use of chemical mutagens as antiviral treatment. Even when extinction is not achieved, mutagenesis can decrease the infectivity of surviving virus, and facilitate their clearance by host immune responses or complementing antiviral approaches.

  3. Prophylactic thyroidectomy for asymptomatic 3-year-old boy with positive multiple endocrine neoplasia type 2A mutation (codon 634).

    PubMed

    Jesić, Maja D; Tancić-Gajić, Milina; Jesić, Milos M; Zivaljević, Vladan; Sajić, Silvija; Vujović, Svetlana; Damjanović, Svetozar

    2014-01-01

    The multiple endocrine neoplasia type 2A (MEN 2A) syndrome, comprising medullary thyroid carcinoma (MTC), pheochromocytoma and primary hyperparathyroidism (PHPT) is most frequently caused by codon 634 activating mutations of the RET (rearranged during transfection) proto-oncogene on chromosome 10. For this codon-mutation carriers, earlier thyroidectomy (before the age of 5 years) would be advantageous in limiting the potential for the development of MTC as well as parathyroid adenomas. This is a case report of 3-year-old boy from the MEN 2A family (the boy's father and grandmother and paternal aunt) in which cysteine substitutes for phenylalanine at codon 634 in exon 11 of the RET proto-oncogene, who underwent thyroidectomy solely on the basis of genetic information. A boy had no thyromegaly, thyroidal irregularities or lymphadenopathy and no abnormality on the neck ultrasound examination. The pathology finding of thyroid gland was negative for MTC. Two years after total thyroidectomy, 5-year-old boy is healthy with permanent thyroxine replacement. His serum calcitonin level is < 2 pg/ml (normal < 13 pg/ml), has normal serum calcium and parathyroid hormone levels and negative urinary catecholamines. Long-term follow-up of this patient is required to determine whether very early thyroidectomy improves the long-term outcome of PHPT. Children with familial antecedents of MEN 2A should be genetically studied for the purpose of determining the risk of MTC and assessing the possibilities of making prophylactic thyroidectomy before the age of 5 years.

  4. MET FISH-positive status predicts short progression-free survival and overall survival after gefitinib treatment in lung adenocarcinoma with EGFR mutation.

    PubMed

    Noro, Rintaro; Seike, Masahiro; Zou, Fenfei; Soeno, Chie; Matsuda, Kuniko; Sugano, Teppei; Nishijima, Nobuhiko; Matsumoto, Masaru; Kitamura, Kazuhiro; Kosaihira, Seiji; Minegishi, Yuji; Yoshimura, Akinobu; Kubota, Kaoru; Gemma, Akihiko

    2015-02-06

    Lung adenocarcinoma patients with EGFR gene mutations have shown a dramatic response to gefitinib. However, drug resistance eventually emerges which limits the mean duration of response. With that in view, we examined the correlations between MET gene status as assessed by fluorescence in situ hybridization (FISH) with overall survival (OS) and progression-free survival (PFS) in adenocarcinoma patients with EGFR gene mutations who had received gefitinib therapy. We evaluated 35 lung cancer samples with EGFR mutation from adenocarcinoma patients who had received gefitinib. Gene copy numbers (GCNs) and amplification of MET gene before gefitinib therapy was examined by FISH. MET protein expression was also evaluated by immunohistochemistry (IHC). FISH assessment showed that of the 35 adenocarcinoma samples, 10 patients (29%) exhibited high polysomy (5 copies≦mean MET per cell) and 1 patient (3%) exhibited amplification (2≦MET gene (red)/CEP7q (green) per cell). IHC evaluation of MET protein expression could not confirm MET high polysomy status. The Eleven patients with MET FISH positivity had significantly shorter progression-free survival (PFS) and overall survival (OS) than the 24 patients who were MET FISH-negative (PFS: p = 0.001 and OS: p = 0.03). Median PFS and OS with MET FISH-positivity were 7.6 months and 16.8 months, respectively, whereas PFS and OS with MET FISH-negativity were 15.9 months and 33.0 months, respectively. Univariate analysis revealed that MET FISH-positivity was the most significant independent factor associated with a high risk of progression and death (hazard ratio, 3.83 (p = 0.0008) and 2.25 (p = 0.03), respectively). Using FISH analysis to detect high polysomy and amplification of MET gene may be useful in predicting shortened PFS and OS after Gefitinib treatment in lung adenocarcinoma. The correlation between MET gene status and clinical outcomes for EGFR-TKI should be further evaluated using large scale samples.

  5. HBsAg mutations related to occult hepatitis B virus infection in HIV-positive patients result in a reduced secretion and conformational changes of HBsAg.

    PubMed

    Sadeghi, Ahmadreza; Shirvani-Dastgerdi, Elham; Tacke, Frank; Yagmur, Eray; Poortahmasebi, Vahdat; Poorebrahim, Mansour; Mohraz, Minoo; Hajabdolbaghi, Mahboobeh; Rasoolinejad, Mehrnaz; Abbasian, Ladan; Jafari, Rezvaneh; Fakhari, Zahra; Norouzi, Mehdi; Ebrahimian, Arefeh; Geravand, Babak; Alavian, Seyed Moayed; Jazayeri, Seyed Mohammad

    2017-02-01

    Occult hepatitis B infection (OBI) is a frequent finding in human immunodeficiency virus (HIV)-infected patients. While several related mutations in the hepatitis B virus (HBV) genome have been reported, their distinct impact on HBsAg synthesis is largely obscure. Thirty-one (18%) out of 172 HIV-infected patients, who were selected from HBsAg-negative patients, were positive for HBV-DNA assigned as being OBI-positive. We generated a series of expression constructs of variant HBsAg with "a" determinant amino acid substitutions including P127L, P127T, S136Y, and P127T + S136Y using site-directed mutagenesis. The expression of variant HBsAg was examined by transient transfection in hepatoma cells, followed by HBsAg immunoassay and immunofluorescence stained with specific anti-HBs antibodies. The potential impact of amino acid substitutions at different positions for conformational changes in the HBsAg was investigated using bioinformatics. All variants comprising either single or combined mutations resulted in significantly reduced HBsAg detection in supernatants and in cell lysates of hepatoma cells transfected with the constructs. Moreover, intracellular immunofluorescence staining of cytoblocks showed perinuclear and cytoplasmic fluorescence of HBsAg constructs with significantly diminished fluorescent intensity in comparison to the wild type. Altered protein conformations by predictive models, indicating an impaired detection by the host's immune response as well as by commercial antibody-based test assays. Mutations in the "a" determinant region of HBV as often found in OBI remarkably impair the detection of HBsAg from serum and infected cells, emphasizing the relevance of alternative methods such as HBV-DNA quantification for high-risk groups like HIV-infected individuals. J. Med. Virol. 89:246-256, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options

    PubMed Central

    Bornhauser, Beat; Gombert, Michael; Kratsch, Christina; Stütz, Adrian M.; Sultan, Marc; Tchinda, Joelle; Worth, Catherine L.; Amstislavskiy, Vyacheslav; Badarinarayan, Nandini; Baruchel, André; Bartram, Thies; Basso, Giuseppe; Canpolat, Cengiz; Cario, Gunnar; Cavé, Hélène; Dakaj, Dardane; Delorenzi, Mauro; Dobay, Maria Pamela; Eckert, Cornelia; Ellinghaus, Eva; Eugster, Sabrina; Frismantas, Viktoras; Ginzel, Sebastian; Haas, Oskar A.; Heidenreich, Olaf; Hemmrich-Stanisak, Georg; Hezaveh, Kebria; Höll, Jessica I.; Hornhardt, Sabine; Husemann, Peter; Kachroo, Priyadarshini; Kratz, Christian P.; te Kronnie, Geertruy; Marovca, Blerim; Niggli, Felix; McHardy, Alice C.; Moorman, Anthony V.; Panzer-Grümayer, Renate; Petersen, Britt S.; Raeder, Benjamin; Ralser, Meryem; Rosenstiel, Philip; Schäfer, Daniel; Schrappe, Martin; Schreiber, Stefan; Schütte, Moritz; Stade, Björn; Thiele, Ralf; von der Weid, Nicolas; Vora, Ajay; Zaliova, Marketa; Zhang, Langhui; Zichner, Thomas; Zimmermann, Martin; Lehrach, Hans; Borkhardt, Arndt; Bourquin, Jean-Pierre; Franke, Andre; Korbel, Jan O.; Stanulla, Martin; Yaspo, Marie-Laure

    2015-01-01

    TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL) is currently incurable. Employing an integrated approach, we uncovered distinct mutation, gene expression, and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. Recurrent intragenic deletions of PAX5 or VPREB1 were identified in constellation with TCF3-HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin towards a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics, but sensitivity towards glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease. PMID:26214592

  7. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.

    PubMed

    Fischer, Ute; Forster, Michael; Rinaldi, Anna; Risch, Thomas; Sungalee, Stéphanie; Warnatz, Hans-Jörg; Bornhauser, Beat; Gombert, Michael; Kratsch, Christina; Stütz, Adrian M; Sultan, Marc; Tchinda, Joelle; Worth, Catherine L; Amstislavskiy, Vyacheslav; Badarinarayan, Nandini; Baruchel, André; Bartram, Thies; Basso, Giuseppe; Canpolat, Cengiz; Cario, Gunnar; Cavé, Hélène; Dakaj, Dardane; Delorenzi, Mauro; Dobay, Maria Pamela; Eckert, Cornelia; Ellinghaus, Eva; Eugster, Sabrina; Frismantas, Viktoras; Ginzel, Sebastian; Haas, Oskar A; Heidenreich, Olaf; Hemmrich-Stanisak, Georg; Hezaveh, Kebria; Höll, Jessica I; Hornhardt, Sabine; Husemann, Peter; Kachroo, Priyadarshini; Kratz, Christian P; Te Kronnie, Geertruy; Marovca, Blerim; Niggli, Felix; McHardy, Alice C; Moorman, Anthony V; Panzer-Grümayer, Renate; Petersen, Britt S; Raeder, Benjamin; Ralser, Meryem; Rosenstiel, Philip; Schäfer, Daniel; Schrappe, Martin; Schreiber, Stefan; Schütte, Moritz; Stade, Björn; Thiele, Ralf; von der Weid, Nicolas; Vora, Ajay; Zaliova, Marketa; Zhang, Langhui; Zichner, Thomas; Zimmermann, Martin; Lehrach, Hans; Borkhardt, Arndt; Bourquin, Jean-Pierre; Franke, Andre; Korbel, Jan O; Stanulla, Martin; Yaspo, Marie-Laure

    2015-09-01

    TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.

  8. Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia.

    PubMed

    Boulos, Nidal; Mulder, Heather L; Calabrese, Christopher R; Morrison, Jeffrey B; Rehg, Jerold E; Relling, Mary V; Sherr, Charles J; Williams, Richard T

    2011-03-31

    The introduction of cultured p185(BCR-ABL)-expressing (p185+) Arf (-/-) pre-B cells into healthy syngeneic mice induces aggressive acute lymphoblastic leukemia (ALL) that genetically and phenotypically mimics the human disease. We adapted this high-throughput Philadelphia chromosome-positive (Ph(+)) ALL animal model for in vivo luminescent imaging to investigate disease progression, targeted therapeutic response, and ALL relapse in living mice. Mice bearing high leukemic burdens (simulating human Ph(+) ALL at diagnosis) entered remission on maximally intensive, twice-daily dasatinib therapy, but invariably relapsed with disseminated and/or central nervous system disease. Although relapse was frequently accompanied by the eventual appearance of leukemic clones harboring BCR-ABL kinase domain (KD) mutations that confer drug resistance, their clonal emergence required prolonged dasatinib exposure. KD P-loop mutations predominated in mice receiving less intensive therapy, whereas high-dose treatment selected for T315I "gatekeeper" mutations resistant to all 3 Food and Drug Administration-approved BCR-ABL kinase inhibitors. The addition of dexamethasone and/or L-asparaginase to reduced-intensity dasatinib therapy improved long-term survival of the majority of mice that received all 3 drugs. Although non-tumor-cell-autonomous mechanisms can prevent full eradication of dasatinib-refractory ALL in this clinically relevant model, the emergence of resistance to BCR-ABL kinase inhibitors can be effectively circumvented by the addition of "conventional" chemotherapeutic agents with alternate antileukemic mechanisms of action.

  9. Positional cloning of the nude locus: Genetic, physical, and transcription maps of the region and mutations in the mouse and rat

    SciTech Connect

    Segre, J.A.; Lander, E.S. |; Taylor, B.A.

    1995-08-10

    Mutations in the nude locus in mice and rats produce the pleiotropic phenotype of hairlessness and athymia, resulting in severely compromised immune system. To identify the causative gene, we utilized modern tools and techniques of positional cloning. Specifically, spanning the region in which the nude locus resides, we constructed a genetic map of polymorphic markers, a physical map of yeast artificial chromosomes and bacteriophage P1 clones, and a transcription map of genes obtained by direct cDNA selection and exon trapping. We identified seven novel transcripts with similarity to genes from Drosophila, Caenorhabditis elegans, rat or human and three previously identified mouse genes. Based on our transcription mapping results, we present a novel approach to estimate that the nude locus resides in a region approximately threefold enriched for genes. We confirm a recently published report that the nude phenotype is caused by mutations in a gene encoding a novel winged helix or fork head domain transcription factor, whn. We report as well as the mutations in the rat rnu allele and the complete coding sequence of the rat whn mRNA. 42 refs., 4 figs., 1 tab.

  10. Development of an endpoint genotyping assay to detect the Mycoplasma pneumoniae 23S rRNA gene and distinguish the existence of macrolide resistance-associated mutations at position 2063.

    PubMed

    Suzuki, Yu; Seto, Junji; Shimotai, Yoshitaka; Ikeda, Tatsuya; Yahagi, Kazue; Mizuta, Katsumi; Matsuzaki, Yoko; Hongo, Seiji

    2016-12-01

    The prevalence of macrolide-resistant Mycoplasma pneumoniae harboring a mutation in the 23S rRNA gene is increasing, and rapid detection assays are needed for clinical management. We developed an endpoint genotyping assay to detect the M. pneumoniae 23S rRNA gene and determine the existence of macrolide resistance-associated mutations at position 2063 (A2063G, A2063T and A2063C mutations). This A2063B genotyping assay detected more than 50 copies/reaction of the M. pneumoniae gene in every nucleotide mutation at position 2063. Of 42 clinical specimens, 3 were positive without mutation, 6 were positive with the A2063G mutation, and 33 were negative. The results were confirmed using nested PCR with the sequencing of the M. pneumoniae 23S rRNA gene, and a high sensitivity (90%), specificity (100%), and coincidence ratio (kappa coefficient=0.93) were obtained. Therefore, the A2063B genotyping assay is useful for the rapid discrimination of macrolide resistance mutations at position 2063.

  11. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner

    PubMed Central

    Ohkawara, Bisei; Cabrera-Serrano, Macarena; Nakata, Tomohiko; Milone, Margherita; Asai, Nobuyuki; Ito, Kenyu; Ito, Mikako; Masuda, Akio; Ito, Yasutomo; Engel, Andrew G.; Ohno, Kinji

    2014-01-01

    Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Using Sanger and exome sequencing in a CMS patient, we identified two heteroallelic mutations, p.Glu1233Lys and p.Arg1277His, in LRP4 coding for the postsynaptic low-density lipoprotein receptor-related protein 4. LRP4, expressed on the surface of the postsynaptic membrane of the neuromuscular junction, is a receptor for neurally secreted agrin, and LRP4 bound by agrin activates MuSK. Activated MuSK in concert with Dok-7 stimulates rapsyn to concentrate and anchor AChR on the postsynaptic membrane and interacts with other proteins implicated in the assembly and maintenance of the neuromuscular junction. LRP4 also functions as an inhibitor of Wnt/beta-catenin signaling. The identified mutations in LRP4 are located at the edge of its 3rd beta-propeller domain and decrease binding affinity of LRP4 for both MuSK and agrin. Mutations in the LRP4 3rd beta-propeller domain were previously reported to impair Wnt signaling and cause bone diseases including Cenani–Lenz syndactyly syndrome and sclerosteosis-2. By analyzing naturally occurring and artificially introduced mutations in the LRP4 3rd beta-propeller domain, we show that the edge of the domain regulates the MuSK signaling whereas its central cavity governs Wnt signaling. We conclude that LRP4 is a new CMS disease gene and that the 3rd beta propeller domain of LRP4 mediates the two signaling pathways in a position-specific manner. PMID:24234652

  12. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner.

    PubMed

    Ohkawara, Bisei; Cabrera-Serrano, Macarena; Nakata, Tomohiko; Milone, Margherita; Asai, Nobuyuki; Ito, Kenyu; Ito, Mikako; Masuda, Akio; Ito, Yasutomo; Engel, Andrew G; Ohno, Kinji

    2014-04-01

    Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Using Sanger and exome sequencing in a CMS patient, we identified two heteroallelic mutations, p.Glu1233Lys and p.Arg1277His, in LRP4 coding for the postsynaptic low-density lipoprotein receptor-related protein 4. LRP4, expressed on the surface of the postsynaptic membrane of the neuromuscular junction, is a receptor for neurally secreted agrin, and LRP4 bound by agrin activates MuSK. Activated MuSK in concert with Dok-7 stimulates rapsyn to concentrate and anchor AChR on the postsynaptic membrane and interacts with other proteins implicated in the assembly and maintenance of the neuromuscular junction. LRP4 also functions as an inhibitor of Wnt/beta-catenin signaling. The identified mutations in LRP4 are located at the edge of its 3rd beta-propeller domain and decrease binding affinity of LRP4 for both MuSK and agrin. Mutations in the LRP4 3rd beta-propeller domain were previously reported to impair Wnt signaling and cause bone diseases including Cenani-Lenz syndactyly syndrome and sclerosteosis-2. By analyzing naturally occurring and artificially introduced mutations in the LRP4 3rd beta-propeller domain, we show that the edge of the domain regulates the MuSK signaling whereas its central cavity governs Wnt signaling. We conclude that LRP4 is a new CMS disease gene and that the 3rd beta propeller domain of LRP4 mediates the two signaling pathways in a position-specific manner.

  13. Physiological Levels of Pik3caH1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    PubMed Central

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  14. Positional adaptability in the design of mutation-resistant nonnucleoside HIV-1 reverse transcriptase inhibitors: a supramolecular perspective.

    PubMed

    Bruccoleri, Aldo

    2013-01-01

    Drug resistance is a key cause of failed treatment of HIV infection. The efficacy of nonnucleoside reverse transcriptase-inhibiting (NNRTI) drugs is impaired by the rapid emergence of drug-resistant mutations. The literature supports the idea that purposefully designed flexible NNRTIs at an active site may help overcome drug resistance. It is proposed here that the usual "lock and key" model, with respect to NNRTI drug design, be expanded to consider creating "master keys" that would automatically adjust conformations to fit all of the "locks" mutations may make. The present work introduces the novel perspective of designing and creating supramolecular assemblies as potential NNRTIs (instead of the relatively more rigid single-molecule inhibitors). Specifically, flexible self-assembling quinhydrone supramolecular dimers formed from quinonoid monomers (designed to be highly flexible NNRTIs themselves) will be offered as a working example of this new perspective in NNRTI drug design. Quinonoid compounds have demonstrated binding interactions at various sites of the HIV-1 RT enzyme, including the elusive ribonuclease H area. Quinhydrone self-organized dimers have at some point in their molecular architecture a noncovalently interacting donor-acceptor ring pair complex. This complex is at the heart of the increased torsional, rotational, and translational motion this species will experience at a particular active site. Flexible supramolecular assemblies, together with their flexible monomer components, may offer a critical advantage in retaining potency against a wide range of drug-resistant HIV-1 RTs. This new supramolecular perspective may also have broader implications in the general field of antimicrobial drug design.

  15. Radiosensitization of EGFR/HER2 positive pancreatic cancer is mediated by inhibition of Akt independent of Ras mutational status

    PubMed Central

    Kimple, Randall J.; Vaseva, Angelina V.; Cox, Adrienne D.; Baerman, Kathryn M.; Calvo, Benjamin F.; Tepper, Joel E.; Shields, Janiel M.; Sartor, Carolyn I.

    2009-01-01

    Purpose Epidermal growth factor receptor family members (e.g., EGFR, HER2, HER3, and HER4) are commonly overexpressed in pancreatic cancer. We investigated the effects of inhibition of EGFR/HER2 signaling on pancreatic cancer to elucidate the role(s) of EGFR/HER2 in radiosensitization and to provide evidence in support of further clinical investigations. Experimental Design Expression of EGFR family members in pancreatic cancer lines was assessed by qRT-PCR. Cell growth inhibition was determined by MTS assay. The effects of inhibition of EGFR family receptors and downstream signaling pathways on in vitro radiosensitivity were evaluated using clonogenic assays. Growth delay was used to evaluate the effects of nelfinavir on in vivo tumor radiosensitivity. Results Lapatinib inhibited cell growth in four pancreatic cancer cell lines, but radiosensitized only wild-type K-ras-expressing T3M4 cells. Akt activation was blocked in a wild-type K-ras cell line, whereas constitutive phosphorylation of Akt and ERK was seen in lines expressing mutant K-ras. Overexpression of constitutively-active K-ras(G12V) abrogated lapatinib-mediated inhibition of both Akt phosphorylation and radiosensitization. Inhibition of MEK/ERK signaling with U0126 had no effect on radiosensitization, whereas inhibition of activated Akt with LY294002 (enhancement ratio 1.2–1.8) or nelfinavir (enhancement ratio 1.2–1.4) radiosensitized cells regardless of K-ras mutation status. Oral nelfinavir administration to mice bearing mutant K-ras-containing Capan-2 xenografts resulted in a greater than additive increase in radiation-mediated tumor growth delay (synergy assessment ratio of 1.5). Conclusions Inhibition of EGFR/HER2 enhances radiosensitivity in wild-type K-ras pancreatic cancer. Nelfinavir, and other PI3K/Akt inhibitors, are effective pancreatic radiosensitizers regardless of K-ras mutation status. PMID:20103665

  16. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity.

    PubMed

    Baris, Hagit N; Barnes-Kedar, Inbal; Toledano, Helen; Halpern, Marisa; Hershkovitz, Dov; Lossos, Alexander; Lerer, Israela; Peretz, Tamar; Kariv, Revital; Cohen, Shlomi; Half, Elizabeth E; Magal, Nurit; Drasinover, Valerie; Wimmer, Katharina; Goldberg, Yael; Bercovich, Dani; Levi, Zohar

    2016-03-01

    Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1. We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer. In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified. CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis. © 2015 Wiley Periodicals, Inc.

  17. Mutations in CG8878, a Novel Putative Protein Kinase, Enhance P Element Dependent Silencing (PDS) and Position Effect Variegation (PEV) in Drosophila melanogaster

    PubMed Central

    McCracken, Allen; Locke, John

    2014-01-01

    Genes in multicellular organisms are expressed as part of a developmental program that is largely dependent on self-perpetuating higher-order chromatin states. The mechanism of establishing and maintaining these epigenetic events is well studied in Drosophila. The first known example of an epigenetic effect was that of (PEV) in Drosophila, which has been shown to be due to gene silencing via heterochromatin formation. We are investigating a process similar to Position Effect Variegation (PEV) using a mini-w transgene, called Pci, inserted in the upstream regulatory region of ci. The mini-white+ transgene in Pci is expressed throughout the adult eye; however, when other P or KP elements are present, a variegated eye phenotype results indicating random w+ silencing during development. This P element dependent silencing (PDS) can be modified by the haplo-suppressors/triplo-enhancers, Su(var)205 and Su(var)3–7, indicating that these heterochromatic modifiers also act dose dependently in PDS. Here we use a spontaneous derivative mutation of Pci called PciE1 (E1) that variegates like PDS in the absence of P elements, presumably due to an adjacent gypsy element insertion, to screen for second-site modifier mutations that enhance variable silencing of white+ in E1. We isolated 7 mutations in CG8878, an essential gene, that enhance the E1 variegated phenotype. CG8878, a previously uncharacterized gene, potentially encodes a serine/threonine kinase whose closest Drosophila paralogue, ballchen (nhk-1), phosphorylates histones. These mutant alleles enhance both PDS at E1 and Position Effect Variegation (PEV) at wm4, indicating a previously unknown common silencing mechanism between the two. PMID:24614804

  18. Mutation mismatch repair gene deletions in diffuse large B-cell lymphoma.

    PubMed

    Couronné, Lucile; Ruminy, Philippe; Waultier-Rascalou, Agathe; Rainville, Vinciane; Cornic, Marie; Picquenot, Jean-Michel; Figeac, Martin; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2013-05-01

    To further unravel the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL), we performed high-resolution comparative genomic hybridization on lymph node biopsies from 70 patients. With this strategy, we identified microdeletions of genes involved in the mutation mismatch repair (MMR) pathway in two samples. The first patient presented with a homozygous deletion of MSH2-MSH6 due to duplication of an unbalanced pericentric inversion of chromosome 2. The other case showed a PMS2 heterozygous deletion. PMS2 and MSH2-MSH6 abnormalities, respectively, resulted in a decrease and complete loss of gene expression. However, unlike tumors associated with the hereditary non-polyposis colorectal cancer syndrome or immunodeficiency-related lymphomas, no microsatellite instability was detected. Mutational profiles revealed especially in one patient an aberrant hypermutation without a clear activation-induced cytidine deaminase signature, indicating a breakdown of the high-fidelity repair in favor of the error-prone repair pathway. Our findings suggest that in a rare subset of patients, inactivation of the genes of the MMR pathway is likely an important step in the molecular pathogenesis of DLBCL and does not involve the same molecular mechanisms as other common neoplasms with MMR deficiency.

  19. The tyrosinase-positive oculocutaneous albinism gene shows locus homogeneity on chromosome 15q11-q13 and evidence of multiple mutations in southern African negroids

    SciTech Connect

    Kedda, M.A.; Stevens, G.; Manga, P.; Viljoen, C.; Jenkins, T.; Ramsay, M. Univ. of Witwatersrand, Johannesburg )

    1994-06-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA) is an autosomal recessive disorder of the melanin pigmentary system. South African ty-pos OCA individuals occur with two distinct phenotypes, with or without darkly pigmented patches (ephelides, or dendritic freckles) on exposed areas of the skin. These phenotypes are concordant within families, suggesting that there may be more than one mutation at the ty-pos OCA locus. Linkage studies carried out in 41 families have shown linkage between markers in the Prader-Willi/Angelman syndrome (PWS/AS) region on chromosome 15q11-q13 and ty-pos OCA. Analysis showed no obligatory crossovers between the alleles at the D15S12 locus and ty-pos OCA, suggesting that the D15S12 locus is very close to or part of the disease locus, which is postulated to be the human homologue, P, of the mouse pink-eyed dilution gene, p. Unlike caucasoid [open quotes]ty-pos OCA[close quotes] individuals, negroid ty-pos OCA individuals do not show any evidence of locus heterogeneity. Studies of allelic association between the polymorphic alleles detected at the D15S12 locus and ephelus status suggest that there was a single major mutation giving rise to ty-pos OCA without ephelides. There may, however, be two major mutations causing ty-pos OCA with ephelides, one associated with D15S12 allele 1 and the other associated with D15S12 allele 2. The two loci, GABRA5 and D15S24, flanking D15S12, are both hypervariable, and many different haplotypes were observed with the alleles at the three loci on both ty-pos OCA-associated chromosomes and [open quotes]normal[close quotes] chromosomes. No haplotype showed statistically significant association with ty-pos OCA, and thus none could be used to predict the origins of the ty-pos OCA mutations. On the basis of the D15S12 results, there is evidence for multiple ty-pos OCA mutations in southern African negroids. 31 refs., 1 fig., 3 tabs.

  20. GATA3 mRNA expression, but not mutation, associates with longer progression-free survival in ER-positive breast cancer patients treated with first-line tamoxifen for recurrent disease.

    PubMed

    Liu, Jingjing; Prager-van der Smissen, Wendy J C; Look, Maxime P; Sieuwerts, Anieta M; Smid, Marcel; Meijer-van Gelder, Marion E; Foekens, John A; Hollestelle, Antoinette; Martens, John W M

    2016-06-28

    In breast cancer, GATA3 mutations have been associated with a favorable prognosis and the response to neoadjuvant aromatase inhibitor treatment. Therefore, we investigated whether GATA3 mutations predict the outcome of tamoxifen treatment in the advanced setting. In a retrospective study consisting of 235 hormone-naive patients with ER-positive breast cancer who received tamoxifen as first-line treatment for recurrent disease, GATA3 mutations (in 14.0% of patients) did not significantly associate with either the overall response rate (ORR) or with the length of progression-free survival (PFS) after the start of tamoxifen therapy. Interestingly, among 148 patients for whom both mutation and mRNA expression data were available, GATA3 mutations associated with an increased expression of GATA3. However, only 23.7% of GATA3 high tumors had a mutation. Evaluation of the clinical significance of GATA3 mRNA revealed that it was associated with prolonged PFS, but not with the ORR, also in multivariate analysis. Thus, GATA3 mRNA expression, but not GATA3 mutation, is an independent predictor of prolonged PFS in ER-positive breast cancer patients who received first-line tamoxifen for recurrent disease. Besides GATA3 mutation, other mechanisms must exist that underlie increased GATA3 levels.

  1. Population genetic and phylogenetic evidence for positive selection on regulatory mutations at the factor VII locus in humans.

    PubMed Central

    Hahn, Matthew W; Rockman, Matthew V; Soranzo, Nicole; Goldstein, David B; Wray, Gregory A

    2004-01-01

    The abundance of cis-regulatory polymorphisms in humans suggests that many may have been important in human evolution, but evidence for their role is relatively rare. Four common polymorphisms in the 5' promoter region of factor VII (F7), a coagulation factor, have been shown to affect its transcription and protein abundance both in vitro and in vivo. Three of these polymorphisms have low-frequency alleles that decrease expression of F7 and may provide protection against myocardial infarction (heart attacks). The fourth polymorphism has a minor allele that increases the level of transcription. To look for evidence of natural selection on the cis-regulatory variants flanking F7, we genotyped three of the polymorphisms in six Old World populations for which we also have data from a group of putatively neutral SNPs. Our population genetic analysis shows evidence for selection within humans; surprisingly, the strongest evidence is due to a large increase in frequency of the high-expression variant in Singaporean Chinese. Further characterization of a Japanese population shows that at least part of the increase in frequency of the high-expression allele is found in other East Asian populations. In addition, to examine interspecific patterns of selection we sequenced the homologous 5' noncoding region in chimpanzees, bonobos, a gorilla, an orangutan, and a baboon. Analysis of these data reveals an excess of fixed differences within transcription factor binding sites along the human lineage. Our results thus further support the hypothesis that regulatory mutations have been important in human evolution. PMID:15238535

  2. S81L and G170R mutations causing Primary Hyperoxaluria type I in homozygosis and heterozygosis: an example of positive interallelic complementation

    PubMed Central

    Montioli, Riccardo; Roncador, Alessandro; Oppici, Elisa; Mandrile, Giorgia; Giachino, Daniela Francesca; Cellini, Barbara; Borri Voltattorni, Carla

    2014-01-01

    Primary Hyperoxaluria type I (PH1) is a rare disease due to the deficit of peroxisomal alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal-5′-phosphate (PLP) enzyme present in humans as major (Ma) and minor (Mi) allele. PH1-causing mutations are mostly missense identified in both homozygous and compound heterozygous patients. Until now, the pathogenesis of PH1 has been only studied by approaches mimicking homozygous patients, whereas the molecular aspects of the genotype-enzymatic-clinical phenotype relationship in compound heterozygous patients are completely unknown. Here, for the first time, we elucidate the enzymatic phenotype linked to the S81L mutation on AGT-Ma, relative to a PLP-binding residue, and how it changes when the most common mutation G170R on AGT-Mi, known to cause AGT mistargeting without affecting the enzyme functionality, is present in the second allele. By using a bicistronic eukaryotic expression vector, we demonstrate that (i) S81L-Ma is mainly in its apo-form and has a significant peroxisomal localization and (ii) S81L and G170R monomers interact giving rise to the G170R-Mi/S81L-Ma holo-form, which is imported into peroxisomes and exhibits an enhanced functionality with respect to the parental enzymes. These data, integrated with the biochemical features of the heterodimer and the homodimeric counterparts in their purified recombinant form, (i) highlight the molecular basis of the pathogenicity of S81L-Ma and (ii) provide evidence for a positive interallelic complementation between the S81L and G170R monomers. Our study represents a valid approach to investigate the molecular pathogenesis of PH1 in compound heterozygous patients. PMID:24990153

  3. Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia

    PubMed Central

    Pan, Li-li; Huang, Yuan-mao; Wang, Min; Zhuang, Xiao-e; Luo, Dong-feng; Guo, Shi-cheng; Zhang, Zhi-shun; Huang, Qing; Lin, Sheng-long; Wang, Shao-yuan

    2015-01-01

    An inherited predisposition to acute myeloid leukaemia (AML) is exceedingly rare, but the investigation of these families will aid in the delineation of the underlying mechanisms of the more common, sporadic cases. Three AML predisposition genes, RUNX1, CEBPA and GATA2, have been recognised, but the culprit genes in the majority of AML pedigrees remain obscure. We applied a combined strategy of linkage analysis and next-generation sequencing (NGS) technology in an autosomal-dominant AML Chinese family with 11 cases in four generations. A genome-wide linkage scan using a 500K SNP genotyping array was conducted to identify a previously unreported candidate region on 20p13 with a maximum multipoint heterogeneity LOD (HLOD) score of 3.56 (P=0.00005). Targeted NGS within this region and whole-exome sequencing (WES) revealed a missense mutation in TGM6 (RefSeq, NM_198994.2:c.1550T>G, p.(L517W)), which cosegregated with the phenotype in this family, and was absent in 530 healthy controls. The mutated amino acid was located in a highly conserved position, which may be deleterious and affect the activation of TGM6. Our results strongly support the candidacy of TGM6 as a novel familial AML-associated gene. PMID:24755948

  4. Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia.

    PubMed

    Pan, Li-Li; Huang, Yuan-mao; Wang, Min; Zhuang, Xiao-e; Luo, Dong-feng; Guo, Shi-cheng; Zhang, Zhi-shun; Huang, Qing; Lin, Sheng-long; Wang, Shao-yuan

    2015-02-01

    An inherited predisposition to acute myeloid leukaemia (AML) is exceedingly rare, but the investigation of these families will aid in the delineation of the underlying mechanisms of the more common, sporadic cases. Three AML predisposition genes, RUNX1, CEBPA and GATA2, have been recognised, but the culprit genes in the majority of AML pedigrees remain obscure. We applied a combined strategy of linkage analysis and next-generation sequencing (NGS) technology in an autosomal-dominant AML Chinese family with 11 cases in four generations. A genome-wide linkage scan using a 500K SNP genotyping array was conducted to identify a previously unreported candidate region on 20p13 with a maximum multipoint heterogeneity LOD (HLOD) score of 3.56 (P=0.00005). Targeted NGS within this region and whole-exome sequencing (WES) revealed a missense mutation in TGM6 (RefSeq, NM_198994.2:c.1550T>G, p.(L517W)), which cosegregated with the phenotype in this family, and was absent in 530 healthy controls. The mutated amino acid was located in a highly conserved position, which may be deleterious and affect the activation of TGM6. Our results strongly support the candidacy of TGM6 as a novel familial AML-associated gene.

  5. Ponatinib in the leukemia world: why a reevaluation is necessary for Philadelphia chromosome-positive patients with T315I mutation.

    PubMed

    Goodrich, Angelina Daisy

    2014-10-01

    Strategic drug design is used to meet the needs of numerous diseases for which there is no other recourse. Take the T315I mutation, for example, which occurs in Philadelphia chromosome-positive leukemias and renders all currently available tissue kinase inhibitors useless. The US FDA therefore saw it fit to avail ponatinib, the therapeutic result of careful drug design, to patients based on early data. However, its sales and marketing were later suspended due to emerging safety concerns. This drug has now returned to market albeit with tighter labeling. While the lesson for early approvals may be to restrict the drug to as narrow a patient population as possible, the potential benefits of this drug for the target population must not be lost amidst the controversy.

  6. Inherited Mutations in Women with Ovarian Carcinoma

    PubMed Central

    Norquist, Barbara M.; Harrell, Maria I.; Brady, Mark F.; Walsh, Tom; Lee, Ming K.; Gulsuner, Suleyman; Bernards, Sarah S.; Casadei, Silvia; Yi, Qian; Burger, Robert A.; Chan, John K.; Davidson, Susan A.; Mannel, Robert S.; DiSilvestro, Paul A.; Lankes, Heather A.; Ramirez, Nilsa C.; King, Mary Claire; Swisher, Elizabeth M.; Birrer, Michael J.

    2016-01-01

    pathogenic germline mutations in genes associated with OC risk. PALB2 and BARD1 are suspected OC genes and together with established OC genes (BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH2, MLH1, PMS2, and MSH6) bring the total number of genes suspected to cause hereditary OC to 11. PMID:26720728

  7. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL).

    PubMed

    Pfeifer, Heike; Wassmann, Barbara; Pavlova, Anna; Wunderle, Lydia; Oldenburg, Johannes; Binckebanck, Anja; Lange, Thoralf; Hochhaus, Andreas; Wystub, Silvia; Brück, Patrick; Hoelzer, Dieter; Ottmann, Oliver G

    2007-07-15

    Acquired imatinib resistance in advanced Philadelphia-positive acute lymphoblastic leukemia (Ph(+) ALL) has been associated with mutations in the kinase domain (KD) of BCR-ABL. We examined the prevalence of KD mutations in newly diagnosed and imatinib-naive Ph(+) ALL patients and assessed their clinical relevance in the setting of uniform frontline therapy with imatinib in combination with chemotherapy. Patients enrolled in the German Multicenter Study Group for Adult Acute Lymphoblastic Leukemia (GMALL) trial ADE10 for newly diagnosed elderly Ph(+) ALL were retrospectively examined for the presence of BCR-ABL KD mutations by denaturing high-performance liquid chromatography (D-HPLC), cDNA sequencing, and allele-specific polymerase chain reaction (PCR). A KD mutation was detected in a minor subpopulation of leukemic cells in 40% of newly diagnosed and imatinib-naive patients. At relapse, the dominant cell clone harbored an identical mutation in 90% of cases, the overall prevalence of mutations at relapse was 80%. P-loop mutations predominated and were not associated with an inferior hematologic or molecular remission rate or shorter remission duration compared with unmutated BCR-ABL. BCR-ABL mutations conferring high-level imatinib resistance are present in a substantial proportion of patients with de novo Ph(+) ALL and eventually give rise to relapse. This provides a rationale for the frontline use of kinase inhibitors active against these BCR-ABL mutants.

  8. Incongruent Nuclear and Mitochondrial Genetic Structure of New World Screwworm Fly Populations Due to Positive Selection of Mutations Associated with Dimethyl- and Diethyl-Organophosphates Resistance

    PubMed Central

    Bergamo, Luana Walravens; Fresia, Pablo; Azeredo-Espin, Ana Maria L.

    2015-01-01

    that these mutations evolved under positive selection. PMID:26030866

  9. Molecular and Clinical Analyses of Greig Cephalopolysyndactyly and Pallister-Hall Syndromes: Robust Phenotype Prediction from the Type and Position of GLI3 Mutations

    PubMed Central

    Johnston, Jennifer J.; Olivos-Glander, Isabelle; Killoran, Christina; Elson, Emma; Turner, Joyce T.; Peters, Kathryn F.; Abbott, Margaret H.; Aughton, David J.; Aylsworth, Arthur S.; Bamshad, Michael J.; Booth, Carol; Curry, Cynthia J.; David, Albert; Dinulos, Mary Beth; Flannery, David B.; Fox, Michelle A.; Graham, John M.; Grange, Dorothy K.; Guttmacher, Alan E.; Hannibal, Mark C.; Henn, Wolfram; Hennekam, Raoul C. M.; Holmes, Lewis B.; Hoyme, H. Eugene; Leppig, Kathleen A.; Lin, Angela E.; MacLeod, Patrick; Manchester, David K.; Marcelis, Carlo; Mazzanti, Laura; McCann, Emma; McDonald, Marie T.; Mendelsohn, Nancy J.; Moeschler, John B.; Moghaddam, Billur; Neri, Giovanni; Newbury-Ecob, Ruth; Pagon, Roberta A.; Phillips, John A.; Sadler, Laurie S.; Stoler, Joan M.; Tilstra, David; Walsh Vockley, Catherine M.; Zackai, Elaine H.; Zadeh, Touran M.; Brueton, Louise; Black, Graeme Charles M.; Biesecker, Leslie G.

    2005-01-01

    Mutations in the GLI3 zinc-finger transcription factor gene cause Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS), which are variable but distinct clinical entities. We hypothesized that GLI3 mutations that predict a truncated functional repressor protein cause PHS and that functional haploinsufficiency of GLI3 causes GCPS. To test these hypotheses, we screened patients with PHS and GCPS for GLI3 mutations. The patient group consisted of 135 individuals: 89 patients with GCPS and 46 patients with PHS. We detected 47 pathological mutations (among 60 probands); when these were combined with previously published mutations, two genotype-phenotype correlations were evident. First, GCPS was caused by many types of alterations, including translocations, large deletions, exonic deletions and duplications, small in-frame deletions, and missense, frameshift/nonsense, and splicing mutations. In contrast, PHS was caused only by frameshift/nonsense and splicing mutations. Second, among the frameshift/nonsense mutations, there was a clear genotype-phenotype correlation. Mutations in the first third of the gene (from open reading frame [ORF] nucleotides [nt] 1–1997) caused GCPS, and mutations in the second third of the gene (from ORF nt 1998–3481) caused primarily PHS. Surprisingly, there were 12 mutations in patients with GCPS in the 3′ third of the gene (after ORF nt 3481), and no patients with PHS had mutations in this region. These results demonstrate a robust correlation of genotype and phenotype for GLI3 mutations and strongly support the hypothesis that these two allelic disorders have distinct modes of pathogenesis. PMID:15739154

  10. Vemurafenib for the treatment of locally advanced or metastatic BRAF V600 mutation-positive malignant melanoma: a NICE single technology appraisal.

    PubMed

    Beale, Sophie; Dickson, Rumona; Bagust, Adrian; Blundell, Michaela; Dundar, Yenal; Boland, Angela; Marshall, Ernie; Plummer, Ruth; Proudlove, Chris

    2013-12-01

    Vemurafenib is an oral BRAF inhibitor licenced for the treatment of locally advanced or metastatic BRAF V600-mutation positive malignant melanoma. The manufacturer of vemurafenib, Roche Products Limited, was invited by the National Institute for Health and Care Excellence (NICE) to submit evidence of the drug's clinical- and cost-effectiveness for its licenced indication, to inform the Institute's Single Technology Appraisal (STA) process. The Liverpool Reviews and Implementation Group (LRiG) at the University of Liverpool was commissioned to act as the Evidence Review Group (ERG) for this appraisal. This article summarises the ERG's review of the evidence submitted by the manufacturer and also includes a summary of the NICE Appraisal Committee (AC) decision. The ERG reviewed the clinical- and cost-effectiveness evidence in accordance with the decision problem defined by NICE. The ERG's analysis of the submitted economic model assessed the appropriateness of the approach taken by the manufacturer in modelling the decision problem. It also included an assessment of the reliability of model implementation and the extent of conformity to published standards and prevailing norms of practice within the health economics modelling community. Particular attention was paid to issues likely to impact substantially on the base-case cost-effectiveness results. The clinical evidence was derived from BRIM 3 (BRAF Inhibitor in Melanoma 3), a well-designed, multi-centre, multi-national, phase III, randomised controlled trial (RCT). Clinical outcome results from the October 2011 data cut showed that median overall survival for patients treated with vemurafenib was 13.2 months compared with 9.6 months for those treated with dacarbazine. The ERG's main concern with the trial was the potential for confounding because of the early introduction of the crossover from the comparator drug to vemurafenib or another BRAF inhibitor. The submitted incremental cost-effectiveness ratio (ICER

  11. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones.

    PubMed

    Matrat, Stéphanie; Veziris, Nicolas; Mayer, Claudine; Jarlier, Vincent; Truffot-Pernot, Chantal; Camuset, Juliette; Bouvet, Elisabeth; Cambau, Emmanuelle; Aubry, Alexandra

    2006-12-01

    We investigated the enzymatic efficiency and inhibition by quinolones of Mycobacterium tuberculosis DNA gyrases carrying the previously described GyrA G88C mutation and the novel GyrA G88A mutation harbored by two multidrug-resistant clinical strains and reproduced by site-directed mutagenesis. Fluoroquinolone MICs and 50% inhibitory concentrations for both mutants were 2- to 43-fold higher than for the wild type, demonstrating that these mutations confer fluoroquinolone resistance in M. tuberculosis.

  12. Functional Analysis of DNA Gyrase Mutant Enzymes Carrying Mutations at Position 88 in the A Subunit Found in Clinical Strains of Mycobacterium tuberculosis Resistant to Fluoroquinolones▿

    PubMed Central

    Matrat, Stéphanie; Veziris, Nicolas; Mayer, Claudine; Jarlier, Vincent; Truffot-Pernot, Chantal; Camuset, Juliette; Bouvet, Elisabeth; Cambau, Emmanuelle; Aubry, Alexandra

    2006-01-01

    We investigated the enzymatic efficiency and inhibition by quinolones of Mycobacterium tuberculosis DNA gyrases carrying the previously described GyrA G88C mutation and the novel GyrA G88A mutation harbored by two multidrug-resistant clinical strains and reproduced by site-directed mutagenesis. Fluoroquinolone MICs and 50% inhibitory concentrations for both mutants were 2- to 43-fold higher than for the wild type, demonstrating that these mutations confer fluoroquinolone resistance in M. tuberculosis. PMID:17015625

  13. Some Synonymous and Nonsynonymous gyrA Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDRsl Assays

    PubMed Central

    Ajileye, Adebisi; Alvarez, Nataly; Merker, Matthias; Walker, Timothy M.; Akter, Suriya; Brown, Kerstin; Moradigaravand, Danesh; Schön, Thomas; Andres, Sönke; Schleusener, Viola; Omar, Shaheed V.; Coll, Francesc; Huang, Hairong; Diel, Roland; Ismail, Nazir; de Jong, Bouke C.; Peto, Tim E. A.; Crook, Derrick W.; Niemann, Stefan; Robledo, Jaime; Smith, E. Grace; Peacock, Sharon J.

    2017-01-01

    ABSTRACT In this study, using the Hain GenoType MTBDRsl assays (versions 1 and 2), we found that some nonsynonymous and synonymous mutations in gyrA in Mycobacterium tuberculosis result in systematic false-resistance results to fluoroquinolones by preventing the binding of wild-type probes. Moreover, such mutations can prevent the binding of mutant probes designed for the identification of specific resistance mutations. Although these mutations are likely rare globally, they occur in approximately 7% of multidrug-resistant tuberculosis strains in some settings. PMID:28137812

  14. Some Synonymous and Nonsynonymous gyrA Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDRsl Assays.

    PubMed

    Ajileye, Adebisi; Alvarez, Nataly; Merker, Matthias; Walker, Timothy M; Akter, Suriya; Brown, Kerstin; Moradigaravand, Danesh; Schön, Thomas; Andres, Sönke; Schleusener, Viola; Omar, Shaheed V; Coll, Francesc; Huang, Hairong; Diel, Roland; Ismail, Nazir; Parkhill, Julian; de Jong, Bouke C; Peto, Tim E A; Crook, Derrick W; Niemann, Stefan; Robledo, Jaime; Smith, E Grace; Peacock, Sharon J; Köser, Claudio U

    2017-04-01

    In this study, using the Hain GenoType MTBDRsl assays (versions 1 and 2), we found that some nonsynonymous and synonymous mutations in gyrA in Mycobacterium tuberculosis result in systematic false-resistance results to fluoroquinolones by preventing the binding of wild-type probes. Moreover, such mutations can prevent the binding of mutant probes designed for the identification of specific resistance mutations. Although these mutations are likely rare globally, they occur in approximately 7% of multidrug-resistant tuberculosis strains in some settings. Copyright © 2017 Ajileye et al.

  15. Mutation spectrum and risk of colorectal cancer in African American families with Lynch syndrome.

    PubMed

    Guindalini, Rodrigo Santa Cruz; Win, Aung Ko; Gulden, Cassandra; Lindor, Noralane M; Newcomb, Polly A; Haile, Robert W; Raymond, Victoria; Stoffel, Elena; Hall, Michael; Llor, Xavier; Ukaegbu, Chinedu I; Solomon, Ilana; Weitzel, Jeffrey; Kalady, Matthew; Blanco, Amie; Terdiman, Jonathan; Shuttlesworth, Gladis A; Lynch, Patrick M; Hampel, Heather; Lynch, Henry T; Jenkins, Mark A; Olopade, Olufunmilayo I; Kupfer, Sonia S

    2015-11-01

    African Americans (AAs) have the highest incidence of and mortality resulting from colorectal cancer (CRC) in the United States. Few data are available on genetic and nongenetic risk factors for CRC among AAs. Little is known about cancer risks and mutations in mismatch repair (MMR) genes in AAs with the most common inherited CRC condition, Lynch syndrome. We aimed to characterize phenotype, mutation spectrum, and risk of CRC in AAs with Lynch syndrome. We performed a retrospective study of AAs with mutations in MMR genes (MLH1, MSH2, MSH6, and PMS2) using databases from 13 US referral centers. We analyzed data on personal and family histories of cancer. Modified segregation analysis conditioned on ascertainment criteria was used to estimate age- and sex-specific CRC cumulative risk, studying members of the mutation-carrying families. We identified 51 AA families with deleterious mutations that disrupt function of the MMR gene product: 31 in MLH1 (61%), 11 in MSH2 (21%), 3 in MSH6 (6%), and 6 in PMS2 (12%); 8 mutations were detected in more than 1 individual, and 11 have not been previously reported. In the 920 members of the 51 families with deleterious mutations, the cumulative risks of CRC at 80 years of age were estimated to be 36.2% (95% confidence interval [CI], 10.5%-83.9%) for men and 29.7% (95% CI, 8.31%-76.1%) for women. CRC risk was significantly higher among individuals with mutations in MLH1 or MSH2 (hazard ratio, 13.9; 95% CI, 3.44-56.5). We estimate the cumulative risk for CRC in AAs with MMR gene mutations to be similar to that of individuals of European descent with Lynch syndrome. Two-thirds of mutations were found in MLH1, some of which were found in multiple individuals and some that have not been previously reported. Differences in mutation spectrum are likely to reflect the genetic diversity of this population. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. An intragenic deletion of the P gene is the common mutation causing tyrosinase-positive oculocutaneous albinism in southern African Negroids.

    PubMed Central

    Stevens, G; van Beukering, J; Jenkins, T; Ramsay, M

    1995-01-01

    Tyrosinase-positive oculocutaneous albinism (OCA2), an autosomal recessive disorder of the melanin biosynthetic pathway, is the most common recessive disorder occurring in southern African Bantu-speaking Negroids, with an overall prevalence of 1/3,900. The OCA2 gene, P, has been mapped to chromosome 15q11-q13, and recently alterations in the P gene have been identified in OCA2 individuals. An intragenic deletion has been described and proposed to be of African origin because of its occurrence in four unrelated African American OCA2 individuals and in two individuals, one from Zaire and the other from Cameroon. This study shows that the intragenic deletion is a common cause of OCA2 in southern African Negroids (114/146 [.78]; OCA2 chromosomes) and is associated with one common haplotype (43/55 [.78]; OCA2 chromosomes), confirming the African origin of this allele. On the basis of haplotype data, it would appear that at least seven additional, less frequent OCA2 mutations occur in this population. PMID:7887411

  17. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer.

    PubMed

    Janiszewska, Michalina; Liu, Lin; Almendro, Vanessa; Kuang, Yanan; Paweletz, Cloud; Sakr, Rita A; Weigelt, Britta; Hanker, Ariella B; Chandarlapaty, Sarat; King, Tari A; Reis-Filho, Jorge S; Arteaga, Carlos L; Park, So Yeon; Michor, Franziska; Polyak, Kornelia

    2015-10-01

    Detection of minor, genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (specific-to-allele PCR-FISH), a novel method for the combined detection of single-nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2 (ERBB2) amplification within HER2-positive breast cancer during neoadjuvant therapy. We found that these two genetic events are not always present in the same cells. Chemotherapy selects for PIK3CA-mutant cells, a minor subpopulation in nearly all treatment-naive samples, and modulates genetic diversity within tumors. Treatment-associated changes in the spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant therapy with trastuzumab. Our findings support the use of in situ single cell-based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance.

  18. Influence of mutations at the proximal histidine position on the Fe-O2 bond in hemoglobin from density functional theory

    NASA Astrophysics Data System (ADS)

    Todde, Guido; Hovmöller, Sven; Laaksonen, Aatto

    2016-03-01

    Four mutated hemoglobin (Hb) variants and wild type hemoglobin as a reference have been investigated using density functional theory methods focusing on oxygen binding. Dispersion-corrected B3LYP functional is used and found to provide reliable oxygen binding energies. It also correctly reproduces the spin distribution of both bound and free heme groups as well as provides correct geometries at their close vicinity. Mutations in hemoglobin are not only an intrigued biological problem and it is also highly important to understand their effects from a clinical point of view. This study clearly shows how even small structural differences close to the heme group can have a significant effect in reducing the oxygen binding of mutated hemoglobins and consequently affecting the health condition of the patient suffering from the mutations. All of the studied mutated Hb variants did exhibit much weaker binding of molecular oxygen compared to the wild type of hemoglobin.

  19. Influence of mutations at the proximal histidine position on the Fe-O2 bond in hemoglobin from density functional theory.

    PubMed

    Todde, Guido; Hovmöller, Sven; Laaksonen, Aatto

    2016-03-07

    Four mutated hemoglobin (Hb) variants and wild type hemoglobin as a reference have been investigated using density functional theory methods focusing on oxygen binding. Dispersion-corrected B3LYP functional is used and found to provide reliable oxygen binding energies. It also correctly reproduces the spin distribution of both bound and free heme groups as well as provides correct geometries at their close vicinity. Mutations in hemoglobin are not only an intrigued biological problem and it is also highly important to understand their effects from a clinical point of view. This study clearly shows how even small structural differences close to the heme group can have a significant effect in reducing the oxygen binding of mutated hemoglobins and consequently affecting the health condition of the patient suffering from the mutations. All of the studied mutated Hb variants did exhibit much weaker binding of molecular oxygen compared to the wild type of hemoglobin.

  20. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    PubMed

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  1. Overall survival with ponatinib versus allogeneic stem cell transplantation in Philadelphia chromosome-positive leukemias with the T315I mutation.

    PubMed

    Nicolini, Franck E; Basak, Grzegorz W; Kim, Dong-Wook; Olavarria, Eduardo; Pinilla-Ibarz, Javier; Apperley, Jane F; Hughes, Timothy; Niederwieser, Dietger; Mauro, Michael J; Chuah, Charles; Hochhaus, Andreas; Martinelli, Giovanni; DerSarkissian, Maral; Duh, Mei Sheng; McGarry, Lisa J; Kantarjian, Hagop M; Cortes, Jorge E

    2017-08-01

    Effective treatment options for patients with chronic myeloid leukemia (CML) or Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) who have the threonine to isoleucine mutation at codon 315 (T315I) are few. The objective of this study was to compare overall survival (OS) between patients with CML and those with Ph+ ALL who received treatment with ponatinib versus allogeneic stem cell transplantation (allo-SCT). A post hoc, retrospective, indirect comparison of OS among patients who received single-agent ponatinib in the Ponatinib Ph+ ALL and CML Evaluation (PACE) trial with those who underwent allo-SCT as reported to the European Bone Marrow Transplant registry, stratified by CML disease phase and Ph+ ALL, was conducted. Kaplan-Meier survival curves and multivariate Cox proportional-hazards models were used to compare OS between intervention groups, adjusting for time from diagnosis to intervention, age, sex, and geographic region; 24-month and 48-month OS rates and median OS were reported. After adjustment for potential confounders, 24-month and 48-month OS rates were significantly higher in patients with chronic-phase CML (CP-CML) who received ponatinib compared with those who underwent allo-SCT (24 months: 84% vs 60.5%, respectively; P = .004; 48 months: 72.7% vs 55.8%, respectively; P = .013), with a hazard ratio (HR) of 0.37 (95% confidence interval [CI], 0.16-0.84; P = .017). In patients who had accelerated-phase CML, OS rates were not significantly different between the groups (HR, 0.90; 95% CI, 0.20-4.10; P = .889). In patients who had blast-crisis CML and those with Ph+ ALL, ponatinib was associated with shorter OS compared with allo-SCT (blast-crisis CML: HR, 2.29 [95% CI, 1.08-4.82; P = .030]; Ph+ ALL: HR, 2.77 [95% CI, 0.73-10.56; P = .146]). Although allo-SCT remains an important treatment option for patients with T315I-positive advanced CML and Ph+ ALL, ponatinib represents a valuable alternative for patients with T

  2. Low somatic K-ras mutation frequency in colorectal cancer diagnosed under the age of 45 years.

    PubMed

    Alsop, Kathryn; Mead, Leeanne; Smith, Letitia D; Royce, Simon G; Tesoriero, Andrea A; Young, Joanne P; Haydon, Andrew; Grubb, Garry; Giles, Graham G; Jenkins, Mark A; Hopper, John L; Southey, Melissa C

    2006-07-01

    Somatic mutation of K-ras is known to be a common event in colorectal cancer tumourigenesis however its association with age at onset has not been widely explored. In this study, we have analyzed tumours from a population-based study of colorectal cancer diagnosed before the age of 45 years, in which cases had been previously screened for germ-line mismatch repair gene mutations and for microsatellite instability. We used a micro-dissection and sequencing approach to search for somatic K-ras mutations in codons 12, 13 and 61 in 101 early-onset colorectal cancers. Six (6%) somatic K-ras mutations were detected; five in codon 12 (4 G>T transitions and 1 G>A) and one in codon 13 (G>A transition). All codon 12 mutations were identified in microsatellite stable tumours and the codon 13 mutation was identified in a MSI-high tumour. Four cases with K-ras mutations had no reported family history of colorectal cancer and two had some family history of colorectal cancer. None were known to carry a germ-line mutation in hMSH2, hMLH1, hMSH6 or hPMS2. The role of somatic K-ras mutations in early-onset colorectal cancer carcinogenesis appears to be minor, in contrast to its significant role in colorectal cancer of later age of onset.

  3. Prevalence of dural ectasia in 63 gene-mutation-positive patients with features of Marfan syndrome type 1 and Loeys-Dietz syndrome and report of 22 novel FBN1 mutations.

    PubMed

    Söylen, B; Singh, K K; Abuzainin, A; Rommel, K; Becker, H; Arslan-Kirchner, M; Schmidtke, J

    2009-03-01

    Marfan syndrome is an autosomal dominant disorder involving different organ systems. Marfan syndrome type 1 (MFS1) is caused by mutations in the FBN1 gene. Heterozygosity for mutations in the TGFBR1 or TGFBR2 genes cause Loeys-Dietz syndrome (LDS) types 2A and 2B that overlap with MFS1 in their clinical features. The phenotype of MFS1 is defined by the Ghent nosology, which classifies the clinical manifestations in major and minor criteria. Dural ectasia is one of the major criteria for Marfan syndrome but it is rarely tested for. We here report 22 novel and 9 recurrent mutations in the FBN1 gene in 36 patients with clinical features of Marfan syndrome. Sixty patients with identified mutations in the FBN1 gene and three patients with mutations in the TGFBR1 or TGFBR2 genes were examined for dural ectasia. Forty-seven of the 60 patients (78%) with MFS1 showed the dural ectasia criterion and 13 (22%) did not. Thirty-three (55%) patients were suspected of having Marfan syndrome and 24 (73%) of them had dural ectasia. Two of the three patients with LDS had dural ectasia.

  4. Amyloid Angiopathy and Variability in Amyloid β Deposition Is Determined by Mutation Position in Presenilin-1-Linked Alzheimer’s Disease

    PubMed Central

    Mann, David M. A.; Pickering-Brown, Stuart M.; Takeuchi, Ayano; Iwatsubo, Takeshi

    2001-01-01

    The presenilins (PSs) are components of large molecular complexes that contain β-catenin and function as γ-secretase. We report here a striking correlation between amyloid angiopathy and the location of mutation in PS-1 linked Alzheimer’s disease. The amount of amyloid β protein, Aβ42(43), but not Aβ40, deposited in the frontal cortex of the brain is increased in 54 cases of early-onset familial Alzheimer’s disease, encompassing 25 mutations in the presenilin-1 (PS-1) gene, compared to sporadic Alzheimer’s disease. The amount of Aβ40 in PS-1 Alzheimer’s disease varied according to the copy number of ε4 alleles of the Apolipoprotein E gene. Although the amounts of Aβ40 and Aβ42(43) deposited did not correlate with the genetic location of the mutation in a strict linear sense, the histological profile did so vary. Cases with mutations between codon 1 and 200 showed, in frontal cortex, many diffuse plaques, few cored plaques, and mild or moderate amyloid angiopathy. Cases with mutations occurring after codon 200 also showed many diffuse plaques, but the number and size of cored plaques were increased (even when ε4 allele was not present) and these were often clustered around blood vessels severely affected by amyloid angiopathy. Similarly, diverging histological profiles, mainly according to the degree of amyloid angiopathy, were seen in the cerebellum. Mutations in the PS-1 gene may therefore alter the topology of the PS-1 protein so as to favor Aβ formation and deposition, generally, but also to facilitate amyloid angiopathy particularly in cases in which the mutation lies beyond codon 200. Finally we report that the amount of Aβ42(43) deposited in the brain correlated with the amount of this produced in culture by cells bearing the equivalent mutations. PMID:11395394

  5. Hepatitis B virus basal core promoter mutations A1762T/G1764A are associated with genotype C and a low serum HBsAg level in chronically-infected HBeAg-positive Chinese patients.

    PubMed

    Yan, Chun-Hui; Zhao, Cheng-Yu; Ding, Hai; Peng, Ya-Qin; Jin, Peng-Yuan; Yan, Ling; Zhuang, Hui; Li, Tong

    2012-11-01

    The present study was aimed to obtain baseline information of basal core promoter A1762T/G1764A and precore G1896A mutations of hepatitis B virus (HBV) in 192 HBeAg-positive chronically-infected Chinese patients, who were potential candidates for antiviral treatment. The detection of these mutations (including minor mutant subpopulations) was achieved by direct sequencing, whose sensitivity for minor mutant subpopulations identification was confirmed by clone sequencing. Patients enrolled were infected with either genotype B (46.35%) or C (53.65%) HBV identified by routine tests in our laboratory. The A1762T/G1764A or G1896A mutations were detected in 125specimens (125/192, 65.10%), in which 77 (77/125, 61.60%) existed as subpopulations. The A1762T/G1764A mutations were found to be more prevalent in genotype C than that in genotype B HBV [62.14% (64/103) vs. 20.22% (18/89), P<0.0001]. There is no statistically significant link between G1896A and genotypes. The emergence of A1762T/G1764A mutations was also found to be associated with an older age, an elevated ALT/AST level, and a lower HBsAg level in serum [wild-type vs. mutant: 4.57 (3.46-5.42) vs. 3.93 (2.51-5.36), P<0.0001]. In conclusion, HBV basal core promoter mutations A1762T/G1764A are associated with genotype C and a low serum HBsAg level in chronically-infected HBeAg-positive Chinese patients.

  6. The predictive and prognostic role of phosphatase phosphoinositol-3 (PI3) kinase (PIK3CA) mutation in HER2-positive breast cancer receiving HER2-targeted therapy: a meta-analysis.

    PubMed

    Ibrahim, Ezzeldin M; Kazkaz, Ghieth A; Al-Mansour, Mubarak M; Al-Foheidi, Meteb E

    2015-08-01

    The association between PIK3CA mutation and resistance to anti-HER2 therapy (AHT) is not precisely defined. This meta-analysis intended to explore the clinical utility of PIK3CA mutation in HER2-positive breast cancer treated with AHT. Literature search identified 19 eligible studies. There were 1720 patients with advanced, 828 with early and 1290 patients treated in the neoadjuvant setting. In metastatic breast cancer, AHT showed no differential objective response benefit between the wild type (WT) and the mutated type (MT) PIK3CA subgroups (odds ratio [OR] = 1.09; 95 % CI 0.60-2.00; P = 0.78). AHT favorable affected progression-free survival (PFS) irrespective of PIK3CA mutation. There was no PFS difference between WT and MT regardless of the offered therapy. In early breast cancer, trastuzumab combined with the same chemotherapy conferred consistent relapse-free survival benefit in WT and MT subgroups (WT: HR = 0.59; 95 % CI 0.44-0.80; P < 0.001 vs. MT: HR = 0.42; 95 % CI 0.24-0.74; P < 0.001). In the neoadjuvant setting, AHT-based therapy produced a 72 % higher pathologic complete response (pCR) rate in WT as compared with that in MT PIK3CA tumors (OR = 1.72; 95 % CI 1.29-2.13; P < 0.001). In that setting, there was no disease-free or overall survival difference based on PIK3CA mutational status. In this meta-analysis, AHT did not achieve differential benefit according to PIK3CA mutation in HER2-positive metastatic or early breast cancer; however, in the neoadjuvant setting, patients harboring WT PIK3CA tumors attained a higher pCR rate.

  7. Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: an update for recent advances in therapeutics.

    PubMed

    Chung, Clement

    2016-06-01

    The presence of activating gene mutations in the epidermal growth factor receptor of non-small cell lung cancer patients is predictive (improved progression-free survival and improved response rate) when treated with small molecule tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib. The two most common mutations that account for greater than 85% of all EGFR gene mutations are in-frame deletions in exon 19 (LREA deletions) and substitution in exon 21 (L858R). Exon 18 mutations occur much less frequently at about 4% of all EGFR gene mutations. Together, exon 19 deletion and exon 21 L858R gene substitution are present in about 10% of Caucasian patients and 20-40% of Asian patients with non-small cell lung cancer. T790M gene mutation at exon 20 is associated with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Early studies showed that activating EGFR gene mutations are most common in patients with adenocarcinoma histology, women, never smokers and those of Asian ethnicity. A recent multi-center phase III trial suggested that frontline epidermal growth factor receptor tyrosine kinase inhibitor therapy with afatinib is associated with improved progression-free survival compared to chemotherapy regardless of race. Moreover, guidelines now suggest EGFR gene mutation testing should be conducted in all patients with lung adenocarcinoma or mixed lung cancers with an adenocarcinoma component, regardless of characteristics such as smoking status, gender or race. The success of targeted therapies in non-small cell lung cancer patients has changed the treatment paradigm in metastatic non-small cell lung cancer. However, despite a durable response of greater than a year, resistance to epidermal growth factor receptor tyrosine kinase inhibitors inevitably occurs. This mini-review describes the clinically relevant EGFR gene mutations and the efficacy/toxicity of small molecule epidermal growth factor receptor tyrosine kinase

  8. Successful treatment of Philadelphia chromosome-positive mixed phenotype acute leukemia by appropriate alternation of second-generation tyrosine kinase inhibitors according to BCR-ABL1 mutation status.

    PubMed

    Kawajiri, Chika; Tanaka, Hiroaki; Hashimoto, Shinichiro; Takeda, Yusuke; Sakai, Shio; Takagi, Toshiyuki; Takeuchi, Masahiro; Ohwada, Chikako; Sakaida, Emiko; Shimizu, Naomi; Nakaseko, Chiaki

    2014-04-01

    Philadelphia chromosome-positive mixed phenotype acute leukemia (Ph(+)MPAL) is a rare type of acute leukemia having myeloid and lymphoid features. In the present study, we describe the successful treatment of a 71-year-old Japanese female patient with Ph(+)MPAL by the alternation of second-generation tyrosine kinase inhibitors according to BCR-ABL1 mutations. The patient survived in her third complete remission (CR) for over 4 years. In her first CR, the patient was treated with multiple-agent chemotherapy and underwent maintenance therapy with imatinib and monthly vincristine and prednisolone (VP). At the first relapse, an examination of the bone marrow revealed a transformation into acute lymphoblastic leukemia and an F317L mutation in BCR-ABL1 gene, which responded preferentially to nilotinib over dasatinib. She achieved second CR, and nilotinib with VP therapy was selected for maintenance treatment. At second relapse, BCR-ABL1 mutational analysis revealed Y253H mutation instead of F317L mutation, resulting in resistance to nilotinib. The patient achieved third CR with dasatinib and VP therapy, and maintained CR with this treatment. This suggests that appropriate alternation of TKIs may contribute to long-term survival in elderly patients with Ph(+)MPAL.

  9. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    PubMed

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  10. Seven New Mutations in hMSH2, an HNPCC Gene, Identified by Denaturing Gradient-Gel Electrophoresis

    PubMed Central

    Wijnen, Juul; Vasen, Hans; Khan, P. Meera; Menko, Fred H.; van der Klift, Heleen; van Leeuwen, Claus; van den Broek, Marianne; van Leeuwen-Cornelisse, Inge; Nagengast, Fokko; Meijers-Heijboer, Anne; Lindhout, Dick; Griffioen, Gerrit; Cats, Annemieke; Kleibeuker, Jan; Varesco, Liliana; Bertario, Lucio; Bisgaard, Marie Luise; Mohr, Jan; Fodde, Riccardo

    1995-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is a relatively common autosomal dominant cancer-susceptibility condition. The recent isolation of the DNA mismatch repair genes (hMSH2, hMLH1, hPMS1, and hPMS2) responsible for HNPCC has allowed the search for germ-line mutations in affected individuals. In this study we used denaturing gradient-gel electrophoresis to screen for mutations in the hMSH2 gene. Analysis of all the 16 exons of hMSH2, in 34 unrelated HNPCC kindreds, has revealed seven novel pathogenic germ-line mutations resulting in stop codons either directly or through frameshifts. Additionally, nucleotide substitutions giving rise to one missense, two silent, and one useful polymorphism have been identified. The proportion of families in which hMSH2 mutations were found is 21%. Although the spectrum of mutations spread at the hMSH2 gene among HNPCC patients appears extremely heterogeneous, we were not able to establish any correlation between the site of the individual mutations and the corresponding tumor spectrum. Our results indicate that, given the genomic size and organization of the hMSH2 gene and the heterogeneity of its mutation spectrum, a rapid and efficient mutation detection procedure is necessary for routine molecular diagnosis and presymptomatic detection of the disease in a clinical setup. ImagesFigure 1 PMID:7726159

  11. Primary erythromelalgia in a 12-year-old boy: positive response to sodium channel blockers despite negative SCN9A mutations.

    PubMed

    Jakob, A; Creutzfeldt, R; Staszewski, O; Winterpacht, A; Berner, R; Hufnagel, M

    2012-09-01

    Erythromelalgia is a rare disorder characterized by recurrent pain attacks, swelling and redness in the distal extremities. The primary forms of the disorder are caused by mutations in voltage-gated sodium channels. Treatment is difficult and controlled therapeutic studies offer little to no guidance. We report on a 12-year-old boy and his first occurrence of primary erythromelalgia. Genetic findings for mutations in the SCN9A gene, which encodes for the α-subunit of sodium channel NaV1.7, were negative. Although initial treatment with sodium nitroprusside was ineffective, subsequent medication with lidocaine and mexiletine, in combination with gabapentin, was successful. Despite negative findings for mutations in the sodium channels, the use of sodium channel blockers should be considered in these patients. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Epidermal growth factor receptor T790M mutation-positive metastatic non-small-cell lung cancer: focus on osimertinib (AZD9291)

    PubMed Central

    Saad, Nibal; Poudel, Aarati; Basnet, Alina; Gajra, Ajeet

    2017-01-01

    Adenocarcinoma is the most common type of non-small-cell lung cancer (NSCLC). Adenocarcinoma with epidermal growth factor receptor (EGFR) mutations accounts for 8%–30% of all cases of NSCLC depending on the geography and ethnicity. EGFR-mutated NSCLC usually responds to first-line therapy with EGFR tyrosine kinase inhibitors (TKIs). However, there is eventual loss of efficacy to TKIs due to development of resistance. The most frequent cause for resistance is a second EGFR mutation in exon 20 (T790M), which is encountered in up to 62% of patients. Osimertinib is one of the third-generation EGFR TKIs with a high selective potency against T790M mutants. In Phase I trial of osimertinib in advanced lung cancer after progression on EGFR TKIs, the response rate and disease control rate were 61% and 95%, respectively. A subsequent Phase II (AURA2) trial demonstrated a disease control rate of 92%, a response rate of 71%, a median duration of response of 7.8 months, and a median progression-free survival of 8.6 months. Osimertinib was approved by the US Food & Drug Administration in November 2015 for patients whose tumors exhibited T790M mutation and for those with progressive disease on other EGFR TKIs. In this review, we address the role of EGFR TKIs in the management of EGFR mutation lung cancer and the mechanisms of resistance to TKIs with a focus on the role of osimertinib. Data from completed trials of osimertinib, ongoing trials, as well as novel diagnostic methods to detect EGFR T790M mutation are reviewed. PMID:28367058

  13. Impact of JAK2V617F Mutation Burden on Disease Phenotype in Chinese Patients with JAK2V617F-positive Polycythemia Vera (PV) and Essential thrombocythemia (ET).

    PubMed

    Zhao, Shixiang; Zhang, Xiang; Xu, Yang; Feng, Yufeng; Sheng, Wenhong; Cen, Jiannong; Wu, Depei; Han, Yue

    2016-01-01

    Most patients with polycythemia vera (PV) and half of essential thrombocythemia (ET) possess an activating JAK2V617F mutation. The objective of this study was to better define the effect of JAK2V617F mutant allele burden on clinical phenotypes in Chinese patients, especially thrombosis. By real-time polymerase chain reaction (RT-PCR), the JAK2V617F mutation burden was detected in 170 JAK2V617F-positive patients, including 54 PV and 116 ET. The results showed that JAK2V617F allele burden was higher in PV than in ET (P< 0.001). Higher percentage of patients had JAK2V617F allele burden over 20% in PV than in ET (68.5% VS 26.7%) (P< 0.001). In PV patients, higher JAK2V617F allele burden was observed in female (P< 0.05) and leukocytosis patients (WBC above 10 × 10(9)/L) (P< 0.001). Meanwhile, ET patients showed increased JAK2V617F allele burden in the group with higher hemoglobin (HGB above 150 g/L) (P< 0.05), leukocytosis (WBC above 10 × 10(9)/L) (P< 0.001), splenomegaly (P< 0.05) and thrombosis (P< 0.05). In conclusion, the JAK2V617F mutation allele burden is higher in Chinese patients with PV than ET. In PV patients, JAK2V617F mutation burden had influence on WBC counts. And the clinical characteristics of ET patients, such as WBC counts, hemoglobin level, splenomegaly and thrombosis, were influenced by JAK2V617F mutation burden. Male, high hemoglobin (HGB above 150 g/L), and increased JAK2V617F mutation burden (JAK2V617F allele burden ≥ 16.5%) were risks of thrombosis (P< 0.05) for ET patients by Logistic Regression.

  14. Exploring Different Mutations at a Single Amino Acid Position of Cucumber green mottle mosaic virus Replicase to Attain Stable Symptom Attenuation.

    PubMed

    Liu, Liming; Peng, Bin; Zhang, Zhenwei; Wu, Yang; Miras, Manuel; Aranda, Miguel A; Gu, Qinsheng

    2017-09-01

    Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus (family Virgaviridae) that causes serious economic losses in cucurbit crops. A possibility for CGMMV control is the use of cross-protection, for which stable attenuated isolates are required. In this study, an infectious clone was constructed for the hn isolate of CGMMV. Unexpectedly, this clone carried a nonconserved mutation involving a single nucleotide change resulting in the replacement of Arg by Cys at residue 284 of the replicase protein; this mutation correlated with delayed symptom induction and RNA accumulation, as shown in time-course experiments. Sequencing of the viral progeny showed that restoration of wild-type symptoms and increased RNA accumulation correlated with reversion of the mutation to the wild-type sequence, a phenomenon that occurred at approximately 7 to 10 days postinoculation. Thus, Arg284 seems to be crucial but not strictly necessary for virus infection. Subsequently, four other mutants in the triplet encoding Arg284 were constructed and assayed. Results showed that symptoms and their timing were diverse for the different mutants, with enhanced pathogenicity and RNA accumulation always correlating with reversion to Arg284. Therefore, the nature of the mutation strongly influenced the genetic stability of the mutant. At least two mutants were identified for which reversion did not occur by 30 days postinoculation, and these were defined as good candidates to attain stable symptom attenuation that could be useful in cross-protection.

  15. Identification and surveillance of 19 Lynch syndrome families in southern Italy: report of six novel germline mutations and a common founder mutation.

    PubMed

    Lastella, Patrizia; Patruno, Margherita; Forte, Giovanna; Montanaro, Alba; Di Gregorio, Carmela; Sabbà, Carlo; Suppressa, Patrizia; Piepoli, Adalgisa; Panza, Anna; Andriulli, Angelo; Resta, Nicoletta; Stella, Alessandro

    2011-06-01

    Lynch syndrome (LS), or hereditary non-polyposis colorectal cancer (HNPCC), is an autosomal dominant condition responsible for early onset cancer mostly in the colonrectum and endometrium as well as in other organ sites. Lynch syndrome is caused by germline mutations in mismatch repair genes, prevalently in hMSH2, hMLH1, and less frequently in hMSH6 and hPMS2. Twenty-nine non-related index cases with colorectal cancer (CRC) were collected from a region in southeast Italy (Apulia). Among this set of patients, fifteen fulfilled the Amsterdam criteria II. The presence of tumor microsatellite instability (MSI) was assessed in all index cases and 19 (15 AC+/4 AC-) were classified as MSI-H. Mutation analysis performed on all patients, identified 15 pathogenic mutations in hMLH1 and 4 in hMSH2. 4/15 mutations in hMLH1 and 2/4 hMSH2 mutations have not been previously reported. Three previously reported mutations were further investigated for the possibility of a common founder effect. Genetic counseling was offered to all probands and extended to 183 relatives after molecular testing and 85 (46%) mutation carriers were identified. Eighty mutation carriers underwent an accurate clinical and instrumental surveillance protocol. Our results confirm that the identification of LS patients based exclusively on family history may miss patients carrying germline mutations in the MMR genes. Moreover, our results demonstrated that molecular screening and subsequent instrumental surveillance are very effective in identifying CRCs at earlier stages and reducing the number of deaths from secondary cancers in HNPCC patients.

  16. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    PubMed Central

    Moreno-Ortiz, Jose Miguel; Ayala-Madrigal, María de la Luz; Corona-Rivera, Jorge Román; Maciel-Gutiérrez, Víctor; Franco-Topete, Ramón Antonio; Armendáriz-Borunda, Juan; Pérez-Carbonell, Lucia; Rhees, Jennifer; Gutiérrez-Angulo, Melva

    2016-01-01

    Background. Lynch Syndrome (LS) is characterized by germline mutations in the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC) and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC), and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del) and c.1852_1853delinsGC (p.K618A) in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs) in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel. PMID:27247567

  17. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-12-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed.

  18. Prognostic factors analysis in EGFR mutation-positive non-small cell lung cancer with brain metastases treated with whole brain-radiotherapy and EGFR-tyrosine kinase inhibitors

    PubMed Central

    WEI, HANGPING; SU, MENG; LIN, RUIFANG; LI, HUIFANG; ZOU, CHANGLIN

    2016-01-01

    The survival time of non-small cell lung cancer (NSCLC) patients with brain metastases has been previously reported to be 6.5–10.0 months, even with systematic treatment. Patients that possess a certain epidermal growth factor receptor (EGFR) mutation alongside NSCLC with brain metastases also have a short survival rate, and a reliable prognostic model for these patients demonstrates a strong correlation between the outcome and treatment recommendations. The Cox proportional hazards regression and classification tree models were used to explore the prognostic factors in EGFR mutation-positive NSCLC patients with brain metastases following whole-brain radiation therapy (WBRT) and EGFR-tyrosine kinase inhibitor (EGFR-TKI) treatment. A total of 66 EGFR mutation-positive NSCLC patients with brain metastases were retrospectively reviewed. Univariate and multivariate analyses by Cox proportional hazards regression were then performed. The classification tree model was applied in order to identify prognostic groups of the patients. In the survival analysis, age, carcinoembryonic antigen (CEA) and status of the primary tumor were prognostic factors for progression free survival (P=0.006, 0.014 and 0.005, respectively) and overall survival (P=0.009, 0.013 and 0.009, respectively). The classification tree model was subsequently applied, which revealed 3 patient groups with significantly different survival times: Group I, age <65 years and CEA ≤10 µg/ml; Group II, age <65 years and CEA >10 µg/ml or age ≥65 years and CEA ≤10 µg/ml; and Group III, age ≥65 years and CEA >10 µg/ml. The major prognostic predictors for EGFR mutation-positive NSCLC patients with brain metastases following WBRT and EGFR-TKI were age and CEA. In addition, primary tumor control may be important for predicting survival. PMID:26998157

  19. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene.

    PubMed

    Win, Aung Ko; Reece, Jeanette C; Buchanan, Daniel D; Clendenning, Mark; Young, Joanne P; Cleary, Sean P; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G; MacInnis, Robert J; Tucker, Katherine M; Winship, Ingrid M; Macrae, Finlay A; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W; Newcomb, Polly A; Thibodeau, Stephen N; Lindor, Noralane M; Hopper, John L; Gallinger, Steven; Jenkins, Mark A

    2015-12-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understandin g the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95% confidence interval (CI) 9.19-50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95% CI 0.63-5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative.

  20. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    PubMed Central

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95 % CI 0.63–5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  1. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer.

    PubMed

    Gao, Xin; Le, Xiuning; Costa, Daniel B

    2016-01-01

    First- and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for metastatic non-small-cell lung cancers (NSCLCs) that harbor sensitizing EGFR mutations (i.e. exon 19 deletions or L858R). However, acquired resistance to EGFR TKI monotherapy occurs invariably within a median time frame of one year. The most common form of biological resistance is through the selection of tumor clones harboring the EGFR T790M mutation, present in >50% of repeat biopsies. The presence of the EGFR T790M mutation negates the inhibitory activity of gefitinib, erlotinib, and afatinib. A novel class of third-generation EGFR TKIs has been identified by probing a series of covalent pyrimidine EGFR inhibitors that bind to amino-acid residue C797 of EGFR and preferentially inhibit mutant forms of EGFR versus the wild-type receptor. We review the rapid clinical development and approval of the third-generation EGFR TKI osimertinib for treatment of NSCLCs with EGFR-T790M.

  2. Treatment with the nitric oxide synthase inhibitor L-NAME provides a survival advantage in a mouse model of Kras mutation-positive, non-small cell lung cancer

    PubMed Central

    Xu, MengMeng; Counter, Christopher M.

    2016-01-01

    Oncogenic mutations in the gene KRAS are commonly detected in non-small cell lung cancer (NSCLC). This disease is inherently difficult to treat, and combinations involving platinum-based drugs remain the therapeutic mainstay. In terms of novel, pharmacologically actionable targets, nitric oxide synthases (NOS) have been implicated in the etiology of KRAS-driven cancers, including lung cancer, and small molecular weight NOS inhibitors have been developed for the treatment of other diseases. Thus, we evaluated the anti-neoplastic activity of the oral NOS inhibitor L-NAME in a randomized preclinical trial using a genetically engineered mouse model of Kras and p53 mutation-positive NSCLC. We report here that L-NAME decreased lung tumor growth in vivo, as assessed by sequential radiological imaging, and provided a survival advantage, perhaps the most difficult clinical parameter to improve upon. Moreover, L-NAME enhanced the therapeutic benefit afforded by carboplatin chemotherapy, provided it was administered as maintenance therapy after carboplatin. Collectively, these results support the clinical evaluation of L-NAME for the treatment of KRAS mutation-positive NSCLC. PMID:27285753

  3. Evaluation of PTEN loss and PIK3CA mutations and their correlation with efficacy of trastuzumab treatment in HER2-positive metastatic breast cancer: A retrospective study (KBC-SG 1001).

    PubMed

    Nishimura, Reiki; Arima, Nobuyuki; Toyoshima, Satoshi; Ohi, Yasuyo; Anan, Keisei; Sagara, Yasuaki; Mitsuyama, Shoshu; Tamura, Kazuo

    2013-01-01

    Trastuzumab (T) has contributed to improving the prognosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Although some patients have been unresponsive or resistant to T. Loss of phosphatase and tensin homolog (PTEN) deleted on chromosome 10, PIK3CA mutation and p95HER2 expression have been reported to potentially be responsible for the poor response to T. This is a small-scale pilot study to be followed by a large-scale investigation examining the association between the biomarkers and clinical response. Based on the response to T, patients were divided into 3 groups in terms of progression-free survival (PFS): PFS >8 months (group A, n=15), 3-8 months (group B, n=7) and PFS <3 months (group C, n=11). PTEN protein expression was detected by immunohistochemistry and PIK3CA mutation by direct sequencing. The median age was 61, 60 and 47 years in groups A, B and C, respectively, with statistically significant differences among the groups. No additional patient background factors differed between the groups. A decreased PTEN expression (H score, <100) was observed in 33.3 and 72.7% of patients in groups A and C, respectively. PTEN loss was slightly correlated with poor response to T. PIK3CA mutation frequency in exons 9/20 was 33.3% in group A and 27.3% in group C, with no significant correlation between PIK3CA mutation and clinical response. In this small-scale pilot study, a weak correlation was demonstrated between PTEN loss and poor response to T. This potential correlation is likely to be confirmed in the planned large-scale study, while the association of PIK3CA mutation and p95HER2 expression with poor response to T also requires examination.

  4. An in vivo mutation from leucine to tryptophan at position 210 in human immunodeficiency virus type 1 reverse transcriptase contributes to high-level resistance to 3'-azido-3'-deoxythymidine.

    PubMed Central

    Hooker, D J; Tachedjian, G; Solomon, A E; Gurusinghe, A D; Land, S; Birch, C; Anderson, J L; Roy, B M; Arnold, E; Deacon, N J

    1996-01-01

    Sequencing of the reverse transcriptase (RT) region of 26 human immunodeficiency virus type 1 (HIV-1) isolates from eight patients treated with 3'-azido-3'-deoxythymidine (AZT) revealed a mutation at codon 210 from TTG (leucine) to TGG (tryptophan) exclusively in association with resistance to AZT. The mutation Trp-210 was observed in 15 of the 20 isolates phenotypically resistant to AZT, being more commonly observed than resistance-associated mutations at codons 67, 70, and 219. Trp-210 was never observed before the emergence of resistance-associated mutations Leu-41 and Tyr-215, and in a sequential series of five isolates from one patient the order of emergence of mutations was found to be Tyr-215, Leu-41, and then Trp-210. Trp-210 was also found in association with the Leu-41, Asn-67, Arg-70, and Tyr-215 resistance genotype. To define the role of Trp-210 in AZT resistance, molecular HIV-1 clones were constructed with various combinations of RT mutations at codons 41, 67, 70, 210, and 215 and tested for susceptibility to AZT. In clones with polymerase genes derived either from HXB2-D or clinical isolates, Trp-210 alone did not increase AZT resistance, whereas in conjunction with Leu-41 and Tyr-215, Trp-210 contributed to high-level resistance (50% inhibitory concentration of >1 microM). In HXB2-D, Trp-210 with Tyr-215 generated a virus with resistance comparable to one with Leu-41, Tyr-215, and Trp-210. Inserting Trp-210 into the genetic context of mutations at codons 41, 67, 70, and 215 further enhanced resistance from a 50% inhibitory concentration of 1.44 microM to 8.41 microM. Molecular modeling of the tertiary structure of HIV-1 RT revealed that the distance between the side chains of Trp-210 (in helix alphaF) and Tyr-215 (in strand beta11a) approximated 4 A (1 A = 0.1 nm), sufficiently close to result in significant energetic interaction between these two aromatic side chains. In conclusion, Trp-210 contributes significantly to phenotypic AZT resistance of

  5. Breast and ovarian cancer screening of non-carriers from BRCA1/2 mutation-positive families: 2-year follow-up of cohorts from France and Quebec

    PubMed Central

    Dorval, Michel; Noguès, Catherine; Berthet, Pascaline; Chiquette, Jocelyne; Gauthier-Villars, Marion; Lasset, Christine; Picard, Claude; Plante, Marie; Simard, Jacques; Julian-Reynier, Claire

    2011-01-01

    We described and compared breast and ovarian screening practices in the 2-year period following test result disclosure in female non-carriers from BRCA1/2 mutation-positive families living in two countries, France and Quebec, Canada, which provide universal health care. Four hundred and two (France n=293; Quebec n=109) unaffected female non-carriers from BRCA-proven mutation families provided information about the uptake of mammography, clinical breast examination, breast self-examination, and ovarian ultrasounds using self-administered questionnaires. The frequency of screening practices between study cohorts were compared using logistic regression. Annual mammography was conducted in 23 and 43% of French and Quebecer women participants <50 years of age, respectively (adjusted odds ratio (aOR)=2.72; 95% confidence interval (CI), 1.08–6.81). In women ≥50 years of age, mammography was conducted in 49 and 65% of French and Quebecer participants (aOR=1.77; 95% CI, 0.07–4.51). Overall, 33% of French women and 39% of Quebecer women underwent at least one ovarian ultrasound during the 2-year period following BRCA1/2 test result with no significant difference between cohorts of women <50 years of age. Among older women, Quebecers reported more frequently than French women that they had undergone ultrasound once (aOR=3.00; 95% CI, 1.02–8.83). The frequency of cancer screening practices for female non-carriers from BRCA1/2 mutation-positive families in both France and Quebec exceeded those recommended for similarly aged women in the general population. Our findings highlight the need for clearcut recommendations on the follow-up of women from BRCA1/2 families who are not themselves carriers of a BRCA1/2 mutation. PMID:21248744

  6. Probing the Metabotropic Glutamate Receptor 5 (mGlu5) Positive Allosteric Modulator (PAM) Binding Pocket: Discovery of Point Mutations That Engender a “Molecular Switch” in PAM Pharmacology

    PubMed Central

    Gregory, Karen J.; Nguyen, Elizabeth D.; Reiff, Sean D.; Squire, Emma F.; Stauffer, Shaun R.; Lindsley, Craig W.; Meiler, Jens

    2013-01-01

    Positive allosteric modulation of metabotropic glutamate receptor subtype 5 (mGlu5) is a promising novel approach for the treatment of schizophrenia and cognitive disorders. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, allowing for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of the orthosteric agonist. The molecular determinants that govern mGlu5 modulator affinity versus cooperativity are not well understood. Focusing on the modulators based on the acetylene scaffold, we sought to determine the molecular interactions that contribute to PAM versus NAM pharmacology. Generation of a comparative model of the transmembrane-spanning region of mGlu5 served as a tool to predict and interpret the impact of mutations in this region. Application of an operational model of allosterism allowed for determination of PAM and NAM affinity estimates at receptor constructs that possessed no detectable radioligand binding as well as delineation of effects on affinity versus cooperativity. Novel mutations within the transmembrane domain (TM) regions were identified that had differential effects on acetylene PAMs versus 2-methyl-6-(phenylethynyl)-pyridine, a prototypical NAM. Three conserved amino acids (Y658, T780, and S808) and two nonconserved residues (P654 and A809) were identified as key determinants of PAM activity. Interestingly, we identified two point mutations in TMs 6 and 7 that, when mutated, engender a mode switch in the pharmacology of certain PAMs. PMID:23444015

  7. Germline RET 634 mutation positive MEN 2A-related C-cell hyperplasias have genetic features consistent with intraepithelial neoplasia.

    PubMed

    Diaz-Cano, S J; de Miguel, M; Blanes, A; Tashjian, R; Wolfe, H J

    2001-08-01

    C-cell hyperplasias are normally multifocal in multiple endocrine neoplasia type 2A. We compared clonality, microsatellite pattern of tumor suppressor genes, and cellular kinetics of C-cell hyperplasia foci in each thyroid lobe. We selected 11 females from multiple endocrine neoplasia type 2A kindred treated with thyroidectomy due to hypercalcitoninemia. C-cell hyperplasia foci were microdissected for DNA extraction to analyze the methylation pattern of androgen receptor alleles and microsatellite regions (TP53, RB1, WT1, and NF1). Consecutive sections were selected for MIB-1, pRB1, p53, Mdm-2, and p21WAF1 immunostaining, DNA content analysis, and in situ end labeling. Appropriate tissue controls were run. Only two patients had medullary thyroid carcinoma foci. Nine informative C-cell hyperplasia patients showed germline point mutation in RET, eight of them with the same androgen receptor allele preferentially methylated in both lobes. C-cell hyperplasia foci showed heterogeneous DNA deletions revealed by loss of heterozygosity of TP53 (12 of 20), RB1 (6 of 14), and WT1 (4 of 20) and hypodiploid G0/G1 cells (14 of 20), low cellular turnover (MIB-1 index 4.5%, in situ end labeling index 0.03%), and significantly high nuclear area to DNA index ratio. MEN 2A (germline point mutation in RET codon 634) C-cell hyperplasias are monoclonal and genetically heterogeneous and show down-regulated apoptosis, findings consistent with an intraepithelial neoplasia. Concordant X-chromosome inactivation and interstitial gene deletions suggest clone expansions of precursors occurring at a point in embryonic development before divergence of each thyroid lobe and may represent a paradigm for other germline mutations.

  8. A mouse kidney cell line with a G:C --> C:G transversion mutator phenotype.

    PubMed

    Shin, Chi Y; Ponomareva, Olga N; Connolly, Lanelle; Turker, Mitchell S

    2002-06-19

    We report the identification of a mouse kidney epithelial cell line (K435) in which G:C-->C:G transversion mutations occur at an elevated rate and are the predominant spontaneous events observed at the selectable Aprt locus. Of three genotoxins tested, ultraviolet radiation (UV), ionizing radiation, and hydrogen peroxide, only UV exposure was able to alter the spectrum of small mutational events. To determine if the G:C-->C:G mutator phenotype was due to a deficiency in the mismatch repair pathway, the K435 cells were tested for resistance to 6-thioguanine, cisplatin, and MNNG. Although the K435 cells were as resistant to 6-thioguanine and cisplatin as Pms2 and Mlh1 null kidney cells, they were hypersensitive to MNNG. Moreover, the K435 cells do not exhibit microsatellite instability, a hallmark of mismatch repair deficiency. These results suggest that a novel mechanism, which does not include a classical deficiency in mismatch repair, accounts for the G:C-->C:G mutator phenotype.

  9. Clinical characteristics of patients with central nervous system relapse in BCR-ABL1-positive acute lymphoblastic leukemia: the importance of characterizing ABL1 mutations in cerebrospinal fluid.

    PubMed

    Sanchez, Ricardo; Ayala, Rosa; Alonso, Rafael Alberto; Martínez, María Pilar; Ribera, Jordi; García, Olga; Sanchez-Pina, José; Mercadal, Santiago; Montesinos, Pau; Martino, Rodrigo; Barba, Pere; González-Campos, José; Barrios, Manuel; Lavilla, Esperanza; Gil, Cristina; Bernal, Teresa; Escoda, Lourdes; Abella, Eugenia; Amigo, Ma Luz; Moreno, Ma José; Bravo, Pilar; Guàrdia, Ramón; Hernández-Rivas, Jesús-María; García-Guiñón, Antoni; Piernas, Sonia; Ribera, José-María; Martínez-López, Joaquín

    2017-07-01

    We investigated the frequency, predictors, and evolution of acute lymphoblastic leukemia (ALL) in patients with CNS relapse and introduced a novel method for studying BCR-ABL1 protein variants in cDNA from bone marrow (BM) and cerebrospinal fluid (CSF) blast cells. A total of 128 patients were analyzed in two PETHEMA clinical trials. All achieved complete remission after imatinib treatment. Of these, 30 (23%) experienced a relapse after achieving complete remission, and 13 (10%) had an isolated CNS relapse or combined CNS and BM relapses. We compared the characteristics of patients with and without CNS relapse and further analyzed CSF and BM samples from two of the 13 patients with CNS relapse. In both patients, classical sequencing analysis of the kinase domain of BCR-ABL1 from the cDNA of CSF blasts revealed the pathogenic variant p.L387M. We also performed ultra-deep next-generation sequencing (NGS) in three samples from one of the relapsed patients. We did not find the mutation in the BM sample, but we did find it in CSF blasts with 45% of reads at the time of relapse. These data demonstrate the feasibility of detecting BCR-ABL1 mutations in CSF blasts by NGS and highlight the importance of monitoring clonal evolution over time.

  10. Cost-Effectiveness and Value of Information of Erlotinib, Afatinib, and Cisplatin-Pemetrexed for First-Line Treatment of Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer in the United States.

    PubMed

    Ting, Jie; Tien Ho, PharmD; Xiang, Pin; Sugay, Amanda; Abdel-Sattar, Maher; Wilson, Leslie

    2015-09-01

    To determine the cost-effectiveness of tyrosine kinase inhibitors erlotinib or afatinib, or chemotherapy cisplatin-pemetrexed, for first-line treatment of advanced epithelial growth factor receptor mutation-positive non-small-cell lung cancer in the United States. We also assessed the expected benefit of further research to reduce uncertainty regarding which treatment is optimal. We developed a Markov model to compare the cost-effectiveness of erlotinib, afatinib, and cisplatin-pemetrexed. Model transition and adverse-effect probabilities were from two published phase III trials: EURTAC (Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer) and LUX-Lung (Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma) 3. EURTAC survival estimates were corrected for patients entering the trial with more severe disease, compared with LUX-Lung 3. Health utilities and costs were from national estimates or the published literature. Inputs were modeled as distributions for probabilistic sensitivity analysis and expected value of perfect information (EVPI) analysis to estimate the expected benefit of reducing uncertainty regarding the decision of optimal treatment. In the base case, both tyrosine kinase inhibitors were more cost-effective than cisplatin-pemetrexed. Erlotinib had an incremental cost-effectiveness ratio of $61,809/quality-adjusted life-year (QALY) compared with afatinib. The acceptability curve showed that erlotinib was the optimal treatment at a willingness-to-pay threshold of $100,000/QALY (10-year population EVPI = $85.9 million). At a willingness-to-pay threshold of $50,000/QALY to $70,000/QALY (EVPI = $211.5 million-$261.8 million), however, there was considerable uncertainty whether erlotinib or afatinib was the optimal treatment. Our analysis suggests that erlotinib is the preferred first-line treatment for advanced epithelial

  11. Germline Mutations in Predisposition Genes in Pediatric Cancer

    PubMed Central

    Edmonson, Michael N.; Gruber, Tanja A.; Easton, John; Hedges, Dale; Ma, Xiaotu; Zhou, Xin; Yergeau, Donald A.; Wilkinson, Mark R.; Vadodaria, Bhavin; Chen, Xiang; McGee, Rose B.; Hines-Dowell, Stacy; Nuccio, Regina; Quinn, Emily; Shurtleff, Sheila A.; Rusch, Michael; Patel, Aman; Becksfort, Jared B.; Wang, Shuoguo; Weaver, Meaghann S.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Gajjar, Amar; Ellison, David W.; Pappo, Alberto S.; Pui, Ching-Hon; Downing, James R.

    2016-01-01

    BACKGROUND The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. METHODS In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). RESULTS Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. CONCLUSIONS Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American

  12. Majority of hMLH1 mutations responsible for hereditary nonpolyposis colorectal cancer cluster at the exonic region 15-16

    SciTech Connect

    Wijnen, J.; Khan, P.M.; Klift, H. van der

    1996-02-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer susceptibility condition. Inherited mutations in at least four DNA mismatch repair genes, hMSH2, hMLH1, hPMS1, and hPMS2, are known to cause HNPCC. In this study we used denaturing gradient gel electrophoresis (DGGE) to screen for hMLH1 mutations in 34 unrelated HNPCC families (30 Dutch, 3 Italian, and 1 Danish). Ten novel pathogenic germ-line mutations (seven affecting splice sites, two frameshifts, and one in-frame deletion of a single amino acid) have been identified in 12 (35%) of these families. In a previous study, hMSH2 mutations were found in 21% of the same families. While the spectrum of mutations at the hMSH2 gene among HNPCC patients appears heterogeneous, a cluster of hMLH1 mutations has been found in the region encompassing exons 15 and 16, which accounts for 50% of all the independent hMLH1 mutations described to date and for >20% of the unrelated HNPCC kindreds here analyzed. This unexpected finding has a great practical value in the clinical scenario of genetic services. 34 refs., 3 figs., 2 tabs.

  13. Prenatal monitoring in a family at high risk for ornithine transcarbamylase (OTC) deficiency: A new mutation of an A-to-C transversion in position +4 of intron 1 of the OTC gene that is likely to abolish enzyme activity

    SciTech Connect

    Hoshide, Ryuuji; Matsuura, Toshinobu; Endo, Fumio

    1996-08-23

    DNA analysis of a male propositus with ornithine transcarbamylase (OTC) deficiency documented an A-to-C substitution in position +4 of intron 1. No other abnormalities were observed in the OTC gene, or at 563 bp upstream of the 5{prime} site, which included a promoter region, or at 383 bp downstream of the termination codon, which included a polyadenylation signal sequence. This mutation produces an RsaI site in the sequence, which was used for prenatal monitoring in the fourth and fifth pregnancies. DNA from amniotic cells in the former case were positive for RsaI digestion and the SRY gene (sex determinant region Y), indicating hemizygosity for the mutant allele. OTC activity was not measureable, and mRNA of the OTC gene was not detected by Northern blotting in the affected fetal liver. RT-PCR (reverse transcription-PCR) demonstrated only the wild-type allele. Thus, the mutation interferes with RNA processing, and an extremely low amount of normally spliced mRNA for the OTC gene seems to have caused the disease in our patient. The fetus of the fifth pregnancy was a normal male, as confirmed postnatally. 25 refs., 5 figs.

  14. Prenatal monitoring in a family at high risk for ornithine transcarbamylase (OTC) deficiency: a new mutation of an A-to-C transversion in position +4 of intron 1 of the OTC gene that is likely to abolish enzyme activity.

    PubMed

    Hoshide, R; Matsuura, T; Sagara, Y; Kubo, T; Shimadzu, M; Endo, F; Matsuda, I

    1996-08-23

    DNA analysis of a male propositus with ornithine transcarbamylase (OTC) deficiency documented an A-to-C substitution in position +4 of intron 1. No other abnormalities were observed in the OTC gene, or at 563 bp upstream of the 5' site, which included a promoter region, or at 383 bp downstream of the termination codon, which included a polyadenylation signal sequence. This mutation produces an RsaI site in the sequence, which was used for prenatal monitoring in the fourth and fifth pregnancies. DNA from amniotic cells in the former case were positive for RsaI digestion and the SRY gene (sex determinant region Y), indicating hemizygosity for the mutant allele. OTC activity was not measurable, and mRNA of the OTC gene was not detected by Northern blotting in the affected fetal liver. RT-PCR (reverse transcription-PCR) demonstrated only the wild-type allele. Thus, the mutation interferes with RNA processing, and an extremely low amount of normally spliced mRNA for the OTC gene seems to have caused the disease in our patient. The fetus of the fifth pregnancy was a normal male, as confirmed postnatally.

  15. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.

    PubMed

    Stirling, Peter C; Shen, Yaoqing; Corbett, Richard; Jones, Steven J M; Hieter, Philip

    2014-02-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13-Stn1-Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.

  16. Estimating quality adjusted progression free survival of first-line treatments for EGFR mutation positive non small cell lung cancer patients in The Netherlands.

    PubMed

    Verduyn, S Cora; Biesma, Bonne; Schramel, Franz M N H; van der Scheer, Feike W; Langenfeld, Merel K; de Peuter, Maria A; Dingemans, Anne-Marie C

    2012-09-10

    Gefitinib, a tyrosine kinase inhibitor, is an effective treatment in advanced non-small cell lung cancer (NSCLC) patients with an activating mutation in the epidermal growth factor receptor (EGFR). Randomised clinical trials showed a benefit in progression free survival for gefitinib versus doublet chemotherapy regimens in patients with an activated EGFR mutation (EGFR M+). From a patient perspective, progression free survival is important, but so is health-related quality of life. Therefore, this analysis evaluates the Quality Adjusted progression free survival of gefitinib versus three relevant doublet chemotherapies (gemcitabine/cisplatin (Gem/Cis); pemetrexed/cisplatin (Pem/Cis); paclitaxel/carboplatin (Pac/Carb)) in a Dutch health care setting in patients with EGFR M+ stage IIIB/IV NSCLC. This study uses progression free survival rather than overall survival for its time frame in order to better compare the treatments and to account for the influence that subsequent treatment lines would have on overall survival analysis. Mean progression free survival for Pac/Carb was obtained by extrapolating the median progression free survival as reported in the Iressa-Pan-Asia Study (IPASS). Data from a network meta-analysis was used to estimate the mean progression free survival for therapies of interest relative to Pac/Carb. Adjustment for health-related quality of life was done by incorporating utilities for the Dutch population, obtained by converting FACT-L data (from IPASS) to utility values and multiplying these with the mean progression free survival for each treatment arm to determine the Quality Adjusted progression free survival. Probabilistic sensitivity analysis was carried out to determine 95% credibility intervals. The Quality Adjusted progression free survival (PFS) (mean, (95% credibility interval)) was 5.2 months (4.5; 5.8) for Gem/Cis, 5.3 months (4.6; 6.1) for Pem/Cis; 4.9 months (4.4; 5.5) for Pac/Carb and 8.3 (7.0; 9.9) for gefitinib. In the Dutch

  17. The International Association for the Study of Lung Cancer Consensus Statement on Optimizing Management of EGFR Mutation-Positive Non-Small Cell Lung Cancer: Status in 2016.

    PubMed

    Tan, Daniel S W; Yom, Sue S; Tsao, Ming S; Pass, Harvey I; Kelly, Karen; Peled, Nir; Yung, Rex C; Wistuba, Ignacio I; Yatabe, Yasushi; Unger, Michael; Mack, Philip C; Wynes, Murry W; Mitsudomi, Tetsuya; Weder, Walter; Yankelevitz, David; Herbst, Roy S; Gandara, David R; Carbone, David P; Bunn, Paul A; Mok, Tony S K; Hirsch, Fred R

    2016-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) represent one of the most frequent "actionable" alterations in non-small cell lung cancer (NSCLC). Typified by high response rates to targeted therapies, EGFR tyrosine kinase inhibitors (TKIs) are now established first-line treatment options and have transformed the treatment paradigm for NSCLC. With the recent breakthrough designation and approval of the third-generation EGFR TKI osimertinib, available systemic and local treatment options have expanded, requiring new clinical algorithms that take into account individual patient molecular and clinical profiles. In this International Association for the Study of Lung Cancer commissioned consensus statement, key pathologic, diagnostic, and therapeutic considerations, such as optimal choice of EGFR TKI and management of brain metastasis, are discussed. In addition, recommendations are made for clinical guidelines and research priorities, such as the role of repeat biopsies and use of circulating free DNA for molecular studies. With the rapid pace of progress in treating EGFR-mutant NSCLC, this statement provides a state-of-the-art review of the contemporary issues in managing this unique subgroup of patients.

  18. Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer

    PubMed Central

    Grant, Robert C.; Selander, Iris; Connor, Ashton A.; Selvarajah, Shamini; Borgida, Ayelet; Briollais, Laurent; Petersen, Gloria M.; Lerner-Ellis, Jordan; Holter, Spring; Gallinger, Steven

    2015-01-01

    Background & Aims We investigated the prevalence of germline mutations in APC, ATM, BRCA1, BRCA2, CDKN2A, MLH1, MSH2, MSH6, PALB2, PMS2, PRSS1, STK11, and TP53 in patients with pancreatic cancer. Methods The Ontario Pancreas Cancer Study enrolls consenting participants with pancreatic cancer from a province-wide electronic pathology database; 708 probands were enrolled from April 2003 through August 2012. To improve precision of BRCA2 prevalence estimates, 290 probands were randomly selected from 3 strata, based on family history of breast and/or ovarian cancer, pancreatic cancer, or neither. Germline DNA was analyzed by next-generation sequencing using a custom multiple-gene panel. Mutation prevalence estimates were calculated from the sample for the entire cohort. Results Eleven pathogenic mutations were identified: 3 in ATM, 1 in BRCA1, 2 in BRCA2, 1 in MLH1, 2 in MSH2, 1 in MSH6, and 1 in TP53. The prevalence of mutations in all 13 genes was 3.8% (95% confidence interval, 2.1%–5.6%). Carrier status was significantly associated with breast cancer in the proband or first-degree relative (P<.01), and colorectal cancer in the proband or first-degree relative (P<.01), but not family history of pancreatic cancer, age of diagnosis, or stage at diagnosis. Of patients with a personal or family history of breast and colorectal cancer, 10.7% (4.4%–17.0%) and 11.1% (3.0%–19.1%) carried pathogenic mutations, respectively. Conclusions A small but clinically important proportion of pancreatic cancer is associated with mutations in known predisposition genes. The heterogeneity of mutations identified in this study demonstrates the value of using a multiple-gene panel in pancreatic cancer. PMID:25479140

  19. Rapid detection of the Clostridium difficile ribotype 027 tcdC gene frame shift mutation at position 117 by real-time PCR and melt curve analysis.

    PubMed

    Wolff, D; Brüning, T; Gerritzen, A

    2009-08-01

    The emergence of the hypervirulent strain Clostridium difficile PCR ribotype 027 has increased the necessity for rapid C. difficile typing tests for clinical and epidemiological purposes. We developed a rapid real-time polymerase chain reaction (PCR) test for the detection of C. difficile. As the target, we chose the tcdC gene, which encodes for a negative regulator in toxin production. A deletion at position 117 of the tcdC gene, which is associated with severe tcdC truncation, is well conserved in all PCR ribotype 027 isolates. Probe sequences of the real-time PCR test were designed to result in distinct melt profiles for sequence variations at positions 117 to 120 of the tcdC gene. The tcdC gene deletion at position 117 was easily detected with real-time PCR and melt curve analysis in all C. difficile ribotype 027 isolates. In five non-027 strains and 46 hospitalised patient samples, melt curve analysis detected no deletion. PCR results were confirmed by DNA sequencing. The combination of real-time PCR and melt curve analysis is a rapid and accurate method for the detection of C. difficile DNA and simultaneous screening for the tcdC gene deletion at position 117, which is closely related to the C. difficile PCR ribotype 027 strain.

  20. Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations.

    PubMed

    Caminsky, Natasha G; Mucaki, Eliseos J; Perri, Ami M; Lu, Ruipeng; Knoll, Joan H M; Rogan, Peter K

    2016-07-01

    BRCA1 and BRCA2 testing for hereditary breast and ovarian cancer (HBOC) does not identify all pathogenic variants. Sequencing of 20 complete genes in HBOC patients with uninformative test results (N = 287), including noncoding and flanking sequences of ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51B, STK11, TP53, and XRCC2, identified 38,372 unique variants. We apply information theory (IT) to predict and prioritize noncoding variants of uncertain significance in regulatory, coding, and intronic regions based on changes in binding sites in these genes. Besides mRNA splicing, IT provides a common framework to evaluate potential affinity changes in transcription factor (TFBSs), splicing regulatory (SRBSs), and RNA-binding protein (RBBSs) binding sites following mutation. We prioritized variants affecting the strengths of 10 splice sites (four natural, six cryptic), 148 SRBS, 36 TFBS, and 31 RBBS. Three variants were also prioritized based on their predicted effects on mRNA secondary (2°) structure and 17 for pseudoexon activation. Additionally, four frameshift, two in-frame deletions, and five stop-gain mutations were identified. When combined with pedigree information, complete gene sequence analysis can focus attention on a limited set of variants in a wide spectrum of functional mutation types for downstream functional and co-segregation analysis.

  1. Positive Control Mutations in the MyoD Basic Region Fail to Show Cooperative DNA Binding and Transcriptional Activation in vitro

    NASA Astrophysics Data System (ADS)

    Bengal, Eyal; Flores, Osvaldo; Rangarajan, Pundi N.; Chen, Amy; Weintraub, Harold; Verma, Inder M.

    1994-06-01

    An in vitro transcription system from HeLa cells has been established in which MyoD and E47 proteins activate transcription both as homodimers and heterodimers. However, heterodimers activate transcription more efficiently than homodimers, and function synergistically from multiple binding sites. Positive control mutants in the basic region of MyoD that have previously been shown to be defective in initiating the myogenic program, can bind DNA but have lost their ability to function as transcriptional activators in vitro. Additionally, positive control mutants, unlike wild-type MyoD, fail to bind cooperatively to DNA. We propose that binding of MyoD complexes to high affinity MyoD binding sites induces conformational changes that facilitate cooperative binding to multiple sites and promote transcriptional activation.

  2. Gefitinib Treatment in EGFR Mutated Caucasian NSCLC

    PubMed Central

    Ostoros, Gyula; Cobo, Manuel; Ciuleanu, Tudor; Cole, Rebecca; McWalter, Gael; Walker, Jill; Dearden, Simon; Webster, Alan; Milenkova, Tsveta; McCormack, Rose

    2014-01-01

    Introduction: In the phase IV, open-label, single-arm study NCT01203917, first-line gefitinib 250 mg/d was effective and well tolerated in Caucasian patients with epidermal growth factor receptor (EGFR) mutation-positive non–small-cell lung cancer (previously published). Here, we report EGFR mutation analyses of plasma-derived, circulating-free tumor DNA. Methods: Mandatory tumor and duplicate plasma (1 and 2) baseline samples were collected (all screened patients; n = 1060). Preplanned, exploratory analyses included EGFR mutation (and subtype) status of tumor versus plasma and between plasma samples. Post hoc, exploratory analyses included efficacy by tumor and plasma EGFR mutation (and subtype) status. Results: Available baseline tumor samples were 1033 of 1060 (118 positive of 859 mutation status known; mutation frequency, 13.7%). Available plasma 1 samples were 803 of 1060 (82 positive of 784 mutation status known; mutation frequency, 10.5%). Mutation status concordance between 652 matched tumor and plasma 1 samples was 94.3% (95% confidence interval [CI], 92.3–96.0) (comparable for mutation subtypes); test sensitivity was 65.7% (95% CI, 55.8–74.7); and test specificity was 99.8% (95% CI, 99.0–100.0). Twelve patients of unknown tumor mutation status were subsequently identified as plasma mutation-positive. Available plasma 2 samples were 803 of 1060 (65 positive of 224 mutation status-evaluable and -known). Mutation status concordance between 224 matched duplicate plasma 1 and 2 samples was 96.9% (95% CI, 93.7–98.7). Objective response rates are as follows: mutation-positive tumor, 70% (95% CI, 60.5–77.7); mutation-positive tumor and plasma 1, 76.9% (95% CI, 65.4–85.5); and mutation-positive tumor and mutation-negative plasma 1, 59.5% (95% CI, 43.5–73.7). Median progression-free survival (months) was 9.7 (95% CI, 8.5–11.0; 61 events) for mutation-positive tumor and 10.2 (95% CI, 8.5–12.5; 36 events) for mutation-positive tumor and plasma 1

  3. Broad Range of Hepatitis B Virus (HBV) Patterns, Dual Circulation of Quasi-Subgenotype A3 and HBV/E and Heterogeneous HBV Mutations in HIV-Positive Patients in Gabon.

    PubMed

    Bivigou-Mboumba, Berthold; François-Souquière, Sandrine; Deleplancque, Luc; Sica, Jeanne; Mouinga-Ondémé, Augustin; Amougou-Atsama, Marie; Chaix, Marie-Laure; Njouom, Richard; Rouet, François

    2016-01-01

    Integrated data on hepatitis B virus (HBV) patterns, HBV genotypes and mutations are lacking in human immunodeficiency virus type 1 (HIV-1) co-infected patients from Africa. This survey was conducted in 2010-2013 among 762 HIV-1-positive adults from Gabon who were predominantly treated with 3TC-based antiretroviral treatment. HBV patterns were identified using immunoassays detecting total antibody to hepatitis B core antigen (HBcAb), hepatitis B surface antigen (HBsAg), IgM HBcAb, hepatitis B e antigen (HBeAg), antibody to HBsAg (HBsAb) and an in-house real-time PCR test for HBV DNA quantification. Occult hepatitis B (OBI) was defined by the presence of isolated anti-HBc with detectable serum HBV DNA. HBV genotypes and HBV mutations were analyzed by PCR-direct sequencing method. Seventy-one (9.3%) patients tested positive for HBsAg, including one with acute hepatitis B (0.1%; 95% CI, 0.0%-0.2%), nine with HBeAg-positive chronic hepatitis B (CHB) (1.2%; 95% CI, 0.6%-2.2%), 16 with HBeAg-negative CHB (2.1%; 95% CI, 1.2%-3.3%) and 45 inactive HBV carriers (5.9%; 95% CI, 4.4%-7.8%). Sixty-one (8.0%; 95% CI, 6.2%-10.1%) patients showed OBI. Treated patients showed similar HBV DNA levels to those obtained in untreated patients, regardless of HBV patterns. Around 15.0% of OBI patients showed high (>1,000 UI/mL) viremia. The mutation M204V/I conferring resistance to 3TC was more common in HBV/A (47.4%) than in HBV/E isolates (0%) (P = .04). Our findings encouraged clinicians to promote HBV vaccination in patients with no exposure to HBV and to switch 3TC to universal TDF in those with CHB.

  4. Broad Range of Hepatitis B Virus (HBV) Patterns, Dual Circulation of Quasi-Subgenotype A3 and HBV/E and Heterogeneous HBV Mutations in HIV-Positive Patients in Gabon

    PubMed Central

    Bivigou-Mboumba, Berthold; François-Souquière, Sandrine; Deleplancque, Luc; Sica, Jeanne; Mouinga-Ondémé, Augustin; Amougou-Atsama, Marie; Chaix, Marie-Laure; Njouom, Richard; Rouet, François

    2016-01-01

    Integrated data on hepatitis B virus (HBV) patterns, HBV genotypes and mutations are lacking in human immunodeficiency virus type 1 (HIV-1) co-infected patients from Africa. This survey was conducted in 2010–2013 among 762 HIV-1-positive adults from Gabon who were predominantly treated with 3TC-based antiretroviral treatment. HBV patterns were identified using immunoassays detecting total antibody to hepatitis B core antigen (HBcAb), hepatitis B surface antigen (HBsAg), IgM HBcAb, hepatitis B e antigen (HBeAg), antibody to HBsAg (HBsAb) and an in-house real-time PCR test for HBV DNA quantification. Occult hepatitis B (OBI) was defined by the presence of isolated anti-HBc with detectable serum HBV DNA. HBV genotypes and HBV mutations were analyzed by PCR-direct sequencing method. Seventy-one (9.3%) patients tested positive for HBsAg, including one with acute hepatitis B (0.1%; 95% CI, 0.0%-0.2%), nine with HBeAg-positive chronic hepatitis B (CHB) (1.2%; 95% CI, 0.6%–2.2%), 16 with HBeAg-negative CHB (2.1%; 95% CI, 1.2%–3.3%) and 45 inactive HBV carriers (5.9%; 95% CI, 4.4%–7.8%). Sixty-one (8.0%; 95% CI, 6.2%–10.1%) patients showed OBI. Treated patients showed similar HBV DNA levels to those obtained in untreated patients, regardless of HBV patterns. Around 15.0% of OBI patients showed high (>1,000 UI/mL) viremia. The mutation M204V/I conferring resistance to 3TC was more common in HBV/A (47.4%) than in HBV/E isolates (0%) (P = .04). Our findings encouraged clinicians to promote HBV vaccination in patients with no exposure to HBV and to switch 3TC to universal TDF in those with CHB. PMID:26764909

  5. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study.

    PubMed

    Wu, Y-L; Zhou, C; Liam, C-K; Wu, G; Liu, X; Zhong, Z; Lu, S; Cheng, Y; Han, B; Chen, L; Huang, C; Qin, S; Zhu, Y; Pan, H; Liang, H; Li, E; Jiang, G; How, S H; Fernando, M C L; Zhang, Y; Xia, F; Zuo, Y

    2015-09-01

    The phase III, randomized, open-label ENSURE study (NCT01342965) evaluated first-line erlotinib versus gemcitabine/cisplatin (GP) in patients from China, Malaysia and the Philippines with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Patients ≥18 years old with histologically/cytologically confirmed stage IIIB/IV EGFR mutation-positive NSCLC and Eastern Cooperative Oncology Group performance status 0-2 were randomized 1:1 to receive erlotinib (oral; 150 mg once daily until progression/unacceptable toxicity) or GP [G 1250 mg/m(2) i.v. days 1 and 8 (3-weekly cycle); P 75 mg/m(2) i.v. day 1, (3-weekly cycle) for up to four cycles]. Primary end point: investigator-assessed progression-free survival (PFS). Other end points include objective response rate (ORR), overall survival (OS), and safety. A total of 217 patients were randomized: 110 to erlotinib and 107 to GP. Investigator-assessed median PFS was 11.0 months versus 5.5 months, erlotinib versus GP, respectively [hazard ratio (HR), 0.34, 95% confidence interval (CI) 0.22-0.51; log-rank P < 0.0001]. Independent Review Committee-assessed median PFS was consistent (HR, 0.42). Median OS was 26.3 versus 25.5 months, erlotinib versus GP, respectively (HR, 0.91, 95% CI 0.63-1.31; log-rank P = .607). ORR was 62.7% for erlotinib and 33.6% for GP. Treatment-related serious adverse events (AEs) occurred in 2.7% versus 10.6% of erlotinib and GP patients, respectively. The most common grade ≥3 AEs were rash (6.4%) with erlotinib, and neutropenia (25.0%), leukopenia (14.4%), and anemia (12.5%) with GP. These analyses demonstrate that first-line erlotinib provides a statistically significant improvement in PFS versus GP in Asian patients with EGFR mutation-positive NSCLC (NCT01342965). © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Amyloid precursor protein cooperates with c-KIT mutation/overexpression to regulate cell apoptosis in AML1-ETO-positive leukemia via the PI3K/AKT signaling pathway.

    PubMed

    Yu, Guopan; Yin, Changxin; Jiang, Ling; Zheng, Zhongxin; Wang, Zhixiang; Wang, Chunli; Zhou, Hongsheng; Jiang, Xuejie; Liu, Qifa; Meng, Fanyi

    2016-09-01

    It has been reported that amyloid precursor protein (APP) promotes cell proliferation and metastasis in various types of solid cancers. In our previous study, we showed that APP is highly expressed and regulates leukemia cell migration in AML1‑ETO-positive (AE) leukemia. Whether APP is involved in the regulation of AE leukemia cell proliferation or apoptosis is unclear. In the present study we focused on the correlation of APP with c-KIT mutation/overexpression and cell proliferation and apoptosis in AE leukemia. APP and c-KIT expression detected by quantitative real-time (qPCR) method, and c-KIT mutations screened using PCR in bone marrow cells from 65 patients with AE leukemia before their first chemotherapy, were simultaneously assessed. Furthermore, the Kasumi-1 cell line was chosen as the cell model, and the APP gene was knocked down using siRNA technology. The correlation of cell cycle distribution and apoptosis and c-Kit expression with APP expression levels, as well as the regulation of the PI3K/AKT signaling pathway by APP were analyzed in the Kasumi-1 cell line. The results showed that peripheral white blood cell counts (P=0.008) and bone marrow cellularity (P=0.031), but not bone marrow blasts, were correlated with APP expression. Moreover, the patients with APP high expression had a significantly higher incidence of c-KIT mutations (P<0.001) and increased levels of c-KIT expression (P=0.001) and poorer disease outcome. In the Kasumi-1 cell line, as compared with the wild-type and negative control cells, cell apoptosis, both early (P<0.001) and late (P<0.001), was significantly increased when the APP gene was knocked down, concomitant with reduced levels of anti-apoptotic protein Bcl-2 and increased levels of caspase-3 and -9, however, no apparent change was observed in the cell cycle distribution (P>0.05). Moreover, the knockdown of APP markedly decreased c-KIT expression at both the transcription (as evidenced by qPCR analysis) and translation

  7. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial

    PubMed Central

    Tan, E.-H.; O’Byrne, K.; Zhang, L.; Hirsh, V.; Boyer, M.; Yang, J.C.-H.; Mok, T.; Lee, K. H.; Lu, S.; Shi, Y.; Lee, D. H.; Laskin, J.; Kim, D.-W.; Laurie, S. A.; Kölbeck, K.; Fan, J.; Dodd, N.; Märten, A.; Park, K.

    2017-01-01

    Background In LUX-Lung 7, the irreversible ErbB family blocker, afatinib, significantly improved progression-free survival (PFS), time-to-treatment failure (TTF) and objective response rate (ORR) versus gefitinib in patients with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Here, we present primary analysis of mature overall survival (OS) data. Patients and methods LUX-Lung 7 assessed afatinib 40 mg/day versus gefitinib 250 mg/day in treatment-naïve patients with stage IIIb/IV NSCLC and a common EGFR mutation (exon 19 deletion/L858R). Primary OS analysis was planned after ∼213 OS events and ≥32-month follow-up. OS was analysed by a Cox proportional hazards model, stratified by EGFR mutation type and baseline brain metastases. Results Two-hundred and twenty-six OS events had occurred at the data cut-off (8 April 2016). After a median follow-up of 42.6 months, median OS (afatinib versus gefitinib) was 27.9 versus 24.5 months [hazard ratio (HR) = 0.86, 95% confidence interval (CI) 0.66‒1.12, P = 0.2580]. Prespecified subgroup analyses showed similar OS trends (afatinib versus gefitinib) in patients with exon 19 deletion (30.7 versus 26.4 months; HR, 0.83, 95% CI 0.58‒1.17, P = 0.2841) and L858R (25.0 versus 21.2 months; HR 0.91, 95% CI 0.62‒1.36, P = 0.6585) mutations. Most patients (afatinib, 72.6%; gefitinib, 76.8%) had at least one subsequent systemic anti-cancer treatment following discontinuation of afatinib/gefitinib; 20 (13.7%) and 23 (15.2%) patients received a third-generation EGFR tyrosine kinase inhibitor. Updated PFS (independent review), TTF and ORR data were significantly improved with afatinib. Conclusion In LUX-Lung 7, there was no significant difference in OS with afatinib versus gefitinib. Updated PFS (independent review), TTF and ORR data were significantly improved with afatinib. Clinicaltrials.gov identifier NCT01466660. PMID:28426106

  8. Mutation of Glycosylation Sites in BST-2 Leads to Its Accumulation at Intracellular CD63-Positive Vesicles without Affecting Its Antiviral Activity against Multivesicular Body-Targeted HIV-1 and Hepatitis B Virus.

    PubMed

    Han, Zhu; Lv, Mingyu; Shi, Ying; Yu, Jinghua; Niu, Junqi; Yu, Xiao-Fang; Zhang, Wenyan

    2016-02-29

    BST-2/tetherin blocks the release of various enveloped viruses including HIV-1 with a "physical tethering" model. The detailed contribution of N-linked glycosylation to this model is controversial. Here, we confirmed that mutation of glycosylation sites exerted an effect of post-translational mis-trafficking, leading to an accumulation of BST-2 at intracellular CD63-positive vesicles. BST-2 with this phenotype potently inhibited the release of multivesicular body-targeted HIV-1 and hepatitis B virus, without affecting the co-localization of BST-2 with EEA1 and LAMP1. These results suggest that N-linked glycosylation of human BST-2 is dispensable for intracellular virion retention and imply that this recently discovered intracellular tethering function may be evolutionarily distinguished from the canonical antiviral function of BST-2 by tethering nascent virions at the cell surface.

  9. KRAS mutation-positive bronchial surface epithelium (BSE)-type lung adenocarcinoma with strong expression of TTF-1: a case providing a further insight as for the role of TTF-1 in the oncogenesis.

    PubMed

    Takanashi, Yusuke; Tajima, Shogo; Hayakawa, Takamitsu; Neyatani, Hiroshi; Funai, Kazuhito

    2015-01-01

    Bronchial surface epithelium (BSE)-type lung adenocarcinoma is a subtype of non-terminal respiratory unit (TRU)-type lung adenocarcinoma originating in the bronchial surface epithelium. However, there are few known cases of BSE-type adenocarcinoma with marked expression of thyroid transcription factor-1 (TTF-1). This paper describes a very rare case of KRAS mutation-positive BSE-type adenocarcinoma that exhibited strong expression of TTF-1 that was putatively involved in oncogenesis. An 84-year-old woman, a never smoker, was referred to our hospital because of an abnormal chest radiograph. Chest computed tomography (CT) showed a solid mass lesion, 15 mm × 10 mm, with a relatively smooth margin in the left upper lobe. The patient underwent partial resection of the left upper lobe for strongly suspected lung cancer with a clinical stage of cT1aN0M0. Histopathological findings showed continuous migration of papillary, hyperplastic, atypical columnar tumor cells originating from normal bronchial surface epithelium, leading to a diagnosis of BSE-type adenocarcinoma. TTF-1 was strongly expressed in almost 100% of the tumor cells, which tested positive for the KRAS mutation. TTF-1 has recently attracted attention as an oncogene, and it is purportedly involved in the carcinogenesis and survival of lung adenocarcinoma cells. There is typically an inverse correlation between the respective expressions of KRAS and TTF-1, but in the present study, they appeared simultaneously and were both putatively involved as oncogenic driver alterations. This case is important in that it sheds some light on the largely unknown pathogenic mechanism of BSE-type adenocarcinoma.

  10. Real-World Data on Prognostic Factors for Overall Survival in EGFR Mutation-Positive Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Gefitinib.

    PubMed

    Yao, Zong-Han; Liao, Wei-Yu; Ho, Chao-Chi; Chen, Kuan-Yu; Shih, Jin-Yuan; Chen, Jin-Shing; Lin, Zhong-Zhe; Lin, Chia-Chi; Chih-Hsin Yang, James; Yu, Chong-Jen

    2017-09-01

    This study aimed to identify independent prognostic factors for overall survival (OS) of patients with advanced non-small cell lung cancer (NSCLC) harboring an activating epidermal growth factor receptor (EGFR) mutation and receiving gefitinib as first-line treatment in real-world practice. We enrolled 226 patients from June 2011 to May 2013. During this period, gefitinib was the only EGFR-tyrosine kinase inhibitor reimbursed by the Bureau of National Health Insurance of Taiwan. The median progression-free survival and median OS were 11.9 months (95% confidence interval [CI]: 9.7-14.2) and 26.9 months (21.2-32.5), respectively. The Cox proportional hazards regression model revealed that postoperative recurrence, performance status (Eastern Cooperative Oncology Grade [ECOG] ≥2), smoking index (≥20 pack-years), liver metastasis at initial diagnosis, and chronic hepatitis C virus (HCV) infection were independent prognostic factors for OS (hazard ratio [95% CI] 0.3 [0.11-0.83], p = .02; 2.69 [1.60-4.51], p < .001; 1.92 [1.24-2.97], p = .003; 2.26 [1.34-3.82], p = .002; 3.38 [1.85-7.78], p < .001, respectively). However, brain metastasis (BM) at initial diagnosis or intracranial progression during gefitinib treatment had no impact on OS (1.266 [0.83-1.93], p = .275 and 0.75 [0.48-1.19], p = .211, respectively). HCV infection, performance status (ECOG ≥2), newly diagnosed advanced NSCLC without prior operation, and liver metastasis predicted poor OS in EGFR mutation-positive advanced NSCLC patients treated with first-line gefitinib; however, neither BM at initial diagnosis nor intracranial progression during gefitinib treatment had an impact on OS. The finding that chronic hepatitis C virus (HCV) infection might predict poor overall survival (OS) in epidermal growth factor receptor mutation-positive advanced non-small cell lung cancer (NSCLC) patients treated with first-line gefitinib may raise awareness of benefit from anti

  11. Prognostic value of PIK3CA mutation status, PTEN and androgen receptor expression for metastasis-free survival in HER2-positive breast cancer patients treated with trastuzumab in adjuvant setting.

    PubMed

    Adamczyk, Agnieszka; Niemiec, Joanna; Janecka, Anna; Harazin-Lechowska, Agnieszka; Ambicka, Aleksandra; Grela-Wojewoda, Aleksandra; Domagała-Haduch, Małgorzata; Cedrych, Ida; Majchrzyk, Kaja; Kruczak, Anna; Ryś, Janusz; Jakubowicz, Jerzy

    2015-06-01

    Resistance to trastuzumab in patients with HER2-overexpressing breast cancer is associated with higher risk of progression or cancer death, and might be related to activation of PI3K/AKT/mTOR and Ras/Raf/MAPK signaling cascades and a decreased level of their inhibitor (PTEN). HER2-overexpressing breast cancer patients (n=75) treated with radical local therapy and trastuzumab in adjuvant setting were included into the study. Deoxyribonucleic acid isolated from paraffin sections was used to assess mutational status of the PIK3CA gene (p.H1047R and p.E545K mutations) by the quantitative polymerase chain reaction technique. Expression of selected proteins (ER, PgR, AR, Ki-67, EGFR) was assessed using immunohistochemistry. In the studied group we found significantly higher Ki-67LI in EGFR-positive carcinomas (p=0.048). Moreover, EGFR immunonegativity was observed more frequently in low-grade (G1/G2) carcinomas as well as in estrogen/progesterone and androgen receptor immunopositive tumors (p=0.042, p=0.016, p=0.044, respectively). Favorable metastasis-free survival was observed in patients with pN0 and pN1 (vs. pN2+3) stage (p=0.040) and with tumors characterized by low Ki-67LI (≤50% vs. >50%) (p=0.014). Patients with tumor androgen receptor immunonegativity (weak or lack of expression) or strong PTEN expression survived 3 years without metastases (p=0.007). The results of our study suggest that androgen receptor and PTEN status might be considered as indicators of trastuzumab sensitivity.

  12. Muir-Torre Syndrome and founder mismatch repair gene mutations: A long gone historical genetic challenge.

    PubMed

    Ponti, G; Manfredini, M; Tomasi, A; Pellacani, G

    2016-09-10

    A "cancer predisposing syndrome" later labeled as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) or Lynch Syndrome, was firstly described by Warthin, about one century ago. An increased predisposition to the development of multiple familial tumors is described as characteristic of this syndrome where visceral and cutaneous malignancies may appear at an early age namely endometrial, gastric, small bowel, ureteral and renal pelvis, ovarian, hepatobiliary tract, pancreatic, brain (Turcot Syndrome) and sebaceous glands (Muir-Torre Syndrome). The latter, a variant of Lynch Syndrome, is characterized by the presence of sebaceous skin adenomas, carcinomas and/or keratoacanthomas associated with visceral malignancies. Both Lynch Syndrome and Muir-Torre Syndrome have been recognized due to germline mutations in mismatch repair genes MLH1, MSH2 and MSH6. To date, 56 Lynch Syndrome founder mutations dependent on MLH1, MSH2 and, although less frequently found, MSH6 and PMS2 are described. Some of these founder mutations, principally of MSH2 gene, have been described to cause Muir-Torre phenotype and have been traced in large and outbreed Muir-Torre Syndrome families living in different US and European territories. Due to the evidences of highly specific Muir-Torre phenotypes related to the presence of widespread MSH2 founder mutations, preliminary search for these MSH2 common mutations in individuals carrying sebaceous tumors and/or keratoacanthomas, at early age or in association to visceral and familial tumors, permits cost-effective and time-saving diagnostic strategies for Lynch/Muir-Torre Syndromes. Copyright © 2015. Published by Elsevier B.V.

  13. Immunoglobulin Gene Mutations and Frequent Use of VH1-69 and VH4-34 Segments in Hepatitis C Virus-Positive and Hepatitis C Virus-Negative Nodal Marginal Zone B-Cell Lymphoma

    PubMed Central

    Marasca, Roberto; Vaccari, Paola; Luppi, Mario; Zucchini, Patrizia; Castelli, Ilaria; Barozzi, Patrizia; Cuoghi, Angela; Torelli, Giuseppe

    2001-01-01

    Nodal marginal zone B-cell lymphoma (NMZL) is actually considered as a distinct entity that must be distinguished from extra-nodal and splenic marginal zone lymphomas. To define the cell origin and the role of antigen stimulation we determined the nucleotide sequence of the tumor-related immunoglobulin heavy chain variable genes in 10 cases of NMZL. The results were also evaluated on the basis of the presence of chronic hepatitis C virus (HCV) infection. All 10 cases harbored VH somatic mutations with a sequence homology compared to the closest germline gene, ranging from 83.33 to 98.28%. Interestingly, different VH segments were preferentially used in HCV-positive and HCV-negative patients: three of five HCV-negative NMZLs used a VH4-34 segment joined with different D and JH segments whereas three of five HCV-positive NMZLs used a VH1-69 gene joined with a D3-22 and a JH4 segment, with very strong similarities in the CDR3s among the three different cases. These data indicate: 1) NMZL is derived from B cells that have experienced the germinal center reaction; 2) the preferential usage of a VH1-69 segment in the majority of the HCV-positive NMZL cases with similar CDR3s suggests the presence of a common antigen, probably a HCV antigen epitope, involved in the B-cell selection; and 3) the use of a VH4-34 segment suggests a role of yet unknown B-cell superantigen(s) in the selection of tumor B-cell precursors in HCV-negative NMZL. PMID:11438472

  14. Activation of constitutive 5-hydroxytryptamine(1B) receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its G(o)alpha protein interactions.

    PubMed Central

    Pauwels, P J; Gouble, A; Wurch, T

    1999-01-01

    Constitutive activity of the recombinant human 5-hydroxytryptamine(1B) (5-HT(1B)) receptor (RC code 2.1.5HT.01.B) was investigated by mutagenesis of the BBXXB motif (in which B represents a basic residue and X a non-basic residue) located in the C-terminal portion of the third intracellular loop. In contrast with wild-type 5-HT(1B) receptors, three receptor mutants (Thr(313)-->Lys, Thr(313)-->Arg and Thr(313)-->Gln) increased their agonist-independent guanosine 5'-[gamma-[(35)S]thio]triphosphate binding response by 26-41%. This activity represented approx. 30% of the maximal response induced by 5-HT and could be reversed by the inverse agonists methiothepin and 3-(3-dimethylaminopropyl)-4-hydroxy-N-(4-pyridin-4-yl phenyl)-benzenamide (GR 55562). Enhanced agonist-independent and agonist-dependent 5-HT(1B) receptor activation was provided by co-expression of a pertussis toxin-resistant rat G(o)alpha Cys(351)-->Ile protein. The wild-type 5-HT(1B) receptor displayed a doubling in basal activity, whereas a spectrum of enhanced basal activities (313-571%) was observed with a series of diverse amino acid substitutions (isoleucine, glycine, asparagine, alanine, lysine, phenylalanine, glutamine and arginine) at the 5-HT(1B) receptor position 313 in the presence of pertussis toxin (100 ng/ml). Consequently, the constitutive 5-HT(1B) receptor activity can be modulated by the mutation of Thr(313), and displays a graded range between 11% and 59% of maximal 5-HT(1B) receptor activation by 5-HT. No clear pattern is apparent in the framework of traditionally cited amino acid characteristics (i.e. residue size, charge or hydrophobicity) to explain the observed constitutive activities. The various amino acid substitutions that yielded enhanced activity are unlikely to make similar intramolecular interactions within the 5-HT(1B) receptor. It is hypothesized that the positioning of the junction between the third intracellular loop and transmembrane domain VI is altered by mutation of

  15. Phase II study of erlotinib plus tivantinib (ARQ 197) in patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer just after progression on EGFR-TKI, gefitinib or erlotinib

    PubMed Central

    Azuma, Koichi; Hirashima, Tomonori; Yamamoto, Nobuyuki; Okamoto, Isamu; Takahashi, Toshiaki; Nishio, Makoto; Hirata, Taizo; Kubota, Kaoru; Kasahara, Kazuo; Hida, Toyoaki; Yoshioka, Hiroshige; Nakanishi, Kaoru; Akinaga, Shiro; Nishio, Kazuto; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko

    2016-01-01

    Background Patients with epidermal growth factor receptor (EGFR) activation mutation-positive non-small-cell lung cancer (NSCLC) respond well to EGFR tyrosine kinase inhibitors (EGFR-TKIs), but eventually become resistant in most cases. The hepatocyte growth factor/c-Met (HGF/c-Met) pathway is reported as a poor prognostic factor in various cancers. As c-Met is involved in EGFR-TKI resistance, a c-Met inhibitor and EGFR-TKI combination may reverse the resistance. This study evaluated the efficacy and safety of a c-Met selective inhibitor, tivantinib (ARQ 197), in combination with erlotinib, in Japanese EGFR mutation-positive patients with NSCLC who progressed while on EGFR-TKIs. Methods This study enrolled 45 patients with NSCLC with acquired resistance to EGFR-TKIs, who were orally administered a daily combination of tivantinib/erlotinib. The primary end point was the overall response rate (ORR) and secondary end points included disease control rate, progression-free survival (PFS) and overall survival (OS). The patients underwent a mandatory second biopsy just after progression on EGFR-TKIs. The predictive biomarkers were extensively analysed using tumour and blood samples. Results The ORR was 6.7% (95% CI 1.4% to 18.3%), and the lower limit of 95% CI did not exceed the target of 5%. The median PFS (mPFS) and median OS (mOS) were 2.7 months (95% CI 1.4 to 4.2) and 18.0 months (95% CI 13.4 to 22.2), respectively. Both were longer in c-Met high patients (c-Met high vs low: mPFS 4.1 vs 1.4 months; mOS 20.7 vs 13.9 months). Partial response was observed in three patients, all of whom were c-Met and HGF high. The common adverse events and their frequencies were similar to those known to occur with tivantinib or erlotinib alone. Conclusions Although this study did not prove clinical benefit of tivantinib in patients with acquired resistance to EGFR-TKIs, activated HGF/c-Met signalling, a poor prognostic factor, may define a patient subset associated with longer

  16. Phase II study of erlotinib plus tivantinib (ARQ 197) in patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer just after progression on EGFR-TKI, gefitinib or erlotinib.

    PubMed

    Azuma, Koichi; Hirashima, Tomonori; Yamamoto, Nobuyuki; Okamoto, Isamu; Takahashi, Toshiaki; Nishio, Makoto; Hirata, Taizo; Kubota, Kaoru; Kasahara, Kazuo; Hida, Toyoaki; Yoshioka, Hiroshige; Nakanishi, Kaoru; Akinaga, Shiro; Nishio, Kazuto; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko

    2016-01-01

    Patients with epidermal growth factor receptor (EGFR) activation mutation-positive non-small-cell lung cancer (NSCLC) respond well to EGFR tyrosine kinase inhibitors (EGFR-TKIs), but eventually become resistant in most cases. The hepatocyte growth factor/c-Met (HGF/c-Met) pathway is reported as a poor prognostic factor in various cancers. As c-Met is involved in EGFR-TKI resistance, a c-Met inhibitor and EGFR-TKI combination may reverse the resistance. This study evaluated the efficacy and safety of a c-Met selective inhibitor, tivantinib (ARQ 197), in combination with erlotinib, in Japanese EGFR mutation-positive patients with NSCLC who progressed while on EGFR-TKIs. This study enrolled 45 patients with NSCLC with acquired resistance to EGFR-TKIs, who were orally administered a daily combination of tivantinib/erlotinib. The primary end point was the overall response rate (ORR) and secondary end points included disease control rate, progression-free survival (PFS) and overall survival (OS). The patients underwent a mandatory second biopsy just after progression on EGFR-TKIs. The predictive biomarkers were extensively analysed using tumour and blood samples. The ORR was 6.7% (95% CI 1.4% to 18.3%), and the lower limit of 95% CI did not exceed the target of 5%. The median PFS (mPFS) and median OS (mOS) were 2.7 months (95% CI 1.4 to 4.2) and 18.0 months (95% CI 13.4 to 22.2), respectively. Both were longer in c-Met high patients (c-Met high vs low: mPFS 4.1 vs 1.4 months; mOS 20.7 vs 13.9 months). Partial response was observed in three patients, all of whom were c-Met and HGF high. The common adverse events and their frequencies were similar to those known to occur with tivantinib or erlotinib alone. Although this study did not prove clinical benefit of tivantinib in patients with acquired resistance to EGFR-TKIs, activated HGF/c-Met signalling, a poor prognostic factor, may define a patient subset associated with longer survival by the tivantinib

  17. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial.

    PubMed

    Park, Keunchil; Tan, Eng-Huat; O'Byrne, Ken; Zhang, Li; Boyer, Michael; Mok, Tony; Hirsh, Vera; Yang, James Chih-Hsin; Lee, Ki Hyeong; Lu, Shun; Shi, Yuankai; Kim, Sang-We; Laskin, Janessa; Kim, Dong-Wan; Arvis, Catherine Dubos; Kölbeck, Karl; Laurie, Scott A; Tsai, Chun-Ming; Shahidi, Mehdi; Kim, Miyoung; Massey, Dan; Zazulina, Victoria; Paz-Ares, Luis

    2016-05-01

    The irreversible ErbB family blocker afatinib and the reversible EGFR tyrosine kinase inhibitor gefitinib are approved for first-line treatment of EGFR mutation-positive non-small-cell lung cancer (NSCLC). We aimed to compare the efficacy and safety of afatinib and gefitinib in this setting. This multicentre, international, open-label, exploratory, randomised controlled phase 2B trial (LUX-Lung 7) was done at 64 centres in 13 countries. Treatment-naive patients with stage IIIB or IV NSCLC and a common EGFR mutation (exon 19 deletion or Leu858Arg) were randomly assigned (1:1) to receive afatinib (40 mg per day) or gefitinib (250 mg per day) until disease progression, or beyond if deemed beneficial by the investigator. Randomisation, stratified by EGFR mutation type and status of brain metastases, was done centrally using a validated number generating system implemented via an interactive voice or web-based response system with a block size of four. Clinicians and patients were not masked to treatment allocation; independent review of tumour response was done in a blinded manner. Coprimary endpoints were progression-free survival by independent central review, time-to-treatment failure, and overall survival. Efficacy analyses were done in the intention-to-treat population and safety analyses were done in patients who received at least one dose of study drug. This ongoing study is registered with ClinicalTrials.gov, number NCT01466660. Between Dec 13, 2011, and Aug 8, 2013, 319 patients were randomly assigned (160 to afatinib and 159 to gefitinib). Median follow-up was 27·3 months (IQR 15·3-33·9). Progression-free survival (median 11·0 months [95% CI 10·6-12·9] with afatinib vs 10·9 months [9·1-11·5] with gefitinib; hazard ratio [HR] 0·73 [95% CI 0·57-0·95], p=0·017) and time-to-treatment failure (median 13·7 months [95% CI 11·9-15·0] with afatinib vs 11·5 months [10·1-13·1] with gefitinib; HR 0·73 [95% CI 0·58-0·92], p=0·0073) were

  18. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.

    PubMed

    Sergiev, P V; Bogdanov, A A; Dahlberg, A E; Dontsova, O

    2000-06-02

    The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation. Copyright 2000 Academic Press.

  19. Domain landscapes of somatic mutations in cancer

    PubMed Central

    2012-01-01

    Background Large-scale tumor sequencing projects are now underway to identify genetic mutations that drive tumor initiation and development. Most studies take a gene-based approach to identifying driver mutations, highlighting genes mutated in a large percentage of tumor samples as those likely to contain driver mutations. However, this gene-based approach usually does not consider the position of the mutation within the gene or the functional context the position of the mutation provides. Here we introduce a novel method for mapping mutations to distinct protein domains, not just individual genes, in which they occur, thus providing the functional context for how the mutation contributes to disease. Furthermore, aggregating mutations from all genes containing a specific protein domain enables the identification of mutations that are rare at the gene level, but that occur frequently within the specified domain. These highly mutated domains potentially reveal disruptions of protein function necessary for cancer development. Results We mapped somatic mutations from the protein coding regions of 100 colon adenocarcinoma tumor samples to the genes and protein domains in which they occurred, and constructed topographical maps to depict the “mutational landscapes” of gene and domain mutation frequencies. We found significant mutation frequency in a number of genes previously known to be somatically mutated in colon cancer patients including APC, TP53 and KRAS. In addition, we found significant mutation frequency within specific domains located in these genes, as well as within other domains contained in genes having low mutation frequencies. These domain “peaks” were enriched with functions important to cancer development including kinase activity, DNA binding and repair, and signal transduction. Conclusions Using our method to create the domain landscapes of mutations in colon cancer, we were able to identify somatic mutations with high potential to drive cancer

  20. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study.

    PubMed

    McArthur, Grant A; Chapman, Paul B; Robert, Caroline; Larkin, James; Haanen, John B; Dummer, Reinhard; Ribas, Antoni; Hogg, David; Hamid, Omid; Ascierto, Paolo A; Garbe, Claus; Testori, Alessandro; Maio, Michele; Lorigan, Paul; Lebbé, Celeste; Jouary, Thomas; Schadendorf, Dirk; O'Day, Stephen J; Kirkwood, John M; Eggermont, Alexander M; Dréno, Brigitte; Sosman, Jeffrey A; Flaherty, Keith T; Yin, Ming; Caro, Ivor; Cheng, Suzanne; Trunzer, Kerstin; Hauschild, Axel

    2014-03-01

    In the BRIM-3 trial, vemurafenib was associated with risk reduction versus dacarbazine of both death and progression in patients with advanced BRAF(V600) mutation-positive melanoma. We present an extended follow-up analysis of the total population and in the BRAF(V600E) and BRAF(V600K) mutation subgroups. Patients older than 18 years, with treatment-naive metastatic melanoma and whose tumour tissue was positive for BRAF(V600) mutations were eligible. Patients also had to have a life expectancy of at least 3 months, an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, and adequate haematological, hepatic, and renal function. Patients were randomly assigned by interactive voice recognition system to receive either vemurafenib (960 mg orally twice daily) or dacarbazine (1000 mg/m(2) of body surface area intravenously every 3 weeks). Coprimary endpoints were overall survival and progression-free survival, analysed in the intention-to-treat population (n=675), with data censored at crossover. A sensitivity analysis was done. This trial is registered with ClinicalTrials.gov, NCT01006980. 675 eligible patients were enrolled from 104 centres in 12 countries between Jan 4, 2010, and Dec 16, 2010. 337 patients were randomly assigned to receive vemurafenib and 338 to receive dacarbazine. Median follow-up was 12·5 months (IQR 7·7-16·0) on vemurafenib and 9·5 months (3·1-14·7) on dacarbazine. 83 (25%) of the 338 patients initially randomly assigned to dacarbazine crossed over from dacarbazine to vemurafenib. Median overall survival was significantly longer in the vemurafenib group than in the dacarbazine group (13·6 months [95% CI 12·0-15·2] vs 9·7 months [7·9-12·8]; hazard ratio [HR] 0·70 [95% CI 0·57-0·87]; p=0·0008), as was median progression-free survival (6·9 months [95% CI 6·1-7·0] vs 1·6 months [1·6-2·1]; HR 0·38 [95% CI 0·32-0·46]; p<0·0001). For the 598 (91%) patients with BRAF(V600E) disease, median overall survival in

  1. A positive genotype–phenotype correlation in a large cohort of patients with Pseudohypoparathyroidism Type Ia and Pseudo-pseudohypoparathyroidism and 33 newly identified mutations in the GNAS gene

    PubMed Central

    Thiele, Susanne; Werner, Ralf; Grötzinger, Joachim; Brix, Bettina; Staedt, Pia; Struve, Dagmar; Reiz, Benedikt; Farida, Jennane; Hiort, Olaf

    2015-01-01

    Maternally inherited inactivating GNAS mutations are the most common cause of parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO) leading to pseudohypoparathyroidism type Ia (PHPIa) due to Gsα deficiency. Paternally inherited inactivating mutations lead to isolated AHO signs characterizing pseudo-pseudohypoparathyroidism (PPHP). Mutations are distributed throughout the Gsα coding exons of GNAS and there is a lack of genotype–phenotype correlation. In this study, we sequenced exon 1–13 of GNAS in a large cohort of PHPIa- and PPHP patients and identified 58 different mutations in 88 patients and 27 relatives. Thirty-three mutations including 15 missense mutations were newly discovered. Furthermore, we found three hot spots: a known hotspot (p.D190MfsX14), a second at codon 166 (p.R166C), and a third at the exon 5 acceptor splice site (c.435 + 1G>A), found in 15, 5, and 4 unrelated patients, respectively. Comparing the clinical features to the molecular genetic data, a significantly higher occurrence of subcutaneous calcifications in patients harboring truncating versus missense mutations was demonstrated. Thus, in the largest cohort of PHPIa patients described to date, we extend the spectrum of known GNAS mutations and hot spots and demonstrate for the first time a correlation between the genetic defects and the expression of a clinical AHO-feature. PMID:25802881

  2. Distribution of CFTR mutations in the Czech population: positive impact of integrated clinical and laboratory expertise, detection of novel/de novo alleles and relevance for related/derived populations.

    PubMed

    Křenková, Petra; Piskáčková, Tereza; Holubová, Andrea; Balaščaková, Miroslava; Krulišová, Veronika; Čamajová, Jana; Turnovec, Marek; Libik, Malgorzata; Norambuena, Patricia; Štambergová, Alexandra; Dvořáková, Lenka; Skalická, Veronika; Bartošová, Jana; Kučerová, Tereza; Fila, Libor; Zemková, Dana; Vávrová, Věra; Koudová, Monika; Macek, Milan; Krebsová, Alice; Macek, Milan

    2013-09-01

    This two decade long study presents a comprehensive overview of the CFTR mutation distribution in a representative cohort of 600 Czech CF patients derived from all regions of the Czech Republic. We examined the most common CF-causing mutations using the Elucigene CF-EU2v1™ assay, followed by MLPA, mutation scanning and/or sequencing of the entire CFTR coding region and splice site junctions. We identified 99.5% of all mutations (1194/1200 CFTR alleles) in the Czech CF population. Altogether 91 different CFTR mutations, of which 20 were novel, were detected. One case of de novo mutation and a novel polymorphism was revealed. The commercial assay achieved 90.7%, the MLPA added 1.0% and sequencing increased the detection rate by 7.8%. These comprehensive data provide a basis for the improvement of CF DNA diagnostics and/or newborn screening in our country. In addition, they are relevant to related Central European populations with lower mutation detection rates, as well as to the sizeable North American "Bohemian diaspora". Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  3. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer

    PubMed Central

    Lin, Nancy U.; Kidd, John; Allen, Brian A.; Singh, Nanda; Wenstrup, Richard J.; Hartman, Anne-Renee; Winer, Eric P.; Garber, Judy E.

    2016-01-01

    Purpose Testing for germline mutations in BRCA1/2 is standard for select patients with breast cancer to guide clinical management. Next-generation sequencing (NGS) allows testing for mutations in additional breast cancer predisposition genes. The frequency of germline mutations detected by using NGS has been reported in patients with breast cancer who were referred for BRCA1/2 testing or with triple-negative breast cancer. We assessed the frequency and predictors of mutations in 25 cancer predisposition genes, including BRCA1/2, in a sequential series of patients with breast cancer at an academic institution to examine the utility of genetic testing in this population. Methods Patients with stages I to III breast cancer who were seen at a single cancer center between 2010 and 2012, and who agreed to participate in research DNA banking, were included (N = 488). Personal and family cancer histories were collected and germline DNA was sequenced with NGS to identify mutations. Results Deleterious mutations were identified in 10.7% of women, including 6.1% in BRCA1/2 (5.1% in non-Ashkenazi Jewish patients) and 4.6% in other breast/ovarian cancer predisposition genes including CHEK2 (n = 10), ATM (n = 4), BRIP1 (n = 4), and one each in PALB2, PTEN, NBN, RAD51C, RAD51D, MSH6, and PMS2. Whereas young age (P < .01), Ashkenazi Jewish ancestry (P < .01), triple-negative breast cancer (P = .01), and family history of breast/ovarian cancer (P = .01) predicted for BRCA1/2 mutations, no factors predicted for mutations in other breast cancer predisposition genes. Conclusion Among sequential patients with breast cancer, 10.7% were found to have a germline mutation in a gene that predisposes women to breast or ovarian cancer, using a panel of 25 predisposition genes. Factors that predict for BRCA1/2 mutations do not predict for mutations in other breast/ovarian cancer susceptibility genes when these genes are analyzed as a single group. Additional cohorts will be helpful to define

  4. The iodide-transport-defect-causing mutation R124H: a δ-amino group at position 124 is critical for maturation and trafficking of the Na+/I- symporter.

    PubMed

    Paroder, Viktoriya; Nicola, Juan P; Ginter, Christopher S; Carrasco, Nancy

    2013-08-01

    Na(+)/I(-) symporter (NIS)-mediated active accumulation of I(-) in thyrocytes is a key step in the biosynthesis of the iodine-containing thyroid hormones T3 and T4. Several NIS mutants have been identified as a cause of congenital I(-) transport defect (ITD), and their investigation has yielded valuable mechanistic information on NIS. Here we report novel findings derived from the thorough characterization of the ITD-causing mutation R124H, located in the second intracellular loop (IL-2). R124H NIS is incompletely glycosylated and colocalizes with endoplasmic reticulum (ER)-resident protein markers. As a result, R124H NIS is not targeted to the plasma membrane and therefore does not mediate any I(-) transport in transfected COS-7 cells. Strikingly, however, the mutant is intrinsically active, as revealed by its ability to mediate I(-) transport in membrane vesicles. Of all the amino acid substitutions we carried out at position 124 (K, D, E, A, W, N and Q), only Gln restored targeting of NIS to the plasma membrane and NIS activity, suggesting a key structural role for the δ-amino group of R124 in the transporter's maturation and cell surface targeting. Using our NIS homology model based on the structure of the Vibrio parahaemolyticus Na(+)/galactose symporter, we propose an interaction between the δ-amino group of either R or Q124 and the thiol group of C440, located in IL-6. We conclude that the interaction between IL-2 and IL-6 is critical for the local folding required for NIS maturation and plasma membrane trafficking.

  5. Defective kinetics of cytochrome c oxidase and alteration of mitochondrial membrane potential in fibroblasts and cytoplasmic hybrid cells with the mutation for myoclonus epilepsy with ragged-red fibres ('MERRF') at position 8344 nt.

    PubMed Central

    Antonická, H; Floryk, D; Klement, P; Stratilová, L; Hermanská, J; Houstková, H; Kalous, M; Drahota, Z; Zeman, J; Houstek, J

    1999-01-01

    We have investigated pathogenic effects of the tRNA(Lys) A8344G mutation associated with the syndrome myoclonus epilepsy with ragged-red fibres (MERRF) by using fibroblasts and fibroblast-derived cytoplasmic hybrid cells harbouring different percentages of mutated mitochondrial DNA (mtDNA). The activity of cytochrome c oxidase (COX) in patient fibroblasts with 89% mutated mtDNA was decreased to 20% of the control levels. COX exhibited altered kinetics, with a decreased V(max) for both the low-affinity and high-affinity phases; however, the K(m) values were not significantly changed. The substrate-dependent synthesis of ATP was decreased to 50% of the control. Analysis of the mitochondrial membrane potential, DeltaPsi, in digitonin-treated cells with tetramethylrhodamine methyl ester (TMRM) with the use of flow cytometry showed a 80% decrease in DeltaPsi at state 4 and an increased sensitivity of DeltaPsi to an uncoupler in fibroblasts from the patient. The investigation of transmitochondrial cytoplasmic hybrid clones derived from the patient's fibroblasts enabled us to characterize the relationship between heteroplasmy of the MERRF mutation, COX activity and DeltaPsi. Within the range of 87-73% mutated mtDNA, COX activity was decreased to 5-35% and DeltaPsi was decreased to 6-78%. These results demonstrate that the MERRF mutation affects COX activity and DeltaPsi in different proportions with regard to mutation heteroplasmy and indicate that the biochemical manifestation of the MERRF mutation exerts a very steep threshold of DeltaPsi inhibition. PMID:10477264

  6. Reversal of clavulanate resistance conferred by a Ser-244 mutant of TEM-1 beta-lactamase as a result of a second mutation (Arg to Ser at position 164) that enhances activity against ceftazidime.

    PubMed Central

    Imtiaz, U; Manavathu, E K; Mobashery, S; Lerner, S A

    1994-01-01

    The mutation of Arg-244 to Ser (Arg-244-->Ser mutation) in the TEM-1 beta-lactamase has been shown to produce resistance to inactivation by clavulanate in the mutant enzyme and resistance to ampicillin plus clavulanate in a strain of Escherichia coli producing this enzyme. The Arg-164-->Ser mutation in the TEM-1 beta-lactamase (TEM-12 enzyme) is known to enhance the activity of the enzyme against ceftazidime, resulting in resistance to the drug in a strain producing the mutant enzyme (D. A. Weber, C. C. Sanders, J. S. Bakken, and J. P. Quinn, J. Infect. Dis. 162:460-465, 1990). The doubly mutated derivative of the TEM-1 enzyme (Ser-164/Ser-244) retains the characteristics of the Ser-164 mutant enzyme, i.e., enhanced activity against ceftazidime and sensitivity to inactivation by clavulanate. It also confers the same phenotype as the Ser-164 mutant enzyme, i.e., resistance to ceftazidime and ampicillin, with reversal of this resistance in the presence of clavulanate. Thus, the Arg-164-->Ser mutation in the TEM-1 beta-lactamase suppresses the effect of the Arg-244-->Ser mutation which, by itself, reduces the sensitivity of the enzyme to inactivation by clavulanate. PMID:8067751

  7. Performance of Lynch syndrome predictive models in quantifying the likelihood of germline mutations in patients with abnormal MLH1 immunoexpression.

    PubMed

    Cabreira, Verónica; Pinto, Carla; Pinheiro, Manuela; Lopes, Paula; Peixoto, Ana; Santos, Catarina; Veiga, Isabel; Rocha, Patrícia; Pinto, Pedro; Henrique, Rui; Teixeira, Manuel R

    2017-01-01

    Lynch syndrome (LS) accounts for up to 4 % of all colorectal cancers (CRC). Detection of a pathogenic germline mutation in one of the mismatch repair genes is the definitive criterion for LS diagnosis, but it is time-consuming and expensive. Immunohistochemistry is the most sensitive prescreening test and its predictive value is very high for loss of expression of MSH2, MSH6, and (isolated) PMS2, but not for MLH1. We evaluated if LS predictive models have a role to improve the molecular testing algorithm in this specific setting by studying 38 individuals referred for molecular testing and who were subsequently shown to have loss of MLH1 immunoexpression in their tumors. For each proband we calculated a risk score, which represents the probability that the patient with CRC carries a pathogenic MLH1 germline mutation, using the PREMM1,2,6 and MMRpro predictive models. Of the 38 individuals, 18.4 % had a pathogenic MLH1 germline mutation. MMRpro performed better for the purpose of this study, presenting a AUC of 0.83 (95 % CI 0.67-0.9; P < 0.001) compared with a AUC of 0.68 (95 % CI 0.51-0.82, P = 0.09) for PREMM1,2,6. Considering a threshold of 5 %, MMRpro would eliminate unnecessary germline mutation analysis in a significant proportion of cases while keeping very high sensitivity. We conclude that MMRpro is useful to correctly predict who should be screened for a germline MLH1 gene mutation and propose an algorithm to improve the cost-effectiveness of LS diagnosis.

  8. Involvement of p53 mutation and mismatch repair proteins dysregulation in NNK-induced malignant transformation of human bronchial epithelial cells.

    PubMed

    Shen, Ying; Zhang, Shuilian; Huang, Xiaobin; Chen, Kailin; Shen, Jing; Wang, Zhengyang

    2014-01-01

    Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  9. Rapid detection of germline mutations for hereditary gastrointestinal polyposis/cancers using HaloPlex target enrichment and high-throughput sequencing technologies.

    PubMed

    Kohda, Masakazu; Kumamoto, Kensuke; Eguchi, Hidetaka; Hirata, Tomoko; Tada, Yuhki; Tanakaya, Kohji; Akagi, Kiwamu; Takenoshita, Seiichi; Iwama, Takeo; Ishida, Hideyuki; Okazaki, Yasushi

    2016-10-01

    Genetic testing for hereditary colorectal polyposis/cancers has become increasingly important. Therefore, the development of a timesaving diagnostic platform is indispensable for clinical practice. We designed and validated target enrichment sequencing for 20 genes implicated in familial gastrointestinal polyposis/cancers in 32 cases with previously confirmed mutations using the HaloPlex enrichment system and MiSeq. We demonstrated that HaloPlex captured the targeted regions with a high efficiency (99.66 % for covered target regions, and 99.998 % for breadth of coverage), and MiSeq achieved a high sequencing accuracy (98.6 % for the concordant rate with SNP arrays). Using this approach, we correctly identified 33/33 (100 %) confirmed alterations including SNV, small INDELs and large deletions, and insertions in APC, BMPR1A, EPCAM, MLH1, MSH2, MSH6, PMS2, and SKT11. Our approach yielded the sequences of 20 target genes in a single experiment, and correctly identified all previously known mutations. Our results indicate that our approach successfully detected a wide range of genetic variations in a short turnaround time and with a small sample size for the rapid screening of known causative gene mutations of inherited colon cancer, such as familial adenomatous polyposis, Lynch syndrome, Peutz-Jeghers syndrome, and Juvenile polyposis syndrome.

  10. Mutation and the environment

    SciTech Connect

    Mendelsohn, M.L. ); Albertini, R.J. )

    1990-01-01

    This book is covered under the following topics: Somatic Mutation: Animal Model; Somatic Mutation: Human; Heritable Mutation: Animal Model; Heritable Mutation: Approaches to Human Induction Rates; Heritable Mutation: Human Risk; Epidemiology: Population Studies on Genotoxicity; and Epidemiology: Workplace Studies of Genotoxicity.

  11. Mutation rates and mutational loads in man

    SciTech Connect

    Cavalli-Sforza, L.L.

    1984-01-01

    The following areas of research are discussed: (1) the study of human mutation rates; (2) geography of human genes and its relevance to mutation; (3) sociocultural studies correlated with population genetics; (4) consanguineous marriages; and (5) surnames. (ACR)

  12. Impact of 226C>T MSH2 gene mutation on cancer phenotypes in two HNPCC-associated highly-consanguineous families from Kuwait: emphasis on premarital genetic testing.

    PubMed

    Marafie, Makia J; Al-Awadi, Sadiqa; Al-Mosawi, Fatemah; Elshafey, Alaa; Al-Ali, Waleed; Al-Mulla, Fahd

    2009-01-01

    Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC) is one of the commonest cancer susceptibility syndromes. It is characterized by early onset colon cancer and a variety of extracolonic tumours. Germline mutations in the DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS1, and PMS2) are responsible for this disorder. Identifying an affected individual depends on the tumour histopathology, family history that fulfils the Amsterdam and/or Bethesda criteria, tumour immunohistochemistry, microsatellite instability, and finally molecular analysis of an affected member. It is a laborious, time consuming and expensive procedure, which needs the effort of a multi-disciplinary team. However, once the diagnosis is established and germline defect is identified, other high risk pre-symptomatic carriers could be offered intensive surveillance and management as a preventive measure against cancer development. Here, we present two large highly consanguineous HNPCC-families from Kuwait in whom a founder MSH2 mutation was identified. The relationship between this mutation and cancer expressivity in two large consanguineous families harbouring other genetic defects is discussed. Moreover, we shed light on the challenges pertaining to diagnosis, screening, premarital counselling of couples and prenatal diagnosis of offspring with biallelic MSH2 gene mutation.

  13. Substitution of isoleucine for methionine at position 1153 in the beta-subunit of the human insulin receptor. A mutation that impairs receptor tyrosine kinase activity, receptor endocytosis, and insulin action.

    PubMed

    Cama, A; Quon, M J; de la Luz Sierra, M; Taylor, S I

    1992-04-25

    The intracellular domain of the insulin receptor possesses activity as a tyrosine-specific protein kinase. The receptor tyrosine kinase is stimulated by insulin binding to the extracellular domain of the receptor. Previously, we have identified a patient with a genetic form of insulin resistance who is heterozygous for a mutation substituting Ile for Met1153 in the tyrosine kinase domain of the receptor near the cluster of the three major autophosphorylation sites (Tyr1158, Tyr1162, and Tyr1163). In this investigation, the Ile1153 mutant receptor was expressed by transfection of mutant cDNA into NIH-3T3 cells. The mutation impairs receptor tyrosine kinase activity and also inhibits the ability of insulin to stimulate 2-deoxyglucose uptake and thymidine incorporation. These data support the hypothesis that the receptor tyrosine activity plays a necessary role in the ability of the receptor to mediate insulin action in vivo. Furthermore, expression of the Ile1153 mutant receptor exerted a dominant negative effect to inhibit the ability of endogenous murine receptors for insulin and insulin-like growth factor I to mediate their actions upon the cell. This observation is consistent with previous suggestions that mutant receptors dimerize with wild type receptors, thereby creating hybrid molecules which lack biological activity. The dominant negative effect of the mutant receptor may explain the dominant mode of inheritance of insulin resistance caused by the Ile1153 mutation. Finally, the mutation inhibits the ability of insulin to stimulate receptor endocytosis. This may explain the normal number of insulin receptors on the surface of the patient's cells in vivo. Despite the presence of markedly elevated levels of insulin in the patient's plasma, the receptors were resistant to down-regulation.

  14. Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665

    PubMed Central

    DeBoer, Rebecca; Koval, Gregory; Mulkey, Flora; Wetzler, Meir; Devine, Steven; Marcucci, Guido; Stone, Richard M.; Larson, Richard A.; Bloomfield, Clara D.; Geyer, Susan; Mullighan, Charles G.; Stock, Wendy

    2016-01-01

    Recent studies have identified oncogenic lesions in Ph+ ALL and ABL1 kinase mutations that confer resistance to tyrosine kinase inhibitors. We sought to determine the prevalence and clinical impact of these lesions in patients on CALGB 10001, a previously reported phase II study of imatinib, chemotherapy, and hematopoietic cell transplant in adult Ph+ ALL. Of the 58 enrolled, 22 relapsed. By direct sequencing, an ABL1 kinase mutation known to induce imatinib resistance was present at relapse in 13 of 20. Using quantitative PCR assays, the mutations were detectable at diagnosis or early during treatment in most (62%) relapsed patients. Aberrations in IKZF1, CDKN2A/B, and PAX5 were assessed in 28 samples using SNP arrays and genomic DNA sequencing. Of these, 22 (79%) had IKZF1 deletion. The combination of IKZF1 deletion and p210 BCR-ABL1 (p<0.0001), high white blood cell count (p=0.021), and minimal residual disease (p=0.013) were associated with worse disease-free survival. PMID:26892479

  15. Evidence for presence of mismatch repair gene expression positive Lynch syndrome cases in India.

    PubMed

    Bashyam, Murali D; Kotapalli, Viswakalyan; Raman, Ratheesh; Chaudhary, Ajay K; Yadav, Brijesh K; Gowrishankar, Swarnalata; Uppin, Shantveer G; Kongara, Ravikanth; Sastry, Regulagadda A; Vamsy, Mohana; Patnaik, Sujit; Rao, Satish; Dsouza, Shoba; Desai, Devendra; Tester, Ashavaid

    2015-12-01

    Lynch syndrome (LS), the most common form of familial CRC predisposition that causes tumor onset at a young age, is characterized by the presence of microsatellite instability (MSI) in tumors due to germline inactivation of mismatch repair (MMR) system. Two MMR genes namely MLH1 and MSH2 account for majority of LS cases while MSH6 and PMS2 may account for a minor proportion. In order to identify MMR genes causing LS in India, we analyzed MSI and determined expression status of the four MMR genes in forty eight suspected LS patient colorectal tumor samples. Though a majority exhibited MSI, only 58% exhibited loss of MMR expression, a significantly low proportion compared to reports from other populations. PCR-DNA sequencing and MLPA-based mutation and exonic deletion/duplication screening respectively, revealed genetic lesions in samples with and without MMR gene expression. Interestingly, tumor samples with and without MMR expression exhibited significant differences with respect to histological (mucin content) and molecular (instability exhibited by mononucleotide microsatellites) features. The study has revealed for the first time a significant proportion of LS tumors not exhibiting loss of MMR expression. © 2014 Wiley Periodicals, Inc.

  16. Heterozygosity increases microsatellite mutation rate

    PubMed Central

    Amos, William

    2016-01-01

    Whole genome sequencing of families of Arabidopsis has recently lent strong support to the heterozygote instability (HI) hypothesis that heterozygosity locally increases mutation rate. However, there is an important theoretical difference between the impact on base substitutions, where mutation rate increases in regions surrounding a heterozygous site, and the impact of HI on sequences such as microsatellites, where mutations are likely to occur at the heterozygous site itself. At microsatellite loci, HI should create a positive feedback loop, with heterozygosity and mutation rate mutually increasing each other. Direct support for HI acting on microsatellites is limited and contradictory. I therefore analysed AC microsatellites in 1163 genome sequences from the 1000 genomes project. I used the presence of rare alleles, which are likely to be very recent in origin, as a surrogate measure of mutation rate. I show that rare alleles are more likely to occur at locus-population combinations with higher heterozygosity even when all populations carry exactly the same number of alleles. PMID:26740567

  17. Mutations at positions 547-553 of rat glucocorticoid receptors reveal that hsp90 binding requires the presence, but not defined composition, of a seven-amino acid sequence at the amino terminus of the ligand binding domain.

    PubMed

    Kaul, Sunil; Murphy, Patrick J M; Chen, Jun; Brown, Lloyd; Pratt, William B; Simons, S Stoney

    2002-09-27

    Glucocorticoid receptors (GRs) must heterocomplex with hsp90 to have an open steroid binding cleft that can be accessed by steroid. We reported that a seven-amino acid sequence (547-553 of rat GR) overlapping the amino-terminal end of the ligand binding domain is required for hsp90 binding to GR. We have now conducted saturation mutagenesis of this sequence, which appears to be part of the surface where the ligand binding cleft merges with the surface of the ligand binding domain. No single point mutation causes significant changes in any of a variety of biochemical and biological properties in addition to hsp90 binding. A triple mutation (P548A/T549A/V551A) increases by >100-fold the steroid concentration required for half-maximal induction without affecting the level of maximal induction or coactivator response. Interestingly, this triple mutant displays reduced binding of steroid and hsp90 in whole cells, but it possesses wild type affinity for steroid and normal hsp90 binding capacity under cell-free conditions. This phenotype of a dramatic shift in the dose response for transactivation would be expected from an increase in the rate of disassembly of the triple mutant GR.hsp90 heterocomplex in the cell. Mutation of the entire seven-amino acid region to CAAAAAC maintains the presence of a critical alpha-helical structure and heterocomplex formation with hsp90 but eliminates steroid binding and transcriptional activation, thus disconnecting hsp90 binding from opening of the ligand binding cleft and steroid binding.

  18. Gene mutations in chronic lymphocytic leukemia.

    PubMed

    Amin, Nisar A; Malek, Sami N

    2016-04-01

    The recent discovery of genes mutated in chronic lymphocytic leukemia (CLL) has stimulated new research into the role of these genes in CLL pathogenesis. CLL cases carry approximately 5-20 mutated genes per exome, a lower number than detected in many human tumors. Of the recurrently mutated genes in CLL, all are mutated in 10% or less of patients when assayed in unselected CLL cohorts at diagnosis. Mutations in TP53 are of major clinical relevance, are often associated with del17p and gain in frequency over time. TP53 mutated and associated del17p states substantially lower response rates, remission duration, and survival in CLL. Mutations in NOTCH1 and SF3B1 are recurrent, often associated with progressive CLL that is also IgVH unmutated and ZAP70-positive and are under investigation as targets for novel therapies and as factors influencing CLL outcome. There are an estimated 20-50 additional mutated genes with frequencies of 1%-5% in CLL; more work is needed to identify these and to study their significance. Finally, of the major biological aberration categories influencing CLL as a disease, gene mutations will need to be placed into context with regard to their ultimate role and importance. Such calibrated appreciation necessitates studies incorporating multiple CLL driver aberrations into biological and clinical analyses.

  19. Calreticulin Exon 9 Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Kim, Yu-Kyung

    2015-01-01

    Background Calreticulin (CALR) mutations were recently discovered in patients with myeloproliferative neoplasms (MPNs). We studied the frequency and type of CALR mutations and their hematological characteristics. Methods A total of 168 MPN patients (36 polycythemia vera [PV], 114 essential thrombocythemia [ET], and 18 primary myelofibrosis [PMF] cases) were included in the study. CALR mutation was analyzed by the direct sequencing method. Results CALR mutations were detected in 21.9% of ET and 16.7% of PMF patients, which accounted for 58.5% and 33.3% of ET and PMF patients without Janus kinase 2 (JAK2) or myeloproliferative leukemia virus oncogenes (MPL) mutations, respectively. A total of five types of mutation were detected, among which, L367fs*46 (53.6%) and K385fs*47 (35.7%) were found to be the most common. ET patients with CALR mutation had lower leukocyte counts and ages compared with JAK2-mutated ET patients. Conclusion Genotyping for CALR could be a useful diagnostic tool for JAK2-or MPL-negative ET or PMF patients. CALR mutation may be a distinct disease group, with different hematological characteristics than that of JAK2-positive patients. PMID:25553276

  20. Parent-progeny sequencing indicates higher mutation rates in heterozygotes.

    PubMed

    Yang, Sihai; Wang, Long; Huang, Ju; Zhang, Xiaohui; Yuan, Yang; Chen, Jian-Qun; Hurst, Laurence D; Tian, Dacheng

    2015-07-23

    Mutation rates vary within genomes, but the causes of this remain unclear. As many prior inferences rely on methods that assume an absence of selection, potentially leading to artefactual results, we call mutation events directly using a parent-offspring sequencing strategy focusing on Arabidopsis and using rice and honey bee for replication. Here we show that mutation rates are higher in heterozygotes and in proximity to crossover events. A correlation between recombination rate and intraspecific diversity is in part owing to a higher mutation rate in domains of high recombination/diversity. Implicating diversity per se as a cause, we find an ∼3.5-fold higher mutation rate in heterozygotes than in homozygotes, with mutations occurring in closer proximity to heterozygous sites than expected by chance. In a genome that is a patchwork of heterozygous and homozygous domains, mutations occur disproportionately more often in the heterozygous domains. If segregating mutations predispose to a higher local mutation rate, clusters of genes dominantly under purifying selection (more commonly homozygous) and under balancing selection (more commonly heterozygous), might have low and high mutation rates, respectively. Our results are consistent with this, there being a ten times higher mutation rate in pathogen resistance genes, expected to be under positive or balancing selection. Consequently, we do not necessarily need to evoke extremely weak selection on the mutation rate to explain why mutational hot and cold spots might correspond to regions under positive/balancing and purifying selection, respectively.

  1. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  2. CF Mutation Panel

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities CF Gene Mutations Testing Share this page: Was this page helpful? Also known as: Cystic Fibrosis Genotyping; CF DNA Analysis; CF Gene Mutation Panel; ...

  3. Natural radioactivity and human mitochondrial DNA mutations

    PubMed Central

    Forster, Lucy; Forster, Peter; Lutz-Bonengel, Sabine; Willkomm, Horst; Brinkmann, Bernd

    2002-01-01

    Radioactivity is known to induce tumors, chromosome lesions, and minisatellite length mutations, but its effects on the DNA sequence have not previously been studied. A coastal peninsula in Kerala (India) contains the world's highest level of natural radioactivity in a densely populated area, offering an opportunity to characterize radiation-associated DNA mutations. We sampled 248 pedigrees (988 individuals) in the high-radiation peninsula and in nearby low-radiation islands as a control population. We sequenced their mtDNA, and found that the pedigrees living in the high-radiation area have significantly (P < 0.01) increased germ-line point mutations between mothers and their offspring. In each mutation case, we confirmed maternity by autosomal profiling. Strikingly, the radioactive conditions accelerate mutations at nucleotide positions that have been evolutionary hot spots for at least 60,000 years. PMID:12370437

  4. Mutation studies in ascidians: a review.

    PubMed

    Crocetta, Fabio; Marino, Rita; Cirino, Paola; Macina, Alberto; Staiano, Leopoldo; Esposito, Rosaria; Pezzotti, Maria Rosa; Racioppi, Claudia; Toscano, Francesco; De Felice, Elena; Locascio, Annamaria; Ristoratore, Filomena; Spagnuolo, Antonietta; Zanetti, Laura; Branno, Margherita; Sordino, Paolo

    2015-01-01

    Historically, mutations have had a significant impact on the study of developmental processes and phenotypic evolution. Lesions in DNA are created by artificial methods or detected by natural genetic variation. Random mutations are then ascribed to genetic change by direct sequencing or positional cloning. Tunicate species of the ascidian genus Ciona represent nearly fully realized model systems in which gene function can be investigated in depth. Additionally, tunicates are valuable organisms for the study of naturally occurring mutations due to the capability to exploit genetic variation down to the molecular level. Here, we summarize the available information about how mutations are studied in ascidians with examples of insights that have resulted from these applications. We also describe notions and methodologies that might be useful for the implementation of easy and tight procedures for mutations studies in Ciona.

  5. Recent Origin and Spread of a Common Lithuanian Mutation, G197del LDLR, Causing Familial Hypercholesterolemia: Positive Selection Is Not Always Necessary to Account for Disease Incidence among Ashkenazi Jews

    PubMed Central

    Durst, Ronen; Colombo, Roberto; Shpitzen, Shoshi; Avi, Liat Ben; Friedlander, Yechiel; Wexler, Roni; Raal, Frederick J.; Marais, David A.; Defesche, Joep C.; Mandelshtam, Michail Y.; Kotze, Maritha J.; Leitersdorf, Eran; Meiner, Vardiella

    2001-01-01

    G197del is the most prevalent LDL receptor (LDLR) mutation causing familial hypercholesterolemia (FH) in Ashkenazi Jew (AJ) individuals. The purpose of this study was to determine the origin, age, and population distribution of G197del, as well as to explore environmental and genetic effects on disease expression. Index cases from Israel (n=46), South Africa (n=24), Russia (n=7), The Netherlands (n=1), and the United States (n=1) were enlisted. All trace their ancestry to Lithuania. A highly conserved haplotype (D19S221:104-D19S865:208-D19S413:74) was identified in G197del chromosomes, suggesting the occurrence of a common founder. When two methods were used for analysis of linkage disequilibrium (LD) between flanking polymorphic markers and the disease locus and for the study of the decay of LD over time, the estimated age of the deletion was found to be 20 ± 7 generations (the 95% confidence interval is 15–26 generations), so that the most recent common ancestor of the mutation-bearing chromosomes would date to the 14th century. This corresponds with the founding of the Jewish community of Lithuania (1338 a.d.), as well as with the great demographic expansion of AJ individuals in eastern Europe, which followed this settlement. The penetrance of mutation-linked severe hypercholesterolemia is high (94% of heterozygotes have a baseline concentration of LDL cholesterol (LDL-C) that is >160 mg/dl), and no significant differences in the mean baseline lipid level of G197del carriers from different countries were found. Polymorphisms of apolipoprotein E and of scavenger-receptor class B type I were observed to have minor effects on the plasma lipid profile. With respect to determinative genetic influences on the biochemical phenotype, there is no evidence that could support the possibility of a selective evolutionary metabolic advantage. Therefore, the founder effect in a rapidly expanding population from a limited number of families remains a simple, parsimonious

  6. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    PubMed

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-04

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  8. Compound EGFR mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma.

    PubMed

    Kim, Eun Young; Cho, Eun Na; Park, Heae Surng; Hong, Ji Young; Lim, Seri; Youn, Jong Pil; Hwang, Seung Yong; Chang, Yoon Soo

    2016-01-01

    Compound EGFR mutations, defined as double or multiple mutations in the EGFR tyrosine kinase domain, are frequently detected with advances in sequencing technology but its clinical significance is unclear. This study analyzed 61 cases of EGFR mutation positive lung adenocarcinoma using next-generation sequencing (NGS) based repeated deep sequencing panel of 16 genes that contain actionable mutations and investigated clinical implication of compound EGFR mutations. Compound EGFR mutation was detected in 15 (24.6%) of 61 cases of EGFR mutation-positive lung adenocarcinoma. The majority (12/15) of compound mutations are combination of the atypical mutation and typical mutations such as exon19 deletion, L858R or G719X substitutions, or exon 20 insertion whereas 3 were combinations of rare atypical mutations. The patients with compound mutation showed shorter overall survival than those with simple mutations (83.7 vs. 72.8 mo; P = 0.020, Breslow test). Among the 115 missense mutations discovered in the tested genes, a few number of actionable mutations were detected irrelevant to the subtype of EGFR mutations, including ALK rearrangement, BCL2L11 intron 2 deletion, KRAS c.35G>A, PIK3CA c.1633G>A which are possible target of crizotinib, BH3 mimetics, MEK inhibitors, and PI3K-tyrosine kinase inhibitors, respectively. 31 missense mutations were detected in the cases with simple mutations whereas 84 in those with compound mutation, showing that the cases with compound missense mutation have higher burden of missense mutations (P = 0.001, independent sample t-test). Compound EGFR mutations are detected at a high frequency using NGS-based repeated deep sequencing. Because patients with compound EGFR mutations showed poor clinical outcomes, they should be closely monitored during follow-up.

  9. High frequency of loss of heterozygosity at 11p15 and IGF2 overexpression is not associated with clinical outcome in childhood adrenocortical tumors positive for the R337H TP53 mutation

    PubMed Central

    Rosati, Roberto; Cerrato, Flavia; Doghman, Mabrouka; Pianovski, Mara A.D.; Parise, Guilherme A.; Custódio, Gislaine; Zambetti, Gerard P.; Ribeiro, Raul C.; Riccio, Andrea; Figueiredo, Bonald C.; Lalli, Enzo

    2008-01-01

    A germline TP53 R337H mutation is present in childhood adrenocortical tumors (ACT) from southern Brazil. Other genetic alterations are also frequently found in these tumors. This study was designed to assess whether alterations of the 11p15 region exist in childhood ACT, accounting for IGF2 overexpression in these tumours, and how they are related to clinical outcome. Tumor DNA of 12 children with ACT (4 adenomas and 8 carcinomas) and from the blood of their parents was analyzed. All patients showed 11p15 LOH in the tumor. In contrast to the single case of paternal LOH, IGF2 was overexpressed in tumors with maternal allele loss. Our data show that 11p15 LOH is a widespread finding in childhood ACT not related with malignancy, contrarily to adult ACT. Alterations in the expression of other genes in the same region (e.g. CDKN1C) may contribute to ACT tumorigenesis. PMID:18786438

  10. Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus.

    PubMed

    Bastepe, M; Pincus, J E; Sugimoto, T; Tojo, K; Kanatani, M; Azuma, Y; Kruse, K; Rosenbloom, A L; Koshiyama, H; Jüppner, H

    2001-06-01

    Pseudohypoparathyroidism type Ib (PHP-Ib) is a paternally imprinted disorder which maps to a region on chromosome 20q13.3 that comprises GNAS1 at its telomeric boundary. Exon A/B of this gene was recently shown to display a loss of methylation in several PHP-Ib patients. In nine unrelated PHP-Ib kindreds, in whom haplotype analysis and mode of inheritance provided no evidence against linkage to this chromosomal region, we confirmed lack of exon A/B methylation for affected individuals, while unaffected carriers showed no epigenetic abnormality at this locus. However, affected individuals in one kindred (Y2) displayed additional methylation defects involving exons NESP55, AS and XL, and unaffected carriers in this family showed an abnormal methylation at exon NESP55, but not at other exons. Taken together, current evidence thus suggests that distinct mutations within or close to GNAS1 can lead to PHP-Ib and the associated epigenetic changes. To further delineate the telomeric boundary of the PHP-Ib locus, the previously reported kindred F, in which patient F-V/51 is recombinant within GNAS1, was investigated with several new markers and direct nucleotide sequence analysis. These studies revealed that F-V/51 remains recombinant at a single nucleotide polymorphism (SNP) located 1.2 kb upstream of XL. No heterozygous mutation was identified between exon XL and an SNP approximately 8 kb upstream of NESP55, where this affected individual becomes linked, suggesting that the genetic defect responsible for parathyroid hormone resistance in kindred F, and probably other PHP-Ib patients, is located >or=56 kb centromeric of the abnormally methylated exon A/B. A region upstream of the known coding exons of GNAS1 is therefore predicted to exert, presumably through imprinting of exon A/B, long-range effects on G(s)alpha expression.

  11. Reverse mutations in fragile X syndrome

    SciTech Connect

    Brown, W.T.; Nolin, S.; Houck, G.E.

    1994-09-01

    The fragile X syndrome is the most common inherited form of mental retardation. Yet new mutations have not been described and no affected child has been born to a carrier mother having less than 60 FMR-1 CGG triplet repeats. Reverse mutations also appear to be very rare. We have previously identified the daughter of a premutation mother (95 CGGs) who inherited a normal repeat size of 35 as a reverse mutation. In the process of carrier testing by PCR, we have now identified two additional females with reverse mutations. All three of these reverse mutation women were previously tested by linkage as part of known fragile X families (subsequently confirmed by direct analysis), and assigned a > 99% risk as a carrier. In the second family, the mother carries a premutation allele of 95 repeats and the daughter inherited a 43 repeat allele. Prior to direct DNA testing, she had a positive prenatal diagnosis by linkage (> 99% risk) and cytogenetics with 3/450 cells apparently positive. Subsequent retesting of the products of conception by PCR now reveals a 43 repeat allele from her carrier mother with an 82 repeat allele. Testing with close CA markers (FRAXAC1 and DXS548) confirmed that these women inherited the same chromosome and their full mutation brothers. Further analysis is pending. These examples of reverse mutations are the only ones we have identified in our study of offspring of more than 200 carriers (400+ meioses) examined to date. Therefore, we conclude the frequency of fragile X back mutations is likely to be less than 1%. Retesting of linkage positive carriers is recommended to detect reverse mutations and assure accurate genetic counseling.

  12. Inverse PCR for Point Mutation Introduction.

    PubMed

    Silva, Diogo; Santos, Gustavo; Barroca, Mário; Collins, Tony

    2017-01-01

    Inverse PCR is a powerful tool for the rapid introduction of desired mutations at desired positions in a circular double-stranded DNA sequence. Here, custom-designed mutant primers oriented in the inverse direction are used to amplify the entire circular template with incorporation of the required mutation(s). By careful primer design it can be used to perform such diverse modifications as the introduction of point mutations and multiple mutations, the insertion of new sequences, and even sequence deletions. Three primer formats are commonly used; nonoverlapping, partially overlapping and fully overlapping primers, and here we describe the use of nonoverlapping primers for introduction of a point mutation. Use of such a primer setup in the PCR reaction, with one of the primers containing the desired mismatch mutation, results in the amplification of a linear, double-stranded, mutated product. Methylated template DNA is removed from the nonmethylated PCR product by DpnI digestion and the PCR product is then phosphorylated by polynucleotide kinase treatment before being recircularized by ligation, and transformed to E. coli. This relatively simple site-directed mutagenesis procedure is of major importance in biology and biotechnology today where it is commonly employed for the study and engineering of DNA, RNA, and proteins.

  13. UV Signature Mutations

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  14. A novel mutation in exon 2 of FGB caused by c.221G>T (†) substitution, predicting the replacement of the native Arginine at position 74 with a Leucine (p.Arg74Leu (†) ) in a proband from a Kurdish family with dysfibrinogenaemia and familial venous and arterial thrombosis.

    PubMed

    Shlebak, Abdul A; Katsarou, Alexia D; Adams, George; Fernando, Fiona

    2017-02-01

    Dysfibrinogenaemias may present in either congenital or acquired form and are disorders of fibrinogen structure which may or may not be associated with abnormal function. More than 100 point mutations with single amino acid substitutions have been identified in over 400 families. These lead to defective DNA in the translated fibrinogen molecule. Such cases have improved our understanding of the fibrinogen-fibrin structure. Six members of a consanguineous family including a female proband, a female sibling, three male siblings and a daughter, with ages between 29 years and 53 years presented with early onset venous and premature arterial thromboembolic disease were investigated for a pro-thrombotic tendency associated with dysfibrinogenaemia. The family was investigated using standard coagulation assays and DNA sequencing of the genes encoding the FGA, FGB and FGG. All cases have dysfibrinogenaemia with a fibrinogen level 1.4 to 1.5 (1.9-4.3 g/L). Thrombophilia testing (including AT, PS & PC, F5 G1691A (FV Leiden)/F2 (prothombin G20210A) genotypes, homocysteine, antiphosphlipid antibody, paroxysmal nocturnal haemoglobinuria by flow cytometry and Janus Kinase-2 (exon 14)) were normal. PCR amplification and sequencing of exon 2 of FBG revealed a heterozygous mutation for a c.221G> T (†) substitution, predicting the replacement of the native Arginine at position 74 with a Leucine (p.Arg74Leu (†) ). In silico analysis of p.Arg74Leu strongly support pathogenicity. A novel mutation was identified in exon 2 of FGB caused by c.221G> T (†) substitution, predicting the replacement of Arginine at position 74 with a Leucine (p.Arg74Leu (†) ) in a proband from a Kurdish family with dysfibrinogenaemia and familial venous and arterial thrombosis.

  15. Novel STXBP2 mutation causing familial hemophagocytic lymphohistiocytosis.

    PubMed

    Jain, Rakhi; Puliyel, Mammen; Moses, Prabhakar D; Sieni, Elena

    2012-06-01

    Familial Hemophagocytic Lymphohistiocytosis (FHL) is a rare autosomal recessive disorder. Diagnosis is established in presence of genetic mutation or positive family history in one of the siblings. Common genetic mutations associated with FHL are mutations in gene PRF1 (also known as FHL 2), UNC13D (FHL 3) and STX11 (FHL 4). Recently mutation in STXBP2 encoding syntaxin binding protein 2 (Munc 18 -2) has been found to be associated with FHL type 5. Here we describe the first reported Indian patient with homozygous mutation in STX BP2 gene (c1697 G > A resulting in amino acid change p.G566D) causing FHL 5.

  16. High frequency of loss of heterozygosity at 11p15 and IGF2 overexpression are not related to clinical outcome in childhood adrenocortical tumors positive for the R337H TP53 mutation.

    PubMed

    Rosati, Roberto; Cerrato, Flavia; Doghman, Mabrouka; Pianovski, Mara A D; Parise, Guilherme A; Custódio, Gislaine; Zambetti, Gerard P; Ribeiro, Raul C; Riccio, Andrea; Figueiredo, Bonald C; Lalli, Enzo

    2008-10-01

    A germline TP53 R337H mutation is present in childhood adrenocortical tumors (ACT) from southern Brazil. Other genetic alterations are also frequently found in these tumors. This study was designed to assess whether alterations of the 11p15 region exist in childhood ACT, accounting for IGF2 overexpression in these tumors, and how they are related to clinical outcome. Tumor DNA of 12 children with ACT (4 adenomas and 8 carcinomas) and from the blood of their parents was analyzed. All patients showed 11p15 loss of heterozygosity (LOH) in the tumor. In contrast to the single case of paternal LOH, IGF2 was overexpressed in tumors with maternal allele loss. Our data show that 11p15 LOH is a widespread finding in childhood ACT not related with malignancy, contrary to adult ACT. Alterations in the expression of other genes in the same region (e.g., CDKN1C) may contribute to ACT tumorigenesis. (c)2008 Elsevier Inc. All rights reserved.

  17. BRCC3 mutations in myeloid neoplasms

    PubMed Central

    Huang, Dayong; Nagata, Yasunobu; Grossmann, Vera; Radivoyevitch, Tomas; Okuno, Yusuke; Nagae, Genta; Hosono, Naoko; Schnittger, Susanne; Sanada, Masashi; Przychodzen, Bartlomiej; Kon, Ayana; Polprasert, Chantana; Shen, Wenyi; Clemente, Michael J.; Phillips, James G.; Alpermann, Tamara; Yoshida, Kenichi; Nadarajah, Niroshan; Sekeres, Mikkael A.; Oakley, Kevin; Nguyen, Nhu; Shiraishi, Yuichi; Shiozawa, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Koeffler, H. Phillip; Klein, Hans-Ulrich; Dugas, Martin; Aburatani, Hiroyuki; Miyano, Satoru; Haferlach, Claudia; Kern, Wolfgang; Haferlach, Torsten; Du, Yang; Ogawa, Seishi; Makishima, Hideki

    2015-01-01

    Next generation sequencing technologies have provided insights into the molecular heterogeneity of various myeloid neoplasms, revealing previously unknown somatic genetic events. In our cohort of 1444 cases analyzed by next generation sequencing, somatic mutations in the gene BRCA1-BRCA2-containing complex 3 (BRCC3) were identified in 28 cases (1.9%). BRCC3 is a member of the JAMM/MPN+ family of zinc metalloproteases capable of cleaving Lys-63 linked polyubiquitin chains, and is implicated in DNA repair. The mutations were located throughout its coding region. The average variant allelic frequency of BRCC3 mutations was 30.1%, and by a serial sample analysis at two different time points a BRCC3 mutation was already identified in the initial stage of a myelodysplastic syndrome. BRCC3 mutations commonly occurred in nonsense (n=12), frameshift (n=4), and splice site (n=5) configurations. Due to the marginal male dominance (odds ratio; 2.00, 0.84–4.73) of BRCC3 mutations, the majority of mutations (n=23; 82%) were hemizygous. Phenotypically, BRCC3 mutations were frequently observed in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms and associated with -Y abnormality (odds ratio; 3.70, 1.25–11.0). Clinically, BRCC3 mutations were also related to higher age (P=0.01), although prognosis was not affected. Knockdown of Brcc3 gene expression in murine bone marrow lineage negative, Sca1 positive, c-kit positive cells resulted in 2-fold more colony formation and modest differentiation defect. Thus, BRCC3 likely plays a role as tumor-associated gene in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. PMID:26001790

  18. Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype.

    PubMed

    Tatton-Brown, Katrina; Murray, Anne; Hanks, Sandra; Douglas, Jenny; Armstrong, Ruth; Banka, Siddharth; Bird, Lynne M; Clericuzio, Carol L; Cormier-Daire, Valerie; Cushing, Tom; Flinter, Frances; Jacquemont, Marie-Line; Joss, Shelagh; Kinning, Esther; Lynch, Sally Ann; Magee, Alex; McConnell, Vivienne; Medeira, Ana; Ozono, Keiichi; Patton, Michael; Rankin, Julia; Shears, Debbie; Simon, Marleen; Splitt, Miranda; Strenger, Volker; Stuurman, Kyra; Taylor, Clare; Titheradge, Hannah; Van Maldergem, Lionel; Temple, I Karen; Cole, Trevor; Seal, Sheila; Rahman, Nazneen

    2013-12-01

    Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve.

  19. Effective Temperature of Mutations

    NASA Astrophysics Data System (ADS)

    Derényi, Imre; Szöllősi, Gergely J.

    2015-02-01

    Biological macromolecules experience two seemingly very different types of noise acting on different time scales: (i) point mutations corresponding to changes in molecular sequence and (ii) thermal fluctuations. Examining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins, we show that the effects of single point mutations are statistically indistinguishable from those of an increase in temperature by a few tens of kelvins. The existence of such an effective mutational temperature establishes a quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.

  20. A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations.

    PubMed

    Choi, Soo-Kyung; Yoon, Song-Ro; Calabrese, Peter; Arnheim, Norman

    2008-07-22

    Two nucleotide substitutions in the human FGFR2 gene (C755G or C758G) are responsible for virtually all sporadic cases of Apert syndrome. This condition is 100-1,000 times more common than genomic mutation frequency data predict. Here, we report on the C758G de novo Apert syndrome mutation. Using data on older donors, we show that spontaneous mutations are not uniformly distributed throughout normal testes. Instead, we find foci where C758G mutation frequencies are 3-4 orders of magnitude greater than the remaining tissue. We conclude this nucleotide site is not a mutation hot spot even after accounting for possible Luria-Delbruck "mutation jackpots." An alternative explanation for such foci involving positive selection acting on adult self-renewing Ap spermatogonia experiencing the rare mutation could not be rejected. Further, the two youngest individuals studied (19 and 23 years old) had lower mutation frequencies and smaller foci at both mutation sites compared with the older individuals. This implies that the mutation frequency of foci increases as adults age, and thus selection could explain the paternal age effect for Apert syndrome and other genetic conditions. Our results, now including the analysis of two mutations in the same set of testes, suggest that positive selection can increase the relative frequency of premeiotic germ cells carrying such mutations, although individuals who inherit them have reduced fitness. In addition, we compared the anatomical distribution of C758G mutation foci with both new and old data on the C755G mutation in the same testis and found their positions were not correlated with one another.

  1. Immunohistochemical correlates of TP53 somatic mutations in cancer

    PubMed Central

    Murnyák, Balázs; Hortobágyi, Tibor

    2016-01-01

    Despite controversy on the correlation between p53 accumulation and TP53 mutational status, ihas long been used as a surrogate method for mutation analysis. The aim of our study was to characterise the IHC expression features of TP53 somatic mutations and define their occurrence in human cancers. A large-scale database analysis was conducted in the IARC TP53 Database (R17); 7878 mutations with IHC features were retrieved representing 60 distinct tumour sites. The majority of the alterations were immunopositive (p <0.001). Sex was known for 4897 mutations showing a female dominance (57.2%) and females carrying negative mutations were significantly younger. TP53 mutations were divided into three IHC groups according to mutation frequency and IHC positivity. Each group had female dominance. Among the IHC groups, significant correlations were observed with age at diagnosis in breast, bladder, liver, haematopoietic system and head & neck cancers. An increased likelihood of false negative IHC associated with rare nonsense mutations was observed in certain tumour sites. Our study demonstrates that p53 immunopositivity largely correlates with TP53 mutational status but expression is absent in certain mutation types.Besides, describing the complex IHC expression of TP53 somatic mutations, our results reveal some caveats for the diagnostic practice. PMID:27626311

  2. Immunohistochemical correlates of TP53 somatic mutations in cancer.

    PubMed

    Murnyák, Balázs; Hortobágyi, Tibor

    2016-10-04

    Despite controversy on the correlation between p53 accumulation and TP53 mutational status, immunohistochemical (IHC) detection of overexpressed protein has long been used as a surrogate method for mutation analysis. The aim of our study was to characterise the IHC expression features of TP53 somatic mutations and define their occurrence in human cancers. A large-scale database analysis was conducted in the IARC TP53 Database (R17); 7878 mutations with IHC features were retrieved representing 60 distinct tumour sites. The majority of the alterations were immunopositive (p <0.001). Sex was known for 4897 mutations showing a female dominance (57.2%) and females carrying negative mutations were significantly younger. TP53 mutations were divided into three IHC groups according to mutation frequency and IHC positivity. Each group had female dominance. Among the IHC groups, significant correlations were observed with age at diagnosis in breast, bladder, liver, haematopoietic system and head & neck cancers. An increased likelihood of false negative IHC associated with rare nonsense mutations was observed in certain tumour sites. Our study demonstrates that p53 immunopositivity largely correlates with TP53 mutational status but expression is absent in certain mutation types.Besides, describing the complex IHC expression of TP53 somatic mutations, our results reveal some caveats for the diagnostic practice.

  3. Predicting Resistance Mutations Using Protein Design Algorithms

    SciTech Connect

    Frey, K.; Georgiev, I; Donald, B; Anderson, A

    2010-01-01

    Drug resistance resulting from mutations to the target is an unfortunate common phenomenon that limits the lifetime of many of the most successful drugs. In contrast to the investigation of mutations after clinical exposure, it would be powerful to be able to incorporate strategies early in the development process to predict and overcome the effects of possible resistance mutations. Here we present a unique prospective application of an ensemble-based protein design algorithm, K*, to predict potential resistance mutations in dihydrofolate reductase from Staphylococcus aureus using positive design to maintain catalytic function and negative design to interfere with binding of a lead inhibitor. Enzyme inhibition assays show that three of the four highly-ranked predicted mutants are active yet display lower affinity (18-, 9-, and 13-fold) for the inhibitor. A crystal structure of the top-ranked mutant enzyme validates the predicted conformations of the mutated residues and the structural basis of the loss of potency. The use of protein design algorithms to predict resistance mutations could be incorporated in a lead design strategy against any target that is susceptible to mutational resistance.

  4. Diploid yeast cells yield homozygous spontaneous mutations

    NASA Technical Reports Server (NTRS)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  5. Diploid yeast cells yield homozygous spontaneous mutations

    NASA Technical Reports Server (NTRS)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  6. Novel progranulin mutation: screening for PGRN mutations in a Portuguese series of FTD/CBS cases.

    PubMed

    Guerreiro, Rita Joao; Santana, Isabel; Bras, Jose Miguel; Revesz, Tamas; Rebelo, Olinda; Ribeiro, Maria Helena; Santiago, Beatriz; Oliveira, Catarina Resende; Singleton, Andrew; Hardy, John

    2008-07-15

    Mutations in the progranulin (PGRN) gene were recently described as the cause of ubiquitin positive frontotemporal dementia (FTD) in many families. Different frequencies of these genetic changes have been reported in diverse populations leading us to determine if these mutations were a major cause of FTD in the Portuguese population. The entire coding sequence plus exon 0 of PGRN were sequenced in a consecutive series of 46 FTD/CBS Portuguese patients. Two mutations were found: a novel pathogenic insertion (p.Gln300GlnfsX61) and a previously described point variant (p.T182M) of unclear pathogenicity. Pathogenic mutations in the PGRN gene were found in one of the 36 probands studied (3% of the probands in our series) who had a corticobasal syndrome presentation, indicating that in the Portuguese population, mutations in this gene are not a major cause of FTD.

  7. IFITM5 mutations and osteogenesis imperfecta.

    PubMed

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  8. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  9. Genotype-Phenotype Correlations by Ethnicity and Mutation Location in BRCA Mutation Carriers.

    PubMed

    Bayraktar, Soley; Jackson, Michelle; Gutierrez-Barrera, Angelica M; Liu, Diane; Meric-Bernstam, Funda; Brandt, Amanda; Woodson, Ashley; Litton, Jennifer; Lu, Karen H; Valero, Vicente; Arun, Banu K

    2015-01-01

    The genotype-phenotype correlations of the specific BRCA1 and BRCA2 mutations in multi-ethnic populations in USA have not yet been fully investigated. This study was designed to evaluate the effects of ethnicity at specific mutation locations and breast/ovarian cancer phenotypes. Our cohort included 445 women with different ethnic backgrounds who underwent BRCA genetic testing between 1997 and 2010. Known clinical and pathologic characteristics were compared with Chi-Square Analysis or Fisher's Exact test as appropriate. The three most common mutation locations in BRCA1 (exons 2, 11, and 20) and BRCA2 (exons 10, 11, and 25) genes were chosen. Prevalence of BRCA1 exon 2 mutations were significantly higher in Ashkenazi Jewish (AJ) women compared to Caucasians (41% versus 15%; p = 0.001). Similarly, AJ women with breast cancer were more likely to have BRCA1 exon 2 mutation (47% positivity in AJ women versus 0-12.5% positivity in other ethnicities; p = 0.004). Women carrying the exon 20 BRCA1 mutation had the highest probability of having combined breast and ovarian cancers compared to women carrying other exon mutations (p = 0.05). The median age at initial cancer diagnosis, phenotypic features of breast cancer tumors, and overall survival did not vary significantly by ethnicity or mutation location. Our data suggest that ethnicity does not affect age of onset, overall survival or confer different risks of breast and ovarian cancer development in BRCA carriers. These results also suggest that women carrying the exon 20 BRCA1 mutation may warrant mutation-specific counseling and be more aggressively managed for risk reduction.

  10. Progenitor genotyping reveals a complex clonal architecture in a subset of CALR-mutated myeloproliferative neoplasms.

    PubMed

    Martin, Sarah; Wright, Casey M; Scott, Linda M

    2017-04-01

    The identification of acquired CALR mutations in patients with essential thrombocythaemia (ET) or myelofibrosis (MF) has meant that disease-initiating mutations can now be detected in about 90% of all patients with a myeloproliferative neoplasm (MPN). Here, we show that only those CALR mutations that cause a +1 frameshift, thereby altering the carboxy-terminus of calreticulin, promote cytokine independence in vitro; in-frame deletions were not functional, and are unlikely to be the pathogenetic mutation underlying some MPN cases. Expression of the thrombopoietin receptor, MPL, was also necessary for factor-independence. Although the CALR mutations are considered to occur only in JAK2 V617F-negative cases and in a heterozygous state, progenitor genotyping revealed that this is not always true. Notably, CALR mutation-positive MPNs can be polyclonal: in one case, two distinct CALR mutation-positive subpopulations could be identified; in another, separate populations of JAK2 V617F-positive and CALR-mutated cells were present. Mitotic recombination involving chromosome 19 in a third instance resulted in the emergence of a CALR mutation-homozygous subclone. Collectively, our studies demonstrate that occasional patients with CALR mutation-positive ET or MF carry other MPN-initiating genetic mutations (including JAK2 V617F), acquire "secondary mutations" before or after the CALR mutation, or evolve over time to being CALR mutation-homozygous.

  11. Multicentric origin of hemochromatosis gene (HFE) mutations.

    PubMed Central

    Rochette, J; Pointon, J J; Fisher, C A; Perera, G; Arambepola, M; Arichchi, D S; De Silva, S; Vandwalle, J L; Monti, J P; Old, J M; Merryweather-Clarke, A T; Weatherall, D J; Robson, K J

    1999-01-01

    Genetic hemochromatosis (GH) is believed to be a disease restricted to those of European ancestry. In northwestern Europe, >80% of GH patients are homozygous for one mutation, the substitution of tyrosine for cysteine at position 282 (C282Y) in the unprocessed protein. In a proportion of GH patients, two mutations are present, C282Y and H63D. The clinical significance of this second mutation is such that it appears to predispose 1%-2% of compound heterozygotes to expression of the disease. The distribution of the two mutations differ, C282Y being limited to those of northwestern European ancestry and H63D being found at allele frequencies>5%, in Europe, in countries bordering the Mediterranean, in the Middle East, and in the Indian subcontinent. The C282Y mutation occurs on a haplotype that extends mutation has arisen during the past 2,000 years. The H63D mutation is older and does not occur on such a large extended haplotype, the haplotype in this case extending mutations on new haplotypes. In Sri Lanka we have found H63D on three new haplotypes and have found C282Y on one new haplotype, demonstrating that these mutations have arisen independently on this island. These results suggest that the HFE gene has been the subject of selection pressure. These selection pressures could be due to infectious diseases, environmental conditions, or other genetic disorders such as anemia. PMID:10090890

  12. Mutation and premating isolation.

    PubMed

    Woodruff, R C; Thompson, J N

    2002-11-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  13. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  14. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  15. Mutation@A Glance: An Integrative Web Application for Analysing Mutations from Human Genetic Diseases

    PubMed Central

    Hijikata, Atsushi; Raju, Rajesh; Keerthikumar, Shivakumar; Ramabadran, Subhashri; Balakrishnan, Lavanya; Ramadoss, Suresh Kumar; Pandey, Akhilesh; Mohan, Sujatha; Ohara, Osamu

    2010-01-01

    Although mutation analysis serves as a key part in making a definitive diagnosis about a genetic disease, it still remains a time-consuming step to interpret their biological implications through integration of various lines of archived information about genes in question. To expedite this evaluation step of disease-causing genetic variations, here we developed Mutation@A Glance (http://rapid.rcai.riken.jp/mutation/), a highly integrated web-based analysis tool for analysing human disease mutations; it implements a user-friendly graphical interface to visualize about 40 000 known disease-associated mutations and genetic polymorphisms from more than 2600 protein-coding human disease-causing genes. Mutation@A Glance locates already known genetic variation data individually on the nucleotide and the amino acid sequences and makes it possible to cross-reference them with tertiary and/or quaternary protein structures and various functional features associated with specific amino acid residues in the proteins. We showed that the disease-associated missense mutations had a stronger tendency to reside in positions relevant to the structure/function of proteins than neutral genetic variations. From a practical viewpoint, Mutation@A Glance could certainly function as a ‘one-stop’ analysis platform for newly determined DNA sequences, which enables us to readily identify and evaluate new genetic variations by integrating multiple lines of information about the disease-causing candidate genes. PMID:20360267

  16. The European Medicines Agency review of vemurafenib (Zelboraf®) for the treatment of adult patients with BRAF V600 mutation-positive unresectable or metastatic melanoma: summary of the scientific assessment of the Committee for Medicinal Products for Human Use.

    PubMed

    da Rocha Dias, Silvy; Salmonson, Tomas; van Zwieten-Boot, Barbara; Jonsson, Bertil; Marchetti, Serena; Schellens, Jan H M; Giuliani, Rosa; Pignatti, Francesco

    2013-05-01

    The applicant company Roche Registration Ltd. submitted to the European Medicines Agency (EMA) an application for marketing authorisation for vemurafenib. Vemurafenib is a low molecular weight, orally available, inhibitor of oncogenic V600 BRAF serine-threonine kinase. Mutations in the BRAF gene which substitute the valine at amino acid position 600 constitutively activate BRAF proteins, which will drive cell proliferation in the absence of growth factors. Results from a phase 3 trial (N=675) comparing vemurafenib 960 mg twice daily (taken either with or without food) to standard treatment dacarbazine (DTIC) in patients with BRAF V600E mutation-positive unresectable or metastatic melanoma were submitted. The study met its primary efficacy objective after an interim analysis of overall survival. Patients were allowed to cross-over to the experimental arm following disclosure of the study results after the first interim analysis. In the update of the analysis, the median overall survival (OS) was 9.9 months versus 13.2 months for DTIC and vemurafenib, respectively (HR=0.67; 95% confidence interval (CI): 0.54, 0.84; cut-off 3 October 2011). Based on the updated analysis, the CHMP concluded that a survival benefit over DTIC had been convincingly demonstrated, in the overall population. The follow-up was considered sufficiently mature with close to 50% of the events observed. The most common side effects (affecting more than 30% of patients) in vemurafenib treated patients included arthralgia, fatigue, rash, photosensitivity reaction, nausea, alopecia and pruritus. Some patients treated with vemurafenib developed cutaneous squamous cell carcinoma which was readily treated by local surgery. The objective of this paper is to summarise the scientific review of the application leading to regulatory approval in the European Union (EU). The full scientific assessment report and product information, including the Summary of Product Characteristics (SmPC), are available on the

  17. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer.

    PubMed

    Liu, Xiaoli; Qu, Shen; Liu, Rengyun; Sheng, Chunjun; Shi, Xiaoguang; Zhu, Guangwu; Murugan, Avaniyapuram Kannan; Guan, Haixia; Yu, Hongyu; Wang, Yangang; Sun, Hui; Shan, Zhongyan; Teng, Weiping; Xing, Mingzhao

    2014-06-01

    Promoter mutations chr5:1,295,228C>T and chr5:1,295,250C>T (termed C228T and C250T, respectively) in the gene for telomerase reverse transcriptase (TERT) have been reported in various cancers and need to be further investigated in thyroid cancer. The aim of the study was to explore TERT promoter mutations in various thyroid tumors and examine their relationship with BRAF V600E mutation, iodine intake, and clinicopathological behaviors of thyroid cancer. TERT promoter and BRAF mutations were identified by sequencing genomic DNA of primary thyroid tumors from normal- and high-iodine regions in China, and clinicopathological correlation was analyzed. The C228T mutation was found in 9.6% (39 of 408) of papillary thyroid cancer (PTC), C250T was found in 1.7% (7 of 408) of PTC, and they were collectively found in 11.3% (46 of 408) of PTC. C228T was found in 31.8% (7 of 22) and C250T in 4.6% (1 of 22) of follicular thyroid cancer (FTC), and they were collectively found in 36.4% (8 of 22) of FTC. No TERT mutation was found in 44 benign thyroid tumors. The two mutations occurred in 3.8% (6 of 158) of BRAF mutation-negative PTC vs 16.0% (40 of 250) of BRAF mutation-positive PTC (P = 5.87 × 10(-4)), demonstrating their association. Unlike BRAF mutation, TERT promoter mutations were not associated with high iodine intake, but they were associated with older patient age, larger tumor size, extrathyroidal invasion, and advanced stages III/IV of PTC. Coexisting TERT and BRAF mutations were even more commonly and more significantly associated with clinicopathological aggressiveness. In this large cohort, we found TERT promoter mutations to be common, particularly in FTC and BRAF mutation-positive PTC, and associated with aggressive clinicopathological characteristics.

  18. p53 gene mutations in asbestos associated cancers.

    PubMed

    Liu, B C; Fu, D C; Miao, Q; Wang, H H; You, B R

    1998-09-01

    The accumulation of mutant p53 protein in cancer cells was observed by immunohistochemistry analysis. DNA was extracted from paraffin-embedded tissue. Exons 5, 7 and 8 were amplified and studied by PCR-SSCP and sequencing analysis. Ten cases of asbestos associated cancer tissue were studied, of which five cases had adenocarcinoma, and the other five had mesothelioma, squamous carcinoma, small cell lung cancer, adenosquamous carcinoma and malignant lymphoma respectively. Employing monoclonal antibody PAb1801, five cases were found to be mutant p53 protein positive. Seven cases were found to have mutations by PCR-SSCP. A total of 7 cases (8 mutations) were found to be positive and 4 cases were found to be positive by both of these analyses. Of the 8 mutations found by SSCP analysis, 4(50%, 4/8) were clustered in exon 8. A high mutation frequency was noticed in adenocarcinoma (80%, 4/5). Sequencing analysis on two specimens revealed two hotspot mutations. In codon 234, TAC for tyrosin was mutated to AAC for asparagine by a T to A transversion of the first letter. In codon 273, CGT for arginine was mutated to AGT for serine by a C to A transversion of the first letter. In conclusion, the mutation of p53 gene is common in asbestos associated cancers. However, the mutational spectrum of asbestos associated cancers might be different from that of non-asbestos associated cancers.

  19. EGFR mutation specific immunohistochemistry is a useful adjunct which helps to identify false negative mutation testing in lung cancer.

    PubMed

    Houang, Michelle; Sioson, Loretta; Clarkson, Adele; Watson, Nicole; Farzin, Mahtab; Toon, Christopher W; Raut, Aditi; O'Toole, Sandra A; Cooper, Wendy A; Pavlakis, Nick; Mead, Scott; Chou, Angela; Gill, Anthony J

    2014-10-01

    Mutations in EGFR guide treatment in non-small cell lung cancer (NSCLC). The most common mutations, exon 19 (delE746-A750) and exon 21 (L858R), can be identified by mutation specific immunohistochemistry (IHC). We present our prospective experience of universal reflex IHC and molecular testing in non-squamous NSCLC in the routine clinical setting.A total of 411 specimens from 332 patients were encountered over two years. Of these, 326 (98%) patients underwent EGFR IHC, 15 (5%) were positive for exon 19 deletions and 27 (8%) for exon 21 (L858R); 244 (73%) patients underwent molecular testing. Seventy-six mutations in 64 patients (19% of all patients encountered; 26% with sufficient material for testing) were identified. These comprised nine exon 18 (G719X) mutations, three also with exon 20 mutations; 24 exon 19 deletions, six also with exon 20 mutations; 23 exon 21 (L858R), three also with exon 20 mutations; and 8 exon 20 alone.All 15 exon 19 IHC positive patients were proven mutated (100% specificity, 63% sensitivity). Twenty-two of 27 exon 21 IHC positive cases were proven mutated while three patients had insufficient material for molecular testing (92% specificity, 96% sensitivity). The overall specificity and sensitivity of IHC for any EGFR mutation was 95% and 58%. Five patients initially thought to be wild type for EGFR but IHC positive underwent repeat molecular testing because of the discrepancy which confirmed the IHC result in three cases (60%).We conclude IHC is very specific but not sensitive. Whilst IHC cannot replace molecular testing, it is a useful adjunct which requires minimal tissue and identifies false negative molecular results which occurred in 5% of our patients with eventually confirmed EGFR mutations.

  20. Nursing Positions

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet Nursing Positions KidsHealth > For Parents > Nursing Positions Print A ... and actually needs to feed. Getting Comfortable With Breastfeeding Nursing can be one of the most challenging ...

  1. EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations

    PubMed Central

    2014-01-01

    Background Pontocerebellar hypoplasia (PCH) represents a group of neurodegenerative disorders with prenatal onset. Eight subtypes have been described thus far (PCH1-8) based on clinical and genetic features. Common characteristics include hypoplasia and atrophy of the cerebellum, variable pontine atrophy, and severe mental and motor impairments. PCH1 is distinctly characterized by the combination with degeneration of spinal motor neurons. Recently, mutations in the exosome component 3 gene (EXOSC3) have been identified in approximately half of the patients with PCH subtype 1. Methods We selected a cohort of 99 PCH patients (90 families) tested negative for mutations in the TSEN genes, RARS2, VRK1 and CASK. Patients in this cohort were referred with a tentative diagnose PCH type 1, 2, 4, 7 or unclassified PCH. Genetic analysis of the EXOSC3 gene was performed using Sanger sequencing. Clinical data, MR images and autopsy reports of patients positive for EXOSC3 mutations were analyzed. Results EXOSC3 mutations were found in twelve families with PCH subtype 1, and were not found in patients with other PCH subtypes. Identified mutations included a large deletion, nonsense and missense mutations. Examination of clinical data reveals a prolonged disease course in patients with a homozygous p.D132A mutation. MRI shows variable pontine hypoplasia in EXOSC3 mediated PCH, where the pons is largely preserved in patients with a homozygous p.D132A mutation, but attenuated in patients with other mutations. Additionally, bilateral cerebellar cysts were found in patients compound heterozygous for a p.D132A mutation and a nonsense allele. Conclusions EXOSC3 mediated PCH shows clear genotype-phenotype correlations. A homozygous p.D132A mutation leads to PCH with possible survival into early puberty, and preservation of the pons. Compound heterozygosity for a p.D132A mutation and a nonsense or p.Y109N allele, a homozygous p.G31A mutation or a p.G135E mutation causes a more rapidly

  2. Positive Psychology

    ERIC Educational Resources Information Center

    Peterson, Christopher

    2009-01-01

    Positive psychology is a deliberate correction to the focus of psychology on problems. Positive psychology does not deny the difficulties that people may experience but does suggest that sole attention to disorder leads to an incomplete view of the human condition. Positive psychologists concern themselves with four major topics: (1) positive…

  3. Positive Psychology

    ERIC Educational Resources Information Center

    Peterson, Christopher

    2009-01-01

    Positive psychology is a deliberate correction to the focus of psychology on problems. Positive psychology does not deny the difficulties that people may experience but does suggest that sole attention to disorder leads to an incomplete view of the human condition. Positive psychologists concern themselves with four major topics: (1) positive…

  4. Application of Markov chain to the pattern of mitochondrial deoxyribonucleic acid mutations

    NASA Astrophysics Data System (ADS)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2014-03-01

    This research explains how Markov chain used to model the pattern of deoxyribonucleic acid mutations in mitochondrial (mitochondrial DNA). First, sign test was used to see a pattern of nucleotide bases that will appear at one position after the position of mutated nucleotide base. Results obtained from the sign test showed that for most cases, there exist a pattern of mutation except in the mutation cases of adenine to cytosine, adenine to thymine, and cytosine to guanine. Markov chain analysis results on data of mutations that occur in mitochondrial DNA indicate that one and two positions after the position of mutated nucleotide bases tend to be occupied by particular nucleotide bases. From this analysis, it can be said that the adenine, cytosine, guanine and thymine will mutate if the nucelotide base at one and/or two positions after them is cytosine.

  5. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the "old" and update of the new mutations.

    PubMed

    Minucci, Angelo; Moradkhani, Kamran; Hwang, Ming Jing; Zuppi, Cecilia; Giardina, Bruno; Capoluongo, Ettore

    2012-03-15

    In the present paper we have updated the G6PD mutations database, including all the last discovered G6PD genetic variants. We underline that the last database has been published by Vulliamy et al. [1] who analytically reported 140 G6PD mutations: along with Vulliamy's database, there are two main sites, such as http://202.120.189.88/mutdb/ and www.LOVD.nl/MR, where almost all G6PD mutations can be found. Compared to the previous mutation reports, in our paper we have included for each mutation some additional information, such as: the secondary structure and the enzyme 3D position involving by mutation, the creation or abolition of a restriction site (with the enzyme involved) and the conservation score associated with each amino acid position. The mutations reported in the present tab have been divided according to the gene's region involved (coding and non-coding) and mutations affecting the coding region in: single, multiple (at least with two bases involved) and deletion. We underline that for the listed mutations, reported in italic, literature doesn't provide all the biochemical or bio-molecular information or the research data. Finally, for the "old" mutations, we tried to verify features previously reported and, when subsequently modified, we updated the specific information using the latest literature data. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    PubMed Central

    2010-01-01

    Background Immunohistochemistry (IHC) with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC) cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA) deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93%) patients with exon 21 EGFR mutations (all with L858R) but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients. PMID:21167064

  7. Calreticulin mutation burden--is it a stable clone in patients with essential thrombocythemia and myelofibrosis?

    PubMed

    Shuly, Yulia; Nagar, Meital; Ben-Asaf, Lior; Kneller, Abraham; Steinberg, David M; Amariglio, Ninette; Salomon, Ophira

    2015-12-01

    Calreticulin mutation represents the second most frequent mutation after JAK2 V617F in myeloproliferative disorder and is considered to be a driving mutation. Herein the mutation burden was evaluated in patients with essential thrombocythemia or myelofibrosis and found to increase by 5.7% over time unrelated to the time elapsed from the initial to the final positive test. The longer the course of the disease when first tested (range 0-30 years, mean 7.9 years) the lower mutation burden was observed. The mutated clone was larger in type II in comparison with type I mutation when first tested but the difference in mutation burden from the final to the first positive test was significantly higher in those with type I. Similarly, the difference in mutation burden was higher in patients with essential thrombocythemia reaching almost 8% in comparison to 1.3% in post-essential thrombocythemia myelofibrosis. Thus a repeat calreticulin quantitative test is not warranted.

  8. RELN Mutations in Autism Spectrum Disorder.

    PubMed

    Lammert, Dawn B; Howell, Brian W

    2016-01-01

    RELN encodes a large, secreted glycoprotein integral to proper neuronal positioning during development and regulation of synaptic function postnatally. Rare, homozygous, null mutations lead to lissencephaly with cerebellar hypoplasia (LCH), accompanied by developmental delay and epilepsy. Until recently, little was known about the frequency or consequences of heterozygous mutations. Several lines of evidence from multiple studies now implicate heterozygous mutations in RELN in autism spectrum disorders (ASD). RELN maps to the AUTS1 locus on 7q22, and at this time over 40 distinct mutations have been identified that would alter the protein sequence, four of which are de novo. The RELN mutations that are most clearly consequential are those that are predicted to inactivate the signaling function of the encoded protein and those that fall in a highly conserved RXR motif found at the core of the 16 Reelin subrepeats. Despite the growing evidence of RELN dysfunction in ASD, it appears that these mutations in isolation are insufficient and that secondary genetic or environmental factors are likely required for a diagnosis.

  9. RELN Mutations in Autism Spectrum Disorder

    PubMed Central

    Lammert, Dawn B.; Howell, Brian W.

    2016-01-01

    RELN encodes a large, secreted glycoprotein integral to proper neuronal positioning during development and regulation of synaptic function postnatally. Rare, homozygous, null mutations lead to lissencephaly with cerebellar hypoplasia (LCH), accompanied by developmental delay and epilepsy. Until recently, little was known about the frequency or consequences of heterozygous mutations. Several lines of evidence from multiple studies now implicate heterozygous mutations in RELN in autism spectrum disorders (ASD). RELN maps to the AUTS1 locus on 7q22, and at this time over 40 distinct mutations have been identified that would alter the protein sequence, four of which are de novo. The RELN mutations that are most clearly consequential are those that are predicted to inactivate the signaling function of the encoded protein and those that fall in a highly conserved RXR motif found at the core of the 16 Reelin subrepeats. Despite the growing evidence of RELN dysfunction in ASD, it appears that these mutations in isolation are insufficient and that secondary genetic or environmental factors are likely required for a diagnosis. PMID:27064498

  10. Mutational status of nevus associated-melanomas

    PubMed Central

    Shitara, D.; Tell-Martí, G.; Badenas, C.; Enokihara, M.M.S.S.; Alós, L.; Larque, A.B.; Michalany, Nilceo; Puig-Butille, J.; Carrera, C.; Malvehy, J.; Puig, S.; Bagatin, E.

    2015-01-01

    Introduction Melanoma origin has always been a debated subject, as well as the role of adjacent melanocytic nevi. Epidemiological and histopathological studies point to melanomas arising either de novo or from a nevus. Methods Sixty-one melanomas found in association with a preexisting nevus were microdissected, after careful selection of cell subpopulations and submitted to Sanger sequencing of the BRAF, NRAS, C-KIT, PPP6C, STK19 and RAC1 genes. Each gene was evaluated twice in all samples by sequencing or by sequencing and another confirmation method, allele-specific fluorescent polymerase chain reaction (PCR) and capillary electrophoresis detection, or by SNaPshot Analysis. Only mutations confirmed via two different molecular methods or twice by sequencing were considered positive. Results The majority of cases presented concordance of mutational status between melanoma and the associated nevus for all 6 genes (40/60; 66.7%). Nine cases presented concomitant BRAF and NRAS mutations, including one case, in which both the melanoma and the adjacent nevus harbored V600E and Q61K double mutations. In two cases, both melanoma and associated nevus, located on acral sites were BRAF mutated, including an acral lentiginous melanoma. Conclusions This is the largest nevus-associated melanoma series molecularly evaluated to our knowledge. The majority of melanomas and adjacent nevi in our sample share the same mutational profile, corroborating the theory that the adjacent nevus and melanoma are clonally related and that melanoma originated within a nevus. PMID:25857817

  11. GJB2 gene mutations in childhood deafness.

    PubMed

    Angeli, S; Utrera, R; Dib, S; Chiossone, E; Naranjo, C; Henríquez, O; Porta, M

    2000-03-01

    The frequency of childhood deafness is estimated at 1:1,000 and at least half of these cases are genetic. Recently, mutations in the GJB2 gene have been found in a great number of familial and sporadic cases of congenital deafness in Caucasians. The most common mutation (70%) is the frameshift mutation of a single guanine in position 35 (35delG). More than 20 mutations in the GJB2 gene are associated with DFNB1, a prevalent type of autosomal recessive non-syndromic neurosensory deafness. Last year we initiated a systematic screening programme to evaluate the causes of deafness in the population of prelingually deaf children who are referred to our cochlear implant programme. All of the deaf children and their parents undergo a comprehensive medical review, directed to identify causes of acquired deafness and manifestations of syndromic hearing impairment. DNA is extracted from the blood of all of the children. The technique AS-PCR (allele-specific polymerase chain reaction) is used for the identification of the mutation 35delG. Screening for other GJB2 gene mutations is carried out by single-strand conformation polymorphisms (SSCP). Our results on the identification of DFNB1 will be presented, as well as a discussion on the implications of an aetiological diagnosis in cochlear implantation.

  12. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    PubMed

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  13. Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing

    PubMed Central

    2012-01-01

    Background Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterised by prolongation of the QT interval on ECG, presence of syncope and sudden death. The symptoms in LQTS patients are highly variable, and genotype influences the clinical course. This study aims to report the spectrum of LQTS mutations in a Swedish cohort. Methods Between March 2006 and October 2009, two hundred, unrelated index cases were referred to the Department of Clinical Genetics, Umeå University Hospital, Sweden, for LQTS genetic testing. We scanned five of the LQTS-susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) for mutations by DHPLC and/or sequencing. We applied MLPA to detect large deletions or duplications in the KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes. Furthermore, the gene RYR2 was screened in 36 selected LQTS genotype-negative patients to detect cases with the clinically overlapping disease catecholaminergic polymorphic ventricular tachycardia (CPVT). Results In total, a disease-causing mutation was identified in 103 of the 200 (52%) index cases. Of these, altered exon copy numbers in the KCNH2 gene accounted for 2% of the mutations, whereas a RYR2 mutation accounted for 3% of the mutations. The genotype-positive cases stemmed from 64 distinct mutations, of which 28% were novel to this cohort. The majority of the distinct mutations were found in a single case (80%), whereas 20% of the mutations were observed more than once. Two founder mutations, KCNQ1 p.Y111C and KCNQ1 p.R518*, accounted for 25% of the genotype-positive index cases. Genetic cascade screening of 481 relatives to the 103 index cases with an identified mutation revealed 41% mutation carriers who were at risk of cardiac events such as syncope or sudden unexpected death. Conclusion In this cohort of Swedish index cases with suspected LQTS, a disease-causing mutation was identified in 52% of the referred patients. Copy number variations explained 2% of the mutations and 3 of 36 selected

  14. Mutational analysis of caspase 1, 4, and 5 genes in common human cancers.

    PubMed

    Soung, Young Hwa; Jeong, Eun Goo; Ahn, Chang Hyeok; Kim, Sung Soo; Song, Sang Yong; Yoo, Nam Jin; Lee, Sug Hyung

    2008-06-01

    Mounting evidence indicates that deregulation of apoptosis is involved in the mechanisms of cancer development. Mutations of genes encoding caspases, the executioners of apoptosis, have been detected in human cancers, indicating inactivation of apoptosis by the mutations of caspase is an important mechanism in cancer development. The aim of this study was to see whether genes encoding human caspases 1, 4, and 5 are mutated in human cancers. We analyzed the entire coding region and all splice sites of human caspase 1, 4, and 5 genes for the detection of somatic mutations in 337 human cancers, including 103 colorectal, 54 gastric, 60 breast, 60 hepatocellular, and 60 lung carcinomas by a single-strand conformation polymorphism assay. We detected 2 (0.6%) caspase-1, 2 (0.6%) caspase-4, and 15 (4.4%) caspase-5 mutations in the 343 cancers. The mutations were detected in 11 gastric carcinomas (2 caspase-1 and 9 caspase-5 mutations), 6 colorectal carcinomas (2 caspase-4 and 4 caspase-5 mutations), 1 breast carcinoma (1 caspase-5 mutation), and 1 lung carcinoma (1 caspase-5 mutation). The mutations consisted of 11 mutations in exons and 8 mutations in noncoding sequences. The 11 mutations in the exons consisted of 3 missense, 1 silent, and 7 frameshift mutation(s). Of note, most (6/9) of the caspase-5 mutations in the coding sequences were detected in microsatellite instability (MSI)-positive cancers. These data indicate that somatic mutations of caspase-1 and caspase-4 genes are rare in common solid cancers. In addition, the data indicate that caspase-5 gene is commonly mutated in the MSI-positive cancers, and suggest that inactivation of caspase-5 may play a role in the tumorigenesis of MSI-positive cancers.

  15. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  16. Highly prevalent TERT promoter mutations in aggressive thyroid cancers.

    PubMed

    Liu, Xiaoli; Bishop, Justin; Shan, Yuan; Pai, Sara; Liu, Dingxie; Murugan, Avaniyapuram Kannan; Sun, Hui; El-Naggar, Adel K; Xing, Mingzhao

    2013-08-01

    Mutations 1 295 228 C>T and 1 295 250 C>T (termed C228T and C250T respectively), corresponding to -124 C>T and -146 C>T from the translation start site in the promoter of the telomerase reverse transcriptase (TERT) gene, have recently been reported in human cancers, but not in thyroid cancers yet. We explored these mutations in thyroid cancers by genomic sequencing of a large number of primary tumor samples. We found the C228T mutation in 0 of 85 (0.0%) benign thyroid tumors, 30 of 257 (11.7%) papillary thyroid cancers (PTC), 9 of 79 (11.4%) follicular thyroid cancers (FTC), 3 of 8 (37.5%) poorly differentiated thyroid cancers (PDTC), 23 of 54 (42.6%) anaplastic thyroid cancers (ATC), and 8 of 12 (66.7%) thyroid cancer cell lines. The C250T mutation was uncommon, but mutually exclusive with the C228T mutation, and the two mutations were collectively found in 11 of 79 (13.9%) FTC, 25 of 54 (46.3%) ATC, and 11 of 12 (91.7%) thyroid cancer cell lines. Among PTC variants, the C228T mutation was found in 4 of 13 (30.8%) tall-cell PTC (TCPTC), 23 of 187 (12.3%) conventional PTC, and 2 of 56 (3.6%) follicular variant PTC samples. No TERT mutation was found in 16 medullary thyroid cancer samples. The C228T mutation was associated with the BRAF V600E mutation in PTC, being present in 19 of 104 (18.3%) BRAF mutation-positive PTC vs 11 of 153 (7.2%) the BRAF mutation-negative PTC samples (P=0.0094). Conversely, BRAF mutation was found in 19 of 30 (63.3%) C228T mutation-positive PTC vs 85 of 227 (37.4%) C228T mutation-negative PTC samples (P=0.0094). We thus for the first time, to our knowledge, demonstrate TERT promoter mutations in thyroid cancers, that are particularly prevalent in the aggressive thyroid cancers TCPTC, PDTC, ATC and BRAF mutation-positive PTC, revealing a novel genetic background for thyroid cancers.

  17. AIP mutations and gigantism.

    PubMed

    Rostomyan, Liliya; Potorac, Iulia; Beckers, Pablo; Daly, Adrian F; Beckers, Albert

    2017-06-01

    AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. ATM mutations for surgeons.

    PubMed

    Mansfield, Sara A; Pilarski, Robert; Agnese, Doreen M

    2016-12-17

    The ataxia-telangiectasia mutated (ATM) gene encodes a protein kinase involved in DNA repair. Heterozygotic carriers are at an increased risk of developing breast cancer. As the use of genetic testing increases, identification of at-risk patients will also increase. The aim of this study is to review two cases of heterozygous ATM mutation carriers and review the literature to clarify the cancer risks and suggested management for breast surgeons who will be intimately involved in the care of these patients.

  19. Novel findings in Swedish patients with MYH-associated polyposis: mutation detection and clinical characterization.

    PubMed

    Kanter-Smoler, Gunilla; Björk, Jan; Fritzell, Kaisa; Engwall, Yvonne; Hallberg, Birgitta; Karlsson, Göran; Grönberg, Henrik; Karlsson, Per; Wallgren, Arne; Wahlström, Jan; Hultcrantz, Rolf; Nordling, Margareta

    2006-04-01

    Biallelic mutations in the base-excision repair gene MYH have recently been associated with recessive inheritance of multiple colorectal adenomas. An investigation and characterization of MYH mutations in Swedish patients were therefore carried out. A set of 15 unrelated adenomatous polyposis coli (APC)-mutation negative patients from the Swedish Polyposis Registry was screened for germline mutations in the MYH gene. The patients were clinically characterized and compared with 43 APC-mutation positive probands diagnosed during the same period. Disease-causing biallelic MYH mutations were identified in 6 patients (40%). The mean age at diagnosis was 47.8 years versus 34.1 years in APC-mutation positive patients (P = .015). Colorectal cancer at diagnosis of polyposis was present in 67% (4/6) of the patients, and all were right-sided, compared with only 19% versus 12.5% right-sided cancer in APC-mutation positive patients. Upper gastrointestinal manifestations were diagnosed in 1 of 5 compared with 23 of 27 in APC-mutation positive patients (odds ratio, 23; 95% confidence interval, 2-263; P = .0086). One family exhibited apparent dominant inheritance of colorectal adenomatous polyposis. Two new pathogenic mutations, MYH p.G175E and p.P391L, were identified. The mutations are argued to introduce profound changes in substrate-recognizing domains of the protein. Biallelic MYH mutations, including 2 novel mutations, were found in a substantial number of the patients with multiple colorectal adenomas who were negative for APC-mutation. The examined MYH-mutation positive patients were found to have higher risks of colorectal cancer at diagnosis, right-sided location of cancers, and a significantly lower incidence of upper gastrointestinal manifestations, compared with APC-mutation positive patients.

  20. Comparing Mutational Variabilities

    PubMed Central

    Houle, D.; Morikawa, B.; Lynch, M.

    1996-01-01

    We have reviewed the available data on V(M), the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare V(M) values, we use three dimensionless quantities: mutational heritability, V(M)/V(E); the mutational coefficient of variation, CV(M); and the ratio of the standing genetic variance to V(M), V(G)/V(M). Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CV(M). This is confirmed; life history traits have a median CV(M) value more than six times higher than that for morphological traits. V(G)/V(M) approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, V(G)/V(M) must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. V(G)/V(M) averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model. PMID:8807316

  1. Two novel mutations involved in hereditary tyrosinemia type I

    SciTech Connect

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    1994-09-01

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition at position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.

  2. Positive Psychotherapy

    ERIC Educational Resources Information Center

    Seligman, Martin E. P.; Rashid, Tayyab; Parks, Acacia C.

    2006-01-01

    Positive psychotherapy (PPT) contrasts with standard interventions for depression by increasing positive emotion, engagement, and meaning rather than directly targeting depressive symptoms. The authors have tested the effects of these interventions in a variety of settings. In informal student and clinical settings, people not uncommonly reported…

  3. Positive Psychotherapy

    ERIC Educational Resources Information Center

    Seligman, Martin E. P.; Rashid, Tayyab; Parks, Acacia C.

    2006-01-01

    Positive psychotherapy (PPT) contrasts with standard interventions for depression by increasing positive emotion, engagement, and meaning rather than directly targeting depressive symptoms. The authors have tested the effects of these interventions in a variety of settings. In informal student and clinical settings, people not uncommonly reported…

  4. Positioning Agility

    NASA Astrophysics Data System (ADS)

    Oza, Nilay; Abrahamsson, Pekka; Conboy, Kieran

    Agile methods are increasingly adopted by European companies. Academics too are conducting numerous studies on different tenets of agile methods. Companies often feel proud in marketing themselves as ‘agile’. However, the true notion of ‘being agile’ seems to have been overlooked due to lack of positioning of oneself for agility. This raises a call for more research and interactions between academia and the industry. The proposed workshop refers to this call. It will be highly relevant to participants, interested in positioning their company’s agility from organizational, group or project perspectives. The positioning of agility will help companies to better align their agile practices with stakeholder values. Results of the workshop will be shared across participants and they will also have opportunity to continue their work on agile positioning in their companies. At broader level, the work done in this workshop will contribute towards developing Agile Positioning System.

  5. MoKCa database—mutations of kinases in cancer

    PubMed Central

    Richardson, Christopher J.; Gao, Qiong; Mitsopoulous, Costas; Zvelebil, Marketa; Pearl, Laurence H.; Pearl, Frances M. G.

    2009-01-01

    Members of the protein kinase family are amongst the most commonly mutated genes in human cancer, and both mutated and activated protein kinases have proved to be tractable targets for the development of new anticancer therapies The MoKCa database (Mutations of Kinases in Cancer, http://strubiol.icr.ac.uk/extra/mokca) has been developed to structurally and functionally annotate, and where possible predict, the phenotypic consequences of mutations in protein kinases implicated in cancer. Somatic mutation data from tumours and tumour cell lines have been mapped onto the crystal structures of the affected protein domains. Positions of the mutated amino-acids are highlighted on a sequence-based domain pictogram, as well as a 3D-image of the protein structure, and in a molecular graphics package, integrated for interactive viewing. The data associated with each mutation is presented in the Web interface, along with expert annotation of the detailed molecular functional implications of the mutation. Proteins are linked to functional annotation resources and are annotated with structural and functional features such as domains and phosphorylation sites. MoKCa aims to provide assessments available from multiple sources and algorithms for each potential cancer-associated mutation, and present these together in a consistent and coherent fashion to facilitate authoritative annotation by cancer biologists and structural biologists, directly involved in the generation and analysis of new mutational data. PMID:18986996

  6. EGFR exon 20 insertion mutation in Japanese lung cancer.

    PubMed

    Sasaki, Hidefumi; Endo, Katsuhiko; Takada, Minoru; Kawahara, Masaaki; Kitahara, Naoto; Tanaka, Hisaichi; Okumura, Meinoshin; Matsumura, Akihide; Iuchi, Keiji; Kawaguchi, Tomoya; Kawano, Osamu; Yukiue, Haruhiro; Yokoyama, Tomoki; Yano, Motoki; Fujii, Yoshitaka

    2007-12-01

    Mutations of the epidermal growth factor receptor (EGFR) gene have been reported in non-small cell lung cancer (NSCLC), especially in female, never smoker patients with adenocarcinoma. Some common somatic mutations in EGFR, including deletion mutations in exon 19 and leucine to arginine substitution at amino acid position 858 (L858R) in exon 21, have been examined for their ability to predict sensitivity to gefitinib or erlotinib. On the other hand, previous report has shown that the insertion mutation at exon 20 is related to gefitinib resistance. We investigated the exon 20 EGFR mutation statuses in 322 surgically treated non-small cell lung cancer cases. Two hundred and five adenocarcinoma cases were included. The presence or absence of EGFR mutations of kinase domains was analyzed by direct sequences. EGFR insertion mutations at exon 20 were found from 7 of 322 (2.17%) lung cancer patients. We also detected the 18 deletion type mutations in exon 19, and 25 L858R type mutations in exon 21. There was a tendency towards higher exon 20 insertion ratio in never smoker (never smoker 4.4% versus smoker 1.3%, p=0.0996) and female (female 4.5% versus male 1.3%, p=0.0917). Two exon 20 insertion cases were treated with gefitinib and failed to response. EGFR insertion mutation in exon 20 could not be ignored from Japanese lung cancers.

  7. Role of alanine racemase mutations in Mycobacterium tuberculosis D-cycloserine resistance.

    PubMed

    Nakatani, Yoshio; Opel-Reading, Helen K; Merker, Matthias; Machado, Diana; Andres, Sönke; Kumar, S Siva; Moradigaravand, Danesh; Coll, Francesc; Perdigão, João; Portugal, Isabel; Schön, Thomas; Nair, Dina; Devi, K R Uma; Kohl, Thomas A; Beckert, Patrick; Clark, Taane G; Maphalala, Gugu; Khumalo, Derrick; Diel, Roland; Klaos, Kadri; Aung, Htin Lin; Cook, Gregory M; Parkhill, Julian; Peacock, Sharon J; Swaminathan, Soumya; Viveiros, Miguel; Niemann, Stefan; Krause, Kurt L; Köser, Claudio U

    2017-10-02

    Screening of more than 1,500 drug-resistant strains of Mycobacterium tuberculosis revealed evolutionary patterns characteristic of positive selection for three alanine racemase (Alr) mutations. We investigated these mutations using molecular modeling, in vitro MIC testing, as well as direct measurements of enzymatic activity, which demonstrated that these mutations likely confer resistance to D-cycloserine. Copyright © 2017 Nakatani et al.

  8. Benchmarking mutation effect prediction algorithms using functionally validated cancer-related missense mutations.

    PubMed

    Martelotto, Luciano G; Ng, Charlotte Ky; De Filippo, Maria R; Zhang, Yan; Piscuoglio, Salvatore; Lim, Raymond S; Shen, Ronglai; Norton, Larry; Reis-Filho, Jorge S; Weigelt, Britta

    2014-10-28

    Massively parallel sequencing studies have led to the identification of a large number of mutations present in a minority of cancers of a given site. Hence, methods to identify the likely pathogenic mutations that are worth exploring experimentally and clinically are required. We sought to compare the performance of 15 mutation effect prediction algorithms and their agreement. As a hypothesis-generating aim, we sought to define whether combinations of prediction algorithms would improve the functional effect predictions of specific mutations. Literature and database mining of single nucleotide variants (SNVs) affecting 15 cancer genes was performed to identify mutations supported by functional evidence or hereditary disease association to be classified either as non-neutral (n = 849) or neutral (n = 140) with respect to their impact on protein function. These SNVs were employed to test the performance of 15 mutation effect prediction algorithms. The accuracy of the prediction algorithms varies considerably. Although all algorithms perform consistently well in terms of positive predictive value, their negative predictive value varies substantially. Cancer-specific mutation effect predictors display no-to-almost perfect agreement in their predictions of these SNVs, whereas the non-cancer-specific predictors showed no-to-moderate agreement. Combinations of predictors modestly improve accuracy and significantly improve negative predictive values. The information provided by mutation effect predictors is not equivalent. No algorithm is able to predict sufficiently accurately SNVs that should be taken forward for experimental or clinical testing. Combining algorithms aggregates orthogonal information and may result in improvements in the negative predictive value of mutation effect predictions.

  9. Extended spectrum of HIV-1 reverse transcriptase mutations in patients receiving multiple nucleoside analog inhibitors

    PubMed Central

    Gonzales, Matthew J.; Wu, Thomas D.; Taylor, Jonathan; Belitskaya, Ilana; Kantor, Rami; Israelski, Dennis; Chou, Sunwen; Zolopa, Andrew R.; Fessel, W. Jeffrey; Shafer, Robert W.

    2008-01-01

    Objective To characterize reverse transcriptase (RT) mutations by their association with extent of nucleoside RT inhibitor (NRTI) therapy. To identify mutational clusters in RT sequences from persons receiving multiple NRTI. Design A total of 1210 RT sequences from persons with known antiretroviral therapy were analyzed: 641 new sequences were performed at Stanford University Hospital; 569 were previously published. Methods Chi-square tests and logistic regression were done to identify associations between mutations and NRTI therapy. Correlation studies were done to identify mutational clusters. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results Mutations at 26 positions were significantly associated with NRTI including 17 known resistance mutations (positions 41, 44, 62, 65, 67, 69, 70, 74, 75, 77, 116, 118, 151, 184, 210, 215, 219) and nine previously unreported mutations (positions 20, 39, 43, 203, 208, 218, 221, 223, 228). The nine new mutations correlated linearly with number of NRTI; 777 out of 817 (95%) instances occurred with known drug resistance mutations. Positions 203, 208, 218, 221, 223, and 228 were conserved in untreated persons; positions 20, 39, and 43 were polymorphic. Most NRTI-associated mutations clustered into three groups: (i) 62, 65, 75, 77, 115, 116, 151; (ii) 41, 43, 44, 118, 208, 210, 215, 223; (iii) 67, 69, 70, 218, 219, 228. Conclusions Mutations at nine previously unreported positions are associated with NRTI therapy. These mutations are probably accessory because they occur almost exclusively with known drug resistance mutations. Most NRTI mutations group into one of three clusters, although several (e.g., M184V) occur in multiple mutational contexts. PMID:12660525

  10. Nursing Positions

    MedlinePlus

    ... and actually needs to feed. Getting Comfortable With Breastfeeding Nursing can be one of the most challenging ... a mother. As you become more used to breastfeeding your baby, you can try different positions or ...

  11. Positive Proof.

    ERIC Educational Resources Information Center

    Auty, Geoffrey

    1988-01-01

    Presents experiments which show that in electrostatics there are logical reasons for describing charged materials as positive or negative. Indicates that static and current electricity are not separate areas of physics. Diagrams of experiments and circuits are included. (RT)

  12. Positive Proof.

    ERIC Educational Resources Information Center

    Auty, Geoffrey

    1988-01-01

    Presents experiments which show that in electrostatics there are logical reasons for describing charged materials as positive or negative. Indicates that static and current electricity are not separate areas of physics. Diagrams of experiments and circuits are included. (RT)

  13. In silico mutation analysis of non-structural protein-5 (NS5) dengue virus

    NASA Astrophysics Data System (ADS)

    Puspitasari, R. D.; Tambunan, U. S. F.

    2017-04-01

    Dengue fever is a world disease. It is endemic in more than 100 countries. Information about the effect of mutations in the virus is important in drug design and development. In this research, we studied the effect of mutation on NS5 dengue virus. NS5 is the large protein containing 67% amino acid similarity in DENV 1-4 and has multifunctional enzymatic activities. Dengue virus is an RNA virus that has very high mutation frequency with an average of 100 times higher than DNA mutations, and the accumulation of mutations will be possible to generate the new serotype. In this study, we report that mutation occurs in NS5 of DENV serotype 3, glutamine mutates into methionine at position 10 and threonine mutates into isoleucine at position 55. These residues are part of the domain named S-Adenosyl-L-Methionine-Dependent Methyltransferase (IPR029063).

  14. Mediastinal paragangliomas related to SDHx gene mutations

    PubMed Central

    Ćwikła, Jarosław; Prejbisz, Aleksander; Kwiatek, Paweł; Szperl, Małgorzata; Michalski, Wojciech; Wyrwicz, Lucjan; Kuśmierczyk, Mariusz; Januszewicz, Andrzej; Maciejczyk, Anna; Roszczynko, Marta; Pęczkowska, Mariola

    2016-01-01

    Introduction Paragangliomas (PGLs) related to hereditary syndromes are rare mediastinal tumors. Paragangliomas are caused by mutations in genes encoding subunits of succinate dehydrogenase enzyme (SDH). Aim To evaluate clinical, anatomical and functional characteristics of mediastinal paragangliomas related to SDHx gene mutations. Material and methods Retrospective analysis of 75 patients with confirmed SDHx gene mutations (24 patients with SDHB, 5 SDHC, 46 with SDHD mutations) was performed. Patients underwent evaluation using computed tomography (CT), somatostatin receptor scintigraphy (SRS) (99mTc-[HYNIC,Tyr3]-octreotide), 123I mIBG scintigraphy and urinary excretion of total methoxycatecholamines. Results Out of 75 patients, 16 (21%) patients (1 SDHB, 15 SDHD mutations) had 17 PGLs localized in the mediastinum. Fourteen PGLs were localized in the middle mediastinum (intrapericardial) and 3 PGLs in the posterior mediastinum. The median diameter of paragangliomas measured on the axial slice was 24.3 mm (interquartile range (IQR): 14.7–36.6), and the median volume was 2.78 ml (IQR: 0.87–16.16). Twelve out of 16 patients (75%) underwent SRS, and 11 of them (92.3%) had pathological uptake of the radiotracer. Eleven (68.75%) out of 16 patients underwent 123 I mIBG, with only 3 positive results. Symptoms of catecholamine excretion were observed in 3 patients with PGLs localized in the posterior mediastinum. All PGLs were benign except in 1 patient with the SDHB mutation and PGL detected in the posterior mediastinum, who had a metastatic disease. Conclusions Most mediastinal paragangliomas were related to SDHD gene mutations. They were asymptomatic, localized in the medial mediastinum, intrapericardially. PMID:27785149

  15. Mutations in Lettuce Improvement

    PubMed Central

    Mou, Beiquan

    2011-01-01

    Lettuce is a major vegetable in western countries. Mutations generated genetic variations and played an important role in the domestication of the crop. Many traits derived from natural and induced mutations, such as dwarfing, early flowering, male sterility, and chlorophyll deficiency, are useful in physiological and genetic studies. Mutants were also used to develop new lettuce products including miniature and herbicide-tolerant cultivars. Mutant analysis was critical in lettuce genomic studies including identification and cloning of disease-resistance genes. Mutagenesis combined with genomic technology may provide powerful tools for the discovery of novel gene alleles. In addition to radiation and chemical mutagens, unconventional approaches such as tissue or protoplast culture, transposable elements, and space flights have been utilized to generate mutants in lettuce. Since mutation breeding is considered nontransgenic, it is more acceptable to consumers and will be explored more in the future for lettuce improvement. PMID:22287955

  16. ALS2 mutations

    PubMed Central

    Schneider, Susanne A.; Carr, Lucinda; Deuschl, Guenther; Hopfner, Franziska; Stamelou, Maria; Wood, Nicholas W.; Bhatia, Kailash P.

    2014-01-01

    Objective: To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia. Methods: A combination of homozygosity mapping and whole-exome sequencing in the first family and Sanger sequencing of candidate genes in the second family were used. Results: Both families were found to have homozygous loss-of-function mutations in the amyotrophic lateral sclerosis 2 (juvenile) (ALS2) gene. Conclusions: We report generalized dystonia and cerebellar signs in association with ALS2-related disease. We suggest that the ALS2 gene should be screened for mutations in patients who present with a similar phenotype. PMID:24562058

  17. Recurrent occurrences of CDKL5 mutations in patients with epileptic encephalopathy

    PubMed Central

    Yamamoto, Toshiyuki; Shimojima, Keiko; Kimura, Nobusuke; Mogami, Yukiko; Usui, Daisuke; Takayama, Rumiko; Ikeda, Hiroko; Imai, Katsumi

    2015-01-01

    The cyclin-dependent kinase-like 5 gene (CDKL5) is recognized as one of the genes responsible for epileptic encephalopathy. We identified CDKL5 mutations in five Japanese patients (one male and four female) with epileptic encephalopathy. Although all mutations were of de novo origin, they were located in the same positions as previously reported pathogenic mutations. These recurrent occurrences of de novo mutations in the same loci may indicate hot spots of nucleotide alteration. PMID:27081548

  18. ABCMdb reloaded: updates on mutations in ATP binding cassette proteins.

    PubMed

    Tordai, Hedvig; Jakab, Kristóf; Gyimesi, Gergely; András, Kinga; Brózik, Anna; Sarkadi, Balázs; Hegedus, Tamás

    2017-01-01

    ABC (ATP-Binding Cassette) proteins with altered function are responsible for numerous human diseases. To aid the selection of positions and amino acids for ABC structure/function studies we have generated a database, ABCMdb (Gyimesi et al. , ABCMdb: a database for the comparative analysis of protein mutations in ABC transporters, and a potential framework for a general application. Hum Mutat 2012; 33:1547-1556.), with interactive tools. The database has been populated with mentions of mutations extracted from full text papers, alignments and structural models. In the new version of the database we aimed to collect the effect of mutations from databases including ClinVar. Because of the low number of available data, even in the case of the widely studied disease-causing ABC proteins, we also included the possible effects of mutations based on SNAP2 and PROVEAN predictions. To aid the interpretation of variations in non-coding regions, the database was supplemented with related DNA level information. Our results emphasize the importance of in silico predictions because of the sparse information available on variants and suggest that mutations at analogous positions in homologous ABC proteins have a strong predictive power for the effects of mutations. Our improved ABCMdb advances the design of both experimental studies and meta-analyses in order to understand drug interactions of ABC proteins and the effects of mutations on functional expression.

  19. Multi-nucleotide de novo Mutations in Humans

    PubMed Central

    Sulem, Patrick; Helgason, Agnar; Helgason, Hannes; Kristjansson, Helgi; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Magnusson, Olafur Th.; Thorsteinsdottir, Unnur; Masson, Gisli; Kong, Augustine; Gudbjartsson, Daniel F.; Stefansson, Kari

    2016-01-01

    Mutation of the DNA molecule is one of the most fundamental processes in biology. In this study, we use 283 parent-offspring trios to estimate the rate of mutation for both single nucleotide variants (SNVs) and short length variants (indels) in humans and examine the mutation process. We found 17812 SNVs, corresponding to a mutation rate of 1.29 × 10−8 per position per generation (PPPG) and 1282 indels corresponding to a rate of 9.29 × 10−10 PPPG. We estimate that around 3% of human de novo SNVs are part of a multi-nucleotide mutation (MNM), with 558 (3.1%) of mutations positioned less than 20kb from another mutation in the same individual (median distance of 525bp). The rate of de novo mutations is greater in late replicating regions (p = 8.29 × 10−19) and nearer recombination events (p = 0.0038) than elsewhere in the genome. PMID:27846220

  20. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation.

    PubMed

    Gripp, Karen W; Lin, Angela E; Stabley, Deborah L; Nicholson, Linda; Scott, Charles I; Doyle, Daniel; Aoki, Yoko; Matsubara, Yoichi; Zackai, Elaine H; Lapunzina, Pablo; Gonzalez-Meneses, Antonio; Holbrook, Jennifer; Agresta, Cynthia A; Gonzalez, Iris L; Sol-Church, Katia

    2006-01-01

    Costello syndrome is a rare condition comprising mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy, and/or atrial tachycardia), tumor predisposition, and skin and musculoskeletal abnormalities. Recently mutations in HRAS were identified in 12 Japanese and Italian patients with clinical information available on 7 of the Japanese patients. To expand the molecular delineation of Costello syndrome, we performed mutation analysis in 34 North American and 6 European (total 40) patients with Costello syndrome, and detected missense mutations in HRAS in 33 (82.5%) patients. All mutations affected either codon 12 or 13 of the protein product, with G12S occurring in 30 (90.9%) patients of the mutation-positive cases. In two patients, we found a mutation resulting in an alanine substitution in position 12 (G12A), and in one patient, we detected a novel mutation (G13C). Five different HRAS mutations have now been reported in Costello syndrome, however genotype-phenotype correlation remains incomplete.

  1. Backtracking RAS mutations in high hyperdiploid childhood acute lymphoblastic leukemia.

    PubMed

    Wiemels, Joseph L; Kang, Michelle; Chang, Jeffrey S; Zheng, Lily; Kouyoumji, Carina; Zhang, Luoping; Smith, Martyn T; Scelo, Ghislaine; Metayer, Catherine; Buffler, Patricia; Wiencke, John K

    2010-10-15

    High hyperdiploidy is the single largest subtype of childhood acute lymphoblastic leukemia (ALL) and is defined by the presence of 51-68 chromosomes in a karyotype. The 5 or more extra chromosomes characterizing this subtype are known to occur in a single mitotic event, prenatally. We screened for RAS mutations among 517 acute childhood leukemias (including 437 lymphocytic, of which 393 were B-cell subtypes) and found mutations in 30% of high hyperdiploids compared to only 10% of leukemias of other subtypes (P<0.0001). We assessed whether KRAS mutations occurred before birth using a PCR-restriction enzyme-mediated Taqman quantitative PCR reaction, and found no evidence for prenatal KRAS mutations in 14 patients tested. While RAS mutations were previously associated with prior chemical exposures in childhood and adult leukemias, in this study RAS-mutated cases were not significantly associated with parental smoking when compared to study controls. IGH rearrangements were backtracked in three RAS-positive patients (which were negative for KRAS mutation at birth) and found to be evident before birth, confirming a prenatal origin for the leukemia clone. We posit a natural history for hyperdiploid leukemia in which prenatal mitotic catastrophe is followed by a postnatal RAS mutation to produce the leukemic cell phenotype.

  2. Pancreatic adenocarcinomas frequently show p53 gene mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Mukai, K.; Zamboni, G.; Oda, T.; Iacono, C.; Hirohashi, S.

    1993-01-01

    Thirty-four pancreatic adenocarcinomas were studied for the presence of p53 gene mutations by the single-strand conformation polymorphism method and by direct sequencing of PCR-amplified fragments. p53 protein expression was immunohistochemically evaluated using monoclonal PAb1801 and polyclonal CM1 antibodies. Mutations were detected in 14 cases. The transitions were six G to A and two A to G; the transversions were one C to G and two A to C; the remaining three were frameshift mutations. Immunostaining results were identical with both antibodies. Nuclear immunohistochemical p53-positive cells were found in nine p53 mutated cases and in 12 cases in which no mutation was detected. In most of these latter cases only a minority of cancer cells showed immunohistochemical positivity. Twenty-nine cases, including all p53 mutated cancers, were known to contain codon 12 Ki-ras gene mutations. Also in the light of the demonstrated cooperation of ras and p53 gene alterations in the transformation of cultured cells, our data suggest that p53 mutation is one of the genetic defects that may have a role in the pathogenesis of a proportion of pancreatic cancers. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8494051

  3. EGFR Mutation Testing Practices within the Asia Pacific Region

    PubMed Central

    Kerr, Keith M.; Utomo, Ahmad; Rajadurai, Pathmanathan; Tran, Van Khanh; Du, Xiang; Chou, Teh-Ying; Enriquez, Ma. Luisa D.; Lee, Geon Kook; Iqbal, Jabed; Shuangshoti, Shanop; Chung, Jin-Haeng; Hagiwara, Koichi; Liang, Zhiyong; Normanno, Nicola; Park, Keunchil; Toyooka, Shinichi; Tsai, Chun-Ming; Waring, Paul; Zhang, Li; McCormack, Rose; Ratcliffe, Marianne; Itoh, Yohji; Sugeno, Masatoshi; Mok, Tony

    2015-01-01

    Introduction: The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non–small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods. Methods: A retrospective survey of records from NSCLC patients tested for EGFR mutations during 2011 was conducted in 11 Asian Pacific countries at 40 sites that routinely performed EGFR mutation testing during that period. Patient records were used to complete an online questionnaire at each site. Results: Of the 22,193 NSCLC patient records surveyed, 31.8% (95% confidence interval: 31.2%–32.5%) were tested for EGFR mutations. The rate of EGFR mutation positivity was 39.6% among the 10,687 cases tested. The majority of samples were biopsy and/or cytology samples (71.4%). DNA sequencing was the most commonly used testing method accounting for 40% and 32.5% of tissue and cytology samples, respectively. A pathology report was available only to 60.0% of the sites, and 47.5% were not members of a Quality Assurance Scheme. Conclusions: In 2011, EGFR mutation testing practices varied widely across Asia. These data provide a reference platform from which to improve the molecular diagnosis of NSCLC, and EGFR mutation testing in particular, in Asia. PMID:25376513

  4. Backtracking RAS mutations in High Hyperdiploid Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Wiemels, Joseph L.; Kang, Michelle; Chang, Jeffrey S.; Zheng, Lily; Kouyoumji, Carina; Zhang, Luoping; Smith, Martyn T.; Scelo, Ghislaine; Metayer, Catherine; Buffler, Patricia; Wiencke, John K.

    2010-01-01

    High hyperdiploidy is the single largest subtype of childhood acute lymphoblastic leukemia (ALL) and is defined by the presence of 51-68 chromosomes in a karyotype. The 5 or more extra chromosomes characterizing this subtype are known to occur in a single mitotic event, prenatally. We screened for RAS mutations among 517 acute childhood leukemias (including 437 lymphocytic, of which 393 were B-cell subtypes) and found mutations in 30% of high hyperdiploids compared to only 10% of leukemias of other subtypes (P < 0.0001). We assessed whether KRAS mutations occurred before birth using a PCR-restriction enzyme-mediated Taqman quantitative PCR reaction, and found no evidence for prenatal KRAS mutations in 14 patients tested. While RAS mutations were previously associated with prior chemical exposures in childhood and adult leukemias, in this study RAS-mutated cases were not significantly associated with parental smoking when compared to study controls. IGH rearrangements were backtracked in three RAS-positive patients (which were negative for KRAS mutation at birth) and found to be evident before birth, confirming a prenatal origin for the leukemia clone. We posit a natural history for hyperdiploid leukemia in which prenatal mitotic catastrophe is followed by a postnatal RAS mutation to produce the leukemic cell phenotype. PMID:20688547

  5. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors

    PubMed Central

    Baeissa, Hanadi; Benstead-Hume, Graeme; Richardson, Christopher J.; Pearl, Frances M.G

    2017-01-01

    Background The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. Results In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domains We find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. Conclusions By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation. We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa). PMID

  6. Reducing mutation load through sexual selection on males.

    PubMed

    McGuigan, Katrina; Petfield, Donna; Blows, Mark W

    2011-10-01

    Mutation load is a key parameter in evolutionary theories, but relatively little empirical information exists on the mutation load of populations, or the elimination of this load through selection. We manipulated the opportunity for sexual selection within a mutation accumulation divergence experiment to determine how sexual selection on males affected the accumulation of mutations contributing to sexual and nonsexual fitness. Sexual selection prevented the accumulation of mutations affecting male mating success, the target trait, as well as reducing mutation load on productivity, a nonsexual fitness component. Mutational correlations between mating success and productivity (estimated in the absence of sexual selection) were positive. Sexual selection significantly reduced these fitness component correlations. Male mating success significantly diverged between sexual selection treatments, consistent with the fixation of genetic differences. However, the rank of the treatments was not consistent across assays, indicating that the mutational effects on mating success were conditional on biotic and abiotic context. Our experiment suggests that greater insight into the genetic targets of natural and sexual selection can be gained by focusing on mutational rather than standing genetic variation, and on the behavior of trait variances rather than means.

  7. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L.; Kemp, S.; Bolhuis, P.A.

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  8. Correlation of mutation and immunohistochemistry of p53 in hepatocellular carcinomas in Korean people.

    PubMed Central

    Lee, Shi Nae; Park, Cheol Keun; Sung, Chang Ohk; Choi, Jong Sun; Oh, Young Lyun; Cho, Jae Won; Yoo, Byung Chul

    2002-01-01

    The degree of correlation between sequencing and immunohistochemisty (IHC) for detecting mutations of p53 has not been well established in human hepatocellular carcinoma (HCC). We analyzed 36 HCCs from Korean people for p53 mutation at exons 4-10 by PCR-SSCP and sequencing, and compared the results with the IHC positivity. p53 mutations were identified in 7 out of 36 HCCs (19.4%). These mutations were found widely throughout exons 4-8. No mutation was detected in codon 249. Among the 7 mutations, 6 missense mutations were detected in 15 HCCs with > or =5% immunoreactive tumor cells and one nonsense mutation was in 21 HCCs with <5% immunoreactive tumor cells. The sensitivity for p53 mutation was 85.7% (6/7), the specificity 69.0% (20/29), the predictive value of positive IHC 40.0% (6/15), and the predictive value of negative IHC 95.2% (20/21). Two missense mutations were detected in 25 cases with <10% immunoreactive tumor cells. Predictive values of both positive IHC and negative IHC were higher in > or =5% overexpression group than in > or =10% overexpression group or >0% overexpression group. This study suggests that 5% immunoreactivity is a reliable immunohistochemical threshold value to detect p53 mutations in HCCs and the spectrum of p53 mutations in HCCs in Korean people is different from that of high aflatoxin B1 exposure areas. PMID:12483005

  9. Golgi Positioning

    PubMed Central

    Yadav, Smita; Linstedt, Adam D.

    2011-01-01

    The Golgi apparatus in mammalian cells is positioned near the centrosome-based microtubule-organizing center (Fig. 1). Secretory cargo moves inward in membrane carriers for delivery to Golgi membranes in which it is processed and packaged for transport outward to the plasma membrane. Cytoplasmic dynein motor proteins (herein termed dynein) primarily mediate inward cargo carrier movement and Golgi positioning. These motors move along microtubules toward microtubule minus-ends embedded in centrosomes. Centripetal motility is controlled by a host of regulators whose precise functions remain to be determined. Significantly, a specific Golgi receptor for dynein has not been identified. This has impaired progress toward elucidation of membrane-motor-microtubule attachment in the periphery and, after inward movement, recycling of the motor for another round. Pericentrosomal positioning of the Golgi apparatus is dynamic. It is regulated during critical cellular processes such as mitosis, differentiation, cell polarization, and cell migration. Positioning is also important as it aligns the Golgi along an axis of cell polarity. In certain cell types, this promotes secretion directed to the proximal plasma membrane domain thereby maintaining specializations critical for diverse processes including wound healing, immunological synapse formation, and axon determination. PMID:21504874

  10. Positive psychotherapy.

    PubMed

    Seligman, Martin E P; Rashid, Tayyab; Parks, Acacia C

    2006-11-01

    Positive psychotherapy (PPT) contrasts with standard interventions for depression by increasing positive emotion, engagement, and meaning rather than directly targeting depressive symptoms. The authors have tested the effects of these interventions in a variety of settings. In informal student and clinical settings, people not uncommonly reported them to be "life-changing." Delivered on the Web, positive psychology exercises relieved depressive symptoms for at least 6 months compared with placebo interventions, the effects of which lasted less than a week. In severe depression, the effects of these Web exercises were particularly striking. This address reports two preliminary studies: In the first, PPT delivered to groups significantly decreased levels of mild-to-moderate depression through 1-year follow-up. In the second, PPT delivered to individuals produced higher remission rates than did treatment as usual and treatment as usual plus medication among outpatients with major depressive disorder. Together, these studies suggest that treatments for depression may usefully be supplemented by exercises that explicitly increase positive emotion, engagement, and meaning. ((c) 2006 APA, all rights reserved).

  11. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity

    PubMed Central

    Chang, Matthew T.; Asthana, Saurabh; Gao, Sizhi Paul; Lee, Byron H.; Chapman, Jocelyn S.; Kandoth, Cyriac; Gao, JianJiong; Socci, Nicholas D.; Solit, David B.; Olshen, Adam B.; Schultz, Nikolaus; Taylor, Barry S.

    2015-01-01

    Mutational hotspots indicate selective pressure across a population of tumor samples, but their prevalence within and across cancer types is incompletely characterized. An approach to detect significantly mutated residues, rather than methods that identify recurrently mutated genes, may uncover new biologically and therapeutically relevant driver mutations. Here we developed a statistical algorithm to identify recurrently mutated residues in tumour samples. We applied the algorithm to 11,119 human tumors, spanning 41 cancer types, and identified 470 hotspot somatic substitutions in 275 genes. We find that half of all human tumors possess one or more mutational hotspots with widespread lineage-, position-, and mutant allele-specific differences, many of which are likely functional. In total, 243 hotspots were novel and appeared to affect a broad spectrum of molecular function, including hotspots at paralogous residues of Ras-related small GTPases RAC1 and RRAS2. Redefining hotspots at mutant amino acid resolution will help elucidate the allele-specific differences in their function and could have important therapeutic implications. PMID:26619011

  12. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  13. Msx1 Mutations

    PubMed Central

    Wang, Y.; Kong, H.; Mues, G.; D’Souza, R.

    2011-01-01

    Mutations in the transcription factors PAX9 and MSX1 cause selective tooth agenesis in humans. In tooth bud mesenchyme of mice, both proteins are required for the expression of Bmp4, which is the key signaling factor for progression to the next step of tooth development. We have previously shown that Pax9 can transactivate a 2.4-kb Bmp4 promoter construct, and that most tooth-agenesis-causing PAX9 mutations impair DNA binding and Bmp4 promoter activation. We also found that Msx1 by itself represses transcription from this proximal Bmp4 promoter, and that, in combination with Pax9, it acts as a potentiator of Pax9-induced Bmp4 transactivation. This synergism of Msx1 with Pax9 is significant, because it is currently the only documented mechanism for Msx1-mediated activation of Bmp4. In this study, we investigated whether the 5 known tooth-agenesis-causing MSX1 missense mutations disrupt this Pax9-potentiation effect, or if they lead to deficiencies in protein stability, protein-protein interactions, nuclear translocation, and DNA-binding. We found that none of the studied molecular mechanisms yielded a satisfactory explanation for the pathogenic effects of the Msx1 mutations, calling for an entirely different approach to the investigation of this step of odontogenesis on the molecular level. PMID:21297014

  14. ALK-positive gastric inflammatory myofibroblastic tumor in an adult with familial adenomatous polyposis and diffuse fundic polyposis.

    PubMed

    Fan, Jun; Huang, Bo; Yang, Xiuping; Yang, Ming; He, Jun; Nie, Xiu

    2017-09-18

    Inflammatory myofibroblastic tumor (IMT) of the stomach is extremely rare in adults and exhibits a variable biological behavior that ranges from frequently benign lesions to more aggressive variants. Here we report a case of gastric IMT with lymph node metastasis in an adult who had undergone total colectomy for familial adenomatous polyposis (FAP). A 37-year-old man presented gradual-onset epigastric discomfort; he had undergone total colectomy for FAP 6 years before. The upper endoscopy revealed diffuse polyposis in the body of stomach and a submucosal protruding tumor of approximately 4.5 × 3.5 cm in the gastric angular incisure, appearing like gastrointestinal stromal tumor. Histology after surgery verified the diagnosis of fundic gland polyposis (FGPs) and gastric IMT with lymph node metastasis. Both the primary IMT tissue and its metastatic lesion but not the FGP or FAP tissue were positive for anaplastic lymphoma kinase (ALK) on immunohistochemical staining. Fluorescent in situ hybridization confirmed the existence of ALK rearrangement in IMT tissues. However, the patient exhibited no abnormalities in microsatellite instability or mismatch repair-system components, including MSH6, MSH2, MLH1 and PMS2, in IMT, FGP or FAP tissue. This case allowed for exploring the relationship among IMT, FGP and FAP and indicates that gastric IMT should be considered in the diagnosis of a gastric mass in patients with FAP. ALK may be a useful biomarker in the diagnosis of IMT and its metastatic lesions.

  15. Mutations in galactosemia

    SciTech Connect

    Reichardt, J.K.V.

    1995-10-01

    This Letter raises four issues concerning two papers on galactosemia published in the March 1995 of the Journal. First, table 2 in the paper by Elsas et al. incorrectly attributes seven galactose-l-phosphate uridyl transferase (GALT) mutations (S135L, L195P, K285N, N314D, R333W, R333G, and K334R). The table also fails to mention that others have reported the same two findings attributed to {open_quotes}Leslie et al.; Elsas et al. and in press{close_quotes} and {open_quotes}Leslie et al.; Elsas et al.{close_quotes} The first finding on the prevalence of the Q188R galactosemia mutation in the G/G Caucasian population has also been described by Ng et al., and the second finding on the correlation of the N314D GALT mutation with the Duarte variant was reported by Lin et al. Second, Elsas et al. suggest that the E203K and N314D mutations may {open_quotes}produce intra-allelic complementation when in cis{close_quotes}. This speculation is supported by the activity data of individual III-2 but is inconsistent with the activities of three other individuals I-1, II-1, and III-1 of the same pedigree. The GALT activity measured in these three individuals suggests a dominant negative effect of E203K in E203K-N314D chromosomes, since they all have less than normal activity. Thus, the preponderance of the data in this paper is at odds with the authors speculation. It is worth recalling that Lin et al. also identified four N314D GALT mutations on 95 galactosemic chromosomes examined. A similar situation also appears to be the case in proband III-1 (with genotype E203K-N314D/IVSC) in the Elsas et al. paper. 9 refs.

  16. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures.

    PubMed

    Johnson, Adrienne; Severson, Eric; Gay, Laurie; Vergilio, Jo-Anne; Elvin, Julia; Suh, James; Daniel, Sugganth; Covert, Mandy; Frampton, Garrett M; Hsu, Sigmund; Lesser, Glenn J; Stogner-Underwood, Kimberly; Mott, Ryan T; Rush, Sarah Z; Stanke, Jennifer J; Dahiya, Sonika; Sun, James; Reddy, Prasanth; Chalmers, Zachary R; Erlich, Rachel; Chudnovsky, Yakov; Fabrizio, David; Schrock, Alexa B; Ali, Siraj; Miller, Vincent; Stephens, Philip J; Ross, Jeffrey; Crawford, John R; Ramkissoon, Shakti H

    2017-09-14

    Pediatric brain tumors are the leading cause of death for children with cancer in the U.S. Incorporating next-generation sequencing data for both pediatric low-grade (pLGGs) and high-grade gliomas (pHGGs) can inform diagnostic, prognostic, and therapeutic decision-making. We performed comprehensive genomic profiling on 282 pediatric gliomas (157 pHGGs, 125 pLGGs), sequencing 315 cancer-related genes and calculating the tumor mutational burden (TMB; mutations per megabase [Mb]). In pLGGs, we detected genomic alterations (GA) in 95.2% (119/125) of tumors. BRAF was most frequently altered (48%; 60/125), and FGFR1 missense (17.6%; 22/125), NF1 loss of function (8.8%; 11/125), and TP53 (5.6%; 7/125) mutations were also detected. Rearrangements were identified in 35% of pLGGs, including KIAA1549-BRAF, QKI-RAF1, FGFR3-TACC3, CEP85L-ROS1, and GOPC-ROS1 fusions. Among pHGGs, GA were identified in 96.8% (152/157). The genes most frequently mutated were TP53 (49%; 77/157), H3F3A (37.6%; 59/157), ATRX (24.2%; 38/157), NF1 (22.2%; 35/157), and PDGFRA (21.7%; 34/157). Interestingly, most H3F3A mutations (81.4%; 35/43) were the variant K28M. Midline tumor analysis revealed H3F3A mutations (40%; 40/100) consisted solely of the K28M variant. Pediatric high-grade gliomas harbored oncogenic EML4-ALK, DGKB-ETV1, ATG7-RAF1, and EWSR1-PATZ1 fusions. Six percent (9/157) of pHGGs were hypermutated (TMB >20 mutations per Mb; range 43-581 mutations per Mb), harboring mutations deleterious for DNA repair in MSH6, MSH2, MLH1, PMS2, POLE, and POLD1 genes (78% of cases). Comprehensive genomic profiling of pediatric gliomas provides objective data that promote diagnostic accuracy and enhance clinical decision-making. Additionally, TMB could be a biomarker to identify pediatric glioblastoma (GBM) patients who may benefit from immunotherapy. By providing objective data to support diagnostic, prognostic, and therapeutic decision-making, comprehensive genomic profiling is necessary for advancing

  17. Positive Psychologists on Positive Constructs

    ERIC Educational Resources Information Center

    Lyubomirsky, Sonja

    2012-01-01

    Comments on the original article by McNulty and Fincham (see record 2011-15476-001). In their article, the authors offered compelling evidence that constructs such as forgiveness and optimism can have both beneficial and adverse consequences, depending on the context. Their caution about labeling particular psychological processes as "positive" is…

  18. Positive Psychologists on Positive Constructs

    ERIC Educational Resources Information Center

    Lyubomirsky, Sonja

    2012-01-01

    Comments on the original article by McNulty and Fincham (see record 2011-15476-001). In their article, the authors offered compelling evidence that constructs such as forgiveness and optimism can have both beneficial and adverse consequences, depending on the context. Their caution about labeling particular psychological processes as "positive" is…

  19. Type of PKD1 Mutation Influences Renal Outcome in ADPKD

    PubMed Central

    Cornec-Le Gall, Emilie; Audrézet, Marie-Pierre; Chen, Jian-Min; Hourmant, Maryvonne; Morin, Marie-Pascale; Perrichot, Régine; Charasse, Christophe; Whebe, Bassem; Renaudineau, Eric; Jousset, Philippe; Guillodo, Marie-Paule; Grall-Jezequel, Anne; Saliou, Philippe; Le Meur, Yannick

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is heterogeneous with regard to genic and allelic heterogeneity, as well as phenotypic variability. The genotype-phenotype relationship in ADPKD is not completely understood. Here, we studied 741 patients with ADPKD from 519 pedigrees in the Genkyst cohort and confirmed that renal survival associated with PKD2 mutations was approximately 20 years longer than that associated with PKD1 mutations. The median age at onset of ESRD was 58 years for PKD1 carriers and 79 years for PKD2 carriers. Regarding the allelic effect on phenotype, in contrast to previous studies, we found that the type of PKD1 mutation, but not its position, correlated strongly with renal survival. The median age at onset of ESRD was 55 years for carriers of a truncating mutation and 67 years for carriers of a nontruncating mutation. This observation allows the integration of genic and allelic effects into a single scheme, which may have prognostic value. PMID:23431072

  20. Synonymous mutations frequently act as driver mutations in human cancers.

    PubMed

    Supek, Fran; Miñana, Belén; Valcárcel, Juan; Gabaldón, Toni; Lehner, Ben

    2014-03-13

    Synonymous mutations change the sequence of a gene without directly altering the sequence of the encoded protein. Here, we present evidence that these "silent" mutations frequently contribute to human cancer. Selection on synonymous mutations in oncogenes is cancer-type specific, and although the functional consequences of cancer-associated synonymous mutations may be diverse, they recurrently alter exonic motifs that regulate splicing and are associated with changes in oncogene splicing in tumors. The p53 tumor suppressor (TP53) also has recurrent synonymous mutations, but, in contrast to those in oncogenes, these are adjacent to splice sites and inactivate them. We estimate that between one in two and one in five silent mutations in oncogenes have been selected, equating to ~6%- 8% of all selected single-nucleotide changes in these genes. In addition, our analyses suggest that dosage-sensitive oncogenes have selected mutations in their 3' UTRs.

  1. Mutation directional selection sheds light on prion pathogenesis

    SciTech Connect

    Shen, Liang; Ji, Hong-Fang

    2011-07-01

    Highlights: {yields} Most pathogenic mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. {yields} Mutation-induced changes may strengthen the interactions between PrP and facilitating factors. {yields} The findings also have significant implications for exploring potential regions involved in the conformational transition from PrP{sup C} to PrP{sup Sc}. -- Abstract: As mutations in the PRNP gene account for human hereditary prion diseases (PrDs), it is crucial to elucidating how these mutations affect the central pathogenic conformational transition of normal cellular prion protein (PrP{sup C}) to abnormal scrapie isoform (PrP{sup Sc}). Many studies proposed that these pathogenic mutations may make PrP more susceptible to conformational change through altering its structure stability. By evaluating the most recent observations regarding pathogenic mutations, it was found that the pathogenic mutations do not exert a uniform effect on the thermodynamic stability of the human PrP's structure. Through analyzing the reported PrDs-related mutations, we found that 25 out of 27 mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. Based on the triggering role reported by previous studies of facilitating factors in PrP{sup C} conversion, e.g., lipid and polyanion, we proposed that the mutation-induced changes may strengthen the interaction between PrP and facilitating factors, which will accelerate PrP conversion and cause PrDs.

  2. Positioning apparatus

    DOEpatents

    Vogel, M.A.; Alter, P.

    1983-07-07

    An apparatus is provided for precisely adjusting the position of an article relative to a beam emerging from a neutron source disposed in a housing. The apparatus includes a support pivotably mounted on a movable base plate and freely suspended therefrom. The support is gravity biased toward the housing and carries an article holder movable in a first direction longitudinally of the axis of said beam and normally urged into engagement against said housing. Means are provided for moving the base plate in two directions to effect movement of the suspended holder in two mutually perpendicular directions, respectively, normal to the axis of the beam.

  3. POSITIONING DEVICE

    DOEpatents

    Wall, R.R.; Peterson, D.L.

    1959-09-15

    A positioner is described for a vertical reactor-control rod. The positioner comprises four grooved friction rotatable members that engage the control rod on all sides and shift it longitudinally. The four friction members are drivingly interconnected for conjoint rotation and comprise two pairs of coaxial members. The members of each pair are urged toward one another by hydraulic or pneumatic pressure and thus grip the control rod so as to hold it in any position or adjust it. Release of the by-draulic or pneumatic pressure permits springs between the friction members of each pair to force them apart, whereby the control rod moves quickly by gravity into the reactor.

  4. Positioning apparatus

    DOEpatents

    Vogel, Max A.; Alter, Paul

    1986-01-01

    An apparatus for precisely positioning materials test specimens within the optimum neutron flux path emerging from a neutron source located in a housing. The test specimens are retained in a holder mounted on the free end of a support pivotably mounted and suspended from a movable base plate. The support is gravity biased to urge the holder in a direction longitudinally of the flux path against the housing. Means are provided for moving the base plate in two directions to effect movement of the holder in two mutually perpendicular directions normal to the axis of the flux path.

  5. Positioning apparatus

    DOEpatents

    Vogel, Max A.; Alter, Paul

    1986-05-06

    An apparatus for precisely positioning materials test specimens within the optimum neutron flux path emerging from a neutron source located in a housing. The test specimens are retained in a holder mounted on the free end of a support pivotably mounted and suspended from a movable base plate. The support is gravity biased to urge the holder in a direction longitudinally of the flux path against the housing. Means are provided for moving the base plate in two directions to effect movement of the holder in two mutually perpendicular directions normal to the axis of the flux path.

  6. Gene Positioning

    PubMed Central

    Ferrai, Carmelo; de Castro, Inês Jesus; Lavitas, Liron; Chotalia, Mita; Pombo, Ana

    2010-01-01

    Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease. PMID:20484389

  7. Properties of ethylmethane sulfonate-induced mutations affecting life-history traits in Caenorhabditis elegans and inferences about bivariate distributions of mutation effects.

    PubMed Central

    Keightley, P D; Davies, E K; Peters, A D; Shaw, R G

    2000-01-01

    The homozygous effects of ethylmethane sulfonate (EMS)-induced mutations in Caenorhabditis elegans are compared across life-history traits. Mutagenesis has a greater effect on early than late reproductive output, since EMS-induced mutations tend to cause delayed reproduction. Mutagenesis changes the mean and variance of longevity much less than reproductive output traits. Mutations that increase total or early productivity are not detected, but the net effect of mutations is to increase and decrease late productivity to approximately equal extents. Although most mutations decrease longevity, a mutant line with increased longevity was found. A flattening of mortality curves with age is noted, particularly in EMS lines. We infer that less than one-tenth of mutations that have fitness effects in natural conditions are detected in the laboratory, and such mutations have moderately large effects ( approximately 20% of the mean). Mutational correlations for life-history traits are strong and positive. Correlations between early or late productivity and longevity are of similar magnitude. We develop a maximum-likelihood procedure to infer bivariate distributions of mutation effects. We show that strong mutation-induced genetic correlations do not necessarily imply strong directional correlations between mutational effects, since correlation is also generated by lines carrying different numbers of mutations. PMID:10978281

  8. Better position

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The U.S. Global Positioning System (GPS) will soon become more accurate for civilian users, improving the quality of navigation and of some types of scientific research. The Clinton Administration announced March 29 that within a decade, the federal government will stop degrading the civilian GPS signal and will allow nonmilitary users access to the same clear signals that U.S. troops rely upon.Designed as dual-use system with primary use by the American military, the GPS is a constellation of 24 satellites that allows soldiers to determine their exact positions (in latitude and longitude) anywhere in the world. While the GPS is operated by the Department of Defense (DoD), scientists and adventurous civilians have been able to purchase small, portable GPS devices. However, the U.S. military has kept to itself a capability known as “selective availability” that provides a much more precise signal than is available to the public. According to the White House, that selected signal will be available to all users within 4-10 years.

  9. BRCA1/2 germline mutations and their clinical importance in Turkish breast cancer patients.

    PubMed

    Cecener, Gulsah; Egeli, Unal; Tunca, Berrin; Erturk, Elif; Ak, Secil; Gokgoz, Sehsuvar; Tasdelen, Ismet; Tezcan, Gulcin; Demirdogen, Elif; Bayram, Nuran; Avci, Nilufer; Evrensel, Turkkan

    2014-10-01

    BRCA1/BRCA2 genes were screened in 117 patients with breast cancer by sequencing. Fourteen percent of patients tested positive for BRCA1/BRCA2 mutations. Four frame shift mutations, four pathogenic missense mutations, and 25 different sequence variations were detected. BRCA mutation positivity was significantly associated with Ki67 (p = .001). BRCA protein expressions were decreased in the patients harboring important mutations and polymorphisms (BRCA1;P508 stop, V1740G, Q1182R, Q1756P and BRCA2;V2466A) related with disease. Our findings contribute significantly to the types of germline BRCA1/BRCA2 mutations and their biological effects in Turkish women. These data could help guide the management of BRCA1/BRCA2 mutation-carrying patients when considering breast-conserving therapy.

  10. Characterization of breast cancers with PI3K mutations in an academic practice setting using SNaPshot profiling.

    PubMed

    Abramson, Vandana G; Cooper Lloyd, M; Ballinger, Tarah; Sanders, Melinda E; Du, Liping; Lai, Darson; Su, Zengliu; Mayer, Ingrid; Levy, Mia; LaFrance, Delecia R; Vnencak-Jones, Cindy L; Shyr, Yu; Dahlman, Kimberly B; Pao, William; Arteaga, Carlos L

    2014-06-01

    Mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful therapeutic target. Several larger, population-based studies have shown a positive prognostic significance associated with these mutations. This study aims to further identify characteristics of patients harboring PIK3CA mutations while evaluating the clinical impact of genomic testing for these mutations. Tumors from 312 patients at Vanderbilt-Ingram Cancer Center were analyzed for PIK3CA mutations using a multiplex screening assay (SNaPshot). Mutation rates, receptor status, histopathologic characteristics, and time to recurrence were assessed. The number of patients participating in clinical trials, specifically trials relating to the PIK3CA mutation, was examined. Statistically significant differences between wild-type and mutated tumors were determined using the Wilcoxon, Pearson, and Fischer exact tests. The PIK3CA mutation was found in 25 % of tumors tested. Patients with PIK3CA mutations were significantly more likely to express hormone receptors, be of lower combined histological grade, and have a reduced time to recurrence. Patients found to have a PIK3CA mutation were significantly more likely to enter a PIK3CA-specific clinical trial. In addition to confirming previously established positive prognostic characteristics of tumors harboring PIK3CA mutations, this study demonstrates the feasibility and utility of mutation profiling in a clinical setting. PIK3CA mutation testing impacted treatment and resulted in more patients entering mutation-specific clinical trials.

  11. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania.

    PubMed

    Janavičius, Ramūnas; Rudaitis, Vilius; Mickys, Ugnius; Elsakov, Pavel; Griškevičius, Laimonas

    2014-05-01

    There is limited knowledge about the BRCA1/2 mutational profile in Lithuania. We aimed to define the full BRCA1 and BRCA2 mutational spectrum and the clinically relevant prevalence of these gene mutations in Lithuania. A data set of 753 unrelated probands, recruited through a clinical setting, was used and consisted of 380 female breast cancer cases, 213 epithelial ovarian cancer cases, 20 breast and ovarian cancer cases, and 140 probands with positive family history of breast or ovarian cancer. A comprehensive mutation analysis of the BRCA1/2 genes by high resolution melting analysis coupled with Sanger sequencing and multiplex ligation-dependent probe amplification analysis was performed. Genetic analysis revealed 32 different pathogenic germline BRCA1/2 mutations: 20 in the BRCA1 gene and 12 in the BRCA2 gene, including four different large genomic rearrangements in the BRCA1 gene. In all, 10 novel BRCA1/2 mutations were found. Nine different recurrent BRCA1 mutations and two recurrent BRCA2 mutations were identified, which comprised 90.4% of all BRCA1/2 mutations. BRCA1 exon 1-3 deletion and BRCA2 c.658_659del are reported for the first time as recurrent mutations, pointing to a possible Baltic founder effect. Approximately 7% of breast cancer and 22% of ovarian cancer patients without family history and an estimated 0.5-0.6% of all Lithuanian women were found to be carriers of mutations in the BRCA1 or BRCA2 gene.

  12. OXPHOS mutations and neurodegeneration

    PubMed Central

    Koopman, Werner J H; Distelmaier, Felix; Smeitink, Jan AM; Willems, Peter HGM

    2013-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI–CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce ‘primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration. PMID:23149385

  13. Mutator and MULE Transposons.

    PubMed

    Lisch, Damon

    2015-04-01

    The Mutator system of transposable elements (TEs) is a highly mutagenic family of transposons in maize. Because they transpose at high rates and target genic regions, these transposons can rapidly generate large numbers of new mutants, which has made the Mutator system a favored tool for both forward and reverse mutagenesis in maize. Low copy number versions of this system have also proved to be excellent models for understanding the regulation and behavior of Class II transposons in plants. Notably, the availability of a naturally occurring locus that can heritably silence autonomous Mutator elements has provided insights into the means by which otherwise active transposons are recognized and silenced. This chapter will provide a review of the biology, regulation, evolution and uses of this remarkable transposon system, with an emphasis on recent developments in our understanding of the ways in which this TE system is recognized and epigenetically silenced as well as recent evidence that Mu-like elements (MULEs) have had a significant impact on the evolution of plant genomes.

  14. Homeochaos: dynamics stability of a symbiotic network with population dynamics and evolving mutation rates

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Ikegami, Takashi

    1992-06-01

    Evolution of mutation rates is studied, in a population model with mutation of species coded by bit sequences and mutation rates. Even without interaction among species, the mutation rate is initially enhanced to search for fitted species and then is lowered towards zero. This enhancement opens a possibility of automatic simulated annealing. With the interaction among species (hosts versus parasites), high mutation rates are sustained. The rates go up with the interaction strength abruptly if the fitness landscape is rugged. A large cluster of species, connected by mutation, is formed by a sustained high mutation rate. With the formation of this symbiotic network resolved is the paradox of mutation rates; paradox on the stability of a rule to change itself. Population dynamics of each species shows high-dimensional chaos with small positive Lyapunov exponents. Stability of our symbiotic network is dynamically sustained through this weak high-dimensional chaos, termed “homeochaos”.

  15. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  16. Mutation Rates among RNA Viruses

    NASA Astrophysics Data System (ADS)

    Drake, John W.; Holland, John J.

    1999-11-01

    The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of μ g≈ 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population.

  17. Septin Mutations in Human Cancers

    PubMed Central

    Angelis, Dimitrios; Spiliotis, Elias T.

    2016-01-01

    Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC) database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4, and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers. PMID:27882315

  18. Estimation of spontaneous mutation rates.

    PubMed

    Natarajan, Loki; Berry, Charles C; Gasche, Christoph

    2003-09-01

    Spontaneous or randomly occurring mutations play a key role in cancer progression. Estimation of the mutation rate of cancer cells can provide useful information about the disease. To ascertain these mutation rates, we need mathematical models that describe the distribution of mutant cells. In this investigation, we develop a discrete time stochastic model for a mutational birth process. We assume that mutations occur concurrently with mitosis so that when a nonmutant parent cell splits into two progeny, one of these daughter cells could carry a mutation. We propose an estimator for the mutation rate and investigate its statistical properties via theory and simulations. A salient feature of this estimator is the ease with which it can be computed. The methods developed herein are applied to a human colorectal cancer cell line and compared to existing continuous time models.

  19. Twist Positivity

    NASA Astrophysics Data System (ADS)

    Jaffe, Arthur

    1999-11-01

    We study a heat kernel e-βH defined by a self-adjoint Hamiltonian H acting on a Hilbert space H, and a unitary representation U(g) of a symmetry group G of H, normalized so that the ground vector of H is invariant under U(g). The triple {H, U(g), H} defines a twisted partition function Zg and a twisted Gibbs expectation <·>g, Zg=TrH(U(g-1) e-βH) and <·>g=TrH(U(g-1)·e-βH)/TrH(U(g-1) e-βH). We say that {H, U(g), H} is twist positive if Zg>0. We say that {H, U(g), H} has a Feynman-Kac representation with a twist U(g), if one can construct a function space and a probability measure dμg on that space yielding (in the usual sense on products of coordinates) <·>g=∫·dμg. Bosonic quantum mechanics provides a class of specific examples that we discuss. We also consider a complex bosonic quantum field ϕ(x) defined on a spatial s-torus Ts and with a translation-invariant Hamiltonian. This system has an (s+1)-parameter abelian twist group Ts×R that is twist positive and that has a Feynman-Kac representation. Given τ∈Ts and θ∈R, the corresponding paths are random fields Φ(x, t) that satisfy the twist relationΦ(x, t+β)=eiΩθΦ(x-τ, t). We also utilize the twist symmetry to understand some properties of "zero-mass" limits, when the twist τ, θ lies in the complement of a set ϒsing of singular twists.

  20. Mucopolysaccharidosis IVA mutations in Chinese patients: 16 novel mutations.

    PubMed

    Wang, Zheng; Zhang, Weimin; Wang, Yun; Meng, Yan; Su, Liang; Shi, Huiping; Huang, Shangzhi

    2010-08-01

    Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is a lysosomal storage disease caused by deficiency of N-acetylgalactosamine-6-sulfatase (GALNS) and transmitted as an autosomal recessive trait. This is the first systematic mutation screen in Chinese MPS IVA patients. Mutation detections in 24 unrelated Chinese MPS IVA patients were performed by PCR and direct sequencing of exons or the mRNA of GALNS. A total of 42 mutant alleles were identified, belonging to 27 different mutations. Out of the 27 mutations, 16 were novel, including 2 splicing mutations (c.567-1G>T and c.634-1G>A), 2 nonsense mutations (p.W325X and p.Q422X) and 12 missense mutations (p.T88I, p.H142R, p.P163H, p.G168L, p.H236D, p.N289S, p.T312A, p.G316V, p.A324E, p.L366P, p.Q422K and p.F452L). p.G340D was found to be a common mutation in the Chinese MPS IVA patients, accounting for 16.7% of the total number of mutant alleles. The results show that the mutations in Chinese MPS IVA patients are also family specific but have a different mutation spectrum as compared to those of other populations.

  1. Calreticulin Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Lavi, Noa

    2014-01-01

    With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph−) myeloproliferative neoplasms (MPNs) in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET) and primary myelofibrosis (PMF). At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR) using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations) and recurrent 5-bp insertions (type 2 mutations) in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin) were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review. PMID:25386351

  2. Novel Insight into Mutational Landscape of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Gaykalova, Daria A.; Mambo, Elizabeth; Choudhary, Ashish; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Darden, Will; Adai, Alex; Hadd, Andrew; Latham, Gary; Danilova, Ludmila V.; Bishop, Justin; Li, Ryan J.; Westra, William H.; Hennessey, Patrick; Koch, Wayne M.; Ochs, Michael F.; Califano, Joseph A.; Sun, Wenyue

    2014-01-01

    Development of head and neck squamous cell carcinoma (HNSCC) is characterized by accumulation of mutations in several oncogenes and tumor suppressor genes. We have formerly described the mutation pattern of HNSCC and described NOTCH signaling pathway alterations. Given the complexity of the HNSCC, here we extend the previous study to understand the overall HNSCC mutation context and to discover additional genetic alterations. We performed high depth targeted exon sequencing of 51 highly actionable cancer-related genes with a high frequency of mutation across many cancer types, including head and neck. DNA from primary tumor tissues and matched normal tissues was analyzed for 37 HNSCC patients. We identified 26 non-synonymous or stop-gained mutations targeting 11 of 51 selected genes. These genes were mutated in 17 out of 37 (46%) studied HNSCC patients. Smokers harbored 3.2-fold more mutations than non-smokers. Importantly, TP53 was mutated in 30%, NOTCH1 in 8% and FGFR3 in 5% of HNSCC. HPV negative patients harbored 4-fold more TP53 mutations than HPV positive patients. These data confirm prior reports of the HNSCC mutational profile. Additionally, we detected mutations in two new genes, CEBPA and FES, which have not been previously reported in HNSCC. These data extend the spectrum of HNSCC mutations and define novel mutation targets in HNSCC carcinogenesis, especially for smokers and HNSCC without HPV infection. PMID:24667986

  3. Hypothesis: Obesity Is Associated with a Lower Mutation Threshold in Colon Cancer.

    PubMed

    Bordonaro, Michael; Lazarova, Darina

    2015-01-01

    Neoplastic progression requires accumulation of several mutations (mutation threshold). We hypothesize that obesity raises the risk of microsatellite stable (MSS) colon cancer (CC) at least in part by decreasing the mutation threshold. Thus, we posit that obese patients require fewer mutations, particularly driver mutations, compared to their normal BMI counterparts. Further, we suggest that the reduced number of required mutations in obese patients could be due to several factors, including the high levels of cytokines that accompany obesity. Cytokine-activated ERK, AKT, and JAK/STAT signaling could synergize with CC-initiating mutations to promote intestinal neoplastic development. Therefore, driver mutations that induce these specific pathways may not be "required" for neoplastic development in obesity; alteration in cell signaling consequent to obesity can substitute for some driver mutations in neoplastic progression. This hypothesis is supported by preliminary analyses of data from The Cancer Genome Atlas (TCGA). Thus, we observed that, compared to normal weight patients, cancer genomes of obese MSS CC patients exhibit fewer somatic mutations, and correspondingly lower numbers of mutations in driver genes (P = 0.026).The most striking observation was the lower number of KRAS mutations detected in patients with high body-mass index (BMI). These intriguing observations require further validation with increased number of patients, taking into account all possible confounding factors. If the hypothesis is confirmed, future studies should also address several possible explanations for the observed lower mutation threshold in obese MSS CC patients.

  4. TERT Promoter Mutations and Their Association with BRAF V600E Mutation and Aggressive Clinicopathological Characteristics of Thyroid Cancer

    PubMed Central

    Liu, Xiaoli; Qu, Shen; Liu, Rengyun; Sheng, Chunjun; Shi, Xiaoguang; Zhu, Guangwu; Murugan, Avaniyapuram Kannan; Guan, Haixia; Yu, Hongyu; Wang, Yangang; Sun, Hui; Shan, Zhongyan; Teng, Weiping

    2014-01-01

    Context: Promoter mutations chr5:1,295,228C>T and chr5:1,295,250C>T (termed C228T and C250T, respectively) in the gene for telomerase reverse transcriptase (TERT) have been reported in various cancers and need to be further investigated in thyroid cancer. Objective: The aim of the study was to explore TERT promoter mutations in various thyroid tumors and examine their relationship with BRAF V600E mutation, iodine intake, and clinicopathological behaviors of thyroid cancer. Design: TERT promoter and BRAF mutations were identified by sequencing genomic DNA of primary thyroid tumors from normal- and high-iodine regions in China, and clinicopathological correlation was analyzed. Results: The C228T mutation was found in 9.6% (39 of 408) of papillary thyroid cancer (PTC), C250T was found in 1.7% (7 of 408) of PTC, and they were collectively found in 11.3% (46 of 408) of PTC. C228T was found in 31.8% (7 of 22) and C250T in 4.6% (1 of 22) of follicular thyroid cancer (FTC), and they were collectively found in 36.4% (8 of 22) of FTC. No TERT mutation was found in 44 benign thyroid tumors. The two mutations occurred in 3.8% (6 of 158) of BRAF mutation-negative PTC vs 16.0% (40 of 250) of BRAF mutation-positive PTC (P = 5.87 × 10−4), demonstrating their association. Unlike BRAF mutation, TERT promoter mutations were not associated with high iodine intake, but they were associated with older patient age, larger tumor size, extrathyroidal invasion, and advanced stages III/IV of PTC. Coexisting TERT and BRAF mutations were even more commonly and more significantly associated with clinicopathological aggressiveness. Conclusions: In this large cohort, we found TERT promoter mutations to be common, particularly in FTC and BRAF mutation-positive PTC, and associated with aggressive clinicopathological characteristics. PMID:24617711

  5. Loss of heterozygosity, aberrant methylation, BRAF mutation and KRAS mutation in colorectal signet ring cell carcinoma.

    PubMed

    Kakar, Sanjay; Deng, Guoren; Smyrk, Thomas C; Cun, Lisa; Sahai, Vaibhav; Kim, Young S

    2012-07-01

    The relationship of molecular abnormalities with clinicopathologic features and survival in colorectal signet ring cell carcinoma, and its comparison with mucinous and conventional adenocarcinomas, has not been well studied. High-level microsatellite instability, loss of heterozygosity (LOH) at four loci, CpG island methylation phenotype based on seven loci, BRAF V600E mutation and KRAS mutation in signet ring cell carcinoma were compared with mucinous and conventional adenocarcinomas. The relationship of these molecular features in signet ring cell carcinoma with clinicopathologic features and survival was examined. LOH was observed in 93% of signet ring cell carcinomas compared with 62 and 70% of mucinous and conventional adenocarcinomas. Also, 80% of signet ring cell carcinomas with high-level microsatellite instability showed LOH compared with 14% each of mucinous and conventional adenocarcinomas. High-level microsatellite instability, CpG island methylation phenotype-positive status and BRAF V600E mutation were more often seen in signet ring cell carcinoma and mucinous adenocarcinoma compared with conventional adenocarcinoma. BRAF V600E mutation was significantly associated with CpG island methylation phenotype-positive status. Stage and BRAF V600E mutation in microsatellite-stable cases were the only variables with an affect on survival. In conclusion, chromosomal instability manifested by LOH is nearly a universal finding in signet ring cell carcinoma, including cases with high-level microsatellite instability. This may explain the aggressive behavior of signet ring cell carcinoma irrespective of high-level microsatellite-instability status. BRAF V600E mutation and CpG island methylation phenotype-positive status are similar in signet ring cell carcinoma and mucinous adenocarcinoma but more frequent when compared with conventional adenocarcinoma. In signet ring cell carcinoma, BRAF V600E mutation adversely affects survival in microsatellite-stable tumors

  6. Asparaginase II of Saccharomyces cerevisiae: selection of four mutations that cause derepressed enzyme synthesis.

    PubMed

    Kamerud, J Q; Roon, R J

    1986-01-01

    A positive selection method was used to isolate four Saccharomyces cerevisiae mutations that cause derepressed synthesis of asparaginase II. The four mutations (and1, and2, and3, and4) were neither closely linked to each other nor linked to previously characterized mutations (asp3, asp6) which cause the complete loss of asparaginase II activity. One of the new mutations (and4) was shown to be allelic to gdh-CR, a pleiotropic mutation which causes derepressed synthesis of a number of enzymes of nitrogen catabolism.

  7. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer.

    PubMed

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders; Skov, Birgit G

    2014-12-01

    Determination of epidermal growth factor receptor (EGFR) mutations has a pivotal impact on treatment of non-small-cell lung cancer (NSCLC). A standardized test has not yet been approved. So far, Sanger DNA sequencing has been widely used. Its rather low sensitivity has led to the development of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR PCR kit, Qiagen, UK; reference method). For immunohistochemistry, antibodies against exon19 deletions (clone 6B6), exon21 mutations (clone 43B2) from Cell Signaling Technology (Boston, USA) and EGFR variantIII (clone 218C9) from Dako (Copenhagen, DK) were applied. Protein expression was evaluated, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94.4-99.4%). Sensitivity of exon19 antibody was 63.2% (95% confidence interval=38.4-83.7%) and of exon21 antibody was 80.0% (95% confidence interval=44.4-97.5%). Seven exon19 and four exon21 mutations were false negatives (immunohistochemistry negative, RT-PCR positive). Two exon19 and three exon21 mutations were false positive (immunohistochemistry positive, RT-PCR negative). One false positive exon21 mutation had staining score 300. The EGFR variantIII antibody showed no correlation to EGFR mutation status determined by RT-PCR or to EGFR immunohistochemistry. High specificity of the mutation-specific antibodies was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC

  8. Algorithms and semantic infrastructure for mutation impact extraction and grounding.

    PubMed

    Laurila, Jonas B; Naderi, Nona; Witte, René; Riazanov, Alexandre; Kouznetsov, Alexandre; Baker, Christopher J O

    2010-12-02

    Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration) framework. We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.

  9. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela.

    PubMed

    Urdaneta, L; Plowe, C; Goldman, I; Lal, A A

    1999-09-01

    The present study was designed to characterize mutations in dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of Plasmodium falciparum in the Bolivar region of Venezuela, where high levels of clinical resistance to sulfadoxine-pyrimethamine (SP, Fansidar; F. Hoffman-La Roche, Basel, Switzerland) has been documented. We used a nested mutation-specific polymerase chain reaction and restriction digestion methods to measure 1) the prevalence of DHFR mutations at 16, 50, 51, 59, 108, and 164 codon positions, and 2) the prevalence of mutations in the 436, 437, 581, and 613 codon sites in DHPS gene. In the case of the DHFR gene, of the 54 parasite isolates analyzed, we detected the presence of Asn-108 and Ile-51 in 96% of the isolates and Arg-50 mutation in 64% of the isolates. Each of these mutations has been associated with high level of resistance to pyrimethamine. Only 2 samples (4%) showed the wild type Ser-108 mutation and none showed Thr-108 and Val-16 mutations that are specific for resistance to cycloguanil. In the case of DHPS gene, we found a mutation at position 437 (Gly) in 100% of the isolates and Gly-581 in 96% of the isolates. The simultaneous presence of mutations Asn-108 and Ile-51 in the DHFR gene and Gly-437 and Gly-581 in the DHPS gene in 96% of the samples tested suggested that a cumulative effect of mutations could be the major mechanism conferring high SP resistance in this area.

  10. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  11. MECP2 mutations in males

    PubMed Central

    Villard, Laurent

    2007-01-01

    Rett syndrome (RS; MIM 312750) is a severe neurological disorder affecting exclusively females. Its prevalence is about 1 in 10 000 female births, and it is a prominent cause of profound mental handicap in women. RS is caused by mutations in the X‐linked methyl CpG‐binding protein 2 (MECP2) gene. These mutations were initially thought to be lethal in males. However, MECP2 mutations are now frequently identified in mentally retarded male patients. The frequency of disease‐causing MECP2 mutations in this population is between 1.3% and 1.7%. Surprisingly, MECP2 mutations in males are responsible for a wide spectrum of neurological disorders, ranging from mild mental retardation to severe neonatal encephalopathy. The aim of this review is to describe the nature of the MECP2 mutations identified in male patients to date and their associated phenotypes. PMID:17351020

  12. A strong loss-of-function mutation in RAN1 results in constitution activation of the ethylene response pathway as well as a rosette-lethal phenotype

    Treesearch

    Keith Woeste; Joseph J. Kieber

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resuited in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a...

  13. Recurrent gene mutations in CLL.

    PubMed

    Martínez-Trillos, Alejandra; Quesada, Víctor; Villamor, Neus; Puente, Xose S; López-Otín, Carlos; Campo, Elías

    2013-01-01

    Next-generation sequencing of whole genomes and exomes in chronic lymphocytic leukemia (CLL) has provided the first comprehensive view of somatic mutations in this disease. Subsequent studies have characterized the oncogenic pathways and clinical implications of a number of these mutations. The global number of somatic mutations per case is lower than those described in solid tumors but is in agreement with previous estimates of less than one mutation per megabase in hematological neoplasms. The number and pattern of somatic mutations differ in tumors with unmutated and mutated IGHV, extending at the genomic level the clinical differences observed in these two CLL subtypes. One of the striking conclusions of these studies has been the marked genetic heterogeneity of the disease, with a relatively large number of genes recurrently mutated at low frequency and only a few genes mutated in up to 10-15 % of the patients. The mutated genes tend to cluster in different pathways that include NOTCH1 signaling, RNA splicing and processing machinery, innate inflammatory response, Wnt signaling, and DNA damage and cell cycle control, among others. These results highlight the molecular heterogeneity of CLL and may provide new biomarkers and potential therapeutic targets for the diagnosis and management of the disease.

  14. BRAF Mutations in Canine Cancers.

    PubMed

    Mochizuki, Hiroyuki; Kennedy, Katherine; Shapiro, Susan G; Breen, Matthew

    2015-01-01

    Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. Although many human cancers carry the mutated BRAF gene, this mutation has not yet been characterized in canine cancers. As human and canine cancers share molecular abnormalities, we hypothesized that BRAF gene mutations also exist in canine cancers. To test this hypothesis, we sequenced the exon 15 of BRAF, mutation hot spot of the gene, in 667 canine primary tumors and 38 control tissues. Sequencing analysis revealed that a single nucleotide T to A transversion at nucleotide 1349 occurred in 64 primary tumors (9.6%), with particularly high frequency in prostatic carcinoma (20/25, 80%) and urothelial carcinoma (30/45, 67%). This mutation results in the amino acid substitution of glutamic acid for valine at codon 450 (V450E) of canine BRAF, corresponding to the most common BRAF mutation in human cancer, V600E. The evolutional conservation of the BRAF V600E mutation highlights the importance of MAPK pathway activation in neoplasia and may offer opportunity for molecular diagnostics and targeted therapeutics for dogs bearing BRAF-mutated cancers.

  15. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  16. BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Carcinoma in Chinese Patients.

    PubMed

    Sun, Jian; Zhang, Jing; Lu, Junliang; Gao, Jie; Ren, Xinyu; Teng, Lianghong; Duan, Huanli; Lin, Yansong; Li, Xiaoyi; Zhang, Bo; Liang, Zhiyong

    2016-01-01

    The BRAF V600E and telomerase reverse transcriptase (TERT) promoter mutations have been reported in papillary thyroid carcinoma (PTC). The aim of this retrospective cross-sectional study was to add further information regarding the prevalence of the BRAF V600E and TERT promoter mutations in Chinese PTC and their clinicopathological associations. We detected the BRAF V600E mutation and TERT promoter mutations in 455 Chinese PTC patients and analyzed the association of these mutations with several clinicopathological features. The BRAF V600E mutation was detected in 343 (75.4%) of 455 cases and was significantly associated with older age (p<0.001) and conventional subtype (p = 0.003). TERT promoter mutations were detected in 19 (4.4%) of 434 PTCs and were associated with older age (p<0.001), larger tumor size (p = 0.024), and advanced TNM stage(p<0.001). Of the 19 patients that were positive for TERT promoter mutations, 18 (94.7%) also harbored the BRAF V600E mutation. We determined the prevalence and clinicopathological associations of BRAF V600E and TERT promoter mutations in Chinese PTC patients. TERT promoter mutations but not the BRAF V600E mutation were associated with more advanced TNM stage upon diagnosis.

  17. Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China.

    PubMed

    Zhao, Zhuo; Zhang, Jie; Wang, Hua; Liu, Zhi-Peng; Liu, Ming; Zhang, Yuan; Sun, Li; Zhang, Hui

    2015-09-01

    STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas.

  18. BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Carcinoma in Chinese Patients

    PubMed Central

    Gao, Jie; Ren, Xinyu; Teng, Lianghong; Duan, Huanli; Lin, Yansong; Li, Xiaoyi; Zhang, Bo; Liang, Zhiyong

    2016-01-01

    Background The BRAF V600E and telomerase reverse transcriptase (TERT) promoter mutations have been reported in papillary thyroid carcinoma (PTC). The aim of this retrospective cross-sectional study was to add further information regarding the prevalence of the BRAF V600E and TERT promoter mutations in Chinese PTC and their clinicopathological associations. Methods We detected the BRAF V600E mutation and TERT promoter mutations in 455 Chinese PTC patients and analyzed the association of these mutations with several clinicopathological features. Results The BRAF V600E mutation was detected in 343 (75.4%) of 455 cases and was significantly associated with older age (p<0.001) and conventional subtype (p = 0.003). TERT promoter mutations were detected in 19 (4.4%) of 434 PTCs and were associated with older age (p<0.001), larger tumor size (p = 0.024), and advanced TNM stage(p<0.001). Of the 19 patients that were positive for TERT promoter mutations, 18 (94.7%) also harbored the BRAF V600E mutation. Conclusion We determined the prevalence and clinicopathological associations of BRAF V600E and TERT promoter mutations in Chinese PTC patients. TERT promoter mutations but not the BRAF V600E mutation were associated with more advanced TNM stage upon diagnosis. PMID:27064992

  19. A novel assay to detect calreticulin mutations in myeloproliferative neoplasms

    PubMed Central

    Rosso, Valentina; Petiti, Jessica; Bracco, Enrico; Pedrola, Roberto; Carnuccio, Francesca; Signorino, Elisabetta; Carturan, Sonia; Calabrese, Chiara; Bot-Sartor, Giada; Ronconi, Michela; Serra, Anna; Saglio, Giuseppe; Frassoni, Francesco; Cilloni, Daniela

    2017-01-01

    The myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive (Ph+), chronic myeloid leukemia, or negative: polycythemia vera (PV) essential thrombocythemia (ET), and primary myelofibrosis (PMF). Most Ph negative cases have an activating JAK2 or MPL mutation. Recently, somatic mutations in the calreticulin gene (CALR) were detected in 56–88% of JAK2/MPL-negative patients affected by ET or PMF. The most frequent mutations in CARL gene are type-1 and 2. Currently, CALR mutations are evaluated by sanger sequencing. The evaluation of CARL mutations increases the diagnostic accuracy in patients without other molecular markers and could represent a new therapeutic target for molecular drugs. We developed a novel detection assay in order to identify type-1 and 2 CALR mutations by PNA directed PCR clamping. Seventy-five patients affected by myeloproliferative neoplasms and seven controls were examined by direct DNA sequencing and by PNA directed PCR clamping. The assay resulted to be more sensitive, specific and cheaper than sanger sequencing and it could be applied even in laboratory not equipped for more sophisticated analysis. Interestingly, we report here a case carrying both type 1 and type2 mutations in CALR gene. PMID:28031530

  20. Deleterious mutation accumulation in asexual Timema stick insects.

    PubMed

    Henry, Lee; Schwander, Tanja; Crespi, Bernard J

    2012-01-01

    Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this prediction, we estimated the accumulation rate of coding (nonsynonymous) mutations, which are expected to be deleterious, in parts of one mitochondrial (COI) and two nuclear (Actin and Hsp70) genes in six independently derived asexual lineages and related sexual species of Timema stick insects. We found signatures of increased coding mutation accumulation in all six asexual Timema and for each of the three analyzed genes, with 3.6- to 13.4-fold higher rates in the asexuals as compared with the sexuals. In addition, because coding mutations in the asexuals often resulted in considerable hydrophobicity changes at the concerned amino acid positions, coding mutations in the asexuals are likely associated with more strongly deleterious effects than in the sexuals. Our results demonstrate that deleterious mutation accumulation can differentially affect sexual and asexual lineages and support the idea that deleterious mutation accumulation plays an important role in limiting the long-term persistence of all-female lineages.

  1. Pyrosequencing for EGFR mutation detection: diagnostic accuracy and clinical implications.

    PubMed

    Sahnane, Nora; Gueli, Rossana; Tibiletti, Maria G; Bernasconi, Barbara; Stefanoli, Michele; Franzi, Francesca; Pinotti, Graziella; Capella, Carlo; Furlan, Daniela

    2013-12-01

    EGFR-activating mutations predict responsiveness to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients. Mutation screening is crucial to support therapeutic decisions and is commonly conducted using dideoxy sequencing, although its sensitivity is suboptimal in clinical settings. To evaluate the diagnostic performance of pyrosequencing and dideoxy sequencing, we examined EGFR mutation status in a retrospective cohort of 53 patients with NSCLCs clinically selected for TKI therapy and whose clinical outcome was available. Moreover, pyrosequencing quantitative results were compared with EGFR amplification data. EGFR mutations were investigated by pyrosequencing and by dideoxy sequencing. Detection rates of both methods were determined by titration assays using NCI-H1975 and HCC-827 cell lines. Increased EGFR copy number was assessed by fluorescence in situ hybridization (FISH). Pyrosequencing showed a higher detection rate than dideoxy sequencing. Tumor control rate of cases with mutant and wild-type EGFR was 86% and 29%, respectively. EGFR amplification was significantly associated with EGFR mutation and a positive correlation between high percentages of mutant alleles and clinical response to TKI was observed. We concluded that pyrosequencing is more sensitive than dideoxy sequencing in mutation screening for EGFR mutations. Detection rate of dideoxy sequencing was suboptimal when low frequencies of mutant alleles or low tumor cell contents were observed. Pyrosequencing enables quantification of mutant alleles that correlates well with increased EGFR copy number assessed by FISH. Pyrosequencing should be used in molecular diagnostic of NSCLC to appropriately select patients who are likely to benefit from TKI therapy.

  2. Germline TP53 mutations and single nucleotide polymorphisms in children.

    PubMed

    Valva, Pamela; Becker, Pablo; Streitemberger, Patricia; Lombardi, García Mercedes; Rey, Guadalupe; Guzman, Carlos A; Preciado, María Victoria

    2009-01-01

    Mutations in the gene TP53, which codifies the tumor suppressor protein p53, are found in about 50% of tumors. These mutations can occur not only at somatic level, but also in germline. Pediatric cancer patients, mostly with additional family history of malignancy, should be considered as potential TP53 germline mutation carriers. Germline TP53 mutations and polymorphisms have been widely studied to determine their relation with different tumors' pathogenesis. Our aim was to analyze the occurrence frequency of germline TP53 mutations and polymorphisms and to relate these to tumor development in a pediatric series. Peripheral blood mononuclear cell samples from 26 children with solid tumors [PST] and 21 pediatric healthy donors [HD] were analyzed for germline mutations and polymorphisms in TP53 gene spanning from exon 5 to 8 including introns 5 and 7. These PCR amplified fragments were sequenced to determine variations. A heterozygous mutation at codon 245 was found in 1/26 PST and 0/21 HD. Comparative polymorphisms distribution, at position 14181 and 14201(intron 7), between HD and PST revealed a trend of association (p= 0.07) with cancer risk. HD group disclosed a similar polymorphism distribution as published data for Caucasian and Central/South American populations. This is the first study about TP53 variant frequency and distribution in healthy individuals and cancer patients in Argentina.

  3. Autosomal Mutations Affecting Adhesion between Wing Surfaces in Drosophila Melanogaster

    PubMed Central

    Prout, M.; Damania, Z.; Soong, J.; Fristrom, D.; Fristrom, J. W.

    1997-01-01

    Integrins are evolutionarily conserved transmembrane α,β heterodimeric receptors involved in cell-to-matrix and cell-to-cell adhesions. In Drosophila the position-specific (PS) integrins mediate the formation and maintenance of junctions between muscle and epidermis and between the two epidermal wing surfaces. Besides integrins, other proteins are implicated in integrin-dependent adhesion. In Drosophila, somatic clones of mutations in PS integrin genes disrupt adhesion between wing surfaces to produce wing blisters. To identify other genes whose products function in adhesion between wing surfaces, we conducted a screen for autosomal mutations that produce blisters in somatic wing clones. We isolated 76 independent mutations in 25 complementation groups, 15 of which contain more than one allele. Chromosomal sites were determined by deficiency mapping, and genetic interactions with mutations in the β(PS) integrin gene myospheroid were investigated. Mutations in four known genes (blistered, Delta, dumpy and mastermind) were isolated. Mutations were isolated in three new genes (piopio, rhea and steamer duck) that affect myo-epidermal junctions or muscle function in embryos. Mutations in three other genes (kakapo, kiwi and moa) may also affect cell adhesion or muscle function at hatching. These new mutants provide valuable material for the study of integrin-dependent cell-to-cell adhesion. PMID:9136017

  4. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster.

    PubMed

    Prout, M; Damania, Z; Soong, J; Fristrom, D; Fristrom, J W

    1997-05-01

    Integrins are evolutionarily conserved transmembrane alpha,beta heterodimeric receptors involved in cell-to-matrix and cell-to-cell adhesions. In Drosophila the position-specific (PS) integrins mediate the formation and maintenance of junctions between muscle and epidermis and between the two epidermal wing surfaces. Besides integrins, other proteins are implicated in integrin-dependent adhesion. In Drosophila, somatic clones of mutations in PS integrin genes disrupt adhesion between wing surfaces to produce wing blisters. To identify other genes whose products function in adhesion between wing surfaces, we conducted a screen for autosomal mutations that produce blisters in somatic wing clones. We isolated 76 independent mutations in 25 complementation groups, 15 of which contain more than one allele. Chromosomal sites were determined by deficiency mapping, and genetic interactions with mutations in the beta PS integrin gene myospheroid were investigated. Mutations in four known genes (blistered, Delta, dumpy and mastermind) were isolated. Mutations were isolated in three new genes (piopio, rhea and steamer duck) that affect myo-epidermal junctions or muscle function in embryos. Mutations in three other genes (kakapo, kiwi and moa) may also affect cell adhesion or muscle function at hatching. These new mutants provide valuable material for the study of integrin-dependent cell-to-cell adhesion.

  5. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules.

    PubMed

    Karunamurthy, Arivarasan; Panebianco, Federica; J Hsiao, Susan; Vorhauer, Jennie; Nikiforova, Marina N; Chiosea, Simion; Nikiforov, Yuri E

    2016-04-01

    The EIF1AX gene mutations have been recently found in papillary thyroid carcinoma (PTC) and anaplastic thyroid carcinoma (ATC). The prevalence of these mutations in other types of thyroid cancers and benign nodules is unknown. In this study, we analyzed the occurrence of EIF1AX mutations in exons 2, 5, and 6 of the gene in a series of 266 thyroid tumors and hyperplastic nodules by either Sanger or next-generation sequencing (ThyroSeq v.2). In addition, 647 thyroid fine-needle aspiration (FNA) samples with indeterminate cytology were analyzed. Using surgically removed samples, EIF1AX mutations were detected in 3/86 (2.3%) PTC, 1/4 (25%) ATC, 0/53 follicular carcinomas, 0/12 medullary carcinomas, 2/27 (7.4%) follicular adenomas, and 1/80 (1.3%) hyperplastic nodules. Among five mutation-positive FNA samples with surgical follow-up, one nodule was PTC and others were benign follicular adenomas or hyperplastic nodules. Overall, among 33 mutations identified, A113_splice mutation at the intron 5/exon 6 splice site of EIF1AX was the most common. All four carcinomas harbored A113_splice mutation and three of them had one or more coexisting mutations, typically RAS All PTC carrying EIF1AX mutations were encapsulated follicular variants. In summary, this study shows that EIF1AX mutations occur not only in thyroid carcinomas, but also in benign nodules. The most common mutation hotspot is the A113_splice, followed by a cluster of mutations in exon 2. When found in thyroid FNA samples, EIF1AX mutations confer ~20% risk of cancer; the risk is likely to be higher in nodules carrying a A113_splice mutation and when EIF1AX coexists with RAS mutations. © 2016 Society for Endocrinology.

  6. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules

    PubMed Central

    Karunamurthy, Arivarasan; Panebianco, Federica; Hsiao, Susan J.; Vorhauer, Jennie; Nikiforova, Marina N.; Chiosea, Simion; Nikiforov, Yuri E.

    2017-01-01

    The EIF1AX gene mutations have been recently found in papillary thyroid carcinoma (PTC) and anaplastic thyroid carcinoma (ATC). The prevalence of these mutations in other types of thyroid cancers and benign nodules is unknown. In this study, we analyzed the occurence of EIF1AX mutations in exons 2, 5 and 6 of the gene in a series of 266 thyroid tumors and hyperplastic nodules by either Sanger or next-generation sequencing (ThyroSeq v.2). In addition, 647 thyroid FNA samples with indeterminate cytology were analyzed. Using surgically removed samples, EIF1AX mutations were detected in 3/86 (2.3%) PTC, 1/4 (25%) ATC, 0/53 follicular carcinomas, 0/12 medullary carcinomas, 2/27 (7.4%) follicular adenomas and 1/80 (1.3%) hyperplastic nodules. Among 5 mutation-positive FNA samples with surgical follow-up, one nodule was PTC and others were benign follicular adenomas or hyperplastic nodules. Overall, among 33 mutations identified, A113_splice mutation at the intron 5/exon 6 splice site of EIF1AX was the most common. All 4 carcinomas harbored A113_splice mutation and three of them had one or more coexisting mutations, typically RAS. All PTC carrying EIF1AX mutation were encapsulated follicular var