Science.gov

Sample records for pnictide superconductor ba1-xkxfe2as2

  1. Artificially engineered superlattices of pnictide superconductors.

    PubMed

    Lee, S; Tarantini, C; Gao, P; Jiang, J; Weiss, J D; Kametani, F; Folkman, C M; Zhang, Y; Pan, X Q; Hellstrom, E E; Larbalestier, D C; Eom, C B

    2013-05-01

    Significant progress has been achieved in fabricating high-quality bulk and thin-film iron-based superconductors. In particular, artificial layered pnictide superlattices offer the possibility of tailoring the superconducting properties and understanding the mechanism of the superconductivity itself. For high-field applications, large critical current densities (J(c)) and irreversibility fields (H(irr)) are indispensable along all crystal directions. On the other hand, the development of superconducting devices such as tunnel junctions requires multilayered heterostructures. Here we show that artificially engineered undoped Ba-122/Co-doped Ba-122 compositionally modulated superlattices produce ab-aligned nanoparticle arrays. These layer and self-assemble along c-axis-aligned defects, and combine to produce very large J(c) and H(irr) enhancements over a wide angular range. We also demonstrate a structurally modulated SrTiO3(STO)/Co-doped Ba-122 superlattice with sharp interfaces. Success in superlattice fabrication involving pnictides will aid the progress of heterostructured systems exhibiting new interfacial phenomena and device applications.

  2. Advantageous grain boundaries in iron pnictide superconductors

    PubMed Central

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  3. Materials and Physics in Pnictide Superconductors

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu

    2009-03-01

    Superconductivity in the pnictides has shown itself to be very interesting and attractive. Some experimental results have revealed that the superconducting mechanism could be unconventional. In this talk I will survey our recent progress of both material synthesizing and physical properties of this rich family. We have made several major contributions to the synthesizing of new pnictide superconductors. (1) Fabrication of the hole doped RE1-xSrxFeAsO samples (RE=La and Pr); (2) Fabrication of a series of new parent compounds DvFeAsF (Dv=divalent metals: Sr, Ca, Eu etc.) and many new superconductors with Tc beyond 50 K by doping electrons into the system; (3) Invention of the new material (Sr3Sc2O5)Fe2As2 with rather large spacing distance between the FeAs planes. We have successfully grown the NdFeAsO1-xFx and Ba1-xKxFe2As2 single crystals. It is found that the anomalous electron scattering in the normal state cannot be simply attributed to the multiband effect. The influence given by the magnetic correlation may play an important role. Specific heat, lower critical field and point contact tunneling all indicate the unconventional superconductivity and multigap features, while the paring symmetry of the superconducting gap may be a non-trivial issue. In the 1111 phase, the superfluid density is rather low and contains probably a nodal feature. While in the 122 phase, both the superfluid density and the quasiparticle density of states is about 5-10 times higher than that in the 1111 phase. An s-wave component was found in the 122 phase. I will also report the measurements on anisotropy, critical current density, critical fields and vortex phase diagram. Small anisotropy, high upper critical field and fish-tail effect (in 122) were observed. All these suggest very good potential applications. In collaboration with Gang Mu, Zhaosheng Wang, Huiqian Luo, Huan Yang, Xiyu Zhu, Ying Jia, Yonglei Wang, Fei Han, Bing Zeng, Bing Shen, Cong Ren, Lei Shan.

  4. Low resistivity contact to iron-pnictide superconductors

    DOEpatents

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  5. Resistivity scaling 1111 iron-pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Arushanov, E.; Levcenko, S.; Fuchs, G.; Drechsler, S.-L.

    2011-09-01

    We show that the zero field normal-state resistivity above T c for various levels of electron doping-both for LaO 1-xF xFeAs (La-1111) and underdoped SmO 1-xF xFeAs (Sm-1111) members of the 1111-iron-pnictide superconductor family-can be scaled in a broad temperature range from 20 to 300 K onto a single curve for underdoped La-1111 ( x = 0.05-0.075), for optimally and overdoped La-1111 ( x = 0.1-0.2) and for underdoped Sm-1111 ( x = 0.06-0.1). It is found that the ρ( T) dependences can be reproduced by the formulas ρ(T)=ρ0+cTexp-2Δ/T and ρ(T)=ρ0+(c/T)exp-2Δ/T in the case of LaO 1-xF xFeAs and SmO 1-xF xFeAs, respectively. The scaling was performed using the energy scale 2 Δ, c and the residual resistivity ρ0 as scaling parameters as well as applying a recently proposed model-independent scaling method [H.G. Luo, Y.H. Su, T. Xiang, Phys. Rev. B 77 (2008) 014529]. The scaling parameters have been calculated and the compositional variation of 2 Δ has been determined. The observed scaling behavior for ρ( T) is interpreted as an indication of a common mechanism which dominates the scattering of the charge carriers in underdoped La-1111, in optimally and overdoped La-1111 and in underdoped Sm-1111.

  6. Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors

    PubMed Central

    Ozawa, Tadashi C; Kauzlarich, Susan M

    2008-01-01

    Layered d-metal pnictide oxides are a unique class of compounds which consist of characteristic d-metal pnictide layers and metal oxide layers. More than 100 of these layered compounds, including the recently discovered Fe-based superconducting pnictide oxides, can be classified into nine structure types. These structure types and the chemical and physical properties of the characteristic d-metal pnictide layers and metal oxide layers of the layered d-metal pnictide oxides are reviewed and discussed. Furthermore, possible approaches to design new superconductors based on these layered d-metal pnictide oxides are proposed. PMID:27877997

  7. Iron Pnictide Superconductors: discovery and advances

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo

    2009-03-01

    Superconducting transition in a layered ZrCuSiAs-type crystal was first reported for LaFePO in 2006 [1] and subsequently, a similar Tc was found for LaNiPO with the same crystal structure in 2007. However, Tc of these compounds reminded low (˜4K). On February 23, 2008, our paper reporting a layered compound in LaFeAsO1-xFx(x=0.1) exhibiting a superconducting critical temperature Tc (mid-point) = 26K was published [3]. In this presentation I talk the background of this discovery and the subsequent advance in materials. The following points have been clarified to date; (1) Iron-based superconductors reported are 4-types crystal structures, the 1111[3], 122[4], 111[5], and 11 [6] type. All the high Tc iron-based superconductors contain a Fe square lattice and the Fe 3d orbitals dominate the Fermi-level. (2) The occurrence of a crystallographic transition accompanying anti-ferromagnetic to paramagnetic state in the parent compound is a requisite for a high Tc. (3) There exist a vast number of materials containing the Fe square lattice. (4). A partial substitution of Fe with other transition metal is possible without serious reduction of Tc. (4) A new insulating layer AEF (AE=Ca, Sr)was found to be effective in the 1111 phase [7]. (5) High pressure synthesis was effective to obtain the 1111 phases with higher Tc, (6) Epitaxial thin films exhibiting a Tc almost the same as that in the bulk were fabricated for CaFeAsO:Co[8]. Epitaxial thin films of LaFeAsO was recently reported as well [9]. [4pt] [1] Y.Kamihara et al. JACS, 28 (2006)10012, [2] T.Watanabe et al.Inorg.Chem,46(2007) 7719, [3 ]Y.Kamihara et al. J.Am.Chem.Soc.130(2008)3296., [4]M.Rotter et al. PRL, 101(2008) 107006, [5] J.H.Tapp et al. PRB,78(2008)060505 [6] F.C.Hsu et al. PNAS,105(2008)14262., [7] S.Matsuishi et al. JACS 130(2008)14428 [8] H.Hiramatsu et al. Appl.Phys.Express 1(2008)101702, [9] H.Hiramatsu et al. APL. 93(2008) 162504.

  8. Numerical modelling of iron-pnictide bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Yamamoto, Akiyasu; Fujishiro, Hiroyuki; Weiss, Jeremy D.; Hellstrom, Eric E.

    2017-10-01

    Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H c2) in excess of 90 T and intrinsic critical current densities above 1 MA cm‑2 (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba0.6K0.4Fe2As2 (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J c(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.

  9. Competing magnetic fluctuations in iron pnictide superconductors: Role of ferromagnetic spin correlations revealed by NMR

    DOE PAGES

    Wiecki, P.; Roy, B.; Johnston, D. C.; ...

    2015-09-22

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting domemore » in these and other iron-pnictide families.« less

  10. Competing magnetic fluctuations in iron pnictide superconductors: Role of ferromagnetic spin correlations revealed by NMR

    SciTech Connect

    Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2015-09-22

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting dome in these and other iron-pnictide families.

  11. Possible s±-wave pairing evidenced by midgap surface bound states in Fe-pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Chang, J. Y.; Wu, W. C.; Mou, Chung-Yu

    2013-09-01

    A phenomenological theory of tunneling spectroscopy for Fe-pnictide superconductors is developed by taking into consideration asymmetric interface scattering between particle and holes. It is shown that, consistent with anti-phase s±-wave pairing, appreciable zero-energy surface bound states exist on the [100] surface of Fe-pnictide superconductors. However, in contrast to the [110] bound states in d-wave cuprate superconductors, these bound states arise as a result of non-conservation of momentum perpendicular to the interface for tunneling electrons and the s± pairing, and hence they can only exist in a small window (∼ ± 6∘) in the orientation of edges near the [100] direction. Our results explain why a zero-bias conductance peak is often observed in tunneling spectroscopy and why, when it disappears, two coherent peaks show up. These results provide unambiguous signals to test for possible s±-wave pairing in Fe-pnictide superconductors.

  12. Gap structure of iron-pnictide superconductors from low-temperature heat transport

    NASA Astrophysics Data System (ADS)

    Reid, Jean-Philippe

    2010-03-01

    The structure of the superconducting gap provides important clues on the symmetry of the order parameter and the pairing mechanism. Here I describe how measurements of the thermal conductivity at very low temperature can be used to determine whether nodes are present in the gap function of a particular superconductor, and how the application of a magnetic field probes the low-energy quasiparticle excitations. Measurements on hole-doped and electron-doped pnictide superconductors, Ba1-xKxFe2As2 [1] and Ba(Fe1-xCox)2As2 [2], reveal a negligible residual linear term at T->0, showing that the gap of these two superconductors has no nodes, at least in the basal plane. In both pnictides, a small field is found to be very effective in exciting quasiparticles, showing that the gap must be very small in some direction on the Fermi surface. In Ba(Fe1-xCox)2As2, the evolution with doping x is as follows: at low x, the gap is large everywhere on the Fermi surface, and beyond optimal doping the minimum gap becomes progressively smaller. I discuss what these features tell us about the nature of the superconducting state in pnictide superconductors. * Measurements of heat transport performed in collaboration with X.-G. Luo, H. Shakeripour, M.A. Tanatar, N. Doiron-Leyraud and L. Taillefer. [1] X.-G. Luo et al., Phys. Rev. B 80, 140503 (2009). [2] M.A. Tanatar et al., arXiv:0907.1276.

  13. Controllable 0 − π transition in iron pnictide superconductor junctions with a spacer of strong ferromagnet

    SciTech Connect

    Liu, S. Y.; Tao, Y. C. Ji, T. T.; Di, Y. S.; Hu, J. G.

    2014-03-17

    We investigate the control of 0−π transition in Josephson junctions consisting of a highly spin-polarized ferromagnet coupled to two iron pnictide superconductors (SCs). It is shown that, a 0−π transition as a function of interband coupling strength is always exhibited, which can be experimentally used to discriminate the s{sub ±}-wave pairing symmetry in the iron pnictide SCs from the s{sub ++}-wave one in MgB{sub 2}. By tuning the doping level in the s{sub ±}-wave SCs, one can vary the interband coupling strength so as to obtain the controllable 0−π transition. This device may be realized with current technologies and has practical use in Cooper pair spintronics and quantum information.

  14. A Mott insulator continuously connected to iron pnictide superconductors

    PubMed Central

    Song, Yu; Yamani, Zahra; Cao, Chongde; Li, Yu; Zhang, Chenglin; Chen, Justin S.; Huang, Qingzhen; Wu, Hui; Tao, Jing; Zhu, Yimei; Tian, Wei; Chi, Songxue; Cao, Huibo; Huang, Yao-Bo; Dantz, Marcus; Schmitt, Thorsten; Yu, Rong; Nevidomskyy, Andriy H.; Morosan, Emilia; Si, Qimiao; Dai, Pengcheng

    2016-01-01

    Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1−xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ∼x=0.05. Our discovery of a Mott-insulating state in NaFe1−xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity. PMID:27991514

  15. A Mott insulator continuously connected to iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Song, Yu; Yamani, Zahra; Cao, Chongde; Li, Yu; Zhang, Chenglin; Chen, Justin S.; Huang, Qingzhen; Wu, Hui; Tao, Jing; Zhu, Yimei; Tian, Wei; Chi, Songxue; Cao, Huibo; Huang, Yao-Bo; Dantz, Marcus; Schmitt, Thorsten; Yu, Rong; Nevidomskyy, Andriy H.; Morosan, Emilia; Si, Qimiao; Dai, Pengcheng

    2016-12-01

    Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1-xCuxAs near x~0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ~x=0.05. Our discovery of a Mott-insulating state in NaFe1-xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity.

  16. A Mott insulator continuously connected to iron pnictide superconductors.

    PubMed

    Song, Yu; Yamani, Zahra; Cao, Chongde; Li, Yu; Zhang, Chenglin; Chen, Justin S; Huang, Qingzhen; Wu, Hui; Tao, Jing; Zhu, Yimei; Tian, Wei; Chi, Songxue; Cao, Huibo; Huang, Yao-Bo; Dantz, Marcus; Schmitt, Thorsten; Yu, Rong; Nevidomskyy, Andriy H; Morosan, Emilia; Si, Qimiao; Dai, Pengcheng

    2016-12-19

    Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1-xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ∼x=0.05. Our discovery of a Mott-insulating state in NaFe1-xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity.

  17. Theory of thermal conductivity in a multi-band superconductor : Application to pnictides

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Vorontsov, A. B.; Hirschfeld, P. J.; Vekhter, I.

    2010-03-01

    We calculate low temperature thermal conductivity within a two band model for newly discovered ferro-pnictide superconductors. We consider three different cases, sign changing s-wave state, highly anisotropic s-wave state and a state with order parameter nodes on one band. To include the effect of disorder, we have performed fully self-consistent T-matrix approximation including both intraband and interband impurity scatterings. We also study the behavior of the low temperature thermal conductivity under applied magnetic field using a recently developed variant of the Brandt-Pesch-Tewordt approximation, and compare our results with latest experimental data.

  18. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Moll, Philip J. W.; Balicas, Luis; Geshkenbein, Vadim; Blatter, Gianni; Karpinski, Janusz; Zhigadlo, Nikolai D.; Batlogg, Bertram

    2013-02-01

    Iron pnictides are layered high Tc superconductors with moderate material anisotropy and thus Abrikosov vortices are expected in the mixed state. Yet, we have discovered a distinct change in the nature of the vortices from Abrikosov-like to Josephson-like in the pnictide superconductor SmFeAs(O,F) with Tc~48-50 K on cooling below a temperature T*~41-42 K, despite its moderate electronic anisotropy γ~4-6. This transition is hallmarked by a sharp drop in the critical current and accordingly a jump in the flux-flow voltage in a magnetic field precisely aligned along the FeAs layers, indicative of highly mobile vortices. T* coincides well with the temperature where the coherence length ξc perpendicular to the layers matches half of the FeAs-layer spacing. For fields slightly out-of-plane (> 0.1°- 0.15°) the vortices are completely immobilized as well-pinned Abrikosov segments are introduced when the vortex crosses the FeAs layers. We interpret these findings as a transition from well-pinned, slow moving Abrikosov vortices at high temperatures to weakly pinned, fast flowing Josephson vortices at low temperatures. This vortex dynamics could become technologically relevant as superconducting applications will always operate deep in the Josephson regime.

  19. Proximity of iron pnictide superconductors to a quantum tricritical point

    PubMed Central

    Giovannetti, Gianluca; Ortix, Carmine; Marsman, Martijn; Capone, Massimo; van den Brink, Jeroen; Lorenzana, José

    2011-01-01

    In several materials, unconventional superconductivity appears nearby a quantum phase transition where long-range magnetic order vanishes as a function of a control parameter like charge doping, pressure or magnetic field. The nature of the quantum phase transition is of key relevance, because continuous transitions are expected to favour superconductivity, due to strong fluctuations. Discontinuous transitions, on the other hand, are not expected to have a similar role. Here we determine the nature of the magnetic quantum phase transition, which occurs as a function of doping, in the iron-based superconductor LaFeAsO1–xFx. We use constrained density functional calculations that provide ab initio coefficients for a Landau order parameter analysis. The outcome is intriguing, as this material turns out to be remarkably close to a quantum tricritical point, where the transition changes from continuous to discontinuous, and several susceptibilities diverge simultaneously. We discuss the consequences for superconductivity and the phase diagram. PMID:21772269

  20. Fermi Surface of the Pnictide Superconductor LaRu2 P 2 studied by quantum oscillations

    NASA Astrophysics Data System (ADS)

    Moll, Philip; Balakirev, Fedor; McDonald, Ross; Karpinski, Janusz; Bukowski, Zbigniew; Blaha, Peter; Schwarz, Karlheinz; Batlogg, Bertram

    2011-03-01

    LaRu 2 P2 is a stochiometric pnictide superconductor (Tc ~ 4.1 K) and crystallizes in the ThCr 2 Si 2 structure (the ``122'' pnictide family). We have mapped out its Fermi surface via the deHaas-vanAlphen effect in pulsed magnetic fields up to 60T (LANL/NHMFL). Pronounced oscillations were observed in the magnetic torque measured with a microcantilever setup. Two features are particularly noteworthy: The oscillations can be followed to surprisingly high temperatures beyond 20K, and the main frequency component at θ = 20circ; (θ = 0circ; at HIIc) is at 349T (α -peak), significantly lower than in the related compounds LaFe 2 P2 . A second frequency originating from a larger Fermi surface cross-section at 1921 T (β -peak) is identified. The temperature dependence of the amplitudes is well described by the Lifshitz- Kosevich formalism and gives low effective masses m*/m = 0.80 (α sheet) and 1.09 (β sheet). Therefore, most ``122'' metals appear to have similarly low effective masses.

  1. Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure

    NASA Astrophysics Data System (ADS)

    Xu, Qiunan; Song, Zhida; Nie, Simin; Weng, Hongming; Fang, Zhong; Dai, Xi

    2015-11-01

    By using first-principles calculations, we propose that ZrSiO can be looked at as a three-dimensional (3D) oxide weak topological insulator (TI) and its single layer is a long-sought-after 2D oxide TI with a band gap up to 30 meV. Calculated phonon spectrum of the single layer ZrSiO indicates it is dynamically stable and the experimental achievements in growing oxides with atomic precision ensure that it can be readily synthesized. This will lead to novel devices based on TIs, the so-called "topotronic" devices, operating under room temperature and stable when exposed in the air. Thus a new field of "topotronics" will arise. Another intriguing thing is this oxide 2D TI has the similar crystal structure as the well-known iron-pnictide superconductor LiFeAs. This brings great promise in realizing the combination of superconductor and TI, paving the way to various extraordinary quantum phenomena, such as topological superconductor and Majorana modes. We further find that there are many other isostructural compounds hosting the similar electronic structure and forming a W H M family with W being Zr, Hf, or La, H being group IV or group V element, and M being group VI one.

  2. Model for the magnetic order and pairing channels in Fe pnictide superconductors.

    PubMed

    Daghofer, M; Moreo, A; Riera, J A; Arrigoni, E; Scalapino, D J; Dagotto, E

    2008-12-05

    A two-orbital model for Fe-pnictide superconductors is investigated using computational techniques on two-dimensional square clusters. The hopping amplitudes are derived from orbital overlap integrals, or by band structure fits, and the spin frustrating effect of the plaquette-diagonal Fe-Fe hopping is remarked. A spin striped state is stable in a broad range of couplings in the undoped regime, in agreement with neutron scattering. Adding two electrons to the undoped ground state of a small cluster, the dominant pairing operators are found. Depending on the parameters, two pairing operators were identified: they involve inter-xz-yz orbital combinations forming spin singlets or triplets, transforming according to the B2g and A2g representations of the D4h group, respectively.

  3. Model for the Magnetic Order and Pairing Channels in Fe Pnictide Superconductors

    SciTech Connect

    Daghofer, Maria; Moreo, Adriana; Riera, J. A.; Arrigoni, E.; Scalapino, D. J.; Dagotto, Elbio R

    2008-01-01

    A two-orbital model for Fe-pnictide superconductors is investigated using computational techniques on two-dimensional square clusters. The hopping amplitudes are derived from orbital overlap integrals, or by band structure fits, and the spin frustrating effect of the plaquette-diagonal Fe-Fe hopping is remarked. A spin striped state is stable in a broad range of couplings in the undoped regime, in agreement with neutron scattering. Adding two electrons to the undoped ground state of a small cluster, the dominant pairing operators are found. Depending on the parameters, two pairing operators were identified: they involve inter-xz-yz orbital combinations forming spin singlets or triplets, transforming according to the B2g and A2g representations of the D4h group, respectively.

  4. Phase diagram and isotopic effect in high-Tc pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Chen, Xianhui

    2010-03-01

    We will talk about the discovery of superconductivity with Tc higher than 40 K in Fe-based superconductors SmFeAsO1-xF. Tc higher than McMillan limit of 39 K definitely proves pnictide superconductors high-Tc superconductivity^1,2. In this talk, we present the transport properties: resistivity, Hall coefficient and transport properties under high magnetic field. These results suggest a quantum phase transition around x=0.14 in SmFeAsO1-xFx system. A electronic phase diagram is proposed, and coexistence of superconductivity and spin-density-wave is observed in Sm-1111 and Ba-122 system. We discuss the effect of isotopic effect on TC and TSDW in SmFeAsO1-xFx and Ba1-xKxFe2As2 systems. Our results show that oxygen isotope effect on TC and TSDW is very little, while the iron isotope exponent is about 0.35. Surprisingly, the iron isotope exchange shows the same effect on SDW transition as on superconductivity. Our results indicate that electron-phonon interaction plays some role in the superconducting mechanism, but simple electron-phonon coupling mechanism seems to be rather unlikely because a strong magnon-phonon coupling is included^3. 1. Chen, X. H. et al. Nature 453, 761-762 (2008). 2. Liu, R. H. et al. Phys. Rev. Lett. 101, 087001 (2008). 3. R. H. Liu et al., Nature 459, 64-67(2009).

  5. Direct probe of the variability of Coulomb correlation in iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Vilmercati, P.; Cheney, C. Parks; Bondino, F.; Magnano, E.; Malvestuto, M.; McGuire, M. A.; Sefat, A. S.; Sales, B. C.; Mandrus, D.; Singh, D. J.; Johannes, M. D.; Mannella, N.

    2012-06-01

    We use core-valence-valence Auger spectra to probe the Coulomb repulsion between holes in the valence band of Fe pnictide superconductors. By comparing the two-hole final-state spectra to density functional theory calculations of the single-particle density of states, we extract a measure of the electron correlations that exist in these systems. Our results show that the Coulomb repulsion is highly screened and can definitively be considered as weak. We also find that there are differences between the 1111 and 122 families and even a small variation as a function of the doping x in Ba(Fe1-xCox)2As2. We discuss how the values of the hole-hole Coulomb repulsion obtained from our study relate to the onsite Coulomb parameter U used in model and first-principles calculations based on dynamical mean field theory and establish an upper bound for its effective value. Our results impose stringent constraints on model-based phase diagrams that vary with the quantity U or U/W by restricting the latter to a rather small range of values.

  6. Two-band model of Raman scattering on iron pnictide Ba(As)2 superconductors

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Lu, Hong-Yan; Wu, W. C.

    2014-06-01

    Based on a two-band model, we theoretically study the electronic Raman scattering spectra in both normal and superconducting states of iron-pnictide Ba()As2 superconductors. In the normal state, due to the match or mismatch of band hybridization and Raman vertex symmetries, overall B2g Raman intensity is found to be much stronger than that of the B1g channel. Besides, in the non-resonant limit, there could exhibit an interband excitation peak at high frequency ω≃7.3t1(6.8t1) in the B1g (B2g) channel with t1 the nearest-neighbor hopping. In the superconducting state, due to the composite effect of Raman vertex, gap symmetry, and Fermi surface topology, both B1g and B2g Raman intensities are dominated by α- (β-) band contribution for the extended s-wave (d-wave) pairing, whereas both bands are equally important for the s±-wave pairing. It is shown that both extended s- and s±-wave pairings can lead to a good fitting for the reported B1g data Muschler et al. (2009) [11], while the d-wave pairing seems not favorable.

  7. Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1-xFx measured by muon spin rotation.

    PubMed

    Drew, A J; Pratt, F L; Lancaster, T; Blundell, S J; Baker, P J; Liu, R H; Wu, G; Chen, X H; Watanabe, I; Malik, V K; Dubroka, A; Kim, K W; Rössle, M; Bernhard, C

    2008-08-29

    Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An estimate of the in-plane penetration depth lambda ab(0)=190(5) nm was obtained, which confirms that the pnictide superconductors obey an Uemura-style relationship between Tc and lambda ab(0);(-2).

  8. Hydrostatic pressure: A very effective approach to significantly enhance critical current density in granular iron pnictide superconductors

    PubMed Central

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S. R.; Shekhar, Chandra; Dou, Shixue; Srivastava, O. N.

    2015-01-01

    Pressure is well known to significantly raise the superconducting transition temperature, Tc, in both iron pnictides and cuprate based superconductors. Little work has been done, however, on how pressure can affect the flux pinning and critical current density in the Fe-based superconductors. Here, we propose to use hydrostatic pressure to significantly enhance flux pinning and Tc in polycrystalline pnictide bulks. We have chosen Sr4V2O6Fe2As2 polycrystalline samples as a case study. We demonstrate that the hydrostatic pressure up to 1.2 GPa can not only significantly increase Tc from 15 K (underdoped) to 22 K, but also significantly enhance the irreversibility field, Hirr, by a factor of 4 at 7 K, as well as the critical current density, Jc, by up to 30 times at both low and high fields. It was found that pressure can induce more point defects, which are mainly responsible for the Jc enhancement. Our findings provide an effective method to significantly enhance Tc, Jc, Hirr, and the upper critical field, Hc2, for other families of Fe-based superconductors in the forms of wires/tapes, films, and single crystal and polycrystalline bulks. PMID:25645351

  9. Fundamental Questions About Superconductivity in the Pnictides (Former title: Electromagnetic and Nanostructural Studies of Rare Earth Copper Oxide Grain Boundaries Grain Boundaries in High Temperature Superconductors)

    DTIC Science & Technology

    2010-06-30

    extensive family of pnictides based on doped As-Fe. This exciting discovery encouraged us to transition our work on grain boundary studies of YBCO to...Colloquium, February 24, 2009 17. David Larbalestier, Superconductors for future high field use: Why not multifilamentary YBCO - or something even...France March 25, 2009. 20. David Larbalestier, “Superconductors for future high field use: Why not multifilamentary YBCO - or something even better

  10. Fully gapped superconductivity in Ni-pnictide superconductors BaNi2As2 and SrNi2P2

    NASA Astrophysics Data System (ADS)

    Kurita, N.; Ronning, F.; Miclea, C. F.; Tokiwa, Y.; Bauer, E. D.; Subedi, A.; Singh, D. J.; Sakai, H.; Thompson, J. D.; Movshovich, R.

    2011-01-01

    We have performed low-temperature specific heat C and thermal conductivity κ measurements on the Ni-pnictide superconductors BaNi2As2 (Tc = 0.7K) and SrNi2P2 (Tc = 1.4K). The temperature dependences C(T) and κ(T) of the two compounds are similar to the results of a number of s-wave superconductors. Furthermore, the concave field responses of the residual κ for BaNi2As2 rules out the presence of nodes on the Fermi surfaces. We postulate that fully gapped superconductivity could be universal for Ni-pnictide superconductors. Specific heat data on Ba0.6La0.4Ni2As2 shows a mild suppression of Tc and Hc2 relative to BaNi2As2.

  11. Quantum fluctuations in iron-pnictide superconductor BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Shu, Lei; Ding, Z. F.; Zhang, J.; Tan, C.; Huang, K.; Liu, L.; Cheung, S.; Uemura, Y. J.; Maclaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Hu, D.; Dai, P. C.

    Muon-spin-relaxation/rotation (μSR) experiments were performed on single crystals of iron-pnictide superconductors BaFe2(As1-xPx)2 (x = 0 . 28 , 0 . 30 , and 0.33). Our preliminary results reveal that the static muon relaxation rate from ZF- μSR measurements is temperature independent through Tc, suggesting that time reversal symmetry is preserved in the superconducting state. Above Tc, the field dependence of muon relaxation rate shows NFL behaviors for optimal composition x = 0 . 3 . A maximum of zero temperature penetration depth at x = 0 . 3 is also observed. This work was supported by Chinese NSF, Grant 1147060, US NSF, Grant DMR-1506677 and DMR-1105380.

  12. Andreev bound States as a phase-sensitive probe of the pairing symmetry of the iron pnictide superconductors.

    PubMed

    Ghaemi, Pouyan; Wang, Fa; Vishwanath, Ashvin

    2009-04-17

    A leading contender for the pairing symmetry in the Fe pnictide high-temperature superconductors is extended s wave s_{+/-}, a nodeless state in which the pairing changes sign between Fermi surfaces. Verifying such a pairing symmetry requires a special phase-sensitive probe that is also momentum selective. We show that the sign structure of s_{+/-} pairing can lead to surface Andreev bound states (ABS) at the sample edge. In the clean limit they only occur when the edge is along the nearest neighbor Fe-Fe bond, but not for a diagonal edge or a surface orthogonal to the c axis. In contrast to d-wave ABS, they are not at zero energy and, in general, do not produce a zero bias tunneling peak. Consequences for tunneling measurements are derived, within a simplified two-band model and also for a more realistic five-band model. In both cases, surface ABS are obtained.

  13. Competing Pairing Symmetries in a Generalized Two-Orbital Model for the Pnictide Superconductors

    SciTech Connect

    Nicholson, Andrew D; Ge, Weihao; Zhang, Xiaotian; Riera, J. A.; Daghofer, M.; Olés, Andrzej M.; Martins, G. B.; Moreo, Adriana; Dagotto, Elbio R

    2011-01-01

    We introduce and study an extended t-U-J two-orbital model for the pnictides that includes Heisenberg terms deduced from the strong coupling expansion. Including these J terms explicitly allows us to enhance the strength of the %;0 - 0;% spin order which favors the presence of tightly bound pairing states even in the small clusters that are here exactly diagonalized. The A1g and B2g pairing symmetries are found to compete in the realistic spin-ordered and metallic regime. The dynamical pairing susceptibility additionally unveils low-lying B1g states, suggesting that small changes in parameters may render any of the three channels stable.

  14. Phase diagram and superconducting gap structure of the iron-pnictide superconductor (Ba,K) Fe 2 As 2

    NASA Astrophysics Data System (ADS)

    Luo, Xigang

    2011-03-01

    Measurements of the Nernst and Seebeck coefficients were used to delineate the T-x phase diagram of the iron-pnictide superconductor Ba 1-x Kx Fe 2 As 2 . The sensitivity of these two coefficients to the reconstruction of the Fermi surface caused by the onset of antiferromagnetic order below a temperature TN allowed us to track TN precisely as a function of concentration x, even when the electrical resistivity, for example, shows no anomaly at the magnetic transition. In the region of concentrations where superconductivity appears out of an antiferromagnetic normal state (T T N) , weinvestigatetheevolutionofthesuperconductinggapstructureofBa 1-x K x Fe 2 As 2 bymeasuringthethermalconductivityintheT = 0 limit . Thisisasensitiveanddirectionalprobeofnodalquasiparticles . Astheconcentrationxisreduced , wefindasuddenchangeinthegapstructurefromafullgapwithoutnodestoagapwithnodes . Weascribethischangetotheonsetofantiferromagnetismbelowacriticaldopingx N insidethesuperconductingphase , whoseeffectismostlikelytoalterboththeFermisurfaceandtheangulardependenceofthegap . WecomparetheseresultswithourearlierstudyonBa (Fe 1-x Co x)2 As 2 [1,2]. This work was performed in collaboration with H. Shakeripour, J. Chang, F. Laliberte, J.-Ph. Reid, N. Doiron-Leyraud, L. Taillefer, M.A. Tanatar, R. Prozorov, H. Q. Luo, Z. S. Wang, H.-H. Wen.

  15. Interplay of iron and rare-earth magnetic order in rare-earth iron pnictide superconductors under magnetic field

    NASA Astrophysics Data System (ADS)

    Lei-Lei, Yang; Da-Yong, Liu; Dong-Meng, Chen; Liang-Jian, Zou

    2016-02-01

    The magnetic properties of iron pnictide superconductors with magnetic rare-earth ions under strong magnetic field are investigated based on the cluster self-consistent field method. Starting from an effective Heisenberg model, we present the evolution of magnetic structures on magnetic field in R/FeAsO (R = Ce, Pr, Nd, Sm, Gd, and Tb) and R/Fe2As2 (R = Eu) compounds. It is found that spin-flop transition occurs in both rare-earth and iron layers under magnetic field, in good agreement with the experimental results. The interplay between rare-earth and iron spins plays a key role in the magnetic-field-driven magnetic phase transition, which suggests that the rare-earth layers can modulate the magnetic behaviors of iron layers. In addition, the factors that affect the critical magnetic field for spin-flop transition are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11104274, 11274310, and 11474287) and the Fundamental Research Funds for the Central Universities, China (Grant No. 27R1310020A).

  16. Model study of coexistence of Jahn-Teller distortion, antiferromagnetism and superconductivity in iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Pradhan, B.; Goi, S. K.; Behera, Srikanta; Parida, P. K.; Mishra, R. N.

    2016-12-01

    We have proposed a theoretical model for the coexistence of superconductivity (SC), antiferromagnetism (AFM) and Jahn-Teller (JT) effect in the mean field approximation for iron based superconductors. The model is solved by using Zubarev's double-time Green's function technique to get their selfconsistent gap equations. Then these gap equations are solved numerically.

  17. Critical Slowing Down of Quadrupole and Hexadecapole Orderings in Iron Pnictide Superconductor

    NASA Astrophysics Data System (ADS)

    Kurihara, Ryosuke; Mitsumoto, Keisuke; Akatsu, Mitsuhiro; Nemoto, Yuichi; Goto, Terutaka; Kobayashi, Yoshiaki; Sato, Masatoshi

    2017-06-01

    Ultrasonic measurements have been carried out to investigate the critical dynamics of structural and superconducting transitions due to degenerate orbital bands in iron pnictide compounds with the formula Ba(Fe1-xCox)2As2. The attenuation coefficient αL[110] of the longitudinal ultrasonic wave for (C11 + C12 + 2C66)/2 for x = 0.036 reveals the critical slowing down of the relaxation time around the structural transition at Ts = 65 K, which is caused by ferro-type ordering of the quadrupole Ox'2 - y'2 coupled to the strain ɛxy. The attenuation coefficient α66 of the transverse ultrasonic wave for C66 for x = 0.071 also exhibits the critical slowing down around the superconducting transition at TSC = 23 K, which is caused by ferro-type ordering of the hexadecapole Hzα(ri,rj) = Ox'y'(ri)Ox'2 - y'2(rj) + Ox'2 - y'2(ri)Ox'y'(rj) of the bound two-electron state coupled to the rotation ωxy. It is proposed that the hexadecapole ordering associated with the superconductivity brings about spontaneous rotation of the macroscopic superconducting state with respect to the host tetragonal lattice.

  18. Intergrain Josephson Currents in Multigap Superconductors: Microscopic Origin of Low Intergrain Critical Current and Its Recovery Potential in Iron-Pnictide Materials

    NASA Astrophysics Data System (ADS)

    Ota, Yukihiro; Machida, Masahiko; Koyama, Tomio

    2009-10-01

    We microscopically examine the intergrain Josephson current in iron-pnictide superconductors in order to solve the puzzle of why the intergrain current is much lower than the intragrain one. The theory predicts that the intergrain Josephson current is significantly reduced by the ±s-wave symmetry when the incoherent tunneling becomes predominant and the density of states and the gap amplitude between two bands are identical. We find in such a situation that the temperature dependence of the intergrain Josephson current shows an anomalously flat curve over a wide temperature range. Finally, we suggest important points for increasing the intergrain current.

  19. Combined transport, magnetization and neutron scattering study of correlated iridates and iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Dhital, Chetan

    The work performed within this thesis is divided into two parts, each focusing primarily on the study of magnetic phase behavior using neutron scattering techniques. In first part, I present transport, magnetization, and neutron scattering studies of materials within the iridium oxide-based Ruddelsden-Popper series [Srn+1IrnO3n+1] compounds Sr 3Ir2O7 (n=2) and Sr2IrO4 (n=1). This includes a comprehensive study of the doped bilayer system Sr 3(Ir1-xRux )2O7. In second part, I present my studies of the effect of uniaxial pressure on magnetic and structural phase behavior of the iron-based high temperature superconductor Ba(Fe1-xCox)2As2. Iridium-based 5d transition metal oxides host rather unusual electronic/magnetic ground states due to strong interplay between electronic correlation, lattice structure and spin-orbit effects. Out of the many oxides containing iridium, the Ruddelsden-Popper series [Srn+1IrnO 3n+1] oxides are some of the most interesting systems to study both from the point of view of physics as well as from potential applications. My work is focused on two members of this series Sr3Ir2O 7 (n=2) and Sr2IrO4 (n=1). In particular, our combined transport, magnetization and neutron scattering studies of Sr 3Ir2O7 (n=2) showed that this system exhibits a complex coupling between charge transport and magnetism. The spin magnetic moments form a G-type antiferromagnetic structure with moments oriented along the c-axis, with an ordered moment of 0.35+/-0.06 muB/Ir. I also performed experiments doping holes in this bilayer Sr3(Ir1-xRu x)2O7 system in order to study the role of electronic correlation in these materials. Our results show that the ruthenium-doped holes remain localized within the Jeff=1/2 Mott insulating background of Sr3Ir2O7, suggestive of 'Mott blocking' and the presence of strong electronic correlation in these materials. Antiferromagnetic order however survives deep into the metallic regime with the same ordering q-vector, suggesting an

  20. Crystal growth and phase diagram of 112-type iron pnictide superconductor Ca1-y La y Fe1-x Ni x As2

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Gong, Dongliang; Zhang, Wenliang; Gu, Yanhong; Huesges, Zita; Chen, Dongfeng; Liu, Yuntao; Hao, Lijie; Meng, Siqin; Lu, Zhilun; Li, Shiliang; Luo, Huiqian

    2017-09-01

    We report a systematic crystal growth and characterization of Ca1-y La y Fe1-x Ni x As2, the newly discovered 112-type iron-based superconductor. After substituting Fe by a small amount of Ni, bulk superconductivity is successfully obtained in high-quality single crystals sized up to 6 mm. Resistivity measurements indicate common features for transport properties in this 112-type iron pnictide, suggest strong scattering from chemical dopants. Together with the superconducting transition temperature T c , and the Néel temperature T N determined by the elastic neutron scattering, we sketch a three-dimensional phase diagram in the combination of both Ni and La dopings.

  1. From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba, K)Fe2As2

    SciTech Connect

    Reid, J.-Ph.; Juneau-Fecteau, A.; Gordon, R.T.; Rene de Cotret, S.; Doiron-Leyraud, N.; Luo, X.G.; Shakeripour, H.; Chang, J.; Tanatar, Makariy A.; Kim, Hyunsoo; Prozorov, Ruslan; Saito, T.; Fukazawa, H.; Kohori, Y.; Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H.; Shen, B.; Wen, H.-W.; Taillefer, Louis

    2012-07-17

    The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes.

  2. Plastic pinning replaces collective pinning as the second magnetization peak disappears in the pnictide superconductor Ba0.75K0.25Fe2As2

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Salem-Sugui, S.; Amorim, H. S.; Wen, Hai-Hu; Yates, K. A.; Cohen, L. F.; Ghivelder, L.

    2017-04-01

    We report a detailed study of isofield magnetic relaxation and isothermal magnetization measurements with H ∥c on an underdoped Ba0.75K0.25Fe2As2 pnictide single crystal, with superconducting transition temperature Tc=28 K. The second magnetization peak (SMP) has been observed at temperatures below Tc/2 and vanished at higher temperatures. The observed behavior of the SMP has been studied by measuring the magnetic field dependence of relaxation rate R (H ) and by performing the Maley's analysis. The results suggest that the crossover from collective to plastic pinning observed in the SMP disappears above 12 K with plastic pinning replacing collective pinning. An interesting H -T phase diagram is obtained. The critical current density (Jc) was estimated using Bean's model and found to be ˜3.4 ×109 A/m2 at 10 K in the SMP region, which is comparable to an optimally doped Ba-KFe2As2 superconductor and may be exploited for potential technological applications. The pinning mechanism is found to be unconventional and does not follow the usual δ l and δ Tc pinning models, which suggest the intrinsic nature of pinning in the compound.

  3. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides

    PubMed Central

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-01-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project. PMID:27877784

  4. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides.

    PubMed

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-06-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project.

  5. Origin of Electronic Nematicity in the Iron Pnictide NaFe1-xCoxAs Superconductor

    NASA Astrophysics Data System (ADS)

    Thorsmolle, Verner; Zhang, Wei-Lu; Zhang, Chenglin; Carr, Scott; Dai, Pengcheng; Blumberg, Girsh

    2014-03-01

    Doped iron pnictides present a complex phase diagram with superconductivity in close proximity to antiferromagnetic and structural transitions (ST). In addition to these phases, an electronic nematic phase has been suggested to be associated with the tetragonal-to-orthorhombic transition at TS. Electronic nematicity breaks C4 rotational symmetry and is believed to be the driving force behind the ST. However, at present, the main interaction behind electronic nematicity and nematic fluctuations remain unexplained. Using electronic Raman spectroscopy we show nematic charge fluctuations in the XY symmetry channel to follow a Curie-Weiss-like temperature dependence extending over a ~200 K range above TS and in the entire phase diagram including the superconducting phase in NaFe1-xCoxAs (0 < x < 0 . 08) single crystals. The nematicity is found to originate from orbital fluctuations, interconnected with local phonons, and are described in the frame of a classical Curie-Weiss law two-level system corresponding to the dxz and dyz Fe-orbitals. VKT and GB acknowledge support by NSF DMR-1104884 and by U.S. DOE, BES, Award DE-SC0005463. CZ, SVC and PD acknowledge support by U.S. DOE, BES, Contract DE-FG02-05ER46202.

  6. A NiCrAl pressure cell up to 4.6 GPa and its application to cuprate and pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoki; Uwatoko, Yoshiya; Matsumoto, Takehiko

    2013-06-01

    A NiCrAl-CuBe hybrid cell has been paid much attention because its maximum pressure goes beyond 3 GPa despite its large sample space. In the previous pressurizing trials for this pressure cell, we reached 4.0 GPa under a steady load of 15 ton. In the present trial, we have succeeded in reaching 4.6 GPa by using a short Teflon capsule as a pressure-mediation-liquid container. The pressure efficiency at 15 ton was 75 %. The maximum expansion of the inner diameter of the NiCrAl cylinder was 5 %, suggesting that 4.6 GPa is the upper limit of pressure. To keep high pressure above 4 GPa, a steady load control is needed: a pressure of 4.0 GPa under a steady load decreased to 3.7 GPa after the pressure cell was clamped and the steady load was released. The pressure cell is available to various experiments that need a large sample space. We have applied this pressure cell to nuclear magnetic resonance (NMR) measurements on cuprate and pnictide superconductors, such as Sr2Ca12Cu24O41, LaFeAsO1-xFx, and CaFe1-xCoxAsF. These compounds have superconducting layers, and Tcs of these compounds are enhanced by pressure application. We review what happens at optimal pressure in electric and/or magnetic properties on a microscopic level. Grant-in-Aid (Grant No. 23340101) from the Ministry of Education, Science and Culture, Japan.

  7. Correlation-Enhanced Odd-Parity Interorbital Singlet Pairing in the Iron-Pnictide Superconductor LiFeAs.

    PubMed

    Nourafkan, R; Kotliar, G; Tremblay, A-M S

    2016-09-23

    The rich variety of iron-based superconductors and their complex electronic structure lead to a wide range of possibilities for gap symmetry and pairing components. Here we solve in the two-Fe Brillouin zone the full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated Cooper pairing for LiFeAs. The magnetic excitations are calculated with the random phase approximation on a correlated electronic structure obtained with density functional theory and dynamical mean field theory. The interaction between electrons through Hund's coupling promotes both the intraorbital d_{xz(yz)} and the interorbital magnetic susceptibility. As a consequence, the leading pairing channel, conventional s^{+-}, acquires sizable interorbital d_{xy}-d_{xz(yz)} singlet pairing with odd parity under glide-plane symmetry. The combination of intra- and interorbital components makes the results consistent with available experiments on the angular dependence of the gaps observed on the different Fermi surfaces.

  8. Single-crystal neutron diffraction studies on Ni-based metal-pnictide superconductor BaNi2As2

    SciTech Connect

    Kothapalli, Karunakar; Ronning, F; Bauer, E D; Schultz, A J; Nakotte, Heinz

    2009-01-01

    We report the results of single-crystal neutron diffraction studies of the superconductor BaNi{sub 2}As{sub 2}. The experiments were performed on a tiny crystal of mass 0.8 mg at several temperatures between 20 and 200 K using the Single Crystal Diffractometer, SCD, at the Los Alamos Neutron Science Center. Above 130 K, BaNi{sub 2}As{sub 2} crystallizes in the tetragonal ThCr{sub 2}Si{sub 2} structure. Our neutron diffraction data corroborate a first-order structural transition around 130 K with a relatively large hysteresis of about 10K, in agreement with observations from bulk studies. The anisotropic thermal displacement coefficients are enhanced along c-axis approaching the transition, and a splitting is observed for in-plane type reflections below the transition, which is evidence for a change in crystal structure.

  9. Correlation-Enhanced Odd-Parity Interorbital Singlet Pairing in the Iron-Pnictide Superconductor LiFeAs

    NASA Astrophysics Data System (ADS)

    Nourafkan, R.; Kotliar, G.; Tremblay, A.-M. S.

    2016-09-01

    The rich variety of iron-based superconductors and their complex electronic structure lead to a wide range of possibilities for gap symmetry and pairing components. Here we solve in the two-Fe Brillouin zone the full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated Cooper pairing for LiFeAs. The magnetic excitations are calculated with the random phase approximation on a correlated electronic structure obtained with density functional theory and dynamical mean field theory. The interaction between electrons through Hund's coupling promotes both the intraorbital dx z (y z ) and the interorbital magnetic susceptibility. As a consequence, the leading pairing channel, conventional s+- , acquires sizable interorbital dx y-dx z (y z ) singlet pairing with odd parity under glide-plane symmetry. The combination of intra- and interorbital components makes the results consistent with available experiments on the angular dependence of the gaps observed on the different Fermi surfaces.

  10. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to ``1111'' type iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Han, Wei; Zhao, Kan; Wang, XianCheng; Liu, QingQing; Ning, FanLong; Deng, Zheng; Liu, Ying; Zhu, JinLong; Ding, Cui; Man, HuiYuan; Jin, ChangQing

    2013-11-01

    We report discovery of ferromagnetism in (LaCa)(ZnMn)SbO isostructural to the well-studied iron-based superconductor LaFeAs(O1- x F x ). Spin is induced by partial substitution of Mn2+ for Zn2+, while charge is induced by substitution of Ca2+ for La3+ within the parent compound LaZnSbO. Ferromagnetism with Curie temperature ( T C) is observed up to 40 K at the spin doping 0.15 by introducing Mn2+ into the Zn2+ sites for (La0.95Ca0.05)(Zn1- x Mn x )SbO. The Hall coefficient measurement indicates p-type carrier for (La0.95Ca0.05)(Zn0.9Mn0.1)SbO with concentration of n˜1020 cm-3 showing anomalous Hall effect below T C.

  11. Two-band and pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Xing, Xiangzhuo; Zhou, Wei; Wang, Jinhua; Zhu, Zengwei; Zhang, Yufeng; Zhou, Nan; Qian, Bin; Xu, Xiaofeng; Shi, Zhixiang

    2017-04-01

    The temperature dependence of upper critical field μ0Hc2 of Ca0.83La0.17FeAs2 and Ca0.8La0.2Fe0.98Co0.02As2 single crystals are investigated by measuring the resistivity for the inter-plane (H//c) and in-plane (H//ab) directions in magnetic fields up to 60 T. It is found that μ0Hc2(T) of both crystals for H//c presents a sublinear temperature dependence with decreasing temperature, whereas the curve of μ0Hc2(T) for H//ab has a convex curvature and gradually tends to saturate at low temperatures. μ0Hc2(T) in both crystals deviates from the conventional Werthamer-Helfand-Hohenberg (WHH) theoretical model without considering spin paramagnetic effect for H//c and H//ab directions. Detailed analyses show that the behavior of μ0Hc2(T) in 112-type Iron-based superconductors (IBSs) is similar to that of most IBSs. Two-band model is required to fully reproduce the behavior of μ0Hc2(T) for H//c, while the effect of spin paramagnetic effect is responsible for the behavior of μ0Hc2(T) for H//ab.

  12. Two-band and pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors

    PubMed Central

    Xing, Xiangzhuo; Zhou, Wei; Wang, Jinhua; Zhu, Zengwei; Zhang, Yufeng; Zhou, Nan; Qian, Bin; Xu, Xiaofeng; Shi, Zhixiang

    2017-01-01

    The temperature dependence of upper critical field μ0Hc2 of Ca0.83La0.17FeAs2 and Ca0.8La0.2Fe0.98Co0.02As2 single crystals are investigated by measuring the resistivity for the inter-plane (H//c) and in-plane (H//ab) directions in magnetic fields up to 60 T. It is found that μ0Hc2(T) of both crystals for H//c presents a sublinear temperature dependence with decreasing temperature, whereas the curve of μ0Hc2(T) for H//ab has a convex curvature and gradually tends to saturate at low temperatures. μ0Hc2(T) in both crystals deviates from the conventional Werthamer-Helfand-Hohenberg (WHH) theoretical model without considering spin paramagnetic effect for H//c and H//ab directions. Detailed analyses show that the behavior of μ0Hc2(T) in 112-type Iron-based superconductors (IBSs) is similar to that of most IBSs. Two-band model is required to fully reproduce the behavior of μ0Hc2(T) for H//c, while the effect of spin paramagnetic effect is responsible for the behavior of μ0Hc2(T) for H//ab. PMID:28383529

  13. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    DOE PAGES

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; ...

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( Tc = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( Tc = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( Tc = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep ratemore » (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.« less

  14. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    SciTech Connect

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; Jiang, Jianyi; Weiss, Jeremy D.; Hellstrom, Eric E.

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( Tc = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( Tc = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( Tc = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.

  15. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    SciTech Connect

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; Jiang, Jianyi; Weiss, Jeremy D.; Hellstrom, Eric E.

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( Tc = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( Tc = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( Tc = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.

  16. Nonrigid band shift and nonmonotonic electronic structure changes upon doping in the normal state of the pnictide high-temperature superconductor Ba (Fe1-xC ox) 2A s2

    NASA Astrophysics Data System (ADS)

    Vilmercati, Paolo; Mo, Sung-Kwan; Fedorov, Alexei; McGuire, Michael A.; Sefat, Athena; Sales, Brian; Mandrus, David; Singh, David J.; Ku, Wei; Johnston, Steve; Mannella, Norman

    2016-11-01

    We report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba (Fe1-xC ox) 2A s2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energy effects due to impurity scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-TC unconventional superconductors.

  17. Nonrigid band shift and nonmonotonic electronic structure changes upon doping in the normal state of the pnictide high-temperature superconductor Ba(Fe1-xCox)2As2

    DOE PAGES

    Vilmercati, Paolo; Mo, Sung -Kwan; Fedorov, Alexei; ...

    2016-11-28

    Here, we report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba(Fe1–xCox)2As2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energy effects due to impuritymore » scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-TC unconventional superconductors.« less

  18. Power-law-like correlation between condensation energy and superconducting transition temperatures in iron pnictide/chalcogenide superconductors: Beyond the BCS understanding

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu

    2014-04-01

    Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int∝Tcn with n =3-4, which is in sharp contrast to the simple BCS prediction U0BCS=1/2NFΔs2, with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal=3γneffΔs2/4π2kB2, with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff∝Tcm with m =1-2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.

  19. Power-law-like correlation between condensation energy and superconducting transition temperatures in iron pnictide/chalcogenide superconductors: Beyond the BCS understanding

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu

    2015-03-01

    Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int ~Tcn with n = 3 to 4, which is in sharp contrast to the simple BCS prediction U0BCS = 1 / 2NFΔs2 , with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal = 3γneff Δs2 / 4π2kB2 , with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff ~Tcm with m = 1 to 2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.

  20. Non-Fermi-liquid to Fermi-liquid transports in iron-pnictide Ba(Fe1-x Co x )2As2 and the electronic correlation strength in superconductors newly probed by the normal-state Hall angle

    NASA Astrophysics Data System (ADS)

    Wang, L. M.; Wang, Chih-Yi; Zen, Sha-Min; Chang, Jin-Yuan; Kuo, C. N.; Lue, C. S.; Chang, L. J.; Su, Y.; Wolf, Th; Adelmann, P.

    2017-03-01

    Electrical transports in iron-pnictide Ba(Fe1-x Co x )2As2 (BFCA) single crystals are heavily debated in terms of the hidden Fermi-liquid (HFL) and holographic theories. Both HFL and holographic theories provide consistent physic pictures and propose a universal expression of resistivity to describe the crossover of transports from the non-Fermi-liquid (FL) to FL behavior in these so-called ‘strange metal’ systems. The deduced spin exchange energy J and model-dependent energy scale W in BFCA are almost the same, or are of the same order of several hundred Kelvin for over-doped BFCA, which is in agreement with the HFL theory. Moreover, a drawn line of W/3.5 for BFCA in the higher-doping region up to the right demonstrates the crossover from non-FL-like behavior to FL-like behavior at high doping, and shows a new phase diagram of BFCA. The electronic correlation strength in superconductors has been newly probed by the normal-state Hall angle, which found that, for the first time, correlation strength can be characterized by the ratios of T c to the Fermi temperature T F, J/T F, and the transverse mass to longitudinal mass.

  1. Itinerant electrons, local moments, and magnetic correlations in the pnictide superconductors CeFeAsO₁₋xFxand Sr(Fe₁₋xCox)₂As₂

    DOE PAGES

    Vilmercati, Paolo; Fedorov, Alexei; Bondino, Federica; ...

    2012-06-15

    A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO₁₋xFx (x = 0, 0.11) and Sr(Fe₁₋xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10⁻¹⁵ s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3μB in CeFeAsO and 2.1μBmore » in SrFe₂As₂. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9μB in CeFeAsO₀.₈₉F₀.₁₁ and 1.3μB in Sr(Fe₀.₉Co₀.₁)₂As₂. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.« less

  2. Vortex-glass state in the isovalent optimally doped pnictide superconductor BaFe2(As0.68P0.32)2

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, S., Jr.; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Crisan, A.; Ionescu, A. M.; Sundar, S.; Hu, D.; Li, S.-L.; Luo, H.-Q.

    2017-05-01

    We report on isochamp magneto-resistivity and ac susceptibility curves obtained in a high-quality single crystal of the isovalent optimally doped pnictide BaFe2(As{}0.68P{}0.32)2 with superconducting temperature T c = 27.8 K for H∥c-axis. Plots of the logarithmic derivative of the resistivity curves allowed the identification of a vortex-glass (VG) phase and to obtain the values of the critical glass temperature T g, the temperature T * marking the transition to the liquid phase and of the critical exponent s. The presence of the VG phase is confirmed by detailed measurements of the third harmonic signal of the ac magnetic susceptibility. The modified VG model was successfully applied to the data allowing the obtention of the temperature independent VG activation energy U b . The activation energy U 0 obtained from the Arrhenius plots in the flux-flow region are compared with U b and with U 0 obtained from flux-creep measurements on a M(H) isothermal in the same sample. A phase diagram of the studied sample is constructed showing the T g glass line, the T * line representing a transition (melting) to the liquid phase, the mean field temperature T c(H) line and the H p line obtained from the peaks in isothermal critical current, J c(H) curves, which are explained in terms of a softening of the vortex lattice. The glass line was fitted by a theory presented in the literature which considers the effect of disorder.

  3. Coexistence of long-ranged magnetic order and superconductivity in the pnictide superconductor SmFeAsO1-xFx (x=0,0.15)

    NASA Astrophysics Data System (ADS)

    Ryan, D. H.; Cadogan, J. M.; Ritter, C.; Canepa, F.; Palenzona, A.; Putti, M.

    2009-12-01

    Powder neutron-diffraction measurements on both SmFeAsO and the fluorine-doped superconductor, SmFeAsO0.85F0.15 , show that the Sm sublattice orders magnetically. In both cases we observe a simple layered antiferromagnetic arrangement of the ˜0.5μB Sm moments. This provides direct evidence that long-ranged magnetic order of the samarium moments coexists with superconductivity in the SmFeAsO1-xFx system.

  4. Novel superconducting characteristics and unusual normal-state properties in iron-based pnictide superconductors: 57FeNMR and 75AsNQR/NMR studies in REFeAsO 1- y (RE = La, Pr, Nd) and Ba 0.6K 0.4Fe 2As 2

    NASA Astrophysics Data System (ADS)

    Mukuda, H.; Terasaki, N.; Yashima, M.; Nishimura, H.; Kitaoka, Y.; Iyo, A.

    2009-05-01

    We discuss the novel superconducting characteristics and unusual normal-state properties of iron (Fe)-based pnictide superconductors REFeAsO 1- y (RE = La, Pr, Nd) and Ba 0.6K 0.4Fe 2As 2 ( Tc = 38 K) by means of 57FeNMR and 75AsNQR/NMR. In the superconducting state of LaFeAsO 0.7 ( Tc = 28 K), the spin component of the 57Fe-Knight shift decreases to almost zero at low temperatures, which provide firm evidence of the superconducting state formed by spin-singlet Cooper pairing. The nuclear spin-lattice relaxation rates (1/ T1) in LaFeAsO 0.7 and Ba 0.6K 0.4Fe 2As 2 exhibit a T3-like dependence without a coherence peak just below Tc, indicating that an unconventional superconducting state is commonly realized in these Fe-based pnictide compounds. All these events below Tc are consistently argued in terms of an extended s ±-wave pairing with a sign reversal of the order parameter among Fermi surfaces. In the normal state, 1/ T1T decreases remarkably upon cooling for both the Fe and As sites of LaFeAsO 0.7. In contrast, it gradually increases upon cooling in Ba 0.6K 0.4Fe 2As 2. Despite the similarity between the superconducting properties of these compounds, a crucial difference was observed in their normal-state properties depending on whether electrons or holes are doped into the FeAs layers. These results may provide some hint to address a possible mechanism of Fe-based pnictide superconductors.

  5. Pressure-Induced Antiferromagnetic Fluctuations in the Pnictide Superconductor FeSe0.5Te0.5: 125Te NMR Study

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasuhiro; Yamada, Takato; Takami, Tsuyoshi; Niitaka, Seiji; Takagi, Hidenori; Itoh, Masayuki

    2009-12-01

    To investigate the relationship between superconductivity and low-energy spin fluctuations in the iron-based superconductor FeSe0.5Te0.5, we have conducted 125Te NMR measurements at ambient pressure and 2 GPa. As the superconducting transition temperature Tc is increased by applying pressure, the nuclear spin-lattice relaxation rate divided by temperature, 1/T1T, shows the development of antiferromagnetic fluctuations upon lowering temperature toward Tc. This supports the scenario that spin fluctuations promote superconducting pairing. The depressed Knight shift 125K and the absence of a coherence peak in 1/T1 below Tc are consistent with spin-singlet superconducting pairing with an anisotropic order parameter. In the normal metallic state, the comparison between the uniform and dynamic spin susceptibilities suggests the existence of a Fermi level located near the singularity of the band structure.

  6. Electronic structure in a one-Fe Brillouin zone of the iron pnictide superconductors CsFe2As2 and RbFe2As2

    NASA Astrophysics Data System (ADS)

    Kong, S.; Liu, D. Y.; Cui, S. T.; Ju, S. L.; Wang, A. F.; Luo, X. G.; Zou, L. J.; Chen, X. H.; Zhang, G. B.; Sun, Z.

    2015-11-01

    Using angle-resolved photoemission spectroscopy, we studied the electronic structures of CsFe2As2 and RbFe2As2 . Contrary to other iron-based superconductors where the band structures are usually depicted in the two-Fe Brillouin zone (BZ), we found that the distribution of electronic spectral weight in CsFe2As2 and RbFe2As2 follows the one-Fe BZ, and that the emerging band structure is qualitatively consistent with theoretical band calculations of the one-Fe BZ except for some shadow band effect. Our data suggest that the interlayer separation is an important tuning factor for the physics of FeAs layers, the increase of which can reduce the coupling between Fe and As and lead to the emergence of the electronic structure in accord with the one-Fe symmetry of the Fe square lattice. Our finding puts strong constraints on the theoretical models constructed on the basis of the one-Fe BZ.

  7. A Twisted Ladder: Relating the Fe Superconductors to the High Tc Cuprates

    SciTech Connect

    Berg, E.

    2010-05-26

    We construct a 2-leg ladder model of an Fe-pnictide superconductor and discuss its properties and relationship with the familiar 2-leg cuprate model. Our results suggest that the underlying pairing mechanism for the Fe-pnictide superconductors is similar to that for the cuprates.

  8. Multiband superconductivity in iron pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Stanev, Valentin G.

    The main subject of this thesis is the recently discovered family of high-temperature superconducting iron pnictides and chalcogenides. One of the unique features of these materials is that they are multiband superconductors, in which interband interactions dominate. This leads to a very rich and interesting phase diagram, and the possibility that they have a distinct physical mechanism behind their superconducting properties. Study of these materials can provide invaluable information in the quest for room-temperature superconductivity. In the beginning of the thesis I outline some of the basic experimental facts and theoretical concepts relevant for these materials. This outline is structured as a short review and is intended to give the reader brief introduction to the physics of pnictides and chalcogenides. After that some important results valid for multiband superconductors are presented (Chapter 3). I start with a two-band system and discuss some basic features of this model. The presence of general repulsive interband pair-scattering term can drive the system superconducting, with an unconventional order parameter---there is a relative minus sign between the gaps on the two (disconnected) parts of the Fermi surface (so-called s' state). After that I apply a modified version of this model to study the isotope effect---such effect was observed in pnictides---in a system with both electron-electron and electron-phonon interactions. I find that strong isotope effect is not restricted to the phonon-dominated regime of superconductivity. More complicated forms of the order parameter, relevant for pnictides and chalcogenides, are introduced and studied in Chapter 4. I start with a three-band model with repulsive pair-scattering interactions only (in Section 1). I construct the phase diagram of this model and discuss its overall features. Generally, I find three possible superconducting order parameters, one of which breaks the time-reversal symmetry in order to

  9. A new pnictide superconductor without iron.

    PubMed

    Han, Jian-Tao; Zhou, Jian-Shi; Cheng, Jin-Guang; Goodenough, John B

    2010-01-27

    LiCu(2)P(2) and LiFeP have been synthesized by conventional solid-state reaction. LiCu(2)P(2) has a crystal structure similar to that of BaFe(2)As(2); LiFeP has the same crystal structure as that of LiFeAs. Resistivity and magnetization measurements reveal that they become superconductive at 3.5 K for LiCu(2)P(2) and 4.1 K for LiFeP.

  10. Structure and physical properties for a new layered pnictide-oxide: BaTi₂As₂O.

    PubMed

    Wang, X F; Yan, Y J; Ying, J J; Li, Q J; Zhang, M; Xu, N; Chen, X H

    2010-02-24

    We have successfully synthesized a new layered pnictide-oxide: BaTi(2)As(2)O. It shares similar characteristics with Na(2)Ti(2)Sb(2)O. The crystal has a layered structure with a tetragonal P4/nmm group (a = 4.047(3) Å, c = 7.275(4) Å). The resistivity shows an anomaly at 200 K, which should be ascribed to an SDW or structural transition. The SDW or structural transition is confirmed by magnetic susceptibility and heat capacity measurements. These behaviors are very similar to those observed in parent compounds of high-T(c) iron-based pnictide superconductors, in which the superconductivity shows up when the anomaly due to the SDW or structural transition is suppressed. Therefore, the new layered pnictide-oxide, BaTi(2)As(2)O, could be a potential parent compound for superconductivity. It is found that Li( + ) doping significantly suppresses the anomaly, but no superconductivity emerges so far.

  11. Itinerant electrons, local moments, and magnetic correlations in the pnictide superconductors CeFeAsO₁₋xFxand Sr(Fe₁₋xCox)₂As₂

    SciTech Connect

    Vilmercati, Paolo; Fedorov, Alexei; Bondino, Federica; Offi, Francesco; Panaccione, Giancarlo; Lacovig, Paolo; Simonelli, Laura; McGuire, Michael A.; Sefat, Athena S. M.; Mandrus, David; Sales, Brian C.; Egami, Takeshi; Ku, Wei; Mannella, Norman

    2012-06-15

    A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO₁₋xFx (x = 0, 0.11) and Sr(Fe₁₋xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10⁻¹⁵ s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3μB in CeFeAsO and 2.1μB in SrFe₂As₂. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9μB in CeFeAsO₀.₈₉F₀.₁₁ and 1.3μB in Sr(Fe₀.₉Co₀.₁)₂As₂. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.

  12. Electrodynamics of superconducting pnictide superlattices

    SciTech Connect

    Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  13. Topological edge states in pnictides

    NASA Astrophysics Data System (ADS)

    Youmans, Cody; Ghaemi, Pouyan; Kargarian, Mehdi

    In some members of the ferro-pnictides, non-trivial topology in the bulk band-structure is related to potentially observable gapless edge states. We study these states numerically and analytically for a range of parameters, with and without superconductivity and antiferromagnetic SDW ordering, and their relation to the symmetries and topologically non-trivial aspects of our model Hamiltonian. Support was provided by the Doctoral Student Research Grant program at the Graduate Center, CUNY.

  14. Correlation between superconductivity and structural properties under high pressure of iron pnictide superconductor Ce[subscript 0.6]Y[subscript 0.4]FeAsO[subscript 0.8]F[subscript 0.2

    SciTech Connect

    Kanagaraj, M.; Arumugam, S.; Kumar, Ravhi S.; Selvan, N.R. Tamil; Muthu, S. Esakki; Prakash, J.; Thakur, Gohil S.; Yoshino, H.; Murata, K.; Matsubayashi, K.; Uwatoko, Y.; Sinogeikin, S.; Cornelius, Andrew; Ganguli, A.K.; Zhao, Yusheng

    2012-02-28

    We report here the pressure dependence of the electrical resistivity and magnetic susceptibility of polycrystalline Ce{sub 0.6}Y{sub 0.4}FeAsO{sub 0.8}F{sub 0.2} superconductor in the temperature range 4 K to 300 K up to 8 GPa. In-situ high pressure-low temperature x-ray diffraction was performed at 8 K up to 32 GPa using synchrotron x-rays with helium pressure medium. The results show that the applied pressure slightly increases the T{sub c} up to 1 GPa and then it decreases on further pressure increase. The reduction of superconducting transition temperature occurs with a transition to a collapsed tetragonal phase and may be associated with a possible valence change of Ce.

  15. Superconductivity versus bound-state formation in a two-band superconductor with small Fermi energy: Applications to Fe pnictides/chalcogenides and doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Eremin, Ilya; Efremov, Dmitri V.

    2016-05-01

    Fe pnictides and Fe chalcogenides in which a superconducting gap has been detected on the bands that do not cross the Fermi level, and to FeSe, in which the superconducting gap is comparable to the Fermi energy. We apply the results for the model with two electron bands to Nb-doped SrTiO3 and argue that our theory explains the rapid increase of Tc when both bands start crossing the Fermi level.

  16. Many-Body Effects in Iron Pnictides and Chalcogenides: Nonlocal Versus Dynamic Origin of Effective Masses

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan M.; van Schilfgaarde, M.; Kotliar, G.

    2012-12-01

    We apply the quasiparticle self-consistent GW approximation (QSGW) to some of the iron pnictide and chalcogenide superconductors. We compute Fermi surfaces and density of states, and find excellent agreement with experiment, substantially improving over standard band-structure methods. Analyzing the QSGW self-energy we discuss nonlocal and dynamic contributions to effective masses. We present evidence that the two contributions are mostly separable, since the quasiparticle weight is found to be essentially independent of momentum. The main effect of nonlocality is captured by the static but nonlocal QSGW effective potential. Moreover, these nonlocal self-energy corrections, absent in, e.g., dynamical mean field theory, can be relatively large. We show, on the other hand, that QSGW only partially accounts for dynamic renormalizations at low energies. These findings suggest that QSGW combined with dynamical mean field theory will capture most of the many-body physics in the iron pnictides and chalcogenides.

  17. New iron pnictide oxide with thick perovskite-type blocking layers

    NASA Astrophysics Data System (ADS)

    Ogino, Hiraku; Sato, Shinya; Matsumura, Yutaka; Kawaguchi, Naoto; Machida, Kenji; Shimizu, Yasuaki; Ushiyama, Koichi; Horii, Shigeru; Shimoyama, Jun-Ichi; Kishio, Kohji

    2010-03-01

    Since the discovery of high-Tc superconductivity in LaFeAs(O,F), development of the materials having iron or nickel pnictide layers are subject of study. As presented in last APS March meeting, we have discovered iron and nickel pnictide oxide superconductors with perovskite-type oxide layers[1]. Until now, several compounds of this system have been found such as (M'2Pn2)(Sr4M2O6) [M' = Fe, Ni; Pn = P, As; M = Sc, Cr, (Mg,Ti)]. These compounds have higher pnictogen heights and lower Pn-Fe-Pn angles compared to REFeAsO system. These features of the system may lead to realization of high-Tc superconductivity. Recently we discovered new material belongs to this kind of system. Structural features and physical properties of the compounds in this system as well as new compound will be presented. [1] H. Ogino et al., Supercond. Sci. Technol. 22 (2009) 075008.

  18. Disorder-induced topological change of the superconducting gap structure in iron pnictides.

    SciTech Connect

    Mizukami, Y.; Konczykowski, M.; Kawamoto, Y.; Kurata, S.; Kasahara, S.; Hashimoto, K.; Mishra, V.; Kreisel, A.; Wang, Y.; Hirschfeld, P. J.; Matsuda, Y.; Shibauchi, T.

    2014-11-01

    In superconductors with unconventional pairing mechanisms, the energy gap in the excitation spectrum often has nodes, which allow quasiparticle excitations at low energies. In many cases, e.g. d-wave cuprate superconductors, the position and topology of nodes are imposed by the symmetry, and thus the presence of gapless excitations is protected against disorder. Here we report on the observation of distinct changes in the gap structure of iron-pnictide superconductors with increasing impurity scattering. By the successive introduction of nonmagnetic point defects into BaFe2(As1-xPx)2 crystals via electron irradiation, we find from the low-temperature penetration depth measurements that the nodal state changes to a nodeless state with fully gapped excitations. Moreover, under further irradiation the gapped state evolves into another gapless state, providing bulk evidence of unconventional sign-changing s-wave superconductivity. This demonstrates that the topology of the superconducting gap can be controlled by disorder, which is a strikingly unique feature of iron pnictides.

  19. Large D-2 theory of superconducting fluctuations in a magnetic field and its application to iron pnictides.

    PubMed

    Murray, James M; Tesanović, Zlatko

    2010-07-16

    A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.

  20. Nonrigid band shift and nonmonotonic electronic structure changes upon doping in the normal state of the pnictide high-temperature superconductor Ba(Fe1-xCox)2As2

    SciTech Connect

    Vilmercati, Paolo; Mo, Sung -Kwan; Fedorov, Alexei; McGuire, Michael A.; Sefat, Athena Safa; Sales, Brian C.; Mandrus, David; Singh, David J.; Ku, Wei; Johnston, Steve; Mannella, Norman

    2016-11-28

    Here, we report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba(Fe1–xCox)2As2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energy effects due to impurity scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-TC unconventional superconductors.

  1. A Minimal Two-band Model for the Superconducting Fe-pnictides

    SciTech Connect

    Raghu, S.

    2010-03-25

    Following the discovery of the Fe-pnictide superconductors, LDA band structure calculations showed that the dominant contributions to the spectral weight near the Fermi energy came from the Fe 3d orbitals. The Fermi surface is characterized by two hole surfaces around the {Lambda} point and two electron surfaces around the M point of the 2 Fe/cell Brillouin zone. Here, we describe a 2-band model that reproduces the topology of the LDA Fermi surface and exhibits both ferromagnetic and q = ({pi}, 0) spin density wave (SDW) fluctuations. We argue that this minimal model contains the essential low energy physics of these materials.

  2. Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

    SciTech Connect

    Chen, C. C.

    2011-08-15

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

  3. Magneto-structural correlations in rare-earth cobalt pnictides

    NASA Astrophysics Data System (ADS)

    Thompson, Corey Mitchell

    Magnetic materials are used in many applications such as credit cards, hard drives, electric motors, sensors, etc. Although a vast range of magnetic solids is available for these purposes, our ability to improve their efficiency and discover new materials remains paramount to the sustainable progress and economic profitability in many technological areas. The search for magnetic solids with improved performance requires fundamental understanding of correlations between the structural, electronic, and magnetic properties of existing materials, as well as active exploratory synthesis that targets the development of new magnets. Some of the strongest permanent magnets, Nd 2Fe14B, SmCo5, and Sm2Co17, combine transition and rare-earth metals, benefiting from the strong exchange between the 4f and 3d magnetic sublattices. Although these materials have been studied in great detail, the development of novel magnets requires thorough investigation of other 3d-4 f intermetallics, in order to gain further insights into correlations between their crystal structures and magnetic properties. Among many types of intermetallic materials, ternary pnictides RCo 2Pn2 (R = La, Ce, Pr, Nd; Pn = P, As) are of interest because, despite their simple crystal structures, they contain two magnetic sublattices, exchange interactions between which may lead to rich and unprecedented magnetic behavior. Nevertheless, magnetism of these materials was studied only to a limited extent, especially as compared to the extensive studies of their silicide and germanide analogues. The ThCr2Si2 structure type, to which these ternary pnictides belong, is one of the most ubiquitous atomic arrangements encountered among intermetallic compounds. It accounts for over 1000 known intermetallics and has received increased attention due to the recently discovered FeAs-based superconductors. This dissertation is devoted to the investigation of

  4. Europium-based iron pnictides: a unique laboratory for magnetism, superconductivity and structural effects

    NASA Astrophysics Data System (ADS)

    Zapf, Sina; Dressel, Martin

    2017-01-01

    Despite decades of intense research, the origin of high-temperature superconductivity in cuprates and iron-based compounds is still a mystery. Magnetism and superconductivity are traditionally antagonistic phenomena; nevertheless, there is basically no doubt left that unconventional superconductivity is closely linked to magnetism. But this is not the whole story; recently, also structural effects related to the so-called nematic phase gained considerable attention. In order to obtain more information about this peculiar interplay, systematic material research is one of the most important attempts, revealing from time to time unexpected effects. Europium-based iron pnictides are the latest example of such a completely paradigmatic material, as they display not only spin-density-wave and superconducting ground states, but also local Eu2+ magnetism at a similar temperature scale. Here we review recent experimental progress in determining the complex phase diagrams of europium-based iron pnictides. The conclusions drawn from the observations reach far beyond these model systems. Thus, although europium-based iron pnictides are very peculiar, they provide a unique platform to study the common interplay of structural-nematic, magnetic and electronic effects in high-temperature superconductors.

  5. Europium-based iron pnictides: a unique laboratory for magnetism, superconductivity and structural effects.

    PubMed

    Zapf, Sina; Dressel, Martin

    2017-01-01

    Despite decades of intense research, the origin of high-temperature superconductivity in cuprates and iron-based compounds is still a mystery. Magnetism and superconductivity are traditionally antagonistic phenomena; nevertheless, there is basically no doubt left that unconventional superconductivity is closely linked to magnetism. But this is not the whole story; recently, also structural effects related to the so-called nematic phase gained considerable attention. In order to obtain more information about this peculiar interplay, systematic material research is one of the most important attempts, revealing from time to time unexpected effects. Europium-based iron pnictides are the latest example of such a completely paradigmatic material, as they display not only spin-density-wave and superconducting ground states, but also local Eu(2+) magnetism at a similar temperature scale. Here we review recent experimental progress in determining the complex phase diagrams of europium-based iron pnictides. The conclusions drawn from the observations reach far beyond these model systems. Thus, although europium-based iron pnictides are very peculiar, they provide a unique platform to study the common interplay of structural-nematic, magnetic and electronic effects in high-temperature superconductors.

  6. Evidence for superior current carrying capability of iron pnictide tapes under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Shabbir, Babar; Huang, He; Yao, Chao; Ma, Yanwei; Dou, Shixue; Johansen, Tom H.; Hosono, Hideo; Wang, Xiaolin

    2017-09-01

    High critical current density (Jc) values in superconducting wires/tapes are desirable for high magnetic field applications. Recently developed pnictide wires/tapes exhibit exceptional superconducting properties such as high critical temperature (Tc), upper critical field (Hc 2), and almost field-independent Jc. Despite the great fabrication efforts, however, the newly discovered pnictide wires/tapes are still not able to replace low-temperature superconductors such as N b3Sn , due to their inferior Jc values. Ag-clad S r0.6K0.4F e2A s2 tapes have demonstrated significant superconducting performance, although their low Jc in comparison to N b3Sn is still a major challenge. By successfully employing hydrostatic pressure, a remarkably significant enhancement of Jc by an order of magnitude can be achieved in S r0.6K0.4F e2A s2 tapes in both low and high fields. This is a promising technological step forward towards high-field applications, as the record high Jc values (˜2 ×1 05A /c m2 at 4.2 K and 13 T, P =1.1 GPa ) obtained for S r0.6K0.4F e2A s2 tape are superior to those of N b3Sn and other pnictide wires/tapes. Here, we used magnetic Jc data for comparison to the other reported transport Jc data, due to the lack of transport measurement facility under hydrostatic pressure. Our systematic analysis shows that pressure-induced pinning centers are the main source of Jc enhancement, along with a fractional contribution from geometric changes around the grain boundaries under pressure. We expect that utilization of an appropriate pressure approach will be a way to significantly enhance Jc to beyond the cutoff (maximum) values in various superconductors produced using other existing methods for Jc enhancement.

  7. Type-II Superconductivity in Ternary Zirconium Pnictide Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Baenitz, M.; Lüders, K.; Kniep, R.; Steglich, F.; Schmidt, M.

    Layered Pnictides are proven to be a great reservoir for superconductors in the past and ternary zirconium pnictide chalcogenides of ZrXY-type (X = P, As; Y = S, Se) might be a platform for new superconductors. The superconducting properties of carefully grown (chemical transport reaction) single crystals of ZrP1.54S0.46 with a transition temperature of Tc = 3.5 K are investigated. This compound (PbFCl structure type) contains square planar nets: One of the nets is completely occupied (no vacancies) by P, the other one characterized by a random distribution of P and S (full occupation: no vacancies). Besides zero-field-cooling (zfc), field-cooling (fc), and remanent moment (rem) measurements, especially magnetization and ac susceptibility measurements are performed. A nearly ideal type-II behavior with a Ginzburg-Landau parameter κ = 24 is found. The magnetization curves between Bc1 and Bc2 for increasing field are in excellent agreement with theoretical calculations performed by E. H. Brandt based on the Ginzburg-Landau theory. The decreasing branches of the magnetization curves are asymmetric about the field axis indicating weak pinning and also large diamagnetic behavior.

  8. 2011 Aspen Winter Conference on Contrasting Superconductivity of Pnictides and Cuprates

    SciTech Connect

    Johnson, P.; Schmalian, J.; Canfield, P.; Chakravarty, S.

    2011-05-02

    Our quest for materials with better properties is closely integral to the fabric of our society. Currently the development of materials that will allow for improved generation, transport, and storage of energy is at the forefront of our research in condensed matter physics and materials science. Among these materials, compounds that exhibit correlated electron states and emergent phenomena such as superconductivity have great promise, but also difficulties that need to be overcome: problems associated with our need to reliably find, understand, improve and control these promising materials. At the same time, the field of correlated electrons represents the frontier of our understanding of the electronic properties of solids. It contains deep open scientific issues within the broad area of quantum phenomena in matter. The aim of this workshop is to explore and understand the physics of recently discovered Fe-based high-temperature superconductors and contrast and compare them with the cuprates. The superconductivity in iron pnictides, with transition temperatures in excess of 55 K, was discovered in early 2008. The impact of this discovery is comparable to cuprates discovered in 1986. At the same time a number of recent experimental developments in cuprates may lead to a shift in our thinking with regards to these materials. There is therefore much to be learned by devoting a conference in which both classes of superconductors are discussed, especially at this nascent stage of the pnictides.

  9. Non-Fermi liquid behavior in quantum critical iron-pnictide metal Ba(Fe,Ni,Co)2As2

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasuyuki; Kirshenbaum, Kevin; Hughes, Alex; Eckberg, Christopher; Wang, Renxiong; Metz, Tristin; Saha, Shanta; Paglione, Johnpierre

    The breakdown of Landau's Fermi liquid theory has been believed to be induced by quantum fluctuations in the vicinity of a quantum critical point (QCP), occasionally accompanied by exotic superconductivity in the strongly correlated electron systems, such as cuprate and iron pnictide superconductors. However, the superconducting dome of such materials with high Tc precludes us from investigating the interplay between quantum fluctuations and the exotic superconductivity. We report non-Fermi liquid behavior associated with quantum fluctuations in the transport and thermodynamic properties of the non-superconducting iron pnictide Ba(Fe,Co,Ni)2As2, which allows us to elucidate the behavior on cooling down to near absolute zero without distractions from the superconductivity. We will discuss the evolution of non-Fermi liquid behavior with magnetic field, highlighting the presence of field tuned QCP.

  10. Correlations and effects of pressure in Fe-pnictides

    NASA Astrophysics Data System (ADS)

    Valenti, Roser

    2014-03-01

    In this talk we will explore the effects of correlations and pressure in Fe-based superconductors by considering a combination of density functional theory calculations and dynamical mean field theory and compare our results with recent ARPES and de Haas van Alphen experiments. We will discuss the importance of orbital-selective correlations in the 111 (LiFeAs, LiFeP) and 122 families (BaFe2As2,CaFe2As2, KFe2As2) and indicate how the topology of the Fermi surface, specially in KFe2As2, is influenced by these effects. In this context, we will show why MgFeGe, an isostructural and isoelectronic system to LiFeAs, doesn't superconduct. In the case of the 122 systems, we will predict and analyze changes in the electronic and magnetic properties under hydrostatic, tensile and compressive pressure and will discuss our results in relation to (i) superconductivity, (ii) magnetism and (iii) the mechanisms involved in the detwinning process of an orthorhombic iron-pnictide crystal a. Funding has been provided by the German Science Foundation (DFG).

  11. Weak-coupling superconductivity in a strongly correlated iron pnictide

    PubMed Central

    Charnukha, A.; Post, K. W.; Thirupathaiah, S.; Pröpper, D.; Wurmehl, S.; Roslova, M.; Morozov, I.; Büchner, B.; Yaresko, A. N.; Boris, A. V.; Borisenko, S. V.; Basov, D. N.

    2016-01-01

    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations. PMID:26729630

  12. Weak-coupling superconductivity in a strongly correlated iron pnictide

    NASA Astrophysics Data System (ADS)

    Charnukha, Aliaksei

    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy, ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations. A. Charnukha acknowledges financial support by the Alexander von Humboldt foundation.

  13. Evidence of a spin resonance mode in the iron-based superconductor Ba(0.6)K(0.4)Fe2As2 from scanning tunneling spectroscopy.

    PubMed

    Shan, Lei; Gong, Jing; Wang, Yong-Lei; Shen, Bing; Hou, Xingyuan; Ren, Cong; Li, Chunhong; Yang, Huan; Wen, Hai-Hu; Li, Shiliang; Dai, Pengcheng

    2012-06-01

    We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba(0.6)K(0.4)Fe(2)As(2) (T(c)=38 K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of ~14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pnictide superconductors, similar to that in high-T(c) copper oxide superconductors.

  14. Anomalous Hall effect in epitaxial Ba(Fe1- xCox)2 As2 pnictide superconducting thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Campbell, Neil; Rzchowski, Mark; Irwin, Julian; Kang, Jong-Hoon; Eom, Chang-Beom; Lee, Sanghan; Ruosi, Adele

    2015-03-01

    Iron-based superconductors have been worked with to the point that now growth of various thin films is very-well controlled, allowing in depth study of associated structures. One exciting pathway of study for pnictides is that they show similarities to cuprate superconductors, regarded as an avenue toward high-Tc superconductors. Specifically, these heterostructures allow study of the competition between antiferromagnetism and superconductivity at the interface between the undoped parent compound, and optimally-doped compound, BaFe2-xCoxAs2 (Ba122). At room temperature, these pnictides exhibit anomalous Hall effect (AHE). There is strong evidence for the interface dominating AHE, allowing control AHE with type of substrate, surface termination, and superlattice configuration. We characterized samples of thicknesses from 6nm to 300nm, and with up to 12 interfaces. Such samples have been characterized via magnetotransport measurements at temperatures ranging from 5K to 300K, and magnetic fields up to 8T applied normal to the basal plane with Van der Pauw and Hall geometries. Additionally, we measured magnetization with vibrating sample magnetometry. These properties will aid novel device development, making pnictides interesting. This work was supported by funding from the DOE Office of Basic Energy Sciences under Award Number DE-FG02-06ER46327.

  15. Short range order in liquid pnictides.

    PubMed

    Mayo, M; Yahel, E; Greenberg, Y; Makov, G

    2013-12-18

    Liquid pnictides have anomalous physical properties and complex radial distribution functions. The quasi-crystalline model of liquid structure is applied to interpret the three-dimensional structure of liquid pnictides. It is shown that all the column V elements can be characterized by a short range order lattice symmetry similar to that of the underlying solid, the A7 structure, which originates from a Peierls distorted simple cubic lattice. The evolution of the liquid structure down the column as well as its temperature and pressure dependence is interpreted by means of the effect of thermodynamic parameters on the Peierls distortion. Surprisingly, it is found that the Peierls effect increases with temperature and the nearest neighbour distances exhibit negative thermal expansion.

  16. Correlation effects in the iron pnictides

    SciTech Connect

    Zhu, Jian-xin; Si, Qimiao; Abrahams, Elihu; Dai, Jianhui

    2009-01-01

    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here we address this issue through the phenomenology of the charge transport and dynamics, single-electron excitation spectrum, and magnetic ordering and dynamics. We outline the evidence that the parent compounds, while metallic, have electron interactions that are sufficiently strong to produce incipient Mott physics. In other words, in terms of the strength of electron correlations compared to the kinetic energy, the iron pnictides are closer to intermediately-coupled systems lying at the boundary between itinerancy and localization, such as V{sub 2}O{sub 3} a or Se-doped NiS{sub 2} , rather than to simple antiferromagnetic metals like Cr. This level of electronic correlations produces a new small parameter for controlled theoretical analyses, namely the fraction of the single-electron spectral weight that lies in the coherent part. Using this expansion parameter, we construct the effective low-energy Hamiltonian and discuss its implications for the magnetic order and magnetic quantum criticality. Finally, this approach sharpens the notion of magnetic frustration for such a metallic system, and brings about a multi band matrix t-J{sub 1}-J{sub 2} model for the carrier-doped iron pnictides.

  17. Josephson effect studies of pairing symmetry in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohang

    2010-03-01

    To investigate the pairing symmetry in the recently discovered Fe-based superconductors, Josephson effect studies have been performed on two types of c-axis junctions incorporating 122-type iron pnictide superconductors: junctions between s-wave superconductors and iron pnictide superconductors [1] and junctions between electron-doped and hole-doped iron pnictide superconductors [2]. The ac Josephson effect was observed in the I-V characteristics for both types of junctions under microwave irradiation. By applying external magnetic fields parallel to the junction interfaces, Fraunhofer-like patterns were obtained. Analysis based on the obtained modulation patterns suggests that the Josephson current is flowing along the c-axis direction within a typical area of 10 x 10 (μm)^2. The presence of Josephson coupling between an s-wave superconductor and a 122-type iron pnictide superconductor along the c-axis strongly supports an s-wave symmetry in the iron pnictide superconductor. Moreover, our observed Josephson effect in the bicrystal junctions indicates that phase coherence can be established between electron-doped and hole-doped iron pnictide superconductors. Such a phase-coherent p-n structure is an important component [3] for performing definitive phase-sensitive tests for the proposed s± symmetry in Fe-based superconductors. Progress in carrying out such tests will be discussed. Recent results on systematic measurements of the energy gap using Andreev reflection spectroscopy with highly transparent contacts will also be presented. This work is supported by the NSF (DMR-0653535) and performed in collaboration with S. R. Saha, N. P. Butch, K. Kirshenbaum, J. Paglione, R. L. Greene, I. Takeuchi at UMD, and Y. S. Oh, Y. Liu, L. Q. Yan, K. H. Kim at SNU. [4pt] [1] X. H. Zhang et al., Phys. Rev. Lett. 102, 147002 (2009).[0pt] [2] X. H. Zhang et al., Appl. Phy. Lett. 95, 062510 (2009).[0pt] [3] D. Parker and I. I. Mazin, Phys. Rev. Lett. 102, 227007 (2009).

  18. Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method

    NASA Astrophysics Data System (ADS)

    Ma, Yanwei; Gao, Zhaoshun; Qi, Yanpeng; Zhang, Xianping; Wang, Lei; Zhang, Zhiyu; Wang, Dongliang

    2009-05-01

    The recent discovery of superconductivity in the iron-based superconductors with very high upper critical fields presents a new possibility for practical applications, but fabricating fine-wire is a challenge because of mechanically hard and brittle powders and the toxicity and volatility of arsenic. In this paper, we report the synthesis and the physical characterization of iron pnictide wires and bulks prepared by the powder-in-tube method (PIT). A new class of high- Tc iron pnictide composite wires, such as LaFeAsO 1-xF x, SmFeAsO 1-xF x and Sr 1-xK xFeAs, has been fabricated by the in situ PIT technique using Fe, Ta and Nb tubes. Microscopy and X-ray analysis show that the superconducting core is continuous, and retains phase composition after wire drawing and heat treatment. Furthermore, the wires exhibit a very weak Jc-field dependence behavior even at high temperatures. The upper critical field Hc2(0) value can exceed 100 T, surpassing those of MgB 2 and all the low temperature superconductors and indicating a strong potential for applications requiring very high field. These results demonstrate the feasibility of producing superconducting pnictide composite wire. We also applied the one-step PIT method to synthesize the iron-based bulks, due to its convenience and safety. In fact, by using this technique, we have successfully discovered superconductivity at 35 K and 15 K in Eu 0.7Na 0.3Fe 2As 2 and SmCoFeAsO compounds, respectively. These clearly suggest that the one-step PIT technique is unique and versatile and hence can be tailored easily for other rare earth derivatives of novel iron-based superconductors.

  19. Spin excitations in antiferromagnetic metallic phase of iron pnictides analyzed with a five-band itinerant model

    NASA Astrophysics Data System (ADS)

    Kaneshita, Eiji; Tohyama, Takami

    2011-03-01

    We investigate the spin wave excitation in the metallic antiferromagnetic phase of iron pnictide superconductors based on calculated neutron scattering spectra by mean-field calculations with a random phase approximation in a five-band itinerant model [E.K. & T.T., RPB 82, 094441 (2010)]. The calculated excitation spectra reproduce well spin-wave dispersions observed in inelastic neutron scattering, with a realistic magnetic moment for CaFe 2 As 2 . A particle-hole gap is found to be crucial to obtain consistent results; we predict the spin wave in LaFeAsO disappears at a lower energy than in CaFe 2 As 2 .

  20. Of Substitution and Doping: Spatial and Electronic Structure in Fe Pnictides

    NASA Astrophysics Data System (ADS)

    Merz, Michael; Schweiss, Peter; Nagel, Peter; Huang, Meng-Jie; Eder, Robert; Wolf, Thomas; von Löhneysen, Hilbert; Schuppler, Stefan

    2016-04-01

    A highly intriguing aspect in iron-pnictide superconductors is the composition-dependent electronic structure, in particular the question if and how charge carriers are introduced to the system upon substitution of Ba by alkali metals or of Fe by other transition metals, TM. We report on a systematic study of spatial structure and electronic states by x-ray diffraction and x-ray absorption on a large number of compositions in the (Ba,K)(Fe,TM)2As2 family. The coherent combination of detailed structural information with an in-depth analysis of the electronic structure allows us to sensitively disentangle (charge-carrier) "doping" effects from "substitutional" effects. Results include a doping character that is site-decoupled, as well as TM 3d energy-level schemes that exhibit non-standard level sequences and even t2-e level crossings. Our study indicates that doping per se seems to play a lesser role than expected for pnictide superconductivity and magnetism.

  1. Magnetic and metallic state at intermediate Hubbard U coupling in multiorbital models for undoped iron pnictides

    SciTech Connect

    Yu, Rong; Trinh, Kien T.; Moreo, Adriana; Daghofer, Maria; Riera, J. A.; Haas, Stephan; Dagotto, Elbio R

    2009-01-01

    Multiorbital Hubbard model Hamiltonians for the undoped parent compounds of the Fe-pnictide superconductors are investigated here using mean-field techniques. For a realistic four-orbital model, our results show the existence of an intermediate Hubbard U coupling regime where the mean-field ground state has a ,0 antiferromagnetic order, as in neutron-scattering experiments, while remaining metallic due to the phenomenon of band overlaps. The angle-resolved photoemission intensity and Fermi surface of this magnetic and metallic state are discussed. Other models are also investigated, including a two-orbital model where not only the mean-field technique can be used but also the exact diagonalization in small clusters and the variational cluster approximation in the bulk. The combined results of the three techniques point toward the existence of an intermediate-coupling magnetic and metallic state in the two-orbital model, similar to the intermediatecoupling mean-field state of the four-orbital model. We conclude that the state discussed here is compatible with the experimentally known properties of the undoped Fe pnictides.

  2. Strong correlations and the search for high-Tc superconductivity in chromium pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Pizarro, J. M.; Calderón, M. J.; Liu, J.; Muñoz, M. C.; Bascones, E.

    2017-02-01

    Undoped iron superconductors accommodate n =6 electrons in five d orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole doping, as the electronic filling approaches half filling with n =5 electrons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with n <5 electrons. By means of ab initio slave-spin and multiorbital random-phase-approximation calculations we analyze the strength of the correlations and the superconducting and magnetic instabilities in these systems with the main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, with (π ,π ) antiferromagnetism and nodal d -wave pairing being the most plausible magnetic and superconducting instabilities, respectively.

  3. Evidence of Mott physics in iron pnictides from x-ray spectroscopy

    DOE PAGES

    Lafuerza, S.; Gretarsson, H.; Hardy, F.; ...

    2017-07-24

    The existence of large instantaneous local magnetic moments in paramagnetic phases is a direct signature of Mott localization. In order to track the doping evolution of fluctuating local moments in iron-based superconductors, we jointly use two fast probes, x-ray emission and absorption spectroscopies. Exploring K- and Cr-hole-doped BaF e 2 A s 2 , we also find a systematic increase in the local moment with hole-doping, in contrast with inelastic neutron scattering measurements, which suggest an opposite trend. The results support the theoretical scenario in which a Mott insulating state that would be realized for half-filled conduction bands has anmore » influence throughout the phase diagram of these iron pnictides.« less

  4. Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

    NASA Astrophysics Data System (ADS)

    Blomberg, E. C.; Tanatar, M. A.; Fernandes, R. M.; Mazin, I. I.; Shen, Bing; Wen, Hai-Hu; Johannes, M. D.; Schmalian, J.; Prozorov, R.

    2013-05-01

    Unconventional superconductivity usually originates from several strongly coupled degrees of freedom, such as magnetic, charge and elastic. A highly anisotropic electronic phase, not driven by lattice degrees of freedom, has been proposed in some of these superconductors, from cuprates to iron-based compounds. In the iron pnictide BaFe2As2, this nematic phase arises in the paramagnetic phase and is present for wide doping and temperature ranges. Here we probe the in-plane electronic anisotropy of electron- and hole-doped BaFe2As2 compounds. Unlike other materials, the resistivity anisotropy behaves very differently for electron- and hole-type dopants and even changes sign on the hole-doped side. This behaviour is explained by Fermi surface reconstruction in the magnetic phase and spin-fluctuation scattering in the paramagnetic phase. This unique transport anisotropy unveils the primary role played by magnetic scattering, demonstrating the close connection between magnetism, nematicity and unconventional superconductivity.

  5. Evidence of Mott physics in iron pnictides from x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lafuerza, S.; Gretarsson, H.; Hardy, F.; Wolf, T.; Meingast, C.; Giovannetti, G.; Capone, M.; Sefat, A. S.; Kim, Y.-J.; Glatzel, P.; de'Medici, L.

    2017-07-01

    The existence of large instantaneous local magnetic moments in paramagnetic phases is a direct signature of Mott localization. In order to track the doping evolution of fluctuating local moments in iron-based superconductors, we jointly use two fast probes, x-ray emission and absorption spectroscopies. Exploring K- and Cr-hole-doped BaF e2A s2 , we find a systematic increase in the local moment with hole-doping, in contrast with inelastic neutron scattering measurements, which suggest an opposite trend. Our results support the theoretical scenario in which a Mott insulating state that would be realized for half-filled conduction bands has an influence throughout the phase diagram of these iron pnictides.

  6. Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides.

    PubMed

    Blomberg, E C; Tanatar, M A; Fernandes, R M; Mazin, I I; Shen, Bing; Wen, Hai-Hu; Johannes, M D; Schmalian, J; Prozorov, R

    2013-01-01

    Unconventional superconductivity usually originates from several strongly coupled degrees of freedom, such as magnetic, charge and elastic. A highly anisotropic electronic phase, not driven by lattice degrees of freedom, has been proposed in some of these superconductors, from cuprates to iron-based compounds. In the iron pnictide BaFe2As2, this nematic phase arises in the paramagnetic phase and is present for wide doping and temperature ranges. Here we probe the in-plane electronic anisotropy of electron- and hole-doped BaFe2As2 compounds. Unlike other materials, the resistivity anisotropy behaves very differently for electron- and hole-type dopants and even changes sign on the hole-doped side. This behaviour is explained by Fermi surface reconstruction in the magnetic phase and spin-fluctuation scattering in the paramagnetic phase. This unique transport anisotropy unveils the primary role played by magnetic scattering, demonstrating the close connection between magnetism, nematicity and unconventional superconductivity.

  7. Large D-2 Theory of Superconducting Fluctuations in a Magnetic Field and its Application to Iron Pnictides

    NASA Astrophysics Data System (ADS)

    Murray, James; Tesanovic, Zlatko

    2011-03-01

    A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions: a vortex liquid-to- solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice, illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors. Supported in part by the Gardner Foundation and the Johns Hopkins-Princeton Institute for Quantum Matter, under Grant No. DE-FG02-08ER46544 by the U.S. Department of Energy, OBES, Division of Materials Sciences and Engineering.

  8. Hexagonal pnictide SrPtAs; the role of spin-orbit interaction and locally broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Rhim, S. H.; Youn, S. J.; Fischer, M. H.; Agterberg, D. F.; Sigrist, M.; Weinert, M.; Freeman, A. J.

    2012-02-01

    The first hexagonal pnictide superconductor SrPtAs which consists of stacked PtAs layers has been studied using the FLAPW methodootnotetextWimmer, Krakauer, Weinert, and Freeman, Phys.Rev.B. 24, 864 (1981) and tight-binding methods. The single PtAs layer forms a honeycomb structure that exhibits: (1) locally broken inversion symmetry despite the presence of the global inversion center, and (2) strong spin-orbit interaction, for which physical consequences are nontrivial. Based on these findings, we predict significant enhancement of both the spin susceptibility and the paramagnetic limiting field with respect to the usual s wave superconductors. Further, we suggest an increase of TC by electron doping of a van Hove singularity.

  9. Strong electronic correlations in iron pnictides: Comparison of the optical spectra for BaFe2As2-related compounds

    NASA Astrophysics Data System (ADS)

    Nakajima, Masamichi

    2014-03-01

    The role of electronic correlations in iron pnictides is one of the hottest issues in research of iron-based superconductors. Utilizing optical spectroscopy, we quantified the strength of electronic correlations in BaFe2As2-related compounds. For the parent compound BaFe2As2, the fraction of the coherent spectral weight in the low-energy optical conductivity spectrum is distinctly small. Such a spectral feature is also observed in KFe2As2, indicating that the charge dynamics is highly incoherent in iron arsenides. It is found that the strength of electronic correlations significantly changes by chemical substitution, either through changing the electron filling and/or the As-Fe-As bond angle. The present result indicates that superconductivity of the iron pnictides emerges when the materials possess adequate amount of electronic correlations, and that either too weak or too strong correlations are not favorable for high-Tc superconductivity. The degree of electronic correlations in iron arsenides turns out to be comparable to that in the hole-underdoped cuprate superconductors. In this sense, the iron arsenides are classified into strongly correlated systems, probably arising from the Hund's rule coupling. This work was done in collaboration with S. Ishida, K. Kihou, Y. Tomioka, C. H. Lee, A. Iyo, T. Ito, H. Eisaki (AIST), T. Tanaka, T. Kakeshita, S. Uchida (University of Tokyo), T. Saito, H. Fukazawa, and Y. Kohori (Chiba University).

  10. Terahertz nano-spectroscopy and imaging of superfluid surface plasmons in conventional and anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Stinson, H. T.; Wu, J. S.; Jiang, B. Y.; Fei, Z.; Rodin, A. S.; Chapler, B.; McLeod, A. S.; Castro Neto, A.; Lee, Y. S.; Fogler, M. M.; Basov, D. N.

    2015-03-01

    We numerically model near-field spectroscopy and superfluid polariton imaging experiments on conventional and unconventional superconductors in the infrared and terahertz regime. Our modeling shows that near-field spectroscopy can measure the magnitude of the superconducting gap in Bardeen-Cooper-Schrieffer superconductors with nanoscale spatial resolution. We demonstrate how the same technique can measure the c-axis plasma frequency, and thus the c-axis superfluid density, of layered unconventional superconductors such as cuprates and pnictides with identical spatial resolution. We discuss the development of a cryogenic terahertz near-field microscope designed to perform these proposed experiments.

  11. Superconductor developments

    SciTech Connect

    Larbalestier, D.

    1989-04-05

    I will cover the technology of the new oxide supeconductors and how they might relate to the existing superconductors. Fermilab and the high energy physics community in general have had much to do with the development of the ''old'' superconductors. Bednorz and M/umlt u/ller must be credited with the idea of setting out on the search for the new superconductors.

  12. Organic superconductors.

    PubMed

    Saito, Gunzi; Yoshida, Yukihiro

    2011-06-01

    The present status of organic superconductors of charge-transfer (CT) type based on donor molecules is reviewed. Along with the superconducting phases of such materials and also of oxide superconductors, reside spin-ordered phases such as spin-density wave (SDW) and antiferromagnetic (AF) phases. We briefly describe the recent development of superconductors having a superconducting phase next to a spin-disorder state (quantum spin liquid state). In addition to the CT type superconductors, there are a few single-component superconductors under high pressure.

  13. Organic Superconductors

    SciTech Connect

    Charles Mielke

    2009-02-27

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  14. Antiferromagnetic order and spin dynamics in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Dai, Pengcheng

    2015-07-01

    High-transition temperature (high-Tc) superconductivity in the iron pnictides or chalcogenides emerges from the suppression of the static antiferromagnetic order in their parent compounds, similar to copper oxide superconductors. This raises a fundamental question concerning the role of magnetism in the superconductivity of these materials. Neutron scattering, a powerful probe to study the magnetic order and spin dynamics, plays an essential role in determining the relationship between magnetism and superconductivity in high-Tc superconductors. The rapid development of modern neutron time-of-flight spectrometers allows a direct determination of the spin dynamical properties of iron-based superconductors throughout the entire Brillouin zone. In this paper, an overview is presented of the neutron scattering results on iron-based superconductors, focusing on the evolution of spin-excitation spectra as a function of electron and hole doping and isoelectronic substitution. Spin dynamical properties of iron-based superconductors are compared with those of copper oxide and heavy fermion superconductors and the common features of spin excitations in these three families of unconventional superconductors and their relationship with superconductivity are discussed.

  15. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    DOE PAGES

    Egami, T.; Fine, B. V.; Parshall, D.; ...

    2010-01-01

    We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT) and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for themore » onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.« less

  16. Terahertz nano-spectroscopy and imaging of super?uid surface plasmons in conventional and anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Stinson, H. T.; Wu, J. S.; Jiang, B. Y.; Fei, Z.; Rodin, A. S.; Chapler, B.; McLeod, A. S.; Castro Neto, A.; Lee, Y. S.; Fogler, M. M.; Basov, D. N.

    We numerically model near-field spectroscopy and superfluid polariton imaging experiments on conventional and unconventional superconductors in the infrared and terahertz regime. Our modeling shows that near-field spectroscopy can measure the magnitude of the superconducting gap in Bardeen-Cooper-Schrieffer superconductors with nanoscale spatial resolution. We demonstrate how the same technique can measure the c-axis plasma frequency, and thus the c-axis superfluid density, of layered unconventional superconductors such as cuprates and pnictides with identical spatial resolution. We discuss the development of a cryogenic terahertz near-field microscope designed to perform these proposed experiments, and recent proof of principle results at room temperature.

  17. On the brittle nature of rare earth pnictides

    SciTech Connect

    Shriya, S.; Sapkale, R.; Varshney, Dinesh E-mail: sapkale.raju@rediffmail.com; Singh, N.; Varshney, M.

    2016-05-23

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties in ReY; (Re = La, Sc, Pr; Y = N, P, As, Sb, Bi) pnictides have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from NaCl to CsCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, second order Cauchy discrepancy, anisotropy, hardness and brittle/ductile nature of rare earth pnictides are computed.

  18. Evidence for weak electronic correlations in Fe-pnictides

    SciTech Connect

    Yang, W.L.

    2010-04-29

    Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe L edges is investigated in Fe pnictide materials, and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters U {approx}< 2eV and J {approx} 0.8eV.

  19. Vortex core size in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Zakharchuk, I.; Belova, P.; Safonchik, M.; Traito, K. B.; Lähderanta, E.

    2013-01-01

    Influence of the order parameter symmetries on the cutoff parameter ξh and vortex core size ξ2 (the distance from the vortex center at which the current density reaches the maximum value) in the mixed state are investigated in the framework of Eilenberger theory for unconventional superconductors. The cutoff parameter determines the field distribution in the generalized London equation obtained as a projection of the quasiclassical theory. It is used for the fitting of the μSR and small-angle neutron scattering experimental data. Anisotropic dx2-y2 and isotropic s±-wave superconducting pairings are studied. These pairing symmetries can be realized in iron pnictide superconductors. Conventional s++ pairing mediated electron-phonon interaction is also considered. Temperature, field, and impurity scattering dependences of ξh/ξc2 are obtained. It is found that normalized ξ2/ξc2(B /Bc2) dependence is increasing with pair breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the relation Bc2=Φ0/2πξc22, where Bc2 is an upper critical field and Φ0 is a flux quantum. Two types of ξ2/ξc2(B /Bc2) dependences are obtained for s± superconductors. It has minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence was also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2 field dependence in s++ superconductors.

  20. Electronic and magnetic phase diagram in KxFe2-ySe2 superconductors

    PubMed Central

    Yan, Y. J.; Zhang, M.; Wang, A. F.; Ying, J. J.; Li, Z. Y.; Qin, W.; Luo, X. G.; Li, J. Q.; Hu, Jiangping; Chen, X. H.

    2012-01-01

    The correlation and competition between antiferromagnetism and superconductivity are one of the most fundamental issues in high temperature superconductors. Superconductivity in high temperature cuprate superconductors arises from suppressing an antiferromagnetic (AFM) Mott insulator1 while in iron-pnictide superconductors arises from AFM semimetals and can coexist with AFM orders23456789. This difference raises many intriguing debates on the relation between the two classes of high temperature superconductors. Recently, superconductivity at 32 K has been reported in iron-chalcogenide superconductors AxFe2−ySe2 (A = K, Rb, and Cs)101112. They have the same structure as that of iron-pnictide 122-system131415. Here, we report electronic and magnetic phase diagram of KxFe2−ySe2 system as a function of Fe valence. We find a superconducting phase sandwiched between two AFM insulating phases. The two insulating phases are characterized by two distinct superstructures caused by Fe vacancy orders with modulation wave vectors of q1 = (1/5, 3/5, 0) and q2 = (1/4, 3/4, 0), respectively. PMID:22355726

  1. Superconductor Composite

    DOEpatents

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  2. Non-Fermi liquid behavior and non-universal superconducting gap structure in Fe-pnictides

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuji

    2010-03-01

    The discovery of Fe-pnictide superconductors with Tc exceeding 55 K raises fundamental questions about origin of high-Tc superconductivity. Here we report the systematic studies of the normal-state charge transport, Fermi surface structure and superconducting gap structure in high-quality single crystals of BaFe2(As1-xPx)2 (0 <=x <=0.71), ranging from the SDW state to overdoped Fermi liquid state. Near the SDW boundary, the transport coefficients, including resistivity, Hall coefficient and magnetoresistance, exhibit striking deviations from the Fermi liquid properties [1]. The Fermi surface structure determined by the dHvA effect shows that in the superconducting dome the volume of the electron and hole sheets shrink linearly and the effective masses become strongly enhanced with decreasing x [2]. It is likely that these trends originate from the many-body interaction which gives rise to superconductivity. The penetration depth, thermal conductivity and NMR data for BaFe2(As0.67P0.33)2 (Tc=30 K) provide unambiguous evidence for line nodes in the superconducting gap function [3], in sharp contrast to the other Fe-based compounds with fully gapped structure. This indicates that the gap structure of Fe-based high-Tc superconductors is not universal.[1] S. Kasahara et al., arXiv:0905.4427 [2] H. Shishido et al., arXiv:0910.3634 [3] K. Hashimoto et al., arXiv:0907.4399 [4] K. Hashimoto et al., Phys. Rev. Lett. 102, 017002 (2009), ibid 102, 207001 (2009).

  3. Coexistence of ferromagnetism and superconductivity in iron based pnictides: a time resolved magnetooptical study

    PubMed Central

    Pogrebna, A.; Mertelj, T.; Vujičić, N.; Cao, G.; Xu, Z. A.; Mihailovic, D.

    2015-01-01

    Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains. PMID:25583548

  4. Coexistence of ferromagnetism and superconductivity in iron based pnictides: a time resolved magnetooptical study.

    PubMed

    Pogrebna, A; Mertelj, T; Vujičić, N; Cao, G; Xu, Z A; Mihailovic, D

    2015-01-13

    Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains.

  5. Pairing symmetries of a hole-doped extended two-orbital model for the pnictides

    SciTech Connect

    Nicholson, Andrew D; Ge, Weihao; Riera, J. A.; Daghofer, Maria; Moreo, Adriana; Dagotto, Elbio R

    2012-01-01

    The hole-doped ground state of a recently introduced extended t-U-J two-orbital Hubbard model for the Fe-based superconductors is studied via exact diagonalization methods on small clusters. Similarly as in the previously studied case of electron doping [A. Nicholson et al., Phys. Rev. Lett. 106, 217002 (2011)], upon hole doping it is observed that there are several competing pairing symmetries, including A1g , B1g , and B2g . However, contrary to the electron-doped case, the ground state of the hole-doped state has pseudocrystal momentum k = ( , ) in the unfolded Brillouin zone. In the two Fe-atom per unit cell representation, this indicates that the ground state involves antibonding, rather than bonding, combinations of the orbitals of the two Fe atoms in the unit cell. The lowest state with k = (0,0) has only a slightly higher energy. These results indicate that this simple two-orbital model may be useful to capture some subtle aspects of the hole-doped pnictides, since calculations for the five-orbital model have unveiled a hole pocket centered at M [k = ( , )] in the unfolded Brillouin zone.

  6. Superconductor consolidation

    SciTech Connect

    Staudhammer, K.P.

    1988-01-01

    A program to develop explosively shock consolidated monoliths of YBa/sub 2/Cu/sub 3/O/sub 7/minus/x/ ceramic superconductors has been ongoing at Los Alamos National Laboratory since last year. Shock consolidation can produce a near 100% theoretical density, bulk superconductor that does not require a post anneal in oxygen. Shock compaction is also an excellent means of creating a good electrical contact weld between the ceramic superconductor and a metal such as copper. Elimination of the post anneal and low temperature shock welding of the cladding metal are unique advantages stemming from the shock compaction processing. Successful shock compaction processing will enable production of a wide variety of complex ceramic-superconductor forms tailored for specific defense application requirements. Shock compaction can be developed into industrial manufacturing processes. DuPont now makes diamond powder this way. Shock compacted superconductor billets can be used in applications where a solid superconductor form is required (e.g., magnetic bearings, bus bar for a niobium-tin FEL SMES, motor rotors, etc.), or they can be post processed by extrusion and other swaging processes to produce textured wires and tapes for electrical current carrying applications. 11 refs., 1 fig.

  7. Superconductor consolidation

    NASA Astrophysics Data System (ADS)

    Staudhammer, K. P.

    A program to develop explosively shock consolidated monoliths of YBa2Cu3O(sub 7-x) ceramic superconductors has been ongoing at Los Alamos National Laboratory since last year. Shock consolidation can produce a near 100 percent theoretical density, bulk superconductor that does not require a post anneal in oxygen. Shock compaction is also an excellent means of creating a good electrical contact weld between the ceramic superconductor and a metal such as copper. Elimination of the post anneal and low temperature shock welding of the cladding metal are unique advantages stemming from the shock compaction processing. Successful shock compaction processing will enable production of a wide variety of complex ceramic superconductor forms tailored for specific defense application requirements. Shock compaction can be developed into industrial manufacturing processes. Shock compacted superconductor billets can be used in applications where a solid superconductor form is required (e.g., magnetic bearings, bus bar for a niobium-tin FEL SMES, motor rotors, etc.) or they can be post processed by extrusion and other swaging processes to produce textured wires and tapes for electrical current carrying applications.

  8. Frustrated proximity effects between s and s± superconductors

    NASA Astrophysics Data System (ADS)

    Stanev, Valentin; Koshelev, Alexei E.

    2011-03-01

    The nature of the superconducting order parameter (OP) in iron pnictides and chalcogenides is a hotly debated issue. It was theoretically proposed that the OP has opposite signs on the hole and the electron bands, i.e., it belongs to the unconventional class of s +/- (or extended s)-wave. There are, however, very few experiments that can directly distinguish this state from the ordinary s-wave OP. One way to address this problem is to study the proximity effects in a sandwich composed of conventional and iron pnictide superconductors (SC). If the pnictides indeed have the s +/- OP this system is intrinsically frustrated. In the case of strong frustration, a time-reversal symmetry-breaking (TRSB) SC state emerges, in which the OP phases in different bands are tilted at an angle, different from π , and controlled by the coupling strength. Observation of such state in the iron-based SC materials would give definite evidence for the s +/- OP. We present a microscopic, fully self-consistent approach to this problem, based on Usadel equations. We have studied the conditions for existence of the TRSB state and its experimental signatures.

  9. Synthesizing new, high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Weaver, Claire; Aronson, Meigan

    2015-03-01

    Currently, there is no accepted theory behind type-II, high-temperature superconductors, but there is a distinct relationship between anti-ferromagnetism and superconductivity. Our research focuses on synthesizing new superconducting materials by observing the link between atomic structure and magnetic moments of anti-ferromagnetic compounds and attempting to reproduce the molecular physics of these known materials in new compounds. Consider the square-planar arrangement of the transition metal Fe in the Fe-pnictide superconductors of the ZrCuSiAs ``11 11'' and the ThCr2Si2 ``122'' structure types. We believe that the physics behind this superconductor, where Fe has d6 valence electrons, contributes to the superconducting state, not the presence of Fe itself. For this reason, we are synthesizing materials containing neighboring transition metals, like Mn and Co, combined with other elements in similar crystal lattice arrangements, having ionization properties that hopefully impose d6 valence electrons on the transition metals. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  10. Anomalous critical fields in quantum critical superconductors

    PubMed Central

    Putzke, C.; Walmsley, P.; Fletcher, J. D.; Malone, L.; Vignolles, D.; Proust, C.; Badoux, S.; See, P.; Beere, H. E.; Ritchie, D. A.; Kasahara, S.; Mizukami, Y.; Shibauchi, T.; Matsuda, Y.; Carrington, A.

    2014-01-01

    Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2(As1−xPx)2 is perhaps the clearest example to date of a high-temperature quantum critical superconductor, and so it is a particularly suitable system to study how the quantum critical fluctuations affect the superconducting state. Here we show that the proximity of the QCP yields unexpected anomalies in the superconducting critical fields. We find that both the lower and upper critical fields do not follow the behaviour, predicted by conventional theory, resulting from the observed mass enhancement near the QCP. Our results imply that the energy of superconducting vortices is enhanced, possibly due to a microscopic mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realized in quantum critical superconductors. PMID:25477044

  11. Dual role of d electrons in iron pnictides

    NASA Astrophysics Data System (ADS)

    Gor'kov, Lev P.; Teitel'baum, Gregory B.

    2013-01-01

    Recent Fe x-ray emission spectroscopy experiments [H. Gretarsson , Phys. Rev. B1098-012110.1103/PhysRevB.84.100509 84, 100509 (2011)] unveiled sizable local moments in iron pnictides in the room-temperature paramagnetic state. In an effort to further clarify the notion of coexisting magnetic moments and itinerant carriers in iron pnictides we focus on the interactions between the two subsystems. At a moderate on-site Coulomb repulsion the intra-atomic Hund's interaction leads to the formation of nonzero (“bare”) local moments on the Fe sites. We show that the Kondo-like exchange with the itinerant electrons may significantly renormalize the “bare” value of the moments manifested in different experiments. In turn, the itinerant carriers scatter on the renormalized moments that remain disordered in the paramagnetic phase. On the one hand, the scattering mechanism is responsible for high values of resistivity of the stoichiometric pnictides at the temperature of their transition into the antiferromagnetic phase, and on the other hand, it washes out the fine details of the Fermi surfaces. The results are rigorous and were obtained without use of any Born-type approximation. It also turned out that the value of the local moment and the inverse free time for scattering of carriers on the moments tend in the limit of the strong Kondo exchange to the finite universal values. The independence of the results on the on-site Coulomb repulsion is then illustrated in the frameworks of a simplistic model. It is shown that the spin density wave transition is driven by the Ruderman-Kittel-Kasuya-Yosida interactions between the renormalized moments via exchange by the electron-hole pairs. The applicability of the Boltzmann approach to transport in multiband pnictides is discussed briefly.

  12. Metallicity of Ca2Cu6P5 with single and double copper-pnictide layers

    DOE PAGES

    Li, Li; Parker, David; Chi, Miaofang; ...

    2016-02-16

    We report thermodynamic and transport properties, and also theoretical calculations, for Cu-based compound Ca2Cu6P5 and compare with CaCu2-δP2. Both materials have layers of edge-sharing copper pnictide tetrahedral CuP4, similar to Fe–As and Fe–Se layers (with FeAs4, FeSe4) in the iron-based superconductors. Despite the presence of this similar transition-metal pnictide layer, we find that both Ca2Cu6P5 and CaCu2-δP2 have temperature-independent magnetic susceptibility and show metallic behavior with no evidence of either magnetic ordering or superconductivity down to 1.8 K CaCu2-δP2 is slightly off-stoichiometric, with δ = 0.14. Theoretical calculations suggest that unlike Fe 3d-based magnetic materials with a large density ofmore » states (DOS) at the Fermi surface, Cu have comparatively low DOS, with the majority of the 3d spectral weight located well below Fermi level. The room-temperature resistivity value of Ca2Cu6P5 is only 9 μΩ-cm, due to a substantial plasma frequency and an inferred electron-phonon coupling λ of 0.073 (significantly smaller than that of metallic Cu). Also, microscopy result shows that Cu–Cu distance along the c-axis within the double layers can be very short (2.5 Å), even shorter than metallic elemental copper bond (2.56 Å). The value of dρ/dT for CaCu2-δP2 at 300 K is approximately three times larger than in Ca2Cu6P5, which suggests the likelihood of stronger electron-phonon coupling. Lastly, this study shows that the details of Cu–P layers and bonding are important for their transport characteristics. In addition, it emphasizes the remarkable character of the DOS of ‘122’ iron-based materials, despite much structural similarities.« less

  13. Pairing mechanism in the ferromagnetic superconductor UCoGe

    PubMed Central

    Wu, Beilun; Bastien, Gaël; Taupin, Mathieu; Paulsen, Carley; Howald, Ludovic; Aoki, Dai; Brison, Jean-Pascal

    2017-01-01

    Superconductivity is a unique manifestation of quantum mechanics on a macroscopic scale, and one of the rare examples of many-body phenomena that can be explained by predictive, quantitative theories. The superconducting ground state is described as a condensate of Cooper pairs, and a major challenge has been to understand which mechanisms could lead to a bound state between two electrons, despite the large Coulomb repulsion. An even bigger challenge is to identify experimentally this pairing mechanism, notably in unconventional superconductors dominated by strong electronic correlations, like in high-Tc cuprates, iron pnictides or heavy-fermion compounds. Here we show that in the ferromagnetic superconductor UCoGe, the field dependence of the pairing strength influences dramatically its macroscopic properties like the superconducting upper critical field, in a way that can be quantitatively understood. This provides a simple demonstration of the dominant role of ferromagnetic spin fluctuations in the pairing mechanism. PMID:28230099

  14. Surface nematic order in iron pnictides

    DOE PAGES

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-09

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2-xPx .« less

  15. Surface nematic order in iron pnictides

    SciTech Connect

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-09

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that the interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2-xPx .

  16. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  17. Organic superconductors

    NASA Astrophysics Data System (ADS)

    Jérome, D.

    1994-10-01

    The discovery of organic superconductors in 1980 was an happy conclusion of a search for high T c superconductors (although T c was modestly in the Kelvin range). The first generation of organic superconductors belonged to a large family of quasi-one-dimensional conducting cation radical salts. Most of them exhibit a wide range of new phenomena, including the competition between ground states, the influence of a magnetic field on the non ordered phase of a quasi-one-dimensional electron gas and the onset of spin density wave phases at high magnetic field with quantized Hall effect. The extensive study of the (TM) 2X series has shown that electron interactions are repulsive and of the order of the electron bandwidth. However, the nature of the ground states relies essentially on the balance between charge localisation boosted by the Umklapp scattering and the interchain hopping intergal. Second and third generation organic superconductors are two and three dimensional molecular conductors respectively with maximum T c of 12K (ET) 2X and 33 K (fullerides).

  18. Microstructure refinement and enhanced critical current density in binary doped SmFeAsO superconductor

    NASA Astrophysics Data System (ADS)

    Anooja, J. B.; Aswathy, P. M.; Varghese, Neson; Aloysius, R. P.; Syamaprasad, U.

    2014-04-01

    The iron-pnictide Sm1-xCaxFeAsO1-2xF2x superconductor was prepared and the combined effect of electron and hole doping was studied in detail. It is observed that the binary doping using CaF2 improves the microstructure tremendously with a preferred orientation of the (00l) planes. Moreover, a maximum TC of 53.8 K and a transport JC of 880 A/cm2 (12 K), which is double to that of the F-doped sample, are achieved. The dopant CaF2 seems to be a potential candidate for solving the grain-connectivity concerns in iron-pnictides paving the way towards conductor development.

  19. Microstructure refinement and enhanced critical current density in binary doped SmFeAsO superconductor

    SciTech Connect

    Anooja, J. B.; Aswathy, P. M.; Varghese, Neson; Syamaprasad, U.; Aloysius, R. P.

    2014-04-24

    The iron-pnictide Sm{sub 1−x}Ca{sub x}FeAsO{sub 1−2x}F{sub 2x} superconductor was prepared and the combined effect of electron and hole doping was studied in detail. It is observed that the binary doping using CaF{sub 2} improves the microstructure tremendously with a preferred orientation of the (00l) planes. Moreover, a maximum T{sub C} of 53.8 K and a transport J{sub C} of 880 A/cm{sup 2} (12 K), which is double to that of the F-doped sample, are achieved. The dopant CaF{sub 2} seems to be a potential candidate for solving the grain-connectivity concerns in iron-pnictides paving the way towards conductor development.

  20. Nontrivial Role of Interlayer Cation States in Iron-Based Superconductors

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Mazin, I. I.; Glasbrenner, J. K.; Bascones, E.; Valentí, Roser

    2017-01-01

    Unconventional superconductivity in iron pnictides and chalcogenides has been suggested to be controlled by the interplay of low-energy antiferromagnetic spin fluctuations and the particular topology of the Fermi surface in these materials. Based on this premise, one would also expect the large class of isostructural and isoelectronic iron germanide compounds to be good superconductors. As a matter of fact, they, however, superconduct at very low temperatures or not at all. In this work we establish that superconductivity in iron germanides is suppressed by strong ferromagnetic tendencies, which surprisingly do not originate from changes in bond angles or bond distances with respect to iron pnictides and chalcogenides, but are due to changes in the electronic structure in a wide range of energies happening upon substitution of atom species (As by Ge and the corresponding spacer cations). Our results indicate that superconductivity in iron-based materials may not always be fully understood based on d or d -p model Hamiltonians only.

  1. Nontrivial Role of Interlayer Cation States in Iron-Based Superconductors.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Mazin, I I; Glasbrenner, J K; Bascones, E; Valentí, Roser

    2017-01-06

    Unconventional superconductivity in iron pnictides and chalcogenides has been suggested to be controlled by the interplay of low-energy antiferromagnetic spin fluctuations and the particular topology of the Fermi surface in these materials. Based on this premise, one would also expect the large class of isostructural and isoelectronic iron germanide compounds to be good superconductors. As a matter of fact, they, however, superconduct at very low temperatures or not at all. In this work we establish that superconductivity in iron germanides is suppressed by strong ferromagnetic tendencies, which surprisingly do not originate from changes in bond angles or bond distances with respect to iron pnictides and chalcogenides, but are due to changes in the electronic structure in a wide range of energies happening upon substitution of atom species (As by Ge and the corresponding spacer cations). Our results indicate that superconductivity in iron-based materials may not always be fully understood based on d or d-p model Hamiltonians only.

  2. Superconductor cable

    DOEpatents

    Smith, Jr., Darrell F.; Lake, Bill L.; Ballinger, Ronald G.

    1988-01-01

    A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.

  3. Validity of the local approximation in iron pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Sémon, Patrick; Haule, Kristjan; Kotliar, Gabriel

    2017-05-01

    We introduce a methodology to treat different degrees of freedom at different levels of approximation. We use cluster DMFT (dynamical mean field theory) for the t2 g electrons and single site DMFT for the eg electrons to study the normal state of the iron pnictides and chalcogenides. In the regime of moderate mass renormalizations, the self-energy is very local, justifying the success of single site DMFT for these materials and for other Hunds metals. We solve the corresponding impurity model with CTQMC (continuous time quantum Monte Carlo) and find that the minus sign problem is not severe in regimes of moderate mass renormalization.

  4. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  5. Crystal structure and physical properties of new transition metal based pnictide compounds: LaTM2AsN (TM = Fe, Co, and Ni)

    NASA Astrophysics Data System (ADS)

    Jeong, Sehoon; Matsuishi, Satoru; Bang, Joonho; Hosono, Hideo

    2015-04-01

    New 3d transition metal-based mixed-pnictide compounds, LaTM2AsN (TM = Fe, Co, and Ni) are synthesized by solid state reactions under a high pressure of 2.5 GPa. These compounds crystallize with an orthorhombic structure (space group Cmcm) containing four formula units per unit cell. The crystal structure consists of an anisotropic network of TMAs3N tetrahedra sharing As-As edges along the in-plane ac direction and N corners along the b-direction, forming a TM honeycomb lattice with a boat-shape conformation bridged by TM-N-TM linear bonds. The temperature dependences of the electrical resistivity and magnetic susceptibility indicate that these crystals are itinerant antiferromagnets exhibiting parasitic ferromagnetism with transition temperatures of 560, 260, and 410 K for TM = Fe, Co, and Ni, respectively. These compounds are expected to be parent materials for new superconductors.

  6. Soft-mode transitions of alkaline-earth 122 pnictides

    NASA Astrophysics Data System (ADS)

    Widom, Michael; Quader, Khandker

    A -122 pnictides (A=Ca, Sr, Ba) exhibit three pressure-driven transitions: a first order enthalpic transition at PH from the striped AFM orthorhombic (OR) to a tetragonal (T) or a collapsed tetragonal (cT) phase; a transition at PM >PH from the metastable AFM OR to a T or cT phase; a Lifshitz transition at PL that causes T to collapse to a cT phase. Transitions at PH and PL were previously examined through total energy and band structure calculations. Here we address the transition at PM, beyond which the metastable AFM OR state ceases to exist. We show this transition occurs through a loss of elastic stability caused by softening of a shear mode associated with stretching along the c-axis. Simultaneously, magnetism and orthorhombicity approach limiting values with an approximately square-root singularity. Together these suggest a strong magneto-elastic coupling that may be relevant to a further understanding of the A-122-pnictides under pressure. This work was supported in part by the DOE under Grant DE-SC0014506.

  7. Development and physical properties of new layered Mn pnictides

    NASA Astrophysics Data System (ADS)

    Watanabe, Soshi; Ogino, Hiraku; Katagi, Yu; Singh, Shiv Jee; Yamamoto, Akiyasu; Shimoyama, Jun-Ichi; Takeshita, Nao; Kishio, Kohji

    2014-03-01

    Compounds which have anti-fluorite MnPn layer are antiferromagnetic insulators with high Neel temperature. Recent studies clarified that antiferromagnetic ordering was suppressed and insulator-to-metal transition was induced by carrier doping or applying pressure in Mn Arsenides, therefore Mn pnictides could exhibit various physical properties, such as superconductivity. In particular, compounds with alternate stacking of MnPn layers and perovskite-type oxide layers are interesting, because this system has large flexibilities in both chemical compositions and crystal structures. In this study, we found various new Mn pnictides such as (Mn2Pn2)(Ba3RE2O5) [Pn = As, Sb, RE = Sc, Pr, Sm ~ Lu]. (Mn2Pn2)(Ba3RE2O5) showed paramagnetic magnetization due to magnetization of RE elements. Compound with shorter a-axis length shows lower resistivity at room temperature in this system. In addition, We successfully synthesized single phase (Mn2Bi2)(Sr2MnO2) , which has anti-fluorite MnBi layers. This compound was insulating, however, resistivity greatly decreased by applying external pressure and changed to metallic behavior. This quite large dependence of resistivity on external pressure shows the possibility of the expression of the functionality such as superconductivity in corresponding compounds.

  8. Half-metallic zinc-blende pnictides in real environments

    NASA Astrophysics Data System (ADS)

    Shi, Li-Jie; Liu, Bang-Gui

    2005-02-01

    The structural stability of half-metallic zinc-blende pnictides and the robustness of their half-metallic ferromagnetism in the presence of tetragonal and orthorhombic crystalline deformations are studied using a full-potential linear augmented plane wave method within the density-functional theory. The total energies of zinc-blende MnAs, CrAs, and CrSb are proved to increase with deformation increase, in contrast to those of other zinc-blende half-metallic pnictides, and therefore these three are stable against the deformations but the others are not. This is consistent with the experimental fact that only these three have been fabricated. On the other hand, the half-metallic ferromagnetism of the latter two is proved to be robust enough to survive large crystal deformations. This implies that half-metallic ferromagnetism may be achieved experimentally even in substantially deformed zinc-blende ultrathin films or layers of CrAs and CrSb in real environments.

  9. New promising bulk thermoelectrics: intermetallics, pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Gonçalves, Antonio P.; Godart, Claude

    2014-02-01

    The need of alternative "green" energy sources has recently renewed the interest in thermoelectric (TE) materials, which can directly convert heat to electricity or, conversely, electric current to cooling. The thermoelectric performance of a material can be estimated by the so-called figure of merit, zT = σ α 2 T/ λ ( α the Seebeck coefficient, σ α 2 the power factor, σ and λ the electrical and thermal conductivity, respectively), that depends only on the material. In the middle 1990s the "phonon glass and electron crystal" concept was developed, which, together with a better understanding of the parameters that affect zT and the use of new synthesis methods and characterization techniques, has led to the discovery of improved bulk thermoelectric materials that start being implemented in applications. During last decades, special focus has been made on skutterudites, clathrates, half-Heusler alloys, Si1- x Ge x-, Bi2Te3- and PbTe-based materials. However, many other materials, in particular based on intermetallics, pnictides, chalcogenides, oxides, etc. are now emerging as potential advanced bulk thermoelectrics. Herein we discuss the current understanding in this field, with special emphasis on the strategies to reduce the lattice part of the thermal conductivity and maximize the power factor, and review those new potential thermoelectric bulk materials, in particular based on intermetallics, pnictides and chalcogenides. A final chapter, discussing different shaping techniques leading to bulk materials (eventually from nanostructured TE materials), is also included.

  10. Spatial competition of the ground states in 1111 iron pnictides

    NASA Astrophysics Data System (ADS)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  11. Quantum criticality in the 122 iron pnictide superconductors emerging from orbital-selective Mottness

    NASA Astrophysics Data System (ADS)

    Das, S. D.; Laad, M. S.; Craco, L.; Gillett, J.; Tripathi, V.; Sebastian, S. E.

    2015-10-01

    The twin issues of the nature of the "normal" state and competing order(s) in the iron arsenides are central to understanding their unconventional, high-Tc superconductivity. We use a combination of transport anisotropy measurements on detwinned Sr (Fe1-xCox) 2As2 single crystals and local density approximation plus dynamical mean field theory (LDA + DMFT) calculations to revisit these issues. The peculiar resistivity anisotropy and its evolution with x are naturally interpreted in terms of an underlying orbital-selective Mott transition (OSMT) that gaps out the dx z or dy z states. Further, we use a Landau-Ginzburg approach using LDA + DMFT input to rationalize a wide range of anomalies seen up to optimal doping, providing strong evidence for secondary electronic nematic order. These findings suggest that strong dynamical fluctuations linked to a marginal quantum-critical point associated with this OSMT and a secondary electronic nematic order constitute an intrinsically electronic pairing mechanism for superconductivity in Fe arsenides.

  12. Ferromagnetism in CuFeSb: Evidence of competing magnetic interactions in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Qian, B.; Lee, J.; Hu, J.; Wang, G. C.; Kumar, P.; Fang, M. H.; Liu, T. J.; Fobes, D.; Pham, H.; Spinu, L.; Wu, X. S.; Green, M.; Lee, S. H.; Mao, Z. Q.

    2012-04-01

    We have synthesized a new layered iron-pnictide CuFeSb. This material shares a similar layered tetragonal structure with iron-based superconductors, with Fe square planar sheets forming from the edge-sharing iron antimony tetrahedral network. CuFeSb differs remarkably from Fe-based superconductors in the height of anion Zanion from the Fe plane; ZSb for CuFeSb is ˜1.84 Å, much larger than ZAs (1.31-1.51 Å) in FeAs compounds and ZTe (˜1.77 Å) in Fe1+yTe. In contrast with the metallic antiferromagnetic (AFM) or superconducting state of iron pnictides and chalcogenides under current studies, CuFeSb exhibits a metallic, ferromagnetic (FM) state with Tc=375 K. This finding suggests that the competition between AFM and FM coupling may exist in Fe-based superconductors and that the nature of magnetic coupling within the Fe plane is indeed dependent on the height of anion as predicted in theories.

  13. Ferromagnetism in CuFeSb: Evidence of competing magnetic interactions in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Qian, Bin; Lee, J.; Wang, Gaochao; Kumar, P.; Fang, Minghu; Liu, Tijiang; Fobes, David; Pham, H.; Spinu, L.; Wu, Xiaoshan; Green, M.; Lee, S. H.; Mao, Zhiqiang

    2013-03-01

    In this talk, we will report a new layered iron-pnictide compound CuFeSb. This material shares similar layered tetragonal structure with iron-based superconductors, with Fe square planar sheets forming from the edge-sharing iron antimony tetrahedral network. CuFeSb differs remarkably from Fe-based superconductors in the height of anion Zanion from the Fe plane; ZSb for CuFeSb is ~1.84 Å, much larger than ZAs (1.31-1.51 Å) in FeAs compounds and ZTe (~1.77 Å) in Fe1+yTe. In contrast with the metallic antiferromagneticor superconducting state of iron pnictides and chalcogenides under current studies, CuFeSb exhibits a metallic, ferromagnetic state with Tc = 375 K. This finding provide strong experimental evidence for the competition between antiferromagnetic and ferromagneticcorrelations in layered Fe-based superconductors, and that the nature of magnetic coupling within the Fe plane is indeed dependent on the height of anion as predicted in theories.

  14. Revealing the Dual Nature of Magnetism in Iron Pnictides and Iron Chalcogenides Using X-ray Emission Spectroscopy

    SciTech Connect

    Gretarsson H.; Xu Z.; Lupascu, A.; Kim, J.; Casa, D.; Gog, T,; Wu, W.; Julian, S.R.; Wen, J.S.; Gu, G.D.; Yuan, R.H.; Chen, Z.G.; Wang, N.-L.; Khim, S.; Kim, K.H.; Ishikado, M.; Jarrige, I.; Shamoto, S.; Chu, J.-H.; Fisher, I.R.and Young-June Kim

    2011-09-22

    We report a Fe K{beta} x-ray emission spectroscopy study of local magnetic moments in various iron-based superconductors in their paramagnetic phases. Local magnetic moments are found in all samples studied: PrFeAsO, Ba(Fe,Co){sub 2}As{sub 2}, LiFeAs, Fe{sub 1+x}(Te,Se), and A{sub 2}Fe{sub 4}Se{sub 5} (where A = K, Rb, and Cs). The moment size is independent of temperature or carrier concentration but varies significantly across different families. Specifically, all iron pnictide samples have local moments of about 1 {micro}B/Fe, while FeTe and K{sub 2}Fe{sub 4}Se{sub 5} families have much larger local moments of {approx}2 {micro}B/Fe and {approx}3.3 {micro}B/Fe, respectively. Our results illustrate the importance of multiorbital physics in describing magnetism of these compounds.

  15. Pressure induced quantum phase transitions in metallic oxides and pnictides

    NASA Astrophysics Data System (ADS)

    Fallah Tafti, Fazel

    Quantum phase transitions occur as a result of competing ground states. The focus of the present work is to understand quantum criticality and its consequences when the competition is between insulating and metallic ground states. Metal-insulator transitions are studied by means of electronic transport measurements and quantum critical points are approached by applying hydrostatic pressure in two different compounds namely Eu2Ir22O 7 and FeCrAs. The former is a ternary metal oxide and the latter is a ternary metal pnictide. A major component of this work was the development of the ultra-high pressure measurements by means of Anvil cells. A novel design is introduced which minimizes the alignment accessory components hence, making the cell more robust and easier to use. Eu2Ir22O7 is a ternary metal oxide and a member of the pyrochlore iridate family. Resistivity measurements under pressure in moissanite anvil cells show the evolution of the ground state of the system from insulating to metallic. The quantum phase transition at Pc ˜ 6 GPa appears to be continuous. A remarkable correspondence is revealed between the effect of the hydrostatic pressure on Eu2Ir22O7 and the effect of chemical pressure by changing the R size in the R2Ir2O7 series. This suggests that in both cases the tuning parameter controls the t2g bandwidth of the iridium 5d electrons. Moreover, hydrostatic pressure unveils a curious cross-over from incoherent to conventional metallic behaviour at a T* > 150 K in the neighbourhood of Pc, suggesting a connection between the high and low temperature phases. The possibility of a topological semi-metallic ground state, predicted in recent theoretical studies, is explained. FeCrAs is a ternary metal pnictide with Fermi liquid specific heat and susceptibility behaviour but non-metallic non-Fermi liquid resistivity behaviour. Characteristic properties of the compound are explained and compared to those of superconducting pnictides. Antiferromagnetic (AFM

  16. Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN

    NASA Astrophysics Data System (ADS)

    Mao, Huican; Wang, Cao; Maynard-Casely, Helen E.; Huang, Qingzhen; Wang, Zhicheng; Cao, Guanghan; Li, Shiliang; Luo, Huiqian

    2017-03-01

    We report neutron diffraction and transport results on the newly discovered superconducting nitride ThFeAsN with T_c= 30 \\text{K} . No magnetic transition, but a weak structural distortion around 160 K, is observed by cooling from 300 K to 6 K. Analysis on the resistivity, Hall transport and crystal structure suggests that this material behaves as an electron optimally doped pnictide superconductor due to extra electrons from nitrogen deficiency or oxygen occupancy at the nitrogen site, which, together with the low arsenic height, may enhance the electron itinerancy and reduce the electron correlations, thus suppressing the static magnetic order.

  17. Superconductivity and magnetism in 11-structure iron chalcogenides in relation to the iron pnictides.

    PubMed

    Singh, David Joseph

    2012-10-01

    This is a review of the magnetism and superconductivity in '11'-type Fe chalcogenides, as compared to the Fe-pnictide materials. The chalcogenides show many differences from the pnictides, as might be anticipated from their very varied chemistries. These differences include stronger renormalizations that might imply stronger correlation effects as well as different magnetic ordering patterns. Nevertheless the superconducting state and mechanism for superconductivity are apparently similar for the two classes of materials. Unanswered questions and challenges to theory are emphasized.

  18. Validity of the local approximation in iron pnictides and chalcogenides

    DOE PAGES

    Sémon, Patrick; Haule, Kristjan; Kotliar, Gabriel

    2017-05-08

    We introduce a methodology to treat different degrees of freedom at different levels of approximation. We use cluster DMFT (dynamical mean field theory) for the t 2g electrons and single site DMFT for the e g electrons to study the normal state of the iron pnictides and chalcogenides. Furthermore, in the regime of moderate mass renormalizations, the self-energy is very local, justifying the success of single site DMFT for these materials and for other Hunds metals. Here we solve the corresponding impurity model with CTQMC (continuous time quantum Monte Carlo) and find that the minus sign problem is not severemore » in regimes of moderate mass renormalization.« less

  19. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  20. Ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Huxley, Andrew D.

    2015-07-01

    The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.

  1. A universal explanation of tunneling conductance in exotic superconductors

    PubMed Central

    Hong, Jongbae; Abergel, D. S. L.

    2016-01-01

    A longstanding mystery in understanding cuprate superconductors is the inconsistency between the experimental data measured by scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES). In particular, the gap between prominent side peaks observed in STS is much bigger than the superconducting gap observed by ARPES measurements. Here, we reconcile the two experimental techniques by generalising a theory which was previously applied to zero-dimensional mesoscopic Kondo systems to strongly correlated two-dimensional (2D) exotic superconductors. We show that the side peaks observed in tunneling conductance measurements in all these materials have a universal origin: They are formed by coherence-mediated tunneling under bias and do not directly reflect the underlying density of states (DOS) of the sample. We obtain theoretical predictions of the tunneling conductance and the density of states of the sample simultaneously and show that for cuprate and pnictide superconductors, the extracted sample DOS is consistent with the superconducting gap measured by ARPES. PMID:27511315

  2. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    PubMed

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi2Sr2CaCu2O8+δ and heavy fermion superconductors CeCoIn5, where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  3. EDITORIAL: Focus on Superconductors with Exotic Symmetries FOCUS ON SUPERCONDUCTORS WITH EXOTIC SYMMETRIES

    NASA Astrophysics Data System (ADS)

    Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru

    2009-05-01

    Superconductors can usefully be divided into two classes, those that are well described by the classic Bardeen-Cooper-Schrieffer (BCS) theory and its extensions and those which require a different microscopic description. The BCS theory of superconductivity solved the long standing mystery of this spectacular phenomenon and described all superconductors that were known when it was formulated in the 1950s. The key ingredient is an attractive interaction generated by the exchange of phonons between electrons which overcomes a Coulomb repulsion weakened by screening, to give a net attractive force on the low energy scale. In this case the simplest s-wave pairing always maximises the energy gain. There were speculations a little later that other types of electron pairing could be possible, but it took a quarter of a century until the first signs of superconductors with different and exotic pairing appeared. In the intervening thirty years many superconductors with exotic pairing have been and continue to be discovered and the study of their superconductivity has grown into a major subfield of condensed matter physics today. The importance of these exotic superconductors with unconventional symmetry is that their pairing is of electronic origin. As a result they are freed from the restrictions of low transition temperatures that go along with the phonon driven conventional superconductors. However in two of the main classes of the exotic superconductors, namely heavy fermion and organic superconductors, the intrinsic energy scales are very small leading to low temperature scales. The third class contains the small number of superconducting transition metal compounds with exotic pairing symmetry. The most studied of these are the high-Tc cuprates, the newly discovered iron pnictides and strontium ruthenate which is closely related to superfluid 3He. Although the basic electronic structure of these materials is well understood, the origin of the pairing is more complex

  4. Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors.

    PubMed

    Frandsen, Benjamin A; Bozin, Emil S; Hu, Hefei; Zhu, Yimei; Nozaki, Yasumasa; Kageyama, Hiroshi; Uemura, Yasutomo J; Yin, Wei-Guo; Billinge, Simon J L

    2014-12-08

    Understanding the role played by broken-symmetry states such as charge, spin and orbital orders in the mechanism of emergent properties, such as high-temperature superconductivity, is a major current topic in materials research. That the order may be within one unit cell, such as nematic, was only recently considered theoretically, but its observation in the iron-pnictide and doped cuprate superconductors places it at the forefront of current research. Here, we show that the recently discovered BaTi2Sb2O superconductor and its parent compound BaTi2As2O form a symmetry-breaking nematic ground state that can be naturally explained as an intra-unit-cell nematic charge order with d-wave symmetry, pointing to the ubiquity of the phenomenon. These findings, together with the key structural features in these materials being intermediate between the cuprate and iron-pnictide high-temperature superconducting materials, render the titanium oxypnictides an important new material system to understand the nature of nematic order and its relationship to superconductivity.

  5. Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Bozin, Emil S.; Hu, Hefei; Zhu, Yimei; Nozaki, Yasumasa; Kageyama, Hiroshi; Uemura, Yasutomo J.; Yin, Wei-Guo; Billinge, Simon J. L.

    2014-12-01

    Understanding the role played by broken-symmetry states such as charge, spin and orbital orders in the mechanism of emergent properties, such as high-temperature superconductivity, is a major current topic in materials research. That the order may be within one unit cell, such as nematic, was only recently considered theoretically, but its observation in the iron-pnictide and doped cuprate superconductors places it at the forefront of current research. Here, we show that the recently discovered BaTi2Sb2O superconductor and its parent compound BaTi2As2O form a symmetry-breaking nematic ground state that can be naturally explained as an intra-unit-cell nematic charge order with d-wave symmetry, pointing to the ubiquity of the phenomenon. These findings, together with the key structural features in these materials being intermediate between the cuprate and iron-pnictide high-temperature superconducting materials, render the titanium oxypnictides an important new material system to understand the nature of nematic order and its relationship to superconductivity.

  6. Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO

    NASA Astrophysics Data System (ADS)

    Walters, A. C.; Walker, H. C.; Springell, R.; Krisch, M.; Bosak, A.; Hill, A. H.; Zvorişte-Walters, C. E.; Colineau, E.; Griveau, J.-C.; Bouëxière, D.; Eloirdi, R.; Caciuffo, R.; Klimczuk, T.

    2015-08-01

    X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

  7. Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO.

    PubMed

    Walters, A C; Walker, H C; Springell, R; Krisch, M; Bosak, A; Hill, A H; Zvorişte-Walters, C E; Colineau, E; Griveau, J-C; Bouëxière, D; Eloirdi, R; Caciuffo, R; Klimczuk, T

    2015-08-19

    X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

  8. Superconductivity and magnetism in 11-structure iron chalcogenides in relation to the iron pnictides

    PubMed Central

    Singh, David Joseph

    2012-01-01

    This is a review of the magnetism and superconductivity in ‘11’-type Fe chalcogenides, as compared to the Fe-pnictide materials. The chalcogenides show many differences from the pnictides, as might be anticipated from their very varied chemistries. These differences include stronger renormalizations that might imply stronger correlation effects as well as different magnetic ordering patterns. Nevertheless the superconducting state and mechanism for superconductivity are apparently similar for the two classes of materials. Unanswered questions and challenges to theory are emphasized. PMID:27877517

  9. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    pace of research within the last year, iron-based superconductors have revealed several unique properties such as a high upper critical field and a robustness to impurities. Participation of five 3d-orbitals in the Fermi levels also means that the electronic structure is complex compared with the cuprates. So, we now have a new family of superconductors and it is worth stressing that we have only just begun looking at the many varieties of candidate materials containing an iron square lattice. At this time we do not know whether a material with a critical temperature greater than 100 K exists, or if completely new properties are to be found. However, as a research community we should go ahead with hope and 'strike while the iron is hot'—this saying is always true! This focus issue of New Journal of Physics was put together to provide a broad-based, free-to-read snapshot of the current state of research in this rapidly emerging field. The papers included cover many aspects related to material exploration, physical analysis, and the theory of these materials, and, as editors, we thank the authors for their fine contributions, and the many referees for their considerable efforts that have ensured fast publication. As an aside, the first special issue on this SUBject was published in November 2008 in the Journal of the Physical Society of Japan (vol 77, supplement c) as the proceedings of the International Symposium on Iron-Pnictide Superconductors held in Tokyo on 29-30 June 2008. We would like to encourage the community to read both issues. On a final note we would like to acknowledge the staff of New Journal of Physics for all of their efficient work in bringing this collection to fruition. Focus on Iron-Based Superconductors Contents Microwave response of superconducting pnictides: extended s+/- scenario O V Dolgov, A A Golubov and D Parker Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors G Fuchs, S

  10. Fine uniform filament superconductors

    DOEpatents

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  11. Angle-resolved photoemission observation of Mn-pnictide hybridization and negligible band structure renormalization in BaMn2As2 and BaMn2Sb2

    DOE PAGES

    Zhang, W. -L.; Richard, P.; van Roekeghem, A.; ...

    2016-10-31

    We performed an angle-resolved photoemission spectroscopy study of BaMn2As2 and BaMn2Sb2, which are isostructural to the parent compound BaFe2As2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly kz-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Finally, our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play a role in tuning the electronic correlations inmore » these compounds.« less

  12. Angle-resolved photoemission observation of Mn-pnictide hybridization and negligible band structure renormalization in BaMn2As2 and BaMn2Sb2

    NASA Astrophysics Data System (ADS)

    Zhang, W.-L.; Richard, P.; van Roekeghem, A.; Nie, S.-M.; Xu, N.; Zhang, P.; Miao, H.; Wu, S.-F.; Yin, J.-X.; Fu, B. B.; Kong, L.-Y.; Qian, T.; Wang, Z.-J.; Fang, Z.; Sefat, A. S.; Biermann, S.; Ding, H.

    2016-10-01

    We performed an angle-resolved photoemission spectroscopy study of BaMn2As2 and BaMn2Sb2 , which are isostructural to the parent compound BaFe2As2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly kz-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3 d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play a role in tuning the electronic correlations in these compounds.

  13. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  14. Photothermal measurements of superconductors

    SciTech Connect

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M.

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  15. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  16. Optimization and doping of 112 Fe pnictide single crystals

    NASA Astrophysics Data System (ADS)

    Puri, Akshat; Misuraca, Jennifer; Morris, Jedediah K.; Aronson, Meigan

    2014-03-01

    The recent discovery of Ca1-xLaxFeAs2, which when doped with Sb has a Tc of 43K, has led to an increased interest in Fe pnictides in the 112 structure. We have grown plate-like single crystals of LaFe0.6Sb2 from a self flux. These form in a tetragonal 112 structure with many Fe vacancies, as measured by single crystal x-ray diffraction. The crystal growths were optimized in two ways. Arc melting elemental Fe granules before use resulted in larger (~ 1 cm2) crystals, and including a rapid cool-down during the growth avoided the formation of a parasitic phase, thus increasing the yield. Doping Ni into the structure resulted in a change in the lattice constants from a = 4.4026 Å, c = 10.0341 Å for undoped LaFe0.6Sb2 to a = 4.4343 Å, c = 9.8911 Å for LaNiSb2. Energy dispersive x-ray spectroscopy showed that Ni replaces Fe and also occupies the vacancies, and at 89% Ni doping, there are no vacancies in the structure. Due to the many vacancies in undoped LaFe0.6Sb2, the Sb residing near the vacant sites is strongly anharmonic in character; the electronic structure changes with doping and this is seen in the parameter becoming harmonic. We acknowledge the Office of Assistant Secretary of Defense for Research and Engineering for providing the NSSEFF funds that supported this research.

  17. Cryomagnetic STM spectroscopy study of multiband pairing in layered superconductors

    NASA Astrophysics Data System (ADS)

    Fridman, Igor; Lukic, Vladimir; Kloc, Christian; Petrovic, Cedomir; Dai, Pengcheng; Wei, J. Y. T.

    2013-03-01

    Cooper pairing in layered superconductors can involve multiple bands and give rise to complex gap structures in momentum space. Using scanning tunneling microscopy (STM) with a magnetic field applied parallel to the ab -plane, we investigate multiband pairing under diamagnetically-induced superfluid momentum. STM spectroscopy and conductance imaging were performed down to 300 mK and up to 9 T, on single-crystals of the Nb-chalcogenide 2 H -NbSe2 and the Fe-pnictides LiFeAs and electron-doped BaFe2As2. Spectroscopy data taken on 2 H -NbSe2 at 300 mK showed a distinctly two-sloped field evolution of the zero-bias conductance, consistent with Doppler-induced depairing on parts of the Fermi surface. Spatial conductance maps revealed stripe patterns that originate from in-plane vortices whose cores are buried in the bulk and which undergo a transition as pairing on one of the bands is suppressed. Our results demonstrate a general method for probing multiband superconductors, especially ones whose band structures host coexisting orders and also play a direct role in the pairing mechanism. Work supported by NSERC, CFI/OIT, CIFAR, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886).

  18. Divergent nematic susceptibility of optimally doped Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Chu, Jiun-Haw; Kuo, Hsueh-Hui; Fisher, Ian

    2015-03-01

    By performing differential elastoresistivity measurements on a wider range of iron based superconductors, including electron doped (Ba(Fe1-xCox)2As2, Ba(Fe1-xNix)2As2),holedoped(Ba1-xKxFe2As2), isovalent substituted pnictides (BaFe2(As1-xPx)2) and chalcogenides (FeTe1-xSex), we show that a divergent nematic susceptibility in the B2g symmetry channel appears to be a generic feature of optimally doped compositions. For the specific case of optimally ``doped'' BaFe2(As1-xPx)2, the nematic susceptibility can be well fitted by a Curie-Weiss temperature dependence with critical temperature close to zero, consistent with expectations of quantum critical behavior in the absence of disorder. However for all the other optimal doped iron based superconductors, the nematic susceptibility exhibits a downward deviation from Curie-Weiss behavior, suggestive of an important role played by disorder.

  19. Topological phase transitions in line-nodal superconductors

    NASA Astrophysics Data System (ADS)

    Han, SangEun; Cho, Gil Young; Moon, Eun-Gook

    2017-03-01

    Fathoming interplay between symmetry and topology of many-electron wave functions has deepened our understanding of quantum many-body systems, particularly after the discovery of topological insulators. Topology of electron wave functions often enforces and protects emergent gapless excitation, and symmetry is intrinsically tied to the topological protection of the excitations. Namely, unless the symmetry is broken, the topological nature of the excitations is intact. We show intriguing phenomena of interplay between symmetry and topology in three-dimensional topological phase transitions associated with line-nodal superconductors. More specifically, we discover an exotic universality class out of topological line-nodal superconductors. The order parameter of broken symmetries is strongly correlated with underlying line-nodal fermions, and this gives rise to a large anomalous dimension in sharp contrast to that of the Landau-Ginzburg theory. Remarkably, hyperscaling violation and emergent relativistic scaling appear in spite of the presence of nonrelativistic fermionic excitation. We also propose characteristic experimental signatures around the phase transitions, for example, a linear phase boundary in a temperature-tuning parameter phase diagram, and discuss the implication of recent experiments in pnictides and heavy-fermion systems.

  20. The origin of the Meissner effect in new and old superconductors

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2012-03-01

    It is generally believed that superconducting materials are divided into two classes: ‘conventional’ and ‘unconventional’. Conventional superconductors (the elements and thousands of compounds including MgB2) are described by conventional London-BCS-Eliashberg electron-phonon theory. There is no general agreement as to what mechanism or mechanisms describe ‘unconventional’ superconductors such as the heavy fermions, organics, cuprate and pnictide families. However all superconductors, whether ‘conventional’ or ‘unconventional’, exhibit the Meissner effect. I argue that there is a single mechanism of superconductivity for all materials, that explains the Meissner effect and differs from the conventional mechanism in several fundamental aspects: it says that superconductivity is driven by lowering of kinetic rather than potential energy of the charge carriers, it requires conduction by holes rather than electrons in the normal state, and it predicts a non-homogeneous rigid charge distribution and an electric field in the interior of superconductors, and a spin current near the surface. Furthermore I argue that neither the conventional mechanism nor any of the other proposed unconventional mechanisms can explain the Meissner effect. Superconductivity in materials is discussed in the light of these concepts, some experimental predictions, connections to Dirac's theory, and connections to the superfluidity of 4He.

  1. Proximity effect of iron-based superconductor in conventional s-wave superconducting thin films

    NASA Astrophysics Data System (ADS)

    Groll, Nick; Proslier, Thomas; Koshelev, Alex; Stantev, Valentin; Chung, Duck-Young

    2012-02-01

    The proximity effect has been proposed as a mechanism to unambiguously identify the possible s±-state in iron-based superconductors.ootnotetextA. E. Koshelev, V. Stanev, Europhysics Letters, Vol. 96, 27014 (2011) With a thin s-wave superconductor atop a s±-superconductor it is suggested that the s-wave order parameter will couple to the s±-gaps differently, inducing a correction to the s-wave density of states that can be probed using electron tunneling spectroscopy. In this talk, we will present recent results of the superconducting proximity effect in s-wave MoGe thin films sputtered on top of bulk superconducting Ba0.6K0.4Fe2As2 (Tc=35K) pnictide. Electron tunneling spectroscopy measurements were performed for several MoGe film thicknesses using a homemade point contact setup. Finally, results will also be presented for similar measurements using two conventional s-wave superconductors.

  2. Local quantum criticality of an iron-pnictide tetrahedron.

    PubMed

    Ong, T Tzen; Coleman, Piers

    2012-03-09

    Motivated by the close correlation between transition temperature (T(c)) and the tetrahedral bond angle of the As-Fe-As layer observed in the iron-based superconductors, we study the interplay between spin and orbital physics of an isolated iron-arsenide tetrahedron embedded in a metallic environment. Whereas the spin-Kondo effect is suppressed to low temperatures by Hund's coupling, the orbital degrees of freedom are expected to quantum mechanically quench at high temperatures, giving rise to an overscreened, non-Fermi liquid ground state. Translated into a dense environment, this critical state may play an important role in the superconductivity of these materials.

  3. Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels, and frequency dependence

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Vaugier, Loïg; Jiang, Hong; Biermann, Silke

    2016-09-01

    We calculate the strength of the frequency-dependent on-site electronic interactions in the iron pnictides LaFeAsO, BaFe2As2 , BaRu2As2 , and LiFeAs and the chalcogenide FeSe from first principles within the constrained random phase approximation. We discuss the accuracy of an atomiclike parametrization of the two-index density-density interaction matrices based on the calculation of an optimal set of three independent Slater integrals, assuming that the angular part of the Fe d localized orbitals can be described within spherical harmonics as for isolated Fe atoms. We show that its quality depends on the ligand-metal bonding character rather than on the dimensionality of the lattice: it is excellent for ionic-like Fe-Se (FeSe) chalcogenides and a more severe approximation for more covalent Fe-As (LaFeAsO, BaFe2As2 ) pnictides. We furthermore analyze the relative importance of different screening channels, with similar conclusions for the different pnictides but a somewhat different picture for the benchmark oxide SrVO3: the ligand channel does not appear to be dominant in the pnictides, while oxygen screening is the most important process in the oxide. Finally, we analyze the frequency dependence of the interaction. In contrast to simple oxides, in iron pnictides its functional form cannot be simply modeled by a single plasmon, and the actual density of modes enters the construction of an effective Hamiltonian determining the low-energy properties.

  4. Fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  5. Effective Hamiltonian for FeAs based superconductors

    NASA Astrophysics Data System (ADS)

    Manousakis, Efstratios

    2009-03-01

    The Fe-pnictide superconductors exhibit unusual properties attributed to electrons and holes occupying the Fe d-orbitals and the outermost occupied s and p pnictide orbitals. Starting from the atomic limit, we carry out a strong coupling expansion for the FeAs layer, where the on-site Coulomb repulsion parameters are assumed to be significantly larger than the hopping between Fe d orbitals and the hybridization parameters between the Fe d and As 4s or 4p orbitals; we derive an effective Hamiltonian that describes the low energy electron/hole behavior. If this condition for strong coupling expansion is not satisfied, still, we believe that our qualitative results capture important aspects of the physics in these materials. The hopping and the hybridization parameters are obtained by fitting the results of our calculations based on the local density approximation to a tight-binding model. The effective Hamiltonian, in the strong coupling limit, consists of three parts which operate on three sub-spaces coupled through Hund's rule and spanned by the following Fe orbitals: (a) the dx^2-y^2; (b) the degenerate orbitals dxz and dyz; and (c) the dxy and dz^2. Each of these parts is an extended t-t^'-J-J^' model and is characterized by different coupling constants and filling factors. For the undoped material the second subspace alone prefers a ground state characterized by a spin-density-wave order similar to that observed in recent experimental studies, while the other two subspaces prefer (,) antiferromagnetic order. The observed spin-density-wave order is imposed by the dxz/dyz subspace as the ground state of the total Hamiltonian of the undoped parent compounds. However, due to the above mentioned frustration the magnetic moment is small in agreement with observation. Our calculation illustrates in a simple manner the reason for the difference in the magnetic ordering between the Fe-pnictides and the cuprates. It also suggests a different evolution of the magnetic

  6. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  7. Universal non-Landau, self-organized, lattice disordering percolative dopant network sub-T(c) phase transition in ceramic superconductors.

    PubMed

    Phillips, J C

    2009-09-15

    Ceramic superconductors (cuprates, pnictides, etc.) exhibit universal features in both T(c)(max) and in their planar lattice disordering measured by EXAFS, as reflected by three phase transitions. The two highest temperature transitions are known to be associated with formation of Jahn-Teller pseudogaps and superconductive gaps, with corresponding Landau order parameters, but no new gap is associated with the third transition below T(c), and its origin is mysterious. It is argued that the third subT(c) transition is a dopant glass transition, which is remarkably similar to topological transitions previously observed in chalcogenide and oxide alloy network glasses (like window glass).

  8. Topological nonsymmorphic crystalline superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Ze; Liu, Chao-Xing

    2016-01-01

    Topological superconductors possess a nodeless superconducting gap in the bulk and gapless zero energy modes, known as "Majorana zero modes," at the boundary of a finite system. In this work, we introduce a new class of topological superconductors, which are protected by nonsymmorphic crystalline symmetry and thus dubbed "topological nonsymmorphic crystalline superconductors." We construct an explicit Bogoliubov-de Gennes type of model for this superconducting phase in the D class and show how Majorana zero modes in this model are protected by glide plane symmetry. Furthermore, we generalize the classification of topological nonsymmorphic crystalline superconductors to the classes with time reversal symmetry, including the DIII and BDI classes, in two dimensions. Our theory provides guidance to search for new topological superconducting materials with nonsymmorphic crystal structures.

  9. Topological Nonsymmorphic Crystalline Superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Ze; Liu, Chao-Xing

    Topological superconductors possess a nodeless superconducting gap in the bulk and gapless zero energy modes, known as ``Majorana zero modes'', at the boundary of a finite system. In this work, we introduce a new class of topological superconductors, which are protected by nonsymmorphic crystalline symmetry and thus dubbed ``topological nonsymmorphic crystalline superconductors''. We construct an explicit Bogoliubov-de Gennes type of model for this superconducting phase in the D class and show how Majorana zero modes in this model are protected by glide symmetry. Furthermore, we generalize the classification of topological nonsymmorphic crystalline superconductors to the classes with time reversal symmetry, including the DIII and BDI classes, in two dimensions. Our theory provides a guidance to search for new topological superconducting materials with nonsymmorphic crystal structures.

  10. Topological superconductors: a review

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  11. Layered nickel based superconductors

    SciTech Connect

    Ronning, Filip; Bauer, Eric D; Park, Tuson; Kurita, Nobuyuki; Klimczuk, T; Movshovich, R; Thompson, J D; Sefat, A S; Mandrus, D

    2009-01-01

    We review the properties of Ni-based superconductors which contain Ni{sub 2}X{sub 2} (X=As, P, Bi, Si, Ge, B) planes, a common structural element to the recently discovered FeAs superconductors. We also compare the properties ofthe Ni-and Fe-based systems from a perspective ofelectronic structure as well as structure-property relations.

  12. Electrocaloric Refrigeration for Superconductors

    DTIC Science & Technology

    1977-02-01

    CO rH CO © . NBSIR 76-847 ELECTROCALORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh and J.D. Siegwarth Cryogenics Division Institute...June 30, 1975 NBSIR 76-847 ELECTROULORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh and J.D. Siegwarth Cryogenics Division L Institute for...Field at Low Temperatures, Rev. Sei. Instrum. 42, 571 (1971). 8. Lawless, W. N., Radebaugh , R., and Soulen, R. J., Studies of a Glass- Ceramic

  13. Topological superconductors: a review.

    PubMed

    Sato, Masatoshi; Ando, Yoichi

    2017-04-03

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  14. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  15. Transport measurements of FeAs superconductors in the 150T single-turn magnet

    SciTech Connect

    Moll, Philip J.W.; Zhigadlo, Nikolai D.; Karpinski, J.; Batlogg, B.; McDonald, Ross David; Rickel, Dwight G.; Mielke, Charles H.; Balakirev, Fedor F.; Betts, Jonathan B.

    2014-01-07

    The large upper critical fields in the iron-pnictides well in excess of 100T at low temperatures render them prime candidates for high magnetic field applications. To reliably estimate such high upper critical fields, however, poses a significant experimental challenge. The multi-band nature of this material class has a profound impact on the Hc2(T) behavior due to the additional degrees of freedom arising from the difference between inter- and intra-band scattering, and the conventional means of extrapolating Hc2(0) from high-temperature measurements, such as the WHH formalism, must be considered with caution. Therefore establishing new experimental techniques to follow Hc2(T) to fields above 100T sheds light on the ultimate limits of applicability of pnictide superconductors as well as the temperature dependence of the internal scattering mechanisms that lead to the multi-band nature of superconductivity. Currently magnetic fields in excess of the 100T multi-shot magnet can only be created in destructive magnets. The single-turn system at NHMFL-PFF routinely delivers pulses of 150T and above. The short duration of the pulses (~4-8μs) and the increased noise levels compared to non-destructive pulse magnets are a serious experimental challenge. We have worked extensively on a combination of Focused Ion Beam micromachining and GHz stripline sample holder design to address these issues.

  16. Spin-wave excitations in the spin-density wave state of doped iron pnictides.

    PubMed

    Singh, Dheeraj Kumar

    2017-10-18

    We investigate spin-wave excitations in the spin-density wave state of doped iron pnictides within a five-orbital model. We find that the excitations along ([Formula: see text])  →  ([Formula: see text]) are very sensitive to dopings whereas they do not exhibit a similar sensitivity along ([Formula: see text])  →  ([Formula: see text]). Secondly, the ellipticity of the elliptical ring-like excitations around ([Formula: see text]) is also very much dependent on doping. Thirdly, the spin-wave spectral weight shifts towards the low-energy region as it moves away from zero doping. We find several features to be in qualitative agreement with the inelastic neutron-scattering measurements for the doped pnictides.

  17. Pressure-induced structural phase transition and elastic properties of rare earth Pr chalcogenides and pnictides

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Shriya, Swarna; Varshney, Meenu; Khenata, R.

    2015-01-01

    Pressure-induced structural aspects and elastic properties of NaCl-type (B1) to CsCl-type (B2) structure in praseodymium chalcogenides and pnictides are presented. Ground-state properties are numerically computed by considering long-range Coulomb interactions, Hafemeister and Flygare type short-range overlap repulsion, and van der Waals interaction in the interionic potential. From the elastic constants, Poisson's ratio ν, the ratio RG/B of G (shear modulus) over B (bulk modulus), anisotropy parameter, shear and Young's moduli, Lamé's constant, Kleinman parameter, elastic wave velocity and thermodynamical property such as Debye temperature are calculated. Poisson's ratio ν and the ratio RG/B indicate that PrX and PrY are brittle in B1 phase and ductile in B2 phase. To our knowledge, this is the first quantitative theoretical prediction of the ductile (brittle) nature of praseodymium chalcogenides and pnictides and still awaits experimental confirmation.

  18. Transport and Thermodynamic Properties of Various Superconductors Including Iron-based Superconductors, V3Si and a Bi2Te3/Fe1+yTe Interfacial Superconductor

    NASA Astrophysics Data System (ADS)

    Zheng, Yan

    This thesis focuses on several interesting aspects of various superconductors, which a special focus on iron-based superconductors. The choice of experimental probes under the influence of high pressure is very limited. In this thesis I am pioneering in measuring a large variety of physical quantities in pressure up to 10 GPa, including heat capacity and thermoelectric measurements. Heat capacity and resistivity experiments for CaFe2As 2 and underdoped Ba(Fe1--xCox)2As2 were performed under hydrostatic pressure conditions. The data supports the bulk nature of pressure-induced superconductivity in these iron-based pnictides, and reveals details on the pressure-induced structural transitions. It is observed that the maximum critical temperature and the superconducting condensation energy are strongly increased under pressure. Furthermore, detailed experimental data of various physical quantities are presented on Ba1-xK xFe2As2, which are rarely performed under pressure. These comprise heat capacity, resistivity, Nernst effect, Hall effect and Seebeck effect experiments. The data validates the existence of a new phase above the superconducting state under pressure. The data provides evidence that in this phase a spin-densitywave order and filamentary superconductivity coexist. The effect of thermal fluctuations is widely believed to be unobservable in classical superconductors. It will be shown that in V3Si fluctuations become significantly enhanced in magnetic fields of a few Teslas, because of the confinement of the electronic quasi particles in low Landau orbits. They become so strong that a vortex melting transition into a liquid vortex phase is observed in high-resolution specific heat experiments. Finally, Nernst effect data of a novel interfacial superconductor is presented, which occurs at the interface of a Bi2Te3/Fe 1+yTe heterostructure. It is superconducting below 12 K and shows a pronounced pseudogap up to 40 K. The data reveals that this pseudogap is of

  19. Metallicity of Ca2Cu6P5 with single and double copper-pnictide layers

    SciTech Connect

    Li, Li; Parker, David; Chi, Miaofang; Tsoi, Georgiy M.; Vohra, Yogesh K.; Sefat, Athena S.

    2016-02-16

    We report thermodynamic and transport properties, and also theoretical calculations, for Cu-based compound Ca2Cu6P5 and compare with CaCu2-δP2. Both materials have layers of edge-sharing copper pnictide tetrahedral CuP4, similar to Fe–As and Fe–Se layers (with FeAs4, FeSe4) in the iron-based superconductors. Despite the presence of this similar transition-metal pnictide layer, we find that both Ca2Cu6P5 and CaCu2-δP2 have temperature-independent magnetic susceptibility and show metallic behavior with no evidence of either magnetic ordering or superconductivity down to 1.8 K CaCu2-δP2 is slightly off-stoichiometric, with δ = 0.14. Theoretical calculations suggest that unlike Fe 3d-based magnetic materials with a large density of states (DOS) at the Fermi surface, Cu have comparatively low DOS, with the majority of the 3d spectral weight located well below Fermi level. The room-temperature resistivity value of Ca2Cu6P5 is only 9 μΩ-cm, due to a substantial plasma frequency and an inferred electron-phonon coupling λ of 0.073 (significantly smaller than that of metallic Cu). Also, microscopy result shows that Cu–Cu distance along the c-axis within the double layers can be very short (2.5 Å), even shorter than metallic elemental copper bond (2.56 Å). The value of dρ/dT for CaCu2-δP2 at 300 K is approximately three times larger than in Ca2Cu6P5, which suggests the likelihood of stronger electron-phonon coupling. Lastly, this study shows that the details of Cu–P layers and bonding are important for their transport characteristics. In addition, it emphasizes the remarkable character of the DOS of ‘122’ iron-based materials, despite much structural similarities.

  20. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides

    PubMed Central

    Wang, Meng; Zhang, Chenglin; Lu, Xingye; Tan, Guotai; Luo, Huiqian; Song, Yu; Wang, Miaoyin; Zhang, Xiaotian; Goremychkin, E.A.; Perring, T.G.; Maier, T.A.; Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel; Dai, Pengcheng

    2013-01-01

    High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe2As2 parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above Tc can account for the superconducting condensation energy. These results suggest that high-Tc superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons. PMID:24301219

  1. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides.

    PubMed

    Wang, Meng; Zhang, Chenglin; Lu, Xingye; Tan, Guotai; Luo, Huiqian; Song, Yu; Wang, Miaoyin; Zhang, Xiaotian; Goremychkin, E A; Perring, T G; Maier, T A; Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel; Dai, Pengcheng

    2013-01-01

    High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe₂As₂ parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above T(c) can account for the superconducting condensation energy. These results suggest that high-T(c) superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons.

  2. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors

    PubMed Central

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-01-01

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1−xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near x≈0.17, the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1−xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity. PMID:27382157

  3. Universal self-field critical current for thin-film superconductors

    PubMed Central

    Talantsev, E. F.; Tallon, J. L.

    2015-01-01

    For any practical superconductor the magnitude of the critical current density, Jc, is crucially important. It sets the upper limit for current in the conductor. Usually Jc falls rapidly with increasing external magnetic field, but even in zero external field the current flowing in the conductor generates a self-field that limits Jc. Here we show for thin films of thickness less than the London penetration depth, λ, this limiting Jc adopts a universal value for all superconductors—metals, oxides, cuprates, pnictides, borocarbides and heavy Fermions. For type-I superconductors, it is Hc/λ where Hc is the thermodynamic critical field. But surprisingly for type-II superconductors, we find the self-field Jc is Hc1/λ where Hc1 is the lower critical field. Jc is thus fundamentally determined and this provides a simple means to extract absolute values of λ(T) and, from its temperature dependence, the symmetry and magnitude of the superconducting gap. PMID:26240014

  4. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors

    NASA Astrophysics Data System (ADS)

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-01

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near ≈0.17, the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  5. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    PubMed

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  6. Direct imaging of structural domains in iron pnictides

    NASA Astrophysics Data System (ADS)

    Tanatar, Makariy

    2010-03-01

    The parent compounds of iron-arsenide superconductors undergo first order structural transition between tetragonal and orthorhombic phases at a temperature, TS. In AFe2As2 (122) compounds (A=Ca,Sr,Ba) this occurs simultaneously with magnetic transition at TM. Using a combination of polarized light microscopy and spatially-resolved high-energy synchrotron x-ray diffraction we show the orthorhombic distortion leads to the formation of 45^o-type structural domains in both 122 and 1111 single crystals. Domains penetrate through the sample thickness in the c-direction and are not affected by crystal imperfections such as growth terraces. The domains form regular stripe patterns in the plane with a characteristic dimension of 10-50 μm. In a range of low Co-doped compositions structural domains and superconductivity coexist. With the increasing doping level the domain structure becomes more intertwined and fine due to a decrease in the orthorhombic distortion. This results in an energy landscape with maze-like spatial modulations favorable for pinning and intrinsically high critical current densities in the underdoped regime. M.A.Tanatar et al. Phys. Rev. B 79, 180508 (R) (2009). R. Prozorov et al. arxiv: 0909.0923, Phys. Rev.B accepted.

  7. Point-Contact Andreev Reflection Spectroscopy of Iron-Based Superconductors

    NASA Astrophysics Data System (ADS)

    Yen, Yi-Tang; Wei, J. Y. T.; Saha, S. R.; Drye, T.; Kirshenbaum, K.; Paglione, J.; Hu*, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.

    2011-03-01

    We carry out point-contact Andreev reflection spectroscopic studies at cryogenic temperatures on single crystals of Fe-chalcogenide and Fe-pnictide superconductors, including Fe S1 - x Te x , FeSe 1-x Te x , SrFe 1.84 Pt 0.16 As 2 and BaFe 1.9 Pt 0.1 As 2 . Our data are analyzed using current theoretical models involving multiband superconductivity. Further interpretations will be made in comparison with scanning tunneling spectroscopy measurements on Fe-chalcogenides and NbSe 2 . *Present address: Ames Laboratory, Iowa State University Work supported by NSERC, CFI/OIT, Taiwan National Science Council, AFOSR-MURI Grant FA9550-09-1-0603, U.S. D.O.E. and Brookhaven Science Associates (No.DE-Ac02-98CH10886), and Center for Emergent Superconductivity.

  8. Coupled multiple-mode theory for s± pairing mechanism in iron based superconductors.

    PubMed

    Kiselev, M N; Efremov, D V; Drechsler, S L; van den Brink, Jeroen; Kikoin, K

    2016-11-29

    We investigate the interplay between the magnetic and the superconducting degrees of freedom in unconventional multi-band superconductors such as iron pnictides. For this purpose a dynamical mode-mode coupling theory is developed based on the coupled Bethe-Salpeter equations. In order to investigate the region of the phase diagram not too far from the tetracritical point where the magnetic spin density wave, (SDW) and superconducting (SC) transition temperatures coincide, we also construct a Ginzburg-Landau functional including both SC and SDW fluctuations in a critical region above the transition temperatures. The fluctuation corrections tend to suppress the magnetic transition, but in the superconducting channel the intraband and interband contribution of the fluctuations nearly compensate each other.

  9. Coupled multiple-mode theory for s± pairing mechanism in iron based superconductors

    PubMed Central

    Kiselev, M. N.; Efremov, D. V.; Drechsler, S. L.; van den Brink, Jeroen; Kikoin, K.

    2016-01-01

    We investigate the interplay between the magnetic and the superconducting degrees of freedom in unconventional multi-band superconductors such as iron pnictides. For this purpose a dynamical mode-mode coupling theory is developed based on the coupled Bethe-Salpeter equations. In order to investigate the region of the phase diagram not too far from the tetracritical point where the magnetic spin density wave, (SDW) and superconducting (SC) transition temperatures coincide, we also construct a Ginzburg-Landau functional including both SC and SDW fluctuations in a critical region above the transition temperatures. The fluctuation corrections tend to suppress the magnetic transition, but in the superconducting channel the intraband and interband contribution of the fluctuations nearly compensate each other. PMID:27897177

  10. Collective magnetic excitations of C4-symmetric magnetic states in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Scherer, Daniel D.; Eremin, Ilya; Andersen, Brian M.

    2016-11-01

    We study the collective magnetic excitations of the recently discovered C4-symmetric spin-density-wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4-symmetric spin-density-wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modify the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4-symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.

  11. Simultaneous optimization of spin fluctuations and superconductivity under pressure in an iron-based superconductor.

    PubMed

    Ji, G F; Zhang, J S; Ma, Long; Fan, P; Wang, P S; Dai, J; Tan, G T; Song, Y; Zhang, C L; Dai, Pengcheng; Normand, B; Yu, Weiqiang

    2013-09-06

    We present a high-pressure NMR study of the overdoped iron pnictide superconductor NaFe0.94Co0.06As. The low-energy antiferromagnetic spin fluctuations in the normal state, manifest as the Curie-Weiss upturn in the spin-lattice relaxation rate 1/(75)T1T, first increase strongly with pressure but fall again at P>Popt=2.2  GPa. Neither long-ranged magnetic order nor a structural phase transition is encountered up to 2.5 GPa. The superconducting transition temperature Tc shows a pressure dependence identical to the spin fluctuations. Our observations demonstrate that magnetic correlations and superconductivity are optimized simultaneously as a function of the electronic structure, thereby supporting very strongly a magnetic origin of superconductivity.

  12. Anisotropic Superconducting Gap Revealed by Angle Resolved Specific Heat, Point Contact Tunneling and Scanning Tunneling Microscope in Iron Pnictide Superconductors

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu

    2011-03-01

    Angle resolved specific heat was measured in FeSe 0.55 Te 0.45 single crystals. A four-fold oscillation of C/T, with the minimum locating at the Fe-Fe bond direction, was observed when the sample was rotated at 9 T, which can be understood as due to the gap modulation on the electron pocket within the scheme of S +/- pairing. Accordingly, by measuring the point contact Andreev reflection spectrum on the BaFe 2-x Ni x As 2 single crystals in wide doping regimes, we found a crossover from nodeless to nodal feature of the superconducting gap. In K-doped BaFe 2 As 2 single crystals, we performed the low temperature STM measurements and observed a well ordered vortex lattice in local region. In addition, the statistics on over 3000 dI/dV spectra illustrate clear evidence of two gaps with magnitude of 7.6 meV and 3.3 meV, respectively. Detailed fitting to the tunneling spectrum shows an isotropic superconducting gap. Work collaborated with B. Zeng, C. Ren, L. Shan, Y. L. Wang, B. Shen, G. Mu, H. Q. Luo, T. Xiang, H. Yang, I. I. Mazin and P. C. Dai. This work was supported by the Natural Science Foundation of China, the Ministry of Science and Technology of China (2011CB605900, No. 2006CB921802), and Chinese Academy of Sciences. IIM was supported by the Office of the Naval Research.

  13. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  14. Thermomagnetic phenomena in mesoscopic and paramagnetically limited superconductors

    NASA Astrophysics Data System (ADS)

    Hettinger, Mengling

    -plane magnetic field. We concentrate on the Clogston-Chandrasekhar phase transition, i.e., the destruction of superconductivity by a magnetic field by virtue of the Zeeman splitting. Near the quantum critical point of the supercooling line in the phase diagram, we discover highly non-monotonic magnetoresistance. The most remarkable feature of this effect is that fluctuation-induced transport is dominated by the virtual excitations rather than real preformed Cooper pairs. We also carefully study how spin-orbit scattering and other pair-breaking effects modify the fluctuation transport. In the strong spin-orbit scattering regime, we find that the scaling of the thermomagnetic coefficient is the same as conductivity within the classical region of transition, however they are drastically different near the quantum critical point. Even though we primarily focus on the conventional superconductors our result for the Nernst effect may have important implications to the other systems, such as iron-pnictides, and in particular to FeSe compound, which has comparable Zeeman and superconducting gaps.

  15. Lightning in superconductors.

    PubMed

    Vestgården, J I; Shantsev, D V; Galperin, Y M; Johansen, T H

    2012-01-01

    Crucially important for application of type-II superconductor films is the stability of the vortex matter--magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films.

  16. Domains in multiband superconductors

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yanagisawa, T.; Crisan, A.; Shirage, P. M.; Iyo, A.; Tokiwa, K.; Nishio, T.; Sundaresan, A.; Terada, N.

    2011-11-01

    Multiband superconductors can have several types of domains that are inhibited in conventional single-band superconductors. These domains are phase domains and chiral domains and their domain wall are an interband phase difference soliton. In a superconductor with an odd number of electronic bands (five or more) and with positive interband Josephson interactions, we find other types of domains with different interband phase differences. We call these domains configuration domains because pseudo-order parameters for each band are dispersed in the complex plain and several configurations, which have several local minima. Fractional vortices serve as hubs for phase difference solitons (configuration domain walls). The divergence of the number of configurations with local minima would pose a serious problem for the stability of superconductivity.

  17. Structural symmetries of the 112-type iron-based superconductor (Ca1-xLax)FeAs2 studied using nonlinear and ultrafast optics

    NASA Astrophysics Data System (ADS)

    Harter, John; Chu, Hao; Jiang, Shan; Ni, Ni; Hsieh, David

    The crystal structure of the newly discovered 112-type iron-based superconductors contains symmetry-breaking arsenic chains, avoiding the need for local probes or uniaxial strain in order to study the ubiquitous electronic nematic state that exists in the vicinity of magnetic order in the iron pnictides. In addition, the 112-type materials are the first known high-temperature superconductors without a center of inversion, with interesting ramifications for Cooper pairing in the superconducting state. We present details of the structure of 112-type (Ca1-xLax)FeAs2 using rotational anisotropy second harmonic generation and pump-probe transient reflectivity experiments. These all-optical techniques are complimentary to conventional diffraction measurements and enable a precise determination of crystallographic symmetries. Our measurements highlight the novel structural properties of the 112-type materials.

  18. Spin superconductor in ferromagnetic graphene

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Zhao-Tan; Yu, Yue; Xie, X. C.

    2011-12-01

    We show a spin superconductor in ferromagnetic graphene as the counterpart to the charge superconductor in which a spin-polarized electron-hole pair plays the role of the spin 2(ℏ/2) “Cooper pair” with a neutral charge. We present a BCS-type theory for the spin superconductor. With the “London-type equations” of the super-spin-current density, we show the existence of an electric “Meissner effect” against a spatial varying electric field. We further study a spin superconductor/normal conductor/spin superconductor junction and predict a spin-current Josephson effect.

  19. Two types of superconducting domes in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Panagopoulos, Christos

    2016-10-01

    Uncovering the origin of unconventional superconductivity is often plagued by the overwhelming material diversity with varying normal and superconducting (SC) properties. In this article, we deliver a comprehensive study of the SC properties and phase diagrams using multiple tunings (such as disorder, pressure or magnetic field in addition to doping and vice versa) across several families of unconventional superconductors, including the copper-oxides, heavy-fermions, organics and the recently discovered iron-pnictides, iron-chalcogenides, and oxybismuthides. We discover that all these families often possess two types of SC domes, with lower and higher SC transition temperatures T c, both unconventional but with distinct SC and normal states properties. The lower T c dome arises with or without a quantum critical point (QCP), and not always associated with a non-Fermi liquid (NFL) background. On the contrary, the higher-T c dome clearly stems from a NFL or strange metal phase, without an apparent intervening phase transition or a QCP. The two domes appear either fully separated in the phase diagram, or merged into one, or arise independently owing to their respective normal state characteristics. Our findings suggest that a QCP-related mechanism is an unlikely scenario for the NFL phase in these materials, and thereby narrows the possibility towards short-range fluctuations of various degrees of freedom in the momentum and frequency space. We also find that NFL physics may be a generic route to higher-T c superconductivity.

  20. Two types of superconducting domes in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Panagopoulos, Christos

    In this talk, we present a comprehensive analysis of the SC properties and phase diagrams across several families of unconventional superconductors within the copper-oxides, heavy-fermions, organics, and the recently discovered iron-pnictides, iron-chalcogenides, and oxybismuthides. We find that there are two types of SC domes present in all families of SC materials, arising sometimes as completely isolated, or merged into one, or in some materials only any one of them appears. One of the SC dome appearing at or near a possible QCP usually possesses a lower transition temperature (Tc) . The other SC dome appearing at a different value of the tuning parameter around a non-Fermi liquid (NFL) state often has higher Tc. Both SC domes are not necessarily linked to each other, and so does the QCP and NFL state. In materials, where both domes are present, they can be isolated by multiple tuning (such as such as disorder, or pressure, or magnetic field in addition to doping, and vice versa), giving a unique opportunity to decouple the relationship between QCP, NFL, and their role on superconductivity. The systematic study the NFL state might be a generic route to higher-Tc superconductivity.

  1. Gap symmetry and structure of Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hirschfeld, P. J.; Korshunov, M. M.; Mazin, I. I.

    2011-12-01

    The recently discovered Fe-pnictide and chalcogenide superconductors display low-temperature properties suggesting superconducting gap structures which appear to vary substantially from family to family, and even within families as a function of doping or pressure. We propose that this apparent nonuniversality can actually be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar electronic structure of these systems, coupled with the likely 'sign-changing s-wave' (s±) symmetry. We review theoretical aspects, materials properties and experimental evidence relevant to this suggestion, and discuss which further measurements would be useful to settle these issues. Satisfactoriness has to be measured by a multitude of standards, of which some, for aught we know, may fail in any given case; and what is more satisfactory than any alternative in sight, may to the end be a sum of pluses and minuses, concerning which we can only trust that by ulterior corrections and improvements a maximum of the one and a minimum of the other may some day be approached. William James, Meaning of Truth

  2. What drives nematic order in iron-based superconductors?

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M.; Chubukov, A. V.; Schmalian, J.

    2014-02-01

    Although the existence of nematic order in iron-based superconductors is now a well-established experimental fact, its origin remains controversial. Nematic order breaks the discrete lattice rotational symmetry by making the x and y directions in the iron plane non-equivalent. This can happen because of a regular structural transition or as the result of an electronically driven instability -- in particular, orbital order or spin-driven Ising-nematic order. The latter is a magnetic state that breaks rotational symmetry but preserves time-reversal symmetry. Symmetry dictates that the development of one of these orders immediately induces the other two, making the origin of nematicity a physics realization of the `chicken and egg problem’. In this Review, we argue that the evidence strongly points to an electronic mechanism of nematicity, placing nematic order in the class of correlation-driven electronic instabilities, like superconductivity and density-wave transitions. We discuss different microscopic models for nematicity and link them to the properties of the magnetic and superconducting states, providing a unified perspective on the phase diagram of the iron pnictides.

  3. Fundamental studies of superconductors using scanning magnetic imaging

    NASA Astrophysics Data System (ADS)

    Kirtley, J. R.

    2010-12-01

    cuprates places limits on spin-charge separation in these materials. Studies of spontaneous generation of fluxoids upon cooling rings through the superconducting transition provide clues to dynamical processes relevant to the early development of the universe, while studies of vortex motion in cuprate grain boundaries allow the measurement of current-voltage characteristics at the femtovolt scale for these technologically important defects. Scanning SQUID susceptometry allows the measurement of superconducting fluctuations on samples comparable in size to the coherence length, revealing stripes in susceptibility believed to be associated with enhanced superfluid density on the twin boundaries in the pnictide superconductor Co doped Ba-122, and indicating the presence of spin-like excitations, which may be a source of noise in superconducting devices, in a wide variety of materials. Scanning magnetic microscopies allow the absolute value of penetration depths to be measured locally over a wide temperature range, providing clues to the symmetry of the order parameter in unconventional superconductors. Finally, MFM tips can be used to manipulate vortices, providing information on flux trapping in superconductors.

  4. Electrocaloric Refrigeration for Superconductors

    DTIC Science & Technology

    1974-12-31

    AD-A008 852 ELECTROCALORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh , et al National Bureau of Standards...for the period ending December 31, 1974 < Prepared by Ray Radebaugh , W. N. Lawless, and J. D. Slegwarth Cryogenics Division National Bureau of

  5. Quantum phenomena in superconductors

    SciTech Connect

    Clarke, J.

    1987-08-01

    This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)

  6. Method for preparing superconductors

    DOEpatents

    Dahlgren, Shelley D.

    1976-01-01

    A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

  7. From Cooper-pair glass to unconventional superconductivity: a unified approach to cuprates and pnictides

    NASA Astrophysics Data System (ADS)

    Sacks, William; Mauger, Alain; Noat, Yves

    2017-05-01

    We report a microscopic model wherein the unconventional superconductivity emerges from an incoherent 'Cooper-pair glass' state. Driven by the pair-pair interaction, a new type of quasi-Bose phase transition is at work. The interaction leads to the unconventional coupling of the quasiparticles to excited pair states, or 'super-quasiparticles', with a non-retarded energy-dependent gap. The model describes quantitatively the quasiparticle excitation spectra of both cuprates and pnictides, including the universal 'peak-dip-hump' signatures, and for the pseudogap phase above Tc. The results show that instantaneous pair-pair interactions account for the SC condensation without a collective mode.

  8. Roles of anisotropic and unequal gaps in the quasiparticle interference of superconducting iron pnictides

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Kumar

    2017-09-01

    We investigate the role of gap characteristics such as anisotropy or inequality of the gaps in the quasiparticle interferences of iron pnictides using a five-orbital tight-binding model. We examine how the difference in the sensitivities exhibited by the sign-changing and -preserving s-wave superconductivity in an annular region around (π , 0), which can be used to determine the sign change of the superconducting gap, gets affected when the gaps are unequal on the electron and hole pockets. In addition, we also discuss how robust these differentiating features are on changing the quasiparticle energy or when the gap is anisotropic.

  9. Influence of surface symmetry breaking on the magnetism, collapsing, and three-dimensional dispersion of the Co pnictides A Co2As2 (A =Ba , Sr, Ca)

    NASA Astrophysics Data System (ADS)

    Mansart, Joseph; Le Fèvre, Patrick; Bertran, François; Forget, Anne; Colson, Dorothée; Brouet, Véronique

    2016-12-01

    We use angle-resolved photoemission (ARPES) to study the three-dimensional (3D) electronic structure of Co pnictides A Co2As2 with A =Ba , Sr, Ca or a mixture of Sr and Ca. These compounds are isostructural to Fe based superconductors but have one more electron in the Co 3 d orbitals. Going from Ba to Ca, they become more and more 3D, eventually forming a "collapsed" tetragonal phase, where the distance between CoAs layers is markedly reduced. We observe with ARPES the periodicity of the electronic structure as a function of kz (i.e., perpendicularly to CoAs layers) and find that it matches in each case that expected from the distance between the planes in the bulk. However, the electronic structure is better fitted by a calculation corresponding to a slab with two CoAs layers than to the bulk structure. We attribute this to subtle modifications of the 2D electronic structure induced by the truncation of the 3D dispersion at the surface in the ARPES measurement. We further study how this affects the electronic properties. We show that, despite this distortion, the electronic structure of CaCo2As2 is essentially that expected for a collapsed phase. Electronic correlations produce a renormalization of the electronic structure by a factor 1.4, which is not affected by the transition to the collapsed state. On the other hand, a small shift of the Fermi level reduces the density of states in the eg bands and suppresses the magnetic transition expected in CaCo2As2 . Our study evidences that observing the 3D bulk periodicity is not sufficient to ensure bulk sensitivity. It further gives direct information on the role of 3D interactions, mostly governed by Co-As hybridization, among eg and t2 g orbitals. It is also useful to better understand the electronic structure of Fe superconductors and the range of validity of ARPES measurements.

  10. "Fluctuoscopy" of Superconductors

    NASA Astrophysics Data System (ADS)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  11. Ambient-pressure organic superconductor

    DOEpatents

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  12. Superconductor stability 90: A review

    SciTech Connect

    Dresner, L.

    1990-01-01

    This paper reviews some recent developments in the field of stability of superconductors. The main topics dealt with are hydrodynamic phenomena in cable-in-conduit superconductors, namely, multiple stability, quench pressure, thermal expulsion, and thermal hydraulic quenchback, traveling normal zones in large, composite conductors, such as those intended for SMES, and the stability of vapor-cooled leads made of high-temperature superconductors. 31 refs., 5 figs.

  13. Inter-comparison of electric and magnetic behaviour of superconducting quaternary oxy-pnictide compounds

    NASA Astrophysics Data System (ADS)

    Meena, R. S.; Rao, K. V. R.; Kishan, Hari; Awana, V. P. S.

    2017-02-01

    Three different oxy-pnictides ‘REFeAsO’ compounds are prepared by simple and easy solid state single step method. Structural analysis is carried with the help of the X-ray technique and confirms that the obtained samples are phase pure and crystallized in tetragonal P4/nmm structure. Superconductivity is introduced by partial replacement of oxygen by Fluorine in NdFeAsO0.8F0.2, SmFeAsO0.8F0.2 and PrFeAsO0.8F0.2, with highest Tc(48K) in NdFeAsO0.8F0.2. SmFeAsO0.8F0.2 compound shows the highest upper critical field (Hc2) ∼ 377 Tesla, estimated using Ginzburg Landau, (GL). Critical current density doesn’t change significantly. The measured MR (magneto resistance) for PrFeAsO is 21.5%, whereas it is 16% for SmFeAsO. Here we report in brief an inter-comparison of various properties like electric and magnetic transport, magneto-resistance for these synthesized oxy-pnictide compounds.

  14. Strain induced modification in phonon dispersion curves of monolayer boron pnictides

    SciTech Connect

    Jha, Prafulla K. E-mail: prafullaj@yahoo.com; Soni, Himadri R.

    2014-01-14

    In the frame work of density functional theory, the biaxial strain induced phonon dispersion curves of monolayer boron pnictides (BX, X = N, P, As, and Sb) have been investigated. The electron-ion interactions have been modelled using ultrasoft pseudopotentials while exchange-correlation energies have been approximated by the method of local density approximation in the parameterization of Perdew-Zunger. The longitudinal and transverse acoustic phonon modes of boron pnictide sheets show linear dependency on wave vector k{sup →} while out of plane mode varies as k{sup 2}. The in-plane longitudinal and out of plane transverse optical modes in boron nitride displaying significant dispersion similar to graphene. We have analyzed the biaxial strain dependent behaviour of out of plane acoustic phonon mode which is linked to ripple for four BX sheets using a model equation with shell elasticity theory. The strain induces the hardening of this mode with tendency to become more linear with increase in strain percentage. The strain induced hardening of out of plane acoustic phonon mode indicates the absence of rippling in these compounds. Our band structure calculations for both unstrained and strained 2D h-BX are consistent with previous calculations.

  15. The half metallic state of transition metal pnictides in Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Miao, M. S.; Lambrecht, Walter R. L.

    2004-03-01

    We perform full potential linear muffin tin orbital (FP-LMTO) calculations for a series transition metal pnictides compounds, including CrAs, CrSb, MnAs, MnSb, VAs and VSb etc., in various four and six fold coordinated structures. The volume expansion can stabilize both the Zinc Blende (ZB) and the Wurtzite (WZ) structures. The energy differences between the ZB and WZ structure are very small and for several compound, such as CrSb, VAs, etc., the WZ structure is more stable than the ZB structure. As in ZB structure, the transition metal pnictides are also half metallic in the WZ structure. The density of states at the Fermi level for majority spin, the band gap for minority spin and the valence band maximum (VBM) for minority spin relative to the Fermi level are very close for two different structures, indicating that the half metallic properties are mainly determined by the local tetrahedron environments which is similar for ZB and WZ structures. While the volume increases, minority band gap increases and the relative Fermi level position to the VBM of minority spin decreases. This is different to the semiconductor band gap dependence on the volume and is caused by the exchange interaction between the majority and the minority spins that will increase with the expansion of the volume. The same effect also causes a slight increase of the DOS for majority spin at Fermi level.

  16. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  17. Fabrication of superconductor coils

    NASA Astrophysics Data System (ADS)

    Dorris, S. E.; Dusek, J. T.; Picciolo, J. J.; Leu, H. J.; Singh, J. P.; Cazzato, A.; Poeppel, R. B.

    1989-10-01

    Small coils of superconducting YBa2Cu3O(7-x)(123) can be formed in the green state using a layered superconductor/insulator tape. In this approach, the insulator prevents contact between the turns of the coil during firing. The insulator must be chemically compatible with 123 during firing, and ideally should match 123 with respect to firing shrinkage and thermal expansion. Fabrication of small coils from the layered superconductor/insulator composites 123/Y2BaCuO5 and 123/BaCuO2 will be discussed. The issue of chemical compatibility will be addressed, and measurements of the firing shrinkage and thermal expansion will be presented for 123 and the two insulators Y2BaO5 and BaCuO2. In addition, the superconducting properties of 123 in the composites will be presented.

  18. Vortex cutting in superconductors

    SciTech Connect

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-09

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  19. Vortex cutting in superconductors

    DOE PAGES

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; ...

    2016-08-09

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  20. Periodically driven holographic superconductor

    NASA Astrophysics Data System (ADS)

    Li, Wei-Jia; Tian, Yu; Zhang, Hongbao

    2013-07-01

    As a first step towards our holographic investigation of the far-from-equilibrium physics of periodically driven systems at strong coupling, we explore the real time dynamics of holographic superconductor driven by a monochromatically alternating electric field with various frequencies. As a result, our holographic superconductor is driven to the final oscillating state, where the condensate is suppressed and the oscillation frequency is controlled by twice of the driving frequency. In particular, in the large frequency limit, the three distinct channels towards the final steady state are found, namely under damped to superconducting phase, over damped to superconducting and normal phase, which can be captured essentially by the low lying spectrum of quasi-normal modes in the time averaged approximation, reminiscent of the effective field theory perspective.

  1. A unifying phase diagram with correlation-driven superconductor-to-insulator transition for the 122 series of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Niu, X. H.; Chen, S. D.; Jiang, J.; Ye, Z. R.; Yu, T. L.; Xu, D. F.; Xu, M.; Feng, Y.; Yan, Y. J.; Xie, B. P.; Zhao, J.; Gu, D. C.; Sun, L. L.; Mao, Qianhui; Wang, Hangdong; Fang, Minghu; Zhang, C. J.; Hu, J. P.; Sun, Z.; Feng, D. L.

    2016-02-01

    The 122 series of iron chalcogenide superconductors, for example KxFe2 -ySe2 , only possesses electron Fermi pockets. Their distinctive electronic structure challenges the picture built upon iron pnictide superconductors, where both electron and hole Fermi pockets coexist. However, partly due to the intrinsic phase separation in this family of compounds, many aspects of their behavior remain elusive. In particular, the evolution of the 122 series of iron chalcogenides with chemical substitution still lacks a microscopic and unified interpretation. Using angle-resolved photoemission spectroscopy, we studied a major fraction of 122 iron chalcogenides, including the isovalently "doped" KxFe2 -ySe2 -zSz,RbxFe2 -ySe2 -zTez , and (Tl,K) xFe2 -ySe2 -zSz . We found that the bandwidths of the low energy Fe 3 d bands in these materials depend on doping; and more crucially, as the bandwidth decreases, the ground state evolves from a metal to a superconductor, and eventually to an insulator, yet the Fermi surface in the metallic phases is unaffected by the isovalent dopants. Moreover, the correlation-driven insulator found here with small band filling may be a novel insulating phase. Our study shows that almost all the known 122-series iron chalcogenides can be understood via one unifying phase diagram which implies that moderate correlation strength is beneficial for the superconductivity.

  2. Orbital-dependent electron correlation effects in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Yi, Ming

    The iron chalcogenide superconductors constitute arguably one of the most intriguing families of the iron-based high temperature superconductors given their ability to superconduct at comparable temperatures as the iron pnictides, despite the lack of similarities in their magnetic structures and Fermi surface topologies. In particular, the lack of hole Fermi pockets at the Brillouin zone center posts a challenge to the previous proposal of spin fluctuation mediated pairing via Fermi surface nesting. In this talk, using angle-resolved photoemission spectroscopy measurements, I will present evidence that show that instead of Fermi surface topology, strong electron correlation observed in electron bandwidth is an important ingredient for superconductivity in the iron chalcogenides. Specifically, I will show i) there exists universal strong orbital-selective renormalization effects and proximity to an orbital-selective Mott phase in Fe1+yTe1-xSex, AxFe2-ySe2, and monolayer FeSe film on SrTiO3, and ii) in RbxFe2(Se1-zSz)2 , where sulfur substitution for selenium continuously suppresses superconductivity down to zero, little change occurs in the Fermi surface topology while a substantial reduction of electron correlation is observed in an expansion of the overall bandwidth, implying that electron correlation is one of the key tuning parameters for superconductivity in these materials.

  3. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    Iron-based superconductors, discovered just a few years ago, are members of a diverse family of pnictides and chalcogenides which may potentially contain hundreds of superconducting compounds. The unconventional, multiband superconductivity in these materials most likely emerges from the quintessential magnetic Fe ions. Along with many similarities to the high-Tc cuprates, the proximity of antiferromagnetism to superconductivity in these semi-metallic materials has attracted much attention. The massive effort aimed at understanding superconductivity in the high-Tc cuprates has stimulated the development of numerous state-of-the-art experimental techniques, improved crystal growth methods and a variety of new theoretical insights. These tools and models were already available and readily applied to the new iron-based superconductors for which lots of high quality new results are being reported literally every day. The current special section represents only a snapshot of these extensive studies performed in the second half of 2009, less than two years after the discovery of 26 K superconductivity in the LaFeAsO compound. The range of various experiments is impressive and this issue is mostly focused on the electromagnetic properties of these iron-based materials. The electromagnetic response is sensitive to the microscopic electronic behavior and therefore can be used to probe the mechanism of superconductivity. On the other hand, it is the electromagnetic response that determines many possible applications of these superconductors, particularly given their extremely high upper critical fields. At this point it is already quite clear that the iron-based superconductors cannot unambiguously fit into any known type of superconductor class and have been placed in one of their own. The metallic ground state of the parent compounds is different from the insulating state of the cuprates and generally exhibits a lower electromagnetic anisotropy. However, similar to the

  4. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    NASA Technical Reports Server (NTRS)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  5. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    NASA Technical Reports Server (NTRS)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  6. Theory of heterotic superconductor-insulator-superconductor Josephson junctions between single- and multiple-gap superconductors.

    PubMed

    Ota, Yukihiro; Machida, Masahiko; Koyama, Tomio; Matsumoto, Hideki

    2009-06-12

    Using the functional integral method, we construct a theory of heterotic superconductor-insulator-superconductor Josephson junctions between one- and two-gap superconductors. The theory predicts the presence of in-phase and out-of-phase collective oscillation modes of superconducting phases. The former corresponds to the Josephson plasma mode whose frequency is drastically reduced for +/- s-wave symmetry, and the latter is a counterpart of Leggett's mode in Josephson junctions. We also reveal that the critical current and the Fraunhofer pattern strongly depend on the symmetry type of the two-gap superconductor.

  7. Effect of hydrostatic pressure on the superconducting transition temperature and superfluid density of SmFeAsO0.85 and PrFe0.925Co0.075AsO superconductors

    NASA Astrophysics Data System (ADS)

    Dong, X. L.; Lu, W.; Yang, J.; Yi, W.; Li, Z. C.; Zhang, C.; Ren, Z. A.; Che, G. C.; Sun, L. L.; Zhou, F.; Zhou, X. J.; Zhao, Z. X.

    2010-12-01

    We have measured magnetic susceptibility of iron pnictide superconductors SmFeAsO0.85 and PrFe0.925Co0.075AsO under hydrostatic pressure up to 1.15 GPa. The superconducting transition temperature (TC) deceases linearly and the Meissner signal size also decreases with increasing pressure for SmFeAsO0.85 . In contrast, the TC of PrFe0.925Co0.075AsO initially increases with pressure then saturates above ˜0.8GPa . Meanwhile its Meissner signal exhibits the similar pressure dependence. Our results indicate that the pressure dependences of TC and superfluid density in both systems are positively correlated which suggests that these quaternary iron-based superconductors are not conventional BCS ones.

  8. Helical phases in superconductors

    NASA Astrophysics Data System (ADS)

    Sandhu, Raminder P. Kaur

    In conventional superconductors, the Cooper pairs are formed from quasiparticles with opposite momentum and spins because of the degeneracy of the quasiparticles under time reversal and inversion. The absence of any of these symmetries will have pronounced effects on superconducting states. Time reversal symmetry can be broken in the presence of magnetic impurities or by the application of a magnetic field. Similarly, the dislocation of crystal ions from their higher symmetric positions can cause broken inversion symmetry. We studied the effects of broken time reversal and inversion symmetries on unconventional superconductors, such as high temperature cuprates, Sr2RuO 4, and CePt3Si. In the cuprates, the superconducting state exists near the antiferromagnetic order. Sr2RuO4 and CePt3Si do not have spatial inversion, and the superconducting states coexist with magnetic order. In cuprates, the broken time reversal symmetry has been reported in the pseudogap phase which will effect the d-wave superconducting state of underdoped regime. On the basis of symmetry analysis we found that a mixture of spin-singlet and -triplet state, d+ip, which is shown to give rise to a helical superconducting phase. Consequences of this d+ip state on Josephson experiments are also discussed. Sr2RuO 4 is known to be another broken time reversal superconductor with spin triplet superconductivity. The widely believed superconducting state, the chiral p wave state, has been extensively studied through Ginzburg Landau theory, but the predictions for this state contradict some experimental observations like anisotropy in the upper critical field, and the existence of a second vortex state. We have formalize quasiclassical theory to find the origin of these contradictions, and also extended the theory to study other possible super-conducting states. Surprisingly, we find that a superconducting state corresponding to freely rotating in-plane d-vector explains the existing experimental results

  9. Antenna applications of superconductors

    NASA Astrophysics Data System (ADS)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  10. Time-reversal symmetry breaking superconductivity in the coexistence phase with magnetism in Fe pnictides.

    PubMed

    Hinojosa, Alberto; Fernandes, Rafael M; Chubukov, Andrey V

    2014-10-17

    We argue that superconductivity in the coexistence region with spin-density-wave (SDW) order in weakly doped Fe pnictides erdiffers qualitatively from the ordinary s(+-) state outside the coexistence region as it develops an additional gap component which is a mixture of intrapocket singlet (s(++)) and interpocket spin-triplet pairings (the t state). The coupling constant for the t channel is proportional to the SDW order and involves interactions that do not contribute to superconductivity outside of the SDW region. We argue that the s(+-)- and t-type superconducting orders coexist at low temperatures, and the relative phase between the two is, in general, different from 0 or π, manifesting explicitly the breaking of the time-reversal symmetry promoted by long-range SDW order. We argue that time reversal may get broken even before true superconductivity develops.

  11. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  12. Superconducting phase diagrams of cuprates and pnictides as a key to understanding the HTSC mechanism

    NASA Astrophysics Data System (ADS)

    Mitsen, K. V.; Ivanenko, O. M.

    2017-04-01

    This paper reviews experimental phase diagrams of cuprates and pnictides to demonstrate that specific features of the superconducting phase diagrams in both HTSC families can be understood within the framework of the proposed approach, which assumes the formation, under heterovalent doping, of localized trion complexes consisting of a doped carrier and charge transfer (CT) excitons. The geometry of such cells containing CT excitons (CT plaquettes) in the basal plane of the crystal is determined by its crystal structure and the type of dopant, so that the dopant concentration range corresponding to the existence of a percolation cluster of CT plaquettes can be readily determined for each particular compound. These dopant concentration ranges coincide with good accuracy with the experimental ranges of superconducting domes in the phase diagrams of the HTSC compounds considered. The generation of free carriers and the mechanism of superconducting pairing in this pattern is related to biexciton complexes (Heitler-London centers) emerging in neighboring CT plaquettes.

  13. Pressure-driven magnetic and structural transitions in the 122-pnictides

    NASA Astrophysics Data System (ADS)

    Widom, Michael; Quader, Khandker

    2014-03-01

    Pnictides of the family AFe2As2, where A is an alkali earth element, exhibit several phase transitions in their structure and magnetic order as functions of applied pressure. We employ density functional theory total energy calculations at T=0K to model these transitions for the entire set of alkali earths (A=Ca, Sr, Ba, Ra) which form the 122 family. Three distinct types of transition occur: an enthalpic transition in which the striped antiferromagnetic orthorhombic (OR-AFM) phase swaps thermodynamic stability with a competing tetragonal phase; a magnetic transition in which the OR-AFM phase loses its magnetism and orthorhombicity; a lattice parameter anomaly in which the tetragonal c-axis collapses. We identify this last transition as a ``Lifshitz transition'' caused by a change in Fermi surface topology. Depending on the element A, the tetragonal state exhibiting the Lifthitz transition might be metastable (A=Ca) or stable (A=Sr, Ba and Ra).

  14. Competing superconducting channels in iron pnictides from the strong coupling theory with biquadratic spin interactions

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Nevidomskyy, Andriy H.

    2016-12-01

    We study the symmetry and strength of the superconducting pairing in a two-orbital t-{{J}1}-{{J}2}-K model for iron pnictides using the slave boson strong coupling approach. We show that the nearest-neighbor biquadratic interaction -K{{({{S}i}\\cdot {{S}j})}2} strongly affects the superconducting pairing phase diagram by promoting the {{d}{{x2}-{{y}2}}} B 1g and the {{s}{{x2}+{{y}2}}} A 1g channels. The resulting phase diagram consists of several competing pairing channels, including the isotropic {{s}+/-} A 1g channel, an anisotropic {{d}{{x2}-{{y}2}}} B 1g channel, and two s+\\text{i}d pairing channels. We have investigated the evolution of superconducting states with electron doping, and find that the biquadratic interaction plays a crucial role in stabilizing the s+\\text{i}d and even pure d-wave pairing in the heavily electron- and hole-doped regimes. In addition, we identify a novel orbital-B 1g pairing channel, which has a s-wave form factor but a B 1g symmetry. This channel has a comparable pairing amplitude to the d-wave pairing, and may strongly influence the superconducting gap anisotropy of the system in the overdoped regime. These findings are crucial in understanding the doping evolution of the superconducting gap anisotropy observed by angle resolved photoemission spectroscopy in the iron pnictides and iron chalcogenides, including the heavily K-doped BaFe2As2 and K-doped FeSe films.

  15. Hybrid superconductor magnet bearings

    SciTech Connect

    Chu, W.

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB`s) utilize high temperature superconductors (HTS`s) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS`s, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, the authors present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  16. Superconductors (History & Advanced Research)

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2012-02-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. The next great milestone in understanding how matter behaves at extreme cold temperatures occurred in 1933. German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor. This is the principle on which the electric generator operates. But, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). In 1941 niobium-nitride was found to superconduct at 16 K. In 1953 vanadium-silicon displayed superconductive properties at 17.5 K. And, in 1962 scientists at Westinghouse developed the first commercial superconducting wire, an alloy of niobium and titanium (NbTi).

  17. Hybrid superconductor magnet bearings

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Kan

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  18. Hybrid superconductor magnet bearings

    NASA Technical Reports Server (NTRS)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  19. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  20. Hybrid superconductor magnet bearings

    NASA Technical Reports Server (NTRS)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  1. Conventional magnetic superconductors

    SciTech Connect

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led to the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.

  2. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  3. Materials design for new superconductors.

    PubMed

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  4. Magnetic levitation for hard superconductors

    SciTech Connect

    Kordyuk, A.A.

    1998-01-01

    An approach for calculating the interaction between a hard superconductor and a permanent magnet in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide practical range of melt-textured high-temperature superconductors{close_quote} systems with magnetic levitation. In this case, the energy losses can be calculated from the alternating magnetic field distribution on the superconducting sample surface. {copyright} {ital 1998 American Institute of Physics.}

  5. Spin manipulation in nanoscale superconductors.

    PubMed

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  6. Materials design for new superconductors

    NASA Astrophysics Data System (ADS)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  7. Superconductor and magnet levitation devices

    NASA Astrophysics Data System (ADS)

    Ma, K. B.; Postrekhin, Y. V.; Chu, W. K.

    2003-12-01

    This article reviews levitation devices using superconductors and magnets. Device concepts and their applications such as noncontact bearings, flywheels, and momentum wheels are discussed, following an exposition of the principles behind these devices. The basic magneto-mechanical phenomenon responsible for levitation in these devices is a result of flux pinning inherent in the interaction between a magnet and a type II superconductor, described and explained in this article by comparison with behavior expected of a perfect conductor or a nearly perfect conductor. The perfect conductor model is used to illustrate why there is a difference between the forces observed when the superconductor is cooled after or before the magnet is brought into position. The same model also establishes the principle that a resisting force or torque arises only in response to those motions of the magnet that changes the magnet field at the superconductor. A corollary of the converse, that no drag torque appears when an axisymmetric magnet levitated above a superconductor rotates, is the guiding concept in the design of superconductor magnet levitation bearings, which is the common component in a majority of levitation devices. The perfect conductor model is extended to a nearly perfect conductor to provide a qualitative understanding of the dissipative aspects such as creep and hysteresis in the interaction between magnets and superconductors. What all these entail in terms of forces, torques, and power loss is expounded further in the context of generic cases of a cylindrical permanent magnet levitated above a superconductor and a superconductor rotating in a transverse magnetic field. Then we proceed to compare the pros and cons of levitation bearings based on the first arrangement with conventional mechanical bearings and active magnetic bearings, and discuss how the weak points of the levitation bearing may be partially overcome. In the latter half, we examine designs of devices

  8. Angle-resolved photoemission observation of Mn-pnictide hybridization and negligible band structure renormalization in BaMn2As2 and BaMn2Sb2

    SciTech Connect

    Zhang, W. -L.; Richard, P.; van Roekeghem, A.; Nie, S. -M.; Xu, N.; Zhang, P.; Miao, H.; Wu, S. -F.; Yin, J. -X.; Fu, B. B.; Kong, L. -Y.; Qian, T.; Wang, Z. -J.; Fang, Z.; Sefat, Athena Safa; Biermann, S.; Ding, H.

    2016-10-31

    We performed an angle-resolved photoemission spectroscopy study of BaMn2As2 and BaMn2Sb2, which are isostructural to the parent compound BaFe2As2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly kz-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Finally, our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play a role in tuning the electronic correlations in these compounds.

  9. The non-magnetic collapsed tetragonal phase of CaFe2As2 and superconductivity in the iron pnictides

    NASA Astrophysics Data System (ADS)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2014-03-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences. Work at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences.

  10. Experiments on Nanoscale Disordered Superconductor-Normal-Superconductor Arrays

    NASA Astrophysics Data System (ADS)

    Long, Zhenyi; Kouh, Taejoon; Stewart, Michael; Valles, James

    2003-03-01

    We are studying a quasi-two-dimensional system of nanoscale, superconducting grains (Pb) overlain by a normal metal (Ag), which can be described as an array of mesoscopic superconductor-normal-superconductor junctions. The Pb grains are smaller than the bulk Pb coherence volume and consequently, these arrays are expected to exhibit a superconductor to metal quantum phase transition [1]. Previous measurements of the decrease in critical temperature with increasing Ag thickness show clear deviations from the predictions of mean field theories of the proximity effect [2]. Our recent experiments on systems with even smaller Pb grains exhibit similar deviations. We will discuss these and our latest tunneling and transport results in terms of recent theories[1] and contrast them with the behavior of ultrathin, disordered films near the superconductor to insulator transition. [1] B.Spivak, A.Zyuzin, M.Hruska ,Phys. Rev. B. 64, 132502(2001) [2] Taejoon Kouh and James Valles Jr Breakdown of Cooper Limit Theory in Disordered Nanoscale Superconductor-Normal-Superconductor Arrays (cond-mat 0202104)

  11. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  12. Holographic correspondence in topological superconductors

    SciTech Connect

    Palumbo, Giandomenico; Pachos, Jiannis K.

    2016-09-15

    We analytically derive a compatible family of effective field theories that uniquely describe topological superconductors in 3D, their 2D boundary and their 1D defect lines. We start by deriving the topological field theory of a 3D topological superconductor in class DIII, which is consistent with its symmetries. Then we identify the effective theory of a 2D topological superconductor in class D living on the gapped boundary of the 3D system. By employing the holographic correspondence we derive the effective chiral conformal field theory that describes the gapless modes living on the defect lines or effective boundary of the class D topological superconductor. We demonstrate that the chiral central charge is given in terms of the 3D winding number of the bulk which by its turn is equal to the Chern number of its gapped boundary.

  13. Manufacturing a Superconductor in School.

    ERIC Educational Resources Information Center

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  14. Manufacturing a Superconductor in School.

    ERIC Educational Resources Information Center

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  15. Electron spin susceptibility of superconductors

    SciTech Connect

    Levitov, L.S.; Nazarov, Y.V.; Eliashberg, G.M.

    1985-03-10

    The effect of spin polarization due to the Meissner currents on the electron spin susceptibility of a superconductor is studied. This effect accounts for a susceptibility considerably stronger than that of a normal metal. The spin distribution is discussed.

  16. HfMnSb2 : A Metal-Ordered NiAs-type Pnictide with a Conical Spin Order.

    PubMed

    Murakami, Taito; Yamamoto, Takafumi; Tassel, Cédric; Takatsu, Hiroshi; Ritter, Clemens; Ajiro, Yoshitami; Kageyama, Hiroshi

    2016-08-16

    The NiAs-type structure is one of the most common structures in solids, but metal order has been almost exclusively limited to chalcogenides. The synthesis of HfMnSb2 is reported with a novel metal-ordered NiAs-type structure. HfMnSb2 undergoes a conical spin order below 270 K, in marked contrast to conventional magnetic order observed in NiAs-type pnictides. We argue that the layered arrangement of Hf and Mn makes it a quasi 2D magnet, where the Mn layers with localized magnetic moments (Mn(2+) ; S=5/2) can interact only through RKKY interactions, instead of metal-metal bonding that is otherwise dominant for typical NiAs-type pnictides. This result suggests that controlling order-disorder in NiAs-type pnictides enables a study of 2D-to-3D crossover behavior in itinerant magnetic system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Origin of the in-plane resistivity anisotropy of the iron pnictides: scattering rate or plasma frequency?

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Schmalian, Jörg; Fernandes, Rafael

    The prime experimental tool to probe the electronic nematic phase in the iron pnictides is the in-plane resistivity anisotropy, which can arise from an anisotropic scattering rate and/or an anisotropic plasma frequency. To shed light on its origin, we investigate the impact of spin fluctuations on the anisotropic ac conductivity of the iron pnictides. We show that two mechanisms contribute to the ac conductivity anisotropy. On the one hand, the inelastic scattering by spin fluctuations directly introduces an anisotropic scattering rate. On the other hand, the same inelastic scattering causes the renormalization of the Fermi velocity at the hot spots. Interestingly, while both mechanisms affect the ac conductivity anisotropy, only the first causes an anisotropy in the dc limit. In contrast, the second mechanism effectively renormalizes both the plasma frequency and the scattering rate. The latter effect opposes the anisotropy induced by the direct scattering of electrons, effectively reducing the observable scattering rate anisotropy. Our results agree qualitatively with recent experiments in detwinned iron pnictides and show the unavoidable entanglement between the scattering rate anisotropy and the plasma frequency anisotropy that arises from spin fluctuations. MS acknowledges the support from the Humboldt Foundation.

  18. Superconductivity in a PbFCl-type pnictide: NbSiAs

    NASA Astrophysics Data System (ADS)

    Ryu, Gihun; Wng Kim, Sung; Mizoguchi, Hiroshi; Matsuishi, Satoru; Hosono, Hideo

    2012-07-01

    We report a new superconductor, NbSiAs, with a PbFCl-type structure, which exhibits bulk superconductivity with a superconducting transition temperature (Tc) of 8.2 K and a shielding volume fraction of 40 vol%. Isothermal magnetization and heat capacity measurements indicate NbSiAs is a BCS-like type II superconductor with a normalized specific heat jump value (Cel/γTc) of ˜1.95. Strongly hybridized bonds between Nb 4d and Si 3p orbitals enhance the Debye temperature, which is favorable for the emergence of superconductivity.

  19. Processing of Mixed Oxide Superconductors

    DTIC Science & Technology

    1990-07-01

    UROUP SUB-GROUP High Temperature Superconductivity , critical current -- 7-- 0superconductor, ceramic, magnetism 20 ’ I 19. ABSTRACT (Continue on...large intragrain currents and small intergrain currents . Magnetic separation works well for YBCO in liquid nitrogen. The technique can certainly be...between the intergrain and intragrain currents and that the short coherence length of oxide superconductors is not the main problem. The closest

  20. Linear-T scattering and pairing from spin fluctuations in organic superconductors

    NASA Astrophysics Data System (ADS)

    Doiron-Leyraud, Nicolas

    2012-02-01

    The (TMTSF)2X series of organic superconductors, with X=PF6 or ClO4, are clean single-band metals that exhibit unconventional superconductivity in the vicinity of a pressure-induced spin-density wave (SDW) quantum critical point. As such, they epitomize the interplay between magnetism and superconductivity observed in heavy fermion, cuprate, and iron-pnictide superconductors. We have recently examined the electrical resistivity ρ(T) of (TMTSF)2X materials as a function of temperature and pressure. At the SDW quantum critical point, we observed a strictly linear temperature dependence of the resistivity over two decades in temperature [1,2]. Moving away from SDW order with increasing pressure, this linear resistivity was found to decrease in parallel with the weakening superconductivity, such that A, the coefficient of the linear contribution to ρ(T), directly correlates with the superconducting Tc [1,2]. This shows that linear-T scattering and superconducting pairing share a common origin. A similar correlation was also found between A and the spin fluctuations seen by NMR experiments [2]. Owing to the quasi-1D nature of the (TMTSF)2X system, this connection between spin fluctuations, scattering, and superconductivity is well described theoretically by a model that considers the hitherto overlooked mutual reinforcement of SDW and pairing correlations [3]. In particular, the feedback of pairing correlations on SDW fluctuations appears to be decisive for the strength of the linear resistivity and its extent in temperature and pressure. The fact that the same empirical correlation between linear-T resistivity and Tc is observed in the hole-doped [4,5] and electron-doped [6] cuprates, as well as in iron-pnictides [1,4], shows that the same mechanism is at play in these materials. This points to a common, magnetic origin to the superconducting pairing. Work done in collaboration with S. Ren'e de Cotret, P. Auban-Senzier, D. J'erôme, C. Bourbonnais, K. Bechgaard, and

  1. Impact of the Order Parameter Symmetries on the Vortex Core Structure in Iron-Based Superconductors

    NASA Astrophysics Data System (ADS)

    Belova, Polina; Zakharchuk, Ivan; Traito, Konstantin Borisovich; Lähderanta, Erkki

    2012-08-01

    Effects of the order parameter symmetries on the cutoff parameter ξh (determining the magnetic field distribution) in the mixed state are investigated in the framework of quasiclassical Eilenberger theory for isotropic s±, s++ and anisotropic dx2-y2-wave superconducting pairings. These symmetries are proposed for the pairing state of the Fe-pnictides. In s± pairing symmetry, the gap function has opposite sign at the electron and hole pockets of the Fermi surface, it is connected with interband antiferromagnetic spin fluctuations. In s++ pairing symmetry, the gap function has the same sign at the Fermi surface, it is mediated by moderate electron-phonon interaction due to Fe-ion oscillation and the critical orbital fluctuation. The dx2-y2 pairing symmetry can rise from intraband antiferromagnetic spin fluctuation in strongly hole overdoped iron pnictide KFe2As2 and ternary chalcogenides. The s± pairing symmetry results in different effects of intraband (Γ0) and interband (Γπ) impurity scattering on ξh. It is found that ξh/ξc2 value decreases with Γ0 leading to the values much less than those predicted by the analytical Ginzburg-Landau (AGL) theory for high Γ0. At very high Γ0, the interband scattering suppresses ξh/ξc2 considerably below one in the whole field range making it flat for both s± and s++ pairing symmetries. Scaling of the cutoff parameter with the electromagnetic coherence length shows the importance of the nonlocal effects in mixed state. The small values of ξh/ξc2 were observed in μSR measurements of Co-doped BaFe2As2. If Γ0 and Γπ are small and equal than the ξh/ξc2(B/Bc2) dependence for s± symmetry behaves like that of the AGL model and shows a minimum with value much more than that obtained for s++ superconductors. With high Γπ, the ξh/ξc2(B/Bc2) dependence resides above the AGL curve for s± pairing symmetry, as observed in SANS measurements of stoichiometrical LiFeAs compound. In d-wave superconductors, ξh/ξc2

  2. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  3. Stability of holographic superconductors

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro

    2010-10-15

    We study the dynamical stability of holographic superconductors. We first classify perturbations around black hole background solutions into vector and scalar sectors by means of a 2-dimensional rotational symmetry. We prove the stability of the vector sector by explicitly constructing the positive definite Hamiltonian. To reveal a mechanism for the stabilization of a superconducting phase, we construct a quadratic action for the scalar sector. From the action, we see the stability of black holes near a critical point is determined by the equation of motion for a charged scalar field. We show the effective mass of the charged scalar field in hairy black holes is always above the Breitenlohner-Freedman bound near the critical point due to the backreaction of a gauge field. It implies the stability of the superconducting phase. We also argue that the stability continues away from the critical point.

  4. Aperiodic Weak Topological Superconductors.

    PubMed

    Fulga, I C; Pikulin, D I; Loring, T A

    2016-06-24

    Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand.

  5. Stability of holographic superconductors

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi; Soda, Jiro

    2010-10-01

    We study the dynamical stability of holographic superconductors. We first classify perturbations around black hole background solutions into vector and scalar sectors by means of a 2-dimensional rotational symmetry. We prove the stability of the vector sector by explicitly constructing the positive definite Hamiltonian. To reveal a mechanism for the stabilization of a superconducting phase, we construct a quadratic action for the scalar sector. From the action, we see the stability of black holes near a critical point is determined by the equation of motion for a charged scalar field. We show the effective mass of the charged scalar field in hairy black holes is always above the Breitenlohner-Freedman bound near the critical point due to the backreaction of a gauge field. It implies the stability of the superconducting phase. We also argue that the stability continues away from the critical point.

  6. Quantum oscillations of the superconductor LaRu2P2: Comparable mass enhancement λ≈1 in Ru and Fe phosphides

    NASA Astrophysics Data System (ADS)

    Moll, Philip J. W.; Kanter, Jakob; McDonald, Ross D.; Balakirev, Fedor; Blaha, Peter; Schwarz, Karlheinz; Bukowski, Zbigniew; Zhigadlo, Nikolai D.; Katrych, Sergiy; Mattenberger, Kurt; Karpinski, Janusz; Batlogg, Bertram

    2011-12-01

    We have studied the angular-dependent de Haas-van Alphen oscillations of LaRu2P2 using magnetic torque in pulsed magnetic fields up to 60 T. The observed oscillation frequencies are in excellent agreement with the geometry of the calculated Fermi surface. The temperature dependence of the oscillation amplitudes reveals effective masses m*(α)=0.71 and m*(β)=0.99 me, which are enhanced over the calculated band mass by λcyc of 0.8. We find a similar enhancement of λγ≈1 in comparing the measured electronic specific heat (γ=11.5 mJ/mol K2) with the total density of states from band-structure calculations. Remarkably, very similar mass enhancements have been reported in other pnictides, LaFe2P2, LaFePO (Tc≈4K), and LaRuPO, independent of whether they are superconducting or not. This is contrary to the common perceptions that the normal-state quasiparticle renormalizations reflect the strength of the superconducting pairing mechanism and leads to new questions about pairing in isostructural and isoelectronic Ru- and Fe-pnictide superconductors.

  7. Studies of anisotropy of iron based superconductors

    SciTech Connect

    Murphy, Jason

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ (T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ (T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ (T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s± scenario for the whole doping range. Knowing that the s± gap symmetry exists across the superconducting dome for the electron doped systems, we next looked at λ (T), in optimally - doped, SrFe2(As1-xPx)2, x =0.35. Both, as-grown (Tc ~ 25 K) and annealed (Tc ~ 35 K) single crystals of SrFe2(As1-xPx)2 were measured. Annealing decreases the absolute value of the London penetration depth from λ(0) = 300 ± 10 nm in as-grown samples to λ (0) = 275±10 nm. At low temperatures, λ (T) ~ T indicates a superconducting gap with line nodes. Analysis of the full-temperature range superfluid density is consistent with the line nodes, but differs from the simple single-gap d-wave. The observed behavior is very similar to that of BaFe2(As1-xPx)2, showing that isovalently substituted pnictides are inherently different from

  8. Disorder-Sensitive Superconductivity and Bonding Network in the Iron-Silicide Superconductor Lu2Fe3Si5

    NASA Astrophysics Data System (ADS)

    Watanabe, Tadataka; Okuyama, Hiroaki; Takase, Kouichi; Takano, Yoshiki; Yoshida, Fumiko; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2010-03-01

    Iron silicide superconductor Lu2Fe3Si5 exhibits relatively high Tc = 6.0 K among Fe-based substances. Recent specific heat, penetration depth, and thermal conductivity measurements have provided evidences for the multigap superconductivity. We have studied non-magnetic and magnetic impurity effects on superconductivity in Lu2Fe3Si5 by investigating Tc variations in non-magnetic (Lu1-xScx)2Fe3Si5, (Lu1-xYx)2Fe3Si5 and magnetic (Lu1-xDyx)2Fe3Si5. Small amount of non-magnetic impurities (Sc and Y) on the Lu-site rapidly depresses Tc in accordance with the increase in the residual resistivity. Such a disorder-sensitive superconductivity strongly suggests the sign reversal of the superconducting order parameter. Lu2Fe3Si5 has a complicated crystal structure compared to other multigap superconductors such as MgB2 and iron pnictides. Thus it is important to map out the accurate bonding network in the crystal structure for the better understanding of the electronic structure. We have observed the charge density distribution of Lu2Fe3Si5 by analyzing the synchrotron radiation powder diffraction data using the maximum entropy method/Rietveld method.

  9. Magnetostatics of superconductors without an inversion center

    SciTech Connect

    Levitov, L.S.; Nazarov, Y.V.; Eliashberg, G.M.

    1985-05-10

    The penetration of a magnetic field into a London superconductor without an inversion center is analyzed. The magnetization produced in the Meissner layer corresponds to a magnetic-induction jump at the superconductor surface.

  10. Modelling of bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  11. Process for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  12. Ferromagnet / superconductor oxide superlattices

    NASA Astrophysics Data System (ADS)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  13. Physics and chemistry of layered chalcogenide superconductors

    PubMed Central

    Deguchi, Keita; Takano, Yoshihiko; Mizuguchi, Yoshikazu

    2012-01-01

    Structural and physical properties of layered chalcogenide superconductors are summarized. In particular, we review the remarkable properties of the Fe-chalcogenide superconductors, FeSe and FeTe-based materials. Furthermore, we introduce the recently discovered BiS2-based layered superconductors and discuss their prospects. PMID:27877516

  14. Superconductors: The long road ahead

    SciTech Connect

    Foner, S.; Orlando, T.P.

    1988-02-01

    Before the discovery of high-temperature superconductors, progress in superconductivity was measured by quite small increases in critical temperature, often of less than one degree. Today, there is no reason to believe that the dramatic leaps in critical temperature inaugurated by superconducting ceramics are over. Researchers may find new high-temperature superconducting materials with less severe technical limitations than the ceramics we know today. And if the day ever comes when a superconductor can be reliably manufactured to operate effectively at room temperature, then superconductors will be incorporated in a broad range of everyday household devices - motors, appliances, even children's toys - with a large consumer market. High-temperature superconductors may also cause us to extensively revise our traditional theories about how superconductivity works. Should it run out that superconductivity in ceramics involves new physical mechanisms, then these mechanisms could lead to applications never considered before. The recent discoveries have already reinvigorated superconductivity research. What was once largely the domain of a relatively small group of scientists has become a genuinely multidisciplinary realm. Now physicists, materials scientists, chemists, metallurgists, ceramists, and solid-state electronics engineers are all focusing on superconductivity. The cross-fertilization of these disciplines should contribute to further discoveries of importance to the practical application of superconductors.

  15. Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Hui; Liu, Bang-Gui; Pettifor, D. G.

    2003-10-01

    Using an accurate full-potential density-functional method we explore systematically all the 3d transition metal pnictides and chalcogenides with wurtzite structure in order to find half-metallic ferromagnets which can be fabricated as thin films with thickness large enough for real spintronic applications. Nine of the wurtzite phases, MnSb, CrAs, CrSb, VAs, VSb, CrSe, CrTe, VSe, and VTe, are found to be robust half-metallic ferromagnets. They have very large half-metallic gaps (0.23 0.97 eV) and quite large bulk moduli (42 71 GPa). Most of them are quite low (down to 0.31 eV per formula unit) in total energy with respect to the corresponding ground-state phases, and therefore at least some of them would be grown epitaxially on appropriate substrates in the form of films thick enough. Since being compatible with the III-V and II-VI semiconductors, these half-metallic ferromagnetic phases, when realized experimentally, would be useful in spintronic and other applications.

  16. Half-Metallic p-Electron Ferromagnetism in Ca and Sr Pnictides

    NASA Astrophysics Data System (ADS)

    Geshi, Masaaki; Kusakabe, Koichi; Nagara, Hitose; Suzuki, Naoshi

    2007-07-01

    We investigated the magnetism in Ca and Sr pnictides by using the first-principles calculations. These compounds are half-metallic and ferromagnetic (FM) when they assume the zinc-blende structure at the equilibrium lattice constant. Ferromagnetism is induced by the spin polarization of the p-orbitals of the pnictogen atoms; Ca and Sr atoms have no magnetic moments, which is different from that of CrAs or CrSb with a zinc-blende structure. To confirm the mechanism of the ferromagnetism, we have calculated a hypothetical crystal — fcc-As with two additional electrons — and have shown that fcc-As has the same magnetic moment as CaAs with a zinc-blende structure. This means that the role of Ca or Sr atoms is to provide electrons with As atoms at the fcc site and to sustain the distances between the As atoms and crystal symmetry. The FM exchange interactions between the pnictogen atoms are considered to exist in these lattices, which is briefly discussed.

  17. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    SciTech Connect

    Jena, Sushree Sangita Rout, G. C. [Physics Enclave, Plot No-664 Panda, S. K.

    2016-05-06

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperature dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.

  18. Role of multiorbital effects in the magnetic phase diagram of iron pnictides

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Scherer, Daniel D.; Kotetes, Panagiotis; Andersen, Brian M.

    2017-07-01

    We elucidate the pivotal role of the band structure's orbital content in deciding the type of commensurate magnetic order stabilized within the itinerant scenario of iron pnictides. Recent experimental findings in the tetragonal magnetic phase attest to the existence of the so-called charge and spin ordered density wave over the spin-vortex crystal phase, the latter of which tends to be favored in simplified band models of itinerant magnetism. Here we show that employing a multiorbital itinerant Landau approach based on realistic band structures can account for the experimentally observed magnetic phase, and thus shed light on the importance of the orbital content in deciding the magnetic order. In addition, we remark that the presence of a hole pocket centered at the Brillouin zone's M point favors a magnetic stripe rather than a tetragonal magnetic phase. For inferring the symmetry properties of the different magnetic phases, we formulate our theory in terms of magnetic order parameters transforming according to irreducible representations of the ensuing D4 h point group. The latter method not only provides transparent understanding of the symmetry-breaking schemes but also reveals that the leading instabilities always belong to the {A1 g,B1 g} subset of irreducible representations, independently of their C2 or C4 nature.

  19. Nuclear quadrupole resonance in the chalcogenide and pnictide amorphous semiconductors. Interim report

    SciTech Connect

    Taylor, P.C.

    1983-01-01

    The absence of long range periodic order in amorphous semiconductors makes the interpretation of the usual scattering experiments, such as x-ray, neutron, or electron scattering, both difficult and model dependent. For this reason information concerning the static and dynamic properties of these solids must be gathered using many different experimental techniques. In the chalcogenide (group VI) and pnictide (group V) amorphous semiconductors nuclear quadrupole resonance (NQR) spectroscopy has proved to be one of the important techniques. The NQR technique provides information on a scale of the interatomic spacings and is thus a sensitive probe of the local environments of the major constituent atoms in an amorphous semiconductor. In the specific case of 75As, analyses of the NQR lineshapes and of nuclear spin-spin phenomena yield detailed structural information concerning not only the local bonding at an arsenic site but also the presence of intermediate range order in some chalcogenide glasses. The lineshapes also provide a very sensitive probe of photo-induced polymerization in films of amorphous chalcogenides.

  20. Ru doping in iron-based pnictides: The "unfolded" dominant role of structural effects for superconductivity

    NASA Astrophysics Data System (ADS)

    Reticcioli, M.; Profeta, G.; Franchini, C.; Continenza, A.

    2017-06-01

    We present an ab initio study of Ru substitution in two different compounds, BaFe2As2 and LaFeAsO, pure and F doped. Despite the many similarities among them, Ru substitution has very different effects on these compounds. By means of an unfolding technique, which allows us to trace back the electronic states into the primitive cell of the pure compounds, we are able to disentangle the effects brought by the local structural deformations and by the impurity potential to the states at the Fermi level. Our results are compared with available experiments and show (i) satisfying agreement of the calculated electronic properties with experiments, confirming the presence of a magnetic order on a short-range scale, and (ii) Fermi surfaces strongly dependent on the internal structural parameters, more than on the impurity potential. These results enter a widely discussed field in the literature and provide a better understanding of the role of Ru in iron pnictides: although isovalent to Fe, the Ru-Fe substitution leads to changes in the band structure at the Fermi level mainly related to local structural modifications.

  1. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  2. Tunneling in Superconductors

    NASA Astrophysics Data System (ADS)

    Giaever, Ivar

    2002-03-01

    It has been said that Thomas Edison's greatest invention was that of the "Research Laboratory" as a social institution. My greatest discovery was when I learned at 29 years of age that it was possible to work in such an institution and get paid for doing research. I had become interested in physics, gotten a job at General Electric Research Laboratory and found a great mentor in John C. Fischer, who besides instructing me in physics told me that sooner or later we all would become historians of science. I guess for me that time is now, because I have been asked to tell you about my second greatest discovery: Tunneling in superconductors. My great fortune was to be at the right place at the right time, where I had access to outstanding and helpful (not necessary an oxymoron) physicists. Hopefully I will be able to convey to you some of the fun and excitement of that area in this recollection. If you become real interested you may find a written version in my Nobel Prize talk: "Electron Tunneling and Superconductivity" Les Prix Nobel en 1973 or Science 183, 1253-1258 1974 or Reviews of Modern Physics 46 (2), 245-250 1974

  3. Phase transitions and anomalous compressibility in 1-2-2 Iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Uhoya, Walter O.

    Interplay of pressure and chemistry play an important role in discovery of novel properties such as high temperature superconductivity (high-Tc). In 2008, Hosono et al discovered superconductivity at 26 K in iron-based layered LaFeAsO (1-x)Fx. This observation was a surprise since iron based compounds are generally known to be magnetic and non-superconducting. This was quickly followed by the discovery of high temperature superconductivity in a second class of Fe-based layered pnictides AFe2As2 (1-2-2) (A= Ba, Sr, Ca, Eu). The undoped (parent) 1-2-2 compounds are non-superconducting at ambient pressure but become superconducting when their structures are tuned by the application of high pressure or through chemical doping. Application of high pressures is advantageous over chemical doping in that it provides a clean method to tune the electronic properties that determine the superconducting and magnetic states of the novel materials. Interplay of pressure induced structural transitions, magnetic and superconducting properties of Fe-based materials is not well understood and this may form a foundation for testing present theories, discovering materials with higher-Tc for wide industrial applications close to room temperature, and may lead to better theories for solving the long standing problem of high-Tc superconductivity. In my work, I have used designer diamond anvil cell (DAC) to study the electrical transport properties of 1-2-2 parents of iron based superconductors under extreme conditions of pressure and low temperatures. I have used high pressure and low temperature time of flight neutron diffraction technique at the Spallation Neutron Source and synchrotron x-ray diffraction techniques at the Advance Photon Source to determine and refine the crystallographic parameters of the 1-2-2 materials under extreme conditions, and to relate their transport and structural properties under high pressures. My works have resulted into a discovery of anomalous

  4. Torque magnetometry in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Li, Lu

    This thesis describes torque magnetometry studies on unconventional superconductors. Torque magnetometry measures the anisotropic magnetization of samples by recording their torque signals in a tilted magnetic field. Applied to superconductors, this method provides a reliable way to measure the field dependence of magnetization with high resolution under extreme conditions: DC magnetic fields from zero to 45.2 T, and temperature from 300 mK to 300K. The results can be used to determine many important parameters, such as the upper critical field H c2, the superconducting condensation energy, the onset temperature of diamagnetic signals, and so on. We carried out the torque magnetometry measurements on unconventional superconductors---high Tc superconductors and the p-wave superconductor Sr2RuO4---and uncovered new features that do not exist in conventional BCS superconductors. In high Tc superconductors, our torque magnetometry studies focus on the properties of the vortex liquid state. First, by comparing the observed magnetization curves with the Nernst effect results in Bi 2Sr2CaCu2O8+delta, we confirm that the unusually large Nernst effect signals originate from the surviving vortex liquid state above Tc. Second, the M-H curves near the critical temperature Tc suggest that the nature of the transition is the Kosterlitz-Thouless transition. Near Tc, the magnetization response at low field is strongly nonlinear, and the T dependence of the magnetic susceptibility in the low-field limit approaches the predicted curve from the Kosterlitz-Thouless transition. Third, the measurements in intense magnetic field up to 45 T reveal the unusual, weak T-dependence of Hc2. These observations strongly support the existence of the vortex liquid state above Tc. The superconducting state is destroyed by the phase fluctuation of the pair condensate, while the pair condensate keeps its amplitude above T c. Further studies in single-layered high Tc superconductors reveal more

  5. Materials design for new superconductors

    SciTech Connect

    Norman, M. R.

    2016-05-23

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed in this paper, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  6. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  7. Materials design for new superconductors

    DOE PAGES

    Norman, M. R.

    2016-05-23

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed in this paper,more » with a focus on surveying the periodic table in an attempt to identify cuprate analogues.« less

  8. Resolving thermoelectric "paradox" in superconductors.

    PubMed

    Shelly, Connor D; Matrozova, Ekaterina A; Petrashov, Victor T

    2016-02-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing "paradox," and open prospects for exploration of novel thermoelectric phenomena predicted recently.

  9. Heat transport in nonuniform superconductors

    NASA Astrophysics Data System (ADS)

    Richard, Caroline; Vorontsov, Anton B.

    2016-08-01

    We calculate electronic energy transport in inhomogeneous superconductors using a fully self-consistent nonequilibrium quasiclassical Keldysh approach. We develop a general theory and apply it to a superconductor with an order parameter that forms domain walls of the type encountered in the Fulde-Ferrell-Larkin-Ovchinnikov state. The heat transport in the presence of a domain wall is inherently anisotropic and nonlocal. The bound states in the nonuniform region play a crucial role and control heat transport in several ways: (i) they modify the spectrum of quasiparticle states and result in Andreev reflection processes and (ii) they hybridize with the impurity band and produce a local transport environment with properties very different from those in a uniform superconductor. As a result of this interplay, heat transport becomes highly sensitive to temperature, magnetic field, and disorder. For strongly scattering impurities, we find that the transport across domain walls at low temperatures is considerably more efficient than in the uniform superconducting state.

  10. Apparatus for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  11. Apparatus for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2001-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  12. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  13. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  14. Studies of high temperature superconductors

    SciTech Connect

    Narlikar, A. )

    1990-01-01

    With the pioneering discovery of high temperature superconductors in 1986 superconductivity has ceased to remain an area of mere academic curiosity and a preserve of a small community of low temperature physicists and cryogenists. Renouncing their cold confines freed from the grip of liquid helium, superconductors have stepped into the realm of high temperatures. The area has transformed into a rich field of intensive and highly competitive research, encompassing diverse disciplines such as: structural chemistry, ceramic engineering, metallurgy, solid state electronics, experimental and theoretical, and condensed matter physics.

  15. Multifilamentary niobium tin superconductor tape

    NASA Technical Reports Server (NTRS)

    Brisbin, P. H.; Coles, W. D.

    1975-01-01

    In the method proposed for fabricating multifilamentary Nb3Sn tape, filamentary superconducting paths are produced in standard commercial superconductor tape by chemical milling of separator slots through the Nb3Sn layer. The multifilament configuration features a matrix of ten 1.2 mm wide parallel helical superconducting paths along the length of the tape. The paths are spaced 0.4 mm apart. Tapes tested as small pancake coils demonstrated the integrity and continuity of the matrix, and showed that critical current was sustained in direct proportion to retained superconductor.

  16. Semiconductor–superconductor optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Bouscher, Shlomi; Panna, Dmitry; Hayat, Alex

    2017-10-01

    Devices combining superconductors with semiconductors offer a wide range of applications, particularly in the growing field of quantum information processing. This is due to their ability to take advantage of both the extensive knowledge gathered in the field of semiconductors and the unique quantum properties of superconductors. This results in novel device concepts, such as structures generating and detecting entangled photon pairs as well as novel optical gain and laser realizations. In this review, we discuss the fundamental concepts and the underlying physical phenomena of superconductor–semiconductor optoelectronics as well as practical device implementations.

  17. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  18. Pairing symmetry and Antiferromagnetic Exchange Coupling in Fe-Based Superconductors

    NASA Astrophysics Data System (ADS)

    Hu, Jiangping

    2009-03-01

    I discuss the existence of strikingly identical paradigms applicable to both cuprates and iron-based superconductors in understanding magnetism, superconductivity and the interplay between the two. The magnetic states and transitions in iron- based superconductors are well described by a J1-J2-Jz magnetic exchange model where J1, J2 and Jz are nearest neighbour, next nearest neighbour and inter-layer couplings respectively. Differing from the t-J model for cuprates where d-wave pairing symmetry is favored, the magnetic exchange in the iron based supercondunctors predicts an unconventional s-wave coskxcosky pairing. I will show that the predicted pairing symmetry is supported by many experimental results, and also discuss new predictions associated with the pairing symmetry. [4pt] References: [0pt] [1]: Chen Fang, Hong Yao, Wei-Feng Tai, Jiangping Hu and S. Kivelson ``Theory of Electron Nematic Order in LaOFeAs''; Phys. Rev. B 77 224509 (2008).[0pt] [2]: Kangjun Seo, A. B. Bernevig and JiangPing Hu, ``Pairing Symmetry in a Two-Orbital Exchange Coupling Model of Oxypnictides''; PRL 101, 206404 (2008) ArXiv: 0805.2958.[0pt] [3]: Meera M. Parish, Jiangping Hu and B. Andrei Bernevig ``Experimental Consequences of the S-wave cos(kx)cos (ky) Superconductivity in the Iron-Pnictides'', Phys. Rev. B 78, 144514 (2008) ArXiv:0807.4572.[0pt] [4]: Chen Fang, B. Andrei Bernevig, Jiangping Hu,``Theory of Magnetic Order in Fe1+yTe1-xSex'', arXiv:0811.1294 (2008).

  19. Who is in charge of the nematic order in iron-based superconductors?

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey

    2015-03-01

    Although the existence of nematic order in iron-based superconductors is now a well-established experimental fact, its origin remains controversial. Nematic order breaks the discrete lattice rotational symmetry by making the x- and y-directions in the iron plane non-equivalent. This can happen because of a regular structural transition or due to a electronically-driven instability - in particular, orbital order and spin-driven Ising-nematic order. The latter is a magnetic state that breaks rotational symmetry but preserves time-reversal symmetry. Symmetry dictates that the development of one of these orders immediately induces the other two, making the origin of nematicity a physics realization of the ``chicken and egg problem.'' will argue that the evidence strongly points to an electronic mechanism of nematicity, placing nematic order in the class of correlation-driven electronic instabilities, like superconductivity and density-wave transitions. I will discuss different microscopic models for nematicity and link them to the properties of the magnetic and superconducting states, providing a unified perspective on the phase diagram of the iron pnictides. (Based on R.M. Fernandes, A.V. Chubukov, and J. Schmalian, Nature Physics 10, 97 (2014).)

  20. First principles analysis of lattice dynamics for Fe-based superconductors and entropically-stabilized phases

    SciTech Connect

    Hahn, Steven

    2012-01-01

    Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.

  1. Double-Q spin-density wave in iron arsenide superconductors

    DOE PAGES

    Allred, J. M.; Taddei, K. M.; Bugaris, D. E.; ...

    2016-01-25

    Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges only from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of certain hole-doped compounds, revealing the existence of a new magnetic phase at compositions close to the onset of superconductivity. Here, we present Mossbauer data that show that half of the iron sitesmore » in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. Instead, this state is naturally explained as the interference between two commensurate spin density waves, a rare example of collinear double-Q magnetic order. Finally, our results demonstrate the itinerant character of the magnetism of the iron pnictides, and the primary role played by magnetic degrees of freedom in determining their phase diagram.« less

  2. Double-Q spin-density wave in iron arsenide superconductors

    SciTech Connect

    Allred, J. M.; Taddei, K. M.; Bugaris, D. E.; Krogstad, M. J.; Lapidus, S. H.; Chung, D. Y.; Claus, H.; Kanatzidis, M. G.; Brown, D. E.; Kang, J.; Fernandes, R. M.; Eremin, I.; Rosenkranz, S.; Chmaissem, O.; Osborn, R.

    2016-01-25

    Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges only from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of certain hole-doped compounds, revealing the existence of a new magnetic phase at compositions close to the onset of superconductivity. Here, we present Mossbauer data that show that half of the iron sites in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. Instead, this state is naturally explained as the interference between two commensurate spin density waves, a rare example of collinear double-Q magnetic order. Finally, our results demonstrate the itinerant character of the magnetism of the iron pnictides, and the primary role played by magnetic degrees of freedom in determining their phase diagram.

  3. Electronic structure of ion arsenic high temperature superconductors studied by angle resolved photoemission spectroscopy

    SciTech Connect

    Liu, Chang

    2011-01-01

    The main purpose of the present thesis is to present our ARPES results on the iron arsenic superconductors. As revealed by a series of ARPES measurements on both the AEFe2As2 and the RFeAs(O,F) families (parent compound and carrier-doped systems), the electronic structures of the pnictides are complicated, three dimensional, and closely linked to their superconducting behavior (13; 14; 15; 16; 17; 18; 19). Parent compounds of these materials exhibit the basic hole-electron pocket dual plus an apparent Fermi surface reconstruction caused by long range antiferromagnetism (13; 15). When carriers are introduced, the chemical potential shifts in accordance with the Luttinger theorem and the rigid band shifting picture (13). Importantly, both the appearance and disappearance of the superconducting dome at low and high doping levels have intimate relation with topological changes at the Fermi surfaces, resulting in a specific Fermi topology being favored by superconductivity (15; 16). On the low doping side, superconductivity emerges in the phase diagram once the antiferromagnetic reconstruction disappears below the Fermi level, returning the Fermi surface to its paramagnetic-like appearance. On the high doping side, superconductivity disappears around a doping level at which the central hole pocket vanishes due to increasing electron concentration. Such phenomena are evidence for the governing role the electronic structure plays in their superconducting behavior.

  4. Campbell penetration depth in Fe-based superconductors

    SciTech Connect

    Prommapan, Plegchart

    2011-01-01

    A 'true' critical current density, jc, as opposite to commonly measured relaxed persistent (Bean) current, jB, was extracted from the Campbell penetration depth, Λc(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe0.954Ni0.046)2As2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of jc(2 K) ≅ 1.22 x 106 A/cm2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe2As2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, jc(2K) ≅ 3.3 x 106 A/cm2. The magnetic-dependent feature was observed near the transition temperature in FeTe0.53Se0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between

  5. Investigation of resistive losses in type II superconductors

    NASA Astrophysics Data System (ADS)

    Benapfl, Brendan W.

    For low-TC materials, the superconducting transition temperature (TC) is depressed by the application of a magnetic field. In contrast, one of the remarkable features of cuprate high-TC materials is that the superconducting transition is broadened by the application of a magnetic field. Tinkham presented a model for the field-dependent resistive transition of high-T C materials, arising from "phase slippage at a complicated network of channels." Coffey & Clem did not include this field-broadening effect in their sophisticated model for the field and temperature dependence of the surface resistance in type-II superconductors. From the model by Lee & Stroud, treating Josephson Junction-coupled superconducting segments, it is concluded that doped, layered superconductors are certain to have a field-broadened superconducting transition. This effect can be identified by measurements of the resistivity as a function of temperature, magnetic field strength, angle of field with respect to the crystal axis as well as with respect to an induced current density. The iron pnictide materials such as Ba0.6K0.4Fe2As2 (BaK122) have chemical layers with different compositions, differentiating them from elemental type-II superconductors such as niobium, and also from cuprates, by the absence of copper. Experimental data on BaK122 indicate a field-broadened transition in conjunction with a field-depressed superconducting transition temperature. In this work, techniques associated with Electron Spin Resonance (ESR) spectroscopy were used to measure the temperature and field-induced changes in the surface resistance of single-crystal BaK122 samples. In addition, polycrystalline foils of niobium and a NbTi (70/30) alloy were measured using the same techniques to provide comparison. Measurements were taken as a function of applied magnetic field, temperature, rf field intensity, and angle of the applied field with respect to the rf-induced current. BaK122 sample field-dependent surface

  6. The Superconductors That Magnets Really Want: What Stands in the Way? (Superconductors for Accelerator Use: What Next and How Close is the Ideal Conductor?)

    ScienceCinema

    Larbalestier, David [National High Magnetic Field Laboratory] [Florida State University, Tallahassee, Florida, United States

    2016-07-12

    There are over 5000 superconducting materials but only about 5 have ever been useful for applications in magnets, while HEP, which has been so vital for the development of superconducting magnet technology has made virtually every magnet out of just one, the simple bcc alloy Nb-Ti with Tc of 9 K and upper critical field ~ 14T (at 2K). Significant demonstrations of the capability of the brittle intermetallic Nb3Sn have shown that fields of more than 15 T can be generated in dipole form. But Nb-Ti and Nb3Sn are staid, conventional superconductors, far from the cutting edge of superconducting science research where cuprates like YBa2Cu3O7-x and Bi2Sr2CaCu2Ox remain at the scientific forefront and in 2008 were joined by the recently discovered Fe-As pnictide superconductors. What could it mean to have materials for magnets with 10 times the Tc of Nb-Ti (90-120 K) and 3 or more times the critical field (100-240 T)? One enormous barrier is that higher Tc so far always means more complexity and a more localized superconducting interaction which is sensitive to local loss of superconductivity. The issue that has made the cuprate high temperature superconductors so hard to apply is that grain boundaries which form a 3D network in any practical wire form, easily acquire degraded superconducting properties. But conductors can now be made with extreme texture so that grain boundaries are minimized. Moreover almost practical conductors of Bi2Sr2CaCu2Ox and YBa2Cu3O7-x are now are in production and in late 2008 we were, at the Magnet Lab, able to make small solenoids operating at high current density in fields of 32 and almost 34 T respectively. Within the HEP community, there is enthusiasm to embrace HTS conductors for new very high field machines that could, like the Muon Collider, use fields of 30-50 T. In my talk I would like to explore the underlying science controlling such potential applications.

  7. Search for pressure-induced superconductivity in CeFeAsO and CeFePO iron pnictides

    SciTech Connect

    Zocco, D. A.; Baumbach, R. E.; Hamlin, J. J.; Janoschek, M.; Lum, I. K.; McGuire, Michael A; Safa-Sefat, Athena; Sales, Brian C; Jin, Rongying; Mandrus, David; Jeffries, J. R.; Weir, S. T.; Vohra, Y. K.; Maple, M. B.

    2011-01-01

    The CeFeAsO and CeFePO iron pnictide compounds were studied via electrical transport measurements under high pressure. In CeFeAsO polycrystals, the magnetic phases involving the Fe and Ce ions coexist for hydrostatically applied pressures up to 15 GPa, and with no signs of pressure-induced superconductivity up to 50 GPa for the less hydrostatic pressure techniques. For the CeFePO single crystals, pressure further stabilizes the Kondo screening of the Ce 4f-electron magnetic moments.

  8. Nature of the superconductor-insulator transition in disordered superconductors.

    PubMed

    Dubi, Yonatan; Meir, Yigal; Avishai, Yshai

    2007-10-18

    The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.

  9. Skewness and Kurtosis of the Switching Current Distribution in Superconductor-Graphene-Superconductor Junctions and Superconductor-Nanowire-Superconductor Devices

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Aref, Thomas; Coskun, Ulas; Weinberg, Phillip; Levchenko, Alex; Vakaryuk, Victor; Bezryadin, Alexey

    2013-03-01

    We study statistical properties of the switching current in superconductor-graphene-superconductor proximity junctions and superconductor-nanowire-superconductor devices. The fluctuations of the switching current are related to Little's phase slips, generated by thermal and quantum fluctuations of the superconducting order parameter. The study focuses on higher moments of the statistical probability distributions of the switching current. Namely we study the skewness, which defines the asymmetry of the distribution, and kurtosis, which is a measure of the ``peakedness.'' The skewness is defined as sk= m3 /m23 / 2 where m2 is the second moment of the distribution, called the variance, and m3 is the third moment. Kurtosis is defined as kur= m4 /m22 , where m4 is the fourth moment of the distribution. It is known that for Gaussian distributions sk=0 and kur=3. On our devices we find, in most cases, sk ~ -1 and kur ~ 5. These results are in agreement with numerical simulations as well as an analytic model. Finally we present preliminary experimental results for a two-nanowire device. We have found that the standard deviation, skewness and kurtosis of the switching current distributions in these devices vary periodically with magnetic field.

  10. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  11. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  12. Update on copper oxide superconductors

    SciTech Connect

    Cava, R.J.

    1995-05-01

    The early high-{Tc} superconductors Ba{sub 2}YCu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} remain the most studied for their potential application. The number and variety of new copper oxide superconductors discovered since 1986 is remarkable. Although physicists like to take credit for the superconductivity revolution, it is really a revolution in new materials. New materials of continually increasing complexity have driven the field forward since its beginning. It is no accident that the chemically simplest copper oxide superconductors were discovered first. Higher {Tc} values have been caused by the rapid growth in general knowledge in the material community of the empirical factors necessary for the occurrence of high-{Tc} superconductivity. The growth is based on improving chemical understanding of previous discoveries. The chemical understanding and complexity of cuprate superconductors continue to increase. The appearance in 1993 of mercury-based materials has further raised {Tc} values.

  13. Superconductors: An Emerging Power Technology

    DTIC Science & Technology

    2004-04-01

    eter of 4.5 m for a conventional motor). Substantial ac synchronous motors have been demonstrated by Siemens (400 kW), Rockwell (750 kW) and...rpm motor has been demonstrated by American Superconductor and Alstom , and a 36.5 MW motor is under development. 3.2.2. Generators Superconducting

  14. Evolution of quasiparticle states with and without a Zn impurity in doped 122 iron pnictides

    NASA Astrophysics Data System (ADS)

    Pan, Lihua; Li, Jian; Tai, Yuan-Yen; Graf, Matthias J.; Zhu, Jian-Xin; Ting, C. S.

    2014-10-01

    Based on a minimal two-orbital model [Tai et al., Europhys. Lett. 103, 67001 (2013), 10.1209/0295-5075/103/67001], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe2As2, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model [T. Kariyado et al., J. Phys. Soc. Jpn. 79, 083704 (2010), 10.1143/JPSJ.79.083704]. Some of the results are consistent with recent angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy experiments. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the in-gap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of in-gap states and the evolution of the LDOS near a strong scattering single impurity can be validated by further experiments probing the local quasiparticle spectrum.

  15. In-plane and c-axis optical spectroscopy study on 122 Fe-pnictides

    NASA Astrophysics Data System (ADS)

    Wang, Nan Lin

    2011-03-01

    I present the in-plane and the c-axis optical spectroscopy investigations on 122 Fe-pnictides. For the parent compound BaFe 2 As 2 , the in-plane measurement revealed two different energy gaps in the SDW state, whereas for the c-axis polarized measurement only the energy gap at smaller energy scale could be clearly observed. We suggest different driving mechanisms for the formation of the two energy gaps. The large energy gap is caused by the nesting between disconnected 2D cylinder-like electron and hole Fermi surfaces. It is the main driving force for the SDW instability. The small energy gap is the one formed on the 3D Fermi surface due to the presence of reduced magnetic Brillouin zone which crosses the 3D Fermi surface. It is the consequence of the establishment of the magnetic order. For the doped superconducting 122 samples, the in-plane optical measurement revealed a formation of full superconducting energy gap, whereas the c-axis optical measurement indicated a large residual quasiparticle population down to very low temperature. Those quasiparticles contribute specifically to the c-axis transport. We suggest that there exist horizontal nodes in the superconducting gap in regions of the 3D Fermi surface that contribute dominantly to the c-axis optical conductivity. Work done with Z. G. Chen, W. Z. Hu, B. Cheng, G. Li, J. Dong, T. Dong, R. H. Yuan, P. Zheng, G. F. Chen, J. L. Luo, Z. Fang, X. Dai, C. L. Zhang and P. Dai.

  16. Fluctuation conductivity and possible pseudogap state in FeAs-based superconductor EuFeAsO0.85F0.15

    NASA Astrophysics Data System (ADS)

    Solovjov, A. L.; Omelchenko, L. V.; Terekhov, A. V.; Rogacki, K.; Vovk, R. V.; Khlybov, E. P.; Chroneos, A.

    2016-07-01

    The study of excess conductivity σ \\prime (T) in the textured polycrystalline FeAs-based superconductor EuFeAsO0.85F0.15 ({T}{{c}}=11 {{K}}) prepared by the solid state synthesis is reported for the first time. The σ \\prime (T) analysis has been performed within the local pair (LP) model based on the assumption of the LPs formation in cuprate high-T c superconductors (cuprates) below the pseudogap (PG) temperature {T}* \\gg {T}{{c}}. Similarly to the cuprates, near {T}{{c}} σ \\prime (T) is adequately described by the 3D term of the Aslamasov-Larkin (AL) theory but the range of the 3D-AL fluctuations, {{Δ }}{T}3{{D}}, is relatively short. Above the crossover temperature {T}0≈ 11.7 {{K}} σ \\prime (T) is described by the 2D Maki-Thompson (MT) fluctuation term of the Hikami-Larkin theory. But enhanced 2D-MT fluctuation contribution being typical for the magnetic superconductors is observed. Within the LP model the PG parameter, {{{Δ }}}* (T), was determined for the first time. It is shown that {{{Δ }}}* (T) demonstrates the narrow maximum at {T}s≈ 160 {{K}} followed by the descending linear length down to {T}{SDW}={T}{NFe}≈ 133 {{K}}. Observed small {{Δ }}{T}3{{D}}, enlarged 2D σ \\prime (T) and linear {{{Δ }}}* (T) are considered to be the evidence of the enhanced magnetic interaction in EuFeAsO0.85F0.15. Importantly, the slop of the linear {{{Δ }}}* (T) and its length are found to be the same as it is revealed for SmFeAsO0.85. The results suggest both the similarity of the magnetic interaction processes in different Fe-pnictides and applicability of the LP model to the σ \\prime (T) analysis even in magnetic superconductors.

  17. Emergence of complex magnetism in three dimensional, yet quasi-layered, iron pnictides: CaFe4As3

    NASA Astrophysics Data System (ADS)

    Freeman, Arthur J.; Trimarchi, Giancarlo; Kanatzidis, Mercouri; Todorov, Iliya; Chung, Duck-Young

    2009-03-01

    The class of iron pnictides has been the focus of much attention for the discovery of superconductivity in the layered compounds LaOFeAs, CaFe2As2, and related ones; the phase diagrams of these pnictides remain still largely unexplored. Here, we report on the electronic and magnetic structure of the recently synthesized CaFe4As3 compound. This material, as opposed to the layered CaFe2As2, shows FeAs slabs parallel to the b-direction and approximately perpendicular to each other, defining tunnels filled by the Ca atoms. No sign of superconductivity was found in this compound. Instead, the system shows a complex ferromagnetic state at low temperature. DFT calculations performed on the refined crystal structure using the highly precise FLAPW methodootnotetextWimmer, Krakauer, Weinert, and Freeman, PRB, 24, 864 (1981) show a pronounced stabilization for the ferromagnetic state which is characterized by four distinct Fe sites with magnetic moments of between 1 μB and 2 μB. The influence of the local topology of the crystal structure on the the electronic and magnetic state is analyzed.

  18. Effect of external magnetic field on the coexistence of superconductivity and JT distortion in iron pnictides

    NASA Astrophysics Data System (ADS)

    Pradhan, B.; Goi, S. K.; Mishra, R. N.

    2016-12-01

    We have presented a theoretical study for the coexistence of superconductivity (SC) and Jahn-Teller (JT) effect with applied magnetic field on iron based high-Tc superconductors in s-wave symmetry. The analytic expressions for the temperature dependence of the SC and JT order parameters are derived by Zubarev's technique of double time single particle Green's function method and solved self-consistently. It is observed that in the interplay region, both the gap parameters exhibit very strong dependence of their gap values. The effect of external magnetic field on the gap parameters and the electronic density of states (DOS) is studied.

  19. Design for a Superconductor Discovery Engine (SCODEngine)

    NASA Astrophysics Data System (ADS)

    Isikaku-Ironkwe, O. Paul

    2010-03-01

    One of the grand challenges of superconductivity is achieving a paradigm shift from discovery by serendipity to discovery by design. Periodic Table-based Maps that involve electronegativity, valence electrons and atomic number that correlate with superconducting transition temperature can be used to design novel superconductors. Combining these maps with experimental databases on superconductors, databases of crystal structures and integrating material design software engine, we can re-design many known superconductor families and predict novel systems. By adding search engine technology with a ``knowledge discovery engine'', we produce a superconductor discovery engine (SCODEngine). The SCODEngine enables us to discover novel superconductors with the accelerated speed of a Google search. We have produced a primitive SCODEngine that may revolutionize novel superconductor search and discovery.

  20. Resonance tunneling of cooper pairs in a superconductor-polymer-superconductor josephson junction

    SciTech Connect

    Ionov, A. I.

    2013-05-15

    It is shown that the superconducting current flowing though a polymer in a superconductor-polymer-superconductor Josephson structure is due to resonant tunneling of Cooper pairs. The critical current and the thickness of the polymer in which the superconducting current is observed depend on the coherence length of a Cooper pair in the superconductor contacting the polymer.

  1. Current status of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Kamihara, Yoichi

    2012-03-01

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO1 - xFx. The very large H c2 of iron-based superconductors attract us to attempts at applications.

  2. Possible new edge barriers in polycrystalline superconductors

    NASA Astrophysics Data System (ADS)

    Belevtsov, L. V.

    2002-09-01

    We present a theoretical prediction of the new edge barriers for Abrikosov vortex penetration into polycrystalline superconductors. The traditional Bean-Livingston surface barrier is governed by the strength of the external field. Edge barriers in polycrystalline superconductors are also governed by the external field as well as by the anisotropy ratio, grain-coupling strength and grain size. We support our theory with concrete calculation of the critical current density in both high-Tc oxide and MgB2 superconductors.

  3. Surface Josephson Plasma Waves in Layered Superconductors

    NASA Astrophysics Data System (ADS)

    Savel'Ev, Sergey; Yampol'Skii, Valery; Nori, Franco

    2005-10-01

    We predict the existence of surface waves in layered superconductors in the THz frequency range, below the Josephson plasma frequency ωJ. This wave propagates along the vacuum-superconductor interface and dampens in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). This is the first prediction of propagating surface waves in any superconductor. These predicted surface Josephson plasma waves are important for different phenomena, including the complete suppression of the specular reflection from a sample (Wood’s anomalies) and a huge enhancement of the wave absorption (which can be used as a THz detector).

  4. Frontiers of organic conductors and superconductors.

    PubMed

    Saito, Gunzi; Yoshida, Yukihiro

    2012-01-01

    We review the development of conductive organic molecular assemblies including organic metals, superconductors, single component conductors, conductive films, conductors with a switching function, and new spin state (quantum spin liquid state). We emphasize the importance of the ionicity phase diagram for a variety of charge transfer systems to provide a strategy for the development of functional organic solids (Mott insulator, semiconductor, superconductor, metal, complex isomer, neutral-ionic system, alignment of chemical potentials, etc.). For organic (super)conductors, the electronic dimensionality of the solids is a key parameter and can be designed based on the self-aggregation ability of a molecule. We present characteristic structural and physical properties of organic superconductors.

  5. Suppression of superconductivity in mesoscopic superconductors.

    PubMed

    Sobnack, M B; Kusmartsev, F V

    2001-01-22

    We propose a new boundary-driven phase transition associated with vortex nucleation in mesoscopic superconductors (of size of the order of, or larger than, the penetration depth). We derive the rescaling equations and we show that boundary effects associated with vortex nucleation lower the conventional transition temperature in mesoscopic superconductors by an amount which is a function of the size of the superconductor. This result explains recent experiments in small superconductors where it was found that the transition temperature depends on the size of the system and is lower than the critical Berezinskĭ-Kosterlitz-Thouless temperature.

  6. Recent status of superconductors for accelerator magnets

    SciTech Connect

    Greene, A.F.

    1992-10-01

    A survey is given of superconductor wire and cable which has been or will be used for construction of dipole magnets for all of the large European and US superconducting accelerator rings. Included is a simplified view of the construction methods and operating requirements of an accelerator dipole magnet, with emphasis on required superconductor performance. The methods of fabricating Nb-Ti superconductors are described, including the critical parameters and materials requirements. The superconductor performance requirements are summarized in an effort to relate why these are important to accelerator designers. Some of the recently observed time dependent effects are covered briefly.

  7. Recent status of superconductors for accelerator magnets

    SciTech Connect

    Greene, A.F.

    1992-01-01

    A survey is given of superconductor wire and cable which has been or will be used for construction of dipole magnets for all of the large European and US superconducting accelerator rings. Included is a simplified view of the construction methods and operating requirements of an accelerator dipole magnet, with emphasis on required superconductor performance. The methods of fabricating Nb-Ti superconductors are described, including the critical parameters and materials requirements. The superconductor performance requirements are summarized in an effort to relate why these are important to accelerator designers. Some of the recently observed time dependent effects are covered briefly.

  8. Recent progress on carbon-based superconductors.

    PubMed

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-24

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features.

  9. Why only hole conductors can be superconductors

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2017-03-01

    The conventional theory of superconductivity says that charge carriers in a metal that becomes superconducting can be either electrons or holes. I argue that this is incorrect. In order to satisfy conservation of mechanical momentum and of entropy of the universe in the superconductor to normal transition in the presence of a magnetic field it is necessary that the normal state charge carriers are holes. I will also review the empirical evidence in favor of the hypothesis that all superconductors are hole superconductors, and discuss the implications of this for the search for higher Tc superconductors.

  10. Giant ultrafast Kerr effect in superconductors

    NASA Astrophysics Data System (ADS)

    Robson, Charles W.; Fraser, Kieran A.; Biancalana, Fabio

    2017-06-01

    We study the ultrafast Kerr effect and high-harmonic generation in superconductors by formulating a model for a time-varying electromagnetic pulse normally incident on a thin-film superconductor. It is found that superconductors exhibit exceptionally large χ(3 ) due to the progressive destruction of Cooper pairs, and display high-harmonic generation at low incident intensities, and the highest nonlinear susceptibility of all known materials in the THz regime. Our theory opens up avenues for accessible analytical and numerical studies of the ultrafast dynamics of superconductors.

  11. Effects of proton irradiation on flux-pinning properties of underdoped Ba(Fe0.96Co0.04)2As2 pnictide superconductor

    DOE PAGES

    Salem-Sugui, S.; Moseley, D.; Stuard, S. J.; ...

    2016-10-13

    We study the effect of proton irradiation on Ba(Fe0.96Co0.04)2As2 superconducting single crystals from combined magnetisation and magnetoresistivity measurements. The study allows the extraction of the values of the apparent pinning energy U0 of the samples prior to and after irradiation, as well as comparison of the values of U0 obtained from the flux-flow reversible region with those from the flux-creep irreversible region. Irradiation reduces Tc modestly, but significantly reduces U0 in both regimes: the critical current density Jc is modified, most strikingly by the disappearance of the second magnetisation peak after irradiation. Analysis of the functional form of the pinningmore » force and of the temperature dependence of Jc for zero field, indicates that proton irradiation in this case has not changed the pinning regime, but has introduced a high density of shallow point-like defects. Lastly, by considering a model that takes into account the effect of disorder on the irreversibility line, the data suggests that irradiation produced a considerable reduction in the average effective disorder overall, consistent with the changes observed in U0 and Jc.« less

  12. NMR study of the AF-SC-SC-AF phased transition in a pnictide superconductor LaFeAsO1-xHx

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoki; Sakurai, Ryosuke; Iimura, Soushi; Matsuishi, Satoru; Hosono, Hideo; Yamakawa, Youichi; Kontani, Hiroshi

    2014-03-01

    We have performed 75As and 1H NMR measurements in LaFeAsO1xHx, an isomorphic compound of LaFeAsO1xFx. LaFeAsO1xHx is an electron doped system, and O2- can be replaced with H- up to x = 0.5. LaFeAsO1xHx is known for having double superconducting (SC) domes on H doping. Recently, we discovered that a new antiferromagnetic (AF) phase follows the double SC domes on further H doping, forming a symmetric AF-SC-SC-AF phase alignment in the electronic phase diagram Unlike the AF ordering in the lightly H-doped regime, the AF ordering in the highly H-doped regime is attributed to the nesting between electron pockets. In the conference, we will show the data of both NMR spectra and the relaxation rate 1/T1 in the whole doping region. We will discuss the difference of electronic states between the lightly H-doped AF-SC phases and highly H-doped SC-AF phases. This work is supported by a Grant-in-Aid (Grant No. KAKENHI 23340101) from the Ministry of Education, Science, and Culture, Japan.

  13. Flux dynamics and avalanches in the 122 pnictide superconductor Ba0.65Na0.35Fe2As2

    NASA Astrophysics Data System (ADS)

    Pramanik, A. K.; Aswartham, S.; Wolter, A. U. B.; Wurmehl, S.; Kataev, V.; Büchner, B.

    2013-12-01

    In this work we present the results of the bulk magnetization measurements in a superconducting state of single crystals of Ba0.65Na0.35Fe2As2. The isothermal magnetic field (H ∥ c axis) dependent magnetization (M) loops exhibit a second peak (SP) or ‘fishtail effect’, as well as remarkable flux jumps at low temperatures. The critical current density Jc obtained from the M(H) loops is rather high, of the order of 106 A cm-2. The analysis of the temperature- and field-dependent Jc implies that high Jc is mainly due to collective (weak) pinning of vortices by dense microscopic point defects with some contribution from a strong pinning mechanism. Pronounced magnetic instabilities in terms of flux jumps depend strongly on temperature as well as on the field sweep rate. The field for the first flux jump as calculated from an adiabatic model, however, is much lower than the experimentally observed values, and this enhanced stability is attributed to a flux creep phenomenon. The analysis of field-dependent magnetic relaxation data additionally supports a collective pinning model. The data further suggest that SP in M(H) is likely related to the crossover in creep dynamics from an elastic to a plastic mechanism. We have constructed the vortex phase diagram on the field-temperature plane.

  14. Local measurement of the superfluid density in the pnictide superconductor Ba(Fe1-xCox)2As2 across the superconducting dome

    SciTech Connect

    Not Available

    2011-08-12

    We measure the penetration depth {lambda}{sub ab}(T) in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} using local techniques that do not average over the sample. The superfluid density {rho}{sub s}(T) {triple_bond} 1/{lambda}{sub ab}(T){sup 2} has three main features. First, {rho}{sub s}(T = 0) falls sharply on the underdoped side of the dome. Second, {lambda}{sub ab}(T) is flat at low T at optimal doping, indicating fully gapped superconductivity, but varies more strongly in underdoped and overdoped samples, consistent with either a power law or a small second gap. Third, {rho}{sub s}(T) varies steeply near T{sub c} for optimal and underdoping. These observations are consistent with an interplay between magnetic and superconducting phases.

  15. Flux dynamics and avalanches in the 122 pnictide superconductor Ba0.65Na0.35Fe2As2.

    PubMed

    Pramanik, A K; Aswartham, S; Wolter, A U B; Wurmehl, S; Kataev, V; Büchner, B

    2013-12-11

    In this work we present the results of the bulk magnetization measurements in a superconducting state of single crystals of Ba0.65Na0.35Fe2As2. The isothermal magnetic field (H ∥ c axis) dependent magnetization (M) loops exhibit a second peak (SP) or 'fishtail effect', as well as remarkable flux jumps at low temperatures. The critical current density Jc obtained from the M(H) loops is rather high, of the order of 10(6) A cm(-2). The analysis of the temperature- and field-dependent Jc implies that high Jc is mainly due to collective (weak) pinning of vortices by dense microscopic point defects with some contribution from a strong pinning mechanism. Pronounced magnetic instabilities in terms of flux jumps depend strongly on temperature as well as on the field sweep rate. The field for the first flux jump as calculated from an adiabatic model, however, is much lower than the experimentally observed values, and this enhanced stability is attributed to a flux creep phenomenon. The analysis of field-dependent magnetic relaxation data additionally supports a collective pinning model. The data further suggest that SP in M(H) is likely related to the crossover in creep dynamics from an elastic to a plastic mechanism. We have constructed the vortex phase diagram on the field-temperature plane.

  16. Room-Temperature Ba(Fe1-x Cox)2 As2 is not Tetragonal: Direct Observation of Magnetoelastic Interactions in Pnictide Superconductors.

    PubMed

    Cantoni, Claudia; McGuire, Michael A; Saparov, Bayrammurad; May, Andrew F; Keiber, Trevor; Bridges, Frank; Sefat, Athena S; Sales, Brian C

    2015-05-06

    Lattice distortions corresponding to Ba displacements with respect to the FeAs sublattice are revealed to break the room-temperature tetragonal symmetry in Ba(Fe1-x Cox)2 As2. The displacements yield twin domains of the size of ≈10 nm. The domain size correlates with the magnitude of the local Fe magnetic moment and its non-monotonic dependence on Co concentration.

  17. Pressure-induced shift of Tc and structural transition in “122” type pnictide superconductor Ca0.34Na0.66Fe2As2

    DOE PAGES

    Zhang, Sijia; Zhao, Kan; Yu, Xiaohui; ...

    2016-07-11

    Here, the effect of pressure on superconductivity of “122” type Ca1-xNaxFe2As2 (x=0.66 single crystal is investigated through the temperature dependence of resistanc measurement. Optimal Na doped (Ca0.34Na0.66)Fe2As2 shows a superconductin transition with Tc ~ 33 K at ambient pressure. With application of pressure, T decreases nearly linearly with dTc/dP ~ -1.7K/GPa at pressures lower than 2 GPa and disappears gradually at higher pressure. The disappearance of superconductivit is also companied with the recovery of standard Fermi liquid behaviors of th normal-state transport properties. Moreover, (Ca0.34Na0.66)Fe2As2 exhibits a tetragona (T) to collapsed-tetragonal (cT) transition at about 3 GPa. The evolution omore » non-Fermi liquid behaviors and superconductivity under pressure are both relate to the interband fluctuations.« less

  18. Role of magnetic dopants in the phase diagram of Sm 1111 pnictides: The case of Mn

    NASA Astrophysics Data System (ADS)

    Lamura, G.; Shiroka, T.; Bordignon, S.; Sanna, S.; Moroni, M.; De Renzi, R.; Carretta, P.; Biswas, P. K.; Caglieris, F.; Putti, M.; Wurmehl, S.; Singh, S. J.; Shimoyama, J.; Gastiasoro, M. N.; Andersen, B. M.

    2016-12-01

    The deliberate insertion of magnetic Mn dopants in the Fe sites of the optimally doped SmFeAsO0.88F0.12 iron-based superconductor can modify in a controlled way its electronic properties. The resulting phase diagram was investigated across a wide range of manganese contents (x ) by means of muon-spin spectroscopy (μ SR ), both in zero and in transverse fields, to probe the magnetic and the superconducting order, respectively. The pure superconducting phase (at x <0.03 ) is replaced by a crossover region at intermediate Mn values (0.03 ≤x <0.08 ), where superconductivity coexists with static magnetic order. After completely suppressing superconductivity for x =0.08 , a further increase in Mn content reinforces the natural tendency towards antiferromagnetic correlations among the magnetic Mn ions. The sharp drop of Tc and the induced magnetic order in the presence of magnetic disorder/dopants, such as Mn, are both consistent with a recent theoretical model of unconventional superconductors (M. N. Gastiasoro et al., Phys. Rev. Lett. 117, 257002 (2016), 10.1103/PhysRevLett.117.257002), which includes correlation-enhanced RKKY couplings between the impurity moments.

  19. Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Si, Qimiao

    2017-09-01

    There is increasing recognition that the multiorbital nature of the 3 d electrons is important to the proper description of the electronic states in the normal state of the iron-based superconductors. Earlier studies of the pertinent multiorbital Hubbard models identified an orbital-selective Mott phase, which anchors the orbital-selective behavior seen in the overall phase diagram. An important characteristics of the models is that the orbitals are kinetically coupled, i.e., hybridized, to each other, which makes the orbital-selective Mott phase especially nontrivial. A U (1 ) slave-spin method was used to analyze the model with nonzero orbital-level splittings. Here we develop a Landau free-energy functional to shed further light on this issue. We put the microscopic analysis from the U (1 ) slave-spin approach in this perspective, and show that the intersite spin correlations are crucial to the renormalization of the bare hybridization amplitude towards zero and the concomitant realization of the orbital-selective Mott transition. Based on this insight, we discuss additional ways to study the orbital-selective Mott physics from a dynamical competition between the interorbital hybridization and collective spin correlations. Our results demonstrate the robustness of the orbital-selective Mott phase in the multiorbital models appropriate for the iron-based superconductors.

  20. Oxygen diffusion in cuprate superconductors

    SciTech Connect

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  1. Generic properties of layered superconductors

    SciTech Connect

    Klemm, R.A.

    1992-10-01

    A wide variety of layered materials have been found to be superconducting. Among these are graphite intercalation donor compounds, transition metal dichalcogenides, intercalated transition metal dichalcogenides, organic layered superconductors, artificial superlattices, and the cuprates. The normal state properties of all of these compounds are very similar, due to the fact that they all have well-defined Fermi surfaces, and quasi-linear in-plane resistivities at high temperatures. At lower temperatures, charge- or spin-density waves are common in these systems. With the exception of the graphite intercalation compounds, all of the fayered superconductors are type-II, and generally highly anisotropic in their superconducting properties. Dimensional crossover from anisotropic bulk to thin film behavior is common to many of these materials.

  2. Topological properties of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-01

    A variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to the phase where superconductivity and ferromagnetism coexist is a first-order transition.

  3. Topological properties of ferromagnetic superconductors

    DOE PAGES

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-27

    Here, a variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to themore » phase where superconductivity and ferromagnetism coexist is a first-order transition.« less

  4. Plastic energies in layered superconductors

    SciTech Connect

    Wilkin, N.K.; Moore, M.A.

    1995-08-01

    We estimate the energy cost associated with two pancake vortices colliding in a layered superconductor. It is argued that this energy sets the plastics energy scale and is the analogue of the crossing energy for vortices in the continuum case. The starting point of the calculation is the Lawrence-Doniach version of the Ginzburg-Landau free energy for type-II superconductors. The magnetic fields considered are along the {ital c} direction and assumed to be sufficiently high that the lowest Landau-level approximation is valid. For Bi-2212, where it is known that layering is very important, the results are radically different from what would have been obtained using a three-dimensional anisotropic continuum model. We then use the plastic energy for Bi-2212 to successfully explain recent results from Hellerqvist {ital et} {ital al}. on its longitudinal resistance.

  5. Topological properties of ferromagnetic superconductors

    SciTech Connect

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-27

    Here, a variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to the phase where superconductivity and ferromagnetism coexist is a first-order transition.

  6. Topological properties of ferromagnetic superconductors

    SciTech Connect

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-27

    Here, a variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to the phase where superconductivity and ferromagnetism coexist is a first-order transition.

  7. Holographic superconductors with Weyl corrections

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay

    2016-10-01

    A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  8. High-Temperature Ceramic Superconductors

    DTIC Science & Technology

    1991-12-15

    magnetic susceptibility, Meissner effect and specific heat. Task 4 is an investigation of superconductor ceramic processing. Most of the important... effect of the additional heater on the microstructure is shown in Fig. 11. As the upper micrograph shows, hardly any alignment was induced with a single... effect in cal field,7 H 1 = 𔃻o In K/41TA 2, and magnetic field pene- limiting the current-carrying capability of the ceramic tration length, A. The

  9. Fault current limiters using superconductors

    NASA Astrophysics Data System (ADS)

    Norris, W. T.; Power, A.

    Fault current limiters on power systems are to reduce damage by heating and electromechanical forces, to alleviate duty on switchgear used to clear the fault, and to mitigate disturbance to unfaulted parts of the system. A basic scheme involves a super-resistor which is a superconductor being driven to high resistance when fault current flows either when current is high during a cycle of a.c. or, if the temperature of the superconductive material rises, for the full cycle. Current may be commuted from superconductor to an impedance in parallel, thus reducing the energy dispersed at low temperature and saving refrigeration. In a super-shorted transformer the ambient temperature primary carries the power system current; the superconductive secondary goes to a resistive condition when excessive currents flow in the primary. A super-transformer has the advantage of not needing current leads from high temperature to low temperature; it behaves as a parallel super-resistor and inductor. The supertransductor with a superconductive d.c. bias winding is large and has small effect on the rate of fall of current at current zero; it does little to alleviate duty on switchgear but does reduce heating and electromechanical forces. It is fully active after a fault has been cleared. Other schemes depend on rapid recooling of the superconductor to achieve this.

  10. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  11. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1-xYbxCoIn5

    NASA Astrophysics Data System (ADS)

    Song, Yu; van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng

    2016-09-01

    The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s+/-)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1-xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1-xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario.

  12. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1−xYbxCoIn5

    PubMed Central

    Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng

    2016-01-01

    The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397

  13. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1–xYbxCoIn5

    DOE PAGES

    Song, Yu; Van Dyke, John; Lum, I. K.; ...

    2016-09-28

    Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1–xYbxCoIn5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation using the electronic structure andmore » the momentum dependence of the dx2–y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn5, we conclude the robust upward dispersing resonance mode in Ce1–xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less

  14. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1-xYbxCoIn5.

    PubMed

    Song, Yu; Van Dyke, John; Lum, I K; White, B D; Jang, Sooyoung; Yazici, Duygu; Shu, L; Schneidewind, A; Čermák, Petr; Qiu, Y; Maple, M B; Morr, Dirk K; Dai, Pengcheng

    2016-09-28

    The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s(±))-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1-xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1-xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario.

  15. High temperature superconductors: A technological revolution

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  16. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  17. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  18. Technological Evolution of High Temperature Superconductors

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH...AND SUBTITLE TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Jordan R. White 7. PERFORMING ORGANIZATION...Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS Jordan R. White Lieutenant

  19. High temperature superconductors: A technological revolution

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  20. Effect of weak disorder on the phase competition in iron pnictides

    NASA Astrophysics Data System (ADS)

    Hoyer, M.; Syzranov, S. Â. V.; Schmalian, J.

    2014-06-01

    We analyze the effect of weak disorder on the competition between antiferromagnetic order and superconductivity in a model for iron-based superconductors. Under the assumption of an approximate particle-hole symmetry, we show that conventional s++ superconductivity cannot be realized in the case of coexisting magnetic and superconductive orders, observed experimentally at intermediate doping levels. This result holds for arbitrary impurity concentrations, and, in particular, in the clean limit. The inclusion of disorder further amplifies the phase competition between itinerant antiferromagnetism and conventional superconductivity. In addition, we analyze the effect of disorder on the characteristic length scales of the two order parameters, and find that in a disordered sample the staggered moment fluctuates on shorter scales than the superconductive order parameter, even if both length scales are the same in the clean limit.

  1. Spin-state crossover model for the magnetism of iron pnictides.

    PubMed

    Chaloupka, Jiří; Khaliullin, Giniyat

    2013-05-17

    We propose a minimal model describing magnetic behavior of Fe-based superconductors. The key ingredient of the model is a dynamical mixing of quasidegenerate spin states of Fe(2+) ion by intersite electron hoppings, resulting in an effective local spin S(eff). The moments S(eff) tend to form singlet pairs and may condense into a spin nematic phase due to the emergent biquadratic exchange couplings. The long-range ordered part m of S(eff) varies widely, 0 ≤ m ≤ S(eff), but magnon spectra are universal and scale with S(eff), resolving the puzzle of large but fluctuating Fe moments. Unusual temperature dependences of a local moment and spin susceptibility are also explained.

  2. Probing the pairing symmetry of the iron pnictides with electronic Raman scattering

    SciTech Connect

    Boyd, G.R.

    2010-04-29

    An important issue in the study of the iron-arsenic based superconductors is the symmetry of the superconducting gap, a problem complicated by multiple gaps on different Fermi surface sheets. Electronic Raman scattering is a flexible bulk probe which allows one in principle to determine gap magnitudes and test for gap nodes in different regions of the Brillouin zone by employing different photon polarization states. Here we calculate the clean Raman intensity for A{sub 1g}, B{sub 1g} and B{sub 2g} polarizations, and discuss the peak structures and low-energy power laws which might be expected for several popular models of the superconducting gap in these systems.

  3. Enhancement of the London Penetration Depth in Pnictides at the Onset of Spin-Density-Wave Order under Superconducting Dome

    NASA Astrophysics Data System (ADS)

    Levchenko, A.; Vavilov, M. G.; Khodas, M.; Chubukov, A. V.

    2013-04-01

    Recent measurements of the doping dependence of the London penetration depth λ(x) at low T in clean samples of isovalent BaFe2(As1-xPx)2 at T≪Tc [Hashimoto et al., Science 336, 1554 (2012)SCIEAS0036-8075] revealed a peak in λ(x) near optimal doping x=0.3. The observation of the peak at T≪Tc, points to the existence of a quantum critical point beneath the superconducting dome. We associate such a quantum critical point with the onset of a spin-density-wave order and show that the renormalization of λ(x) by critical magnetic fluctuations gives rise to the observed feature. We argue that the case of pnictides is conceptually different from a one-component Galilean invariant Fermi liquid, for which correlation effects do not cause the renormalization of the London penetration depth at T=0.

  4. Ultrafast structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2

    PubMed Central

    Rettig, L.; Mariager, S. O.; Ferrer, A.; Grübel, S.; Johnson, J. A.; Rittmann, J.; Wolf, T.; Johnson, S. L.; Ingold, G.; Beaud, P.; Staub, U.

    2016-01-01

    Using femtosecond time-resolved hard x-ray diffraction, we investigate the structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2. The orthorhombic distortion analyzed by the transient splitting of the (1 0 3) Bragg reflection is suppressed on an initial timescale of 35 ps, which is much slower than the suppression of magnetic and nematic order. This observation demonstrates a transient state with persistent structural distortion and suppressed magnetic/nematic order which are strongly linked in thermal equilibrium. We suggest a way of quantifying the coupling between structural and nematic degrees of freedom based on the dynamics of the respective order parameters. PMID:27158636

  5. Line-Node Dirac Semimetal and Topological Insulating Phase in Noncentrosymmetric Pnictides CaAgX (X = P, As)

    NASA Astrophysics Data System (ADS)

    Yamakage, Ai; Yamakawa, Youichi; Tanaka, Yukio; Okamoto, Yoshihiko

    2016-01-01

    Two noncentrosymmetric ternary pnictides, CaAgP and CaAgAs, are reported as topological line-node semimetals protected solely by mirror-reflection symmetry. The band gap vanishes on a circle in momentum space, and surface states emerge within the circle. Extending this study to spin-orbit coupled systems reveals that, compared with CaAgP, a substantial band gap is induced in CaAgAs by large spin-orbit interaction. The resulting states are a topological insulator, in which the Z2 topological invariant is given by 1;000. To clarify the Z2 topological invariants for time-reversal-invariant systems without spatial-inversion symmetry, we introduce an alternative way to calculate the invariants characterizing a line node and topological insulator for mirror-reflection-invariant systems.

  6. Magnetization of anisotropic Type II superconductors

    SciTech Connect

    Mints, R.G.

    1989-04-10

    Peculiarities of magnetization of anisotropic type II superconductors are of considerable interest in view of the discovery of high-T/sub c/ superconductors characterized by strongly asymmetric layered structure. Specifics of the penetration of magnetic flux into an anisotropic type II superconductor were discussed in the literature. This analysis gave the distribution of induction in an isolated vortex, its energy, and critical magnetic field H/sub c1/. However, the magnetization curve of anisotropic superconductors was not considered. This paper deals with the magnetic moment of uniaxial London superconductor in the interval H/sub c1/ /le/ H/sub 0/ << H/sub c2/, where H/sub 0/ is the external magnetic field strength.

  7. Majorana Fermions and Topology in Superconductors

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-07-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.

  8. Isotropic in-plane quenched disorder and dilution induce a robust nematic state in electron-doped pnictides

    NASA Astrophysics Data System (ADS)

    Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2015-09-01

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (x z ,y z ,x y ) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. In this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the Néel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. This study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.

  9. U(1) slave-spin theory and its application to Mott transition in a multiorbital model for iron pnictides

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Si, Qimiao

    2012-08-01

    A U(1) slave-spin representation is introduced for multiorbital Hubbard models. As with the Z2 form of de’Medici [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.72.205124 72, 205124 (2005)], this approach represents a physical electron operator as the product of a slave spin and an auxiliary fermion operator. For nondegenerate multiorbital models, our U(1) approach is advantageous in that it captures the noninteracting limit at the mean-field level. For systems with either a single orbital or degenerate multiple orbitals, the U(1) and Z2 slave-spin approaches yield the same results in the slave-spin-condensed phase. In general, the U(1) slave-spin approach contains a U(1) gauge redundancy, and properly describes a Mott insulating phase. We apply the U(1) slave-spin approach to study the metal-to-insulator transition in a five-orbital model for parent iron pnictides. We demonstrate a Mott transition as a function of the interactions in this model. The nature of the Mott insulating state is influenced by the interplay between the Hund's rule coupling and crystal-field splittings. In the metallic phase, when the Hund's rule coupling is beyond a threshold, there is a crossover from a weakly correlated metal to a strongly correlated one, through which the quasiparticle spectral weight rapidly drops. The existence of such a strongly correlated metallic phase supports the incipient Mott picture of the parent iron pnictides. In the parameter regime for this phase and in the vicinity of the Mott transition, we find that an orbital selective Mott state has nearly as competitive a ground-state energy.

  10. Isotropic in-plane quenched disorder and dilution induce a robust nematic state in electron-doped pnictides

    DOE PAGES

    Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; ...

    2015-09-21

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (xz,yz,xy) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. Moreover, in this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly,more » our Monte Carlo simulations reveal that the fast reduction with doping of the N eel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Finally, our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. Our study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron

  11. Isotropic in-plane quenched disorder and dilution induce a robust nematic state in electron-doped pnictides

    SciTech Connect

    Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2015-09-21

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (xz,yz,xy) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. Moreover, in this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the N eel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Finally, our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. Our study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found

  12. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  13. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  14. Influence of multiorbital and anisotropic Coulomb interactions on isotope effect coefficient in doped Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Rani, Luxmi; Ajay

    2017-06-01

    The present work describes the theoretical analysis of isotope effect coefficient as a function of transition temperature in two orbital per site model Hamiltonian in iron based superconducting system. The expression of isotope effect coefficient has been computed numerically and self-consistently by employing Green's function technique within the BCS- mean-field approximation. It is observed that the isotope effect coefficient increases with the increase of the hybridization while with the increase in Coulomb interaction it starts decreasing. On increasing the carrier density per site in two orbital per site iron pnictide system, isotope effect coefficient (α) exhibits large values (much higher than BCS limit) at lower temperatures. While in the underdoped case, isotope effect coefficient shows minimum value in superconducting states of the iron based systems. Furthermore, it has been found that the large value of the isotope effect coefficient is the indication of the fact that the contribution of phonon alone is inadequate as the origin of superconductivity in these systems. Finally, the obtained theoretical results have been compared with experimental and existing theoretical observations in iron based superconductors.

  15. 42214 layered Fe-based superconductors: An ab initio study of their structural, magnetic, and electronic properties

    NASA Astrophysics Data System (ADS)

    Bucci, F.; Sanna, A.; Continenza, A.; Katrych, S.; Karpinski, J.; Gross, E. K. U.; Profeta, G.

    2016-01-01

    As a follow-up to the discovery of a new family of Fe-based superconductors, namely, the RE4Fe2As2Te1 -xO4 (42214) (RE = Pr, Sm, and Gd), we present a detailed ab initio study of these compounds highlighting the role of rare-earth (RE) atoms, external pressure, and Te content on their physical properties. Modifications of the structural, magnetic, and electronic properties of the pure (e.g., x =0.0 ) 42214 compounds and their possible correlations with the observed superconducting properties are calculated and discussed. The careful analysis of the results obtained shows that (i) changing the RE atoms allows one to tune the internal pressure acting on the As height with respect to the Fe planes; (ii) similarly to other Fe pnictides, the 42214 pure compounds show an antiferromagnetic-stripe magnetic ground state phase joined by an orthorhombic distortion (not experimentally found yet); (iii) smaller RE atoms increase the magnetic instability of the compounds possibly favoring the onset of the superconducting state; (iv) external pressure induces the vanishing of the magnetic order with a transition to the tetragonal phase and can be a possible experimental route towards higher superconducting critical temperature (Tc) ; and (v) Te vacancies act on the structural parameters, changing the As height and affecting the stability of the magnetic phase.

  16. Phase transitions in a frustrated biquadratic Heisenberg model with coupled orbital degrees of freedom for iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhuo, W. Z.; Qin, M. H.; Dong, S.; Li, X. G.; Liu, J.-M.

    2016-03-01

    In this paper, we study a biquadratic Heisenberg model with coupled orbital degrees of freedom by using a Monte Carlo simulation to investigate the phase transitions in iron-based superconductors. The antiferroquadrupolar state, which may be related to the magnetism of FeSe [R. Yu and Q. Si, Phys. Rev. Lett. 115, 116401 (2015), 10.1103/PhysRevLett.115.116401], is stabilized by the anisotropic biquadratic interaction induced by a ferro-orbital-ordered state. It is revealed that the orbital and nematic transitions occur at the same temperature for all the cases, supporting the mechanism of the orbital-driven nematicity as revealed in most recent experiments [S. H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B. Büchner, Nat. Mater. 14, 210 (2015), 10.1038/nmat4138]. In addition, it is suggested that the orbital interaction may lead to the separation of the structural and magnetic phase transitions, as observed in many families of iron pnictides.

  17. Impact of dynamic orbital correlations on magnetic excitations in the normal state of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Cheng; Lv, Weicheng; Tranquada, J. M.; Phillips, Philip W.

    2012-09-01

    We show here that orbital degrees of freedom produce a distinct signature in the magnetic excitation spectrum of iron-based superconductors above the magnetic ordering temperature. Because dxz and dyz orbitals are strongly connected with Fermi surface topology, the nature of magnetic excitations can be modified significantly due to the presence of either static or fluctuating orbital correlations. Within a five-orbital itinerant model, we show that static orbital order generally leads to an enhancement of commensurate magnetic excitations even when the original Fermi surface lacks nesting at (π,0) or (0,π). When long-range orbital order is absent, Gaussian fluctuations beyond the standard random-phase approximation capture the effects of fluctuating orbital correlations on the magnetic excitations. We find that commensurate magnetic excitations can also be enhanced if the orbital correlations are strong. Our results offer a natural explanation for the incommensurate-to-commensurate transformation observed in a recent neutron scattering measurement (Xu , arXiv:1201.4404), and we propose that this unusual transformation is an important signature to distinguish orbital from spin physics in the normal state of pnictides. Implications for the magnetic and superconducting states are discussed.

  18. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37K)

    NASA Astrophysics Data System (ADS)

    Margadonna, S.; Takabayashi, Y.; Ohishi, Y.; Mizuguchi, Y.; Takano, Y.; Kagayama, T.; Nakagawa, T.; Takata, M.; Prassides, K.

    2009-08-01

    α-FeSe with the PbO structure is a key member of the family of high- Tc iron pnictide and chalcogenide superconductors, as while it possesses the basic layered structural motif of edge-sharing distorted FeSe4 tetrahedra, it lacks interleaved ion spacers or charge-reservoir layers. We find that the application of hydrostatic pressure first rapidly increases Tc which attains a broad maximum of 37 K at ˜7GPa before decreasing to 6 K upon further compression to ˜14GPa . Complementary synchrotron x-ray diffraction at 16 K was used to measure the low-temperature isothermal compressibility of α-FeSe , revealing an extremely soft solid with a bulk modulus, K0=30.7(1.1)GPa and strong bonding anisotropy between interlayer and intralayer directions that transforms to the more densely packed β polymorph above ˜9GPa . The nonmonotonic Tc(P) behavior of FeSe coincides with drastic anomalies in the pressure evolution of the interlayer spacing, pointing to the key role of this structural feature in modulating the electronic properties.

  19. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  20. Superconductor lunar telescopes --Abstract only

    NASA Technical Reports Server (NTRS)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  1. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  2. Superconductor lunar telescopes --Abstract only

    NASA Technical Reports Server (NTRS)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  3. Holographic superconductors with hyperscaling violation

    NASA Astrophysics Data System (ADS)

    Fan, ZhongYing

    2013-09-01

    We investigate holographic superconductors in asympototically geometries with hyperscaling violation. The mass of the scalar field decouples from the UV dimension of the dual scalar operator and can be chosen as negative as we want, without disturbing the Breitenlohner-Freedman bound. We first numerically find that the scalar condenses below a critical temperature and a gap opens in the real part of the conductivity, indicating the onset of superconductivity. We further analytically explore the effects of the hyperscaling violation on the superconducting transition temperature. We find that the critical temperature increases with the increasing of hyperscaling violation.

  4. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  5. Noncentrosymmetric superconductors in one dimension

    NASA Astrophysics Data System (ADS)

    Samokhin, K. V.

    2017-02-01

    We study the fermionic boundary modes (Andreev bound states) in a time-reversal invariant one-dimensional superconductor. In the presence of a substrate, spatial inversion symmetry is broken and the electronic properties are strongly affected by an antisymmetric spin-orbit coupling. We assume an arbitrary even number of nondegenerate bands crossing the Fermi level. We show that there is only one possible pairing symmetry in one dimension, an analog of s -wave pairing. The zero-energy Andreev bound states are present if the sign of the gap function in an odd number of the bands is different from all other bands.

  6. Two-band superconductor magnesium diboride

    NASA Astrophysics Data System (ADS)

    Xi, X. X.

    2008-11-01

    This review focuses on the most important features of the 40 K superconductor MgB2—the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher Tc superconductors.

  7. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  8. Position-sensitive superconductor detectors

    NASA Astrophysics Data System (ADS)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  9. Superconductor bearings, flywheels and transportation

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  10. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2017-02-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  11. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  12. Losses of Superconductor Journal Bearing

    NASA Astrophysics Data System (ADS)

    Han, Y. H.; Hull, J. R.; Han, S. C.; Jeong, N. H.; Oh, J. M.; Sung, T. H.

    2004-06-01

    A high-temperature superconductor (HTS) journal bearing was studied for rotational loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35×25×10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings is < 10 mT on the stainless part. The rotational drag was measured over the same speed range at several chamber pressures. Results indicate that a chamber pressure of 0.4 mtorr is sufficiently low to minimize windage loss, and the 10 mT design criterion for the magnetic field on the stainless part of the cryochamber is too high.

  13. Electronic transport in unconventional superconductors

    SciTech Connect

    Graf, M.J.

    1998-12-31

    The author investigates the electron transport coefficients in unconventional superconductors at low temperatures, where charge and heat transport are dominated by electron scattering from random lattice defects. He discusses the features of the pairing symmetry, Fermi surface, and excitation spectrum which are reflected in the low temperature heat transport. For temperatures {kappa}{sub B}T {approx_lt} {gamma} {much_lt} {Delta}{sub 0}, where {gamma} is the bandwidth of impurity induced Andreev states, certain eigenvalues become universal, i.e., independent of the impurity concentration and phase shift. Deep in the superconducting phase ({kappa}{sub B}T {approx_lt} {gamma}) the Wiedemann-Franz law, with Sommerfeld`s value of the Lorenz number, is recovered. He compares the results for theoretical models of unconventional superconductivity in high-{Tc} and heavy fermion superconductors with experiment. The findings show that impurities are a sensitive probe of the low-energy excitation spectrum, and that the zero-temperature limit of the transport coefficients provides an important test of the order parameter symmetry.

  14. Low-energy microscopic models for iron-based superconductors: a review

    NASA Astrophysics Data System (ADS)

    Fernandes, Rafael M.; Chubukov, Andrey V.

    2017-01-01

    The development of sensible microscopic models is essential to elucidate the normal-state and superconducting properties of the iron-based superconductors. Because these materials are mostly metallic, a good starting point is an effective low-energy model that captures the electronic states near the Fermi level and their interactions. However, in contrast to cuprates, iron-based high-T c compounds are multi-orbital systems with Hubbard and Hund interactions, resulting in a rather involved 10-orbital lattice model. Here we review different minimal models that have been proposed to unveil the universal features of these systems. We first review minimal models defined solely in the orbital basis, which focus on a particular subspace of orbitals, or solely in the band basis, which rely only on the geometry of the Fermi surface. The former, while providing important qualitative insight into the role of the orbital degrees of freedom, do not distinguish between high-energy and low-energy sectors and, for this reason, generally do not go beyond mean-field. The latter allow one to go beyond mean-field and investigate the interplay between superconducting and magnetic orders as well as Ising-nematic order. However, they cannot capture orbital-dependent features like spontaneous orbital order. We then review recent proposals for a minimal model that operates in the band basis but fully incorporates the orbital composition and symmetries of the low-energy excitations. We discuss the results of the renormalization group study of such a model, particularly of the interplay between superconductivity, magnetism, and spontaneous orbital order, and compare theoretical predictions with experiments on iron pnictides and chalcogenides. We also discuss the impact of the glide-plane symmetry on the low-energy models, highlighting the key role played by the spin-orbit coupling.

  15. Doping Induced Electronic Phase Separation and Coulomb Bubbles in Layered Superconductors

    NASA Astrophysics Data System (ADS)

    Saarela, M.; Kusmartsev, F. V.

    2010-12-01

    We study properties of charge fluids with random impurities or heavy polarons using a microscopic Hamiltonian with the full many-body Coulomb interaction. At zero temperature and high enough density the bosonic fluid is superconducting, but when density decreases the Coulomb interaction will be strongly over-screened and impurities or polarons begin to trap charge carriers forming bound quasiparticle like clusters, which we call Coulomb bubbles or clumps. These bubbles are embedded inside the superconductor and form nuclei of a new insulating state. The growth of a bubble is terminated by the Coulomb force. The fluid contains two groups of charge carriers associated with free and localized states. The insulating state arises via a percolation of the insulating islands of bubbles, which cluster and prevent the flow of the electrical supercurrent through the system. Our results are applicable to HTSC. There the Coulomb fluids discussed in the paper correspond to mobile holes located on Cu sites and heavy polarons or charged impurities located on Oxygen sites. As a result of our calculations the following two-componet picture of two competing orders in cuprates arise. The mobile and localized states are competing with each other and their balance is controlled by doping. At high doping a large Fermi surface is open. There the density of real charge carriers is significantly larger than the density of the doped ones. When doping decreases more and more carriers are localized as Coulomb clumps which are creating around heavy polarons localized on Oxygen sites and forming a regular lattice. The picture is consistent with the Gorkov and Teitelbaum (GT) analysis 1,2 of the transport, Hall effect data and the ARPES spectra as well as with nanoscale superstructures observed in Scanning Tunneling Microscope(STM) experiments [3-8]. The scenario of the clump formation may be also applicable to pnictides, where two types of clumps may arise even at very high temperatures.

  16. Doping Induced Electronic Phase Separation and Coulomb Bubbles in Layered Superconductors

    NASA Astrophysics Data System (ADS)

    Saarela, M.; Kusmartsev, F. V.

    We study properties of charge fluids with random impurities or heavy polarons using a microscopic Hamiltonian with the full many-body Coulomb interaction. At zero temperature and high enough density the bosonic fluid is superconducting, but when density decreases the Coulomb interaction will be strongly over-screened and impurities or polarons begin to trap charge carriers forming bound quasiparticle like clusters, which we call Coulomb bubbles or clumps. These bubbles are embedded inside the superconductor and form nuclei of a new insulating state. The growth of a bubble is terminated by the Coulomb force. The fluid contains two groups of charge carriers associated with free and localized states. The insulating state arises via a percolation of the insulating islands of bubbles, which cluster and prevent the flow of the electrical supercurrent through the system. Our results are applicable to HTSC. There the Coulomb fluids discussed in the paper correspond to mobile holes located on Cu sites and heavy polarons or charged impurities located on Oxygen sites. As a result of our calculations the following two-componet picture of two competing orders in cuprates arise. The mobile and localized states are competing with each other and their balance is controlled by doping. At high doping a large Fermi surface is open. There the density of real charge carriers is significantly larger than the density of the doped ones. When doping decreases more and more carriers are localized as Coulomb clumps which are creating around heavy polarons localized on Oxygen sites and forming a regular lattice. The picture is consistent with the Gorkov and Teitelbaum (GT) analysis 1,2 of the transport, Hall effect data and the ARPES spectra as well as with nanoscale superstructures observed in Scanning Tunneling Microscope(STM) experiments [3-8]. The scenario of the clump formation may be also applicable to pnictides, where two types of clumps may arise even at very high temperatures.

  17. Inhomogeneous disorder Dirac Fermions: from heavy fermion superconductors to graphene. Final report

    SciTech Connect

    Vekhter, Ilya

    2013-08-11

    This is the final report on the award designed to foster a partnership between Louisiana State University and Los Alamos National Laboratory (LANL) in conducting fundamental research in support of energy needs. The general focus of the research effort was on developing a better understanding of materials with new functionalities. We investigated two distinct and very promising classes of new materials, which serve as a testing ground for many of the novel phenomena in condensed matter physics: the heavy fermion 115 series, where the interplay of strong interactions between the electrons leads to a rich variety of competing phases and anomalous properties, and newly discovered pnictide superconductors. The former focus was planned; the latter emerged during the collaborative effort with LANL. Our objective was to determine the origin, and to establish a functional effective theory description of the phases in these systems, and transitions between them. We report on the main accomplishments under the award that serves to clarify the nature of superconductivity in both families of materials. In particular, we collaborated with experimentalists to predict and analyze the magnetic field and temperature dependence of the bulk thermodynamic and transport properties and to determine the gap shape in CeCoIn₅ and in Ba(Fe1-xCox)₂As₂, investigated the Kondo temperature in the presence of spin-orbit coupling in the conduction band, and provided theoretical guidance for local probes such as scanning tunneling spectroscopy of vortex cores and impurity resonances, and magnetic force microscopy of the superconducting states.

  18. Ultrafast momentum-dependent quasiparticle dynamics in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Bovensiepen, Uwe

    2013-03-01

    Femtosecond time- and angle-resolved photoelectron spectroscopy trARPES facilitates insight into electronic relaxation and electronic structure of non-equilibrium states of matter. Hot electrons and holes relax in metals on ultrafast time scales due to the screened Coulomb interaction. In superconductors the relaxation rates of quasiparticles at energies close to the superconducting gap edge are reduced because of the loss of quasiparticle states near EF. Since in the superconducting state the relaxation of optically excited carriers proceeds partly by Cooper pair reformation, the study of the quasiparticle dynamics bears the potential to analyze the interaction responsible for Cooper pair formation. Results of trARPES will be discussed for optimally doped Bi2Sr2CaCu2O8+δ in the superconducting state and on EuFe2As2 in the antiferromagnetic state. In the cuprate system we find a predominant excitation of quasiparticles at momenta near the antinode. We show furthermore, that at excitation densities of several 10 μJ/cm2 quasiparticle relaxation is dominated by Cooper pair reformation, which again proceeds near the antinode. In the Fe-pnictide material we monitor a difference in the relaxation rate for electrons and holes near the Fermi momentum, which disappears above the Neel temperature. We conclude that this anisotropic relaxation of electrons and holes is a consequence of the optical modification of the antiferromagnetic order. Analysis of energy transfer from electrons to phonons allows to determine the momentum averaged electron-phonon coupling constant λ. We find values below 0.25 for Bi2Sr2CaCu2O8+δ and below 0.15 for EuFe2As2. We acknowledge funding through the Deutsche Forschungsgemeinschaft through BO 1823/2, SPP 1458 and the Alexander von Humboldt foundation.

  19. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  20. Circuit Theory of Unconventional Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Nazarov, Yu. V.; Kashiwaya, S.

    2003-04-01

    We extend the circuit theory of superconductivity to cover transport and proximity effect in mesoscopic systems that contain unconventional superconductor junctions. The approach fully accounts for zero-energy Andreev bound states forming at the surface of unconventional superconductors. As a simple application, we investigate the transport properties of a diffusive normal metal in series with a d-wave superconductor junction. We reveal the competition between the formation of Andreev bound states and proximity effect that depends on the crystal orientation of the junction interface.

  1. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1995-01-01

    An article and method of manufacture of (Bi, Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor.

  2. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  3. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  4. Transport properties of disordered iron-pnictides in case of coexistence between superconducting and spin-density wave order

    NASA Astrophysics Data System (ADS)

    Kuzmanovski, Dushko; Vavilov, Maxim

    2012-02-01

    We present a theoretical description of the transport properties of a dirty multi-band superconductor in the case when both superconducting and spin-density wave orders coexist. We focus on differential conductance spectra of normal metal-superconductor junctions. In pure SC phase, we demonstrate that the interband impurity scattering broadens the coherent peak near the superconducting gap and significantly reduces its height even at relatively low scattering rates. This broadening is consistent with a number of recent experiments performed for both tunnel junctions and larger diffusive contacts. We further analyze the effect of the SDW order parameter on the differential conductance and other transport properties in the coexistence phase.

  5. An empirical method to account for spin-fluctuation suppression of magnetism in Fe pnictides

    NASA Astrophysics Data System (ADS)

    Blaha, Peter; Mazin, Igor; Johannes, Michelle

    2011-03-01

    Parent materials of Fe-based superconductors, such as BaFe 2 As 2 , are itinerant antiferromagnets, and as such should be better described by LDA calculations than are strongly-correlated cuprates. To an extent, this is true, but LDA, being a mean-field approximation, underestimates the suppression of the long-range magnetism due to spin fluctuations. These can be accounted for within Moria's self-consistent renormalization theory, which, however, includes unknown parameters such as the mean amplitude of the spin-fluctuations. We propose to include Moria's renormalization empirically, through a scaling of the LDA exchange-correlation magnetic field by a uniform constant factor, tuned so as to reproduce the observed phase diagram. This is a much more physical method to produce electronic bands with a proper exchange splitting, than adding an artificial ``negative-U'' term within an LDA+U formalism, a technique used now. We will report the results of such renormalized calculations for BaFe 2 As 2 and, for comparison, for a prototypical itinerant magnet, ZrZn 2 .

  6. Dynamics of order parameters near stationary states in superconductors with a charge-density wave

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Pavel A.; Volkov, Anatoly F.; Efetov, Konstantin B.

    2014-07-01

    We consider a simple model of a quasi-one-dimensional conductor in which two order parameters (OP) may coexist, i.e., the superconducting OP Δ and the OP W that characterize the amplitude of a charge-density wave (CDW). In the mean field approximation, we present equations for the matrix Green's functions Gik, where the first subscript i relates to the one of the two Fermi sheets and the other, k, operates in the Gor'kov-Nambu space. Using the solutions of these equations, we find stationary states for different values of the parameter describing the curvature of the Fermi surface μ, which can be varied, e.g., by doping. It is established, in particular, that in the interval μ1<μ <μ2, the self-consistency equations have a solution for coexisting OPs Δ and W. However, this solution corresponds to a saddle point in the energy functional Φ (Δ,W), i.e., it is unstable. Stable states are (1) the W state, i.e., the state with the CDW (W ≠0, Δ =0) at μ <μ2 and (2) the S state, i.e., the purely superconducting state (Δ ≠0, W =0) at μ1<μ. These states correspond to minima of Φ. At μ <μ0=(μ1+μ2)/2, the state (1) corresponds to a global minimum, and at μ0<μ, the state (2) has a lower energy, i.e., only the superconducting state survives at large μ. We study the dynamics of the variations δΔ and δW from these states in the collisionless limit. It is characterized by two modes of oscillations, the fast and the slow one. The fast mode is analogous to damped oscillations in conventional superconductors. The frequency of slow modes depends on the curvature μ and is much smaller than 2Δ /ℏ if the coupling constants for superconductivity and CDW are close to each other. The considered model can be applied to high-Tc superconductors where the parts of the Fermi surface near the "hot" spots may be regarded as the considered two Fermi sheets. We also discuss relation of the considered model to the simplest model for Fe-based pnictides.

  7. NEW APPROACHES: High temperature superconductor levitation motor

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.; Lee, K. H.

    1998-01-01

    We show how it is possible to construct a high temperature superconductor levitation motor in an introductory physics laboratory. It is suitable for classroom demonstration and uses a simple yet efficient cooling method.

  8. Resistance domain in type II superconductors

    SciTech Connect

    Gurevich, A.V.; Mints, R.G.

    1980-01-05

    We show that traveling domains with a finite resistance can exist in type II superconductors in the presence of a transport current. An experiment in which this effect generates an alternating electric field and current is proposed.

  9. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  10. Josephson current between p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takehito; Tanaka, Yukio; Golubov, Alexander; Asano, Yasuhiro

    2006-10-01

    Josephson current in p-wave superconductor/diffusive normal metal (DN)/p-wave superconductor junctions is calculated by solving the Usadel equation under the Nazarov's boundary condition extended to unconventional superconductors by changing the heights of the insulating barriers at the interfaces, the magnitudes of the resistance in DN, and the angles between the normal to the interface and the lobe directions of p-wave pair potentials. It is shown that the magnitude of the Josephson current strongly depends on the lobe directions of the p-wave pair potentials and the resulting magnitude of the Josephson current is large compared to that in the s-wave superconducting junctions due to the formation of the resonant states peculiar to p-wave superconductors.

  11. Current-driven plasma instabilities in superconductors

    SciTech Connect

    Kempa, K.; Cen, J.; Bakshi, P.

    1989-02-01

    We examine here the possibility of current-driven plasma instabilities in superconductors in two temperature regimes. At low temperatures (Tapprox. =0) an instability can be generated in a layered system. Near the critical temperature (Tapprox. =T/sub c/) an instability can occur in a single superconductor for sufficiently large drifts which might be achievable in the new high-T/sub c/ materials. These instabilities offer possibilities for new radiation-source device applications.

  12. NSSEFF Designing New Higher Temperature Superconductors

    DTIC Science & Technology

    2017-04-13

    AFRL-AFOSR-VA-TR-2017-0083 NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS Meigan Aronson THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF... NEW YORK WEE 5510 FRK MEL LIB STONY BROOK, NY 117940001 04/13/2017 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force...2015 4. TITLE AND SUBTITLE NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-10-1-0191 5c

  13. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  14. Entropy balance in holographic superconductors

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Pourhasan, Razieh

    2012-07-01

    In systems undergoing second order phase transitions, the temperature integral of the specific heat over temperature from zero to the critical temperature is the same in both the normal and ordered phases. This entropy balance relates the critical temperature to the distribution of degrees of freedom in the normal and ordered states. Quantum criticality and fractionalization can imply an increased number of low energy degrees of freedom in both the normal and ordered states. We explore the rôle of entropy balance in holographic models of superconductivity, focussing on the interplay between quantum criticality and superconductivity. We consider models with and without a ground state entropy density in the normal phase; the latter models are a new class of holographic superconductors. We explain how a normal phase entropy density manifests itself in the stable superconducting phase.

  15. Quantum rotor in nanostructured superconductors

    PubMed Central

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  16. Superconductors for pulsed rf accelerators

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb/sub 3/Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb/sub 3/Sn fields close to the critical magnetic fields can be reached without magnetic breakdown.

  17. Electrical resistivity of composite superconductors

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lee, J. A.

    1983-01-01

    In addition to its superconducting properties, a superconductor is usually characterized by poor thermal conductivity and relatively high electrical resistivity in the normal state. To remedy this situation a study of superconducting properties of Cu-rich CU-Nb wires prepared by directionally solidified and cold-rolled technique was conducted. Some of the specimens were prepared by melting, directional solidification and diffusing in Tin. A total of 12 wire specimens was tested. Each specimen was analyzed by plotting experimental data into the following curves: the graph of the residual resistivity as a function of the specimen current at 4.3 K; and the graph of the electrical resistivity as a function of the temperature at a constant current.

  18. Topological insulators and superconductors from string theory

    SciTech Connect

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-10-15

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  19. Search for Majorana fermions in topological superconductors.

    SciTech Connect

    Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  20. Superconductors

    DOEpatents

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  1. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1–xYbxCoIn5

    SciTech Connect

    Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng

    2016-09-28

    Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1–xYbxCoIn5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation using the electronic structure and the momentum dependence of the dx2–y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn5, we conclude the robust upward dispersing resonance mode in Ce1–xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari

  2. Enhancement of the London penetration depth in pnictides at the onset of SDW order under superconducting dome

    NASA Astrophysics Data System (ADS)

    Levchenko, Alex; Vavilov, Maxim; Kuzmanovski, Dushko; Khodas, Maxim; Chubukov, Andrey

    2013-03-01

    Recent measurements of the doping dependence of the London penetration depth λ (x) in clean samples of isovalent BaFe2(As1-xPx)2 at T <pnictides is conceptually different from a one-component Galilean invariant Fermi liquid, for which correlation effects do not cause the renormalization of the London penetration depth at T = 0 .

  3. Performance of ceramic superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  4. Performance of ceramic superconductors in magnetic bearings

    NASA Astrophysics Data System (ADS)

    Kirtley, James L., Jr.; Downer, James R.

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  5. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  6. Electron tunneling and point contact Andreev reflection studies of superconductors

    NASA Astrophysics Data System (ADS)

    Dai, Wenqing

    The energy gap is the most fundamental property of a superconductor. Electron tunneling spectroscopy and point contact spectroscopy (PCS) are powerful techniques for studying the density of states and energy gap features of superconductors. Two different superconducting systems, multiband superconductor MgB2 and proximity induced topological superconductor NbSe2/Bi 2Se3 heterostructures were studied using either quasiparticle tunneling in planar tunnel junctions or PCS in this work. (Abstract shortened by ProQuest.).

  7. Stop of magnetic flux movement in levitating superconductor

    NASA Astrophysics Data System (ADS)

    Smolyak, B. M.; Zakharov, M. S.

    2017-01-01

    A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  8. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  9. Mean-field state population study for iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Fu, Zhen-Guo; Zheng, Fa-Wei; Zhang, Ping

    2017-02-01

    The occupation number distribution in momentum space are theoretically studied within a two-orbital model, which can be unified describing the low-energy physics of the iron pnictides and iron chalcogenides. The mean-field approximation of Hubbard interaction is employed. By tuning the hopping parameters, the difference between the iron pnictides and iron chalcogenides in their occupation number distribution behavior can be clearly observed. The results show that when the pairing interaction tends to zero, the occupation number n (k) ≈ 0 at Γ point for iron chalcogenides while n (k) ≈ 2 at Γ point for iron pnictides. By increasing the strength of the pairing interaction to a large value, the change of n (k) at Γ point for iron chalcogenides (pnictides) is remarkable (unremarkable). In addition, we find that the effect of the nearest-neighbor coupling between the two layers, contained in the S4 model [Hu and Hao, (2012) [33

  10. Quantum interference in an interfacial superconductor.

    PubMed

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M R V L; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya M; Vandersypen, Lieven M K; Caviglia, Andrea D

    2016-10-01

    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  11. Conductance spectroscopy of topological superconductor wire junctions

    NASA Astrophysics Data System (ADS)

    Setiawan, F.; Brydon, Philip; Sau, Jay

    We study the zero-temperature transport properties of one-dimensional normal metal-superconductor (NS) junctions with topological superconductors across their topological transitions. Working within the Blonder-Tinkham-Klapwijk (BTK) formalism generalized for topological NS junctions, we analytically calculate the differential conductance for tunneling into two models of a topological superconductor: a spinless intrinsic p-wave superconductor and a spin-orbit-coupled s-wave superconductor in a Zeeman field. The zero-bias conductance takes nonuniversal values in the nontopological phase while it is robustly quantized at 2e2 / h in the topological regime. Despite this quantization at zero voltage, the zero-bias conductance only develops a peak (or a local maximum) as a function of voltage for sufficiently large interfacial barrier strength, or certain parameter regimes of spin-orbit coupling strength. Our calculated BTK conductance also shows that the conductance is finite inside the superconducting gap region because of the finite barrier transparency, providing a possible mechanism for the observed ``soft gap'' feature in the experimental studies. Work is done in collaboration with Sankar Das Sarma and supported by Microsoft Q, LPS-CMTC, and JQI-NSF-PFC.

  12. Quantum interference in an interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M. R. V. L.; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya. M.; Vandersypen, Lieven M. K.; Caviglia, Andrea D.

    2016-10-01

    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  13. The color of polarization in cuprate superconductors

    NASA Technical Reports Server (NTRS)

    Hoff, H. A.; Osofsky, M. S.; Lechter, W. L.; Pande, C. S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed.

  14. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  15. High T(sub c) superconductors: Will they replace helium temperature superconductors for magnets

    NASA Astrophysics Data System (ADS)

    Green, Michael A.

    1988-07-01

    During the last two years, the maximum zero resistance critical temperature for superconductors has risen from 23 K to temperatures above 120 K. This paper presents a sober view of the usefulness of the high T sub c materials for generating magnetic fields in superconducting devices. The high T sub c materials are compared to conventional niobium titanium superconductors in the following areas: critical current density, adiabatic and dynamic stability, normal region propagation velocity, burn out integral, energy per unit volume to quench and the maximum cryogenic stability current density. A look at the whole picture suggests that for most superconducting magnet applications, conventional conductors would be the superconductors of choice for magnets.

  16. Pair symmetry conversion in driven multiband superconductors

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Balatsky, Alexander V.

    2017-06-01

    It was recently shown that odd-frequency superconducting pair amplitudes can be induced in conventional superconductors subjected to a spatially nonuniform time-dependent drive. It has also been shown that, in the presence of interband scattering, multiband superconductors will possess bulk odd-frequency superconducting pair amplitudes. In this work we build on these previous results to demonstrate that by subjecting a multiband superconductor with interband scattering to a time-dependent drive, even-frequency pair amplitudes can be converted to odd-frequency pair amplitudes and vice versa. We will discuss the physical conditions under which these pair symmetry conversions can be achieved and possible experimental signatures of their presence.

  17. Transverse acousto-electric effect in superconductors

    NASA Astrophysics Data System (ADS)

    Lipavský, P.; Koláček, J.; Lin, P.-J.

    2016-06-01

    We formulate a theory based on the time-dependent Ginzburg-Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman-Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.

  18. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  19. High-temperature superconductor antenna investigations

    NASA Astrophysics Data System (ADS)

    Karasack, Vincent G.

    1990-10-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  20. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  1. Radiation shielding effectiveness of newly developed superconductors

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  2. New Material Requirements for Superconductor Grid Technology

    NASA Astrophysics Data System (ADS)

    Malozemoff, A. P.

    Superconductor ac and dc cables, fault current limiters and wind turbine generators offer solutions to key challenges in modernizing electric power infrastructure around the world. High critical current Jc is an essential requirement for the practical commercial operation of such systems. High temperature superconductor (HTS) wires have met the basic Jc requirements, and some initial systems have been successfully installed in the power grid. From an applications perspective, further progress in increasing the superconductor critical temperature Tc and critical current Jc could open up an even broader impact. However, thermal fluctuations and the resulting flux creep depress critical current, creating a trade-off between higher temperature and higher critical current. The origins of this trade-off are discussed. The YBCO material used in today's second generation HTS wires strikes a good compromise between these competing effects, and because of the flux creep problem, applications needs call for further research to be focused more on increasing Jc than on increasing Tc.

  3. Fracture toughness for copper oxide superconductors

    DOEpatents

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  4. Fracture toughness for copper oxide superconductors

    DOEpatents

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  5. Charge and spin transport in mesoscopic superconductors

    PubMed Central

    Wolf, M J; Hübler, F; Kolenda, S

    2014-01-01

    Summary Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin. Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models. Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures. PMID:24605283

  6. Practical superconductor development for electrical power applications

    SciTech Connect

    Goretta, K.C.

    1991-10-01

    Development of useful high-critical-temperature (high-{Tc}) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes technical progress of research and development efforts aimed at producing superconducting components based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and Tl-Ba-Ca-Cu oxides systems. Topics discussed are synthesis and heat treatment of high-{Tc} superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, and fabrication and properties of thin films. Collaborations with industry and academia are also documented. 10 figs.

  7. Practical superconductor development for electrical power applications

    SciTech Connect

    Goretta, K.C.

    1992-10-01

    Development of useful high-critical-temperature (high-[Tc]) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-[Tc] superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  8. Chemistry of high-temperature superconductors.

    PubMed

    Sleight, A W

    1988-12-23

    Spectacular advances in superconductors have taken place in the past two years. The upper temperature for superconductivity has risen from 23 K to 122 K, and there is reason to believe that the ascent is still ongoing. The materials causing this excitement are oxides. Those oxides that superconduct at the highest temperatures contain copper-oxygen sheets; however, other elements such as bismuth and thallium play a key role in this new class of superconductors. These superconductors are attracting attention because of the possibility of a wide range of applications and because the science is fascinating. A material that passes an electrical current with virtually no loss is more remarkable when this occurs at 120 K instead of 20 K.

  9. Resolving thermoelectric “paradox” in superconductors

    PubMed Central

    Shelly, Connor D.; Matrozova, Ekaterina A.; Petrashov, Victor T.

    2016-01-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing “paradox,” and open prospects for exploration of novel thermoelectric phenomena predicted recently. PMID:26933688

  10. Anomalous Josephson effect in noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Wang, Jun; Liu, Jun-Feng

    2016-03-01

    We reveal the underlying physics of the anomalous Josephson effect in a magnetic Josephson junction between two noncentrosymmetric superconductors. The key point is that the two effective superconducting gaps provide two sets of Andreev bound states which carry two supercurrents with different amplitudes. When the magnetization direction of the ferromagnet is suitably chosen, the two supercurrents experience opposite phase shifts from the conventional sinusoidal current-phase relation. Then the total Josephson current results in a continuously tunable ground-state phase difference by adjusting the ferromagnet parameters and the triplet-singlet ratio of noncentrosymmetric superconductors. The emergence of anomalous Josephson current can definitely confirm the existence of triplet pairing and the ground-state phase difference serves as a tool to determine the triplet-singlet ratio of noncentrosymmetric superconductors.

  11. Local Correlation Effects on thes±- ands++-Wave Superconductivities Mediated by Magnetic and Orbital Fluctuations in the Five-Orbital Hubbard Model for Iron Pnictides

    NASA Astrophysics Data System (ADS)

    Ishizuka, Jun; Yamada, Takemi; Yanagi, Yuki; Ōno, Yoshiaki

    2013-12-01

    We investigate the electronic state and the superconductivity in the 5-orbital Hubbard model for iron pnictides by using the dynamical mean-field theory in conjunction with the Eliashberg equation. The renormalization factor exhibits significant orbital dependence resulting in the large change in the band dispersion as observed in recent ARPES experiments. The critical interactions towards the magnetic, orbital and superconducting instabilities are suppressed as compared with those from the random phase approximation (RPA) due to local correlation effects. Remarkably, the s++-pairing phase due to the orbital fluctuation is largely expanded relative to the RPA result, while the s+--pairing phase due to the magnetic fluctuation is reduced.

  12. Ternary CaCu{sub 4}P{sub 2}-type pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb)

    SciTech Connect

    Stoyko, Stanislav S.; Khatun, Mansura; Scott Mullen, C.; Mar, Arthur

    2012-08-15

    Four ternary pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb) were prepared by reactions of the elements at 850 Degree-Sign C and their crystal structures were determined from single-crystal X-ray diffraction studies. These silver-containing pnictides AAg{sub 4}Pn{sub 2} adopt the trigonal CaCu{sub 4}P{sub 2}-type structure (Pearson symbol hR21, space group R3-bar m, Z=3; a=4.5555(6) A, c=24.041(3) A for SrAg{sub 4}As{sub 2}; a=4.5352(2) A, c=23.7221(11) A for EuAg{sub 4}As{sub 2}; a=4.7404(4) A, c=25.029(2) A for SrAg{sub 4}Sb{sub 2}; a=4.7239(3) A, c=24.689(2) A for EuAg{sub 4}Sb{sub 2}), which can be derived from the trigonal CaAl{sub 2}Si{sub 2}-type structure of the isoelectronic zinc-containing pnictides AZn{sub 2}Pn{sub 2} by insertion of additional Ag atoms into trigonal planar sites within [M{sub 2}Pn{sub 2}]{sup 2-} slabs built up of edge-sharing tetrahedra. Band structure calculations on SrAg{sub 4}As{sub 2} and SrAg{sub 4}Sb{sub 2} revealed that these charge-balanced Zintl phases actually exhibit no gap at the Fermi level and are predicted to be semimetals. - Graphical abstract: SrAg{sub 4}As{sub 2} and related pnictides adopt a CaCu{sub 4}P{sub 2}-type structure in which additional Ag atoms enter trigonal planar sites within slabs built from edge-sharing tetrahedra. Highlights: Black-Right-Pointing-Pointer AAg{sub 4}Pn{sub 2} are the first Ag-containing members of the CaCu{sub 4}P{sub 2}-type structure. Black-Right-Pointing-Pointer Ag atoms are stuffed in trigonal planar sites within CaAl{sub 2}Si{sub 2}-type slabs. Black-Right-Pointing-Pointer Ag-Ag bonding develops through attractive d{sup 10}-d{sup 10} interactions.

  13. Classification of the electronic correlation strength in the iron pnictides: The case of the parent compound BaFe2As2

    SciTech Connect

    Efremov, Alexander

    2009-01-01

    Electronic correlations in the Fe-pnictide BaFe{sub 2}As{sub 2} are explored within LDA+DMFT, the combination of density functional theory with dynamical mean-field theory. While the correlated band structure is substantially renormalized there is only little transfer of spectral weight. The computed k-integrated and k-resolved spectral functions are in good agreement with photoemission spectroscopy (PES) and angular resolved PES experiments. Making use of a general classification scheme for the strength of electronic correlations we conclude that BaFe{sub 2}As{sub 2} is a moderately correlated system.

  14. Pressure induced structural phase transition of PrX, PrY (X = S, Se, Te) chalcogenides and (Y = N, P, As) pnictides

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Shriya, Swarna; Dube, A.; Varshney, Meenu

    2012-06-01

    Pressure induced structural aspects of NaCl-type (B1) to CsCl-type (B2) structure in Praseodymium pnictides and chalcogenides are presented. An effective interionic interaction potential with long range Coulomb, van der Waals interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge is developed. Deduced results on volume discontinuity in pressure volume phase diagram identify the structural phase transition from B1 to B2 structure consistent with the known results.

  15. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.

    1999-01-01

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  16. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  17. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  18. Superfluid response in heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  19. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    SciTech Connect

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  20. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  1. Building blocks for correlated superconductors and magnets

    DOE PAGES

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; ...

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  2. Order parameter fluctuations in the holographic superconductor

    NASA Astrophysics Data System (ADS)

    Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.

    2017-03-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.

  3. Superconductors and methods of making same

    SciTech Connect

    Danby, G.T.; Brukl, C.E.; Minkoff, L.A.

    1990-12-04

    This paper discusses an improvement in the method of making a magnetically anisotropic bulk high- temperature superconductor. It comprises the steps providing particles including metals, at least one magnetically susceptible lanthanide, and an oxygen constituent in admixture with one another as the constituents of the superconductor and consolidating the constituents by compacting the particles and sintering the compacted particles. The improvement comprises the step of applying a magnetic field to the particles during the consolidating step. The particles being magnetically anisotropic and magnetically susceptible during the consolidating step. The magnetic field is effective to substantially align the particles in the consolidating step.

  4. Building blocks for correlated superconductors and magnets

    SciTech Connect

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D.

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  5. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  6. Building blocks for correlated superconductors and magnets

    SciTech Connect

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J. -X.; Thompson, J. D.

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. In addition, successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  7. Building blocks for correlated superconductors and magnets

    NASA Astrophysics Data System (ADS)

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D.

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called "115" strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true "materials by design" remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  8. Anisotropic superconductors in tilted magnetic fields

    SciTech Connect

    Vlasko-Vlasov, V. K.; Glatz, A.; Koshelev, A. E.; Welp, U.; Kwok, W. K.

    2015-06-01

    We present images of magnetic flux structures in a single crystal of YBa2Cu3O7-d during remagnetization by fields tilted from the basal plane of the crystal. Depending on the magnitude and angle of the applied field we observe anisotropic flux penetration along and across the in-plane field component and emergence of vortex instabilities resulting in modulated flux distributions. We associate the observed patterns with flux cutting effects and with tilted vortex structures intrinsic for layered superconductors. Time dependent Ginzburg-Landau simulations show preferential vortex motion across the c-axis and reveal the flux structure evolution in anisotropic superconductors under tilted magnetic fields.

  9. Iron chalcogenide superconductors at high magnetic fields

    PubMed Central

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  10. Electrical connection structure for a superconductor element

    DOEpatents

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  11. Anomalous Andreev bound state in noncentrosymmetric superconductors.

    PubMed

    Tanaka, Yukio; Mizuno, Yoshihiro; Yokoyama, Takehito; Yada, Keiji; Sato, Masatoshi

    2010-08-27

    We study edge states of noncentrosymmetric superconductors where spin-singlet d-wave pairing mixes with spin-triplet p (or f)-wave one by spin-orbit coupling. For d(xy)-wave pairing, the obtained Andreev bound state has an anomalous dispersion as compared to conventional helical edge modes. A unique topologically protected time-reversal invariant Majorana bound state appears at the edge. The charge conductance in the noncentrosymmetric superconductor junctions reflects the anomalous structures of the dispersions, particularly the time-reversal invariant Majorana bound state is manifested as a zero bias conductance peak.

  12. Phase stability and large in-plane resistivity anisotropy in the 112-type iron-based superconductor Ca1 -xLaxFeAs2

    NASA Astrophysics Data System (ADS)

    Kang, Chang-Jong; Birol, Turan; Kotliar, Gabriel

    2017-01-01

    The recently discovered high-Tc superconductor Ca1 -xLaxFeAs2 is a unique compound not only because of its low-symmetry crystal structure but also because of its electronic structure, which hosts Dirac-like metallic bands resulting from (spacer) zigzag As chains. We present a comprehensive first-principles theoretical study of the electronic and crystal structures of Ca1 -xLaxFeAs2 . After discussing the connection between the crystal structure of the 112 family, which Ca1 -xLaxFeAs2 is a member of, with the other known structures of Fe pnictide superconductors, we check the thermodynamic phase stability of CaFeAs2, and similar hyphothetical compounds SrFeAs2 and BaFeAs2 which, we find, are slightly higher in energy. We calculate the optical conductivity of Ca1 -xLaxFeAs2 using the DFT+DMFT method and predict a large in-plane resistivity anisotropy in the normal phase, which does not originate from electronic nematicity, but is enhanced by the electronic correlations. In particular, we predict a 0.34 eV peak in the y y component of the optical conductivity of the 30% La-doped compound, which corresponds to coherent interband transitions within a fast-dispersing band arising from the zigzag As chains, which are unique to this compound. We also study the Landau free energy for Ca1 -xLaxFeAs2 including the order parameter relevant for the nematic transition and find that the free energy does not have any extra terms that could induce ferro-orbital order. This explains why the presence of As chains does not broaden the nematic transition in Ca1 -xLaxFeAs2 .

  13. Large-moment antiferromagnetic order in overdoped high-Tc superconductor (154)SmFeAsO1-x D x.

    PubMed

    Iimura, Soshi; Okanishi, Hiroshi; Matsuishi, Satoru; Hiraka, Haruhiro; Honda, Takashi; Ikeda, Kazutaka; Hansen, Thomas C; Otomo, Toshiya; Hosono, Hideo

    2017-05-30

    In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of (154)SmFeAsO1-x D x , and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.

  14. Disorder effects in multiorbital s±-wave superconductors: Implications for Zn-doped BaFe2As2 compounds

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Tai, Yuan-Yen; Ting, C. S.; Graf, Matthias J.; Dai, Jianhui; Zhu, Jian-Xin

    2013-11-01

    Recent experiments on Zn-doped 122-type iron pnictides, Ba(Fe1-x-yCoyZnx)2As2, are challenging our understanding of electron doping the 122s and the interplay between doping and impurity scattering. To resolve this enigma, we investigate the disorder effects of nonmagnetic Zn impurities in the strong (unitary) scattering limit on various properties of the system in the s±-wave superconducting pairing state. The lattice Bogoliubov-de Gennes equation (BdG) is solved self-consistently based on a minimal two-orbital model with an extended range of impurity concentrations. We find that Zn impurity is best modeled as a defect, where charge is mainly localized, but scattering is extended over a few lattice sites. With increasing Zn concentration, the density of states shows a gradual filling of the gap, revealing the impurity-induced pair-breaking effect. Moreover, both the disorder configuration-averaged superconducting order parameter and the superfluid density are dramatically suppressed toward the dirty limit, indicating the violation of the Anderson theorem for conventional s-wave superconductors and the breakdown of the Abrikosov-Gorkov theory for impurity-averaged Green's functions. Furthermore, we find that the superconducting phase is fully suppressed close to the critical impurity concentration of roughly nimp≈10%, in agreement with recent experiments.

  15. Large-moment antiferromagnetic order in overdoped high-Tc superconductor 154SmFeAsO1-xDx

    NASA Astrophysics Data System (ADS)

    Iimura, Soshi; Okanishi, Hiroshi; Matsuishi, Satoru; Hiraka, Haruhiro; Honda, Takashi; Ikeda, Kazutaka; Hansen, Thomas C.; Otomo, Toshiya; Hosono, Hideo

    2017-05-01

    In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1-xDx, and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.

  16. Large-moment antiferromagnetic order in overdoped high-Tc superconductor 154SmFeAsO1−xDx

    PubMed Central

    Okanishi, Hiroshi; Matsuishi, Satoru; Hiraka, Haruhiro; Honda, Takashi; Ikeda, Kazutaka; Hansen, Thomas C.; Otomo, Toshiya; Hosono, Hideo

    2017-01-01

    In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1−xDx, and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity. PMID:28507123

  17. Converting a topologically trivial superconductor into a chiral topological superconductor via diluted magnetic doping

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu

    We employ two complementary theoretical approaches to explore the feasibility of altering the topological properties of two-dimensional Rashba spin-orbit coupled superconductors by proper introduction of magnetic disorders. First, using the self-consistent Born approximation, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorders, which gradually narrow, close, and reopen the quasi-particle gap of the paired electrons in a nontrivial manner. Such a topological phase transition is further characterized by the change in the corresponding topological invariant. The central predictions made here are then confirmed using the complementary numerical approach by solving the Bogoliubov-de Gennes equations self-consistently within a tight-binding model. We also discuss the validity of the present model studies in connection with existing experimental findings. Collectively, the present study offers appealing new schemes for potential experimental realization of topological superconductors. Supported by NSF of China.

  18. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    SciTech Connect

    Shi, Xiaoyan Pan, W.; Hawkins, S. D.; Klem, J. F.; Yu, Wenlong; Jiang, Zhigang; Andrei Bernevig, B.

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.

  19. Josephson effect in low-capacitance superconductor--normal-metal--superconductor systems

    SciTech Connect

    Bauernschmitt, R.; Siewert, J.; Nazarov, Y.V.; Odintsov, A.A. )

    1994-02-01

    The transport properties of a small superconductor--normal-metal--superconducting tunnel junction can be controlled by a gate electrode coupled capacitively to the central island. We evaluate the critical Josephson current [ital I][sub [ital c

  20. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.