Alarcon, Pablo; Rushton, Jonathan; Wieland, Barbara
2013-06-01
Post-weaning multi-systemic wasting syndrome (PMWS) is a multi-factorial disease with major economic implications for the pig industry worldwide. The present study aimed to assess the economic impact of PMWS and porcine circovirus type 2 (PCV2) subclinical infections (PCV2SI) for farrow-to-finish farms and to estimate the resulting cost to the English pig industry. A disease model was built to simulate the varying proportions of pigs in a batch that get infected with PCV2 and develop either PMWS, subclinical disease (reduce growth without evident clinical signs) or remain healthy (normal growth and no clinical signs), depending on the farm level PMWS severity. This PMWS severity measure accounted for the level of post-weaning mortality, PMWS morbidity and proportion of PCV2 infected pigs observed on farms. The model generated six outcomes: infected pigs with PMWS that die (PMWS-D); infected pigs with PMWS that recover (PMWS-R); subclinical pigs that die (Sub-D); subclinical pigs that reach slaughter age (Sub-S); healthy pigs sold (H-S); and pigs, infected or non-infected by PCV2, that die due to non-PCV2 related causes (nonPCV2-D). Enterprise and partial budget analyses were used to assess the deficit/profits and the extra costs/extra benefits of a change in disease status, respectively. Results from the economic analysis at pig level were combined with the disease model's estimates of the proportion of different pigs produced at different severity scores to assess the cost of PMWS and subclinical disease at farm level, and these were then extrapolated to estimate costs at national level. The net profit for a H-S pig was £19.2. The mean loss for a PMWS-D pig was £84.1 (90% CI: 79.6-89.1), £24.5 (90% CI: 15.1-35.4) for a PMWS-R pig, £82.3 (90% CI: 78.1-87.5) for a Sub-D pig, and £8.1 (90% CI: 2.18-15.1) for a Sub-S pig. At farm level, the greatest proportion of negative economic impact was attributed to PCV2 subclinical pigs. The economic impact for the English pig industry for the year 2008, prior to the introduction of PCV2 vaccines, was estimated at £52.6 million per year (90% CI: 34.7-72.0), and approximately £88 million per year during the epidemic period. This was the first study to use empirical data to model the cost of PMWS/PCV2SI at different farm severity levels. Results from this model will be used to assess the efficiency of different control measures and to provide a decision support tool to farmers and policy makers. Copyright © 2013 Elsevier B.V. All rights reserved.
Hansen, M S; Segalés, J; Fernandes, L T; Grau-Roma, L; Bille-Hansen, V; Larsen, L E; Nielsen, O L
2013-11-01
Porcine circovirus type 2 (PCV2) infection is the cause of postweaning multisystemic wasting syndrome (PMWS). It has been speculated whether cell types permissive of replication are found in the primary lymphoid organs and whether infection of these tissues has an important role in the pathogenesis of PMWS. The aim of this study was to determine if primary lymphoid organ cells support viral replication during PCV2 infection. This was done by histopathological examination of thymus and bone marrow from pigs experimentally inoculated with PCV2 (n = 24), mock-infected pigs (n = 12), pigs naturally affected by PMWS (n = 33), and age-matched healthy control animals (n = 29). In situ hybridization (ISH) techniques were used to detect PCV2 nucleic acid irrespective of replicative status (complementary probe, CP) or to detect only the replicative form of the virus (replicative form probe, RFP). PCV2 was not detected in the experimentally PCV2-inoculated pigs or the control animals. Among the PMWS-affected pigs, 19 of 20 (95%) thymuses were positive for PCV2 by CP ISH, and 7 of 19 (37%) of these also supported viral replication. By CP ISH, PCV2 was detected in 16 of 33 (48%) bone marrow samples, and 5 of 16 (31%) of these also supported replication. The 2 ISH probes labeled the same cell types, which were histiocytes in both organs and lymphocytes in thymus. The RFP labeled fewer cells than the CP. Thus, PCV2 nucleic acids and replication were found in bone marrow and thymus of PMWS-affected pigs, but there was no evidence that primary lymphoid organ cells are major supporters of PCV2 replication.
Krakowka, Steven; Ellis, John; McNeilly, Francis; Waldner, Cheryl; Rings, D. Michael; Allan, Gordon
2007-01-01
Groups (5 to 15 per group) of gnotobiotic swine were infected oronasally with porcine circovirus type 2 (PCV2) at 3 days of age and then given 1 of 6 different commercial Mycoplasma hyopneumoniae (M. hyopneumoniae) bacterins as either a single dose (7 d of age, 1 application products) or 2 doses (7 and 21 d of age, 2 application product). Control groups received PCV2 alone (n = 9) or were infected with PCV2 and immunized twice with keyhole limpet hemocyanin (KLH) emulsified in incomplete Freund’s adjuvant (ICFA) (n = 7). Five of 7 (71%) PCV2-infected piglets immunized with KLH/ICFA developed mild or overt PMWS, whereas none of 9 piglets infected with PCV2 alone developed PMWS. Five of 12 (42%) piglets vaccinated with a commercial bacterin containing mineral oil adjuvant developed PMWS following vaccination. None of the PCV2-infected piglets in the other bacterin-vaccinated groups developed PMWS in this model of PCV2-associated disease. This difference in prevalence of PMWS in piglets given the mineral oil-adjuvanted M. hyopneumoniae bacterin and the other M. hyopneumoniae bacterin vaccination groups was statistically significant (P < 0.05). PMID:17824156
Mental Health of the Prison Medical Workers (PMWs) and Influencing Factors in Jiangxi, China.
Liu, Xiaojun; Jiang, Dongdong; Hou, Zhaoxun; He, Meikun; Lu, Yuanan; Mao, Zongfu
2017-11-26
Prison medical workers (PMWs) are critically important, but they are also vulnerable to psychological problems. Currently, there is no study on examining PMWs' mental health conditions and possible influencing factors in China. Hence, we conducted this cross-sectional survey, aiming to understand the mental health status of the PMWs and related impact factors in Jiangxi province of China. We employed the Chinese version of the Symptom Checklist-90-R (SCL-90-R) to assess the mental disorders and psychological health conditions of PMWs in Jiangxi. The t tests were used to compare the differences for the average score of SCL-90-R between the Chinese general population and targeted PMWs of this study. Multivariable logistic regression analyses were conducted to identify the main factors associated with overall detection rate of PMWs' psychological health conditions. The scores of four dimensions (somatization, obsessive-compulsive symptoms, anxiety, and paranoid ideation) were significantly higher than the Chinese national norm, and the total positive rate was 49.09% among the PMWs. Gender, marital status, age, and length of employment are identified to be the most significant predictors to affect PMWs' mental health. Positive correlations between each of the nine dimensions of the SCL-90-R have been verified. This study demonstrated for the first time that PMWs are facing mental health risk and suffering serious psychological problems with psychopathology symptoms, which has become a growing concern in China. Our current findings suggest a need for more in-depth studies on this subject going forward to validate our conclusions and also to identify more impact factors, since such studies and knowledge of PMWs' mental health and influencing factors are very limited in China.
Alarcon, Pablo; Rushton, Jonathan; Nathues, Heiko; Wieland, Barbara
2013-01-01
The study assessed the economic efficiency of different strategies for the control of post-weaning multi-systemic wasting syndrome (PMWS) and porcine circovirus type 2 subclinical infection (PCV2SI), which have a major economic impact on the pig farming industry worldwide. The control strategies investigated consisted on the combination of up to 5 different control measures. The control measures considered were: (1) PCV2 vaccination of piglets (vac); (2) ensuring age adjusted diet for growers (diets); (3) reduction of stocking density (stock); (4) improvement of biosecurity measures (bios); and (5) total depopulation and repopulation of the farm for the elimination of other major pathogens (DPRP). A model was developed to simulate 5 years production of a pig farm with a 3-weekly batch system and with 100 sows. A PMWS/PCV2SI disease and economic model, based on PMWS severity scores, was linked to the production model in order to assess disease losses. This PMWS severity scores depends on the combination post-weaning mortality, PMWS morbidity in younger pigs and proportion of PCV2 infected pigs observed on farms. The economic analysis investigated eleven different farm scenarios, depending on the number of risk factors present before the intervention. For each strategy, an investment appraisal assessed the extra costs and benefits of reducing a given PMWS severity score to the average score of a slightly affected farm. The net present value obtained for each strategy was then multiplied by the corresponding probability of success to obtain an expected value. A stochastic simulation was performed to account for uncertainty and variability. For moderately affected farms PCV2 vaccination alone was the most cost-efficient strategy, but for highly affected farms it was either PCV2 vaccination alone or in combination with biosecurity measures, with the marginal profitability between ‘vac’ and ‘vac + bios’ being small. Other strategies such as ‘diets’, ‘vac + diets’ and ‘bios + diets’ were frequently identified as the second or third best strategy. The mean expected values of the best strategy for a moderately and a highly affected farm were £14,739 and £57,648 after 5 years, respectively. This is the first study to compare economic efficiency of control strategies for PMWS and PCV2SI. The results demonstrate the economic value of PCV2 vaccination, and highlight that on highly affected farms biosecurity measures are required to achieve optimal profitability. The model developed has potential as a farm-level decision support tool for the control of this economically important syndrome. PMID:23375866
Site-specific gene transfer into the rat spinal cord by photomechanical waves
NASA Astrophysics Data System (ADS)
Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Uozumi, Yoichi; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru
2011-10-01
Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.
Hohloch, Corinna; Reiner, Gerald; Bronnert, Bastian; Willems, Hermann; Reinacher, Manfred
2015-01-01
Beside domestic pigs wild boars can also be affected by postweaning multisystemic wasting syndrome (PMWS). For the first time a nationwide survey of wild boars (n = 356) and domestic pigs (n = 340) was carried out in Germany by histopathology, immunohistochemistry (IHC) and quantitative PCR (qPCR). Whereas 102/340 domestic pigs were immunoreactive for PCV2 antigen in at least one examined tissue, only 8/356 wild boars reacted positively. Similar findings could be found in qPCR: all domestic pigs showed viral DNA in at least one tissue, while in the examined tissues of 170 wild boars PCV2-DNA was not detectable. The specimens were examined histologically for histiocytosis and depletion of lymphocytes, both typical for PMWS. Based on these findings, six wild boars and 69 domestic pigs were assumed to be affected by PMWS.
Dung, Tham Chi; Dinh, Pham Ngoc; Nam, Vu Sinh; Tan, Luong Minh; Hang, Nguyen Le Khanh; Thanh, Le Thi; Mai, Le Quynh
2014-01-01
Highly pathogenic avian influenza A(H5N1) is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1) in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1) specific antibodies in 4% of poultry market workers (PMWs). We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1) among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1) viruses that have circulated in Viet Nam since 2004. The overall seroprevalence was 6.1% (95% confidence interval: 4.6-8.3). The highest proportion (7.2%) was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3%) were slaughterers or sellers of poultry. The continued circulation and evolution of influenza A(H5N1) requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian-human transmission of influenza A(H5N1) in Viet Nam.
Dung, Tham Chi; Dinh, Pham Ngoc; Nam, Vu Sinh; Tan, Luong Minh; Hang, Nguyen Le Khanh; Thanh, Le Thi
2014-01-01
Objective Highly pathogenic avian influenza A(H5N1) is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1) in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1) specific antibodies in 4% of poultry market workers (PMWs). We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1) among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. Methods We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1) viruses that have circulated in Viet Nam since 2004. Results The overall seroprevalence was 6.1% (95% confidence interval: 4.6–8.3). The highest proportion (7.2%) was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3%) were slaughterers or sellers of poultry. Discussion The continued circulation and evolution of influenza A(H5N1) requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian–human transmission of influenza A(H5N1) in Viet Nam. PMID:25685601
ERIC Educational Resources Information Center
Kim, Minsung; Kim, Kamyoung; Lee, Sang-Il
2013-01-01
This article examines the pedagogical potential of a Web-based GIS application, Population Migration Web Service (PMWS), in which students can examine population geography in an interactive and exploratory manner. This article introduces PMWS, a tailored, unique Internet GIS application that provides functions for visualizing spatial interaction…
Neumann, E J; Dobbinson, S S A; Welch, E B M; Morris, R S
2007-12-01
Investigations were conducted to determine the cause of an acute, multi-farm outbreak of porcine respiratory disease that included diarrhoea and subsequent loss of body condition in affected pigs. A definition for post-weaning multisystemic wasting syndrome (PMWS) including both clinical and pathological features, previously developed for the pig industry in New Zealand, was applied to the current outbreak. In addition to self-reporting by owners of affected farms, local veterinarians, disease and epidemiology consultants, and animal health officials from the Ministry of Agriculture and Forestry (MAF) were involved in conducting farm visits and submission of diagnostic specimens. Pathogens known to be endemic in the pig industry in New Zealand as well as likely exotic diseases were excluded as causative agents of the outbreak. Clinical signs including dyspnoea, diarrhoea, and rapid loss of body condition were consistent with the New Zealand case definition for PMWS. Interstitial pneumonia, pulmonary oedema, generalised lymph-node enlargement, and presence of porcine circovirus type 2 (PCV2) inclusion bodies were consistently identified in affected pigs. Classical swine fever virus (CSFv), Porcine reproductive and respiratory syndrome virus (PRRSv), and Influenza virus were ruled out, using molecular and traditional virological techniques. Spread of the disease between farms was hypothesised to be facilitated by locally migrating flocks of black-backed seagulls. The original source of the disease incursion was not identified. Based on the consistent presence of circovirus-associated lesions in lymphoid tissues in combination with generalised enlargement of lymph nodes, histiocytic interstitial pneumonia, clinical wasting, and poor response to antibiotic therapy, a diagnosis of PMWS was made. PMWS should be considered in the differential diagnoses of sudden onset of respiratory dyspnoea, diarrhoea, and rapid loss of body condition in young pigs in New Zealand pig herds.
Alarcon, Pablo; Velasova, Martina; Werling, Dirk; Stärk, Katharina D C; Chang, Yu-Mei; Nevel, Amanda; Pfeiffer, Dirk U; Wieland, Barbara
2011-01-01
Post-weaning multi-systemic wasting syndrome (PMWS) causes major economic losses for the English pig industry and severity of clinical signs and economic impact vary considerably between affected farms. We present here a novel approach to quantify severity of PMWS based on morbidity and mortality data and presence of porcine circovirus type 2 (PCV2). In 2008-2009, 147 pig farms across England, non-vaccinating for PCV2, were enrolled in a cross-sectional study. Factor analysis was used to generate variables representing biologically meaningful aspects of variation among qualitative and quantitative morbidity variables. Together with other known variables linked to PMWS, the resulting factors were included in a principal component analysis (PCA) to derive an algorithm for PMWS severity. Factor analysis resulted in two factors: Morbidity Factor 1 (MF1) representing mainly weaner and grower morbidity, and Morbidity Factor 2 (MF2) which mainly reflects variation in finisher morbidity. This indicates that farms either had high morbidity mainly in weaners/growers or mainly in finishers. Subsequent PCA resulted in the extraction of one component representing variation in MF1, post-weaning mortality and percentage of PCV2 PCR positive animals. Component scores were normalised to a value range from 0 to 10 and farms classified into: non or slightly affected farms with a score <4, moderately affected farms with scores 4-6.5 and highly affected farms with a score >6.5. The identified farm level PMWS severities will be used to identify risk factors related to these, to assess the efficacy of PCV2 vaccination and investigating the economic impact of potential control measures. Copyright © 2010 Elsevier B.V. All rights reserved.
Genetic characterization and phylogenetic analysis of porcine circovirus type 2 (PCV2) in Serbia.
Savic, Bozidar; Milicevic, Vesna; Jakic-Dimic, Dobrila; Bojkovski, Jovan; Prodanovic, Radisa; Kureljusic, Branislav; Potkonjak, Aleksandar; Savic, Borivoje
2012-01-01
Porcine circovirus type 2 (PCV2) is the main causative agent of postweaning multisystemic wasting syndrome (PMWS). To characterize and determine the genetic diversity of PCV2 in the porcine population of Serbia, nucleotide and deduced amino acid sequences of the open reading frame 2 (ORF2) of PCV2 collected from the tissues of pigs that either had died as a result of PMWS or did not exhibit disease symptoms were analyzed. Sequencing and phylogenetic analysis showed considerable diversity among PCV2 ORF2 sequences and the existence of two main PCV2 genotypes, PCV2b and PCV2a, with at least three clusters, 1A/B, 1C and 2D. In order to provide further proof that the 1C strain is circulating in the porcine population, the whole viral genome of one PCV2 isolate was sequenced. Genotyping and phylogenetic analysis using the entire viral genome sequences confirmed that there was a PMWS-associated 1C strain emerging in Serbia. Our analysis also showed that PCV2b is dominant in the porcine population, and that it is exclusively associated with PMWS occurrences in the country. These data constitute a useful basis for further epidemiological studies regarding the heterogeneity of PCV2 strains on the European continent.
Krakowka, S; Ellis, J A; Meehan, B; Kennedy, S; McNeilly, F; Allan, G
2000-05-01
One-day-old gnotobiotic piglets were inoculated intranasally with in vitro passaged porcine circovirus 1 (PCV-1), PCV-2, and porcine parvovirus (PPV) alone or in combination (PCV-1/PCV-2, PCV-1/PPV, and PCV-2/PPV). Piglets were evaluated for 1) the development of porcine postweaning multisystemic wasting syndrome (PMWS), 2) distribution of viral antigens by immunochemistry, and 3) viremia and the presence of viral DNA in nasal and ocular secretions and feces. All single agent-infected piglets and piglets infected with PCV-1/PCV-2 or PCV-1/PPV were clinically asymptomatic. They were transiently viremic and seroconverted to homologous virus(es). At termination of the study on postinfection day (PID) 35, microscopic lesions were restricted to focal inflammatory cell infiltrates in livers and myocardia. One piglet given PCV-1/PPV was PPV viremic for 2 weeks after infection and had lymphangiectasia of the spiral and descending colon associated with granulomatous inflammation. All four PCV-2/PPV-inoculated piglets developed PMWS, characterized by sudden onset of depression and anorexia, icterus, and submucosal edema. One piglet became moribund on PID 27, and the remaining three piglets were euthanatized between PID 27 and PID 30 because of severe disease. Lymph nodes were small and the livers were mottled. Disseminated angiocentric granulomatous inflammation was present in all tissues examined except the brain. Multiple lightly basophilic intracytoplasmic inclusion bodies were identified in macrophages and histiocytes. PCV-2 antigen was widely distributed within macrophages; PPV antigen was sparse. Hepatocellular necrosis and bile retention were prominent. PCV-2 DNA was identified in ocular, fecal, and nasal secretions. Terminal sera contained antibodies to PPV (4/4) and PCV-2 (3/ 4). Production of PMWS in gnotobiotic swine appears to require PCV-2 and additional infectious agents such as PPV for full disease expression in gnotobiotic piglets.
Retrospective serological survey of Porcine circovirus-2 infection in Mexico
Ramírez-Mendoza, Humberto; Castillo-Juárez, Héctor; Hernández, Jesús; Correa, Pablo; Segalés, Joaquim
2009-01-01
Postweaning multisystemic wasting syndrome (PMWS) is considered a multifactorial emerging disease of which Porcine circovirus-2 (PCV-2) is the necessary infectious cause. However, retrospective studies have shown that PMWS is not a new disease and that PCV-2 has been circulating in pig farms for years. Most of these studies were performed in Europe and Asia; only a few were performed in North or South America. A PCV-2 retrospective serological survey was carried out with 659 serum samples collected from pigs in Mexico between 1972 and 2000. Serological analyses were performed with an immunoperoxidase monolayer assay (IPMA). The overall prevalence of PCV-2 antibodies was 59% (387/659); the prevalence was 27% (24/90) for the period from 1972–1979; 44% (74/169) from 1980–1989, and 72% (289/400) from 1990–2000. Antibodies to PCV-2 were detected in at least 1 pig from all tested years since 1973. This study shows evidence of enzootic PCV-2 infection in Mexico for many years before the first description of PMWS in the country (in 2001), further supporting results obtained in other parts of the world. To date, this study provides the earliest evidence of PCV-2 infection in the North and South American continents. PMID:19337391
McMahon, Kenneth J; Minihan, Donal; Campion, Eva M; Loughran, Sinéad T; Allan, Gordon; McNeilly, Francis; Walls, Dermot
2006-08-25
Three species of porcine lymphotropic herpesviruses (PLHVs) have been described but there are few reports on the distribution and prevalence of these viruses in domestic pigs. We aimed to determine the PLHV status of Irish commercial pig herds, and to this end spleens taken from 110 healthy adult pigs sourced from 22 geographically distributed farms in Ireland were analysed for PLHV DNA using novel species-specific polymerase chain reaction assays. We now report that PLHV infection is widespread in the Irish domestic pig population and that PLHV-1 infections are most common (74% of all animals tested), followed by PLHV-3 and PLHV-2 (45% and 21%, respectively) and that infections with multiple PLHV species were frequently detected. As the PLHVs are lymphotrophic agents, we also investigated if co-infection with PLHVs was linked to the development of porcine circovirus-2 (PCV2)-associated postweaning mutlisystemic wasting syndrome (PMWS), a disease characterised in part by histopathological lesions in lymphoid tissues. We examined the PLHV infection status of young animals on two farms that were experiencing outbreaks of PMWS. Overall the findings are further evidence of the widespread prevalence of PLHVs in domestic pigs and are a first indication that co-infection with PCV2 and PLHVs does not lead to the development of PMWS in the absence of other cofactors.
The emergence of porcine circovirus 2b genotype (PCV-2b) in swine in Canada
Gagnon, Carl A.; Tremblay, Donald; Tijssen, Peter; Venne, Marie-Hélène; Houde, Alain; Elahi, Seyyed Mehdy
2007-01-01
Since late 2004, the swine industry in the province of Quebec has experienced a significant increase in death rate related to postweaning multisystemic wasting syndrome (PMWS). To explain this phenomenon, 2 hypotheses were formulated: 1) the presence of a 2nd pathogen could be exacerbating the porcine circovirus 2 (PCV-2) infection, or 2) a new and more virulent PCV-2 strain could be infecting swine. In 2005, 13 PMWS cases were submitted to the Quebec provincial diagnostic laboratory and PCV-2 was the only virus that could be found consistently by PCR in all 13 samples. The PCR detection results obtained for other viruses revealed the following: 61.5% were positive for porcine reproductive and respiratory syndrome virus, 30.8% for swine influenza virus, 15.4% for porcine parvovirus, 69.2% for swine torque teno virus (swTTV), 38.5% for swine hepatitis E virus (swHEV) and 84.6% for Mycoplasma hyorhinis; transmissible gastroenteritis virus and porcine respiratory coronavirus (TGEV/PRCV) was not detected. Sequences of the entire genome revealed that these PCV-2 strains belonged to a genotype (named PCV-2b) that has never been reported in Canada. Further sequence analyses on 83 other Canadian PCV-2 positive cases submitted to the provincial diagnostic laboratory during years 2005 and 2006 showed that 79.5% of the viral sequences obtained clustered in the PCV-2b genotype. The appearance of the PCV-2b genotype in Canada may explain the death rate increase related to PMWS, but this relationship has to be confirmed. PMID:17824323
Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.
Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang
2014-07-01
Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.
Yang, Kun; Li, Wentao; Niu, Huihui; Yan, Weidong; Liu, Xiaoli; Wang, Yang; Cheng, Shuang; Ku, Xugang; He, Qigai
2012-11-21
Post-weaning multisystemic wasting syndrome (PMWS) associated with PCV2 is one of the most costly diseases currently faced by the swine industry. The development of effective vaccines against PCV2 infection has been accepted as an important strategy in the prophylaxis of PMWS. In the present study, a PK-15 cell-adapted formalin-inactivated prototype vaccine candidate was prepared using a strain of PCV2 from China. Inactivation of the virus was accomplished using a standard formalin inactivation protocol. The protective properties of the inactivated PCV2 vaccine were evaluated in piglets. Ten 28-day-old pigs were randomly assigned to two groups, each with five. Group 1 was vaccinated intramuscularly with the inactivated virus preparation; Group 2 received sterile PBS as a placebo. By 28 days post-vaccination (DPV), Groups 1 and 2 were challenged intranasally and intramuscularly with 5 × 107 TCID50 of a virulent PCV2 isolate. The vaccinated pigs seroconverted to PCV2 and had high levels of serum antibodies to PCV2 at 28 days after vaccination, whereas the control pigs remained seronegative. No significant signs of clinical disease were recorded following the challenge with PCV2, but moderate amounts of PCV2 antigen were detected in most lymphoid organs of the control pigs. PCV2 was detected in two out of the five vaccinated pigs. Furthermore, pathological lesions and viremia were milder in the vaccinated group. The obtained results indicate that the inactivated PCV2 virus vaccine with an oil adjuvant induce an immunological response in pigs that appears to provide protection from infection with PCV2. The vaccine, therefore, may have the potential to serve as a vaccine aimed to protect pigs from developing PMWS.
Discovery of Antinuclear Antibodies in Pigs Infected with Porcine Circovirus Type 2
USDA-ARS?s Scientific Manuscript database
Introduction. Porcine circovirus type 2 (PCV2) causes post-weaning-multisystemic-wasting-syndrome (PMWS), a swine disease first observed in Canada in 1991 (1). It is characterized by general wasting, respiratory disease, jaundice and pallor in young pigs resulting in production losses and variable...
Evidence for porcine parvovirus type 4 (PPV4) in Brazilian swine herds
USDA-ARS?s Scientific Manuscript database
Introduction Porcine bocaviruses were recently identified among swine co-infected with PCV2 (2,3) and suffering an acute-onset disease of high mortality in the United States, in pigs with PMWS in Sweden (1), and in pigs with reproductive and neurological disease in China (4). Parvoviruses are smal...
Rapid detection of porcine circovirus type 2 using a TaqMan-based real-time PCR.
Zhao, Kai; Han, Fangting; Zou, Yong; Zhu, Lianlong; Li, Chunhua; Xu, Yan; Zhang, Chunling; Tan, Furong; Wang, Jinbin; Tao, Shiru; He, Xizhong; Zhou, Zongqing; Tang, Xueming
2010-12-31
Porcine circovirus type 2 (PCV2) and the associated disease postweaning multisystemic wasting syndrome (PMWS) have caused heavy losses in global agriculture in recent decades. Rapid detection of PCV2 is very important for the effective prophylaxis and treatment of PMWS. To establish a sensitive, specific assay for the detection and quantitation of PCV2, we designed and synthesized specific primers and a probe in the open reading frame 2. The assay had a wide dynamic range with excellent linearity and reliable reproducibility, and detected between 102 and 1010 copies of the genomic DNA per reaction. The coefficient of variation for Ct values varied from 0.59% to 1.05% in the same assay and from 1.9% to 4.2% in 10 different assays. The assay did not cross-react with porcine circovirus type 1, porcine reproductive and respiratory, porcine epidemic diarrhea, transmissible gastroenteritis of pigs and rotavirus. The limits of detection and quantitation were 10 and 100 copies, respectively. Using the established real-time PCR system, 39 of the 40 samples we tested were detected as positive.
Liu, Q; Wang, L; Willson, P; Babiuk, L A
2000-09-01
A competitive PCR (cPCR) assay was developed for monitoring porcine circovirus (PCV) DNA in serum samples from piglets. The cPCR was based on competitive coamplification of a 502- or 506-bp region of the PCV type 1 (PCV1) or PCV2 ORF2, respectively, with a known concentration of competitor DNA, which produced a 761- or 765-bp fragment, respectively. The cPCR was validated by quantification of a known amount of PCV wild-type plasmids. We also used this technique to determine PCV genome copy numbers in infected cells. Furthermore, we measured PCV DNA loads in clinical samples. More than 50% of clinically healthy piglets could harbor both types of PCV. While PCV1 was detected in only 3 of 16 pigs with postweaning multisystemic wasting syndrome (PMWS), all the sick piglets contained PCV2. A comparison of the PCV2 DNA loads of healthy and sick animals revealed a significant difference, indicating that the development of PMWS may require a certain amount of PCV2.
Rogers, A J; Huang, Y-W; Heffron, C L; Opriessnig, T; Patterson, A R; Meng, X-J
2017-12-01
The family Anelloviridae includes a number of viruses infecting humans (Torque teno viruses, TTV) and other animals including swine (Torque teno sus viruses, TTSuV). Two genetically distinct TTSuV species have been identified from swine thus far (TTSuV1 and TTSuVk2), although their definitive association with disease remains debatable. In 2012, a novel TTSuV species was identified from commercial swine serum and classified in the genus Kappatorquevirus as TTSuVk2b. The other Kappatorquevirus species, TTSuVk2a, has been associated with post-weaning multisystemic wasting syndrome (PMWS) when coinfected with porcine circovirus type 2 (PCV2). Therefore, in this study, we initially amplified a portion of TTSuVk2b ORF1 and, subsequently, assessed the molecular prevalence of the virus in pigs in the United States. A total of 127 serum and 115 tissue samples were obtained from pigs with PMWS or mulberry heart disease (MHD) in six states and tested by PCR for the presence of TTSuVk2b DNA. Approximately 27.6% of the serum and 21.7% of tissue samples tested positive for TTSuVk2b DNA, and the positive products were confirmed by sequencing. However, we did not detect a correlation between TTSuVk2b infection and PMWS or MHD. The near full-length genomic sequence of US TTSuVk2b was determined, and sequence analysis revealed that the US TTSuVk2b isolates were 95% identical to the TTSuVk2b isolate from Spain, with most of the variations clustering in ORF1. We conclude that the novel TTSuVk2b species is present in pigs in the United States and its potential association with a disease warrants further investigation. © 2016 Blackwell Verlag GmbH.
Cruz, Taís Fukuta; Magro, Angelo José; de Castro, Alessandra M M G; Pedraza-Ordoñez, Francisco J; Tsunemi, Miriam Harumi; Perahia, David; Araujo, João Pessoa
2018-06-02
Porcine circovirus 2 (PCV2) is an icosahedral, non-enveloped, and single-stranded circular DNA virus that belongs to the family Circoviridae, genus Circovirus, and is responsible for a complex of different diseases defined as porcine circovirus diseases (PCVDs). These diseases - including postweaning multisystemic wasting syndrome (PMWS), enteric disease, respiratory disease, porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure - are responsible for large economic losses in the pig industry. After serial passages in swine testicle (ST) cells of a wild-type virus isolated from an animal with PMWS, we identified three PCV2b viruses with capsid protein (known as Cap protein) cumulative mutations, including two novel mutants. The mutant viruses were introduced into new ST cell cultures for reisolation and showed, in comparison to the wild-type PCV2b, remarkable viral replication efficiency (> 10 11 DNA copies/ml) and cell death via necrosis, which were clearly related to the accretion of capsid protein mutations. The analysis of a Cap protein/capsid model showed that the mutated residues were located in solvent-accessible positions on the external PCV2b surface. Additionally, the mutated residues were found in linear epitopes and participated in pockets on the capsid surface, indicating that these residues could also be involved in antibody recognition. Taking into account the likely natural emergence of PCV2b variants, it is possible to consider that the results of this work increase knowledge of Circovirus biology and could help to prevent future serious cases of vaccine failure that could lead to heavy losses to the swine industry. Copyright © 2018 Elsevier B.V. All rights reserved.
Seroprevalence of porcine circovirus type 2 in swine populations in Canada and Costa Rica
Liu, Qiang; Wang, Li; Willson, Philip; O'Connor, Brendan; Keenliside, Julia; Chirino-Trejo, Manuel; Meléndez, Ronald; Babiuk, Lorne
2002-01-01
Porcine circovirus (PCV) was recently divided into 2 antigenically distinct types that differ (65% amino acid identity) in the protein encoded by open reading frame 2 (ORF2). Porcine circovirus 1 is apparently non-pathogenic and, in contrast, PCV2 is associated with porcine multisystemic wasting syndrome (PMWS). Our objective was to determine the extent of exposure of normal pigs in Canada and Costa Rica to PCV2. Recombinant DNA techniques were used to produce an antigen from ORF2 of PCV2 that was suitable for the detection of antibody in swine sera. The presence of PCV2 nucleotide sequences was detected using polymerase chain reaction (PCR) techniques. Using these tests, specific antibody and nucleotide sequences were demonstrated in sera from a cohort of pigs during a PMWS outbreak. Antibody was detected in normal, healthy hogs slaughtered in Canada (82.4% of 386) and in Costa Rica (14.6% of 322). This is the first report indicating the presence of PCV2 in Latin America. More than 50% of these sera also contained PCV2 nucleotide sequence. Although these hogs were healthy when slaughtered, they were infected with PCV2 and may have previously been ill. The widespread occurrence of PCV2 in swine suggests that this virus is adapted to replication in porcine tissue. PMID:12418777
Global Status of Porcine circovirus Type 2 and Its Associated Diseases in Sub-Saharan Africa
Iweriebor, Benson C.; Okoh, Anthony I.; Obi, Larry C.
2017-01-01
Globally, Porcine circovirus type 2 (PCV2) is a recognized viral pathogen of great economic value in pig farming. It is the major cause of ravaging postweaning multisystemic wasting syndrome (PMWS) and many other disease syndromes generally regarded as Porcine circovirus associated diseases (PCVAD) in Europe. PCV2 infections, specifically PMWS, had impacted huge economic loss on swine production at different regions of the world. It has been studied and reported at different parts of the globe including: North and South America, Europe, Asia, Oceania, Middle East, and the Caribbean. However, till date, this virus and its associated diseases have been grossly understudied in sub-Sahara African region and the entire continent at large. Two out of forty-nine, representing just about 4% of countries that make up sub-Sahara Africa presently, have limited records on reported cases and occurrence of the viral pathogen despite the ubiquitous nature of the virus. This review presents an overview of the discovery of Porcine circovirus and its associated diseases in global pig herds and emphasizes the latest trends in PCV2 vaccines and antiviral drugs development and the information gaps that exist on the occurrence of this important viral pathogen in swine herds of sub-Saharan Africa countries. This will serve as wake-up call for immediate and relevant actions by stakeholders in the region. PMID:28386278
PCV2 on the spot-A new method for the detection of single porcine circovirus type 2 secreting cells.
Fossum, Caroline; Hjertner, Bernt; Lövgren, Tanja; Fuxler, Lisbeth; Charerntantanakul, Wasin; Wallgren, Per
2014-02-01
A porcine circovirus type 2 SPOT (PCV2-SPOT) assay was established to enumerate virus-secreting lymphocytes obtained from naturally infected pigs. The assay is based on the same principle as general ELISPOT assays but instead of detecting cytokine or immunoglobulin secretion, PCV2 particles are immobilized and detected as filter spots. The method was used to evaluate the influence of various cell activators on the PCV2 secretion in vitro and was also applied to study the PCV2 secretion by lymphocytes obtained from pigs in healthy herds and in a herd afflicted by postweaning multisystemic wasting disease (PMWS). Peripheral blood mononuclear cells (PBMCs) obtained from a pig with severe PMWS produced PCV2-SPOTs spontaneously whereas PBMCs obtained from pigs infected subclinically only generated PCV2-SPOTs upon in vitro stimulation. The PCV2 secretion potential was related to the PCV2 DNA content in the PBMCs as determined by two PCV2 real-time PCR assays, developed to differentiate between Swedish PCV2 genogroups 1 (PCV2a) and 3 (PCV2b). Besides the current application these qPCRs could simplify future epidemiological studies and allow genogroup detection/quantitation in dual infection experiments and similar studies. The developed PCV2-SPOT assay offers a semi-quantitative approach to evaluate the potential of PCV2-infected porcine cells to release PCV2 viral particles as well as a system to evaluate the ability of different cell types or compounds to affect PCV2 replication and secretion. Copyright © 2013 Elsevier B.V. All rights reserved.
Fu, Qiang; Hou, Linbing; Xiao, Pingping; Guo, Chunhe; Chen, Yaosheng; Liu, Xiaohong
2014-12-01
Porcine circovirus type 2 (PCV2) is the primary etiological agent of postweaning multisystemic wasting syndrome (PMWS). CD44 is a widely expressed class I transmembrane glycoprotein implicated in immunological and inflammatory responses. In previous studies, the role of CD44 in host defense against microorganism infection remains controversial. The role of CD44 in host defense against PCV2 infection has never been studied before. In this study, we investigated the role of CD44 in the development of pneumonia induced by PCV2 in mice model. Upon infection, CD44 mRNA level in lung tissue was upregulated, and we confirmed a detrimental role of CD44 in host defense against PCV2 infection. The results demonstrated that CD44 deficiency could result in decreased proinflammatory cytokine production in lung induced by PCV2 in mice, suggesting a previously unrecognized role for CD44 in the development of pneumonia response to PCV2 infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsunoi, Yasuyuki; Sato, Shunichi; Kawauchi, Satoko; Akutsu, Yusuke; Miyagawa, Yoshihiro; Araki, Koji; Shiotani, Akihiro; Terakawa, Mitsuhiro
2015-11-01
For efficient and side effects-free pharmacological treatment, we here propose a theranostic system that enables transvascular drug delivery by photomechanical waves (PMWs) and photoacoustic (PA) imaging of the drug distribution; both functions are based on nanosecond laser pulses and can therefore be integrated in one system. Through optical fibers arranged around an ultrasound sensor, low-energy and high-energy nanosecond light pulses were transmitted respectively for PA imaging and PMW-based drug delivery by temporal switching. With the system, we delivered a test drug (Evans blue) to tumors in mice and visualized distributions of both the blood vessels and drug in the tissue in vivo, showing the validity of the system.
Dong, Bo; Feng, Jing; Lin, Hai; Li, Lanxiang; Su, Dingding; Tu, Di; Zhu, Weijuan; Yang, Qing; Ren, Xiaofeng
2013-11-19
Porcine circovirus type 2 (PCV2) is associated with many kinds of diseases including postweaning multisystemic wasting syndrome (PMWS). It affects the immune system of swine and causes huge epidemic losses every year. In our previous study, we provided evidence that DNA plasmid bearing porcine IL-15 (pVAX-pIL-15) might serve as an immune enhancer for DNA plasmid encoding porcine reproductive and respiratory syndrome virus GP5 gene. In this study, PCV2 open reading frame (ORF)2 gene was cloned into the eukaryotic expression vector pVAX, resulting in the plasmid pVAX-PCV2-ORF2. Transient expression of the plasmid in BHK-21 cells could be detected using immunofluorescence assay. Experimental mice were divided into 5 groups and immunized with PBS, pVAX, pVAX-pIL-15, pVAX-PCV2-ORF2 or pVAX-pIL-15 plus pVAX-PCV2-ORF2. The results showed that the mice co-inoculated with pVAX-PCV2-ORF2 plus pVAX-pIL-15 had higher humoral and cellular immune responses than the others. In addition, DNA plasmid bearing PCV2 ORF2 gene had a protective effect against challenge with PCV2 in mice which could be promoted with the utilization of pIL-15. Copyright © 2013 Elsevier Ltd. All rights reserved.
On PMWs and two-stroke engines.
Bell, W.; Yassi, A.; Cole, D. C.
1998-01-01
On Saturday, August 24, 1996, a 40-year-old man from Edmonton was riding a personal motorized watercraft (PMW, a Seadoo or Jet Ski type of machine) on Shuswap Lake, in south-central British Columbia. He was approximately 200 m offshore. The man motioned to his sister, who was riding another PMW, to follow him across the lake. She did so, but as the turned her head to check for other boat traffic, her brother suddenly slowed down and her machine rode right up on his back, crushing him against his handlebars. His sister, a nurse, held her brother's head above water until help arrived but, 48 minutes after the moment of impact, he was pronounced dead at the Shuswap Lake General Hospital. He had suffered a ruptured aorta. PMID:9789655
Marivaux, Laurent; Adnet, Sylvain; Altamirano-Sierra, Ali J; Pujos, François; Ramdarshan, Anusha; Salas-Gismondi, Rodolfo; Tejada-Lara, Julia V; Antoine, Pierre-Olivier
2016-11-01
Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance. Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have allowed for the discovery of an early late Miocene (ca. 11 Ma; Mayoan SALMA) fossil primate-bearing locality (CTA-43; Pebas Formation). In this study, we analyze the primate material, which consists of five isolated teeth documenting two distinct Cebidae: Cebus sp., a medium-sized capuchin (Cebinae), and Cebuella sp., a tiny marmoset (Callitrichinae). Although limited, this new fossil material of platyrrhines contributes to documenting the post-Laventan evolutionary history of cebids, and besides testifies to the earliest occurrences of the modern Cebuella and Cebus/Sapajus lineages in the Neotropics. Regarding the evolutionary history of callitrichine marmosets, the discovery of an 11 Ma-old fossil representative of the modern Cebuella pushes back by at least 6 Ma the age of the Mico/Cebuella divergence currently proposed by molecular biologists (i.e., ca. 4.5 Ma). This also extends back to > 11 Ma BP the divergence between Callithrix and the common ancestor (CA) of Mico/Cebuella, as well as the divergence between the CA of marmosets and Callimico (Goeldi's callitrichine). This discovery from Peruvian Amazonia implies a deep evolutionary root of the Cebuella lineage in the northwestern part of South America (the modern western Amazon basin), slightly before the recession of the Pebas mega-wetland system (PMWS), ca. 10.5 Ma, and well-before the subsequent establishment of the Amazon drainage system (ca. 9-7 Ma). During the late middle/early late Miocene interval, the PMWS was seemingly not a limiting factor for dispersals and widespread distribution of terrestrial mammals, but it was also likely a source of diversification via a complex patchwork of submerged/emerged lands varying through time. © 2016 Wiley Periodicals, Inc.
Systemic toxoplasmosis and concurrent porcine circovirus-2 infection in a pig.
Klein, S; Wendt, M; Baumgärtner, W; Wohlsein, P
2010-01-01
Systemic toxoplasmosis and concurrent infection with porcine circovirus-2 (PCV-2) was diagnosed in a fattening pig. Clinical examination of the herd showed that up to 30% of the pigs of this weight group suffered from severe respiratory signs including sneezing and coughing, with a mortality rate of up to 5%. Gross necropsy examination revealed severe interstitial pneumonia and generalized lymphadenopathy. On microscopical examination there was necrotizing inflammation of the lung, adrenal glands and lymph nodes, associated with lymphoid depletion, cytoplasmic basophilic botryoid inclusion bodies and protozoal microorganisms. Infection with Toxoplasma gondii was confirmed by immunohistochemistry (IHC). Polymerase chain reaction analysis, in-situ hybridization and IHC confirmed systemic PCV-2 infection. These findings, associated with the respiratory signs and lesions in lymphoid tissues, are characteristic for post-weaning multisystemic wasting syndrome (PMWS). In this case, immunosuppression by PCV-2 may have triggered systemic toxoplasmosis, or immune stimulation caused by coinfection with T. gondii may have caused extensive replication of PCV-2. Copyright 2009 Elsevier Ltd. All rights reserved.
Guo, Long J; Lu, Yue H; Huang, Li P; Wei, Yan W; Wu, Hong L; Liu, Chang M
2011-06-10
Porcine circovirus type 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome (PMWS), is a serious economic problem in the swine industry. Different genotypes (PCV2a, PCV2b and PCV2d) of the virus are present in the clinical cases in China, and it is necessary to elucidate the pathogenic difference among different genotypes of PCV2. In this study, four strains of different genotypes were isolated, two were ordinary strains and another two were mutation strains, which there are one and two amino acids elongation in the capsid protein (Cap) of PCV2, respectively. Representative strains of different genotypes of the virus were constructed by infectious molecular clone and biological characterization of the rescued viruses were identified in vitro. Four PCV2 isolates (PCV2a/CL, PCV2b/YJ, PCV2b/JF and PCV2d/BDH) of different genotypes were isolated from the clinical cases of PMWS in China. Four infectious clones of PCV2 were constructed and the rescued viruses were harvested after transfection into PK15 cells. The rescued viruses were verified by nucleotide sequence analysis, morphology of the viruses and immunoperoxidase monolayer assay (IPMA). The rescued viruses propagated stably after consecutive incubation for more than ten passages, and virus propagation reached its peak 72h post infection (PI), and the virus titers were up to 10⁵·⁷ TCID₅₀/ml. By using neutralizing 1D2 monoclonal antibody (mAb) of PCV2, the antigen capture ELISA showed that only the PCV2a/rCL and PCV2b/rJF strains has immunoreactivity with the 1D2 mAb, however, another two rescued strains (PCV2b/rYJ and PCV2d/rBDH) do not, which indicated the antigenic difference among the rescued viruses of different genotypes. In addition, here is the first report of obtaining the newly emerging PCV2 with mutation in vitro by infectious molecular clone technology. Conclusions drawn from this study show that PCV2 has prevailing differences in genomic and ORF2 gene length and antigen in swine herds in China. Four representative clones for different genotypes were constructed and rescued, which will facilitate further studies on the pathogenic differences resulting from different subtypes of PCV2.
2011-01-01
Background Porcine circovirus type 2 (PCV2) is believed to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS). It is supposed that capsid protein of PCV may contribute to replication control via interaction between Cap and Rep in the nucleoplasm. In this study, we described the construction and in vitro characterization of NLS-exchanged PCV DNA clones based on a PMWS-associated PCV2b isolate from China to determine the role of ORF2 NLS in PCV replication. Results The PCV1, PCV2, PCV2-NLS1 and PCV1-NLS2 DNA clone were generated by ligating a copy of respective genome in tandem with a partial duplication. The PCV2-NLS1 and PCV1-NLS2 DNA clone contained a chimeric genome in which the ORF2 NLS was exchanged. The four DNA clones were all confirmed to be infectious in vitro when transfected into PK-15 cells, as PCV capsid protein were expressed in approximately 10-20% of the transfected cells. The in vitro growth characteristics of the DNA clones were then determined and compared. All the recovered progeny viruses gave rise to increasing infectious titers during passages and were genetically stable by genomic sequencing. The chimeric PCV1-NLS2 and PCV2-NLS1 viruses had the final titers of about 104.2 and 103.8 TCID50/ml, which were significantly lower than that of PCV1 and PCV2 (105.6 and 105.0 TCID50/ml, respectively). When the ORF2 NLS exchanged, the mutant PCV2 (PCV2-NLS1) still replicated less efficiently and showed lower infectious titer than did PCV1 mutant (PCV1-NLS2), which was consistent with the distinction between wild type PCV1 and PCV2. Conclusions Recovery of the chimeiric PCV1-NLS2 and PCV2-NLS1 progeny viruses indicate that the nuclear localization signal sequence of capsid protein are functionally exchangeable between PCV1 and PCV2 with respect to the role of nuclear importing and propagation. The findings also reveal that ORF2 NLS play an accessory role in the replication of PCV. However, we found that ORF2 NLS was not responsible for the distinction of in vitro growth characteristic between PCV1 and PCV2. Further studies are required to determine the in vivo viral replication and pathogenicity of the NLS chimeric DNA clones. PMID:21733152
NASA Astrophysics Data System (ADS)
Ando, Takahiro; Sato, Shunichi; Terakawa, Mitsuhiro; Ashida, Hiroshi; Obara, Minoru
2010-02-01
Laser-based gene delivery is attractive as a new method for topical gene therapy because of the high spatial controllability of laser energy. Previously, we demonstrated that an exogenous gene can be transferred to cells both in vitro and in vivo by applying nanosecond pulsed laser-induced stress waves (LISWs) or photomechanical waves (PMWs). In this study, we investigated effects of laser parameters on the propagation characteristics of LISWs in soft tissue phantoms and depth-dependent properties of gene transfection. Temporal pressure profiles of LISWs were measured with a hydrophone, showing that with a larger laser spot diameter, LISWs can be propagated more efficiently in phantoms with keeping flat wavefront. Phantoms with various thicknesses were placed on the rat dorsal skin that had been injected with plasmid DNA coding for reporter gene, and LISWs were applied from the top of the phantom. Efficient gene expression was observed in the rat skin that had interacted with LISWs propagating through a 15-mm-thick phantom. These results would be useful to determine appropriate laser parameters for gene delivery to deep-located tissue by transcutaneous application of LISWs.
Prevalence and genetic variation of porcine circovirus type 2 in Taiwan from 2001 to 2011.
Wang, Chun; Pang, Victor Fei; Lee, Fan; Huang, Tien-Shine; Lee, Shu-Hwae; Lin, Yu-Ju; Lin, Yeou-Liang; Lai, Shiow-Suey; Jeng, Chian-Ren
2013-06-01
Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome (PMWS) in Taiwanese pig farms. We analyzed the complete genomes of 571 Taiwanese PCV2 isolates in Taiwan from 2001 to 2011 and divided the isolates into 2 distinct genotypes (PCV2a and PCV2b) with 6 clusters (1A, 1B, 1C, 2B, 2D, and 2E). Of the 571 Taiwanese PCV2 isolates, 22.9% (131/571) belonged to PCV2a and 77.1% (440/571) to PCV2b. In this study, PCV2a isolates were the most common in 2001, and then PCV2b isolates became predominate thereafter and widely distributed in pig farms since 2003. Sequence comparisons among the 571 isolates indicated that 89.6-100% had nucleotide identity for complete genome and 87.3-100% for open reading frames 2 (ORF2). The results suggest that a higher genetic variation and shift occurred among PCV2 isolates collected from 2001 to 2011 in Taiwan. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.
Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Cong, Guozheng; Li, Yanmin; Zhang, Zhidong
2017-01-01
Porcine circovirus virus type II (PCV2) is the etiology of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis, nephropathy syndrome (PDNS), and necrotizing pneumonia. Rapid diagnosis tool for detection of PCV2 plays an important role in the disease control and eradication program. Recombinase polymerase amplification (RPA) assays using a real-time fluorescent detection (PCV2 real-time RPA assay) and RPA combined with lateral flow dipstick (PCV2 RPA LFD assay) were developed targeting the PCV2 ORF2 gene. The results showed that the sensitivity of the PCV2 real-time RPA assay was 10 2 copies per reaction within 20 min at 37°C and the PCV2 RPA LFD assay had a detection limit of 10 2 copies per reaction in less than 20 min at 37°C. Both assays were highly specific for PCV2, with no cross-reactions with porcine circovirus virus type 1, foot-and-mouth disease virus, pseudorabies virus, porcine parvovirus, porcine reproductive and respiratory syndrome virus, and classical swine fever virus. Therefore, the RPA assays provide a novel alternative for simple, sensitive, and specific identification of PCV2.
Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Cong, Guozheng; Li, Yanmin
2017-01-01
Porcine circovirus virus type II (PCV2) is the etiology of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis, nephropathy syndrome (PDNS), and necrotizing pneumonia. Rapid diagnosis tool for detection of PCV2 plays an important role in the disease control and eradication program. Recombinase polymerase amplification (RPA) assays using a real-time fluorescent detection (PCV2 real-time RPA assay) and RPA combined with lateral flow dipstick (PCV2 RPA LFD assay) were developed targeting the PCV2 ORF2 gene. The results showed that the sensitivity of the PCV2 real-time RPA assay was 102 copies per reaction within 20 min at 37°C and the PCV2 RPA LFD assay had a detection limit of 102 copies per reaction in less than 20 min at 37°C. Both assays were highly specific for PCV2, with no cross-reactions with porcine circovirus virus type 1, foot-and-mouth disease virus, pseudorabies virus, porcine parvovirus, porcine reproductive and respiratory syndrome virus, and classical swine fever virus. Therefore, the RPA assays provide a novel alternative for simple, sensitive, and specific identification of PCV2. PMID:28424790
Kweon, Chang-Hee; Nguyen, Lien Thi Kim; Yoo, Mi-Sun; Kang, Seung-Won
2015-09-15
Porcine circovirus type 2 (PCV2) is the causative agent of post-weaning multisystemic wasting syndrome (PMWS) in swine. Here, a phylogenetic tree was constructed using PCV2 nucleotide sequences derived from the bone marrow of Korean boar and previously reported PCV2 sequences isolated from various countries. PCV2 from Korean boar bone marrow (KC188796) was classified into the group containing PCV2a-Canada and other PCV2 strain from Korea. While the ORF1 region of the PCV2 genome was highly conserved, ORF2 (the capsid protein coding region) was relatively variable. The nucleotide sequences for bone marrow-derived PCV2 were 93.4-99.0% homologous to the other reference sequences. The deduced amino acid sequences for the ORF1 and ORF2 coding regions were 97.4-99.3% and 84.5-97.4% homologous with the other reference strains, respectively, indicating that KC188796 did not differ markedly from the other PCV2 strains. Phylogenetic analysis demonstrated that bone marrow-derived PCV2 was highly similar to PCV2a from Canada and may be related to persistent PCV2 infections in swine. Copyright © 2015 Elsevier B.V. All rights reserved.
Genetic Characterization of Porcine Circovirus Type 2 (PCV2) in Pigs of Bhutan.
Monger, V R; Loeffen, W L A; Kus, K; Stegeman, J A; Dukpa, K; Szymanek, K; Podgórska, K
2017-04-01
Porcine circovirus (PCV) is a small non-enveloped virus with a single-stranded circular DNA with two antigenically and genetically different species, PCV1 and PCV2. Among these two, PCV2 is responsible for multifactorial disease syndromes, the most important disease known as PCV2-systemic disease (PCV2-SD), previously known as post-weaning multisystemic wasting syndrome (PMWS). The epidemiological situation is dynamically changing and new strains including recombinant PCV2 have emerged in Asia. In Bhutan, pigs are important livestock and play a very important role in providing meat and income for rural farmers. Although high rate of pigs seropositive against PCV2 was described in Bhutan, there was no virological evidence for PCV2 infections. This study was conducted to confirm the presence of PCV2 through detection of PCV2 DNA and molecular characterization of PCV2 strains in tissue and blood samples collected from Bhutanese pigs. Porcine circovirus type 2 genome was detected in 16 of 34 tissue samples pigs from the government farm. In 9 pigs, very high level of viral replication indicated that PCV2-SD was detected. Phylogenetic analysis performed with a set of GenBank sequences revealed that the Bhutanese PCV2 strains belonged to the PCV2b genotype and grouped with cluster 1C. © 2015 Blackwell Verlag GmbH.
Chang, Chia-Yi; Deng, Ming-Chung; Wang, Fun-In; Tsai, Hsiang-Jung; Yang, Chia-Huei; Chang, Chieh; Huang, Yu-Liang
2014-06-01
The porcine respiratory disease complex (PRDC) is the most common disease in commercial pork production worldwide. Porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), the most important agents of PRDC, usually co-infect in the same pigs. In order to survey the prevalence of PCV2 and PRRSV in pigs of various ages, a duplex reverse transcription real-time PCR (DRT-rPCR) was developed and applied in the present study. The DRT-rPCR did not cross-react with 10 swine viruses other than PCV2 and PRRSV, with detection limits of 1 TCID50/ml for PCV2 and 6.3 TCID50/ml for PRRSV. Surveillance using DRT-rPCR together with serology revealed that in the five farms studied, pigs were most susceptible to PRRSV at 6-14 weeks of age, whereas susceptibility to PCV2 varied by the management system but was mostly at 10-14 weeks of age. Cross analysis of viral loads versus antibody titers revealed that PCV2 load was affected negatively by anti-PCV2 ORF2 antibody, which constituted the most important non-infectious factor affecting the development of PMWS. These results indicated that DRT-rPCR was developed and applied successfully to the surveillance of PCV2 and PRRSV in the field. Copyright © 2014 Elsevier B.V. All rights reserved.
Afolabi, Kayode Olayinka; Iweriebor, Benson Chuks; Obi, Larry Chikwelu; Okoh, Anthony Ifeanyi
2017-11-02
Porcine circovirus type 2 (PCV2) remains the main causative viral pathogen of porcine circovirus-associated diseases (PCVAD) of great economic importance in pig industry globally. This present study aims at determining the occurrence of the viral pathogen in swine herds of the Province. The data obtained revealed that 15.93% of the screened samples (54/339) from the swine herds of the studied areas were positive for PCV2; while the severity of occurrence of the viral pathogen as observed at farm level ranges from approximately 5.6 to 60% in the studied farms. The majority (15 out of 17 = 88%) of the analyzed sequences were found clustering with other PCV2b strains in the phylogenetic analysis. More interestingly, two other sequences obtained were also found clustering within PCV2d genogroup, which is presently another fast-spreading genotype with observable higher virulence in global swine herds. This is the first report of PCV2 in swine herds of the Province and the first detection of PCV2b and PCV2d in South African swine herds. It follows the first reported case of PCV2a in an outbreak of porcine multisystemic wasting syndrome (PMWS) in Gauteng Province, South Africa more than one decade ago. This finding confirmed the presence of this all-important viral pathogen in pigs of the region; which could result in a serious outbreak of PCVAD and huge economic loss at the instances of triggering factors if no appropriate measures are taken to effectively curb its spread.
2010-01-01
Background Porcine circovirus 2 (PCV2) is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS). The capsid (Cap) protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self-assemble into virus-like particles (VLPs) in vitro, it is particularly opportunity to develop the PV2 VLPs vaccine in Escherichia coli,(E.coli ), because where the cost of the vaccine must be weighed against the value of the vaccinated pig, when it was to extend use the VLPs vaccine of PCV2. Results In this report, a highly soluble Cap-tag protein expressed in E.coli was constructed with a p-SMK expression vector with a fusion tag of small ubiquitin-like modifiers (SUMO). The recombinant Cap was purified using Ni2+ affinity resins, whereas the tag was used to remove the SUMO protease. Simultaneously, the whole native Cap protein was able to self-assemble into VLPs in vitro when viewed under an electron microscope. The Cap-like particles had a size and shape that resembled the authentic Cap. The result could also be applied in the large-scale production of VLPs of PCV2 and could be used as a diagnostic antigen or a potential VLP vaccine against PCV2 infection in pigs. Conclusion we have, for the first time, utilized the SUMO fusion motif to successfully express the entire authentic Cap protein of PCV2 in E. coli. After the cleavage of the fusion motif, the nCap protein has the ability to self-assemble into VLPs, which can be used as as a potential vaccine to protect pigs from PCV2-infection. PMID:20646322
Zhang, Ping; Wang, Liyuan; Li, Yanping; Jiang, Ping; Wang, Yanchao; Wang, Pengfei; Kang, Li; Wang, Yuding; Sun, Yi; Jiang, Yunliang
2018-02-15
Porcine circovirus type 2 (PCV2) is the primary cause of post-weaning multisystemic wasting syndrome (PMWS) and other PCV-associated diseases. According to our previous RNA-sequencing analysis, the differences in the susceptibility to PCV2 infection depended on the genetic differences between the Laiwu (LW) and Yorkshire × Landrace crossbred (YL) pigs, but the cellular microRNA (miRNA) that are differentially expressed between the LW and YL pigs before and after PCV2 infection remain to be determined. In this study, high-throughput sequencing was performed to determine the abundance and differential expression of miRNA in lung tissues from PCV2-infected and PCV2-uninfected LW and YL pigs. In total, 295 known and 95 novel miRNA were identified, and 23 known and 25 novel miRNA were significantly differentially expressed in the PCV2-infected vs. PCV2-uninfected LW pigs and/or the PCV2-infected vs. PCV2-uninfected YL pigs. The expression levels of ssc-miR-122, ssc-miR-192, ssc-miR-451, ssc-miR-486, and ssc-miR-504 were confirmed by quantitative real-time PCR (qRT-PCR). Analysis of the potential targets of the four up-regulated miRNA (i.e., ssc-miR-122, ssc-miR-192, ssc-miR-451 and ssc-miR-486) identified pathways and genes that may be important for disease resistance. Among the up-regulated miRNA, ssc-miR-122 can repress the protein expression and viral DNA replication of PCV2 and down-regulate the expression of the nuclear factor of activated T-cells 5 (NFAT5) and aminopeptidase puromycin sensitive (NPEPPS) by binding to their 3' untranslated region (3'UTR) in PK15 cells. Therefore, ssc-miR-122 may indirectly suppress PCV2 infection by targeting genes related to the host immune system, such as NFAT5 and NPEPPS.
A multiscale strength model for tantalum over an extended range of strain rates
NASA Astrophysics Data System (ADS)
Barton, N. R.; Rhee, M.
2013-09-01
A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].
[RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].
Yu, Kaifu; Tan, Hongbo; Xu, Yongqing
2015-12-01
To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.
ERIC Educational Resources Information Center
Yeates, Devin Rodney
2011-01-01
The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…
Experimental models of demyelination and remyelination.
Torre-Fuentes, L; Moreno-Jiménez, L; Pytel, V; Matías-Guiu, J A; Gómez-Pinedo, U; Matías-Guiu, J
2017-08-29
Experimental animal models constitute a useful tool to deepen our knowledge of central nervous system disorders. In the case of multiple sclerosis, however, there is no such specific model able to provide an overview of the disease; multiple models covering the different pathophysiological features of the disease are therefore necessary. We reviewed the different in vitro and in vivo experimental models used in multiple sclerosis research. Concerning in vitro models, we analysed cell cultures and slice models. As for in vivo models, we examined such models of autoimmunity and inflammation as experimental allergic encephalitis in different animals and virus-induced demyelinating diseases. Furthermore, we analysed models of demyelination and remyelination, including chemical lesions caused by cuprizone, lysolecithin, and ethidium bromide; zebrafish; and transgenic models. Experimental models provide a deeper understanding of the different pathogenic mechanisms involved in multiple sclerosis. Choosing one model or another depends on the specific aims of the study. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Mathematical Modeling of Ni/H2 and Li-Ion Batteries
NASA Technical Reports Server (NTRS)
Weidner, John W.; White, Ralph E.; Dougal, Roger A.
2001-01-01
The modelling effort outlined in this viewgraph presentation encompasses the following topics: 1) Electrochemical Deposition of Nickel Hydroxide; 2) Deposition rates of thin films; 3) Impregnation of porous electrodes; 4) Experimental Characterization of Nickel Hydroxide; 5) Diffusion coefficients of protons; 6) Self-discharge rates (i.e., oxygen-evolution kinetics); 7) Hysteresis between charge and discharge; 8) Capacity loss on cycling; 9) Experimental Verification of the Ni/H2 Battery Model; 10) Mathematical Modeling Li-Ion Batteries; 11) Experimental Verification of the Li-Ion Battery Model; 11) Integrated Power System Models for Satellites; and 12) Experimental Verification of Integrated-Systems Model.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
Zhao, Linlin; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao
2017-06-30
Numerous chemical data sets have become available for quantitative structure-activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do
2017-01-01
Numerous chemical data sets have become available for quantitative structure–activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting. PMID:28691113
Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.
2018-01-01
The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.
Biomechanical Modeling of the Human Head
2017-10-03
between model predictions and experimental data. This report details model calibration for all materials identified in models of a human head and...14 3 Stress-strain data for the pia mater and dura mater (human subject); experimental data orig- inally presented in [28...treated as one material) based on a hyperelastic model and experimental data from [59] ............................................... 20 5 Comparison of
NASA Astrophysics Data System (ADS)
Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David
2018-04-01
Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
NASA Astrophysics Data System (ADS)
Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.
2015-12-01
Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.
Numerical model updating technique for structures using firefly algorithm
NASA Astrophysics Data System (ADS)
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
A Comprehensive Validation Methodology for Sparse Experimental Data
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Blattnig, Steve R.
2010-01-01
A comprehensive program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as models are developed over time. The models are placed under configuration control, and automated validation tests are used so that comparisons can readily be made as models are improved. Though direct comparisons between theoretical results and experimental data are desired for validation purposes, such comparisons are not always possible due to lack of data. In this work, two uncertainty metrics are introduced that are suitable for validating theoretical models against sparse experimental databases. The nuclear physics models, NUCFRG2 and QMSFRG, are compared to an experimental database consisting of over 3600 experimental cross sections to demonstrate the applicability of the metrics. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by analyzing subsets of the model parameter space.
Inkpen, S Andrew
2016-06-01
Experimental ecologists often invoke trade-offs to describe the constraints they encounter when choosing between alternative experimental designs, such as between laboratory, field, and natural experiments. In making these claims, they tend to rely on Richard Levins' analysis of trade-offs in theoretical model-building. But does Levins' framework apply to experiments? In this paper, I focus this question on one desideratum widely invoked in the modelling literature: generality. Using the case of generality, I assess whether Levins-style treatments of modelling provide workable resources for assessing trade-offs in experimental design. I argue that, of four strategies modellers employ to increase generality, only one may be unproblematically applied to experimental design. Furthermore, modelling desiderata do not have obvious correlates in experimental design, and when we define these desiderata in a way that seem consistent with ecologists' usage, the trade-off framework falls apart. I conclude that a Levins-inspired framework for modelling does not provide the content for a similar approach to experimental practice; this does not, however, mean that it cannot provide the form. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Robust Adaptive Autonomous Approach to Optimal Experimental Design
NASA Astrophysics Data System (ADS)
Gu, Hairong
Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.
Model Selection in Systems Biology Depends on Experimental Design
Silk, Daniel; Kirk, Paul D. W.; Barnes, Chris P.; Toni, Tina; Stumpf, Michael P. H.
2014-01-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis. PMID:24922483
Model selection in systems biology depends on experimental design.
Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Stumpf, Michael P H
2014-06-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis.
Longhi, Daniel Angelo; Martins, Wiaslan Figueiredo; da Silva, Nathália Buss; Carciofi, Bruno Augusto Mattar; de Aragão, Gláucia Maria Falcão; Laurindo, João Borges
2017-01-02
In predictive microbiology, the model parameters have been estimated using the sequential two-step modeling (TSM) approach, in which primary models are fitted to the microbial growth data, and then secondary models are fitted to the primary model parameters to represent their dependence with the environmental variables (e.g., temperature). The Optimal Experimental Design (OED) approach allows reducing the experimental workload and costs, and the improvement of model identifiability because primary and secondary models are fitted simultaneously from non-isothermal data. Lactobacillus viridescens was selected to this study because it is a lactic acid bacterium of great interest to meat products preservation. The objectives of this study were to estimate the growth parameters of L. viridescens in culture medium from TSM and OED approaches and to evaluate both the number of experimental data and the time needed in each approach and the confidence intervals of the model parameters. Experimental data for estimating the model parameters with TSM approach were obtained at six temperatures (total experimental time of 3540h and 196 experimental data of microbial growth). Data for OED approach were obtained from four optimal non-isothermal profiles (total experimental time of 588h and 60 experimental data of microbial growth), two profiles with increasing temperatures (IT) and two with decreasing temperatures (DT). The Baranyi and Roberts primary model and the square root secondary model were used to describe the microbial growth, in which the parameters b and T min (±95% confidence interval) were estimated from the experimental data. The parameters obtained from TSM approach were b=0.0290 (±0.0020) [1/(h 0.5 °C)] and T min =-1.33 (±1.26) [°C], with R 2 =0.986 and RMSE=0.581, and the parameters obtained with the OED approach were b=0.0316 (±0.0013) [1/(h 0.5 °C)] and T min =-0.24 (±0.55) [°C], with R 2 =0.990 and RMSE=0.436. The parameters obtained from OED approach presented smaller confidence intervals and best statistical indexes than those from TSM approach. Besides, less experimental data and time were needed to estimate the model parameters with OED than TSM. Furthermore, the OED model parameters were validated with non-isothermal experimental data with great accuracy. In this way, OED approach is feasible and is a very useful tool to improve the prediction of microbial growth under non-isothermal condition. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta.
André, Ingemar
2018-01-01
Determining high-resolution structures of proteins with helical symmetry can be challenging due to limitations in experimental data. In such instances, structure-based protein simulations driven by experimental data can provide a valuable approach for building models of helical assemblies. This chapter describes how the Rosetta macromolecular package can be used to model homomeric protein assemblies with helical symmetry in a range of modeling scenarios including energy refinement, symmetrical docking, comparative modeling, and de novo structure prediction. Data-guided structure modeling of helical assemblies with experimental information from electron density, X-ray fiber diffraction, solid-state NMR, and chemical cross-linking mass spectrometry is also described.
Qualitative and quantitative distribution of PCV2 in wild boars and domestic pigs in Germany.
Reiner, Gerald; Bronnert, Bastian; Hohloch, Corinna; Fresen, Christina; Haack, Ingo; Willems, Hermann; Reinacher, Manfred
2010-09-28
Porcine circovirus 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome (PMWS), has been detected in North American and European wild boars at prevalences arguing for high circulation rates among populations. Systematic data on the qualitative distribution of PCV2 infections and on PCVD (PCV2 diseases) in wild boars are rare, however, and quantitative data about viral loads are missing. To be able to judge the PCV2/PCVD situation in wild boars, evaluation of the nationwide qualitative and quantitative distribution of PCV2 and PCVD in Germany was the objective of the present study. Wild boar samples were compared with domestic pig samples of the same greater areas, including tonsils, lungs, spleen, Lnn. bronchiales and Lnn. mesenterici of 349 wild boars and 348 domestic pigs. All of the wild boars and 308 of the domestic pigs have been apparently free of PCVD, 40 of the domestic pigs had been rejected from slaughter due to health problems (i.e. wasting). Tissues were examined by pathohistology, immunohistology (IHC), nested PCR (nPCR and quantitative PCR (qPCR). One wild boar (0.3%) and 8.7% of the domestic pigs were classified as PCVD-affected, based on pathohistology and IHC. PCV2 DNA was detected in 63.1% and 45.4% of the wild boars by nPCR and qPCR, respectively, and in 100% and 98.8% of the domestic pigs. PCV2 loads differed significantly between wild boars (average: 10(2.8) PCV2 genomes/microg extracted sample DNA) and domestic pigs (average: 10(4.2) PCV2 genomes/microg of sample DNA). The qualitative detection of PCV2 DNA in tissues of wild boars and domestic pigs was abundant and not of any pathological relevance. The overall load of PCV2 in domestic pigs was relatively high and borderline with respect to PCVD, and there was no difference between apparently healthy pigs and pigs rejected from slaughter in this respect. Most of the wild boars were infected with PCV2 at loads less relevant for PCVD. (c) 2010 Elsevier B.V. All rights reserved.
Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2001-01-01
This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.
Numerical Modeling of Gas Turbine Combustor Utilizing One-Dimensional Acoustics
NASA Astrophysics Data System (ADS)
Caley, Thomas M.
This study focuses on the numerical modeling of a gas turbine combustor set-up with known regions of thermoacoustic instability. The proposed model takes the form of a hybrid thermoacoustic network, with lumped elements representing boundary conditions and the flame, and 3-dimensional geometry volumes representing the geometry. The model is analyzed using a commercial 3-D finite element method (FEM) software, COMSOL Multiphysics. A great deal of literature is available covering thermoacoustic modeling, but much of it utilizes more computationally expensive techniques such as Large-Eddy Simulations, or relies on analytical modeling that is limited to specific test cases or proprietary software. The present study models the 3-D geometry of a high-pressure combustion chamber accurately, and uses the lumped elements of a thermoacoustic network to represent parts of the combustor system that can be experimentally tested under stable conditions, ensuring that the recorded acoustic responses can be attributed to that element alone. The numerical model has been tested against the experimental model with and without an experimentally-determined impedance boundary condition. Eigenfrequency studies are used to compare the frequency and growth rates (and from that, the thermoacoustic stability) of resonant modes in the combustor. The flame in the combustor is modeled with a flame transfer function that was determined from experimental testing using frequency forcing. The effect of flow rate on the impedance boundary condition is also examined experimentally and numerically to qualify the practice of modeling an orifice plate as an acoustically-closed boundary. Using the experimental flame transfer function and boundary conditions in the numerical model produced results that closely matched previous experimental tests in frequency, but not in stability characteristics. The lightweight nature of the numerical model means additional lumped elements can be easily added when experimental data is available, creating a more accurate model without noticeably increasing the complexity or computational time.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Thermodynamics of mixing water with dimethyl sulfoxide, as seen from computer simulations.
Idrissi, Abdenacer; Marekha, Bogdan; Barj, Mohamed; Jedlovszky, Pál
2014-07-24
The Helmholtz free energy, energy, and entropy of mixing of eight different models of dimethyl sulfoxide (DMSO) with four widely used water models are calculated at 298 K over the entire composition range by means of thermodynamic integration along a suitably chosen thermodynamic path, and compared with experimental data. All 32 model combinations considered are able to reproduce the experimental values rather well, within RT (free energy and energy) and R (entropy) at any composition, and quite often the deviation from the experimental data is even smaller, being in the order of the uncertainty of the calculated free energy or energy, and entropy values of 0.1 kJ/mol and 0.1 J/(mol K), respectively. On the other hand, none of the model combinations considered can accurately reproduce all three experimental functions simultaneously. Furthermore, the fact that the entropy of mixing changes sign with increasing DMSO mole fraction is only reproduced by a handful of model pairs. Model combinations that (i) give the best reproduction of the experimental free energy, while still reasonably well reproducing the experimental energy and entropy of mixing, and (ii) that give the best reproduction of the experimental energy and entropy, while still reasonably well reproducing the experimental free energy of mixing, are identified.
Optimizing Experimental Design for Comparing Models of Brain Function
Daunizeau, Jean; Preuschoff, Kerstin; Friston, Karl; Stephan, Klaas
2011-01-01
This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work. PMID:22125485
USDA-ARS?s Scientific Manuscript database
Experimental and simulation uncertainties have not been included in many of the statistics used in assessing agricultural model performance. The objectives of this study were to develop an F-test that can be used to evaluate model performance considering experimental and simulation uncertainties, an...
NASA Astrophysics Data System (ADS)
Sazonov, D. S.
2017-12-01
A correlation analysis of the model calculations and experimental measurements of wind-speed sensitivity of a rough sea-surface microwave emission at a frequency of 37.5 GHz are presented. The field data used in the research were collected over 3 years in the summer and autumn periods at the oceanographic platform of the Marine Hydrophysical Institute, Russian Academy of Sciences (RAS). A hypothesis about a significant correlation between the model calculations and experimentally measured sea-surface emission ability caused by wind forcing was formulated and tested to reveal this correlation. An evaluation of the discrepancy between the model and experimental data has been performed by an analysis of residuals. Our studies have shown that among the selected models not a single one adequately describes the experimental data.
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju
2014-01-01
The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model
2017-03-01
RECRUITING WITH THE NEW PLANNED RESOURCE OPTIMIZATION MODEL WITH EXPERIMENTAL DESIGN (PROM-WED) by Allison R. Hogarth March 2017 Thesis...with the New Planned Resource Optimization Model With Experimental Design (PROM-WED) 5. FUNDING NUMBERS 6. AUTHOR(S) Allison R. Hogarth 7. PERFORMING...has historically used a non -linear optimization model, the Planned Resource Optimization (PRO) model, to help inform decisions on the allocation of
In silico simulations of experimental protocols for cardiac modeling.
Carro, Jesus; Rodriguez, Jose Felix; Pueyo, Esther
2014-01-01
A mathematical model of the AP involves the sum of different transmembrane ionic currents and the balance of intracellular ionic concentrations. To each ionic current corresponds an equation involving several effects. There are a number of model parameters that must be identified using specific experimental protocols in which the effects are considered as independent. However, when the model complexity grows, the interaction between effects becomes increasingly important. Therefore, model parameters identified considering the different effects as independent might be misleading. In this work, a novel methodology consisting in performing in silico simulations of the experimental protocol and then comparing experimental and simulated outcomes is proposed for parameter model identification and validation. The potential of the methodology is demonstrated by validating voltage-dependent L-type calcium current (ICaL) inactivation in recently proposed human ventricular AP models with different formulations. Our results show large differences between ICaL inactivation as calculated from the model equation and ICaL inactivation from the in silico simulations due to the interaction between effects and/or to the experimental protocol. Our results suggest that, when proposing any new model formulation, consistency between such formulation and the corresponding experimental data that is aimed at being reproduced needs to be first verified considering all involved factors.
Bondi, Robert W; Igne, Benoît; Drennen, James K; Anderson, Carl A
2012-12-01
Near-infrared spectroscopy (NIRS) is a valuable tool in the pharmaceutical industry, presenting opportunities for online analyses to achieve real-time assessment of intermediates and finished dosage forms. The purpose of this work was to investigate the effect of experimental designs on prediction performance of quantitative models based on NIRS using a five-component formulation as a model system. The following experimental designs were evaluated: five-level, full factorial (5-L FF); three-level, full factorial (3-L FF); central composite; I-optimal; and D-optimal. The factors for all designs were acetaminophen content and the ratio of microcrystalline cellulose to lactose monohydrate. Other constituents included croscarmellose sodium and magnesium stearate (content remained constant). Partial least squares-based models were generated using data from individual experimental designs that related acetaminophen content to spectral data. The effect of each experimental design was evaluated by determining the statistical significance of the difference in bias and standard error of the prediction for that model's prediction performance. The calibration model derived from the I-optimal design had similar prediction performance as did the model derived from the 5-L FF design, despite containing 16 fewer design points. It also outperformed all other models estimated from designs with similar or fewer numbers of samples. This suggested that experimental-design selection for calibration-model development is critical, and optimum performance can be achieved with efficient experimental designs (i.e., optimal designs).
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
Selecting Models for Measuring Change When True Experimental Conditions Do Not Exist.
ERIC Educational Resources Information Center
Fortune, Jim C.; Hutson, Barbara A.
1984-01-01
Measuring change when true experimental conditions do not exist is a difficult process. This article reviews the artifacts of change measurement in evaluations and quasi-experimental designs, delineates considerations in choosing a model to measure change under nonideal conditions, and suggests ways to organize models to facilitate selection.…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... factors as the approved models, are validated by experimental test data, and receive the Administrator's... stage of the MEP involves applying the model against a database of experimental test cases including..., particularly the requirement for validation by experimental test data. That guidance is based on the MEP's...
MELCOR model for an experimental 17x17 spent fuel PWR assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoni, Jeffrey
2010-11-01
A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.
2015-09-26
An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.
An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less
Park, Jihoon; Yoon, Chungsik; Lee, Kiyoung
2018-05-30
In the field of exposure science, various exposure assessment models have been developed to complement experimental measurements; however, few studies have been published on their validity. This study compares the estimated inhaled aerosol doses of several inhalation exposure models to experimental measurements of aerosols released from consumer spray products, and then compares deposited doses within different parts of the human respiratory tract according to deposition models. Exposure models, including the European Center for Ecotoxicology of Chemicals Targeted Risk Assessment (ECETOC TRA), the Consumer Exposure Model (CEM), SprayExpo, ConsExpo Web and ConsExpo Nano, were used to estimate the inhaled dose under various exposure scenarios, and modeled and experimental estimates were compared. The deposited dose in different respiratory regions was estimated using the International Commission on Radiological Protection model and multiple-path particle dosimetry models under the assumption of polydispersed particles. The modeled estimates of the inhaled doses were accurate in the short term, i.e., within 10 min of the initial spraying, with a differences from experimental estimates ranging from 0 to 73% among the models. However, the estimates for long-term exposure, i.e., exposure times of several hours, deviated significantly from the experimental estimates in the absence of ventilation. The differences between the experimental and modeled estimates of particle number and surface area were constant over time under ventilated conditions. ConsExpo Nano, as a nano-scale model, showed stable estimates of short-term exposure, with a difference from the experimental estimates of less than 60% for all metrics. The deposited particle estimates were similar among the deposition models, particularly in the nanoparticle range for the head airway and alveolar regions. In conclusion, the results showed that the inhalation exposure models tested in this study are suitable for estimating short-term aerosol exposure (within half an hour), but not for estimating long-term exposure. Copyright © 2018 Elsevier GmbH. All rights reserved.
Model updating in flexible-link multibody systems
NASA Astrophysics Data System (ADS)
Belotti, R.; Caneva, G.; Palomba, I.; Richiedei, D.; Trevisani, A.
2016-09-01
The dynamic response of flexible-link multibody systems (FLMSs) can be predicted through nonlinear models based on finite elements, to describe the coupling between rigid- body and elastic behaviour. Their accuracy should be as high as possible to synthesize controllers and observers. Model updating based on experimental measurements is hence necessary. By taking advantage of the experimental modal analysis, this work proposes a model updating procedure for FLMSs and applies it experimentally to a planar robot. Indeed, several peculiarities of the model of FLMS should be carefully tackled. On the one hand, nonlinear models of a FLMS should be linearized about static equilibrium configurations. On the other, the experimental mode shapes should be corrected to be consistent with the elastic displacements represented in the model, which are defined with respect to a fictitious moving reference (the equivalent rigid link system). Then, since rotational degrees of freedom are also represented in the model, interpolation of the experimental data should be performed to match the model displacement vector. Model updating has been finally cast as an optimization problem in the presence of bounds on the feasible values, by also adopting methods to improve the numerical conditioning and to compute meaningful updated inertial and elastic parameters.
An Integrated Miniature Pulse Tube Cryocooler at 80K
NASA Astrophysics Data System (ADS)
Chen, H. L.; Yang, L. W.; Cai, J. H.; Liang, J. T.; Zhang, L.; Zhou, Y.
2008-03-01
Two integrated models of coaxial miniature pulse tube coolers based on an experimental model are manufactured. Performance of the integrated models is compared to that of the experimental model. Reliability and stability of an integrated model are tested and improved.
2017-08-01
of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics...manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that...geometries, we develop a methodology that couples experimental data and modelling to convert the scan paths into spatially resolved local thermal histories
Comparing fluid mechanics models with experimental data.
Spedding, G R
2003-01-01
The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles. PMID:14561348
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less
NASA Astrophysics Data System (ADS)
Allman, Derek; Reiter, Austin; Bell, Muyinatu
2018-02-01
We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.
National Centers for Environmental Prediction
/ VISION | About EMC EMC > NAM > EXPERIMENTAL DATA Home NAM Operational Products HIRESW Operational Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION
Establishment of a New Zealand rabbit model of spinal tuberculosis.
Geng, Guangqi; Wang, Qian; Shi, Jiandang; Yan, Junfa; Niu, Ningkui; Wang, Zili
2015-04-01
This was an experimental study. To investigate and evaluate the experimental method of establishing a New Zealand rabbit model of spinal tuberculosis. Establishing animal models of tuberculosis is critical to the experimental and clinical study of tuberculosis, especially spinal tuberculosis. However, the rapid spread of Mycobacterium tuberculosis and subsequent high mortality thwarted their effort. Since then, no animal models have been established of spinal tuberculosis. Forty-two New Zealand rabbits were randomly divided into experimental (n=20), control (n=20), and blank groups (n=2). Experimental animals were sensitized by complete Freund's adjuvant. A hole drilled under the upper endplate of the L4 vertebral body was filled with a gelfoam sponge infused with 0.1 mL H37Rv standard M. tuberculosis suspension (in controls, culture medium, and saline). Blank animals received no treatment. Survival 8 weeks after surgery was 89.5%, 94.7%, and 100% in experimental, control, and blank groups, respectively. The model was successfully established in all surviving experimental rabbits. In experimental animals, vertebral body destruction at 4 weeks was 50% by x-ray; 83.3% by computed tomography reconstruction and magnetic resonance imaging; at 8 weeks, 58.8% by x-ray and 100% by computed tomograph reconstruction and magnetic resonance imaging. At 8 weeks, experimental animals developed vertebral destruction, granulation, and necrosis and 17.6% had psoas abscess. Histopathology revealed numerous lymphocytes and epithelioid cells, trabecular bone fracture, and coagulative necrosis in the vertebrae of experimental animals; bacterium culture was 52.9% positive. Control and blank animals showed no such changes. A New Zealand rabbit of spinal tuberculosis model can be successfully established by drilling a hole in the upper endplate of the vertebral body, filling with gelfoam sponge infused with H37Rv standard M. tuberculosis suspension after sensitization by complete Freund's adjuvant.
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.
Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N
2017-01-01
The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.
Snitkin, Evan S; Dudley, Aimée M; Janse, Daniel M; Wong, Kaisheen; Church, George M; Segrè, Daniel
2008-01-01
Background Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored. Results In this study, we measured growth phenotypes of 465 Saccharomyces cerevisiae gene deletion mutants under 16 metabolically relevant conditions and integrated them with the corresponding flux balance model predictions. We first used discordance between experimental results and model predictions to guide a stage of experimental refinement, which resulted in a significant improvement in the quality of the experimental data. Next, we used discordance still present in the refined experimental data to assess the reliability of yeast metabolism models under different conditions. In addition to estimating predictive capacity based on growth phenotypes, we sought to explain these discordances by examining predicted flux distributions visualized through a new, freely available platform. This analysis led to insight into the glycerol utilization pathway and the potential effects of metabolic shortcuts on model results. Finally, we used model predictions and experimental data to discriminate between alternative raffinose catabolism routes. Conclusions Our study demonstrates how a new level of integration between high throughput measurements and flux balance model predictions can improve understanding of both experimental and computational results. The added value of a joint analysis is a more reliable platform for specific testing of biological hypotheses, such as the catabolic routes of different carbon sources. PMID:18808699
Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form
NASA Astrophysics Data System (ADS)
Denis, V.; Jossic, M.; Giraud-Audine, C.; Chomette, B.; Renault, A.; Thomas, O.
2018-06-01
In this article, we address the model identification of nonlinear vibratory systems, with a specific focus on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures. The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative unforced system and the use of normal forms. Within this framework, it is shown that without internal resonance, a valid reduced order model for a nonlinear mode is a single Duffing oscillator. We then propose an efficient experimental strategy to measure the backbone curve of a particular nonlinear mode and we use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part of Duffing-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well as to other experimental identification methods.
ERIC Educational Resources Information Center
Schweizer, Karl
2008-01-01
Structural equation modeling provides the framework for investigating experimental effects on the basis of variances and covariances in repeated measurements. A special type of confirmatory factor analysis as part of this framework enables the appropriate representation of the experimental effect and the separation of experimental and…
National Centers for Environmental Prediction
Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS
National Centers for Environmental Prediction
Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model Configuration /EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION / DIAGNOSTICS Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS
DOT National Transportation Integrated Search
1974-03-01
Comparison is made of theoretically calculated and experimentally determined scattering from metallic tilted rectangles and vertical cylindrical scatterers. The scattering was experimentally measured in a scale model range at the Watertown Arsenal, W...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V., E-mail: Yu.Kuyanov@gmail.com
The experience of using the dynamic atlas of the experimental data and mathematical models of their description in the problems of adjusting parametric models of observable values depending on kinematic variables is presented. The functional possibilities of an image of a large number of experimental data and the models describing them are shown by examples of data and models of observable values determined by the amplitudes of elastic scattering of hadrons. The Internet implementation of an interactive tool DaMoScope and its interface with the experimental data and codes of adjusted parametric models with the parameters of the best description ofmore » data are schematically shown. The DaMoScope codes are freely available.« less
Experimental anti-GBM disease as a tool for studying spontaneous lupus nephritis.
Fu, Yuyang; Du, Yong; Mohan, Chandra
2007-08-01
Lupus nephritis is an immune-mediated disease, where antibodies and T cells both play pathogenic roles. Since spontaneous lupus nephritis in mouse models takes 6-12 months to manifest, there is an urgent need for a mouse model that can be used to delineate the pathogenic processes that lead to immune nephritis, over a quicker time frame. We propose that the experimental anti-glomerular basement membrane (GBM) disease model might be a suitable tool for uncovering some of the molecular steps underlying lupus nephritis. This article reviews the current evidence that supports the use of the experimental anti-GBM nephritis model for studying spontaneous lupus nephritis. Importantly, out of about 25 different molecules that have been specifically examined in the experimental anti-GBM model and also spontaneous lupus nephritis, all influence both diseases concordantly, suggesting that the experimental model might be a useful tool for unraveling the molecular basis of spontaneous lupus nephritis. This has important clinical implications, both from the perspective of genetic susceptibility as well as clinical therapeutics.
Aerodynamic-structural model of offwind yacht sails
NASA Astrophysics Data System (ADS)
Mairs, Christopher M.
An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the computational force predictions were fair at both wind angles examined. Force predictions were much improved in the overtrimmed setting when the sail was highly stalled and more stable. The same trends in force prediction were seen when employing the aerodynamic-structural model. Predictions were good to fair in the baseline setting but improved in the overtrimmed configuration.
Fischer, Kenneth J; Johnson, Joshua E; Waller, Alexander J; McIff, Terence E; Toby, E Bruce; Bilgen, Mehmet
2011-10-01
The objective of this study was to validate the MRI-based joint contact modeling methodology in the radiocarpal joints by comparison of model results with invasive specimen-specific radiocarpal contact measurements from four cadaver experiments. We used a single validation criterion for multiple outcome measures to characterize the utility and overall validity of the modeling approach. For each experiment, a Pressurex film and a Tekscan sensor were sequentially placed into the radiocarpal joints during simulated grasp. Computer models were constructed based on MRI visualization of the cadaver specimens without load. Images were also acquired during the loaded configuration used with the direct experimental measurements. Geometric surface models of the radius, scaphoid and lunate (including cartilage) were constructed from the images acquired without the load. The carpal bone motions from the unloaded state to the loaded state were determined using a series of 3D image registrations. Cartilage thickness was assumed uniform at 1.0 mm with an effective compressive modulus of 4 MPa. Validation was based on experimental versus model contact area, contact force, average contact pressure and peak contact pressure for the radioscaphoid and radiolunate articulations. Contact area was also measured directly from images acquired under load and compared to the experimental and model data. Qualitatively, there was good correspondence between the MRI-based model data and experimental data, with consistent relative size, shape and location of radioscaphoid and radiolunate contact regions. Quantitative data from the model generally compared well with the experimental data for all specimens. Contact area from the MRI-based model was very similar to the contact area measured directly from the images. For all outcome measures except average and peak pressures, at least two specimen models met the validation criteria with respect to experimental measurements for both articulations. Only the model for one specimen met the validation criteria for average and peak pressure of both articulations; however the experimental measures for peak pressure also exhibited high variability. MRI-based modeling can reliably be used for evaluating the contact area and contact force with similar confidence as in currently available experimental techniques. Average contact pressure, and peak contact pressure were more variable from all measurement techniques, and these measures from MRI-based modeling should be used with some caution.
ERIC Educational Resources Information Center
Atalay, Özlem; Kahveci, Nihat Gürel
2015-01-01
This experimental study examines the effects of Integrated Curriculum Model (ICM) on 4th grade elementary gifted and talented students' academic achievement, creativity and critical thinking (Control Group N= 10, Experimental Group N= 11) in the social studies classroom context, in Istanbul, Turkey. Integrated Curriculum Model was utilized to…
Experimental modeling of swirl flows in power plants
NASA Astrophysics Data System (ADS)
Shtork, S. I.; Litvinov, I. V.; Gesheva, E. S.; Tsoy, M. A.; Skripkin, S. G.
2018-03-01
The article presents an overview of the methods and approaches to experimental modeling of various thermal and hydropower units - furnaces of pulverized coal boilers and flow-through elements of hydro turbines. The presented modeling approaches based on a combination of experimentation and rapid prototyping of working parts may be useful in optimizing energy equipment to improve safety and efficiency of industrial energy systems.
NASA Technical Reports Server (NTRS)
Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.
2008-01-01
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.
A sEMG model with experimentally based simulation parameters.
Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P
2010-01-01
A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.
2006-04-17
of the droplet phase are then used for validation of theoretical models of the gas-droplet plume flow. Based on experimental and numerical results...with the continuous model adequately reproduces the Arrhenius rate at high temperatures but significantly underpredicts the theoretical rate at low...continuous model and discrete model of real gas effects, and the results on the shock -wave stand-off distance were compared with the experimental data of
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445
Current Experimental Basis for Modeling Ice Accretions on Swept Wings
NASA Technical Reports Server (NTRS)
Vargas, Mario
2005-01-01
This work presents a review of the experimental basis for modeling ice accretions on swept wings. Experimental work related to ice accretion physics on swept wings conducted between 1954 and 2004 is reviewed. Proposed models or explanations of scallop formations are singled out and discussed. Special emphasis is placed on reviewing the work done to determine the basic macroscopic mechanisms of scallop formation. The role of feather growth and its connection to scallop growth is discussed. Conceptual steps in modeling scallop formations are presented. Research elements needed for modeling are discussed.
Analytical and experimental study of control effort associated with model reference adaptive control
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1992-01-01
Numerical simulation results presently obtained for the performance of model reference adaptive control (MRAC) are experimentally verified, with a view to accounting for differences between the plant and the reference model after the control function has been brought to bear. MRAC is both experimentally and analytically applied to a single-degree-of-freedom system, as well as analytically to a MIMO system having controlled differences between the reference model and the plant. The control effort is noted to be sensitive to differences between the plant and the reference model.
Keenan, Kevin G; Valero-Cuevas, Francisco J
2007-09-01
Computational models of motor-unit populations are the objective implementations of the hypothesized mechanisms by which neural and muscle properties give rise to electromyograms (EMGs) and force. However, the variability/uncertainty of the parameters used in these models--and how they affect predictions--confounds assessing these hypothesized mechanisms. We perform a large-scale computational sensitivity analysis on the state-of-the-art computational model of surface EMG, force, and force variability by combining a comprehensive review of published experimental data with Monte Carlo simulations. To exhaustively explore model performance and robustness, we ran numerous iterative simulations each using a random set of values for nine commonly measured motor neuron and muscle parameters. Parameter values were sampled across their reported experimental ranges. Convergence after 439 simulations found that only 3 simulations met our two fitness criteria: approximating the well-established experimental relations for the scaling of EMG amplitude and force variability with mean force. An additional 424 simulations preferentially sampling the neighborhood of those 3 valid simulations converged to reveal 65 additional sets of parameter values for which the model predictions approximate the experimentally known relations. We find the model is not sensitive to muscle properties but very sensitive to several motor neuron properties--especially peak discharge rates and recruitment ranges. Therefore to advance our understanding of EMG and muscle force, it is critical to evaluate the hypothesized neural mechanisms as implemented in today's state-of-the-art models of motor unit function. We discuss experimental and analytical avenues to do so as well as new features that may be added in future implementations of motor-unit models to improve their experimental validity.
Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design
NASA Technical Reports Server (NTRS)
Newman, Dava
2003-01-01
The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.
A Comparison of Analytical and Experimental Data for a Magnetic Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.; Bloodgood, V. Dale, Jr.
2000-01-01
Theoretical and experimental force-displacement and force-current data are compared for two configurations of a simple horseshoe, or bipolar, magnetic actuator. One configuration utilizes permanent magnet wafers to provide a bias flux and the other configuration has no source of bias flux. The theoretical data are obtained from two analytical models of each configuration. One is an ideal analytical model which is developed under the following assumptions: (1) zero fringing and leakage flux, (2) zero actuator coil mmf loss, and (3) infinite permeability of the actuator core and suspended element flux return path. The other analytical model, called the extended model, is developed by adding loss and leakage factors to the ideal model. The values of the loss and leakage factors are calculated from experimental data. The experimental data are obtained from a magnetic actuator test fixture, which is described in detail. Results indicate that the ideal models for both configurations do not match the experimental data very well. However, except for the range around zero force, the extended models produce a good match. The best match is produced by the extended model of the configuration with permanent magnet flux bias.
Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian
2012-01-01
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582
Off-design performance loss model for radial turbines with pivoting, variable-area stators
NASA Technical Reports Server (NTRS)
Meitner, P. L.; Glassman, A. J.
1980-01-01
An off-design performance loss model was developed for variable stator (pivoted vane), radial turbines through analytical modeling and experimental data analysis. Stator loss is determined by a viscous loss model; stator vane end-clearance leakage effects are determined by a clearance flow model. Rotor loss coefficient were obtained by analyzing the experimental data from a turbine rotor previously tested with six stators having throat areas from 20 to 144 percent of design area and were correlated with stator-to-rotor throat area ratio. An incidence loss model was selected to obtain best agreement with experimental results. Predicted turbine performance is compared with experimental results for the design rotor as well as with results for extended and cutback versions of the rotor. Sample calculations were made to show the effects of stator vane end-clearance leakage.
Łagan, Sylwia D; Liber-Kneć, Aneta
2017-01-01
The aim of the study was an estimation of the possibility of using hyperelastic material models to fit experimental data obtained in the tensile test for the swine skin tissue. The uniaxial tensile tests of samples taken from the abdomen and back of a pig was carried out. The mechanical properties of the skin such as the mean Young's modulus, the mean maximum stress and the mean maximum elongation were calculated. The experimental data have been used to identify the parameters in specific strain-energy functions given in seven constitutive models of hyperelastic materials: neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Martins, Humphrey and Veronda-Westmann. An analysis of errors in fitting of theoretical and experimental data was done. Comparison of load -displacement curves for the back and abdomen regions of skin taken showed a different scope of both the mean maximum loading forces and the mean maximum elongation. Samples which have been prepared from the abdominal area had lower values of the mean maximum load compared to samples from the spine area. The reverse trend was observed during the analysis of the values of elongation. An analysis of the accuracy of model fitting to the experimental data showed that, the least accurate were the model of neo- -Hookean, model of Mooney-Rivlin for the abdominal region and model of Veronda-Westmann for the spine region. An analysis of seven hyperelastic material models showed good correlations between the experimental and the theoretical data for five models.
NASA Astrophysics Data System (ADS)
Brown, Alexander; Eviston, Connor
2017-02-01
Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.
Mohsenizadeh, Daniel N; Dehghannasiri, Roozbeh; Dougherty, Edward R
2018-01-01
In systems biology, network models are often used to study interactions among cellular components, a salient aim being to develop drugs and therapeutic mechanisms to change the dynamical behavior of the network to avoid undesirable phenotypes. Owing to limited knowledge, model uncertainty is commonplace and network dynamics can be updated in different ways, thereby giving multiple dynamic trajectories, that is, dynamics uncertainty. In this manuscript, we propose an experimental design method that can effectively reduce the dynamics uncertainty and improve performance in an interaction-based network. Both dynamics uncertainty and experimental error are quantified with respect to the modeling objective, herein, therapeutic intervention. The aim of experimental design is to select among a set of candidate experiments the experiment whose outcome, when applied to the network model, maximally reduces the dynamics uncertainty pertinent to the intervention objective.
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
Harris, Michael D.; Cyr, Adam J.; Ali, Azhar A.; Fitzpatrick, Clare K.; Rullkoetter, Paul J.; Maletsky, Lorin P.; Shelburne, Kevin B.
2016-01-01
Modeling complex knee biomechanics is a continual challenge, which has resulted in many models of varying levels of quality, complexity, and validation. Beyond modeling healthy knees, accurately mimicking pathologic knee mechanics, such as after cruciate rupture or meniscectomy, is difficult. Experimental tests of knee laxity can provide important information about ligament engagement and overall contributions to knee stability for development of subject-specific models to accurately simulate knee motion and loading. Our objective was to provide combined experimental tests and finite-element (FE) models of natural knee laxity that are subject-specific, have one-to-one experiment to model calibration, simulate ligament engagement in agreement with literature, and are adaptable for a variety of biomechanical investigations (e.g., cartilage contact, ligament strain, in vivo kinematics). Calibration involved perturbing ligament stiffness, initial ligament strain, and attachment location until model-predicted kinematics and ligament engagement matched experimental reports. Errors between model-predicted and experimental kinematics averaged <2 deg during varus–valgus (VV) rotations, <6 deg during internal–external (IE) rotations, and <3 mm of translation during anterior–posterior (AP) displacements. Engagement of the individual ligaments agreed with literature descriptions. These results demonstrate the ability of our constraint models to be customized for multiple individuals and simultaneously call attention to the need to verify that ligament engagement is in good general agreement with literature. To facilitate further investigations of subject-specific or population based knee joint biomechanics, data collected during the experimental and modeling phases of this study are available for download by the research community. PMID:27306137
Acute and chronic environmental effects of clandestine methamphetamine waste.
Kates, Lisa N; Knapp, Charles W; Keenan, Helen E
2014-09-15
The illicit manufacture of methamphetamine (MAP) produces substantial amounts of hazardous waste that is dumped illegally. This study presents the first environmental evaluation of waste produced from illicit MAP manufacture. Chemical oxygen demand (COD) was measured to assess immediate oxygen depletion effects. A mixture of five waste components (10mg/L/chemical) was found to have a COD (130 mg/L) higher than the European Union wastewater discharge regulations (125 mg/L). Two environmental partition coefficients, K(OW) and K(OC), were measured for several chemicals identified in MAP waste. Experimental values were input into a computer fugacity model (EPI Suite™) to estimate environmental fate. Experimental log K(OW) values ranged from -0.98 to 4.91, which were in accordance with computer estimated values. Experimental K(OC) values ranged from 11 to 72, which were much lower than the default computer values. The experimental fugacity model for discharge to water estimates that waste components will remain in the water compartment for 15 to 37 days. Using a combination of laboratory experimentation and computer modelling, the environmental fate of MAP waste products was estimated. While fugacity models using experimental and computational values were very similar, default computer models should not take the place of laboratory experimentation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grzesik, W.; Niesłony, P.; Laskowski, P.
2017-12-01
In this paper, a special procedure for the prediction of parameters of the Johnson-Cook constitutive material models is proposed based on the experimental data and specially developed MATLAB scripts which allow advanced modeling of complex 3D response surfaces. Experimental investigations concern two various strain rates of 10-3 and 101 1/s and the testing temperature ranging from the ambient up to 700 °C. As a result, a set of mathematical equations which fit the experimental data is determined. The applicability of the experimentally derived constitutive models to the FEM modeling of real machining processes of Inconel 718 alloy is verified.
A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roettgen, Dan; Seegar, Ben; Tai, Wei Che
Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then theymore » are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.« less
A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roettgen, Dan; Seeger, Benjamin; Tai, Wei Che
Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then theymore » are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.« less
Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M
2012-09-01
The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.
Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar
2017-09-01
The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
NASA Astrophysics Data System (ADS)
Maiti, Raman
2016-06-01
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
NASA Astrophysics Data System (ADS)
Maiti, Raman
2018-06-01
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.
An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells
NASA Astrophysics Data System (ADS)
Pan, Y. H.; Srinivasan, V.; Wang, C. Y.
In this study, a previously developed nickel-metal hydride (Ni-MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters, including the active surface area and micro-diffusion length for both electrodes, are measured and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using constant potential experiments. Two separate equilibrium equations for the Ni electrode, one for charge and the other for discharge, are determined to provide a better description of the electrode hysteresis effect, and their use results in better agreement of simulation results with experimental data on both charge and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni-MH cell model coupled with the updated electrochemical properties is then used to simulate a wide range of experimental discharge and charge curves with satisfactory agreement. The experimentally validated model is used to predict and compare various charge algorithms so as to provide guidelines for application-specific optimization.
Sperlich, Alexander; Werner, Arne; Genz, Arne; Amy, Gary; Worch, Eckhard; Jekel, Martin
2005-03-01
Breakthrough curves (BTC) for the adsorption of arsenate and salicylic acid onto granulated ferric hydroxide (GFH) in fixed-bed adsorbers were experimentally determined and modeled using the homogeneous surface diffusion model (HSDM). The input parameters for the HSDM, the Freundlich isotherm constants and mass transfer coefficients for film and surface diffusion, were experimentally determined. The BTC for salicylic acid revealed a shape typical for trace organic compound adsorption onto activated carbon, and model results agreed well with the experimental curves. Unlike salicylic acid, arsenate BTCs showed a non-ideal shape with a leveling off at c/c0 approximately 0.6. Model results based on the experimentally derived parameters over-predicted the point of arsenic breakthrough for all simulated curves, lab-scale or full-scale, and were unable to catch the shape of the curve. The use of a much lower surface diffusion coefficient D(S) for modeling led to an improved fit of the later stages of the BTC shape, pointing on a time-dependent D(S). The mechanism for this time dependence is still unknown. Surface precipitation was discussed as one possible removal mechanism for arsenate besides pure adsorption interfering the determination of Freundlich constants and D(S). Rapid small-scale column tests (RSSCT) proved to be a powerful experimental alternative to the modeling procedure for arsenic.
2017-09-01
to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we
Osier, Nicole D.; Carlson, Shaun W.; DeSana, Anthony
2015-01-01
Abstract The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology. PMID:25490251
Strauß, Jakob Friedrich; Crain, Philip; Schulenburg, Hinrich; Telschow, Arndt
2016-08-01
Most mathematical models on the evolution of virulence are based on epidemiological models that assume parasite transmission follows the mass action principle. In experimental evolution, however, mass action is often violated due to controlled infection protocols. This "theory-experiment mismatch" raises the question whether there is a need for new mathematical models to accommodate the particular characteristics of experimental evolution. Here, we explore the experimental evolution model system of Bacillus thuringiensis as a parasite and Caenorhabditis elegans as a host. Recent experimental studies with strict control of parasite transmission revealed that one-sided adaptation of B. thuringiensis with non-evolving hosts selects for intermediate or no virulence, sometimes coupled with parasite extinction. In contrast, host-parasite coevolution selects for high virulence and for hosts with strong resistance against B. thuringiensis. In order to explain the empirical results, we propose a new mathematical model that mimics the basic experimental set-up. The key assumptions are: (i) controlled parasite transmission (no mass action), (ii) discrete host generations, and (iii) context-dependent cost of toxin production. Our model analysis revealed the same basic trends as found in the experiments. Especially, we could show that resistant hosts select for highly virulent bacterial strains. Moreover, we found (i) that the evolved level of virulence is independent of the initial level of virulence, and (ii) that the average amount of bacteria ingested significantly affects the evolution of virulence with fewer bacteria ingested selecting for highly virulent strains. These predictions can be tested in future experiments. This study highlights the usefulness of custom-designed mathematical models in the analysis and interpretation of empirical results from experimental evolution. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Technical Reports Server (NTRS)
Haywood, A. M.; Dowsett, H. J.; Robinson, M. M.; Stoll, D. K.; Dolan, A. M.; Lunt, D. J.; Otto-Bliesner, B.; Chandler, M. A.
2011-01-01
The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.
Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A.
2011-01-01
The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.
Time-Dependent Material Properties of Shotcrete: Experimental and Numerical Study.
Neuner, Matthias; Cordes, Tobias; Drexel, Martin; Hofstetter, Günter
2017-09-11
A new experimental program, focusing on the evolution of the Young's modulus, uniaxial compressive strength, shrinkage and creep of shotcrete is presented. The laboratory tests are, starting at very young ages of the material, conducted on two different types of specimens sampled at the site of the Brenner Basetunnel. The experimental results are evaluated and compared to other experiments from the literature. In addition, three advanced constitutive models for shotcrete, i.e., the model by Meschke, the model by Schädlich and Schweiger, and the model by Neuner et al., are validated on the basis of the test data, and the capabilities of the models to represent the observed shotcrete behavior are assessed. Hence, the gap between the the outdated experimental data on shotcrete available in the literature on the one hand and the nowadays available advanced shotcrete models, on the other hand, is closed.
Helgason, Benedikt; Viceconti, Marco; Rúnarsson, Tómas P; Brynjólfsson, Sigurour
2008-01-01
Pushout tests can be used to estimate the shear strength of the bone implant interface. Numerous such experimental studies have been published in the literature. Despite this researchers are still some way off with respect to the development of accurate numerical models to simulate implant stability. In the present work a specific experimental pushout study from the literature was simulated using two different bones implant interface models. The implant was a porous coated Ti-6Al-4V retrieved 4 weeks postoperatively from a dog model. The purpose was to find out which of the interface models could replicate the experimental results using physically meaningful input parameters. The results showed that a model based on partial bone ingrowth (ingrowth stability) is superior to an interface model based on friction and prestressing due to press fit (initial stability). Even though the present study is limited to a single experimental setup, the authors suggest that the presented methodology can be used to investigate implant stability from other experimental pushout models. This would eventually enhance the much needed understanding of the mechanical response of the bone implant interface and help to quantify how implant stability evolves with time.
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Forrester, B. David; Oswald, Fred B.; Townsend, Dennis P.
1992-01-01
A comparison was made between computer model predictions of gear dynamics behavior and experimental results. The experimental data were derived from the NASA gear noise rig, which was used to record dynamic tooth loads and vibration. The experimental results were compared with predictions from the DSTO Aeronautical Research Laboratory's gear dynamics code for a matrix of 28 load speed points. At high torque the peak dynamic load predictions agree with the experimental results with an average error of 5 percent in the speed range 800 to 6000 rpm. Tooth separation (or bounce), which was observed in the experimental data for light torque, high speed conditions, was simulated by the computer model. The model was also successful in simulating the degree of load sharing between gear teeth in the multiple tooth contact region.
Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels
NASA Astrophysics Data System (ADS)
Sikora, Małgorzata; Bohdal, Tadeusz
2017-12-01
Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.
NASA Astrophysics Data System (ADS)
Paralı, Levent; Sarı, Ali; Kılıç, Ulaş; Şahin, Özge; Pěchoušek, Jiří
2017-09-01
We report an improvement of the artificial neural network (ANN) modelling of a piezoelectric actuator vibration based on the experimental data. The controlled vibrations of an actuator were obtained by utilizing the swept-sine signal excitation. The peak value in the displacement signal response was measured by a laser displacement sensor. The piezoelectric actuator was modelled in both linear and nonlinear operating range. A consistency from 90.3 up to 98.9% of ANN modelled output values and experimental ones was reached. The obtained results clearly demonstrate exact linear relationship between the ANN model and experimental values.
NASA Technical Reports Server (NTRS)
Hazelton, R. C.; Yadlowsky, E. J.; Churchill, R. J.; Parker, L. W.; Sellers, B.
1981-01-01
The effect differential charging of spacecraft thermal control surfaces is assessed by studying the dynamics of the charging process. A program to experimentally validate a computer model of the charging process was established. Time resolved measurements of the surface potential were obtained for samples of Kapton and Teflon irradiated with a monoenergetic electron beam. Results indicate that the computer model and experimental measurements agree well and that for Teflon, secondary emission is the governing factor. Experimental data indicate that bulk conductivities play a significant role in the charging of Kapton.
Morphofunctional analysis of experimental model of esophageal achalasia in rats.
Sabirov, A G; Raginov, I S; Burmistrov, M V; Chelyshev, Y A; Khasanov, R Sh; Moroshek, A A; Grigoriev, P N; Zefirov, A L; Mukhamedyarov, M A
2010-10-01
We carried out a detailed analysis of rat model of esophageal achalasia previously developed by us. Manifest morphological and functional disorders were observed in experimental achalasia: hyperplasia of the squamous epithelium, reduced number of nerve fibers, excessive growth of fibrous connective tissue in the esophageal wall, high contractile activity of the lower esophageal sphincter, and reduced motility of the longitudinal muscle layer. Changes in rat esophagus observed in experimental achalasia largely correlate with those in esophageal achalasia in humans. Hence, our experimental model can be used for the development of new methods of disease treatment.
National Centers for Environmental Prediction
Reference List Table of Contents NCEP OPERATIONAL MODEL FORECAST GRAPHICS PARALLEL/EXPERIMENTAL MODEL Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS VERIFICATION (GRID VS.OBS) WEB PAGE (NCEP EXPERIMENTAL PAGE, INTERNAL USE ONLY) Interactive web page tool for
Segmented Polynomial Models in Quasi-Experimental Research.
ERIC Educational Resources Information Center
Wasik, John L.
1981-01-01
The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)
An Analytical Hierarchy Process Model for the Evaluation of College Experimental Teaching Quality
ERIC Educational Resources Information Center
Yin, Qingli
2013-01-01
Taking into account the characteristics of college experimental teaching, through investigaton and analysis, evaluation indices and an Analytical Hierarchy Process (AHP) model of experimental teaching quality have been established following the analytical hierarchy process method, and the evaluation indices have been given reasonable weights. An…
Questioning and Experimentation
ERIC Educational Resources Information Center
Mutanen, Arto
2014-01-01
The paper is a philosophical analysis of experimentation. The philosophical framework of the analysis is the interrogative model of inquiry developed by Hintikka. The basis of the model is explicit and well-formed logic of questions and answers. The framework allows us to formulate a flexible logic of experimentation. In particular, the formulated…
Mutant mice: experimental organisms as materialised models in biomedicine.
Huber, Lara; Keuck, Lara K
2013-09-01
Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models-acknowledging their status as living beings and as epistemological tools-necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer's disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Joint surface modeling with thin-plate splines.
Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D
1999-10-01
Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.
Hewlin, Rodward L; Kizito, John P
2018-03-01
The ultimate goal of the present work is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present work an experimental and digital computational fluid dynamics (CFD) arterial model consisting of a number of major arteries (aorta, carotid bifurcation, cranial, femoral, jejunal, and subclavian arteries) were fabricated to study: (1) the effects of local hemodynamics (flow parameters) on global hemodynamics (2) the effects of transition from bedrest to upright position (postural change) on hemodynamics, and (3) diffusion of dye (medical drug diffusion simulation) in the arterial system via experimental and numerical techniques. The experimental and digital arterial models used in the present study are the first 3-D systems reported in literature to incorporate the major arterial vessels that deliver blood from the heart to the cranial and femoral arteries. These models are also the first reported in literature to be used for flow parameter assessment via medical drug delivery and orthostatic postural change studies. The present work addresses the design of the experimental and digital arterial model in addition to the design of measuring tools used to measure hemodynamic parameters. The experimental and digital arterial model analyzed in the present study was developed from patient specific computed tomography angiography (CTA) scans and simplified geometric data. Segments such as the aorta (ascending and descending) and carotid bifurcation arteries of the experimental and digital arterial model was created from online available patient-specific CTA scan data provided by Charite' Clinical and Research Hospital. The cranial and coronary arteries were simplified arterial geometries developed from dimensional specification data used in previous work. For the patient specific geometries, a MATLAB code was written to upload the CTA scans of each artery, calculate the centroids, and produce surface splines at each discrete cross section along the lumen centerline to create the patient specific arterial geometries. The MATLAB code worked in conjunction with computer aided software (CAD) Solidworks to produce solid models of the patient specific geometries and united them with the simplified geometries to produce the full arterial model (CAD model). The CAD model was also used as a blueprint to fabricate the experimental model which was used for flow visualization via particle imaging velocimetry (PIV) and postural change studies. A custom pulse duplicator (pulsatile pump) was also designed and developed for the present work. The pulse duplicator is capable of producing patient-specific volumetric waveforms for inlet flow to the experimental arterial model. A simple fluid structure interaction (FSI) study was also conducted via optical techniques to establish the magnitude of vessel diameter change due to the pulsatile flow. A medical drug delivery (dye dispersion and tracing) case was simulated via a dye being dispersed into the pulsatile flow stream to measure the transit time of the dye front. Pressure waveforms for diseased cases (hypertension & stenotic cases) were also obtained from the experimental arterial model during postural changes from bedrest (0°) to upright position (90°). The postural changes were simulated via attaching the experimental model to a tile table the can transition from 0° to 90°. The PIV results obtained from the experimental model provided parametric data such as velocity and wall shear stress data. The medical drug delivery simulations (experimental and numerical) studies produce time dependent data which is useful for predicting flow trajectory and transit time of medical drug dispersion. In the case of postural change studies, pressure waveforms were obtained from the common carotid artery and the femoral sections to yield pressure difference data useful for orthostatic hypotension analysis. Flow parametric data such as vorticity (flow reversal), wall shear stress, normal stress, and medical drug transit data was also obtained from the digital arterial model CFD simulations. Although the present work is preliminary work, the experimental and digital models proves to be useful in providing flow parametric data of interest such as: (1) normal stress which is useful for predicting the magnitude of forces which could promote arterial rupture or dislodging of medical implants, (2) wall shear stress which is useful for analyzing the magnitude of drug transport at the arterial wall, (3) vorticity which is useful for predicting the magnitude of flow reversal, and (4) arterial compliance in the case of the experimental model which could be useful in the efforts of developing FSI numerical simulations that incorporates compliance which realistically models the flow in the arterial system.
NASA Astrophysics Data System (ADS)
Bahadur, Birendra
The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES
NASA Astrophysics Data System (ADS)
Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.
2018-03-01
The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.
NASA Astrophysics Data System (ADS)
Zhou, Xunfei; Hsieh, Sheng-Jen
2017-05-01
After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.
Soler, María José; Riera, Marta; Batlle, Daniel
2012-01-01
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The use of experimental models of DN has provided valuable information regarding many aspects of DN, including pathophysiology, progression, implicated genes, and new therapeutic strategies. A large number of mouse models of diabetes have been identified and their kidney disease was characterized to various degrees. Most experimental models of type 2 DN are helpful in studying early stages of DN, but these models have not been able to reproduce the characteristic features of more advanced DN in humans such as nodules in the glomerular tuft or glomerulosclerosis. The generation of new experimental models of DN created by crossing, knockdown, or knockin of genes continues to provide improved tools for studying DN. These models provide an opportunity to search for new mechanisms involving the development of DN, but their shortcomings should be recognized as well. Moreover, it is important to recognize that the genetic background has a substantial effect on the susceptibility to diabetes and kidney disease development in the various models of diabetes. PMID:22461787
Alzheimer’s Disease: Experimental Models and Reality
Drummond, Eleanor
2017-01-01
Experimental models of Alzheimer’s disease (AD) are critical to gaining a better understanding of pathogenesis and to assess the potential of novel therapeutic approaches. The most commonly used experimental animal models are transgenic mice that overexpress human genes associated with familial AD (FAD) that result in the formation of amyloid plaques. However, AD is defined by the presence and interplay of both amyloid plaques and neurofibrillary tangle pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. A greater understanding of the strengths and weakness of each of the various models and the use of more than one model to evaluate potential therapies would help enhance the success of therapy translation from preclinical studies to patients. In this review we summarize the pathological features and limitations of the major experimental models of AD including transgenic mice, transgenic rats, various physiological models of sporadic AD and in vitro human cell culture models. PMID:28025715
Numerical modelling and experimental study of liquid evaporation during gel formation
NASA Astrophysics Data System (ADS)
Pokusaev, B. G.; Khramtsov, D. P.
2017-11-01
Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.
Comparison of existing models to simulate anaerobic digestion of lipid-rich waste.
Béline, F; Rodriguez-Mendez, R; Girault, R; Bihan, Y Le; Lessard, P
2017-02-01
Models for anaerobic digestion of lipid-rich waste taking inhibition into account were reviewed and, if necessary, adjusted to the ADM1 model framework in order to compare them. Experimental data from anaerobic digestion of slaughterhouse waste at an organic loading rate (OLR) ranging from 0.3 to 1.9kgVSm -3 d -1 were used to compare and evaluate models. Experimental data obtained at low OLRs were accurately modeled whatever the model thereby validating the stoichiometric parameters used and influent fractionation. However, at higher OLRs, although inhibition parameters were optimized to reduce differences between experimental and simulated data, no model was able to accurately simulate accumulation of substrates and intermediates, mainly due to the wrong simulation of pH. A simulation using pH based on experimental data showed that acetogenesis and methanogenesis were the most sensitive steps to LCFA inhibition and enabled identification of the inhibition parameters of both steps. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K
2009-01-01
Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.
Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.
Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar
2017-10-01
Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.
Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P
2007-05-01
We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.
Analysis and test of a 16-foot radial rib reflector developmental model
NASA Technical Reports Server (NTRS)
Birchenough, Shawn A.
1989-01-01
Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.
Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel; ...
2017-11-16
A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel
A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.
NASA Astrophysics Data System (ADS)
Mashayekhi, Somayeh; Miles, Paul; Hussaini, M. Yousuff; Oates, William S.
2018-02-01
In this paper, fractional and non-fractional viscoelastic models for elastomeric materials are derived and analyzed in comparison to experimental results. The viscoelastic models are derived by expanding thermodynamic balance equations for both fractal and non-fractal media. The order of the fractional time derivative is shown to strongly affect the accuracy of the viscoelastic constitutive predictions. Model validation uses experimental data describing viscoelasticity of the dielectric elastomer Very High Bond (VHB) 4910. Since these materials are known for their broad applications in smart structures, it is important to characterize and accurately predict their behavior across a large range of time scales. Whereas integer order viscoelastic models can yield reasonable agreement with data, the model parameters often lack robustness in prediction at different deformation rates. Alternatively, fractional order models of viscoelasticity provide an alternative framework to more accurately quantify complex rate-dependent behavior. Prior research that has considered fractional order viscoelasticity lacks experimental validation and contains limited links between viscoelastic theory and fractional order derivatives. To address these issues, we use fractional order operators to experimentally validate fractional and non-fractional viscoelastic models in elastomeric solids using Bayesian uncertainty quantification. The fractional order model is found to be advantageous as predictions are significantly more accurate than integer order viscoelastic models for deformation rates spanning four orders of magnitude.
Experimental Evolution with Caenorhabditis Nematodes
Teotónio, Henrique; Estes, Suzanne; Phillips, Patrick C.; Baer, Charles F.
2017-01-01
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host–pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative. PMID:28592504
Coluccelli, Nicola
2010-08-01
Modeling a real laser diode stack based on Zemax ray tracing software that operates in a nonsequential mode is reported. The implementation of the model is presented together with the geometric and optical parameters to be adjusted to calibrate the model and to match the simulated intensity irradiance profiles with the experimental profiles. The calibration of the model is based on a near-field and a far-field measurement. The validation of the model has been accomplished by comparing the simulated and experimental transverse irradiance profiles at different positions along the caustic formed by a lens. Spot sizes and waist location are predicted with a maximum error below 6%.
The Effectiveness of Synectics Instructional Model on Foreign Language Vocabulary Teaching
ERIC Educational Resources Information Center
Eristi, Bahadir; Polat, Mustafa
2017-01-01
This study, which is an experimental research with pre-test and post-test control groups, aims to determine the effectiveness of the Synectics Instructional Model on foreign language vocabulary teaching. The research was conducted with two experimental and two control groups and 82 students taking part in these groups. The experimental application…
NASA Astrophysics Data System (ADS)
Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier
2018-02-01
This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.
NASA Technical Reports Server (NTRS)
Oglebay, J. C.
1977-01-01
A thermal analytic model for a 30-cm engineering model mercury-ion thruster was developed and calibrated using the experimental test results of tests of a pre-engineering model 30-cm thruster. A series of tests, performed later, simulated a wide range of thermal environments on an operating 30-cm engineering model thruster, which was instrumented to measure the temperature distribution within it. The modified analytic model is described and analytic and experimental results compared for various operating conditions. Based on the comparisons, it is concluded that the analytic model can be used as a preliminary design tool to predict thruster steady-state temperature distributions for stage and mission studies and to define the thermal interface bewteen the thruster and other elements of a spacecraft.
Probing the free energy landscape of the FBP28WW domain using multiple techniques.
Periole, Xavier; Allen, Lucy R; Tamiola, Kamil; Mark, Alan E; Paci, Emanuele
2009-05-01
The free-energy landscape of a small protein, the FBP 28 WW domain, has been explored using molecular dynamics (MD) simulations with alternative descriptions of the molecule. The molecular models used range from coarse-grained to all-atom with either an implicit or explicit treatment of the solvent. Sampling of conformation space was performed using both conventional and temperature-replica exchange MD simulations. Experimental chemical shifts and NOEs were used to validate the simulations, and experimental phi values both for validation and as restraints. This combination of different approaches has provided insight into the free energy landscape and barriers encountered by the protein during folding and enabled the characterization of native, denatured and transition states which are compatible with the available experimental data. All the molecular models used stabilize well defined native and denatured basins; however, the degree of agreement with the available experimental data varies. While the most detailed, explicit solvent model predicts the data reasonably accurately, it does not fold despite a simulation time 10 times that of the experimental folding time. The less detailed models performed poorly relative to the explicit solvent model: an implicit solvent model stabilizes a ground state which differs from the experimental native state, and a structure-based model underestimates the size of the barrier between the two states. The use of experimental phi values both as restraints, and to extract structures from unfolding simulations, result in conformations which, although not necessarily true transition states, appear to share the geometrical characteristics of transition state structures. In addition to characterizing the native, transition and denatured states of this particular system in this work, the advantages and limitations of using varying levels of representation are discussed. 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.
2014-06-01
In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.
A Numerical/Experimental Study on the Impact and CAI Behaviour of Glass Reinforced Compsite Plates
NASA Astrophysics Data System (ADS)
Perillo, Giovanni; Jørgensen, Jens K.; Cristiano, Roberta; Riccio, Aniello
2018-04-01
This paper focuses on the development of an advance numerical model specifically for simulating low velocity impact events and related stiffness reduction on composite structures. The model is suitable for low cost thick composite structures like wind turbine blade and maritime vessels. The model consist of a combination of inter and intra laminar models. The intra-laminar model present a combination of Puck and Hashin failure theories for the evaluation of the fibre and matrix failure. The inter-laminar damage is instead simulated by Cohesive Zone Method based on energy approach. Basic material properties, easily measurable according to standardized tests, are required. The model has been used to simulate impact and compression after impact tests. Experimental tests have been carried out on thick E-Glass/Epoxy composite commonly used in the wind turbine industry. The clustering effect as well as the consequence of the impact energy have been experimentally tested. The accuracy of numerical model has been verified against experimental data showing a very good accuracy of the model.
A new simple local muscle recovery model and its theoretical and experimental validation.
Ma, Liang; Zhang, Wei; Wu, Su; Zhang, Zhanwu
2015-01-01
This study was conducted to provide theoretical and experimental validation of a local muscle recovery model. Muscle recovery has been modeled in different empirical and theoretical approaches to determine work-rest allowance for musculoskeletal disorder (MSD) prevention. However, time-related parameters and individual attributes have not been sufficiently considered in conventional approaches. A new muscle recovery model was proposed by integrating time-related task parameters and individual attributes. Theoretically, this muscle recovery model was compared to other theoretical models mathematically. Experimentally, a total of 20 subjects participated in the experimental validation. Hand grip force recovery and shoulder joint strength recovery were measured after a fatiguing operation. The recovery profile was fitted by using the recovery model, and individual recovery rates were calculated as well after fitting. Good fitting values (r(2) > .8) were found for all the subjects. Significant differences in recovery rates were found among different muscle groups (p < .05). The theoretical muscle recovery model was primarily validated by characterization of the recovery process after fatiguing operation. The determined recovery rate may be useful to represent individual recovery attribute.
Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.
Bordones, Alifer D; Leroux, Matthew; Kheyfets, Vitaly O; Wu, Yu-An; Chen, Chia-Yuan; Finol, Ender A
2018-05-21
Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.
Experimental Concepts for Testing Seismic Hazard Models
NASA Astrophysics Data System (ADS)
Marzocchi, W.; Jordan, T. H.
2015-12-01
Seismic hazard analysis is the primary interface through which useful information about earthquake rupture and wave propagation is delivered to society. To account for the randomness (aleatory variability) and limited knowledge (epistemic uncertainty) of these natural processes, seismologists must formulate and test hazard models using the concepts of probability. In this presentation, we will address the scientific objections that have been raised over the years against probabilistic seismic hazard analysis (PSHA). Owing to the paucity of observations, we must rely on expert opinion to quantify the epistemic uncertainties of PSHA models (e.g., in the weighting of individual models from logic-tree ensembles of plausible models). The main theoretical issue is a frequentist critique: subjectivity is immeasurable; ergo, PSHA models cannot be objectively tested against data; ergo, they are fundamentally unscientific. We have argued (PNAS, 111, 11973-11978) that the Bayesian subjectivity required for casting epistemic uncertainties can be bridged with the frequentist objectivity needed for pure significance testing through "experimental concepts." An experimental concept specifies collections of data, observed and not yet observed, that are judged to be exchangeable (i.e., with a joint distribution independent of the data ordering) when conditioned on a set of explanatory variables. We illustrate, through concrete examples, experimental concepts useful in the testing of PSHA models for ontological errors in the presence of aleatory variability and epistemic uncertainty. In particular, we describe experimental concepts that lead to exchangeable binary sequences that are statistically independent but not identically distributed, showing how the Bayesian concept of exchangeability generalizes the frequentist concept of experimental repeatability. We also address the issue of testing PSHA models using spatially correlated data.
Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2014-07-01
Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.
Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.
Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A
2008-03-01
In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.
2016-06-01
characteristics, experimental design techniques, and analysis methodologies that distinguish each phase of the MBSE MEASA. To ensure consistency... methodology . Experimental design selection, simulation analysis, and trade space analysis support the final two stages. Figure 27 segments the MBSE MEASA...rounding has the potential to increase the correlation between columns of the experimental design matrix. The design methodology presented in Vieira
Improving plant bioaccumulation science through consistent reporting of experimental data.
Fantke, Peter; Arnot, Jon A; Doucette, William J
2016-10-01
Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roosta, M.; Ghaedi, M.; Shokri, N.; Daneshfar, A.; Sahraei, R.; Asghari, A.
2014-01-01
The present study was aimed to experimental design optimization applied to removal of malachite green (MG) from aqueous solution by ultrasound-assisted removal onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as FESEM, TEM, BET, and UV-vis measurements. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time on MG removal were studied using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo -first order, pseudo-second order, Elovich and intraparticle diffusion models applicability was tested for experimental data and the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed adsorbent (0.015 g) is applicable for successful removal of MG (RE > 99%) in short time (4.4 min) with high adsorption capacity (140-172 mg g-1).
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.
2007-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.
de la Garza-Rodea, Anabel Sofía; Padilla-Sánchez, Luis; de la Garza-Aguilar, Javier; Neri-Vela, Rolando
2007-01-01
The progress of medicine has largely been due to research, and for surgery, in particular, the experimental surgical laboratory has been considered fundamental to the surgeon's education. In this study, a general view of experimental surgery is given in animal models based on bioethical norms as well as to design, create and apply different surgical procedures before performing in humans. Experimental surgery also facilitates surgical teaching and promotes the surgeon's scientific reasoning. Methods. This is a retrospective and descriptive study. Data were collected from direct and indirect sources of available publications on the historical, bioethical and educational aspects of medicine, focusing on surgery. The important facts corresponding to the field of experimental surgery and applicable in Mexico were selected. Concepts of experimental surgical models and of the experimental surgery laboratory were described. Bioethical considerations are emphasized for care of experimental animals. Finally, this work focuses on the importance of surgical experimentation in current and future development of the surgical researcher. Conclusions. Experimentation with animal models in a surgical laboratory is essential for surgical teaching and promotes development of the scientific thought in the surgeon. It is necessary for surgical research and is fundamental for making progress in surgery, treatment and medicine as science.
Graphical Models for Quasi-Experimental Designs
ERIC Educational Resources Information Center
Kim, Yongnam; Steiner, Peter M.; Hall, Courtney E.; Su, Dan
2016-01-01
Experimental and quasi-experimental designs play a central role in estimating cause-effect relationships in education, psychology, and many other fields of the social and behavioral sciences. This paper presents and discusses the causal graphs of experimental and quasi-experimental designs. For quasi-experimental designs the authors demonstrate…
Ravikumar, Balaguru; Parri, Elina; Timonen, Sanna; Airola, Antti; Wennerberg, Krister
2017-01-01
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications. PMID:28787438
A framework for testing and comparing binaural models.
Dietz, Mathias; Lestang, Jean-Hugues; Majdak, Piotr; Stern, Richard M; Marquardt, Torsten; Ewert, Stephan D; Hartmann, William M; Goodman, Dan F M
2018-03-01
Auditory research has a rich history of combining experimental evidence with computational simulations of auditory processing in order to deepen our theoretical understanding of how sound is processed in the ears and in the brain. Despite significant progress in the amount of detail and breadth covered by auditory models, for many components of the auditory pathway there are still different model approaches that are often not equivalent but rather in conflict with each other. Similarly, some experimental studies yield conflicting results which has led to controversies. This can be best resolved by a systematic comparison of multiple experimental data sets and model approaches. Binaural processing is a prominent example of how the development of quantitative theories can advance our understanding of the phenomena, but there remain several unresolved questions for which competing model approaches exist. This article discusses a number of current unresolved or disputed issues in binaural modelling, as well as some of the significant challenges in comparing binaural models with each other and with the experimental data. We introduce an auditory model framework, which we believe can become a useful infrastructure for resolving some of the current controversies. It operates models over the same paradigms that are used experimentally. The core of the proposed framework is an interface that connects three components irrespective of their underlying programming language: The experiment software, an auditory pathway model, and task-dependent decision stages called artificial observers that provide the same output format as the test subject. Copyright © 2017 Elsevier B.V. All rights reserved.
Parallel Energy Transport in Detached DIII-D Divertor Plasmas
NASA Astrophysics Data System (ADS)
Leonard, A. W.; Lore, J. D.; Canik, J. M.; McLean, A. G.; Makowski, M. A.
2017-10-01
A comparison of experiment and modeling of detached divertor plasmas is examined in the context of parallel energy transport. Experimental estimates of power carried by electron thermal conduction versus plasma convection are experimentally inferred from power balance measurements of radiated power and target plate heat flux combined with Thomson scattering measurements of the Te profile along the divertor leg. Experimental profiles of Te exhibit relatively low gradients with Te < 15 eV from the X-point to the target implying transport dominated by convection. In contrast, fluid modeling with SOLPS produces sharp Te gradients for Te > 3 eV, characteristic of transport dominated by electron conduction through the bulk of the divertor. This discrepancy with experimental transport dominated by convection and modeling by conduction has significant implications for the radiative capacity of divertor plasmas and may explain at least part of the difficulty for fluid modeling to obtain the experimentally observed radiative losses. Comparisons are also made for helium plasmas where the match between experiment and modeling is much better. Work supported by the US DOE under DE-FC02-04ER54698.
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.
1989-01-01
An experimental and analytical study was conducted at Mach 0.7 to investigate the effects of spanwise curvature on flutter. Two series of rectangular planform wings of aspect ration 1.5 and curvature ranging from zero (uncurved) to 1.04/ft were flutter tested in the NASA Langley Transonic Dynamics Tunnel (TDT). One series consisted of models with a NACA 65 A010 airfoil section and the other of flat plate cross section models. Flutter analyses were conducted for correlation with the experimental results by using structural finite element methods to perform vibration analysis and two aerodynamic theories to obtain unsteady aerodynamic load calculations. The experimental results showed that for one series of models the flutter dynamic pressure increased significantly with curvature while for the other series of models the flutter dynamic pressure decreased with curvature. The flutter analyses, which generally predicted the experimental results, indicated that the difference in behavior of the two series of models was primarily due to differences in their structural properties.
Nieto, Ana; Domínguez-Bernal, Gustavo; Orden, José A; De La Fuente, Ricardo; Madrid-Elena, Nadia; Carrión, Javier
2011-02-23
Several animal models have been established to study visceral leishmaniosis (VL), a worldwide vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem. BALB/c mice and Syrian hamsters are the most widely used experimental models. In this paper, we summarize the advantages and disadvantages of these two experimental models and discuss the results obtained using these models in different studies of VL. Studies using the BALB/c mouse model have underscored differences between the liver and spleen in the course of VL, indicating that pathological evaluation of the visceral organs is essential for understanding the immune mechanisms induced by Leishmania infantum infection. The main goal of this review is to collate the relevant literature on Leishmania pathogenesis into a sequence of events, providing a schematic view of the main components of adaptive and innate immunity in the liver and spleen after experimental infection with L. infantum or L. donovani. This review also presents several viewpoints and reflections about some controversial aspects of Leishmania research, including the choice of experimental model, route of administration, inoculum size and the relevance of pathology (intimately linked to parasite persistence): a thorough understanding of which is essential for future VL research and the successful development of efficient control strategies for Leishmania spp.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
Improving the physiological realism of experimental models.
Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L
2016-04-06
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
NASA Technical Reports Server (NTRS)
Stankovic, Ana V.
2003-01-01
Professor Stankovic will be developing and refining Simulink based models of the PM alternator and comparing the simulation results with experimental measurements taken from the unit. Her first task is to validate the models using the experimental data. Her next task is to develop alternative control techniques for the application of the Brayton Cycle PM Alternator in a nuclear electric propulsion vehicle. The control techniques will be first simulated using the validated models then tried experimentally with hardware available at NASA. Testing and simulation of a 2KW PM synchronous generator with diode bridge output is described. The parameters of a synchronous PM generator have been measured and used in simulation. Test procedures have been developed to verify the PM generator model with diode bridge output. Experimental and simulation results are in excellent agreement.
NASA Technical Reports Server (NTRS)
Simonson, M. R.; Smith, E. G.; Uhl, W. R.
1974-01-01
Analytical and experimental studies were performed to define the flowfield of annular jets, with and, without swirling flow. The analytical model treated configurations with variations of flow angularities, radius ratio, and swirl distributions. Swirl distributions characteristic of stator vanes and rotor blade rows, where the total pressure and swirl distributions are related were incorporated in the mathematical model. The experimental studies included tests of eleven nozzle models, both with and, without swirling exhaust flow. Flowfield surveys were obtained and used for comparison with the analytical model. This comparison of experimental and analytical studies served as the basis for evaluation of several empirical constants as required for application of the analysis to the general flow configuration. The analytical model developed during these studies is applicable to the evaluation of the flowfield and overall performance of the exhaust of statorless lift fan systems that contain various levels of exhaust swirl.
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico
2009-01-01
The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690
Using semantics for representing experimental protocols.
Giraldo, Olga; García, Alexander; López, Federico; Corcho, Oscar
2017-11-13
An experimental protocol is a sequence of tasks and operations executed to perform experimental research in biological and biomedical areas, e.g. biology, genetics, immunology, neurosciences, virology. Protocols often include references to equipment, reagents, descriptions of critical steps, troubleshooting and tips, as well as any other information that researchers deem important for facilitating the reusability of the protocol. Although experimental protocols are central to reproducibility, the descriptions are often cursory. There is the need for a unified framework with respect to the syntactic structure and the semantics for representing experimental protocols. In this paper we present "SMART Protocols ontology", an ontology for representing experimental protocols. Our ontology represents the protocol as a workflow with domain specific knowledge embedded within a document. We also present the S ample I nstrument R eagent O bjective (SIRO) model, which represents the minimal common information shared across experimental protocols. SIRO was conceived in the same realm as the Patient Intervention Comparison Outcome (PICO) model that supports search, retrieval and classification purposes in evidence based medicine. We evaluate our approach against a set of competency questions modeled as SPARQL queries and processed against a set of published and unpublished protocols modeled with the SP Ontology and the SIRO model. Our approach makes it possible to answer queries such as Which protocols use tumor tissue as a sample. Improving reporting structures for experimental protocols requires collective efforts from authors, peer reviewers, editors and funding bodies. The SP Ontology is a contribution towards this goal. We build upon previous experiences and bringing together the view of researchers managing protocols in their laboratory work. Website: https://smartprotocols.github.io/ .
Experimental models of hepatotoxicity related to acute liver failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maes, Michaël; Vinken, Mathieu, E-mail: mvinken@vub.ac.be; Jaeschke, Hartmut
Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposuremore » or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.« less
Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I
2016-12-01
Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.
Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro
2016-02-01
Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Effects of human running cadence and experimental validation of the bouncing ball model
NASA Astrophysics Data System (ADS)
Bencsik, László; Zelei, Ambrus
2017-05-01
The biomechanical analysis of human running is a complex problem, because of the large number of parameters and degrees of freedom. However, simplified models can be constructed, which are usually characterized by some fundamental parameters, like step length, foot strike pattern and cadence. The bouncing ball model of human running is analysed theoretically and experimentally in this work. It is a minimally complex dynamic model when the aim is to estimate the energy cost of running and the tendency of ground-foot impact intensity as a function of cadence. The model shows that cadence has a direct effect on energy efficiency of running and ground-foot impact intensity. Furthermore, it shows that higher cadence implies lower risk of injury and better energy efficiency. An experimental data collection of 121 amateur runners is presented. The experimental results validate the model and provides information about the walk-to-run transition speed and the typical development of cadence and grounded phase ratio in different running speed ranges.
Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs.
Hriberšek, M; Zajdela, B; Hribernik, A; Zadravec, M
2011-02-01
The paper studies the properties and sedimentation characteristics of sludge flocs, as they appear in biological wastewater treatment (BWT) plants. The flocs are described as porous and permeable bodies, with their properties defined based on conducted experimental study. The derivation is based on established geometrical properties, high-speed camera data on settling velocities and non-linear numerical model, linking settling velocity with physical properties of porous flocs. The numerical model for derivation is based on generalized Stokes model, with permeability of the floc described by the Brinkman model. As a result, correlation for flocs porosity is obtained as a function of floc diameter. This data is used in establishing a CFD numerical model of sedimentation of flocs in test conditions, as recorded during experimental investigation. The CFD model is based on Euler-Lagrange formulation, where the Lagrange formulation is chosen for computation of flocs trajectories during sedimentation. The results of numerical simulations are compared with experimental results and very good agreement is observed. © 2010 Elsevier Ltd. All rights reserved.
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…
NASA Technical Reports Server (NTRS)
Morris, R. E.
1973-01-01
An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.
Active vibration control with model correction on a flexible laboratory grid structure
NASA Technical Reports Server (NTRS)
Schamel, George C., II; Haftka, Raphael T.
1991-01-01
This paper presents experimental and computational comparisons of three active damping control laws applied to a complex laboratory structure. Two reduced structural models were used with one model being corrected on the basis of measured mode shapes and frequencies. Three control laws were investigated, a time-invariant linear quadratic regulator with state estimation and two direct rate feedback control laws. Experimental results for all designs were obtained with digital implementation. It was found that model correction improved the agreement between analytical and experimental results. The best agreement was obtained with the simplest direct rate feedback control.
NASA Astrophysics Data System (ADS)
Kashevarov, Alexey V.; Miller, Alexey B.; Potapov, Yuriy F.; Stasenko, Albert L.; Zhbanov, Vladimir A.
2018-05-01
An experimental facility for modeling of icing processes in various conditions (supercooled droplets, ice crystals and mixed-phase) is described and experimental results are presented. Some methods of icing processes characterization with non-dimensional coefficients are suggested. Theoretical model of a liquid film dynamics, mass and heat transfer during its movement on the model surface is presented. The numerical calculations of liquid film freezing and run-back ice evolution on the surface are performed.
Experimental and Modeling Studies of Massif Anorthosites
NASA Technical Reports Server (NTRS)
Longhi, John
1999-01-01
This termination report covers the latter part of a single research effort spanning several grant cycles. During this time there was a single title, "Experimental and Modeling Studies of Massif Anorthosites", but there were several contract numbers as the mode and location of NASA contract administration changed. Initially, the project was funded as an increment to the PI's other grant, "Early Differentiation of the Moon: Experimental and Modeling Studies", but subsequently it became an independent grant. Table 1 contains a brief summary of the dates and contract numbers.
Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study
NASA Technical Reports Server (NTRS)
Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.
1985-01-01
A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.
NASA Astrophysics Data System (ADS)
Matas, Richard; Syka, Tomáš; Luňáček, Ondřej
The article deals with a description of results from research and development of a radial compressor stage. The experimental compressor and used numerical models are briefly described. In the first part, the comparisons of characteristics obtained experimentally and by numerical simulations for stage with vaneless diffuser are described. In the second part, the results for stage with vanned diffuser are presented. The results are relevant for next studies in research and development process.
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Lo, R. Y.
1987-01-01
Modeling of SEU has been done in a CMOS static RAM containing 1-micron-channel-length transistors fabricated from a p-well epilayer process using both circuit-simulation and numerical-simulation techniques. The modeling results have been experimentally verified with the aid of heavy-ion beams obtained from a three-stage tandem van de Graaff accelerator. Experimental evidence for a novel SEU mode in an ON n-channel device is presented.
Romero Durán, Francisco J.; Alonso, Nerea; Caamaño, Olga; García-Mera, Xerardo; Yañez, Matilde; Prado-Prado, Francisco J.; González-Díaz, Humberto
2014-01-01
In a multi-target complex network, the links (Lij) represent the interactions between the drug (di) and the target (tj), characterized by different experimental measures (Ki, Km, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (cj). In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%–90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human). Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally. PMID:25255029
A strain-mediated corrosion model for bioabsorbable metallic stents.
Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C
2017-06-01
This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Oertel, Bruno Georg; Lötsch, Jörn
2013-01-01
The medical impact of pain is such that much effort is being applied to develop novel analgesic drugs directed towards new targets and to investigate the analgesic efficacy of known drugs. Ongoing research requires cost-saving tools to translate basic science knowledge into clinically effective analgesic compounds. In this review we have re-examined the prediction of clinical analgesia by human experimental pain models as a basis for model selection in phase I studies. The overall prediction of analgesic efficacy or failure of a drug correlated well between experimental and clinical settings. However, correct model selection requires more detailed information about which model predicts a particular clinical pain condition. We hypothesized that if an analgesic drug was effective in an experimental pain model and also a specific clinical pain condition, then that model might be predictive for that particular condition and should be selected for development as an analgesic for that condition. The validity of the prediction increases with an increase in the numbers of analgesic drug classes for which this agreement was shown. From available evidence, only five clinical pain conditions were correctly predicted by seven different pain models for at least three different drugs. Most of these models combine a sensitization method. The analysis also identified several models with low impact with respect to their clinical translation. Thus, the presently identified agreements and non-agreements between analgesic effects on experimental and on clinical pain may serve as a solid basis to identify complex sets of human pain models that bridge basic science with clinical pain research. PMID:23082949
Experimental investigation and model verification for a GAX absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, S.C.; Christensen, R.N.
1996-12-31
In the ammonia-water generator-absorber heat exchange (GAX) absorption heat pump, the heat and mass transfer processes which occur between the generator and absorber are the most crucial in assuring that the heat pump will achieve COPs competitive with those of current technologies. In this study, a model is developed for the heat and mass transfer processes that occur in a counter-current vertical fluted tube absorber (VFTA) with inserts. Correlations for heat and mass transfer in annuli are used to model the processes in the VTA. Experimental data is used to validate the model for three different insert geometries. Comparison ofmore » model results with experimental data provides insight into model corrections necessary to bring the model into agreement with the physical phenomena observed in the laboratory.« less
ERIC Educational Resources Information Center
Garrett, Candace S.; Cunningham, Donald J.
1974-01-01
Results indicate that reward and ignore conditions were not different but both yielded higher imitative scores than the punishment condition; same-sex models yielded higher imitation scores than opposite-sex models; lowest imitation scores were obtained by children exposed to a male experimenter and a female model. (Author/BJG)
Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design
NASA Technical Reports Server (NTRS)
Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.;
2015-01-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.
NASA Astrophysics Data System (ADS)
Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin
2018-04-01
This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hills, Richard G.; Maniaci, David Charles; Naughton, Jonathan W.
2015-09-01
A Verification and Validation (V&V) framework is presented for the development and execution of coordinated modeling and experimental program s to assess the predictive capability of computational models of complex systems through focused, well structured, and formal processes.The elements of the framework are based on established V&V methodology developed by various organizations including the Department of Energy, National Aeronautics and Space Administration, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers. Four main topics are addressed: 1) Program planning based on expert elicitation of the modeling physics requirements, 2) experimental design for model assessment, 3)more » uncertainty quantification for experimental observations and computational model simulations, and 4) assessment of the model predictive capability. The audience for this document includes program planners, modelers, experimentalist, V &V specialist, and customers of the modeling results.« less
Near-optimal experimental design for model selection in systems biology.
Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M
2013-10-15
Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).
Cheng, Mingjian; Guo, Ya; Li, Jiangting; Zheng, Xiaotong; Guo, Lixin
2018-04-20
We introduce an alternative distribution to the gamma-gamma (GG) distribution, called inverse Gaussian gamma (IGG) distribution, which can efficiently describe moderate-to-strong irradiance fluctuations. The proposed stochastic model is based on a modulation process between small- and large-scale irradiance fluctuations, which are modeled by gamma and inverse Gaussian distributions, respectively. The model parameters of the IGG distribution are directly related to atmospheric parameters. The accuracy of the fit among the IGG, log-normal, and GG distributions with the experimental probability density functions in moderate-to-strong turbulence are compared, and results indicate that the newly proposed IGG model provides an excellent fit to the experimental data. As the receiving diameter is comparable with the atmospheric coherence radius, the proposed IGG model can reproduce the shape of the experimental data, whereas the GG and LN models fail to match the experimental data. The fundamental channel statistics of a free-space optical communication system are also investigated in an IGG-distributed turbulent atmosphere, and a closed-form expression for the outage probability of the system is derived with Meijer's G-function.
Metainference: A Bayesian inference method for heterogeneous systems.
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.
Albanese, Antonio; Limei Cheng; Ursino, Mauro; Chbat, Nicolas W
2015-01-01
Apnea via breath-holding (BH) in air induces cardiorespiratory adaptation that involves the activation of several reflex mechanisms and their complex interactions. Hence, the effects of BH in air on cardiorespiratory function can become hardly predictable and difficult to be interpreted. Particularly, the effect on heart rate is not yet completely understood because of the contradicting results of different physiological studies. In this paper we apply our previously developed cardiopulmonary model (CP Model) to a scenario of BH with a twofold intent: (1) further validating the CP Model via comparison against experimental data; (2) gaining insights into the physiological reasoning for such contradicting experimental results. Model predictions agreed with published experimental animal and human data and indicated that heart rate increases during BH in air. Changes in the balance between sympathetic and vagal effects on heart rate within the model proved to be effective in inverting directions of the heart rate changes during BH. Hence, the model suggests that intra-subject differences in such sympatho-vagal balance may be one of the reasons for the contradicting experimental results.
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota; ...
2018-02-28
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
A comparative study of the constitutive models for silicon carbide
NASA Astrophysics Data System (ADS)
Ding, Jow-Lian; Dwivedi, Sunil; Gupta, Yogendra
2001-06-01
Most of the constitutive models for polycrystalline silicon carbide were developed and evaluated using data from either normal plate impact or Hopkinson bar experiments. At ISP, extensive efforts have been made to gain detailed insight into the shocked state of the silicon carbide (SiC) using innovative experimental methods, viz., lateral stress measurements, in-material unloading measurements, and combined compression shear experiments. The data obtained from these experiments provide some unique information for both developing and evaluating material models. In this study, these data for SiC were first used to evaluate some of the existing models to identify their strength and possible deficiencies. Motivated by both the results of this comparative study and the experimental observations, an improved phenomenological model was developed. The model incorporates pressure dependence of strength, rate sensitivity, damage evolution under both tension and compression, pressure confinement effect on damage evolution, stiffness degradation due to damage, and pressure dependence of stiffness. The model developments are able to capture most of the material features observed experimentally, but more work is needed to better match the experimental data quantitatively.
Application of a computational glass model to the shock response of soda-lime glass
Gorfain, Joshua E.; Key, Christopher T.; Alexander, C. Scott
2016-04-20
This article details the implementation and application of the glass-specific computational constitutive model by Holmquist and Johnson [1] to simulate the dynamic response of soda-lime glass under high rate and high pressure shock conditions. The predictive capabilities of this model are assessed through comparison of experimental data with numerical results from computations using the CTH shock physics code. The formulation of this glass model is reviewed in the context of its implementation within CTH. Using a variety of experimental data compiled from the open literature, a complete parameterization of the model describing the observed behavior of soda-lime glass is developed.more » Simulation results using the calibrated soda-lime glass model are compared to flyer plate and Taylor rod impact experimental data covering a range of impact and failure conditions spanning an order of magnitude in velocity and pressure. In conclusion, the complex behavior observed in the experimental testing is captured well in the computations, demonstrating the capability of the glass model within CTH.« less
Experimental Models of Ocular Infection with Toxoplasma Gondii
Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver
2015-01-01
Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis. PMID:26716018
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
Improving the physiological realism of experimental models
Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.
2016-01-01
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507
Mapping the function of neuronal ion channels in model and experiment
Podlaski, William F; Seeholzer, Alexander; Groschner, Lukas N; Miesenböck, Gero; Ranjan, Rajnish; Vogels, Tim P
2017-01-01
Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling. DOI: http://dx.doi.org/10.7554/eLife.22152.001 PMID:28267430
Prediction of turning stability using receptance coupling
NASA Astrophysics Data System (ADS)
Jasiewicz, Marcin; Powałka, Bartosz
2018-01-01
This paper presents an issue of machining stability prediction of dynamic "lathe - workpiece" system evaluated using receptance coupling method. Dynamic properties of the lathe components (the spindle and the tailstock) are assumed to be constant and can be determined experimentally based on the results of the impact test. Hence, the variable of the system "machine tool - holder - workpiece" is the machined part, which can be easily modelled analytically. The method of receptance coupling enables a synthesis of experimental (spindle, tailstock) and analytical (machined part) models, so impact testing of the entire system becomes unnecessary. The paper presents methodology of analytical and experimental models synthesis, evaluation of the stability lobes and experimental validation procedure involving both the determination of the dynamic properties of the system and cutting tests. In the summary the experimental verification results would be presented and discussed.
Using an experimental model for the study of therapeutic touch.
dos Santos, Daniella Soares; Marta, Ilda Estéfani Ribeiro; Cárnio, Evelin Capellari; de Quadros, Andreza Urba; Cunha, Thiago Mattar; de Carvalho, Emilia Campos
2013-02-01
to verify whether the Paw Edema Model can be used in investigations about the effects of Therapeutic Touch on inflammation by measuring the variables pain, edema and neutrophil migration. this is a pilot and experimental study, involving ten male mice of the same genetic strain and divided into experimental and control group, submitted to the chemical induction of local inflammation in the right back paw. The experimental group received a daily administration of Therapeutic Touch for 15 minutes during three days. the data showed statistically significant differences in the nociceptive threshold and in the paw circumference of the animals from the experimental group on the second day of the experiment. the experiment model involving animals can contribute to study the effects of Therapeutic Touch on inflammation, and adjustments are suggested in the treatment duration, number of sessions and experiment duration.
NASA Astrophysics Data System (ADS)
Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens
2016-10-01
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.
Wang, Pengfei; Wang, Liyuan; Sun, Yi; Liu, Gen; Zhang, Ping; Kang, Li; Jiang, Shijin; Jiang, Yunliang
2016-01-01
Porcine circovirus type 2 (PCV2), an economically important pathogen, causes postweaning multisystemic wasting syndrome (PMWS) and other syndrome diseases collectively known as porcine circovirus-associated disease (PCVAD). Previous studies revealed breed-dependent differences in porcine susceptibility to PCV2; however, the genetic mechanism underlying different resistance to PCV2 infection remains largely unknown. In this study, we found that Yorkshire × Landrace (YL) pigs exhibited serious clinical features typifying PCV2 disease, while the Laiwu (a Chinese indigenous pig breed, LW) pigs showed little clinical symptoms of the disease during PCV2 infection. At 35 days post infection (dpi), the PCV2 DNA copy in YL pigs was significantly higher than that in LW pigs (P < 0.05). The serum level of IL-4, IL-6, IL-8, IL-12 and TGF-β1 in LW pigs and TNF-α in YL pigs increased significantly at the early infected stages, respectively; while that of IL-10 and IFN-γ in YL pigs was greatly increased at 35 dpi. RNA-seq analysis revealed that, at 35 dpi, 83 genes were up-regulated and 86 genes were down-regulated in the lung tissues of LW pigs, while in YL pigs, the numbers were 187 and 18, respectively. In LW pigs, the differentially expressed genes (DEGs) were mainly involved in complement and coagulation cascades, metabolism of xenobiotics by cytochrome P450, RIG-I-like receptor signaling and B cell receptor signaling pathways. Four up-regulated genes (TFPI, SERPNC1, SERPNA1, and SERPNA5) that are enriched in complement and coagulation cascades pathway were identified in the PCV2-infected LW pigs, among which the mRNA expression of SERPNA1, as well as three genes including TGF-β1, TGF-β2 and VEGF that are regulated by SERPNA1 was significantly increased (P < 0.05). We speculate that higher expression of SERPNA1 may effectively suppress excessive inflammation reaction and reduce the pathological degree of lung tissue in PCV2-infected pigs. Collectively, our findings indicate that the susceptibility to PCV2 infection depends on a genetic difference between LW and YL pigs, and SERPNA1 likely plays an important role in the resistance of LW pigs to PCV2 infection. PMID:27171165
Optimal Experimental Design for Model Discrimination
Myung, Jay I.; Pitt, Mark A.
2009-01-01
Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it possible to determine these values, and thereby identify an optimal experimental design. After describing the method, it is demonstrated in two content areas in cognitive psychology in which models are highly competitive: retention (i.e., forgetting) and categorization. The optimal design is compared with the quality of designs used in the literature. The findings demonstrate that design optimization has the potential to increase the informativeness of the experimental method. PMID:19618983
Modeling and Experiments with Carbon Nanotubes for Applications in High Performance Circuits
2017-04-06
purchased and installed for experimental characterization of atomic layer deposited graphene on different substrates for radiation-hardened studies...72 3.6 Experimental Research in Graphene for Radiation Hardened Devices……………..73 4 Recommendations...physics for analysis and design of integrated circuits. The developed model is verified from published experimental data. Basic logic gates in
Experimental weekly to seasonal U.S. forecasts with the Regional Spectral Model
J. Roads
2004-01-01
As described previously Roads et al. 2001a, hereafter RCF), the Scripps Experimental Climate Prediction Center (ECPC) has been making routine, near-real-time, long-range experimental global and regional dynamical forecasts since 27 September 1997. The global spectral model (GSM) used for these forecasts is that of National Centers for Environmental Predictionâs (NCEP;...
USDA-ARS?s Scientific Manuscript database
Field experimental data of five experiments covering a wide range Field experimental data of five experiments covering a wide range of growing conditions are assembled for wheat growth and cropping systems modeling. The data include (i) an experiment on interactive effects of elevated CO2 by water a...
Millimeter Wave Radar Clutter Program
1989-10-30
conduct experimental measurments and develop theoretical models to Improve our understanding of electromagnetic wave interaction with terrain at...various types of terrain under a variety of conditions. The experimental data servos to guide the development of the models as well as to verify their... experimental measurement. Task 4 - Examination of Bistatic Scattering from Surfaces and Volumes: Prior to this program, no millimeter-wave bistatic
Experimental Model School Unit. Application for Continuation Grant. P.L. 89-10 ESEA, Title III.
ERIC Educational Resources Information Center
Charlotte-Mecklenburg Public Schools, Charlotte, NC.
This application for continuation of an ESEA, Title III, grant to the Charlotte-Mecklenburg, N.C., Schools' Experimental Model School Unit (a senior high school and its two junior high and six elementary feeder schools with a program of research, experimentation, innovation, and dissemination designed to act as a catalyst for curriculum,…
Computational Modeling of Micrometastatic Breast Cancer Radiation Dose Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Daniel L.; Debeb, Bisrat G.; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
Purpose: Prophylactic cranial irradiation (PCI) involves giving radiation to the entire brain with the goals of reducing the incidence of brain metastasis and improving overall survival. Experimentally, we have demonstrated that PCI prevents brain metastases in a breast cancer mouse model. We developed a computational model to expand on and aid in the interpretation of our experimental results. Methods and Materials: MATLAB was used to develop a computational model of brain metastasis and PCI in mice. Model input parameters were optimized such that the model output would match the experimental number of metastases per mouse from the unirradiated group. Anmore » independent in vivo–limiting dilution experiment was performed to validate the model. The effect of whole brain irradiation at different measurement points after tumor cells were injected was evaluated in terms of the incidence, number of metastases, and tumor burden and was then compared with the corresponding experimental data. Results: In the optimized model, the correlation between the number of metastases per mouse and the experimental fits was >95. Our attempt to validate the model with a limiting dilution assay produced 99.9% correlation with respect to the incidence of metastases. The model accurately predicted the effect of whole-brain irradiation given 3 weeks after cell injection but substantially underestimated its effect when delivered 5 days after cell injection. The model further demonstrated that delaying whole-brain irradiation until the development of gross disease introduces a dose threshold that must be reached before a reduction in incidence can be realized. Conclusions: Our computational model of mouse brain metastasis and PCI correlated strongly with our experiments with unirradiated mice. The results further suggest that early treatment of subclinical disease is more effective than irradiating established disease.« less
Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato
2008-02-06
The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.
Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato
2008-01-01
The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations. PMID:27879733
Experimental and Numerical Correlation of Gravity Sag in Solar Sail Quality Membranes
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Leifer, Jack; DeMoss, Joshua A.; Walker, Eric N.; Belvin, W. Keith
2004-01-01
Solar sails are among the most studied members of the ultra-lightweight and inflatable (Gossamer) space structures family due to their potential to provide propellentless propulsion. They are comprised of ultra-thin membrane panels that, to date, have proven very difficult to experimentally characterize and numerically model due to their reflectivity and flexibility, and the effects of gravity sag and air damping. Numerical models must be correlated with experimental measurements of sub-scale solar sails to verify that the models can be scaled up to represent full-sized solar sails. In this paper, the surface shapes of five horizontally supported 25 micron thick aluminized Kapton membranes were measured to a 1.0 mm resolution using photogrammetry. Several simple numerical models closely match the experimental data, proving the ability of finite element simulations to predict actual behavior of solar sails.
NASA Technical Reports Server (NTRS)
Yeager, W. T., Jr.; Hamouda, M. N. H.; Mantay, W. R.
1983-01-01
A research effort of analysis and testing was conducted to investigate the ground resonance phenomenon of a soft in-plane hingeless rotor. Experimental data were obtained using a 9 ft. (2.74 m) diameter model rotor in hover and forward flight. Eight model rotor configurations were investigated. Configuration parameters included pitch flap coupling, blade sweep and droop, and precone of the blade feathering axis. An analysis based on a comprehensive analytical model of rotorcraft aerodynamics and dynamics was used. The moving block was used to experimentally determine the regressing lead lag mode damping. Good agreement was obtained between the analysis and test. Both analysis and experiment indicated ground resonance instability in hover. An outline of the analysis, a description of the experimental model and procedures, and comparison of the analytical and experimental data are presented.
Mathematical modelling of tissue formation in chondrocyte filter cultures.
Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J
2011-12-17
In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.
A new UK fission yield evaluation UKFY3.7
NASA Astrophysics Data System (ADS)
Mills, Robert William
2017-09-01
The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.
Zimmer, Christoph
2016-01-01
Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
Reproducible model development in the cardiac electrophysiology Web Lab.
Daly, Aidan C; Clerx, Michael; Beattie, Kylie A; Cooper, Jonathan; Gavaghan, David J; Mirams, Gary R
2018-05-26
The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Hufner, D. R.; Augustine, M. R.
2018-05-01
A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.
Joucla, Sébastien; Branchereau, Pascal; Cattaert, Daniel; Yvert, Blaise
2012-01-01
Electrical stimulation of the central nervous system has been widely used for decades for either fundamental research purposes or clinical treatment applications. Yet, very little is known regarding the spatial extent of an electrical stimulation. If pioneering experimental studies reported that activation threshold currents (TCs) increase with the square of the neuron-to-electrode distance over a few hundreds of microns, there is no evidence that this quadratic law remains valid for larger distances. Moreover, nowadays, numerical simulation approaches have supplanted experimental studies for estimating TCs. However, model predictions have not yet been validated directly with experiments within a common paradigm. Here, we present a direct comparison between experimental determination and modeling prediction of TCs up to distances of several millimeters. First, we combined patch-clamp recording and microelectrode array stimulation in whole embryonic mouse spinal cords to determine TCs. Experimental thresholds did not follow a quadratic law beyond 1 millimeter, but rather tended to remain constant for distances larger than 1 millimeter. We next built a combined finite element – compartment model of the same experimental paradigm to predict TCs. While theoretical TCs closely matched experimental TCs for distances <250 microns, they were highly overestimated for larger distances. This discrepancy remained even after modifications of the finite element model of the potential field, taking into account anisotropic, heterogeneous or dielectric properties of the tissue. In conclusion, these results show that quadratic evolution of TCs does not always hold for large distances between the electrode and the neuron and that classical models may underestimate volumes of tissue activated by electrical stimulation. PMID:22879886
Electrochemical carbon dioxide concentrator: Math model
NASA Technical Reports Server (NTRS)
Marshall, R. D.; Schubert, F. H.; Carlson, J. N.
1973-01-01
A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.
2007-12-21
of hydrodynamics and the physical characteristics of the polymers. The physics models include both analytical models and numerical simulations ...the experimental observations. The numerical simulations also succeed in replicating some experimental measurements. However, there is still no...become quite significant. 4.5 Documentation The complete model is coded in MatLab . In the model, all units are cgs, so distances are in
Alici, Gursel; Canty, Taylor; Mutlu, Rahim; Hu, Weiping; Sencadas, Vitor
2018-02-01
In this article, we have established an analytical model to estimate the quasi-static bending displacement (i.e., angle) of the pneumatic actuators made of two different elastomeric silicones (Elastosil M4601 with a bulk modulus of elasticity of 262 kPa and Translucent Soft silicone with a bulk modulus of elasticity of 48 kPa-both experimentally determined) and of discrete chambers, partially separated from each other with a gap in between the chambers to increase the magnitude of their bending angle. The numerical bending angle results from the proposed gray-box model, and the corresponding experimental results match well that the model is accurate enough to predict the bending behavior of this class of pneumatic soft actuators. Further, by using the experimental bending angle results and blocking force results, the effective modulus of elasticity of the actuators is estimated from a blocking force model. The numerical and experimental results presented show that the bending angle and blocking force models are valid for this class of pneumatic actuators. Another contribution of this study is to incorporate a bistable flexible thin metal typified by a tape measure into the topology of the actuators to prevent the deflection of the actuators under their own weight when operating in the vertical plane.
Computational Biochemistry-Enzyme Mechanisms Explored.
Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias
2017-01-01
Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.
Ng, Candy K S; Osuna-Sanchez, Hector; Valéry, Eric; Sørensen, Eva; Bracewell, Daniel G
2012-06-15
An integrated experimental and modeling approach for the design of high productivity protein A chromatography is presented to maximize productivity in bioproduct manufacture. The approach consists of four steps: (1) small-scale experimentation, (2) model parameter estimation, (3) productivity optimization and (4) model validation with process verification. The integrated use of process experimentation and modeling enables fewer experiments to be performed, and thus minimizes the time and materials required in order to gain process understanding, which is of key importance during process development. The application of the approach is demonstrated for the capture of antibody by a novel silica-based high performance protein A adsorbent named AbSolute. In the example, a series of pulse injections and breakthrough experiments were performed to develop a lumped parameter model, which was then used to find the best design that optimizes the productivity of a batch protein A chromatographic process for human IgG capture. An optimum productivity of 2.9 kg L⁻¹ day⁻¹ for a column of 5mm diameter and 8.5 cm length was predicted, and subsequently verified experimentally, completing the whole process design approach in only 75 person-hours (or approximately 2 weeks). Copyright © 2012 Elsevier B.V. All rights reserved.
Roosta, M; Ghaedi, M; Shokri, N; Daneshfar, A; Sahraei, R; Asghari, A
2014-01-24
The present study was aimed to experimental design optimization applied to removal of malachite green (MG) from aqueous solution by ultrasound-assisted removal onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as FESEM, TEM, BET, and UV-vis measurements. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time on MG removal were studied using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo -first order, pseudo-second order, Elovich and intraparticle diffusion models applicability was tested for experimental data and the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed adsorbent (0.015 g) is applicable for successful removal of MG (RE>99%) in short time (4.4 min) with high adsorption capacity (140-172 mg g(-1)). Copyright © 2013. Published by Elsevier B.V.
2017-09-01
VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY
2011-09-01
a quality evaluation with limited data, a model -based assessment must be...that affect system performance, a multistage approach to system validation, a modeling and experimental methodology for efficiently addressing a ...affect system performance, a multistage approach to system validation, a modeling and experimental methodology for efficiently addressing a wide range
ERIC Educational Resources Information Center
Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak
2013-01-01
We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…
Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies
NASA Astrophysics Data System (ADS)
Joshi, Vasant; Lee, Gilbert; Santiago, Jaime
2015-06-01
Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.
Evaluation of a Kinematically-Driven Finite Element Footstrike Model.
Hannah, Iain; Harland, Andy; Price, Dan; Schlarb, Heiko; Lucas, Tim
2016-06-01
A dynamic finite element model of a shod running footstrike was developed and driven with 6 degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared with experimental high-speed video (HSV) footage, vertical ground reaction force (GRF), and center of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations, respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. While representing an alternative approach to existing dynamic finite element footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process.
Artificial tektites: an experimental technique for capturing the shapes of spinning drops
NASA Astrophysics Data System (ADS)
Baldwin, Kyle A.; Butler, Samuel L.; Hill, Richard J. A.
2015-01-01
Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or `dumb-bell' shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax `artificial tektites' show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation.
NASA Astrophysics Data System (ADS)
Pereira, A. S. N.; de Streel, G.; Planes, N.; Haond, M.; Giacomini, R.; Flandre, D.; Kilchytska, V.
2017-02-01
The Drain Induced Barrier Lowering (DIBL) behavior in Ultra-Thin Body and Buried oxide (UTBB) transistors is investigated in details in the temperature range up to 150 °C, for the first time to the best of our knowledge. The analysis is based on experimental data, physical device simulation, compact model (SPICE) simulation and previously published models. Contrary to MASTAR prediction, experiments reveal DIBL increase with temperature. Physical device simulations of different thin-film fully-depleted (FD) devices outline the generality of such behavior. SPICE simulations, with UTSOI DK2.4 model, only partially adhere to experimental trends. Several analytic models available in the literature are assessed for DIBL vs. temperature prediction. Although being the closest to experiments, Fasarakis' model overestimates DIBL(T) dependence for shortest devices and underestimates it for upsized gate lengths frequently used in ultra-low-voltage (ULV) applications. This model is improved in our work, by introducing a temperature-dependent inversion charge at threshold. The improved model shows very good agreement with experimental data, with high gain in precision for the gate lengths under test.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.
White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K
2016-12-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
Testability of evolutionary game dynamics based on experimental economics data
NASA Astrophysics Data System (ADS)
Wang, Yijia; Chen, Xiaojie; Wang, Zhijian
2017-11-01
Understanding the dynamic processes of a real game system requires an appropriate dynamics model, and rigorously testing a dynamics model is nontrivial. In our methodological research, we develop an approach to testing the validity of game dynamics models that considers the dynamic patterns of angular momentum and speed as measurement variables. Using Rock-Paper-Scissors (RPS) games as an example, we illustrate the geometric patterns in the experiment data. We then derive the related theoretical patterns from a series of typical dynamics models. By testing the goodness-of-fit between the experimental and theoretical patterns, we show that the validity of these models can be evaluated quantitatively. Our approach establishes a link between dynamics models and experimental systems, which is, to the best of our knowledge, the most effective and rigorous strategy for ascertaining the testability of evolutionary game dynamics models.
Huang, Zhen
2017-01-01
This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results. PMID:28414777
NASA Astrophysics Data System (ADS)
Kalachev, L. V.
2016-06-01
We present a simple model of experimental setup for in vitro study of drug release from drug eluting stents and drug propagation in artificial tissue samples representing blood vessels. The model is further reduced using the assumption on vastly different characteristic diffusion times in the stent coating and in the artificial tissue. The model is used to derive a relationship between the times at which the measurements have to be taken for two experimental platforms, with corresponding artificial tissue samples made of different materials with different drug diffusion coefficients, to properly compare the drug release characteristics of drug eluting stents.
NASA Astrophysics Data System (ADS)
Kartalov, Emil P.; Scherer, Axel; Quake, Stephen R.; Taylor, Clive R.; Anderson, W. French
2007-03-01
A systematic experimental study and theoretical modeling of the device physics of polydimethylsiloxane "pushdown" microfluidic valves are presented. The phase space is charted by 1587 dimension combinations and encompasses 45-295μm lateral dimensions, 16-39μm membrane thickness, and 1-28psi closing pressure. Three linear models are developed and tested against the empirical data, and then combined into a fourth-power-polynomial superposition. The experimentally validated final model offers a useful quantitative prediction for a valve's properties as a function of its dimensions. Typical valves (80-150μm width) are shown to behave like thin springs.
NASA Astrophysics Data System (ADS)
Tommasino, F.
2016-03-01
This review will summarize results obtained in the recent years applying the Local Effect Model (LEM) approach to the study of basic radiobiological aspects, as for instance DNA damage induction and repair, and charged particle track structure. The promising results obtained using different experimental techniques and looking at different biological end points, support the relevance of the LEM approach for the description of radiation effects induced by both low- and high-LET radiation. Furthermore, they suggest that nowadays the appropriate combination of experimental and modelling tools can lead to advances in the understanding of several open issues in the field of radiation biology.
NASA Astrophysics Data System (ADS)
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
NASA Astrophysics Data System (ADS)
Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud
2018-03-01
In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.
NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions
NASA Astrophysics Data System (ADS)
Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing
2009-08-01
The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.
Asymmetric Marcus-Hush theory for voltammetry.
Laborda, Eduardo; Henstridge, Martin C; Batchelor-McAuley, Christopher; Compton, Richard G
2013-06-21
The current state-of-the-art in modeling the rate of electron transfer between an electroactive species and an electrode is reviewed. Experimental studies show that neither the ubiquitous Butler-Volmer model nor the more modern symmetric Marcus-Hush model are able to satisfactorily reproduce the experimental voltammetry for both solution-phase and surface-bound redox couples. These experimental deviations indicate the need for revision of the simplifying approximations used in the above models. Within this context, models encompassing asymmetry are considered which include different vibrational and solvation force constants for the electroactive species. The assumption of non-adiabatic electron transfer is also examined. These refinements have provided more satisfactory models of the electron transfer process and they enable us to gain more information about the microscopic characteristics of the system by means of simple electrochemical measurements.
NASA Astrophysics Data System (ADS)
Morrissey, Liam S.; Nakhla, Sam
2018-07-01
The effect of porosity on elastic modulus in low-porosity materials is investigated. First, several models used to predict the reduction in elastic modulus due to porosity are compared with a compilation of experimental data to determine their ranges of validity and accuracy. The overlapping solid spheres model is found to be most accurate with the experimental data and valid between 3 and 10 pct porosity. Next, a FEM is developed with the objective of demonstrating that a macroscale plate with a center hole can be used to model the effect of microscale porosity on elastic modulus. The FEM agrees best with the overlapping solid spheres model and shows higher accuracy with experimental data than the overlapping solid spheres model.
Structural modeling of aircraft tires
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.; Lackey, J. I.; Nybakken, G. H.
1973-01-01
A theoretical and experimental investigation of the feasibility of determining the mechanical properties of aircraft tires from small-scale model tires was accomplished. The theoretical results indicate that the macroscopic static and dynamic mechanical properties of aircraft tires can be accurately determined from the scale model tires although the microscopic and thermal properties of aircraft tires can not. The experimental investigation was conducted on a scale model of a 40 x 12, 14 ply rated, type 7 aircraft tire with a scaling factor of 8.65. The experimental results indicate that the scale model tire exhibited the same static mechanical properties as the prototype tire when compared on a dimensionless basis. The structural modeling concept discussed in this report is believed to be exact for mechanical properties of aircraft tires under static, rolling, and transient conditions.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.
Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds.
Ranganathan, Panneerselvam; Amal, J C; Savithri, S; Haridas, Ajith
2017-10-01
In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental and AI-based numerical modeling of contaminant transport in porous media
NASA Astrophysics Data System (ADS)
Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P.
2017-10-01
This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.
2016-01-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060
Finding viable models in SUSY parameter spaces with signal specific discovery potential
NASA Astrophysics Data System (ADS)
Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi
2013-08-01
Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.
Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2016-01-01
The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.
Kinetic model for microbial growth and desulphurisation with Enterobacter sp.
Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin
2015-02-01
Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".
Modeling and experimental result analysis for high-power VECSELs
NASA Astrophysics Data System (ADS)
Zakharian, Aramais R.; Hader, Joerg; Moloney, Jerome V.; Koch, Stephan W.; Lutgen, Stephan; Brick, Peter; Albrecht, Tony; Grotsch, Stefan; Luft, Johann; Spath, Werner
2003-06-01
We present a comparison of experimental and microscopically based model results for optically pumped vertical external cavity surface emitting semiconductor lasers. The quantum well gain model is based on a quantitative ab-initio approach that allows calculation of a complex material susceptibility dependence on the wavelength, carrier density and lattice temperature. The gain model is coupled to the macroscopic thermal transport, spatially resolved in both the radial and longitudinal directions, with temperature and carrier density dependent pump absorption. The radial distribution of the refractive index and gain due to temperature variation are computed. Thermal managment issues, highlighted by the experimental data, are discussed. Experimental results indicate a critical dependence of the input power, at which thermal roll-over occurs, on the thermal resistance of the device. This requires minimization of the substrate thickness and optimization of the design and placement of the heatsink. Dependence of the model results on the radiative and non-radiative carrier recombination lifetimes and cavity losses are evaluated.
Drug Discovery in Fish, Flies, and Worms
Strange, Kevin
2016-01-01
Abstract Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies. PMID:28053067
Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.
2016-11-08
We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.
We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less
NASA Astrophysics Data System (ADS)
Lee, Bo Mi; Loh, Kenneth J.
2017-04-01
Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.
Alarcón, Tomás; Marches, Radu; Page, Karen M
2006-05-07
We formulate models of the mechanism(s) by which B cell lymphoma cells stimulated with an antibody specific to the B cell receptor (IgM) become quiescent or apoptotic. In particular, we aim to reproduce experimental results by Marches et al. according to which the fate of the targeted cells (Daudi) depends on the levels of expression of p21(Waf1) (p21) cell-cycle inhibitor. A simple model is formulated in which the basic ingredients are p21 and caspase activity, and their mutual inhibition. We show that this model does not reproduce the experimental results and that further refinement is needed. A second model successfully reproduces the experimental observations, for a given set of parameter values, indicating a critical role for Myc in the fate decision process. We use bifurcation analysis and objective sensitivity analysis to assess the robustness of our results. Importantly, this analysis yields experimentally testable predictions on the role of Myc, which could have therapeutic implications.
Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.
Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun
2010-01-01
Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.
Detonation product EOS studies: Using ISLS to refine CHEETAH
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Fried, Larry; Hansen, Donald
2001-06-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamicsmore » of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.« less
Experimental Model for the Study of Periodontal Wound Healing
1991-05-01
the soft tissue over the submerged root may occur. Models that communicate with the oral cavity (i.e., experimentally produced and naturally...membranes have been successfully utilized to demonstrate regeneration of periodontal tissues . Membranes made of collagen (Pitaru etal., 1987, 1988 a & b...1988. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wounds. J Periodont Res 23:107. Isidor, F., Karring, T
Strekalova, V V; Khachirov, D G; Dedenkov, A N; Suvorov, Iu I; Shvatsabaia, I K
1989-01-01
Combination of chronic salt loading with protein-poor diet produces experimental hypertension with natrium consumption near to physiological. The present model is characterized, compared to the existing one, by stage development, moderate arterial blood pressure elevation and absence of "salt toxicosis" and may be thus considered more adequate for experimental investigation of primary arterial hypertension pathophysiology.
Romero Durán, Francisco J; Alonso, Nerea; Caamaño, Olga; García-Mera, Xerardo; Yañez, Matilde; Prado-Prado, Francisco J; González-Díaz, Humberto
2014-09-24
In a multi-target complex network, the links (L(ij)) represent the interactions between the drug (d(i)) and the target (t(j)), characterized by different experimental measures (K(i), K(m), IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (c(j)). In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%-90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human). Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally.
Seismo-acoustic ray model benchmarking against experimental tank data.
Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo
2012-08-01
Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.
Zopf, David A.; Flanagan, Colleen L.; Wheeler, Matthew; Hollister, Scott J.; Green, Glenn E.
2015-01-01
Importance The study demonstrates an application for 3-dimensional (3D) printing that may serve as an effective intervention for severe tracheobronchomalacia. Objective A novel 3D printed, bioresorbable airway splint is tested for efficacy in extending survival in an animal model of severe, life-threatening tracheobronchomalacia. Participants Evaluation of an external airway splint for severe, life-threatening tracheobronchomalacia in a porcine animal model. Setting Multi-institutional and multidisciplinary collaboration between biomedical engineering laboratories and an academic animal surgery center. Interventions Experimental analysis of a 3D printed, bioresorbable airway splint is assessed in a porcine animal model of life-threatening tracheobronchomalacia. The open-cylindrical, bellow shaped porous polycaprolactone splint is placed externally and designed to suspend the underlying collapsed airway. Control animals (n=3) undergoing tracheal cartilage division and inner tracheal lumen dissociation and experimental animals (n=3) receiving the same model with overlying placement of the newly developed airway splint were evaluated. Main Outcomes and Measures An animal model for severe, life-threatening tracheobronchomalacia is proposed. Complete or near complete tracheal lumen collapse was observed in each animal with resolution of symptoms in all of the experimental animals after splint placement. Using our severe tracheobronchomalacia animal model, survival was significantly longer in duration in the experimental group receiving the airway splint after model creation when compared to model creation alone (p = 0.0495). Mortality in the experimental group was related to infection. Conclusions A multidisciplinary effort producing a CAD/CAM, bioresorbable tracheobronchial splint was tested in a porcine model of severe tracheomalacia and was found to extend survival. PMID:24232078
A Model for Evaluating Programs for the Gifted under Non-Experimental Conditions.
ERIC Educational Resources Information Center
Carter, Kyle R.
1992-01-01
The article presents and illustrates use of an evaluation model for assessing programs for the gifted where tight experimental control is not possible. The model consists of four components: ex post factor designs including intact groups; comparative evaluation; strength of treatment; and multiple outcome assessment from flexible data sources. (DB)
NASA Technical Reports Server (NTRS)
Mason, P. W.; Harris, H. G.; Zalesak, J.; Bernstein, M.
1974-01-01
The methods and procedures used in the analysis and testing of the scale model are reported together with the correlation of the analytical and experimental results. The model, the NASTRAN finite element analysis, and results are discussed. Tests and analytical investigations are also reported.
The increasing number and size of public databases is facilitating the collection of chemical structures and associated experimental data for QSAR modeling. However, the performance of QSAR models is highly dependent not only on the modeling methodology, but also on the quality o...
Understanding Leadership: An Experimental-Experiential Model
ERIC Educational Resources Information Center
Hole, George T.
2014-01-01
Books about leadership are dangerous to readers who fantasize about being leaders or apply leadership ideas as if they were proven formulas. As an antidote, I offer an experimental framework in which any leadership-management model can be tested to gain experiential understanding of the model. As a result one can gain reality-based insights about…
Improving the seismic small-scale modelling by comparison with numerical methods
NASA Astrophysics Data System (ADS)
Pageot, Damien; Leparoux, Donatienne; Le Feuvre, Mathieu; Durand, Olivier; Côte, Philippe; Capdeville, Yann
2017-10-01
The potential of experimental seismic modelling at reduced scale provides an intermediate step between numerical tests and geophysical campaigns on field sites. Recent technologies such as laser interferometers offer the opportunity to get data without any coupling effects. This kind of device is used in the Mesures Ultrasonores Sans Contact (MUSC) measurement bench for which an automated support system makes possible to generate multisource and multireceivers seismic data at laboratory scale. Experimental seismic modelling would become a great tool providing a value-added stage in the imaging process validation if (1) the experimental measurement chain is perfectly mastered, and thus if the experimental data are perfectly reproducible with a numerical tool, as well as if (2) the effective source is reproducible along the measurement setup. These aspects for a quantitative validation concerning devices with piezoelectrical sources and a laser interferometer have not been yet quantitatively studied in published studies. Thus, as a new stage for the experimental modelling approach, these two key issues are tackled in the proposed paper in order to precisely define the quality of the experimental small-scale data provided by the bench MUSC, which are available in the scientific community. These two steps of quantitative validation are dealt apart any imaging techniques in order to offer the opportunity to geophysicists who want to use such data (delivered as free data) of precisely knowing their quality before testing any imaging technique. First, in order to overcome the 2-D-3-D correction usually done in seismic processing when comparing 2-D numerical data with 3-D experimental measurement, we quantitatively refined the comparison between numerical and experimental data by generating accurate experimental line sources, avoiding the necessity of geometrical spreading correction for 3-D point-source data. The comparison with 2-D and 3-D numerical modelling is based on the Spectral Element Method. The approach shows the relevance of building a line source by sampling several source points, except the boundaries effects on later arrival times. Indeed, the experimental results highlight the amplitude feature and the delay equal to π/4 provided by a line source in the same manner than numerical data. In opposite, the 2-D corrections applied on 3-D data showed discrepancies which are higher on experimental data than on numerical ones due to the source wavelet shape and interferences between different arrivals. The experimental results from the approach proposed here show that discrepancies are avoided, especially for the reflected echoes. Concerning the second point aiming to assess the experimental reproducibility of the source, correlation coefficients of recording from a repeated source impact on a homogeneous model are calculated. The quality of the results, that is, higher than 0.98, allow to calculate a mean source wavelet by inversion of a mean data set. Results obtained on a more realistic model simulating clays on limestones, confirmed the reproducibility of the source impact.
The rheology of three-phase suspensions at low bubble capillary number
Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.
2015-01-01
We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617
Modeling Intraocular Bacterial Infections
Astley, Roger A.; Coburn, Phillip S.; Parkunan, Salai Madhumathi; Callegan, Michelle C.
2016-01-01
Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427
Plasma versus Drude Modeling of the Casimir Force: Beyond the Proximity Force Approximation
NASA Astrophysics Data System (ADS)
Hartmann, Michael; Ingold, Gert-Ludwig; Neto, Paulo A. Maia
2017-07-01
We calculate the Casimir force and its gradient between a spherical and a planar gold surface. Significant numerical improvements allow us to extend the range of accessible parameters into the experimental regime. We compare our numerically exact results with those obtained within the proximity force approximation (PFA) employed in the analysis of all Casimir force experiments reported in the literature so far. Special attention is paid to the difference between the Drude model and the dissipationless plasma model at zero frequency. It is found that the correction to PFA is too small to explain the discrepancy between the experimental data and the PFA result based on the Drude model. However, it turns out that for the plasma model, the corrections to PFA lie well outside the experimental bound obtained by probing the variation of the force gradient with the sphere radius [D. E. Krause et al., Phys. Rev. Lett. 98, 050403 (2007), 10.1103/PhysRevLett.98.050403]. The corresponding corrections based on the Drude model are significantly smaller but still in violation of the experimental bound for small distances between plane and sphere.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347
NASA Astrophysics Data System (ADS)
Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.
2017-07-01
The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.
Ghosh, Sreya; Preza, Chrysanthe
2015-07-01
A three-dimensional (3-D) point spread function (PSF) model for wide-field fluorescence microscopy, suitable for imaging samples with variable refractive index (RI) in multilayered media, is presented. This PSF model is a key component for accurate 3-D image restoration of thick biological samples, such as lung tissue. Microscope- and specimen-derived parameters are combined with a rigorous vectorial formulation to obtain a new PSF model that accounts for additional aberrations due to specimen RI variability. Experimental evaluation and verification of the PSF model was accomplished using images from 175-nm fluorescent beads in a controlled test sample. Fundamental experimental validation of the advantage of using improved PSFs in depth-variant restoration was accomplished by restoring experimental data from beads (6 μm in diameter) mounted in a sample with RI variation. In the investigated study, improvement in restoration accuracy in the range of 18 to 35% was observed when PSFs from the proposed model were used over restoration using PSFs from an existing model. The new PSF model was further validated by showing that its prediction compares to an experimental PSF (determined from 175-nm beads located below a thick rat lung slice) with a 42% improved accuracy over the current PSF model prediction.
Optimality models in the age of experimental evolution and genomics.
Bull, J J; Wang, I-N
2010-09-01
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-10
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. © 2013.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-01
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343
Room-Temperature Charpy Impact Property of 3D-Printed 15-5 Stainless Steel
NASA Astrophysics Data System (ADS)
Sagar, Sugrim; Zhang, Yi; Wu, Linmin; Park, Hye-Young; Lee, Je-Hyun; Jung, Yeon-Gil; Zhang, Jing
2018-01-01
In this study, the room-temperature Charpy impact property of 3D-printed 15-5 stainless steel was investigated by a combined experimental and finite element modeling approach. The experimentally measured impact energy is 10.85 ± 1.20 J/cm2, which is comparable to the conventionally wrought and non-heat treated 15-5 stainless steel. In parallel to the impact test experiment, a finite element model using the Johnson-Cook material model with damage parameters was developed to simulate the impact test. The simulated impact energy is 10.46 J/cm2, which is in good agreement with the experimental data. The fracture surface from the experimentally tested specimen suggests that the 3D-printed specimens undergo predominately brittle fracture.
ERIC Educational Resources Information Center
Sahin, Semsettin M. S.; Baturay, Meltem Huri
2016-01-01
The purpose of this research study is to investigate the effect of the 5E-learning model supported with WebQuest media on the achievement and satisfaction of students. Therefore, two groups of students were compared in an experimental research design model. The experimental group was exposed to the 5E-learning model supported with WebQuest media;…
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.
2015-01-01
Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.
Discriminating evidence accumulation from urgency signals in speeded decision making.
Hawkins, Guy E; Wagenmakers, Eric-Jan; Ratcliff, Roger; Brown, Scott D
2015-07-01
The dominant theoretical paradigm in explaining decision making throughout both neuroscience and cognitive science is known as “evidence accumulation”--The core idea being that decisions are reached by a gradual accumulation of noisy information. Although this notion has been supported by hundreds of experiments over decades of study, a recent theory proposes that the fundamental assumption of evidence accumulation requires revision. The "urgency gating" model assumes decisions are made without accumulating evidence, using only moment-by-moment information. Under this assumption, the successful history of evidence accumulation models is explained by asserting that the two models are mathematically identical in standard experimental procedures. We demonstrate that this proof of equivalence is incorrect, and that the models are not identical, even when both models are augmented with realistic extra assumptions. We also demonstrate that the two models can be perfectly distinguished in realistic simulated experimental designs, and in two real data sets; the evidence accumulation model provided the best account for one data set, and the urgency gating model for the other. A positive outcome is that the opposing modeling approaches can be fruitfully investigated without wholesale change to the standard experimental paradigms. We conclude that future research must establish whether the urgency gating model enjoys the same empirical support in the standard experimental paradigms that evidence accumulation models have gathered over decades of study. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham
2018-06-01
This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.
Experimental and modeling study of the uranium (VI) sorption on goethite.
Missana, Tiziana; García-Gutiérrez, Miguel; Maffiotte, Cesar
2003-04-15
Acicular goethite was synthesized in the laboratory and its main physicochemical properties (composition, microstructure, surface area, and surface charge) were analyzed as a previous step to sorption experiments. The stability of the oxide, under the conditions used in sorption studies, was also investigated. The sorption of U(VI) onto goethite was studied under O(2)- and CO(2)-free atmosphere and in a wide range of experimental conditions (pH, ionic strength, radionuclide, and solid concentration), in order to assess the validity of different surface complexation models available for the interpretation of sorption data. Three different models were used to fit the experimental data. The first two models were based on the diffuse double layer concept. The first one (Model 1) considered two different monodentate complexes with the goethite surface and the second (Model 2) a single binuclear bidentate complex. A nonelectrostatic (NE) approach was used as a third model and, in that case, the same species considered in Model 1 were used. The results showed that all the models are able to describe the sorption behavior fairly well as a function of pH, electrolyte concentration, and U(VI) concentration. However, Model 2 fails in the description of the uranium sorption behavior as a function of the sorbent concentration. This demonstrates the importance of checking the validity of any surface complexation model under the widest possible range of experimental conditions.
A stochastic Iwan-type model for joint behavior variability modeling
NASA Astrophysics Data System (ADS)
Mignolet, Marc P.; Song, Pengchao; Wang, X. Q.
2015-08-01
This paper focuses overall on the development and validation of a stochastic model to describe the dissipation and stiffness properties of a bolted joint for which experimental data is available and exhibits a large scatter. An extension of the deterministic parallel-series Iwan model for the characterization of the force-displacement behavior of joints is first carried out. This new model involves dynamic and static coefficients of friction differing from each other and a broadly defined distribution of Jenkins elements. Its applicability is next investigated using the experimental data, i.e. stiffness and dissipation measurements obtained in harmonic testing of 9 nominally identical bolted joints. The model is found to provide a very good fit of the experimental data for each bolted joint notwithstanding the significant variability of their behavior. This finding suggests that this variability can be simulated through the randomization of only the parameters of the proposed Iwan-type model. The distribution of these parameters is next selected based on maximum entropy concepts and their corresponding parameters, i.e. the hyperparameters of the model, are identified using a maximum likelihood strategy. Proceeding with a Monte Carlo simulation of this stochastic Iwan model demonstrates that the experimental data fits well within the uncertainty band corresponding to the 5th and 95th percentiles of the model predictions which well supports the adequacy of the modeling effort.
Turbulence Modeling Validation, Testing, and Development
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Huang, P. G.; Coakley, T. J.
1997-01-01
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.
Methods of experimentation with models and utilization of results
NASA Technical Reports Server (NTRS)
Robert,
1924-01-01
The present report treats the subject of testing small models in a wind tunnel and of the methods employed for rendering the results constant, accurate and comparable with one another. Detailed experimental results are given.
Modelling of Batch Lactic Acid Fermentation in the Presence of Anionic Clay
Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa
2014-01-01
Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318
NASA Astrophysics Data System (ADS)
Kumavat, Hemraj Ramdas
2016-09-01
The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.
Subsite mapping of enzymes. Depolymerase computer modelling.
Allen, J D; Thoma, J A
1976-01-01
We have developed a depolymerase computer model that uses a minimization routine. The model is designed so that, given experimental bond-cleavage frequencies for oligomeric substrates and experimental Michaelis parameters as a function of substrate chain length, the optimum subsite map is generated. The minimized sum of the weighted-squared residuals of the experimental and calculated data is used as a criterion of the goodness-of-fit for the optimized subsite map. The application of the minimization procedure to subsite mapping is explored through the use of simulated data. A procedure is developed whereby the minimization model can be used to determine the number of subsites in the enzymic binding region and to locate the position of the catalytic amino acids among these subsites. The degree of propagation of experimental variance into the subsite-binding energies is estimated. The question of whether hydrolytic rate coefficients are constant or a function of the number of filled subsites is examined. PMID:999629
NASA Technical Reports Server (NTRS)
Korkan, K. D.; Cross, E. J., Jr.; Cornell, C. C.
1984-01-01
An experimental study utilizing a remote controlled model helicopter has been conducted to measure the performance degradation due to simulated ice accretion on the leading edge of the main rotor for hover and forward flight. The 53.375 inch diameter main rotor incorporates a NACA 0012 airfoil with a generic ice shape corresponding to a specified natural ice condition. Thrust coefficients and torque coefficients about the main rotor were measured as a function of velocity, main rotor RPM, angle-of-incidence of the fuselage, collective pitch angle, and extent of spanwise ice accretion. An experimental airfoil data bank has been determined using a two-dimensional twenty-one inch NACA 0012 airfoil with scaled ice accretion shapes identical to that used on the model helicopter main rotor. The corresponding experimental data are discussed with emphasis on Reynolds number effects and ice accretion scale model testing.
Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes
NASA Astrophysics Data System (ADS)
Panchal, Hitesh; Awasthi, Anuradha
2017-06-01
In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.
Support System Effects on the NASA Common Research Model
NASA Technical Reports Server (NTRS)
Rivers, S. Melissa B.; Hunter, Craig A.
2012-01-01
An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-Foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experimental and the computational data from the 4th Drag Prediction Workshop. This difference led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the Common Research Model. The configurations computed during this investigation were the wing/body/tail=0deg without the support system and the wing/body/tail=0deg with the support system. The results from this investigation confirm that the addition of the support system to the computational cases does shift the pitching moment in the direction of the experimental results.
Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.
2018-01-01
In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.
QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling
Rossman, Timothy; Kushvaha, Vinod; Dragomir-Daescu, Dan
2015-01-01
Quantitative computed tomography-based finite element models of proximal femora must be validated with cadaveric experiments before using them to assess fracture risk in osteoporotic patients. During validation it is essential to carefully assess whether the boundary condition modeling matches the experimental conditions. This study evaluated proximal femur stiffness results predicted by six different boundary condition methods on a sample of 30 cadaveric femora and compared the predictions with experimental data. The average stiffness varied by 280% among the six boundary conditions. Compared with experimental data the predictions ranged from overestimating the average stiffness by 65% to underestimating it by 41%. In addition we found that the boundary condition that distributed the load to the contact surfaces similar to the expected contact mechanics predictions had the best agreement with experimental stiffness. We concluded that boundary conditions modeling introduced large variations in proximal femora stiffness predictions. PMID:25804260
Finger muscle attachments for an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements.
Finger Muscle Attachments for an OpenSim Upper-Extremity Model
Lee, Jong Hwa; Asakawa, Deanna S.; Dennerlein, Jack T.; Jindrich, Devin L.
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements. PMID:25853869
Li, Yi-Ping; Yeh, Chih-Hsin; Lin, Shin-Yu; Chen, Tai-Chang; Yang, Ya-Ling; Lee, Chien-Nan; Kuo, Su-Chen
2015-12-01
Pleasant and humane childbirth is every mother's wish. We established one practicable and tailored Taiwanese mother-friendly childbirth model, and the objective of this study was to investigate the implementation, pregnancy outcomes, and women's satisfaction. We used the Taiwanese mother-friendly childbirth model. Women from eight hospitals were divided into an experimental group and control group. The experimental group received prenatal care modified by the Taiwanese mother-friendly childbirth model and the control group received routine prenatal care according to their hospital. We performed a quasi-experimental study of women's satisfaction toward this mother-friendly childbirth model by questionnaires and surveyed the practicality and effectiveness of this model. Seven hundred and fifty-one women from eight hospitals, including three medical centers and five regional hospitals were included. There was significantly different practices between the two groups, such as: (1) intermittent fetal monitoring for low-risk pregnancy; (2) no routine enema; (3) no perineal shaving; (4) less routine parenteral fluid support; (5) using an upright position; and (6) restrictive episiotomy. The mean maternal height, body weight gain, gestational age, birth weight, and episiotomy wound infection rate were indifferent. The epidural anesthesia rate and induction medication use were significantly lower in the experimental group. The self-reported pain score was higher in the experimental group and the self-reported satisfactory score was also higher in the experimental group, without statistical significance. Women receiving standardized prenatal care modified by the woman-friendly childbirth model of prenatal care had less epidural anesthesia, less induction medication, higher self-reported satisfaction score, and indifferent pregnancy outcomes such as gestational age, birth weight, and wound infection rate. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph
1996-01-01
A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.
Logic Modeling in Quantitative Systems Pharmacology
Traynard, Pauline; Tobalina, Luis; Eduati, Federica; Calzone, Laurence
2017-01-01
Here we present logic modeling as an approach to understand deregulation of signal transduction in disease and to characterize a drug's mode of action. We discuss how to build a logic model from the literature and experimental data and how to analyze the resulting model to obtain insights of relevance for systems pharmacology. Our workflow uses the free tools OmniPath (network reconstruction from the literature), CellNOpt (model fit to experimental data), MaBoSS (model analysis), and Cytoscape (visualization). PMID:28681552
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukovskii, Yu.M.; Luksha, O.P.; Nenarokomov, E.A.
1988-03-01
We have derived a statistical model for the dissolution of uranium dioxide tablets for the 6 to 12 M concentration range and temperatures from 80/sup 0/C to the boiling point. The model differs qualitatively from the dissolution model for ground uranium dioxide. In the indicated range of experimental conditions, the mean-square deviation of the curves for the model from the experimental curves is not greater than 6%.
Modeling human response errors in synthetic flight simulator domain
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1992-01-01
This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.
Shuert, Courtney; Horning, Markus; Mellish, Jo-Ann
2015-01-01
Two novel research approaches were developed to facilitate controlled access to, and long-term monitoring of, juvenile Steller sea lions for periods longer than typically afforded by traditional fieldwork. The Transient Juvenile Steller sea lion Project at the Alaska SeaLife Center facilitated nutritional, physiological, and behavioral studies on the platform of temporary captivity. Temporarily captive sea lions (TJs, n = 35) were studied, and were intraperitoneally implanted with Life History Transmitters (LHX tags) to determine causes of mortality post-release. Our goal was to evaluate the potential for long-term impacts of temporary captivity and telemetry implants on the survival of study individuals. A simple open-population Cormack-Jolly-Seber mark-recapture model was built in program MARK, incorporating resightings of uniquely branded study individuals gathered by several contributing institutions. A priori models were developed to weigh the evidence of effects of experimental treatment on survival with covariates of sex, age, capture age, cohort, and age class. We compared survival of experimental treatment to a control group of n = 27 free-ranging animals (FRs) that were sampled during capture events and immediately released. Sex has previously been show to differentially affect juvenile survival in Steller sea lions. Therefore, sex was included in all models to account for unbalanced sex ratios within the experimental group. Considerable support was identified for the effects of sex, accounting for over 71% of total weight for all a priori models with delta AICc <5, and over 91% of model weight after removal of pretending variables. Overall, most support was found for the most parsimonious model based on sex and excluding experimental treatment. Models including experimental treatment were not supported after post-hoc considerations of model selection criteria. However, given the limited sample size, alternate models including effects of experimental treatments remain possible and effects may yet become apparent in larger sample sizes. PMID:26580549
Metainference: A Bayesian inference method for heterogeneous systems
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300
Optimising experimental research in respiratory diseases: an ERS statement.
Bonniaud, Philippe; Fabre, Aurélie; Frossard, Nelly; Guignabert, Christophe; Inman, Mark; Kuebler, Wolfgang M; Maes, Tania; Shi, Wei; Stampfli, Martin; Uhlig, Stefan; White, Eric; Witzenrath, Martin; Bellaye, Pierre-Simon; Crestani, Bruno; Eickelberg, Oliver; Fehrenbach, Heinz; Guenther, Andreas; Jenkins, Gisli; Joos, Guy; Magnan, Antoine; Maitre, Bernard; Maus, Ulrich A; Reinhold, Petra; Vernooy, Juanita H J; Richeldi, Luca; Kolb, Martin
2018-05-01
Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality. Copyright ©ERS 2018.
Data-assisted protein structure modeling by global optimization in CASP12.
Joo, Keehyoung; Heo, Seungryong; Joung, InSuk; Hong, Seung Hwan; Lee, Sung Jong; Lee, Jooyoung
2018-03-01
In CASP12, 2 types of data-assisted protein structure modeling were experimented. Either SAXS experimental data or cross-linking experimental data was provided for a selected number of CASP12 targets that the CASP12 predictor could utilize for better protein structure modeling. We devised 2 separate energy terms for SAXS data and cross-linking data to drive the model structures into more native-like structures that satisfied the given experimental data as much as possible. In CASP11, we successfully performed protein structure modeling using simulated sparse and ambiguously assigned NOE data and/or correct residue-residue contact information, where the only energy term that folded the protein into its native structure was the term which was originated from the given experimental data. However, the 2 types of experimental data provided in CASP12 were far from being sufficient enough to fold the target protein into its native structure because SAXS data provides only the overall shape of the molecule and the cross-linking contact information provides only very low-resolution distance information. For this reason, we combined the SAXS or cross-linking energy term with our regular modeling energy function that includes both the template energy term and the de novo energy terms. By optimizing the newly formulated energy function, we obtained protein models that fit better with provided SAXS data than the X-ray structure of the target. However, the improvement of the model relative to the 1 modeled without the SAXS data, was not significant. Consistent structural improvement was achieved by incorporating cross-linking data into the protein structure modeling. © 2018 Wiley Periodicals, Inc.
Zimmer, Christoph
2016-01-01
Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802
Experimental Design for Parameter Estimation of Gene Regulatory Networks
Timmer, Jens
2012-01-01
Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723
Characterization of the cardiac Na+/K+ pump by development of a comprehensive and mechanistic model.
Oka, Chiaki; Cha, Chae Young; Noma, Akinori
2010-07-07
A large amount of experimental data on the characteristics of the cardiac Na(+)/K(+) pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na(+)/K(+) pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na(+)/K(+) pump current (I(NaK)), including the dependency on the concentrations of Na(+) and K(+), the membrane potential and the free energy of ATP hydrolysis. The model demonstrates that both the apparent affinity and the slope of the substrate-I(NaK) relationship measured experimentally are affected by the composition of ions in the extra- and intracellular solutions, indirectly through alteration in the probability distribution of individual enzyme intermediates. By considering the voltage dependence in the Na(+)- and K(+)-binding steps, the experimental voltage-I(NaK) relationship could be reconstructed with application of experimental ionic compositions in the model, and the view of voltage-dependent K(+) binding was supported. Re-evaluation of charge movements accompanying Na(+) and K(+) translocations gave a reasonable number for the site density of the Na(+)/K(+) pump on the membrane. The new model is relevant for simulation of cellular functions under various interventions, such as depression of energy metabolism. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Meitner, P. L.; Glassman, A. J.
1980-01-01
An off-design performance loss model for a radial turbine with pivoting, variable-area stators is developed through a combination of analytical modeling and experimental data analysis. A viscous loss model is used for the variation in stator loss with setting angle, and stator vane end-clearance leakage effects are predicted by a clearance flow model. The variation of rotor loss coefficient with stator setting angle is obtained by means of an analytical matching of experimental data for a rotor that was tested with six stators, having throat areas from 20 to 144% of the design area. An incidence loss model is selected to obtain best agreement with experimental data. The stator vane end-clearance leakage model predicts increasing mass flow and decreasing efficiency as a result of end-clearances, with changes becoming significantly larger with decreasing stator area.
A Model of In vitro Plasticity at the Parallel Fiber—Molecular Layer Interneuron Synapses
Lennon, William; Yamazaki, Tadashi; Hecht-Nielsen, Robert
2015-01-01
Theoretical and computational models of the cerebellum typically focus on the role of parallel fiber (PF)—Purkinje cell (PKJ) synapses for learned behavior, but few emphasize the role of the molecular layer interneurons (MLIs)—the stellate and basket cells. A number of recent experimental results suggest the role of MLIs is more important than previous models put forth. We investigate learning at PF—MLI synapses and propose a mathematical model to describe plasticity at this synapse. We perform computer simulations with this form of learning using a spiking neuron model of the MLI and show that it reproduces six in vitro experimental results in addition to simulating four novel protocols. Further, we show how this plasticity model can predict the results of other experimental protocols that are not simulated. Finally, we hypothesize what the biological mechanisms are for changes in synaptic efficacy that embody the phenomenological model proposed here. PMID:26733856
Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya
2018-02-06
In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.
Incorporating ligament laxity in a finite element model for the upper cervical spine.
Lasswell, Timothy L; Cronin, Duane S; Medley, John B; Rasoulinejad, Parham
2017-11-01
Predicting physiological range of motion (ROM) using a finite element (FE) model of the upper cervical spine requires the incorporation of ligament laxity. The effect of ligament laxity can be observed only on a macro level of joint motion and is lost once ligaments have been dissected and preconditioned for experimental testing. As a result, although ligament laxity values are recognized to exist, specific values are not directly available in the literature for use in FE models. The purpose of the current study is to propose an optimization process that can be used to determine a set of ligament laxity values for upper cervical spine FE models. Furthermore, an FE model that includes ligament laxity is applied, and the resulting ROM values are compared with experimental data for physiological ROM, as well as experimental data for the increase in ROM when a Type II odontoid fracture is introduced. The upper cervical spine FE model was adapted from a 50th percentile male full-body model developed with the Global Human Body Models Consortium (GHBMC). FE modeling was performed in LS-DYNA and LS-OPT (Livermore Software Technology Group) was used for ligament laxity optimization. Ordinate-based curve matching was used to minimize the mean squared error (MSE) between computed load-rotation curves and experimental load-rotation curves under flexion, extension, and axial rotation with pure moment loads from 0 to 3.5 Nm. Lateral bending was excluded from the optimization because the upper cervical spine was considered to be primarily responsible for flexion, extension, and axial rotation. Based on recommendations from the literature, four varying inputs representing laxity in select ligaments were optimized to minimize the MSE. Funding was provided by the Natural Sciences and Engineering Research Council of Canada as well as GHMBC. The present study was funded by the Natural Sciences and Engineering Research Council of Canada to support the work of one graduate student. There are no conflicts of interest to be reported. The MSE was reduced to 0.28 in the FE model with optimized ligament laxity compared with an MSE 0f 4.16 in the FE model without laxity. In all load cases, incorporating ligament laxity improved the agreement between the ROM of the FE model and the ROM of the experimental data. The ROM for axial rotation and extension was within one standard deviation of the experimental data. The ROM for flexion and lateral bending was outside one standard deviation of the experimental data, but a compromise was required to use one set of ligament laxity values to achieve a best fit to all load cases. Atlanto-occipital motion was compared as a ratio to overall ROM, and only in extension did the inclusion of ligament laxity not improve the agreement. After a Type II odontoid fracture was incorporated into the model, the increase in ROM was consistent with experimental data from the literature. The optimization approach used in this study provided values for ligament laxities that, when incorporated into the FE model, generally improved the ROM response when compared with experimental data. Successfully modeling a Type II odontoid fracture showcased the robustness of the FE model, which can now be used in future biomechanics studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Investigation of approximate models of experimental temperature characteristics of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-05-01
This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.
Simulation and analysis of a model dinoflagellate predator-prey system
NASA Astrophysics Data System (ADS)
Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.
2015-12-01
This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.
Temperature dependence of single-event burnout in n-channel power MOSFET's
NASA Astrophysics Data System (ADS)
Johnson, G. H.; Schrimpf, R. D.; Galloway, K. F.; Koga, R.
1994-03-01
The temperature dependence of single-event burnout (SEB) in n-channel power metal-oxide-semiconductor field effect transistors (MOSFET's) is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.
Hybrid, experimental and computational, investigation of mechanical components
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1996-07-01
Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
NASA Astrophysics Data System (ADS)
Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren
2017-09-01
An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.
Feasibility of quasi-random band model in evaluating atmospheric radiance
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Mirakhur, N.
1980-01-01
The use of the quasi-random band model in evaluating upwelling atmospheric radiation is investigated. The spectral transmittance and total band adsorptance are evaluated for selected molecular bands by using the line by line model, quasi-random band model, exponential sum fit method, and empirical correlations, and these are compared with the available experimental results. The atmospheric transmittance and upwelling radiance were calculated by using the line by line and quasi random band models and were compared with the results of an existing program called LOWTRAN. The results obtained by the exponential sum fit and empirical relations were not in good agreement with experimental results and their use cannot be justified for atmospheric studies. The line by line model was found to be the best model for atmospheric applications, but it is not practical because of high computational costs. The results of the quasi random band model compare well with the line by line and experimental results. The use of the quasi random band model is recommended for evaluation of the atmospheric radiation.
A call for virtual experiments: accelerating the scientific process.
Cooper, Jonathan; Vik, Jon Olav; Waltemath, Dagmar
2015-01-01
Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide model reuse and composition; and for quality assurance in the translational application of models. A key step towards achieving this is that models and experimental protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would enable a "continuous integration" of biological knowledge, transforming our approach to systems biology. Copyright © 2014 Elsevier Ltd. All rights reserved.
The DoE method as an efficient tool for modeling the behavior of monocrystalline Si-PV module
NASA Astrophysics Data System (ADS)
Kessaissia, Fatma Zohra; Zegaoui, Abdallah; Boutoubat, Mohamed; Allouache, Hadj; Aillerie, Michel; Charles, Jean-Pierre
2018-05-01
The objective of this paper is to apply the Design of Experiments (DoE) method to study and to obtain a predictive model of any marketed monocrystalline photovoltaic (mc-PV) module. This technique allows us to have a mathematical model that represents the predicted responses depending upon input factors and experimental data. Therefore, the DoE model for characterization and modeling of mc-PV module behavior can be obtained by just performing a set of experimental trials. The DoE model of the mc-PV panel evaluates the predictive maximum power, as a function of irradiation and temperature in a bounded domain of study for inputs. For the mc-PV panel, the predictive model for both one level and two levels were developed taking into account both influences of the main effect and the interactive effects on the considered factors. The DoE method is then implemented by developing a code under Matlab software. The code allows us to simulate, characterize, and validate the predictive model of the mc-PV panel. The calculated results were compared to the experimental data, errors were estimated, and an accurate validation of the predictive models was evaluated by the surface response. Finally, we conclude that the predictive models reproduce the experimental trials and are defined within a good accuracy.
Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Orem's Self-Care Model With Trauma Patients: A Quasi-Experimental Study.
Khatiban, Mahnaz; Shirani, Fatemeh; Oshvandi, Khodayar; Soltanian, Ali Reza; Ebrahimian, Ramin
2018-07-01
To examine if the application of Orem's self-care model could improve self-care knowledge, attitudes, practices, and respiratory conditions of trauma patients with chest tubes, a quasi-experimental study was conducted. The participants were assigned to two groups-namely, Orem's model and routine care. Although the patients' self-care knowledge, attitudes, and practices were improved in both groups over the course of 3 days since the initial assessments, there was a greater degree of improvement in the experimental group than that in the control group. However, there were no differences in the improvement of the chest parameters between the two groups. Orem's model was effective in improving self-care in patients with chest tube.
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
GTE blade injection moulding modeling and verification of models during process approbation
NASA Astrophysics Data System (ADS)
Stepanenko, I. S.; Khaimovich, A. I.
2017-02-01
The simulation model for filling the mould was developed using Moldex3D, and it was experimentally verified in order to perform further optimization calculations of the moulding process conditions. The method described in the article allows adjusting the finite-element model by minimizing the airfoil profile difference between the design and experimental melt motion front due to the differentiated change of power supplied to heating elements, which heat the injection mould in simulation. As a result of calibrating the injection mould for the gas-turbine engine blade, the mean difference between the design melt motion profile and the experimental airfoil profile of no more than 4% was achieved.
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
NASA Astrophysics Data System (ADS)
Louda, Petr; Straka, Petr; Příhoda, Jaromír
2018-06-01
The contribution deals with the numerical simulation of transonic flows through a linear turbine blade cascade. Numerical simulations were carried partly for the standard computational domain with various outlet boundary conditions by the algebraic transition model of Straka and Příhoda [1] connected with the EARSM turbulence model of Hellsten [2] and partly for the computational domain corresponding to the geometrical arrangement in the wind tunnel by the γ-ζ transition model of Dick et al. [3] with the SST turbulence model. Numerical results were compared with experimental data. The agreement of numerical results with experimental results is acceptable through a complicated experimental configuration.
Comparative analysis of numerical and experimental data of orthodontic mini-implants.
Chatzigianni, Athina; Keilig, Ludger; Duschner, Heinz; Götz, Hermann; Eliades, Theodore; Bourauel, Christoph
2011-10-01
The purpose of this study was to compare numerical simulation data derived from finite element analysis (FEA) to experimental data on mini-implant loading. Nine finite element (FE) models of mini-implants and surrounding bone were derived from corresponding experimental specimens. The animal bone in the experiment consisted of bovine rib. The experimental groups were based on implant type, length, diameter, and angle of insertion. One experimental specimen was randomly selected from each group and was digitized in a microCT scanner. The FE models consisted of bone pieces containing Aarhus mini-implants with dimensions 1.5 × 7 mm and 1.5 × 9 mm or LOMAS mini-implants (dimensions 1.5 × 7 mm, 1.5 × 9 mm, and 2 × 7 mm). Mini-implants were inserted in two different ways, perpendicular to the bone surface or at 45 degrees to the direction of the applied load. Loading and boundary conditions in the FE models were adjusted to match the experimental situation, with the force applied on the neck of the mini-implants, along the mesio-distal direction up to a maximum of 0.5 N. Displacement and rotation of mini-implants after force application calculated by FEA were compared to previously recorded experimental deflections of the same mini-implants. Analysis of data with the Altman-Bland test and the Youden plot demonstrated good agreement between numerical and experimental findings (P = not significant) for the models selected. This study provides further evidence of the appropriateness of the FEA as an investigational tool in relevant research.
Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy
1997-01-01
The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.
NASA Astrophysics Data System (ADS)
Barnea, Nitza; Dori, Yehudit J.
1999-12-01
Computerized molecular modeling (CMM) contributes to the development of visualization skills via vivid animation of three dimensional representations. Its power to illustrate and explore phenomena in chemistry teaching stems from the convenience and simplicity of building molecules of any size and color in a number of presentation styles. A new CMM-based learning environment for teaching and learning chemistry in Israeli high schools has been designed and implemented. Three tenth grade experimental classes used this discovery CMM approach, while two other classes, who studied the same topic in the customary approach, served as a control group. We investigated the effects of using molecular modeling on students' spatial ability, understanding of new concepts related to geometric and symbolic representations and students' perception of the model concept. Each variable was examined for gender differences. Students of the experimental group performed better than control group students in all three performance aspects. Experimental group students scored higher than the control group students in the achievement test on structure and bonding. Students' spatial ability improved in both groups, but students from the experimental group scored higher. For the average students in the two groups the improvement in all three spatial ability sub-tests —paper folding, card rotation, and cube comparison—was significantly higher for the experimental group. Experimental group students gained better insight into the model concept than the control group and could explain more phenomena with the aid of a variety of models. Hence, CMM helps in particular to improve the examined cognitive aspects of the average student population. In most of the achievement and spatial ability tests no significant differences between the genders were found, but in some aspects of model perception and verbal argumentation differences still exist. Experimental group females improved their model perception more than the control group females in understanding ways to create models and in the role of models as mental structures and prediction tools. Teachers' and students' feedback on the CMM learning environment was found to be positive, as it helped them understand concepts in molecular geometry and bonding. The results of this study suggest that teaching/learning of topics in chemistry that are related to three dimensional structures can be improved by using a discovery approach in a computerized learning environment.
Anomalous T2 relaxation in normal and degraded cartilage.
Reiter, David A; Magin, Richard L; Li, Weiguo; Trujillo, Juan J; Pilar Velasco, M; Spencer, Richard G
2016-09-01
To compare the ordinary monoexponential model with three anomalous relaxation models-the stretched Mittag-Leffler, stretched exponential, and biexponential functions-using both simulated and experimental cartilage relaxation data. Monte Carlo simulations were used to examine both the ability of identifying a given model under high signal-to-noise ratio (SNR) conditions and the accuracy and precision of parameter estimates under more modest SNR as would be encountered clinically. Experimental transverse relaxation data were analyzed from normal and enzymatically degraded cartilage samples under high SNR and rapid echo sampling to compare each model. Both simulation and experimental results showed improvement in signal representation with the anomalous relaxation models. The stretched exponential model consistently showed the lowest mean squared error in experimental data and closely represents the signal decay over multiple decades of the decay time (e.g., 1-10 ms, 10-100 ms, and >100 ms). The stretched exponential parameter αse showed an inverse correlation with biochemically derived cartilage proteoglycan content. Experimental results obtained at high field suggest potential application of αse as a measure of matrix integrity. Simulation reflecting more clinical imaging conditions, indicate the ability to robustly estimate αse and distinguish between normal and degraded tissue, highlighting its potential as a biomarker for human studies. Magn Reson Med 76:953-962, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongming; Oskay, Caglar
This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage ismore » directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.« less
A Didactic Experiment and Model of a Flat-Plate Solar Collector
ERIC Educational Resources Information Center
Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2011-01-01
We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…
Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices
Haiganoush K. Preisler; Shyh-Chin Chen; Francis Fujioka; John W. Benoit; Anthony L. Westerling
2008-01-01
The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography...
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman M.; Al-Hajri, Sheikha H.
2014-01-01
The purpose of the current study is to explore the impact of associating animations with concrete models on eleventh-grade students' comprehension of different visual representations in organic chemistry. The study used a post-test control group quasi-experimental design. The experimental group (N = 28) used concrete models, submicroscopic…
Aggregate and Individual Replication Probability within an Explicit Model of the Research Process
ERIC Educational Resources Information Center
Miller, Jeff; Schwarz, Wolf
2011-01-01
We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…
Modelling of the UV Index on vertical and 40° tilted planes for different orientations.
Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A
2012-02-01
In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. This journal is © The Royal Society of Chemistry and Owner Societies 2012
Comparison of GEANT4 very low energy cross section models with experimental data in water.
Incerti, S; Ivanchenko, A; Karamitros, M; Mantero, A; Moretto, P; Tran, H N; Mascialino, B; Champion, C; Ivanchenko, V N; Bernal, M A; Francis, Z; Villagrasa, C; Baldacchin, G; Guèye, P; Capra, R; Nieminen, P; Zacharatou, C
2010-09-01
The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. The GEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.
Modeling of leishmaniasis infection dynamics: novel application to the design of effective therapies
2012-01-01
Background The WHO considers leishmaniasis as one of the six most important tropical diseases worldwide. It is caused by parasites of the genus Leishmania that are passed on to humans and animals by the phlebotomine sandfly. Despite all of the research, there is still a lack of understanding on the metabolism of the parasite and the progression of the disease. In this study, a mathematical model of disease progression was developed based on experimental data of clinical symptoms, immunological responses, and parasite load for Leishmania amazonensis in BALB/c mice. Results Four biologically significant variables were chosen to develop a differential equation model based on the GMA power-law formalism. Parameters were determined to minimize error in the model dynamics and time series experimental data. Subsequently, the model robustness was tested and the model predictions were verified by comparing them with experimental observations made in different experimental conditions. The model obtained helps to quantify relationships between the selected variables, leads to a better understanding of disease progression, and aids in the identification of crucial points for introducing therapeutic methods. Conclusions Our model can be used to identify the biological factors that must be changed to minimize parasite load in the host body, and contributes to the design of effective therapies. PMID:22222070
An Investigation Into the Effects of Frequency Response Function Estimators on Model Updating
NASA Astrophysics Data System (ADS)
Ratcliffe, M. J.; Lieven, N. A. J.
1999-03-01
Model updating is a very active research field, in which significant effort has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are—unavoidably—corrupted with uncorrelated noise content. In the development and validation of model-updating strategies, a random zero-mean Gaussian variable is added to simulated test data to tax the updating routines more fully. This paper proposes a more sophisticated model for experimental measurement noise, and this is used in conjunction with several different frequency response function estimators, from the classical H1and H2to more refined estimators that purport to be unbiased. Finite-element model case studies, in conjunction with a genuine experimental test, suggest that the proposed noise model is a more realistic representation of experimental noise phenomena. The choice of estimator is shown to have a significant influence on the viability of the FRF sensitivity method. These test cases find that the use of the H2estimator for model updating purposes is contraindicated, and that there is no advantage to be gained by using the sophisticated estimators over the classical H1estimator.
Critical overview of all available animal models for abdominal wall hernia research.
Vogels, R R M; Kaufmann, R; van den Hil, L C L; van Steensel, S; Schreinemacher, M H F; Lange, J F; Bouvy, N D
2017-10-01
Since the introduction of the first prosthetic mesh for abdominal hernia repair, there has been a search for the "ideal mesh." The use of preclinical or animal models for assessment of necessary characteristics of new and existing meshes is an indispensable part of hernia research. Unfortunately, in our experience there is a lack of consensus among different research groups on which model to use. Therefore, we hypothesized that there is a lack of comparability within published animal research on hernia surgery due to wide range in experimental setup among different research groups. A systematic search of the literature was performed to provide a complete overview of all animal models published between 2000 and 2014. Relevant parameters on model characteristics and outcome measurement were scored on a standardized scoring sheet. Due to the wide range in different animals used, ranging from large animal models like pigs to rodents, we decided to limit the study to 168 articles concerning rat models. Within these rat models, we found wide range of baseline animal characteristics, operation techniques, and outcome measurements. Making reliable comparison of results among these studies is impossible. There is a lack of comparability among experimental hernia research, limiting the impact of this experimental research. We therefore propose the establishment of guidelines for experimental hernia research by the EHS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...
2017-03-28
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
SU-E-T-664: Radiobiological Modeling of Prophylactic Cranial Irradiation in Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D; Debeb, B; Woodward, W
Purpose: Prophylactic cranial irradiation (PCI) is a clinical technique used to reduce the incidence of brain metastasis and improve overall survival in select patients with ALL and SCLC, and we have shown the potential of PCI in select breast cancer patients through a mouse model (manuscript in preparation). We developed a computational model using our experimental results to demonstrate the advantage of treating brain micro-metastases early. Methods: MATLAB was used to develop the computational model of brain metastasis and PCI in mice. The number of metastases per mouse and the volume of metastases from four- and eight-week endpoints were fitmore » to normal and log-normal distributions, respectively. Model input parameters were optimized so that model output would match the experimental number of metastases per mouse. A limiting dilution assay was performed to validate the model. The effect of radiation at different time points was computationally evaluated through the endpoints of incidence, number of metastases, and tumor burden. Results: The correlation between experimental number of metastases per mouse and the Gaussian fit was 87% and 66% at the two endpoints. The experimental volumes and the log-normal fit had correlations of 99% and 97%. In the optimized model, the correlation between number of metastases per mouse and the Gaussian fit was 96% and 98%. The log-normal volume fit and the model agree 100%. The model was validated by a limiting dilution assay, where the correlation was 100%. The model demonstrates that cells are very sensitive to radiation at early time points, and delaying treatment introduces a threshold dose at which point the incidence and number of metastases decline. Conclusion: We have developed a computational model of brain metastasis and PCI in mice that is highly correlated to our experimental data. The model shows that early treatment of subclinical disease is highly advantageous.« less
NASA Astrophysics Data System (ADS)
Hernandez, K. F.; Shah-Fairbank, S.
2016-12-01
The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.
Experimental and AI-based numerical modeling of contaminant transport in porous media.
Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P
2017-10-01
This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively. Copyright © 2017. Published by Elsevier B.V.
Gupta, Manoj; Gupta, T C
2017-10-01
The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.
Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A
2012-02-28
A mathematical modeling of controlled release of drug from one-layer torus-shaped devices is presented. Analytical solutions based on Refined Integral Method (RIM) are derived. The validity and utility of the model are ascertained by comparison of the simulation results with matrix-type vaginal rings experimental release data reported in the literature. For the comparisons, the pair-wise procedure is used to measure quantitatively the fit of the theoretical predictions to the experimental data. A good agreement between the model prediction and the experimental data is observed. A comparison with a previously reported model is also presented. More accurate results are achieved for small A/C(s) ratios. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
In this paper, aerodynamic calculations of NACA 4 series airfoil of 0012 are performed by using Finite-Volume Method and obtained results are compared with experimental data to correlate the numerical accuracy of CFD approximation. Then other airfoils are simulated with k-ɛ, k-w Spalart-Allmaras and SST model. The governing equations are the Reynolds-Averaged-Navier-Stokes (RANS) equations. The performance of different airfoils (NACA 0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024) at different angle of attack are investigated and compared with most used turbulence models for industrial applications. According to the results of the comparison of numerical calculations and experimental data, k-w and SST models are considered to be closest to experimental results for the calculation of the lift coefficient.
Chan, H W; Unsworth, J
1989-01-01
A theoretical model is presented for combining parameters of 1-3 ultrasonic composite materials in order to predict ultrasonic characteristics such as velocity, acoustic impedance, electromechanical coupling factor, and piezoelectric coefficients. Hence, the model allows the estimation of resonance frequencies of 1-3 composite transducers. This model has been extended to cover more material parameters, and they are compared to experimental results up to PZT volume fraction nu of 0.8. The model covers calculation of piezoelectric charge constants d(33) and d(31). Values are found to be in good agreement with experimental results obtained for PZT 7A/Araldite D 1-3 composites. The acoustic velocity, acoustic impedance, and electromechanical coupling factor are predicted and found to be close to the values determined experimentally.
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.; Schimmerling, W.; Townsend, L. W.; Tripathi, R. K.; Wilson, J. W.
1996-01-01
The results of a Monte Carlo model for calculating fragment fluences and LET spectra are compared to data taken with 600 MeV/nucleon iron ions incident on an accelerator beamline configured for irradiation of biological samples, with no target and with 2, 5 and 8 cm of polyethylene. The model uses a multi-generation nuclear fragmentation code, coupled with a formulation of ionization energy loss based on the Bethe-Bloch equation. In the region where the data are reliable and the experimental acceptance is well understood, many of the features of the experimental spectra are well replicated by the model. To obtain good agreement with the experimental data, the model must allow for at least two generations of fragment production in the target.
A decision support model for investment on P2P lending platform.
Zeng, Xiangxiang; Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace-Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone.
A decision support model for investment on P2P lending platform
Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace—Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone. PMID:28877234
NASA Astrophysics Data System (ADS)
Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben
2018-05-01
Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.
Integrating the glioblastoma microenvironment into engineered experimental models
Xiao, Weikun; Sohrabi, Alireza; Seidlits, Stephanie K
2017-01-01
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion – both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed. PMID:28883992
Numerical modeling of the strain of elastic rubber elements
NASA Astrophysics Data System (ADS)
Moskvichev, E. N.; Porokhin, A. V.; Shcherbakov, I. V.
2017-11-01
A comparative analysis of the results of experimental investigation of mechanical behavior of the rubber sample during biaxial compression testing and numerical simulation results obtained by the finite element method was carried out to determine the correctness of the model applied in the engineering calculations of elastic structural elements made of the rubber. The governing equation represents the five-parameter Mooney-Rivlin model with the constants determined from experimental data. The investigation results showed that these constants reliably describe the mechanical behavior of the material under consideration. The divergence of experimental and numerical results does not exceed 15%.
Comparison of numerical simulation and experimental data for steam-in-place sterilization
NASA Technical Reports Server (NTRS)
Young, Jack H.; Lasher, William C.
1993-01-01
A complex problem involving convective flow of a binary mixture containing a condensable vapor and noncondensable gas in a partially enclosed chamber was modelled and results compared to transient experimental values. The finite element model successfully predicted transport processes in dead-ended tubes with inside diameters of 0.4 to 1.0 cm. When buoyancy driven convective flow was dominant, temperature and mixture compositions agreed with experimental data. Data from 0.4 cm tubes indicate diffusion to be the primary air removal method in small diameter tubes and the diffusivity value in the model to be too large.
Experimental determination of the dynamics of an acoustically levitated sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, Nicolás, E-mail: nico@fisica.edu.uy; Andrade, Marco A. B.; Canetti, Rafael
2014-11-14
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents amore » damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.« less
Experimental determination of the dynamics of an acoustically levitated sphere
NASA Astrophysics Data System (ADS)
Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.
2014-11-01
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
Schütte, Judith; Wang, Huange; Antoniou, Stella; Jarratt, Andrew; Wilson, Nicola K; Riepsaame, Joey; Calero-Nieto, Fernando J; Moignard, Victoria; Basilico, Silvia; Kinston, Sarah J; Hannah, Rebecca L; Chan, Mun Chiang; Nürnberg, Sylvia T; Ouwehand, Willem H; Bonzanni, Nicola; de Bruijn, Marella FTR; Göttgens, Berthold
2016-01-01
Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes. DOI: http://dx.doi.org/10.7554/eLife.11469.001 PMID:26901438
Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egami, R.; Bowen, J.; Coulombe, W.
1995-07-01
An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less
Parameter estimation for lithium ion batteries
NASA Astrophysics Data System (ADS)
Santhanagopalan, Shriram
With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of road conditions is important. An algorithm to predict the SOC in time intervals as small as 5 ms is of critical demand. In such cases, the conventional non-linear estimation procedure is not time-effective. There exist methodologies in the literature, such as those based on fuzzy logic; however, these techniques require a lot of computational storage space. Consequently, it is not possible to implement such techniques on a micro-chip for integration as a part of a real-time device. The Extended Kalman Filter (EKF) based approach presented in this work is a first step towards developing an efficient method to predict online, the State of Charge of a lithium ion cell based on an electrochemical model. The final part of the dissertation focuses on incorporating uncertainty in parameter values into electrochemical models using the polynomial chaos theory (PCT).
Suits reflectance models for wheat and cotton - Theoretical and experimental tests
NASA Technical Reports Server (NTRS)
Chance, J. E.; Lemaster, E. W.
1977-01-01
Plant canopy reflectance models developed by Suits are tested for cotton and Penjamo winter wheat. Properties of the models are discussed, and the concept of model depth is developed. The models' predicted exchange symmetry for specular irradiance with respect to sun polar angle and observer polar angle agreed with field data for cotton and wheat. Model calculations and experimental data for wheat reflectance vs sun angle disagreed. Specular reflectance from 0.50 to 1.10 micron shows fair agreement between the model and wheat measurements. An Appendix includes the physical and optical parameters for wheat necessary to apply Suits' models.
Bunker, Alex; Magarkar, Aniket; Viitala, Tapani
2016-10-01
Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.
PDF-based heterogeneous multiscale filtration model.
Gong, Jian; Rutland, Christopher J
2015-04-21
Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.
Comparative simulation of a fluidised bed reformer using industrial process simulators
NASA Astrophysics Data System (ADS)
Bashiri, Hamed; Sotudeh-Gharebagh, Rahmat; Sarvar-Amini, Amin; Haghtalab, Ali; Mostoufi, Navid
2016-08-01
A simulation model is developed by commercial simulators in order to predict the performance of a fluidised bed reformer. As many physical and chemical phenomena take place in the reformer, two sub-models (hydrodynamic and reaction sub-models) are needed. The hydrodynamic sub-model is based on the dynamic two-phase model and the reaction sub-model is derived from the literature. In the overall model, the bed is divided into several sections. In each section, the flow of the gas is considered as plug flow through the bubble phase and perfectly mixed through the emulsion phase. Experimental data from the literature were used to validate the model. Close agreement was found between the model of both ASPEN Plus (ASPEN PLUS 2004 ©) and HYSYS (ASPEN HYSYS 2004 ©) and the experimental data using various sectioning of the reactor ranged from one to four. The experimental conversion lies between one and four sections as expected. The model proposed in this work can be used as a framework in developing the complicated models for non-ideal reactors inside of the process simulators.
Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.
2013-01-01
Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200
A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.
Thon, Moritz P; Ford, Hugh Z; Gee, Michael W; Myerscough, Mary R
2018-01-01
There are a growing number of studies that model immunological processes in the artery wall that lead to the development of atherosclerotic plaques. However, few of these models use parameters that are obtained from experimental data even though data-driven models are vital if mathematical models are to become clinically relevant. We present the development and analysis of a quantitative mathematical model for the coupled inflammatory, lipid and macrophage dynamics in early atherosclerotic plaques. Our modeling approach is similar to the biologists' experimental approach where the bigger picture of atherosclerosis is put together from many smaller observations and findings from in vitro experiments. We first develop a series of three simpler submodels which are least-squares fitted to various in vitro experimental results from the literature. Subsequently, we use these three submodels to construct a quantitative model of the development of early atherosclerotic plaques. We perform a local sensitivity analysis of the model with respect to its parameters that identifies critical parameters and processes. Further, we present a systematic analysis of the long-term outcome of the model which produces a characterization of the stability of model plaques based on the rates of recruitment of low-density lipoproteins, high-density lipoproteins and macrophages. The analysis of the model suggests that further experimental work quantifying the different fates of macrophages as a function of cholesterol load and the balance between free cholesterol and cholesterol ester inside macrophages may give valuable insight into long-term atherosclerotic plaque outcomes. This model is an important step toward models applicable in a clinical setting.
Assessing the True Intraocular Pressure in the Non-human Primate.
McAllister, Faith; Harwerth, Ronald; Patel, Nimesh
2018-02-01
For glaucoma patients, high intraocular pressure (IOP) is a risk factor for progressive neuropathy. Similarly, animal models used to study the disease are based on an experimental elevation of IOP. Thus, accurate IOP measurements are important in characterizing experimental models and resulting effects. The purpose of the present study was to investigate IOP measurements in a non-human primate model of experimental glaucoma by comparing clinical tonometry (Tono-Pen and TonoVet) to the true IOP from intracameral manometry. A total of 17 rhesus macaque eyes from 12 animals were used for this study. Eleven eyes had no previous experimental intervention, whereas six eyes were at varying stages of laser-induced experimental glaucoma. IOPs were adjusted by inserting a needle in the anterior chamber that was attached to a pressure transducer and syringe pump system. The anterior chamber IOP was adjusted to values between 10 and 50 mmHg and corresponding measures with Tono-Pen and TonoVet were taken. The IOPs by TonoVet and Tono-Pen were linearly related over the range of pressures tested (slope = 0.68 normal/healthy and 0.72 experimental glaucoma). For the most, TonoVet measures overestimated IOP at all anterior chamber pressure settings (mean difference of 3.17 mmHg, 95% CI 12.53 to -4.74 normal and 3.90 mmHg, 95% CI 12.90 to -6.53 experimental glaucoma). In contrast, Tono-Pen measures overestimated IOP at lower IOPs and underestimated at higher IOP (slope = -0.26 normal and -0.21 experimental glaucoma). The TonoVet and Tono-Pen tonometers that are often used to assess IOP in both clinical and experimental settings generally reflect the status of IOP, but the results from this study suggest that the instruments need calibration with true anterior chamber pressure for accurate measures in experimental models of glaucoma.
Which experimental systems should we use for human microbiome science?
Douglas, Angela E
2018-03-01
Microbiome science is revealing that the phenotype and health of animals, including humans, depend on the sustained function of their resident microorganisms. In this essay, I argue for thoughtful choice of model systems for human microbiome science. A greater variety of experimental systems, including wider use of invertebrate models, would benefit biomedical research, while systems ill-suited to experimental and genetic manipulation can be used to address very limited sets of scientific questions. Microbiome science benefits from the coordinated use of multiple systems, which is facilitated by networks of researchers with expertise in different experimental systems.
Experimental study of the robust global synchronization of Brockett oscillators
NASA Astrophysics Data System (ADS)
Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis
2017-12-01
This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.
Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices
NASA Astrophysics Data System (ADS)
Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung
2018-04-01
We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.
NASA Technical Reports Server (NTRS)
Friedmann, P. P.; Venkatesan, C.
1985-01-01
The aeromechanical stability of a helicopter in ground resonance was analyzed, by incorporating five different aerodynamic models in the coupled rotor/fuselage analysis. The sensitivity of the results to changes in aerodynamic modelling was carefully examined. The theoretical results were compared with experimental data and useful conclusions are drawn regarding the role of aerodynamic modeling on this aeromechanical stability problem. The aerodynamic model which provided the best all around correlation with the experimental data was identified.
Some Integrated Squared Error Procedures for Multivariate Normal Data,
1986-01-01
a lnear regresmion or experimental design model). Our procedures have &lSO been usned wcelyOn non -linear models but we do not addres nan-lnear...of fit, outliers, influence functions, experimental design , cluster analysis, robustness 24L A =TO ACT (VCefme - pvre alli of magsy MW identif by...structured data such as multivariate experimental designs . Several illustrations are provided. * 0 %41 %-. 4.’. * " , -.--, ,. -,, ., -, ’v ’ , " ,,- ,, . -,-. . ., * . - tAma- t
From theory to experimental design-Quantifying a trait-based theory of predator-prey dynamics.
Laubmeier, A N; Wootton, Kate; Banks, J E; Bommarco, Riccardo; Curtsdotter, Alva; Jonsson, Tomas; Roslin, Tomas; Banks, H T
2018-01-01
Successfully applying theoretical models to natural communities and predicting ecosystem behavior under changing conditions is the backbone of predictive ecology. However, the experiments required to test these models are dictated by practical constraints, and models are often opportunistically validated against data for which they were never intended. Alternatively, we can inform and improve experimental design by an in-depth pre-experimental analysis of the model, generating experiments better targeted at testing the validity of a theory. Here, we describe this process for a specific experiment. Starting from food web ecological theory, we formulate a model and design an experiment to optimally test the validity of the theory, supplementing traditional design considerations with model analysis. The experiment itself will be run and described in a separate paper. The theory we test is that trophic population dynamics are dictated by species traits, and we study this in a community of terrestrial arthropods. We depart from the Allometric Trophic Network (ATN) model and hypothesize that including habitat use, in addition to body mass, is necessary to better model trophic interactions. We therefore formulate new terms which account for micro-habitat use as well as intra- and interspecific interference in the ATN model. We design an experiment and an effective sampling regime to test this model and the underlying assumptions about the traits dominating trophic interactions. We arrive at a detailed sampling protocol to maximize information content in the empirical data obtained from the experiment and, relying on theoretical analysis of the proposed model, explore potential shortcomings of our design. Consequently, since this is a "pre-experimental" exercise aimed at improving the links between hypothesis formulation, model construction, experimental design and data collection, we hasten to publish our findings before analyzing data from the actual experiment, thus setting the stage for strong inference.
A Dynamical Model Reveals Gene Co-Localizations in Nucleus
Yao, Ye; Lin, Wei; Hennessy, Conor; Fraser, Peter; Feng, Jianfeng
2011-01-01
Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes. PMID:21760760
Experimental study and modelling of selenite sorption onto illite and smectite clays.
Missana, T; Alonso, U; García-Gutiérrez, M
2009-06-15
This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.
NASA Astrophysics Data System (ADS)
Lertwanasiriwan, Chaiwuti
The study examined the effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand. A mixed quantitative research design was selected for the research design. A pretest-posttest control-group design was implemented for the experimental research. A causal-comparative design using questionnaire and classroom observation was employed for the non-experimental research. Two sixth-grade classrooms at a medium-sized public school in Bangkok, Thailand were randomly selected for the study - one as the control group and the other as the experimental group. The 34 students in the control group only received the inquiry instructional model, while the 35 students in the experimental group received the technology-enhanced inquiry instructional model. Both groups of students had been taught by the same science teacher for 15 weeks (three periods per week). The results and findings from the study seemed to indicate that both the technology-enhanced inquiry instructional model and the inquiry instructional model significantly improve students' understanding of science. However, it might be claimed that students receiving the technology-enhanced inquiry instructional model gain more than students only receiving the inquiry instructional model. In addition, the technology-enhanced inquiry instructional model seemed to support the assessment during the 5E Model's evaluation stage. Most students appeared to have very good attitudes toward using it in the science classroom suggesting that the technology-enhanced inquiry instructional model motivates students to learn science.
Modeling and analysis of a resonant nanosystem
NASA Astrophysics Data System (ADS)
Calvert, Scott L.
The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The simulation is used to demonstrate the difficulties with the contemporary mixing approach to experimental data collection and to complete a variety of case studies investigating the use of the nanoresonator systems in practical applications, such as signal filtering. Many of these case studies would be difficult to complete analytically, but results are quickly achieved through the use of the simulation.
NASA Astrophysics Data System (ADS)
Huismann, Tyler D.
Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous versions of the code assume an unknown dependence between particles' pre-collision velocities and post-collision scattering angles. This dissertation focuses on updating several of these types of collisions by assuming a curve fit based on the measurements of atom-ion interactions, such that previously unknown angular dependences are well-characterized.
Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C
2015-12-01
through experimentation. Although the Literature Review showed that some theories and models have been developed based on extensive experimental results...of Some Refractory Metals & Ceramics [Fahrenholtz] ........... 14 Figure 4: Creep Strain vs Time Based on Burgers Model ...
Experimental and Theoretical Basis for a Closed-Form Spectral BRDF Model
2015-09-17
EXPERIMENTAL AND THEORETICAL BASIS FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, Major, USAF AFIT-ENP-DS-15-S-021 DEPARTMENT...SPECTRAL BRDF MODEL DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, BS, MS Major, USAF Committee Membership: Michael A. Marciniak, PhD Chairman Kevin
Experimental Modeling of a Formula Student Carbon Composite Nose Cone
Fellows, Neil A.
2017-01-01
A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%. PMID:28772982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.
2013-08-01
This article discusses the paper "Experimental Design for Engineering Dimensional Analysis" by Albrecht et al. (2013, Technometrics). That paper provides and overview of engineering dimensional analysis (DA) for use in developing DA models. The paper proposes methods for generating model-robust experimental designs to supporting fitting DA models. The specific approach is to develop a design that maximizes the efficiency of a specified empirical model (EM) in the original independent variables, subject to a minimum efficiency for a DA model expressed in terms of dimensionless groups (DGs). This discussion article raises several issues and makes recommendations regarding the proposed approach. Also,more » the concept of spurious correlation is raised and discussed. Spurious correlation results from the response DG being calculated using several independent variables that are also used to calculate predictor DGs in the DA model.« less
NASA Astrophysics Data System (ADS)
Greenidge, Paulette A.; Merz, Alfred; Folkers, Gerd
1995-12-01
A representative range of pyrimidine nucleoside analogues that are known to inhibit herpes simplex virus (HSV) replication have been used to construct receptor binding site models for the varicella-zoster virus (VZV), thymidine kinase (TK) and human TK1. Given a set of interacting ligands, superimposed in such a manner as to define a pharmacophore, the pseudoreceptor modelling technique Yak provides a means of building binding site models of macromolecules for which no three-dimensional experimental structures are available. Once the models have been evaluated by their ability to reproduce experimental binding data [Vedani et al., J. Am. Chem. Soc., 117 (1995) 4987], they can be used for predictive purposes. Calculated and experimental values of relative binding affinity are compared. Our models suggest that the substitution of one residue may be sufficient to determine ligand subtype affinity.
Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments
Barclay, Wendy; Barr, Ian; Fouchier, Ron A.M.; Matsuyama, Ryota; Nishiura, Hiroshi; Peiris, Malik; Russell, Charles J.; Subbarao, Kanta; Zhu, Huachen
2018-01-01
The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model. PMID:29774862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Chim, W. K.; Chiam, S. Y
2011-11-01
In this work, photoelectron spectroscopy is used to characterize the band alignment of lanthanum aluminate heterostructures which possess a wide range of potential applications. It is found that our experimental slope parameter agrees with theory using the metal-induced gap states model while the interface induced gap states (IFIGS) model yields unsatisfactory results. We show that this discrepancy can be attributed to the correlation between the dielectric work function and the electronegativity in the IFIGS model. It is found that the original trend, as established largely by metals, may not be accurate for larger band gap materials. By using a newmore » correlation, our experimental data shows good agreement of the slope parameter using the IFIGS model. This correlation, therefore, plays a crucial role in heterostructures involving wider bandgap materials for accurate band alignment prediction using the IFIGS model.« less
Testing an H-mode Pedestal Model Using DIII-D Data
NASA Astrophysics Data System (ADS)
Kritz, A. H.; Onjun, T.; Bateman, G.; Guzdar, P. N.; Mahajan, S. M.; Osborne, T.
2004-11-01
Tests against experimental data are carried out for a model of the pedestal at the edge of H-mode plasmas based on double-Beltrami solutions of the two-fluid Hall-MHD equations for the interaction of the magnetic and velocity fields.(S.M. Mahajan and Z. Yoshida, PRL 81 (1998) 4863, Phys. Plasmas 7 (2000) 635.) The width and height of the pedestal predicted by the model are tested against experimental data from the DIII-D tokamak. The model for the pedestal width, which has a particularly simple form, namely, inversely proportional to the square root of the density, does not appear to capture the parameter dependence of the experimental data. When the model for the pedestal temperature is rescaled to optimize agreement with data, the RMS error is found to be comparable with the RMS error found using other pedestal models.(T. Onjun, G. Bateman, A.H. Kritz, G. Hammett, Phys. Plasmas 9 (2002) 5018.)
Student use of model-based reasoning when troubleshooting an electronic circuit
NASA Astrophysics Data System (ADS)
Lewandowski, Heather; Stetzer, Mackenzie; van de Bogart, Kevin; Dounas-Frazer, Dimitri
2016-03-01
Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.
Student use of model-based reasoning when troubleshooting an electric circuit
NASA Astrophysics Data System (ADS)
Dounas-Frazer, Dimitri
2016-05-01
Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.
Examining the Relationships Between Education, Social Networks and Democratic Support With ABM
NASA Technical Reports Server (NTRS)
Drucker, Nick; Campbell, Kenyth
2011-01-01
This paper introduces an agent-based model that explores the relationships between education, social networks, and support for democratic ideals. This study examines two factors thai affect democratic support, education, and social networks. Current theory concerning these two variables suggests that positive relationships exist between education and democratic support and between social networks and the spread of ideas. The model contains multiple variables of democratic support, two of which are evaluated through experimentation. The model allows individual entities within the system to make "decisions" about their democratic support independent of one another. The agent based approach also allows entities to utilize their social networks to spread ideas. Current theory supports experimentation results. In addion , these results show the model is capable of reproducing real world outcomes. This paper addresses the model creation process and the experimentation procedure, as well as future research avenues and potential shortcomings of the model
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
NASA Astrophysics Data System (ADS)
Nishida, R. T.; Beale, S. B.; Pharoah, J. G.; de Haart, L. G. J.; Blum, L.
2018-01-01
This work is among the first where the results of an extensive experimental research programme are compared to performance calculations of a comprehensive computational fluid dynamics model for a solid oxide fuel cell stack. The model, which combines electrochemical reactions with momentum, heat, and mass transport, is used to obtain results for an established industrial-scale fuel cell stack design with complex manifolds. To validate the model, comparisons with experimentally gathered voltage and temperature data are made for the Jülich Mark-F, 18-cell stack operating in a test furnace. Good agreement is obtained between the model and experiment results for cell voltages and temperature distributions, confirming the validity of the computational methodology for stack design. The transient effects during ramp up of current in the experiment may explain a lower average voltage than model predictions for the power curve.
An experimental study of tip shape effects on the flutter of aft-swept, flat-plate wings
NASA Technical Reports Server (NTRS)
Dansberry, Bryan E.; Rivera, Jose A., Jr.; Farmer, Moses G.
1990-01-01
The effects of tip chord orientation on wing flutter are investigated experimentally using six cantilever-mounted, flat-plate wing models. Experimentally determined flutter characteristics of the six models are presented covering both the subsonic and transonic Mach number ranges. While all models have a 60 degree leading edge sweep, a 40.97 degree trailing edge sweep, and a root chord of 34.75 inches, they are subdivided into two series characterized by a higher aspect ratio and a lower aspect ratio. Each series is made up of three models with tip chord orientations which are parallel to the free-stream flow, perpendicular to the model mid-chord line, and perpendicular to the free-stream flow. Although planform characteristics within each series of models are held constant, structural characteristics such as mode shapes and natural frequencies are allowed to vary.
Comparison of Coupled Radiative Flow Solutions with Project Fire 2 Flight Data
NASA Technical Reports Server (NTRS)
Olynick, David R.; Henline, W. D.; Chambers, Lin Hartung; Candler, G. V.
1995-01-01
A nonequilibrium, axisymmetric, Navier-Stokes flow solver with coupled radiation has been developed for use in the design or thermal protection systems for vehicles where radiation effects are important. The present method has been compared with an existing now and radiation solver and with the Project Fire 2 experimental data. Good agreement has been obtained over the entire Fire 2 trajectory with the experimentally determined values of the stagnation radiation intensity in the 0.2-6.2 eV range and with the total stagnation heating. The effects of a number of flow models are examined to determine which combination of physical models produces the best agreement with the experimental data. These models include radiation coupling, multitemperature thermal models, and finite rate chemistry. Finally, the computational efficiency of the present model is evaluated. The radiation properties model developed for this study is shown to offer significant computational savings compared to existing codes.
Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers
NASA Astrophysics Data System (ADS)
Iordanidis, A. A.; Franck, C. M.
2008-07-01
An accurate and robust method for radiative heat transfer simulation for arc applications was presented in the previous paper (part I). In this paper a self-consistent mathematical model based on computational fluid dynamics and a rigorous radiative heat transfer model is described. The model is applied to simulate switching arcs in high voltage gas circuit breakers. The accuracy of the model is proven by comparison with experimental data for all arc modes. The ablation-controlled arc model is used to simulate high current PTFE arcs burning in cylindrical tubes. Model accuracy for the lower current arcs is evaluated using experimental data on the axially blown SF6 arc in steady state and arc resistance measurements close to current zero. The complete switching process with the arc going through all three phases is also simulated and compared with the experimental data from an industrial circuit breaker switching test.
Bosak, A; Chernyshov, D; Vakhrushev, Sergey; Krisch, M
2012-01-01
The available body of experimental data in terms of the relaxor-specific component of diffuse scattering is critically analysed and a collection of related models is reviewed; the sources of experimental artefacts and consequent failures of modelling efforts are enumerated. Furthermore, it is shown that the widely used concept of polar nanoregions as individual static entities is incompatible with the experimental diffuse scattering results. Based on the synchrotron diffuse scattering three-dimensional data set taken for the prototypical ferroelectric relaxor lead magnesium niobate-lead titanate (PMN-PT), a new parameterization of diffuse scattering in relaxors is presented and a simple phenomenological picture is proposed to explain the unusual properties of the relaxor behaviour. The model assumes a specific slowly changing displacement pattern, which is indirectly controlled by the low-energy acoustic phonons of the system. The model provides a qualitative but rather detailed explanation of temperature, pressure and electric-field dependence of diffuse neutron and X-ray scattering, as well as of the existence of a hierarchy in the relaxation times of these materials.
A model for generating Surface EMG signal of m. Tibialis Anterior.
Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P
2014-01-01
A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.
López, Alejandro; Coll, Andrea; Lescano, Maia; Zalazar, Cristina
2017-05-05
In this work, the suitability of the UV/H 2 O 2 process for commercial herbicides mixture degradation was studied. Glyphosate, the herbicide most widely used in the world, was mixed with other herbicides that have residual activity as 2,4-D and atrazine. Modeling of the process response related to specific operating conditions like initial pH and initial H 2 O 2 to total organic carbon molar ratio was assessed by the response surface methodology (RSM). Results have shown that second-order polynomial regression model could well describe and predict the system behavior within the tested experimental region. It also correctly explained the variability in the experimental data. Experimental values were in good agreement with the modeled ones confirming the significance of the model and highlighting the success of RSM for UV/H 2 O 2 process modeling. Phytotoxicity evolution throughout the photolytic degradation process was checked through germination tests indicating that the phytotoxicity of the herbicides mixture was significantly reduced after the treatment. The end point for the treatment at the operating conditions for maximum TOC conversion was also identified.
Monte Carlo Simulation of Plumes Spectral Emission
2005-06-07
ERIM experimental data for hot cell radiance has been performed. It has been shown that NASA standard infrared optical model [3] provides good...Influence of different optical models on predicted numerical data on hot cell radiance for ERIM experimental conditions has been studied. 7...prediction (solid line) of the Hot cell radiance. NASA Standard Infrared Radiation model ; averaged rotational line structure (JLBL=0); spectral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Moscow Institute of Physics and Technology
The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.
NASA Astrophysics Data System (ADS)
Perrault, Matthieu; Gueguen, Philippe; Aldea, Alexandru; Demetriu, Sorin
2013-12-01
The lack of knowledge concerning modelling existing buildings leads to signifiant variability in fragility curves for single or grouped existing buildings. This study aims to investigate the uncertainties of fragility curves, with special consideration of the single-building sigma. Experimental data and simplified models are applied to the BRD tower in Bucharest, Romania, a RC building with permanent instrumentation. A three-step methodology is applied: (1) adjustment of a linear MDOF model for experimental modal analysis using a Timoshenko beam model and based on Anderson's criteria, (2) computation of the structure's response to a large set of accelerograms simulated by SIMQKE software, considering twelve ground motion parameters as intensity measurements (IM), and (3) construction of the fragility curves by comparing numerical interstory drift with the threshold criteria provided by the Hazus methodology for the slight damage state. By introducing experimental data into the model, uncertainty is reduced to 0.02 considering S d ( f 1) as seismic intensity IM and uncertainty related to the model is assessed at 0.03. These values must be compared with the total uncertainty value of around 0.7 provided by the Hazus methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seapan, M.; Crynes, B.L.; Dale, S.
The objectives of this study were to analyze alternate crudes kinetic hydrotreatment data in the literature, develop a mathematical model for interpretation of these data, develop an experimental procedure and apparatus to collect accurate kinetic data, and finally, to combine the model and experimental data to develop a general model which, with a few experimental parameters, could be used in design of future hydrotreatment processes. These objectives were to cover a four year program (1980 to 1984) and were subjective to sufficient funding. Only partial funding has been available thus far to cover activities for two years. A hydrotreatment datamore » base is developed which contains over 2000 citations, stored in a microcomputer. About 50% of these are reviewed, classified and can be identified by feedstock, catalyst, reactor type and other process characteristics. Tests of published hydrodesulfurization data indicate the problems with simple n-th order, global kinetic models, and point to the value of developing intrinsic reaction kinetic models to describe the reaction processes. A Langmuir-Hinshelwood kinetic model coupled with a plug flow reactor design equation has been developed and used for published data evaluation. An experimental system and procedure have been designed and constructed, which can be used for kinetic studies. 30 references, 4 tables.« less
Carlson, Jean M.
2018-01-01
In this paper we study antibiotic-induced C. difficile infection (CDI), caused by the toxin-producing C. difficile (CD), and implement clinically-inspired simulated treatments in a computational framework that synthesizes a generalized Lotka-Volterra (gLV) model with SIR modeling techniques. The gLV model uses parameters derived from an experimental mouse model, in which the mice are administered antibiotics and subsequently dosed with CD. We numerically identify which of the experimentally measured initial conditions are vulnerable to CD colonization, then formalize the notion of CD susceptibility analytically. We simulate fecal transplantation, a clinically successful treatment for CDI, and discover that both the transplant timing and transplant donor are relevant to the the efficacy of the treatment, a result which has clinical implications. We incorporate two nongeneric yet dangerous attributes of CD into the gLV model, sporulation and antibiotic-resistant mutation, and for each identify relevant SIR techniques that describe the desired attribute. Finally, we rely on the results of our framework to analyze an experimental study of fecal transplants in mice, and are able to explain observed experimental results, validate our simulated results, and suggest model-motivated experiments. PMID:29451873
Pesticide regulations for agriculture: Chemically flawed regulatory practice.
Gamble, Donald S; Bruccoleri, Aldo G
2016-08-02
Two categories of pesticide soil models now exist. Government regulatory agencies use pesticide fate and transport hydrology models, including versions of PRZM.gw. They have good descriptions of pesticide transport by water flow. Their descriptions of chemical mechanisms are unrealistic, having been postulated using the universally accepted but incorrect pesticide soil science. The objective of this work is to report experimental tests of a pesticide soil model in use by regulatory agencies and to suggest possible improvements. Tests with experimentally based data explain why PRZM.gw predictions can be wrong by orders of magnitude. Predictive spreadsheet models are the other category. They are experimentally based, with chemical stoichiometry applied to integral kinetic rate laws for sorption, desorption, intra-particle diffusion, and chemical reactions. They do not account for pesticide transport through soils. Each category of models therefore lacks what the other could provide. They need to be either harmonized or replaced. Some preliminary tests indicate that an experimental mismatch between the categories of models will have to be resolved. Reports of pesticides in the environment and the medical problems that overlap geographically indicate that government regulatory practice needs to account for chemical kinetics and mechanisms. Questions about possible cause and effect links could then be investigated.
NASA Astrophysics Data System (ADS)
Moreton, Gregory; Meydan, Turgut; Williams, Paul
2018-04-01
The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM) and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.
Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.
2007-01-01
The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.
Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R; Asghari, A
2014-01-01
The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE>95%) in short time (1.6 min) with high adsorption capacity (104-185 mg g(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.
Jones, Eric W; Carlson, Jean M
2018-02-01
In this paper we study antibiotic-induced C. difficile infection (CDI), caused by the toxin-producing C. difficile (CD), and implement clinically-inspired simulated treatments in a computational framework that synthesizes a generalized Lotka-Volterra (gLV) model with SIR modeling techniques. The gLV model uses parameters derived from an experimental mouse model, in which the mice are administered antibiotics and subsequently dosed with CD. We numerically identify which of the experimentally measured initial conditions are vulnerable to CD colonization, then formalize the notion of CD susceptibility analytically. We simulate fecal transplantation, a clinically successful treatment for CDI, and discover that both the transplant timing and transplant donor are relevant to the the efficacy of the treatment, a result which has clinical implications. We incorporate two nongeneric yet dangerous attributes of CD into the gLV model, sporulation and antibiotic-resistant mutation, and for each identify relevant SIR techniques that describe the desired attribute. Finally, we rely on the results of our framework to analyze an experimental study of fecal transplants in mice, and are able to explain observed experimental results, validate our simulated results, and suggest model-motivated experiments.
Kirschner, Denise E; Linderman, Jennifer J
2009-04-01
In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or 'in silico' deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions.
NASA Astrophysics Data System (ADS)
Zielnica, J.; Ziółkowski, A.; Cempel, C.
2003-03-01
Design and theoretical and experimental investigation of vibroisolation pads with non-linear static and dynamic responses is the objective of the paper. The analytical investigations are based on non-linear finite element analysis where the load-deflection response is traced against the shape and material properties of the analysed model of the vibroisolation pad. A new model of vibroisolation pad of antisymmetrical type was designed and analysed by the finite element method based on the second-order theory (large displacements and strains) with the assumption of material's non-linearities (Mooney-Rivlin model). Stability loss phenomenon was used in the design of the vibroisolators, and it was proved that it would be possible to design a model of vibroisolator in the form of a continuous pad with non-linear static and dynamic response, typical to vibroisolation purposes. The materials used for the vibroisolator are those of rubber, elastomers, and similar ones. The results of theoretical investigations were examined experimentally. A series of models made of soft rubber were designed for the test purposes. The experimental investigations of the vibroisolation models, under static and dynamic loads, confirmed the results of the FEM analysis.
NASA Astrophysics Data System (ADS)
Minissale, Marco; Pardanaud, Cedric; Bisson, Régis; Gallais, Laurent
2017-11-01
The knowledge of optical properties of tungsten at high temperatures is of crucial importance in fields such as nuclear fusion and aerospace applications. The optical properties of tungsten are well known at room temperature, but little has been done at temperatures between 300 K and 1000 K in the visible and near-infrared domains. Here, we investigate the temperature dependence of tungsten reflectivity from the ambient to high temperatures (<1000 K) in the 500-1050 nm spectral range, a region where interband transitions make a strong contribution. Experimental measurements, performed via a spectroscopic system coupled with laser remote heating, show that tungsten’s reflectivity increases with temperature and wavelength. We have described these dependences through a Fresnel and two Lorentz-Drude models. The Fresnel model accurately reproduces the experimental curve at a given temperature, but it is able to simulate the temperature dependency of reflectivity only thanks to an ad hoc choice of temperature formulae for the refractive indexes. Thus, a less empirical approach, based on Lorentz-Drude models, is preferred to describe the interaction of light and charge carriers in the solid. The first Lorentz-Drude model, which includes a temperature dependency on intraband transitions, fits experimental results only qualitatively. The second Lorentz-Drude model includes in addition a temperature dependency on interband transitions. It is able to reproduce the experimental results quantitatively, highlighting a non-trivial dependence of interband transitions as a function of temperature. Eventually, we use these temperature dependent Lorentz-Drude models to evaluate the total emissivity of tungsten from 300 K to 3500 K, and we compare our experimental and theoretical findings with previous results.
Severi, Stefano; Fantini, Matteo; Charawi, Lara A; DiFrancesco, Dario
2012-01-01
The cellular basis of cardiac pacemaking is still debated. Reliable computational models of the sinoatrial node (SAN) action potential (AP) may help gain a deeper understanding of the phenomenon. Recently, novel models incorporating detailed Ca2+-handling dynamics have been proposed, but they fail to reproduce a number of experimental data, and more specifically effects of ‘funny’ (If) current modifications. We therefore developed a SAN AP model, based on available experimental data, in an attempt to reproduce physiological and pharmacological heart rate modulation. Cell compartmentalization and intracellular Ca2+-handling mechanisms were formulated as in the Maltsev–Lakatta model, focusing on Ca2+-cycling processes. Membrane current equations were revised on the basis of published experimental data. Modifications of the formulation of currents/pumps/exchangers to simulate If blockers, autonomic modulators and Ca2+-dependent mechanisms (ivabradine, caesium, acetylcholine, isoprenaline, BAPTA) were derived from experimental data. The model generates AP waveforms typical of rabbit SAN cells, whose parameters fall within the experimental ranges: 352 ms cycle length, 80 mV AP amplitude, −58 mV maximum diastolic potential (MDP), 108 ms APD50, and 7.1 V s−1 maximum upstroke velocity. Rate modulation by If-blocking drugs agrees with experimental findings: 20% and 22% caesium-induced (5 mm) and ivabradine-induced (3 μm) rate reductions, respectively, due to changes in diastolic depolarization (DD) slope, with no changes in either MDP or take-off potential (TOP). The model consistently reproduces the effects of autonomic modulation: 20% rate decrease with 10 nm acetylcholine and 28% increase with 1 μm isoprenaline, again entirely due to increase in the DD slope, with no changes in either MDP or TOP. Model testing of BAPTA effects showed slowing of rate, −26%, without cessation of beating. Our up-to-date model describes satisfactorily experimental data concerning autonomic stimulation, funny-channel blockade and inhibition of the Ca2+-related system by BAPTA, making it a useful tool for further investigation. Simulation results suggest that a detailed description of the intracellular Ca2+ fluxes is fully compatible with the observation that If is a major component of pacemaking and rate modulation. PMID:22711956
Development and validation of a 10-year-old child ligamentous cervical spine finite element model.
Dong, Liqiang; Li, Guangyao; Mao, Haojie; Marek, Stanley; Yang, King H
2013-12-01
Although a number of finite element (FE) adult cervical spine models have been developed to understand the injury mechanisms of the neck in automotive related crash scenarios, there have been fewer efforts to develop a child neck model. In this study, a 10-year-old ligamentous cervical spine FE model was developed for application in the improvement of pediatric safety related to motor vehicle crashes. The model geometry was obtained from medical scans and meshed using a multi-block approach. Appropriate properties based on review of literature in conjunction with scaling were assigned to different parts of the model. Child tensile force-deformation data in three segments, Occipital-C2 (C0-C2), C4-C5 and C6-C7, were used to validate the cervical spine model and predict failure forces and displacements. Design of computer experiments was performed to determine failure properties for intervertebral discs and ligaments needed to set up the FE model. The model-predicted ultimate displacements and forces were within the experimental range. The cervical spine FE model was validated in flexion and extension against the child experimental data in three segments, C0-C2, C4-C5 and C6-C7. Other model predictions were found to be consistent with the experimental responses scaled from adult data. The whole cervical spine model was also validated in tension, flexion and extension against the child experimental data. This study provided methods for developing a child ligamentous cervical spine FE model and to predict soft tissue failures in tension.
Lecloux, André J; Atluri, Rambabu; Kolen'ko, Yury V; Deepak, Francis Leonard
2017-10-12
The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the representativeness of the two models described in the first part of this study. They were also used to calculate the VSSA values and these calculated values were compared to the experimental results. For narrow particle size distributions, both models give similar VSSA values quite comparable to the experimental ones. But when the particle size distribution broadens or is of multi-bimodal shape, as theoretically predicted, one model leads to VSSA values higher than the experimental ones while the other most often leads to VSSA values lower than the experimental ones. The experimental VSSA approach then appears as a reliable, simple screening tool to identify nano and non-nano-materials. The modelling approach cannot be used as a formal identification tool but could be useful to screen for potential effects of shape, polydispersity and size, for example to compare various possible nanoforms.
NASA Astrophysics Data System (ADS)
Dhote, Sharvari; Yang, Zhengbao; Zu, Jean
2018-01-01
This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.
Evaluation of microcrack thermal shock damage in ceramics: Modeling and experiment
NASA Technical Reports Server (NTRS)
Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.
1992-01-01
In this paper we present an experimental and theoretical study of the effect of microcrack damage on ceramic properties. For the experimental investigation, ceramic samples of aluminum oxide and reaction bonded silicon nitride (RBSN) are used. Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Both surface and bulk ultrasonic wave methods are used to correlate the change of elastic constants to microstructural degradation and to determine the change in elastic anisotropy induced by microcrack damage. For the theoretical investigation, damage mechanics, which relates microstructural damage to material service life and mechanical failure, is used. The change in elastic properties due to microcrack damage calculated from the theoretical model is compared with the experimental results for determination of the applicability of damage theory. It is shown that two independent experimental methods (bulk wave and surface wave) give the same results for shear moduli of damaged ceramics. The experimental results aagree reasonably well with the moduli predicted from the cracked solid model.
Cluster dynamics modeling and experimental investigation of the effect of injected interstitials
NASA Astrophysics Data System (ADS)
Michaut, B.; Jourdan, T.; Malaplate, J.; Renault-Laborne, A.; Sefta, F.; Décamps, B.
2017-12-01
The effect of injected interstitials on loop and cavity microstructures is investigated experimentally and numerically for 304L austenitic stainless steel irradiated at 450 °C with 10 MeV Fe5+ ions up to about 100 dpa. A cluster dynamics model is parametrized on experimental results obtained by transmission electron microscopy (TEM) in a region where injected interstitials can be safely neglected. It is then used to model the damage profile and study the impact of self-ion injection. Results are compared to TEM observations on cross-sections of specimens. It is shown that injected interstitials have a significant effect on cavity density and mean size, even in the sink-dominated regime. To quantitatively match the experimental data in the self-ions injected area, a variation of some parameters is necessary. We propose that the fraction of freely migrating species may vary as a function of depth. Finally, we show that simple rate theory considerations do not seem to be valid for these experimental conditions.
An integrated CFD/experimental analysis of aerodynamic forces and moments
NASA Technical Reports Server (NTRS)
Melton, John E.; Robertson, David D.; Moyer, Seth A.
1989-01-01
Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, Buvaneswari; Finlayson, Elizabeth U.; Sohn, MichaelD.
We compare computational fluid dynamics (CFD) predictions using a steady-state Reynolds Averaged Navier-Stokes (RANS) model with experimental data on airflow and pollutant dispersion under mixed-convection conditions in a 7 x 9 x 11m high experimental facility. The Rayleigh number, based on height, was O(10{sup 11}) and the atrium was mechanically ventilated. We released tracer gas in the atrium and measured the spatial distribution of concentrations; we then modeled the experiment using four different levels of modeling detail. The four computational models differ in the choice of temperature boundary conditions and the choice of turbulence model. Predictions from a low-Reynolds-number k-{var_epsilon}more » model with detailed boundary conditions agreed well with the data using three different model-measurement comparison metrics. Results from the same model with a single temperature prescribed for each wall also agreed well with the data. Predictions of a standard k-{var_epsilon} model were about the same as those of an isothermal model; neither performed well. Implications of the results for practical applications are discussed.« less
A comparison of turbulence models in computing multi-element airfoil flows
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Menter, Florian; Durbin, Paul A.; Mansour, Nagi N.
1994-01-01
Four different turbulence models are used to compute the flow over a three-element airfoil configuration. These models are the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, a two-equation k-omega model, and a new one-equation Durbin-Mansour model. The flow is computed using the INS2D two-dimensional incompressible Navier-Stokes solver. An overset Chimera grid approach is utilized. Grid resolution tests are presented, and manual solution-adaptation of the grid was performed. The performance of each of the models is evaluated for test cases involving different angles-of-attack, Reynolds numbers, and flap riggings. The resulting surface pressure coefficients, skin friction, velocity profiles, and lift, drag, and moment coefficients are compared with experimental data. The models produce very similar results in most cases. Excellent agreement between computational and experimental surface pressures was observed, but only moderately good agreement was seen in the velocity profile data. In general, the difference between the predictions of the different models was less than the difference between the computational and experimental data.
Scheiblauer, Johannes; Scheiner, Stefan; Joksch, Martin; Kavsek, Barbara
2018-09-14
A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison of the model-predicted biomass concentrations and RQ developments with the corresponding experimentally recorded values shows a remarkably good agreement for both batch and fed-batch processes, confirming the adequacy of the model. Furthermore, sensitivity studies were performed, in order to identify model parameters whose variations have significant effects on the model predictions: our model responds with significant sensitivity to the variations of only six parameters. These studies provide a valuable basis for model reduction, as also demonstrated in this paper. Finally, optimization-based parametric studies demonstrate how our model can be utilized for improving the efficiency of Saccharomyces cerevisiae fermentations. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Butler, Samuel D.; Marciniak, Michael A.
2014-09-01
Since the development of the Torrance-Sparrow bidirectional re ectance distribution function (BRDF) model in 1967, several BRDF models have been created. Previous attempts to categorize BRDF models have relied upon somewhat vague descriptors, such as empirical, semi-empirical, and experimental. Our approach is to instead categorize BRDF models based on functional form: microfacet normal distribution, geometric attenua- tion, directional-volumetric and Fresnel terms, and cross section conversion factor. Several popular microfacet models are compared to a standardized notation for a microfacet BRDF model. A library of microfacet model components is developed, allowing for creation of unique microfacet models driven by experimentally measured BRDFs.
Modeling vibration response and damping of cables and cabled structures
NASA Astrophysics Data System (ADS)
Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.
2015-02-01
In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.
Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.
2016-07-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
Frost formation on an airfoil: A mathematical model 1
NASA Technical Reports Server (NTRS)
Dietenberger, M.; Kumar, P.; Luers, J.
1979-01-01
A computer model to predict the frost formation process on a flat plate was developed for application to most environmental conditions under which frost occurs. The model was analytically based on a generalized frost thermal conductivity expression, on frost density and thickness rate equations, and on modified heat and mass transfer coefficients designed to fit the available experimental data. The broad experimental ranges reflected by the extremes in ambient humidities, wall temperatures, and convective flow properties in the various publications which were examined served to severely test the flexibility of the model. An efficient numerical integration scheme was developed to solve for the frost surface temperature, density, and thickness under the changing environmental conditions. The comparison of results with experimental data was very encouraging.
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
2013-01-01
Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research. PMID:24274743
Robust Bayesian Experimental Design for Conceptual Model Discrimination
NASA Astrophysics Data System (ADS)
Pham, H. V.; Tsai, F. T. C.
2015-12-01
A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.
Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin
2017-01-02
In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less
Yoschenko, V I; Kashparov, V A; Levchuk, S E; Glukhovskiy, A S; Khomutinin, Yu V; Protsak, V P; Lundin, S M; Tschiersch, J
2006-01-01
To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per thousand from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of (137)Cs and (90)Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories.
NASA Astrophysics Data System (ADS)
Cara, Javier
2016-05-01
Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.
NASA Astrophysics Data System (ADS)
Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.
2016-09-01
The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.
Artificial Neural Network Approach in Laboratory Test Reporting: Learning Algorithms.
Demirci, Ferhat; Akan, Pinar; Kume, Tuncay; Sisman, Ali Riza; Erbayraktar, Zubeyde; Sevinc, Suleyman
2016-08-01
In the field of laboratory medicine, minimizing errors and establishing standardization is only possible by predefined processes. The aim of this study was to build an experimental decision algorithm model open to improvement that would efficiently and rapidly evaluate the results of biochemical tests with critical values by evaluating multiple factors concurrently. The experimental model was built by Weka software (Weka, Waikato, New Zealand) based on the artificial neural network method. Data were received from Dokuz Eylül University Central Laboratory. "Training sets" were developed for our experimental model to teach the evaluation criteria. After training the system, "test sets" developed for different conditions were used to statistically assess the validity of the model. After developing the decision algorithm with three iterations of training, no result was verified that was refused by the laboratory specialist. The sensitivity of the model was 91% and specificity was 100%. The estimated κ score was 0.950. This is the first study based on an artificial neural network to build an experimental assessment and decision algorithm model. By integrating our trained algorithm model into a laboratory information system, it may be possible to reduce employees' workload without compromising patient safety. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fast flexible modeling of RNA structure using internal coordinates.
Flores, Samuel Coulbourn; Sherman, Michael A; Bruns, Christopher M; Eastman, Peter; Altman, Russ Biagio
2011-01-01
Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.
[A new method of fabricating photoelastic model by rapid prototyping].
Fan, Li; Huang, Qing-feng; Zhang, Fu-qiang; Xia, Yin-pei
2011-10-01
To explore a novel method of fabricating the photoelastic model using rapid prototyping technique. A mandible model was made by rapid prototyping with computerized three-dimensional reconstruction, then the photoelastic model with teeth was fabricated by traditional impression duplicating and mould casting. The photoelastic model of mandible with teeth, which was fabricated indirectly by rapid prototyping, was very similar to the prototype in geometry and physical parameters. The model was of high optical sensibility and met the experimental requirements. Photoelastic model of mandible with teeth indirectly fabricated by rapid prototyping meets the photoelastic experimental requirements well.
Experimentally validated modification to Cook-Torrance BRDF model for improved accuracy
NASA Astrophysics Data System (ADS)
Butler, Samuel D.; Ethridge, James A.; Nauyoks, Stephen E.; Marciniak, Michael A.
2017-09-01
The BRDF describes optical scatter off realistic surfaces. The microfacet BRDF model assumes geometric optics but is computationally simple compared to wave optics models. In this work, MERL BRDF data is fitted to the original Cook-Torrance microfacet model, and a modified Cook-Torrance model using the polarization factor in place of the mathematically problematic cross section conversion and geometric attenuation terms. The results provide experimental evidence that this modified Cook-Torrance model leads to improved fits, particularly for large incident and scattered angles. These results are expected to lead to more accurate BRDF modeling for remote sensing.
Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio
2013-08-01
The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.
NASA Astrophysics Data System (ADS)
Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina
2017-01-01
This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.
An experimental design for total container impact response modeling at extreme temperatures
NASA Technical Reports Server (NTRS)
Kobler, V. P.; Wyskida, R. M.; Johannes, J. D.
1979-01-01
An experimental design (a drop test) was developed to test the effects of confinement upon cushions. The drop test produced consistent corner void cushion data from which mathematical models were developed. A mathematical relationship between temperature and drop height was found.
Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish
Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...
Leader Positivity and Follower Creativity: An Experimental Analysis
ERIC Educational Resources Information Center
Avey, James B.; Richmond, F. Lynn; Nixon, Don R.
2012-01-01
Using an experimental research design, 191 working adults were randomly assigned to two experimental conditions in order to test a theoretical model linking leader and follower positive psychological capital (PsyCap). Multiple methods were used to gather information from the participants. We found when leader PsyCap was manipulated experimentally,…
NASA Astrophysics Data System (ADS)
Thorsson, Solver I.
Foreign object impact on composite materials continues to be an active field due to its importance in the design of load bearing composite aerostructures. The problem has been studied by many through the decades. Extensive experimental studies have been performed to characterize the impact damage and failure mechanisms. Leaders in aerospace industry are pushing for reliable, robust and efficient computational methods for predicting impact response of composite structures. Experimental and numerical investigations on the impact response of fiber reinforced polymer matrix composite (FRPC) laminates are presented. A detailed face-on and edge-on impact experimental study is presented. A novel method for conducting coupon-level edge-on impact experiments is introduced. The research is focused on impact energy levels that are in the vicinity of the barely visible impact damage (BVID) limit of the material system. A detailed post-impact damage study is presented where non-destructive inspection (NDI) methods such as ultrasound scanning and computed tomography (CT) are used. Detailed fractography studies are presented for further investigation of the through-the-thickness damage due to the impact event. Following the impact study, specimens are subjected to compression after impact (CAI) to establish the effect of BVID on the compressive strength after impact (CSAI). A modified combined loading compression (CLC) test method is proposed for compression testing following an edge-on impact. Experimental work on the rate sensitivity of the mode I and mode II inter-laminar fracture toughness is also investigated. An improved wedge-insert fracture (WIF) method for conducting mode I inter-laminar fracture at elevated loading rates is introduced. Based on the experimental results, a computational modeling approach for capturing face-on impact and CAI is developed. The model is then extended to edge-on impact and CAI. Enhanced Schapery Theory (EST) is utilized for modeling the full field damage and failure present in a unidirectional (UD) lamina within a laminate. Schapery Theory (ST) is a thermodynamically based work potential material model which captures the pre-peak softening due to matrix micro-cracking such as hackling, micro fissures, etc. The Crack Band (CB) method is utilized to capture macroscopic matrix and fiber failure modes such as ply splitting and fiber rupture. Discrete Cohesive Zone Method (DCZM) elements are implemented for capturing inter-laminar delaminations, using discrete nodal traction-separation governed interactions. The model is verified against the impact experimental results and the associated CAI procedures. The model results are in good agreement with experimental findings. The model proved capable of predicting the representative experimental failure modes.
NASA Astrophysics Data System (ADS)
Shahid, Abdullah Bin; Mashud, Mohammad
2017-06-01
This paper summarizes the experimental campaign and numerical analysis performed aimed to analyze the potential benefit available employing a trapping vortex cell system on a high thickness symmetric aero-foil without steady suction or injection mass flow. In this work, the behavior of a two dimensional model equipped with a span wise adjusted circular cavity has been researched. Pressure distribution on the model surface and inside and the complete flow field round the model have been measured. Experimental tests have been performed varying the wind tunnel speed and also the angle of attack. For numerical analysis the two dimensional model of the airfoil and the mesh is formed through ANSYS Meshing that is run in Fluent for numerical iterate solution. In the paper the performed test campaign, the airfoil design, the adopted experimental set-up, the numerical analysis, the data post process and the results description are reported, compared a discussed.
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
NASA Astrophysics Data System (ADS)
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.
Experimental Models to Study the Role of Microbes in Host-Parasite Interactions.
Hahn, Megan A; Dheilly, Nolwenn M
2016-01-01
Until recently, parasitic infections have been primarily studied as interactions between the parasite and the host, leaving out crucial players: microbes. The recent realization that microbes play key roles in the biology of all living organisms is not only challenging our understanding of host-parasite evolution, but it also provides new clues to develop new therapies and remediation strategies. In this paper we provide a review of promising and advanced experimental organismal systems to examine the dynamic of host-parasite-microbe interactions. We address the benefits of developing new experimental models appropriate to this new research area and identify systems that offer the best promises considering the nature of the interactions among hosts, parasites, and microbes. Based on these systems, we identify key criteria for selecting experimental models to elucidate the fundamental principles of these complex webs of interactions. It appears that no model is ideal and that complementary studies should be performed on different systems in order to understand the driving roles of microbes in host and parasite evolution.
Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi
2017-04-01
The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.
Validation of the thermal challenge problem using Bayesian Belief Networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, John; Swiler, Laura Painton
The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context ofmore » the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.« less
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering. PMID:28071731
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river
Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.
2010-01-01
Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks. ?? Published 2009.
A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
Smallbone, Kieran; Messiha, Hanan L.; Carroll, Kathleen M.; Winder, Catherine L.; Malys, Naglis; Dunn, Warwick B.; Murabito, Ettore; Swainston, Neil; Dada, Joseph O.; Khan, Farid; Pir, Pınar; Simeonidis, Evangelos; Spasić, Irena; Wishart, Jill; Weichart, Dieter; Hayes, Neil W.; Jameson, Daniel; Broomhead, David S.; Oliver, Stephen G.; Gaskell, Simon J.; McCarthy, John E.G.; Paton, Norman W.; Westerhoff, Hans V.; Kell, Douglas B.; Mendes, Pedro
2013-01-01
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought. PMID:23831062
Modal simulation of gearbox vibration with experimental correlation
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.
1992-01-01
A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.
NASA Astrophysics Data System (ADS)
Iqbal, S.; Benim, A. C.; Fischer, S.; Joos, F.; Kluβ, D.; Wiedermann, A.
2016-10-01
Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally. In the investigation, an emphasis is placed upon the external flue gas recirculation, which is a promising technology for increasing the efficiency of the carbon capture and storage process, which, however, can change the combustion behaviour significantly. A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas. Flames are also investigated numerically using the open source CFD software OpenFOAM. In the numerical simulations, a laminar flamelet model based on mixture fraction and reaction progress variable is adopted. As turbulence model, the SST model is used within a URANS concept. Computational results are compared with the experimental data, where a fair agreement is observed.
Research the Gait Characteristics of Human Walking Based on a Robot Model and Experiment
NASA Astrophysics Data System (ADS)
He, H. J.; Zhang, D. N.; Yin, Z. W.; Shi, J. H.
2017-02-01
In order to research the gait characteristics of human walking in different walking ways, a robot model with a single degree of freedom is put up in this paper. The system control models of the robot are established through Matlab/Simulink toolbox. The gait characteristics of straight, uphill, turning, up the stairs, down the stairs up and down areanalyzed by the system control models. To verify the correctness of the theoretical analysis, an experiment was carried out. The comparison between theoretical results and experimental results shows that theoretical results are better agreement with the experimental ones. Analyze the reasons leading to amplitude error and phase error and give the improved methods. The robot model and experimental ways can provide foundation to further research the various gait characteristics of the exoskeleton robot.
NASA Astrophysics Data System (ADS)
Hayati, M.; Rashidi, A. M.; Rezaei, A.
2012-10-01
In this paper, the applicability of ANFIS as an accurate model for the prediction of the mass gain during high temperature oxidation using experimental data obtained for aluminized nanostructured (NS) nickel is presented. For developing the model, exposure time and temperature are taken as input and the mass gain as output. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the network. We have compared the proposed ANFIS model with experimental data. The predicted data are found to be in good agreement with the experimental data with mean relative error less than 1.1%. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling the mass gain for NS materials.
Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A
2017-01-01
Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.
Comparison of stochastic lung deposition fractions with experimental data.
Majid, Hussain; Hofmann, Werner; Winkler-Heil, Renate
2012-04-01
Deposition fractions of inhaled particles predicted by different computational models vary with respect to physical and biological factors and mathematical modeling techniques. These models must be validated by comparison with available experimental data. Experimental data supplied by different deposition studies with surrogate airway models or lung casts were used in this study to evaluate the stochastic deposition model Inhalation, Deposition and Exhalation of Aerosols in the Lung at the airway generation level. Furthermore, different analytical equations derived for the three major deposition mechanisms, diffusion, impaction, and sedimentation, were applied to different cast or airway models to quantify their effect on calculated particle deposition fractions. The experimental results for ultrafine particles (0.00175 and 0.01) were found to be in close agreement with the stochastic model predictions; however, for coarse particles (3 and 8 μm), experimental deposition fractions became higher with increasing flow rate. An overall fair agreement among the calculated deposition fractions for the different cast geometries was found. However, alternative deposition equations resulted in up to 300% variation in predicted deposition fractions, although all equations predicted the same trends as functions of particle diameter and breathing conditions. From this comparative study, it can be concluded that structural differences in lung morphologies among different individuals are responsible for the apparent variability in particle deposition in each generation. The use of different deposition equations yields varying deposition results caused primarily by (i) different lung morphometries employed in their derivation and the choice of the central bifurcation zone geometry, (ii) the assumption of specific flow profiles, and (iii) different methods used in the derivation of these equations.
Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che
2008-08-01
Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (<2 mg l(-1)), the models with or without self-inhibition of non-growth substrate both simulated the experimental data well. However, at higher TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.