Science.gov

Sample records for podocytes induces intracellular

  1. Podocytes

    PubMed Central

    Reiser, Jochen; Altintas, Mehmet M.

    2016-01-01

    Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research. PMID:26918173

  2. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN. PMID:25740786

  3. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  4. Generation of functional podocytes from human induced pluripotent stem cells.

    PubMed

    Ciampi, Osele; Iacone, Roberto; Longaretti, Lorena; Benedetti, Valentina; Graf, Martin; Magnone, Maria Chiara; Patsch, Christoph; Xinaris, Christodoulos; Remuzzi, Giuseppe; Benigni, Ariela; Tomasoni, Susanna

    2016-07-01

    Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.

  5. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes

    PubMed Central

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-01-01

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes. PMID:26677804

  6. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes.

    PubMed

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-12-18

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes.

  7. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation

    PubMed Central

    Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro

    2016-01-01

    Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy. PMID:27180624

  8. Inducible Podocyte Injury and Proteinuria in Transgenic Zebrafish

    PubMed Central

    Hildebrandt, Friedhelm

    2012-01-01

    Damage or loss of podocytes causes glomerulosclerosis in murine models, and mutations in podocyte-specific genes cause nephrotic syndrome in humans. Zebrafish provide a valuable model for kidney research, but disruption of pronephroi leads to death within a few days, thereby preventing the study of CKD. In this study, we generated an inducible model of podocyte injury in zebrafish (pod::NTR-mCherry) by expressing a bacterial nitroreductase, which converts metronidazole to a cytotoxin, specifically in podocytes under the control of the zebrafish nphs2/podocin promoter. Application of the prodrug metronidazole to the transgenic fish induces acute damage to the podocytes in pronephroi of larval zebrafish and the mesonephroi of adult zebrafish, resulting in foot-process effacement and podocyte loss. We also developed a functional assay of the glomerular filtration barrier by creating transgenic zebrafish expressing green fluorescent protein (GFP)–tagged vitamin D–binding protein (VDBP) as a tracer for proteinuria. In the VDBP-GFP and pod::NTR-mCherry double-transgenic fish, induction of podocyte damage led to whole-body edema, and the proximal tubules reabsorbed and accumulated VDBP-GFP that leaked through the glomeruli, mimicking the phenotype of human nephrotic syndrome. Moreover, expression of wt1b::GFP, a marker for the developing nephron, extended into the Bowman capsule in response to podocyte injury, suggesting that zebrafish have a podocyte-specific repair process known to occur in mammalian metanephros. These data support the use of these transgenic zebrafish as a model system for studies of glomerular pathogenesis and podocyte regeneration. PMID:22440901

  9. Albumin-associated free fatty acids induce macropinocytosis in podocytes

    PubMed Central

    Chung, Jun-Jae; Huber, Tobias B.; Gödel, Markus; Jarad, George; Hartleben, Björn; Kwoh, Christopher; Keil, Alexander; Karpitskiy, Aleksey; Hu, Jiancheng; Huh, Christine J.; Cella, Marina; Gross, Richard W.; Miner, Jeffrey H.; Shaw, Andrey S.

    2015-01-01

    Podocytes are specialized epithelial cells in the kidney glomerulus that play important structural and functional roles in maintaining the filtration barrier. Nephrotic syndrome results from a breakdown of the kidney filtration barrier and is associated with proteinuria, hyperlipidemia, and edema. Additionally, podocytes undergo changes in morphology and internalize plasma proteins in response to this disorder. Here, we used fluid-phase tracers in murine models and determined that podocytes actively internalize fluid from the plasma and that the rate of internalization is increased when the filtration barrier is disrupted. In cultured podocytes, the presence of free fatty acids (FFAs) associated with serum albumin stimulated macropinocytosis through a pathway that involves FFA receptors, the Gβ/Gγ complex, and RAC1. Moreover, mice with elevated levels of plasma FFAs as the result of a high-fat diet were more susceptible to Adriamycin-induced proteinuria than were animals on standard chow. Together, these results support a model in which podocytes sense the disruption of the filtration barrier via FFAs bound to albumin and respond by enhancing fluid-phase uptake. The response to FFAs may function in the development of nephrotic syndrome by amplifying the effects of proteinuria. PMID:25915582

  10. Toll-like Receptor 9 Can be Activated by Endogenous Mitochondrial DNA to Induce Podocyte Apoptosis

    PubMed Central

    Bao, Wenduona; Xia, Hong; Liang, Yaojun; Ye, Yuting; Lu, Yuqiu; Xu, Xiaodong; Duan, Aiping; He, Jing; Chen, Zhaohong; Wu, Yan; Wang, Xia; Zheng, Chunxia; Liu, Zhihong; Shi, Shaolin

    2016-01-01

    Toll-like receptor 9 (TLR9) senses bacterial DNA characteristic of unmethylated CpG motifs to induce innate immune response. TLR9 is de novo expressed in podocytes of some patients with glomerular diseases, but its role in podocyte injury remains undetermined. Since TLR9 activates p38 MAPK and NFkB that are known to mediate podocyte apoptosis, we hypothesized that TLR9 induces podocyte apoptosis in glomerular diseases. We treated immortalized podocytes with puromycin aminonucleosides (PAN) and observed podocyte apoptosis, accompanied by TLR9 upregulation. Prevention of TLR9 upregulation by siRNA significantly attenuated NFκB p65 or p38 activity and apoptosis, demonstrating that TLR9 mediates podocyte apoptosis. We next showed that endogenous mitochondrial DNA (mtDNA), whose CpG motifs are also unmethylated, is the ligand for TLR9, because PAN induced mtDNA accumulation in endolysosomes where TLR9 is localized, overexpression of endolysosomal DNase 2 attenuated PAN-induced p38 or p65 activity and podocyte apoptosis, and DNase 2 silencing was sufficient to activate p38 or p65 and induce apoptosis. In PAN-treated rats, TLR9 was upregulated in the podocytes, accompanied by increase of apoptosis markers. Thus, de novo expressed TLR9 may utilize endogenous mtDNA as the ligand to facilitate podocyte apoptosis, a novel mechanism underlying podocyte injury in glomerular diseases. PMID:26934958

  11. Phospholipase C Epsilon (PLCε) Induced TRPC6 Activation: A Common but Redundant Mechanism in Primary Podocytes

    PubMed Central

    Kalwa, Hermann; Storch, Ursula; Demleitner, Jana; Fiedler, Susanne; Mayer, Tim; Kannler, Martina; Fahlbusch, Meike; Barth, Holger; Smrcka, Alan; Hildebrandt, Friedhelm; Gudermann, Thomas; Dietrich, Alexander

    2016-01-01

    In eukaryotic cells, activation of phospholipase C (PLC)-coupled membrane receptors by hormones leads to an increase in the intracellular Ca2+ concentration [Ca2+]i. Catalytic activity of PLCs results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which opens DAG-sensitive classical transient receptor channels 3, 6, and 7 (TRPC3/6/7), initiating Ca2+ influx from the extracellular space. Patients with focal segmental glomerulosclerosis (FSGS) express gain-of-function mutants of TRPC6, while others carry loss-of-function mutants of PLCε, raising the intriguing possibility that both proteins interact and might work in the same signalling pathway. While TRPC6 activation by PLCβ and PLCγ isozymes was extensively studied, the role of PLCε in TRPC6 activation remains elusive. TRPC6 was co-immunoprecipitated with PLCε in a heterologous overexpression system in HEK293 cells as well as in freshly isolated murine podocytes. Receptor-operated TRPC6 currents in HEK293 cells expressing TRPC6 were reduced by a specific PLCε siRNA and by a PLCε loss-of-function mutant isolated from a patient with FSGS. PLCε-induced TRPC6 activation was also identified in murine embryonic fibroblasts (MEFs) lacking Gαq/11 proteins. Further analysis of the signal transduction pathway revealed a Gα12/13 Rho-GEF activation which induced Rho-mediated PLCε stimulation. Therefore, we identified a new pathway for TRPC6 activation by PLCε. PLCε-/- podocytes however, were undistinguishable from WT podocytes in their angiotensin II-induced formation of actin stress fibers and their GTPγS-induced TRPC6 activation, pointing to a redundant role of PLCε-mediated TRPC6 activation at least in podocytes. PMID:25521631

  12. Role of C/EBP-α in Adriamycin-induced podocyte injury

    PubMed Central

    Zhong, Fang; Wang, Weiming; Lee, Kyung; He, John Cijiang; Chen, Nan

    2016-01-01

    Podocytes are terminally differentiated epithelial cells in the kidney glomeruli that act as a key component of the glomerular filtration barrier. Although the inciting injury to the podocyte may vary between various glomerular diseases, the inevitable consequence of podocyte injury results in their loss, leading to progressive kidney disease. Here, we report that the expression of CCAAT/enhancer binding protein-α (C/EBP-α), a transcription factor known to interact with and activate PPAR-γ and NF-κB, is suppressed in the glomerular cells, particularly in podocytes, in human kidneys with focal segmental glomerulosclerosis. Genetic ablation of C/EBP-α in podocytes resulted in increased proteinuria, increased podocyte foot process effacement, and to decreased podocyte number in the setting of Adriamycin (ADR)-induced nephropathy. Overexpression of C/EBP-α in human podocytes in vitro led to an inhibition of MCP-1 and IL-6 expression in response to TNF-α and IL-1β treatments. Conversely, augmented production of MCP-1 and IL-6 was observed in the glomeruli of C/EBP-α knockout mice and was associated increased infiltration of macrophages in vivo. Together, our data suggest that C/EBP-α mediates anti-inflammatory effects in podocytes to confer protection against podocyte injury and loss that may contribute to worsening glomerulosclerosis. PMID:27644413

  13. Role of C/EBP-α in Adriamycin-induced podocyte injury.

    PubMed

    Zhong, Fang; Wang, Weiming; Lee, Kyung; He, John Cijiang; Chen, Nan

    2016-01-01

    Podocytes are terminally differentiated epithelial cells in the kidney glomeruli that act as a key component of the glomerular filtration barrier. Although the inciting injury to the podocyte may vary between various glomerular diseases, the inevitable consequence of podocyte injury results in their loss, leading to progressive kidney disease. Here, we report that the expression of CCAAT/enhancer binding protein-α (C/EBP-α), a transcription factor known to interact with and activate PPAR-γ and NF-κB, is suppressed in the glomerular cells, particularly in podocytes, in human kidneys with focal segmental glomerulosclerosis. Genetic ablation of C/EBP-α in podocytes resulted in increased proteinuria, increased podocyte foot process effacement, and to decreased podocyte number in the setting of Adriamycin (ADR)-induced nephropathy. Overexpression of C/EBP-α in human podocytes in vitro led to an inhibition of MCP-1 and IL-6 expression in response to TNF-α and IL-1β treatments. Conversely, augmented production of MCP-1 and IL-6 was observed in the glomeruli of C/EBP-α knockout mice and was associated increased infiltration of macrophages in vivo. Together, our data suggest that C/EBP-α mediates anti-inflammatory effects in podocytes to confer protection against podocyte injury and loss that may contribute to worsening glomerulosclerosis. PMID:27644413

  14. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    SciTech Connect

    Piwkowska, Agnieszka; Rogacka, Dorota; Angielski, Stefan; Jankowski, Maciej

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  15. Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress.

    PubMed

    Rong, Guang; Tang, Xun; Guo, Tingting; Duan, Na; Wang, Yue; Yang, Lei; Zhang, Jun; Liang, Xiujie

    2015-09-01

    Although podocyte apoptosis has been shown to be induced by the accumulation of advanced oxidation protein products (AOPPs), the mechanisms through which AOPPs trigger apoptosis in these cells remain unclear. In this study, we investigated the role of endoplasmic reticulum (ER) stress in AOPP-induced podocyte apoptosis. AOPP treatment induced overexpression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein (CHOP) in podocytes, indicating that AOPPs induced ER stress. Notably, AOPP-induced increase in the rate of podocyte apoptosis was partly reversed by salubrinal, an ER stress inhibitor, whereas the AOPP effect was reproduced by an inducer of ER stress, thapsigargin, suggesting that AOPPs triggered podocyte apoptosis by inducing ER stress. Furthermore, AOPP-induced reactive oxygen species (ROS) generation, ER stress, and podocyte apoptosis were significantly inhibited by an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, a ROS scavenger, or receptor of advanced glycation end products (RAGE) small interfering RNA (siRNA). Moreover, silencing of the three ER stress sensors, protein kinase-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring 1 (IRE1), respectively, significantly lowered the apoptotic rate of the cells compared with that of the scramble siRNA-transfected cells. Lastly, our data suggested that CHOP- and caspase-12-dependent pathways were involved in ER stress-mediated podocyte apoptosis and that Bcl-2 suppression was involved in CHOP-mediated apoptosis. Collectively, our results indicate for the first time that AOPPs trigger podocyte apoptosis through induction of ER stress, which might be regulated by NADPH oxidase-dependent ROS through RAGE, and that this apoptosis is mediated by three unfolded protein response pathways, the PERK, ATF6, and IRE1 pathways, and the mediators, CHOP and caspase-12. PMID:26197866

  16. oxLDL-induced lipid accumulation in glomerular podocytes: role of IFN-γ, CXCL16, and ADAM10.

    PubMed

    Wang, Li; Sun, Shuzhen; Zhou, Aihua; Yao, Xiujun; Wang, Yulin

    2014-09-01

    Previous studies have shown that lipid accumulation plays an important role in the pathogenesis and development of glomerular sclerosis. oxLDL caused damage in renal mesangial cells, endothelial cells, and podocytes, and podocytes might be the major victim of oxLDL insult. However, the regulatory mechanism of how oxLDL induces the damage of podocytes remains to be elucidated. In this study, oil red staining was used to investigate the lipid accumulation in podocytes. Moreover, the effects of CXCL16 antibody, IFN-γ, and ADAM10 inhibitor on oxLDL intake and CXCL16 expression were also explored to elucidate the regulatory factors of lipid accumulation in podocytes.

  17. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes

    PubMed Central

    Eid, Stéphanie; Boutary, Suzan; Braych, Kawthar; Sabra, Ramzi; Massaad, Charbel; Hamdy, Ahmed; Rashid, Awad; Moodad, Sarah; Block, Karen; Gorin, Yves; Abboud, Hanna E.

    2016-01-01

    Abstract Aim: Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. Results: High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. Innovation: Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Conclusion: mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703–719. PMID:27393154

  18. Diet-Induced Podocyte Dysfunction in Drosophila and Mammals.

    PubMed

    Na, Jianbo; Sweetwyne, Mariya T; Park, Ae Seo Deok; Susztak, Katalin; Cagan, Ross L

    2015-07-28

    Diabetic nephropathy is a major cause of end-stage kidney disease. Characterized by progressive microvascular disease, most efforts have focused on injury to the glomerular endothelium. Recent work has suggested a role for the podocyte, a highly specialized component of the glomerular filtration barrier. Here, we demonstrate that the Drosophila nephrocyte, a cell analogous to the mammalian podocyte, displays defects that phenocopy aspects of diabetic nephropathy in animals fed chronic high dietary sucrose. Through functional studies, we identify an OGT-Polycomb-Knot-Sns pathway that links dietary sucrose to loss of the Nephrin ortholog Sns. Reducing OGT through genetic or drug means is sufficient to rescue loss of Sns, leading to overall extension of lifespan. We demonstrate upregulation of the Knot ortholog EBF2 in glomeruli of human diabetic nephropathy patients and a mouse ob/ob diabetes model. Furthermore, we demonstrate rescue of Nephrin expression and cell viability in ebf2(-/-) primary podocytes cultured in high glucose. PMID:26190114

  19. Calpain-Mediated Cleavage of Calcineurin in Puromycin Aminonucleoside-Induced Podocyte Injury

    PubMed Central

    Ding, Fangrui; Li, Xuejuan; Li, Baihong; Guo, Jifan; Zhang, Yanqin; Ding, Jie

    2016-01-01

    The calcineurin inhibitors cyclosporine A (CsA) and tacrolimus are widely used in the treatment of proteinuria diseases. As the direct target of these drugs, calcineurin has previously been demonstrated to play a role in proteinuria diseases. However, aside from its immune-related effects, the local status of calcineurin in renal inherent cells has not been fully explored in the settings of proteinuria disease and podocyte injury. In this study, calcineurin activity and protein expression in the well-known puromycin aminonucleoside (PAN)-induced podocyte injury model were examined. Interestingly, we found that calcineurin activity was abnormally increased in PAN-treated podocytes, whereas the expression of the full-length 60-kDa calcineurin protein was decreased. This result suggests that there may be another activated form of calcineurin that is independent of the full-length phosphatase. To investigate whether calpain is involved in regulating calcineurin, we exposed PAN-treated podocytes to both pharmacological inhibitors of calpain and specific siRNAs against calpain. Calpain blockade reduced the enhanced calcineurin activity and restored the down-regulated expression of 60-kDa calcineurin. In addition, purified calpain protein was incubated with podocyte extracts, and a 45-kDa fragment of calcineurin was identified; this finding was confirmed in PAN-induced podocyte injury and calpain inhibition experiments. We conclude that calcineurin activity is abnormally increased during PAN-induced podocyte injury, whereas the expression of the full-length 60-kDa calcineurin protein is down-regulated due to over-activated calpain that cleaves calcineurin to form a 45-kDa fragment. PMID:27171192

  20. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells.

    PubMed

    Leung, Joseph C K; Chan, Loretta Y Y; Saleem, M A; Mathieson, P W; Tang, Sydney C W; Lai, Kar Neng

    2015-07-01

    Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.

  1. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models

    PubMed Central

    Shen, Xiujin; Jiang, Hong; Ying, Meike; Xie, Zhoutao; Li, Xiayu; Wang, Haibing; Zhao, Jie; Lin, Chuan; Wang, Yucheng; Feng, Shi; Shen, Jia; Weng, Chunhua; Lin, Weiqiang; Wang, Huiping; Zhou, Qin; Bi, Yan; Li, Meng; Wang, Lingyan; Zhu, Tongyu; Huang, Xiaoru; Lan, Hui-Yao; Zhou, Jing; Chen, Jianghua

    2016-01-01

    Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN) and in vitro cultured mouse podocytes. Our results showed that CsA and FK506 treatment decreased proteinuria via a mechanism associated to a reduction in the foot-process fusion and desmin, and a recovery of synaptopodin and podocin. In PAN-treated mouse podocytes, pre-incubation with CsA and FK506 restored the distribution of the actin cytoskeleton, increased the expression of synaptopodin and podocin, improved podocyte viability, and reduced the migrating activities of podocytes. Treatment with CsA and FK506 also inhibited PAN-induced podocytes apoptosis, which was associated with the induction of Bcl-xL and inhibition of Bax, cleaved caspase 3, and cleaved PARP expression. Further studies revealed that CsA and FK506 inhibited PAN-induced p38 and JNK signaling, thereby protecting podocytes from PAN-induced injury. In conclusion, CsA and FK506 inhibit proteinuria by protecting against PAN-induced podocyte injury, which may be associated with inhibition of the MAPK signaling pathway. PMID:27580845

  2. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models.

    PubMed

    Shen, Xiujin; Jiang, Hong; Ying, Meike; Xie, Zhoutao; Li, Xiayu; Wang, Haibing; Zhao, Jie; Lin, Chuan; Wang, Yucheng; Feng, Shi; Shen, Jia; Weng, Chunhua; Lin, Weiqiang; Wang, Huiping; Zhou, Qin; Bi, Yan; Li, Meng; Wang, Lingyan; Zhu, Tongyu; Huang, Xiaoru; Lan, Hui-Yao; Zhou, Jing; Chen, Jianghua

    2016-01-01

    Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN) and in vitro cultured mouse podocytes. Our results showed that CsA and FK506 treatment decreased proteinuria via a mechanism associated to a reduction in the foot-process fusion and desmin, and a recovery of synaptopodin and podocin. In PAN-treated mouse podocytes, pre-incubation with CsA and FK506 restored the distribution of the actin cytoskeleton, increased the expression of synaptopodin and podocin, improved podocyte viability, and reduced the migrating activities of podocytes. Treatment with CsA and FK506 also inhibited PAN-induced podocytes apoptosis, which was associated with the induction of Bcl-xL and inhibition of Bax, cleaved caspase 3, and cleaved PARP expression. Further studies revealed that CsA and FK506 inhibited PAN-induced p38 and JNK signaling, thereby protecting podocytes from PAN-induced injury. In conclusion, CsA and FK506 inhibit proteinuria by protecting against PAN-induced podocyte injury, which may be associated with inhibition of the MAPK signaling pathway. PMID:27580845

  3. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor

    PubMed Central

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C.; Saleem, Moin A.; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content. PMID:25335547

  4. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor.

    PubMed

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C; Saleem, Moin A; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.

  5. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress

    PubMed Central

    Xu, S; Nam, S M; Kim, J-H; Das, R; Choi, S-K; Nguyen, T T; Quan, X; Choi, S J; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C B; Cha, S-K; Park, K-S

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca2+ increase due to depletion of luminal ER Ca2+. Palmitate-induced ER Ca2+ depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca2+ pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca2+ depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca2+ loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca2+ depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA leads to

  6. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest

    SciTech Connect

    Kim, Dong Il; Park, Soo Hyun

    2013-06-14

    Highlights: •The pathophysiological role of IL-6 in high glucose-induced podocyte loss. •The novel role of PGC-1α in the development of diabetic nephropathy. •Signaling of IL-6 and PGC-1α in high glucose-induced dysfunction of podocyte. -- Abstract: Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucose treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.

  7. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis

    PubMed Central

    Lenoir, Olivia; Jasiek, Magali; Hénique, Carole; Guyonnet, Léa; Hartleben, Björn; Bork, Tillmann; Chipont, Anna; Flosseau, Kathleen; Bensaada, Imane; Schmitt, Alain; Massé, Jean-Marc; Souyri, Michèle; Huber, Tobias B; Tharaux, Pierre-Louis

    2015-01-01

    The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN. PMID:26039325

  8. Extracellular nucleotides regulate cellular functions of podocytes in culture.

    PubMed

    Fischer, K G; Saueressig, U; Jacobshagen, C; Wichelmann, A; Pavenstädt, H

    2001-12-01

    Extracellular nucleotides are assumed to be important regulators of glomerular functions. This study characterizes purinergic receptors in podocytes. The effects of purinergic agonists on electrophysiological properties and the intracellular free Ca(2+) concentration of differentiated podocytes were examined with the patch-clamp and fura 2 fluorescence techniques. mRNA expression of purinergic receptors was investigated by RT-PCR. Purinergic agonists depolarized podocytes. Purinergic agonists similarly increased intracellular free Ca(2+) concentration of podocytes. The rank order of potency of various nucleotides on membrane voltage and free cytosolic calcium concentration was UTP approximately UDP > [adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S)] > ATP > 2-methylthioadenosine 5'-triphosphate (2-MeS-ATP) > 2'- and 3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP) > ADP-beta-S. alpha,beta-Me-ATP was without effect. In the presence of UTP, BzATP did not cause an additional depolarization of podocytes. Incubation of cells with ATP or BzATP did not induce lactate dehydrogenase release. In RT-PCR studies, mRNAs of the P2Y(1), P2Y(2), P2Y(6), and P2X(7) receptors were detected within glomeruli and podocytes. The data indicate that extracellular nucleotides modulate podocyte function mainly by an activation of both P2Y(2) and P2Y(6) receptors.

  9. Extracellular nucleotides regulate cellular functions of podocytes in culture.

    PubMed

    Fischer, K G; Saueressig, U; Jacobshagen, C; Wichelmann, A; Pavenstädt, H

    2001-12-01

    Extracellular nucleotides are assumed to be important regulators of glomerular functions. This study characterizes purinergic receptors in podocytes. The effects of purinergic agonists on electrophysiological properties and the intracellular free Ca(2+) concentration of differentiated podocytes were examined with the patch-clamp and fura 2 fluorescence techniques. mRNA expression of purinergic receptors was investigated by RT-PCR. Purinergic agonists depolarized podocytes. Purinergic agonists similarly increased intracellular free Ca(2+) concentration of podocytes. The rank order of potency of various nucleotides on membrane voltage and free cytosolic calcium concentration was UTP approximately UDP > [adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S)] > ATP > 2-methylthioadenosine 5'-triphosphate (2-MeS-ATP) > 2'- and 3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP) > ADP-beta-S. alpha,beta-Me-ATP was without effect. In the presence of UTP, BzATP did not cause an additional depolarization of podocytes. Incubation of cells with ATP or BzATP did not induce lactate dehydrogenase release. In RT-PCR studies, mRNAs of the P2Y(1), P2Y(2), P2Y(6), and P2X(7) receptors were detected within glomeruli and podocytes. The data indicate that extracellular nucleotides modulate podocyte function mainly by an activation of both P2Y(2) and P2Y(6) receptors. PMID:11704558

  10. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role.

    PubMed

    Cheng, Yu-Chi; Chang, Jer-Ming; Chen, Chien-An; Chen, Hung-Chun

    2015-04-01

    Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage.

  11. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: A protective role

    PubMed Central

    Cheng, Yu-Chi; Chang, Jer-Ming; Chen, Chien-An

    2015-01-01

    Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage. PMID:25322957

  12. Single and Transient Ca2+ Peaks in Podocytes do not induce Changes in Glomerular Filtration and Perfusion

    PubMed Central

    Koehler, Sybille; Brähler, Sebastian; Kuczkowski, Alexander; Binz, Julia; Hackl, Matthias J.; Hagmann, Henning; Höhne, Martin; Vogt, Merly C.; Wunderlich, Claudia M.; Wunderlich, F. Thomas; Schweda, Frank; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T.

    2016-01-01

    Chronic alterations in calcium (Ca2+) signalling in podocytes have been shown to cause proteinuria and progressive glomerular diseases. However, it is unclear whether short Ca2+ peaks influence glomerular biology and cause podocyte injury. Here we generated a DREADD (Designer Receptor Exclusively Activated by a Designer Drug) knock-in mouse line to manipulate intracellular Ca2+ levels. By mating to a podocyte-specific Cre driver we are able to investigate the impact of Ca2+ peaks on podocyte biology in living animals. Activation of the engineered G-protein coupled receptor with the synthetic compound clozapine-N-oxide (CNO) evoked a short and transient Ca2+ peak in podocytes immediately after CNO administration in vivo. Interestingly, this Ca2+ peak did neither affect glomerular perfusion nor filtration in the animals. Moreover, no obvious alterations in the glomerular morphology could be observed. Taken together, these in vivo findings suggest that chronic alterations and calcium overload rather than an induction of transient Ca2+ peaks contribute to podocyte disease. PMID:27759104

  13. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    SciTech Connect

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  14. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377.

    PubMed

    Wang, Wei; Ding, Xiao-Qin; Gu, Ting-Ting; Song, Lin; Li, Jian-Mei; Xue, Qiao-Chu; Kong, Ling-Dong

    2015-06-01

    High dietary fructose is an important causative factor in the development of metabolic syndrome-associated glomerular podocyte oxidative stress and injury. Here, we identified microRNA-377 (miR-377) as a biomarker of oxidative stress in renal cortex of fructose-fed rats, which correlated with podocyte injury and albuminuria in metabolic syndrome. Fructose feeding increased miR-377 expression, decreased superoxide dismutase (SOD) expression and activity, and caused O2(-) and H2O2 overproduction in kidney cortex or glomeruli of rats. This reactive oxygen species induction increased p38 MAPK phosphorylation and thioredoxin-interacting protein (TXNIP) expression and activated the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome to produce interleukin-1β in kidney glomeruli of fructose-fed rats. These pathological processes were further evaluated in cultured differentiated podocytes exposed to 5mM fructose, or transfected with miR-377 mimic/inhibitor and TXNIP siRNA, or co-incubated with p38 MAPK inhibitor, demonstrating that miR-377 overexpression activates the O2(-)/p38 MAPK/TXNIP/NLRP3 inflammasome pathway to promote oxidative stress and inflammation in fructose-induced podocyte injury. Antioxidants pterostilbene and allopurinol were found to ameliorate fructose-induced hyperuricemia, podocyte injury, and albuminuria in rats. More importantly, pterostilbene and allopurinol inhibited podocyte miR-377 overexpression to increase SOD1 and SOD2 levels and suppress the O2(-)/p38 MAPK/TXNIP/NLRP3 inflammasome pathway activation in vivo and in vitro, consistent with the reduction of oxidative stress and inflammation. These findings suggest that miR-377 plays an important role in glomerular podocyte oxidative stress, inflammation, and injury driven by high fructose. Inhibition of miR-377 by antioxidants may be a promising therapeutic strategy for the prevention of metabolic syndrome-associated glomerular podocyte injury.

  15. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes.

    PubMed

    Abou Msallem, J; Chalhoub, H; Al-Hariri, M; Saad, L; Jaffa, M A; Ziyadeh, F N; Jaffa, A A

    2015-12-01

    Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.

  16. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1.

    PubMed

    Yang, Haibo; Wang, Qingjun; Li, Sutong

    2016-03-18

    Emerging evidence has demonstrated that microRNAs (miRNAs) play a mediatory role in the pathogenesis of diabetic nephropathy. In this study, we found that miR-218 was upregulated in high glucose (HG) treated podocytes, which are essential components of the glomerular filtration barrier and a major prognostic determinant in diabetic nephropathy. Additionally, up-regulation of miR-218 was accompanied by an increased rate of podocyte death and down-regulation in the level of nephrin, a key marker of podocytes. However, inhibition of miR-218 exerted the opposite effect. In addition, the dual-luciferase reporter assay showed that miR-218 directly targeted the 3'-untranslated region of heme oxygenase-1 (HO-1), and further study confirmed an increase of HO-1 in HG-treated podocytes transfected with anti-miR-218. Knockdown of HO-1 blocked the anti-apoptotic effect of anti-miR-218. Furthermore, inhibition of miR-218 was associated with decreased expression of the known pro-apoptotic molecule p38-mitogen-activated protein kinase (p38-MAPK) activation. Following preconditioning with SB203580, an inhibitor of p38-MAPK, the stimulatory effect of HG on podocyte apoptosis was strikingly ameliorated. These findings suggested that miR-218 accelerated HG-induced podocyte apoptosis through directly down-regulating HO-1 and facilitating p38-MAPK activation. PMID:26876575

  17. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    SciTech Connect

    Huang, Chunfa; Bruggeman, Leslie A.; Hydo, Lindsey M.; Miller, R. Tyler

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  18. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro

    PubMed Central

    Lv, Zhimei; Hu, Mengsi; Ren, Xiaoxu; Fan, Minghua; Zhen, Junhui; Chen, Liqun; Lin, Jiangong; Ding, Nannan; Wang, Qun; Wang, Rong

    2016-01-01

    Fyn, a member of the Src family of tyrosine kinases, is a key regulator in cytoskeletal remodeling in a variety of cell types. Recent studies have demonstrated that Fyn is responsible for nephrin tyrosine phosphorylation, which will result in polymerization of actin filaments and podocyte damage. Thus detailed involvement of Fyn in podocytes is to be elucidated. In this study, we investigated the potential role of Fyn/ROCK signaling and its interactions with paxillin. Our results presented that high glucose led to filamentous actin (F-actin) rearrangement in podocytes, accompanied by paxillin phosphorylation and increased cell motility, during which Fyn and ROCK were markedly activated. Gene knockdown of Fyn by siRNA showed a reversal effect on high glucose-induced podocyte damage and ROCK activation; however, inhibition of ROCK had no significant effects on Fyn phosphorylation. These observations demonstrate that in vitro Fyn mediates high glucose-induced actin cytoskeleton remodeling of podocytes via promoting ROCK activation and paxillin phosphorylation. PMID:26881253

  19. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS

    PubMed Central

    Sun, Li-na; Liu, Xiang-chun; Chen, Xiang-jun; Guan, Guang-ju; Liu, Gang

    2016-01-01

    Aim: Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS. PMID:26838071

  20. Synergistic Effect of Mesangial Cell-Induced CXCL1 and TGF-β1 in Promoting Podocyte Loss in IgA Nephropathy

    PubMed Central

    Shi, Sufang; Liu, Lijun; Lv, Jicheng; Zhang, Hong

    2013-01-01

    Podocyte loss has been reported to relate to disease severity and progression in IgA nephropathy (IgAN). However, the underlying mechanism for its role in IgAN remain unclear. Recent evidence has shown that IgA1 complexes from patients with IgAN could activate mesangial cells to induce soluble mediator excretion, and further injure podocytes through mesangial-podocytic cross-talk. In the present study, we explored the underlying mechanism of mesangial cell-induced podocyte loss in IgAN. We found that IgA1 complexes from IgAN patients significantly up-regulated the expression of CXCL1 and TGF-β1 in mesangial cells compared with healthy controls. Significantly higher urinary levels of CXCL1 and TGF-β1 were also observed in patients with IgAN compared to healthy controls. Moreover, IgAN patients with higher urinary CXCL1 and TGF-β1 presented with severe clinical and pathological manifestations, including higher 24-hour urine protein excretion, lower eGFR and higher cresentic glomeruli proportion. Further in vitro experiments showed that increased podocyte death and reduced podocyte adhesion were induced by mesangial cell conditional medium from IgAN (IgAN-HMCM), as well as rhCXCL1 together with rhTGF-β1. In addition, the over-expression of CXCR2, the receptor for CXCL1, by podocytes was induced by IgAN-HMCM and rhTGF-β1, but not by rhCXCL1. Furthermore, the effect of increased podocyte death and reduced podocyte adhesion induced by IgAN-HMCM and rhCXCL1 and rhTGF-β1 was rescued partially by a blocking antibody against CXCR2. Moreover, we observed the expression of CXCR2 in urine exfoliated podocytes in IgAN patients. Our present study implied that IgA1 complexes from IgAN patients could up-regulate the secretion of CXCL1 and TGF-β1 in mesangial cells. Additionally, the synergistic effect of CXCL1 and TGF-β1 further induced podocyte death and adhesion dysfunction in podocytes via CXCR2. This might be a potential mechanism for podocyte loss observed in Ig

  1. Renal Light Chain Deposition Associated with the Formation of Intracellular Crystalline Inclusion Bodies in Podocytes: A Rare Case Report.

    PubMed

    Wang, Yuan-da; Dong, Zhe-yi; Zhang, Xue-guang; Zhang, Wei; Yin, Zhong; Qiu, Qiang; Chen, Xiang-mei

    2016-01-01

    We herein report the case of an elderly woman with bone pain and proteinuria as the main clinical manifestations. The patient was diagnosed with the IgG κ type of multiple myeloma. Her renal pathology consisted of widespread κ light chain protein deposition associated with the formation of large quantities of rod-like crystals in podocytes. This phenomenon is very rare. We explored the significance of this crystal formation via a detailed and descriptive analysis and also performed a literature review, thus providing data to increase the available information about this type of disease.

  2. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy.

    PubMed

    Cao, Ai-Li; Wang, Li; Chen, Xia; Wang, Yun-Man; Guo, Heng-Jiang; Chu, Shuang; Liu, Cheng; Zhang, Xue-Mei; Peng, Wen

    2016-06-01

    Endoplasmic reticulum (ER) stress, resulting from the accumulation of misfolded and/or unfolded proteins in ER membranes, is involved in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the role of ER stress inhibitors ursodeoxycholic acid (UDCA) and 4-phenylbutyrate (4-PBA) in the treatment of DN in db/db mice. Findings have revealed that diabetic db/db mice were more hyperglycemic than their non-diabetic controls, and exhibited a marked increase in body weight, water intake, urine volume, fasting plasma glucose, systolic blood pressure, glucose and insulin tolerance. UDCA (40 mg/kg/day) or 4-PBA (100 mg/kg/day) treatment for 12 weeks resulted in an improvement in these biochemical and physical parameters. Moreover, UDCA or 4-PBA intervention markedly decreased urinary albuminuria and attenuated mesangial expansion in diabetic db/db mice, compared with db/db mice treated with vehicle. These beneficial effects of UDCA or 4-PBA on DN were associated with the inhibition of ER stress, as evidenced by the decreased expression of BiP, phospho-IRE1α, phospho-eIF2α, CHOP, ATF-6 and spliced X-box binding protein-1 in vitro and in vivo. UDCA or 4-PBA prevented hyperglycemia-induced or high glucose (HG)-induced apoptosis in podocytes in vivo and in vitro via the inhibition of caspase-3 and caspase-12 activation. Autophagy deficiency was also seen in glomeruli in diabetic mice and HG-incubated podocytes, exhibiting decreased expression of LC3B and Beclin-1, which could be restored by UDCA or 4-PBA treatment. Taken together, our results have revealed an important role of ER stress in the development of DN, and UDCA or 4-PBA treatment may be a potential novel therapeutic approach for the treatment of DN. PMID:26999661

  3. Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease.

    PubMed

    Lee, Hyun Soon

    2012-01-01

    In patients with progressive podocyte disease, such as focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, upregulation of transforming growth factor-ß (TGF-ß) is observed in podocytes. Mechanical pressure or biomechanical strain in podocytopathies may cause overexpression of TGF-ß and angiotensin II (Ang II). Oxidative stress induced by Ang II may activate the latent TGF-ß, which then activates Smads and Ras/extracellular signal-regulated kinase (ERK) signaling pathways in podocytes. Enhanced TGF-ß activity in podocytes may lead to thickening of the glomerular basement membrane (GBM) by overproduction of GBM proteins and impaired GBM degradation in podocyte disease. It may also lead to podocyte apoptosis and detachment from the GBM, and epithelial-mesenchymal transition (EMT) of podocytes, initiating the development of glomerulosclerosis. Furthermore, activated TGF-ß/Smad signaling by podocytes may induce connective tissue growth factor and vascular endothelial growth factor overexpression, which could act as a paracrine effector mechanism on mesangial cells to stimulate mesangial matrix synthesis. In proliferative podocytopathies, such as cellular or collapsing FSGS, TGF-ß-induced ERK activation may play a role in podocyte proliferation, possibly via TGF-ß-induced EMT of podocytes. Collectively, these data bring new mechanistic insights into our understanding of the TGF-ß overexpression by podocytes in progressive podocyte disease.

  4. Reversal by Growth Hormone of Homocysteine-induced Epithelial-to-Mesenchymal Transition through Membrane Raft-Redox Signaling in Podocytes

    PubMed Central

    Li, Cai-Xia; Xia, Min; Han, Wei-Qing; Li, Xiao-Xue; Zhang, Chun; Boini, Krishna M.; Liu, Xiao-Cheng; Li, Pin-Lan

    2011-01-01

    Epithelial-to-Mesenchymal Transition (EMT) is an important pathogenic mechanism mediating glomerular injury or sclerosis in a variety of renal and systemic diseases such as hyperhomocysteinemia (hHcys). The present study was designed to test whether Hcys-induced EMT in podocytes is reversed by growth hormone (GH), a hormone regulating cell differentiation and growth and to explore the cellular and molecular mechanism mediating its action. It was found that Hcys induced significant EMT in podocytes, as shown by marked decreases in slit diaphragm-associated protein P-cadherin and zonula occludens-1 as epithelial markers and by dramatic increases in the expression of mesenchymal markers, fibroblast specific protein-1 and α-smooth muscle actin, which were detected by all examinations via immunocytochemistry, real time RT-PCR and Western blot analysis. When podocytes were treated with GH at 25 ng/mL, however, Hcys failed to induce podocyte EMT. Using electromagnetic spin resonance spectrometry, Hcys-induced superoxide (O2.−) production via NADPH oxidase was found to be significantly inhibited by GH (66%). Functionally, GH was shown to substantially inhibit Hcys-induced increases in the permeability of podocyte monolayers and to block the decrease in podocin expression in these cells. In addition, NADPH oxidase subunit, gp91phox and GH receptors aggregated in membrane raft clusters, which produced O2.− in response to Hcys and could be blocked by GH, membrane raft disruptors filipin and MCD or NADPH oxidase inhibitor, apocynin. It is concluded that Hcys-induced podocyte EMT is associated with transmembrane membrane raft-redox signaling and that GH reverses this Hcys-induced EMT protecting podocytes from functional disturbance. PMID:21691087

  5. Extract of Rhizoma Polygonum cuspidatum reduces early renal podocyte injury in streptozotocin‑induced diabetic rats and its active compound emodin inhibits methylglyoxal‑mediated glycation of proteins.

    PubMed

    Sohn, Eunjin; Kim, Junghyun; Kim, Chan Sik; Jo, Kyuhyung; Kim, Jin Sook

    2015-10-01

    Podocyte injury contributes to renal damage and, eventually, to the occurrence of proteinuria in diabetic nephropathy. The aim of the present study was to investigate the effect of an ethanol extract from Rhizoma Polygonum cuspidatum (P. cuspidatum) on proteinuria and podocyte injury, and elucidate the underlying mechanism for streptozotocin (STZ)‑induced diabetic nephropathy. The protective effects of P. cuspidatum extract (PCE) on renal podocytes in STZ‑induced diabetic rats were also investigated. PCE (100 or 350 mg/kg/day) was administered to STZ‑induced diabetic rats for 16 weeks, and blood glucose levels, body weight and proteinuria were measured. A double labeling technique with the terminal deoxynucleotidyl transferase dUTP nick end labeling assay was performed and synaptopodin expression was observed. In addition, cleaved caspase‑3, methylglyoxal (MGO) and 8‑hydroxydeoxyguanosine (8‑OHdG) expression levels were measured. STZ‑induced diabetic rats developed hyperglycemia and proteinuria. Increased apoptosis of the podocytes and increased cleaved caspase‑3, MGO and 8‑OHdG expression levels, as well as decreased synaptopodin expression were detected in the glomeruli of STZ‑induced diabetic rats. However, treatment with PCE for 16 weeks restored protein levels to normal, and reduced podocyte loss and apoptosis. Levels of caspase‑3 and MGO expression, as well as oxidative stress were ameliorated by PCE treatment. In addition, emodin, a biologically active ingredient of PCE, exerted an MGO scavenging effect and inhibited MGO‑derived advanced glycation end‑product formation. These findings indicate that PCE may be administered to prevent proteinuria and podocyte loss in STZ‑induced diabetic rats partly by inhibiting podocyte apoptosis and cleaved caspase‑3 expression, and by restoring the balance of oxidative stress and MGO expression. PMID:26299942

  6. Reduction of Proteinuria through Podocyte Alkalinization*

    PubMed Central

    Altintas, Mehmet M.; Moriwaki, Kumiko; Wei, Changli; Möller, Clemens C.; Flesche, Jan; Li, Jing; Yaddanapudi, Suma; Faridi, Mohd Hafeez; Gödel, Markus; Huber, Tobias B.; Preston, Richard A.; Jiang, Jean X.; Kerjaschki, Dontscho; Sever, Sanja; Reiser, Jochen

    2014-01-01

    Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi. PMID:24817115

  7. Intravital Imaging Reveals Angiotensin II-Induced Transcytosis of Albumin by Podocytes.

    PubMed

    Schießl, Ina Maria; Hammer, Anna; Kattler, Veronika; Gess, Bernhard; Theilig, Franziska; Witzgall, Ralph; Castrop, Hayo

    2016-03-01

    Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm(3) (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II-infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function.

  8. Emerging role of podocyte autophagy in the progression of diabetic nephropathy.

    PubMed

    Yasuda-Yamahara, Mako; Kume, Shinji; Tagawa, Atsuko; Maegawa, Hiroshi; Uzu, Takashi

    2015-01-01

    Glomerular podocytes are pivotal in maintaining glomerular filtration barrier function. As severe podocyte injury results in proteinuria in patients with diabetic nephropathy, determining the pathogenesis of podocyte injury may contribute to the development of new treatments. We recently showed that autophagy is involved in the pathogenesis of diabetes-related podocyte injury. Insufficient podocyte autophagy and podocyte loss are observed in diabetic patients with massive proteinuria. Podocyte loss and massive proteinuria occur in high-fat diet-induced diabetic mice with podocyte-specific autophagy deficiency, with podocytes of these mice and of diabetic rats having huge damaged lysosomes. Sera from diabetic patients and from rodents with massive proteinuria cause autophagy insufficiency, resulting in lysosome dysfunction and apoptosis of cultured podocytes. These findings suggest the importance of autophagy in maintaining lysosome homeostasis in podocytes under diabetic conditions. Impaired autophagy may be involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy.

  9. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes*

    PubMed Central

    Lee, Hak Joo; Feliers, Denis; Mariappan, Meenalakshmi M.; Sataranatarajan, Kavithalakshmi; Choudhury, Goutam Ghosh; Gorin, Yves; Kasinath, Balakuntalam S.

    2015-01-01

    Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). Nω-Nitro-l-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1

  10. Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells.

    PubMed

    Schödel, Johannes; Bohr, Daniela; Klanke, Bernd; Schley, Gunnar; Schlötzer-Schrehardt, Ursula; Warnecke, Christina; Kurtz, Armin; Amann, Kerstin; Eckardt, Kai-Uwe; Willam, Carsten

    2010-11-01

    The two hypoxia-inducible factors (HIF-1α and HIF-2α) are transcription factors that regulate the response to hypoxia. Recently, the factor inhibiting HIF (FIH1) was identified as a molecular oxygen-dependent dioxygenase that blunts the transcriptional activity of HIF and has also been implicated in HIF-dependent and -independent hypoxia responses. Interestingly, HIF accumulation in the kidney has been shown to confer renal protection and to also cause glomerular injury or enhance renal fibrosis. In order to better understand the regulation of hypoxia-inducible genes, we determined the expression of FIH1 in the kidney and its functional role in isolated renal cells. FIH1 was expressed only in distal tubules and in podocytes, thus showing a very distinct expression pattern, partially overlapping with sites of HIF-1α expression. In tubular cells, RNA silencing of FIH1 caused transcriptional activation of HIF target genes during hypoxia. In contrast, FIH1 silencing in podocytes enhanced transcription of hypoxia-inducible genes in an HIF-independent manner. Using the anti-Thy.1 rat model of glomerulonephritis, we found a gradual decrease of glomerular FIH1 expression during disease progression paralleled by an increase in hypoxia-inducible genes including CXCR4, a mediator of glomerular inflammation. Thus, FIH1 appears to be a suppressor of oxygen-dependent genes in the kidney, operating through HIF-dependent and -independent mechanisms.

  11. New Insights into the Pathology of Podocyte Loss

    PubMed Central

    Liapis, Helen; Romagnani, Paola; Anders, Hans-Joachim

    2014-01-01

    Podocytes represent an essential component of the kidney’s glomerular filtration barrier. They stay attached to the glomerular basement membrane via integrin interactions that support the capillary wall to withstand the pulsating filtration pressure. Podocyte structure is maintained by a dynamic actin cytoskeleton. Terminal differentiation is coupled with permanent exit from the cell cycle and arrest in a postmitotic state. Postmitotic podocytes do not have an infinite life span; in fact, physiologic loss in the urine is documented. Proteinuria and other injuries accelerate podocyte loss or induce death. Mature podocytes are unable to replicate and maintain their actin cytoskeleton simultaneously. By the end of mitosis, cytoskeletal actin forms part of the contractile ring, rendering a round shape to podocytes. Therefore, when podocyte mitosis is attempted, it may lead to aberrant mitosis (ie, mitotic catastrophe). Mitotic catastrophe implies that mitotic podocytes eventually detach or die; this is a previously unrecognized form of podocyte loss and a compensatory mechanism for podocyte hypertrophy that relies on post–G1-phase cell cycle arrest. In contrast, local podocyte progenitors (parietal epithelial cells) exhibit a simple actin cytoskeleton structure and can easily undergo mitosis, supporting podocyte regeneration. In this review we provide an appraisal of the in situ pathology of mitotic catastrophe compared with other proposed types of podocyte death and put experimental and renal biopsy data in a unified perspective. PMID:24007883

  12. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria.

    PubMed

    Jiang, Lei; Xu, Lingling; Song, Yuxian; Li, Jianzhong; Mao, Junhua; Zhao, Allan Zijian; He, Weichun; Yang, Junwei; Dai, Chunsun

    2013-08-01

    Angiotensin II (Ang II) plays a pivotal role in promoting podocyte dysfunction and albuminuria, however, the underlying mechanisms have not been fully delineated. In this study, we found that Ang II induced Wnt1 expression and β-catenin nuclear translocation in cultured mouse podocytes. Blocking Wnt signaling with Dickkopf-1 (Dkk1) or β-catenin siRNA attenuated Ang II-induced podocyte injury. Ang II could also induce the phosphorylation of calmodulin-dependent protein kinase (CaMK) II and cAMP response element-binding protein (CREB) in cultured podocytes. Blockade of this pathway with CK59 or CREB siRNA could significantly inhibit Ang II-induced Wnt/β-catenin signaling and podocyte injury. In in vivo studies, administration of Ang II promoted Wnt/β-catenin signaling, aggregated podocyte damage, and albuminuria in mice. CK59 could remarkably ameliorate Ang II-induced podocyte injury and albuminuria. Furthermore, ectopic expression of exogenous Dkk1 also attenuated Ang II-induced podocytopathy in mice. Taken together, this study demonstrates that the CaMK II/CREB/Wnt/β-catenin signaling cascade plays an important role in regulating Ang II-induced podocytopathy. Targeting this signaling pathway may offer renal protection against the development of proteinuric kidney diseases. PMID:23803607

  13. The Expression Profile of Complement Components in Podocytes.

    PubMed

    Li, Xuejuan; Ding, Fangrui; Zhang, Xiaoyan; Li, Baihong; Ding, Jie

    2016-01-01

    Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32), whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32) complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN), angiotensin II (Ang II), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β)). Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors. PMID:27043537

  14. The Expression Profile of Complement Components in Podocytes

    PubMed Central

    Li, Xuejuan; Ding, Fangrui; Zhang, Xiaoyan; Li, Baihong; Ding, Jie

    2016-01-01

    Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32), whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32) complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN), angiotensin II (Ang II), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β)). Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors. PMID:27043537

  15. 3,4-DGE is cytotoxic and decreases HSP27/HSPB1 in podocytes.

    PubMed

    Sanchez-Niño, Maria Dolores; Poveda, Jonay; Sanz, Ana Belen; Carrasco, Susana; Ruiz-Ortega, Marta; Selgas, Rafael; Egido, Jesus; Ortiz, Alberto

    2014-03-01

    Hyperglycemia is the key driver of diabetic complications and increased concentrations of glucose degradation products. The study of peritoneal dialysis solution biocompatibility has highlighted the adverse biological effects of glucose degradation products. Recently, 3,4-dideoxyglucosone-3-ene (3,4-DGE) was identified as the most toxic glucose degradation product in peritoneal dialysis fluids. In addition, 3,4-DGE is present in high-fructose corn syrup, and its precursor 3-deoxyglucosone is increased in diabetes. The role of 3,4-DGE in glomerular injury had not been addressed. We studied the effects of 3,4-DGE on cultured human podocytes and in vivo in mice. 3,4-DGE induced apoptosis in podocytes in a dose- and time-dependent manner. 3,4-DGE promoted the release of cytochrome c from mitochondria and activation of caspase-3. While high glucose concentrations increased the levels of the podocyte intracellular antiapoptotic protein HSP27/HSPB1, 3,4-DGE decreased the expression of podocyte HSP27/HSPB1. Apoptosis induced by 3,4-DGE was caspase-dependent and could be prevented by the broad-spectrum caspase inhibitor zVAD-fmk. Antagonism of Bax by a Ku-70-derived peptide also prevented apoptosis. Intravenous administration of 3,4-DGE to healthy mice resulted in a decreased expression of HSP27/HSPB1 and caspase-3 activation in whole kidney and in podocytes in vivo. In conclusion, 3,4-DGE induces apoptotic cell death in cultured human podocytes, suggesting a potential role in glomerular injury resulting from metabolic disorders. PMID:24337777

  16. Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via anti-apoptosis of podocytes in streptozotocin-induced diabetic rats.

    PubMed

    Sohn, Eunjin; Kim, Junghyun; Kim, Chan-Sik; Kim, Young Sook; Jang, Dae Sik; Kim, Jin Sook

    2010-01-01

    Advanced glycation end products (AGEs) is produced from glycolysis in vivo, which may result in diabetic nephropathy. Podocyte loss has been implicated in the development of diabetic nephropathy. The aim of this study was to investigate the protective effects of Aster koraiensis extract (AKE), on the damage of renal podocytes in streptozotocin (STZ)-induced diabetic rats. AKE (100, 200mg/kg per day) was given to diabetic rats for 13weeks. Blood glucose, glycated haemoglobin (HbA1c), proteinuria and albuminuria were examined. Kidney histopathology, AGEs accumulation, apoptosis, and expression of Bax and Bcl-2 also were examined. In 20-week-old STZ-induced diabetic rats, severe hyperglycemia was developed, and proteinuria and albuminuria were markedly increased. TUNEL-positive signals were highly detected in glomeruli of STZ-induced diabetic rats. However, AKE reduced proteinuria and albuminuria in diabetic rats. AKE prevented AGEs deposition and podocyte apoptosis. Expression of Bax and Bcl-2 protein were restored by AKE treatment in the renal cortex. These results suggested that AKE has an inhibitory effect of AGE accumulation and anti-apoptotic effect in the glomeruli of diabetic rat. AKE could be beneficial in preventing the progression of diabetic nephropathy.

  17. Wt1a, Foxc1a, and the Notch mediator Rbpj Physically Interact and Regulate the Formation of Podocytes in Zebrafish

    PubMed Central

    O’Brien, Lori L.; Grimaldi, Michael; Kostun, Zachary; Wingert, Rebecca A.; Selleck, Rori; Davidson, Alan J.

    2011-01-01

    Podocytes help form the glomerular blood filtration barrier in the kidney and their injury or loss leads to renal disease. The Wilms’ tumor suppressor-1 (Wt1) and the FoxC1/2 transcription factors, as well as Notch signaling, have been implicated as important regulators of podocyte fate. It is not known whether these factors work in parallel or sequentially on different gene targets, or as higher-order transcriptional complexes on common genes. Here, we use the zebrafish to demonstrate that embryos treated with morpholinos against wt1a, foxc1a, or the Notch transcriptional mediator rbpj develop fewer podocytes, as determined by wt1b, hey1 and nephrin expression, while embryos deficient in any two of these factors completely lack podocytes. From GST-pull-downs and co-immunoprecipitation experiments we show that Wt1a, Foxc1a, and Rbpj can physically interact with each other, whereas only Rbpj binds to the Notch intracellular domain (NICD). In transactivation assays, combinations of Wt1, FoxC1/2, and NICD synergistically induce the Hey1 promoter, and have additive or repressive effects on the Podocalyxin promoter, depending on dosage. Taken together, these data suggest that Wt1, FoxC1/2, and Notch signaling converge on common target genes where they physically interact to regulate a podocyte-specific gene program. These findings further our understanding of the transcriptional circuitry responsible for podocyte formation and differentiation during kidney development. PMID:21871448

  18. TGF-β induces miR-30d down-regulation and podocyte injury through Smad2/3 and HDAC3-associated transcriptional repression.

    PubMed

    Liu, Lin; Lin, Wenjun; Zhang, Qin; Cao, Wangsen; Liu, Zhihong

    2016-03-01

    The microRNA-30 family plays important roles in maintaining kidney homeostasis. Patients with focal segmental glomerulosclerosis (FSGS) have reduced miR-30 levels in glomerulus. TGF-β represses miR-30s in kidney podocytes, which leads to cytoskeleton damage and podocyte apoptosis. In this study, we investigated the mechanism by which TGF-β represses miR-30d in vitro. The human miR-30d promoter contains multiple copies of Smad binding element-like sequences. A fragment of 150 base pairs close to the transcription start site was negatively regulated by TGF-β to a similar extent as the 1.8 kb promoter, which was blocked by histone-deacetylase inhibition. TGF-β specifically enhanced HDAC3 expression. Knockdown of HDAC3 by shRNA or a selective inhibitor RGFP966 significantly relieved the repression of miR-30d mRNA and the promoter transcription. TGF-β promoted HDAC3 association with Smad2/3 and NCoR and caused their accumulation at the putative Smad binding site on the miR-30d promoter, which was prohibited by TSA or RGFP966. Furthermore, TSA or RGFP966 treatment reversed TGF-β-induced up-regulation of miR-30d targets Notch1 and p53 and alleviated the podocyte cytoskeleton damage and apoptosis. Taken together, these findings pinpoint that TGF-β represses miR-30d through a Smad2/3-HDAC3-NCoR repression complex and provide novel insights into a potential target for the treatment of podocyte injury-associated glomerulopathies. Key message: MiR-30d promoter is negatively regulated by TGF-β. TGF-β down-regulates miR-30 through Smad signaling pathway. HDAC3 and NCoR are recruited by Smad2/3 to mediate miR-30d repression by TGF-β. HDAC3 acts as a critical player in TGF-β-induced miR-30d repression and podocyte injuries.

  19. Cell Biology and Pathology of Podocytes

    PubMed Central

    Greka, Anna; Mundel, Peter

    2013-01-01

    As an integral member of the filtration barrier in the kidney glomerulus, the podocyte is in a unique geographical position: It is exposed to chemical signals from the urinary space (Bowman’s capsule), it receives and transmits chemical and mechanical signals to/from the glomerular basement membrane upon which it elaborates, and it receives chemical and mechanical signals from the vascular space with which it also communicates. As with every cell, the ability of the podocyte to receive signals from the surrounding environment and to translate them to the intracellular milieu is dependent largely on molecules residing on the cell membrane. These molecules are the first-line soldiers in the ongoing battle to sense the environment, to respond to friendly signals, and to defend against injurious foes. In this review, we take a membrane biologist’s view of the podocyte, examining the many membrane receptors, channels, and other signaling molecules that have been implicated in podocyte biology. Although we attempt to be comprehensive, our goal is not to capture every membrane-mediated pathway but rather to emphasize that this approach may be fruitful in understanding the podocyte and its unique properties. PMID:22054238

  20. GADD45B mediates podocyte injury in zebrafish by activating the ROS-GADD45B-p38 pathway

    PubMed Central

    Chen, Z; Wan, X; Hou, Q; Shi, S; Wang, L; Chen, P; Zhu, X; Zeng, C; Qin, W; Zhou, W; Liu, Z

    2016-01-01

    GADD45 gene has been implicated in cell cycle arrest, cell survival or apoptosis in a cell type specific and context-dependent manner. Members of GADD45 gene family have been found differentially expressed in several podocyte injury models, but their roles in podocytes are unclear. Using an in vivo zebrafish model of inducible podocyte injury that we have previously established, we found that zebrafish orthologs of gadd45b were induced upon the induction of podocyte injury. Podocyte-specific overexpression of zebrafish gadd45b exacerbated edema, proteinuria and foot-process effacement, whereas knockdown of gadd45b by morpholino-oligos in zebrafish larvae ameliorated podocyte injury. We then explored the role of GADD45B induction in podocyte injury using in vitro podocyte culture. We confirmed that GADD45B was significantly upregulated during the early phase of podocyte injury in cultured human podocytes and that podocyte apoptosis induced by TGF-β and puromycin aminonucleoside (PAN) was aggravated by GADD45B overexpression but ameliorated by shRNA-mediated GADD45B knockdown. We also showed that ROS inhibitor NAC suppressed PAN-induced GADD45B expression and subsequent activation of p38 MAPK pathway in podocytes and that inhibition of GADD45B diminished PAN-induced p38 MAPK activation. Taken together, our findings demonstrated that GADD45B has an important role in podocyte injury and may be a therapeutic target for the management of podocyte injury in glomerular diseases. PMID:26794661

  1. The Two Kidney to One Kidney Transition and Transplant Glomerulopathy: A Podocyte Perspective

    PubMed Central

    Yang, Yan; Hodgin, Jeffrey B.; Afshinnia, Farsad; Wang, Su Q.; Wickman, Larysa; Chowdhury, Mahboob; Nishizono, Ryuzoh; Kikuchi, Masao; Huang, Yihung; Samaniego, Milagros

    2015-01-01

    The attrition rate of functioning allografts beyond the first year has not improved despite improved immunosuppression, suggesting that nonimmune mechanisms could be involved. Notably, glomerulopathies may account for about 40% of failed kidney allografts beyond the first year of engraftment, and glomerulosclerosis and progression to ESRD are caused by podocyte depletion. Model systems demonstrate that nephrectomy can precipitate hypertrophic podocyte stress that triggers progressive podocyte depletion leading to ESRD, and that this process is accompanied by accelerated podocyte detachment that can be measured in urine. Here, we show that kidney transplantation “reverse nephrectomy” is also associated with podocyte hypertrophy and increased podocyte detachment. Patients with stable normal allograft function and no proteinuria had levels of podocyte detachment similar to levels in two-kidney controls as measured by urine podocyte assay. By contrast, patients who developed transplant glomerulopathy had 10- to 20-fold increased levels of podocyte detachment. Morphometric studies showed that a subset of these patients developed reduced glomerular podocyte density within 2 years of transplantation due to reduced podocyte number per glomerulus. A second subset developed glomerulopathy by an average of 10 years after transplantation due to reduced glomerular podocyte number and glomerular tuft enlargement. Reduced podocyte density was associated with reduced eGFR, glomerulosclerosis, and proteinuria. These data are compatible with the hypothesis that podocyte depletion contributes to allograft failure and reduced allograft half-life. Mechanisms may include immune-driven processes affecting the podocyte or other cells and/or hypertrophy-induced podocyte stress causing accelerated podocyte detachment, which would be amenable to nonimmune therapeutic targeting. PMID:25388223

  2. Podocyte Mitosis – A Catastrophe

    PubMed Central

    Lasagni, L; Lazzeri, E; Shankland, S.J; Anders, H.-J; Romagnani, P

    2013-01-01

    Podocyte loss plays a key role in the progression of glomerular disorders towards glomerulosclerosis and chronic kidney disease. Podocytes form unique cytoplasmic extensions, foot processes, which attach to the outer surface of the glomerular basement membrane and interdigitate with neighboring podocytes to form the slit diaphragm. Maintaining these sophisticated structural elements requires an intricate actin cytoskeleton. Genetic, mechanic, and immunologic or toxic forms of podocyte injury can cause podocyte loss, which causes glomerular filtration barrier dysfunction, leading to proteinuria. Cell migration and cell division are two processes that require a rearrangement of the actin cytoskeleton; this rearrangement would disrupt the podocyte foot processes, therefore, podocytes have a limited capacity to divide or migrate. Indeed, all cells need to rearrange their actin cytoskeleton to assemble a correct mitotic spindle and to complete mitosis. Podocytes, even when being forced to bypass cell cycle checkpoints to initiate DNA synthesis and chromosome segregation, cannot complete cytokinesis efficiently and thus usually generate aneuploid podocytes. Such aneuploid podocytes rapidly detach and die, a process referred to as mitotic catastrophe. Thus, detached or dead podocytes cannot be adequately replaced by the proliferation of adjacent podocytes. However, even glomerular disorders with severe podocyte injury can undergo regression and remission, suggesting alternative mechanisms to compensate for podocyte loss, such as podocyte hypertrophy or podocyte regeneration from resident renal progenitor cells. Together, mitosis of the terminally differentiated podocyte rather accelerates podocyte loss and therefore glomerulosclerosis. Finding ways to enhance podocyte regeneration from other sources remains a challenge goal to improve the treatment of chronic kidney disease in the future. PMID:23176147

  3. Podocyte injury and its consequences.

    PubMed

    Nagata, Michio

    2016-06-01

    Podocytes maintain the glomerular filtration barrier, and the stability of this barrier depends on their highly differentiated postmitotic phenotype, which also defines the particular vulnerability of the glomerulus. Recent podocyte biology and gene disruption studies in vivo indicate a causal relationship between abnormalities of single podocyte molecules and proteinuria and glomerulosclerosis. Podocytes live under various stresses and pathological stimuli. They adapt to maintain homeostasis, but excessive stress leads to maladaptation with complex biological changes including loss of integrity and dysregulation of cellular metabolism. Podocyte injury causes proteinuria and detachment from the glomerular basement membrane. In addition to "sick" podocytes and their detachment, our understanding of glomerular responses following podocyte loss needs to address the pathways from podocyte injury to sclerosis. Studies have found a variety of glomerular responses to podocyte dysfunction in vivo, such as disruption of podocyte-endothelial cross talk and activation of podocyte-parietal cell interactions, all of which help us to understand the complex scenario of podocyte injury and its consequences. This review focuses on the cellular aspects of podocyte dysfunction and the adaptive or maladaptive glomerular responses to podocyte injury that lead to its major consequence, glomerulosclerosis. PMID:27165817

  4. Gene expression patterns in glucose-stimulated podocytes

    SciTech Connect

    Han, Seung Hyeok; Yang, Sanghwa; Jung, Dong Sub; Li, Jin Ji; Kim, Jin Ju; Kwak, Seung Jae; Kim, Dong Ki; Moon, Sung Jin; Lee, Jung Eun; Han, Dae-Suk; Kang, Shin-Wook

    2008-06-06

    To explore the mechanisms of podocyte injury under diabetic conditions, we performed an expression profile in glucose-stimulated podocytes. Differential gene expression profiles between conditionally immortalized mouse podocytes cultured in medium containing 5.6 and 30 mM glucose were measured with oligonucleotide microarrays. Of the genes identified, heme oxygenase-1, vascular endothelial growth factor-A, and thrombospondin-1 showed a consistently increased pattern, whereas angiotensin-converting enzyme-2 and peroxisomal proliferator activator receptor-{gamma} were down-regulated. These results were validated using real-time PCR and western blotting in podocytes, and with immunohistochemistry on renal tissues from streptozotocin-induced diabetic rats. Not only is this the first report of gene expression profiling of podocyte injury under diabetic conditions, but the identified genes are promising targets for future diabetes research.

  5. Cyclosporine A protects podocytes by regulating WAVE1 phosphorylation

    PubMed Central

    Li, Xuejuan; Ding, Fangrui; Wang, Suxia; Li, Baihong; Ding, Jie

    2015-01-01

    Accumulating evidence suggests that podocytes are direct targets of many classic antiproteinuric drugs. The immunosuppressive drug cyclosporine A (CsA), which is a calcineurin inhibitor, is used to treat proteinuric kidney diseases. One novel mechanism by which CsA reduces proteinuria is by directly stabilizing the podocyte cytoskeleton. Previous studies showed that calcineurin can directly regulate WAVE1 within mouse striatal slices. In this study, WAVE1 was expressed in podocytes and was localized in the podocyte cell bodies and foot processes (FPs). WAVE1 expression increased in both in vivo and in vitro models of puromycin aminonucleoside (PAN)-induced podocyte injury. CsA restored WAVE1 expression and also partially rescued the disordered F-actin arrangement after PAN injury. Co-immunoprecipitation assays showed that calcineurin directly interacted with WAVE1 and regulated WAVE1 phosphorylation in podocytes. Synaptopodin is a well-characterized target of CsA. WAVE1 overexpression and synaptopodin knockdown experiments directly demonstrated that WAVE1 expression is not dependent on synaptopodin expression, and vice versa. Overexpression of WAVE1 using a WAVE1 plasmid disrupted F-actin structure and promoted podocyte migration compared with the empty vector group. Therefore, WAVE1 may be a novel molecular target for the maintenance of podocyte FPs and for antiproteinuric treatment in the future. PMID:26634693

  6. Grape seed proanthocyanidin extracts ameliorate podocyte injury by activating peroxisome proliferator-activated receptor-γ coactivator 1α in low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats.

    PubMed

    Bao, Lei; Cai, Xiaxia; Dai, Xiaoqian; Ding, Ye; Jiang, Yanfei; Li, Yujie; Zhang, Zhaofeng; Li, Yong

    2014-08-01

    Podocytes are part of the glomerular filtration membrane in kidney and serve to prevent the filtration of protein from the blood. Several evidences suggest that mitochondrial dysfunction plays a critical role in the pathogenesis of diabetic nephropathy and it is an early event in podocyte injury. Mitochondrial dysfunction promotes oxidative stress that can favor the development of podocyte injury. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) was considered to be a major regulator of metabolic homeostasis and mitochondrial function. Some studies indicated that polyphenols may improve mitochondrial dysfunction, maintain the podocyte integrity and have therapeutic effects on glomerular diseases by promoting PGC-1α expression. Our study investigated whether grape seed proanthocyanidin extracts (GSPE), a strong antioxidant, ameliorate podocyte injury by activating PGC-1α in low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats. After 16 weeks of GSPE treatment, GSPE slightly increased the body weight and decreased plasma glucose, food intake, water intake and urine volume in diabetic rats. Further, GSPE significantly decreased 24 h albumin levels and increased the expression of nephrin and podocalyxin. The antioxidant levels were improved and the cellular damage of kidney in diabetic rats was also relieved effectively after the treatment. Moreover, GSPE increased the mRNA expression of mitochondrial biogenesis factors and mitochondrial DNA content. Finally, GSPE activated the expression of PGC-1α, silent mating type information regulation 2 homolog 1 (SIRT1) and AMP-activated protein kinase (AMPK). These results suggest that GSPE ameliorate podocyte injury in diabetic nephropathy by the activation of AMPK-SIRT1-PGC-1α signalling, which appears to inhibit oxidative stress and mitochondrial dysfunction in the kidney.

  7. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    EPA Science Inventory

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  8. Activation of podocytes by mesangial-derived TNF-alpha: glomerulo-podocytic communication in IgA nephropathy.

    PubMed

    Lai, Kar Neng; Leung, Joseph C K; Chan, Loretta Y Y; Saleem, Moin A; Mathieson, Peter W; Lai, Fernand M; Tang, Sydney C W

    2008-04-01

    We have previously documented that human mesangial cell (HMC)-derived TNF-alpha is an important mediator involved in the glomerulo-tubular communication in the development of interstitial damage in IgA nephropathy (IgAN). With the strategic position of podocytes, we further examined the role of mesangial cells in the activation of podocytes in IgAN. There was no binding of IgA from patients with IgAN to podocytes. Podocytes cultured with IgA from patients with IgAN did not induce the release of growth factors or cytokines. Furthermore, podocytes did not express mRNA of known IgA receptors. In contrast, IgA-conditioned medium (IgA-HMC medium) prepared by culturing HMC with IgA from patients with IgAN for 48 h significantly increased the gene expression and protein synthesis of TNF-alpha by podocytes with a 17-fold concentration above that of IgA-HMC medium. The upregulation of TNF-alpha expression by podocyte was only abolished by a neutralizing antibody against TNF-alpha but not by other antibodies. Exogenous TNF-alpha upregulated the synthesis of TNF-alpha by podocytes in an autocrine fashion. IgA-HMC medium prepared with IgA from patients with IgAN also significantly upregulated the expression of both TNF-alpha receptor 1 and 2 in podocytes. Our in vitro finding suggests podocytes may play a contributory role in the development of interstitial damage in IgAN by amplifying the activation of tubular epithelial cells with enhanced TNF-alpha synthesis after inflammatory changes of HMC.

  9. Podocyte-specific expression of organic cation transporter PMAT: implication in puromycin aminonucleoside nephrotoxicity

    PubMed Central

    Xia, Li; Zhou, Mingyan; Kalhorn, Thomas F.; Ho, Horace T. B.; Wang, Joanne

    2009-01-01

    Plasma membrane monoamine transporter (PMAT) is a novel polyspecific organic cation transporter that transports organic cations and the purine nucleoside, adenosine. PMAT is expressed in the kidney, but the specific localization and function of this transporter in renal cells are unclear. In this study, we developed a polyclonal antibody toward a 14-amino acid sequence in the last intracellular loop of PMAT and determined the precise cellular localization of PMAT in human and rat kidneys. Surprisingly, we found that the PMAT protein was predominantly expressed in the glomerulus with minimal expression in tubular cells. Within the glomerulus, dual-color immunofluorescence labeling showed that the PMAT protein was specifically localized to the visceral glomerular epithelial cells, i.e., podocytes. There was no significant PMAT immunoreactivity in mesangial or glomerular endothelial cells. We further showed that puromycin aminonucleoside (PAN), a classic podocyte toxin that induces massive proteinuria and severe glomerulopathy, is transported by PMAT. Expression of PMAT in Madin-Darby canine kidney cells significantly increased cell sensitivity to PAN. Decynium 22, a potent PMAT inhibitor, abolished PAN toxicity in PMAT-expressing cells. Together, our data suggest that PMAT is specifically expressed in podocytes and may play an important role in PAN-induced kidney injury. PMID:19357181

  10. cAMP Signaling Prevents Podocyte Apoptosis via Activation of Protein Kinase A and Mitochondrial Fusion

    PubMed Central

    Xie, Kewei; Ni, Zhaohui; Yan, Yucheng; Wei, Kai; Chuang, Peter Y.; He, John Cijiang; Gu, Leyi

    2014-01-01

    Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP. PMID:24642777

  11. Statin-sensitive endocytosis of albumin by glomerular podocytes.

    PubMed

    Eyre, Jeanette; Ioannou, Kyriakos; Grubb, Blair D; Saleem, Moin A; Mathieson, Peter W; Brunskill, Nigel J; Christensen, Erik I; Topham, Peter S

    2007-02-01

    Glomerular podocytes are critical regulators of glomerular permeability via the slit diaphragm and may play a role in cleaning the glomerular filter. Whether podocytes are able to endocytose proteins is uncertain. We studied protein endocytosis in conditionally immortalized mouse and human podocytes using FITC-albumin by direct quantitative assay and by fluorescence microscopy and electron microscopy in mouse podocytes. Furthermore, in vivo uptake was studied in human, rat, and mouse podocytes. Both mouse and human podocytes displayed specific one-site binding for FITC-albumin with K(d) of 0.91 or 0.44 mg/ml and B(max) of 3.15 or 0.81 microg/mg cell protein, respectively. In addition, they showed avid endocytosis of FITC-albumin with K(m) of 9.48 or 4.5 mg/ml and V(max) of 474.3 or 97.4 microg.mg cell protein(-1).h(-1), respectively. Immunoglobulin and transferrin were inefficient competitors of this process, indicating some specificity for albumin. Accumulation of endocytosed albumin could be demonstrated in intracellular vesicles by fluorescence confocal microscopy and electron microscopy. Endocytosis was sensitive to pretreatment with simvastatin. In vivo accumulation of albumin was found in all three species but was most pronounced in the rat. We conclude that podocytes are able to endocytose protein in a statin-sensitive manner. This function is likely to be highly significant in health and disease. In addition, protein endocytosis by podocytes may represent a useful, measurable phenotypic characteristic against which potentially injurious or beneficial interventions can be assessed. PMID:17032937

  12. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    PubMed Central

    Li, Xianglu; Fusco, William G.; Seo, Keun S.; Bayles, Kenneth W.; Mosley, Erin E.; McGuire, Mark A.; Bohach, Gregory A.

    2009-01-01

    HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization. PMID:20016671

  13. Role of Podocyte B7-1 in Diabetic Nephropathy

    PubMed Central

    Vergani, Andrea; Bassi, Roberto; Niewczas, Monika A.; Altintas, Mehmet M.; Pezzolesi, Marcus G.; D’Addio, Francesca; Chin, Melissa; Tezza, Sara; Ben Nasr, Moufida; Mattinzoli, Deborah; Ikehata, Masami; Corradi, Domenico; Schumacher, Valerie; Buvall, Lisa; Yu, Chih-Chuan; Chang, Jer-Ming; La Rosa, Stefano; Finzi, Giovanna; Solini, Anna; Vincenti, Flavio; Rastaldi, Maria Pia; Reiser, Jochen; Krolewski, Andrzej S.; Mundel, Peter H.; Sayegh, Mohamed H.

    2014-01-01

    Podocyte injury and resulting albuminuria are hallmarks of diabetic nephropathy, but targeted therapies to halt or prevent these complications are currently not available. Here, we show that the immune-related molecule B7-1/CD80 is a critical mediator of podocyte injury in type 2 diabetic nephropathy. We report the induction of podocyte B7-1 in kidney biopsy specimens from patients with type 2 diabetes. Genetic and epidemiologic studies revealed the association of two single nucleotide polymorphisms at the B7-1 gene with diabetic nephropathy. Furthermore, increased levels of the soluble isoform of the B7-1 ligand CD28 correlated with the progression to ESRD in individuals with type 2 diabetes. In vitro, high glucose conditions prompted the phosphatidylinositol 3 kinase–dependent upregulation of B7-1 in podocytes, and the ectopic expression of B7-1 in podocytes increased apoptosis and induced disruption of the cytoskeleton that were reversed by the B7-1 inhibitor CTLA4-Ig. Podocyte expression of B7-1 was also induced in vivo in two murine models of diabetic nephropathy, and treatment with CTLA4-Ig prevented increased urinary albumin excretion and improved kidney pathology in these animals. Taken together, these results identify B7-1 inhibition as a potential therapeutic strategy for the prevention or treatment of diabetic nephropathy. PMID:24676639

  14. Administration of Recombinant Soluble Urokinase Receptor Per Se Is Not Sufficient to Induce Podocyte Alterations and Proteinuria in Mice

    PubMed Central

    Cathelin, Dominique; Placier, Sandrine; Ploug, Michael; Verpont, Marie-Christine; Vandermeersch, Sophie; Luque, Yosu; Hertig, Alexandre; Rondeau, Eric

    2014-01-01

    Circulating levels of soluble forms of urokinase-type plasminogen activator receptor (suPAR) are generally elevated in sera from children and adults with FSGS compared with levels in healthy persons or those with other types of kidney disease. In mice lacking the gene encoding uPAR, forced increases in suPAR concentration result in FSGS-like glomerular lesions and proteinuria. However, whether overexpression of suPAR, per se, contributes to the pathogenesis of FSGS in humans remains controversial. We conducted an independent set of animal experiments in which two different and well characterized forms of recombinant suPAR produced by eukaryotic cells were administered over the short or long term to wild-type (WT) mice. In accordance with the previous study, the delivered suPARs are deposited in the glomeruli. However, such deposition of either form of suPAR in the kidney did not result in increased glomerular proteinuria or altered podocyte architecture. Our findings suggest that glomerular deposits of suPAR caused by elevated plasma levels are not sufficient to engender albuminuria. PMID:24790179

  15. Krüppel-like Factor 15 (KLF15) Is a Key Regulator of Podocyte Differentiation*

    PubMed Central

    Mallipattu, Sandeep K.; Liu, Ruijie; Zheng, Feng; Narla, Goutham; Ma'ayan, Avi; Dikman, Steven; Jain, Mukesh K.; Saleem, Moin; D'Agati, Vivette; Klotman, Paul; Chuang, Peter Y.; He, John C.

    2012-01-01

    Podocyte injury resulting from a loss of differentiation is the hallmark of many glomerular diseases. We previously showed that retinoic acid (RA) induces podocyte differentiation via stimulation of the cAMP pathway. However, many podocyte maturity markers lack binding sites for RA-response element or cAMP-response element (CREB) in their promoter regions. We hypothesized that transcription factors induced by RA and downstream of CREB mediate podocyte differentiation. We performed microarray gene expression studies in human podocytes treated with and without RA to identify differentially regulated genes. In comparison with known CREB target genes, we identified Krüppel-like factor 15 (KLF15), a kidney-enriched nuclear transcription factor, that has been previously shown to mediate cell differentiation. We confirmed that RA increased KLF15 expression in both murine and human podocytes. Overexpression of KLF15 stimulated expression of differentiation markers in both wild-type and HIV-1-infected podocytes. Also, KLF15 binding to the promoter regions of nephrin and podocin was increased in RA-treated podocytes. Although KLF15−/− mice at base line had minimal phenotype, lipopolysaccharide- or adriamycin-treated KLF15−/− mice had a significant increase in proteinuria and podocyte foot process effacement with a reduction in the expression of podocyte differentiation markers as compared with the wild-type treated mice. Finally, KLF15 expression was reduced in glomeruli isolated from HIV transgenic mice as well as in kidney biopsies from patients with HIV-associated nephropathy and idiopathic focal segmental glomerulosclerosis. These results indicate a critical role of KLF15 in mediating podocyte differentiation and in protecting podocytes against injury. PMID:22493483

  16. Prostaglandin E2 is crucial in the response of podocytes to fluid flow shear stress

    PubMed Central

    Srivastava, Tarak; McCarthy, Ellen T.; Cudmore, Patricia A.; Sharma, Mukut; Johnson, Mark L.; Bonewald, Lynda F.

    2010-01-01

    Podocytes play a key role in maintaining and modulating the filtration barrier of the glomerulus. Because of their location, podocytes are exposed to mechanical strain in the form of fluid flow shear stress (FFSS). Several human diseases are characterized by glomerular hyperfiltration, such as diabetes mellitus and hypertension. The response of podocytes to FFSS at physiological or pathological levels is not known. We exposed cultured podocytes to FFSS, and studied changes in actin cytoskeleton, prostaglandin E2 (PGE2) production and expression of cyclooxygenase-1 and–2 (COX-1, COX-2). FFSS caused a reduction in transversal F-actin stress filaments and the appearance of cortical actin network in the early recovery period. Cells exhibited a pattern similar to control state by 24 h following FFSS without significant loss of podocytes or apoptosis. FFSS caused increased levels of PGE2 as early as 30 min after onset of shear stress, levels that increased over time. PGE2 production by podocytes at post-2 h and post-24 h was also significantly increased compared to control cells (p < 0.039 and 0.012, respectively). Intracellular PGE2 synthesis and expression of COX-2 was increased at post-2 h following FFSS. The expression of COX-1 mRNA was unchanged. We conclude that podocytes are sensitive and responsive to FFSS, exhibiting morphological and physiological changes. We believe that PGE2 plays an important role in mechanoperception in podocytes. PMID:20531983

  17. Induction of Podocyte VEGF164 Overexpression at Different Stages of Development Causes Congenital Nephrosis or Steroid-Resistant Nephrotic Syndrome

    PubMed Central

    Veron, Delma; Reidy, Kimberly; Marlier, Arnaud; Bertuccio, Claudia; Villegas, Guillermo; Jimenez, Juan; Kashgarian, Michael; Tufro, Alda

    2010-01-01

    The tight regulation of vascular endothelial growth factor-A (VEGF-A) signaling is required for both the development and maintenance of the glomerular filtration barrier, but the pathogenic role of excessive amounts of VEGF-A detected in multiple renal diseases remains poorly defined. We generated inducible transgenic mice that overexpress podocyte VEGF164 at any chosen stage of development. In this study, we report the phenotypes that result from podocyte VEGF164 excess during organogenesis and after birth. On doxycycline induction, podocin-rtTA:tet-O-VEGF164 mice express twofold higher kidney VEGF164 levels than single transgenic mice, localized to podocytes. Podocyte VEGF164 overexpression during organogenesis resulted in albuminuria at birth and was associated with glomerulomegaly, uniform podocyte effacement, very few and wide foot processes joined by occluding junctions, almost complete absence of slit diaphragms, and swollen endothelial cells with few fenestrae as revealed by transmission electron microscopy. Podocyte VEGF164 overexpression after birth caused massive albuminuria in 70% of 2-week-old mice, glomerulomegaly, and minimal changes on light microscopy. Transmission electron microscopy showed podocyte effacement and fusion and morphologically normal endothelial cells. Podocyte VEGF164 overexpression induced nephrin down-regulation without podocyte loss. VEGF164-induced abnormalities were reversible on removal of doxycycline and were unresponsive to methylprednisolone. Collectively, the data suggest that moderate podocyte VEGF164 overexpression during organogenesis results in congenital nephrotic syndrome, whereas VEGF164 overexpression after birth induces a steroid-resistant minimal change like-disease in mice. PMID:20829436

  18. [Ultrastructure of the contractile apparatus of renal podocytes in vertebrate phylogenesis].

    PubMed

    Zaĭtsev, V B

    1984-06-01

    The evolution-determined ultrastructural characteristics were disclosed in the intracellular organization of the microfilaments of the contractile apparatus of renal podocytes in the lower (marine teleosts) and higher (dogs) vertebrates. In podocytes of the renal glomerules of the flounder and flying fish, the microfilaments 8-10 nm thick form dense bundles that make up an integral widely branched system, whereas in dogs, the microfilaments 4-7 nm thick are diffusely distributed in the cytoplasm, forming in essence its matrix.

  19. GLCCI1 is a novel component associated with the PI3K signaling pathway in podocyte foot processes

    PubMed Central

    Kim, Sang-Hoon; Kim, Hyun-Jung; Kim, Chan-Wha

    2016-01-01

    Podocyte foot processes are interdigitated to form the slit diaphragm and are crucial for the glomerular filtration barrier. Glucocorticoid-induced transcript 1 (GLCCI1) is transcriptionally regulated, but its signaling pathway in podocytes is unknown. The main objective of this study was to investigate the regulation of podocyte foot process proteins and to investigate the role of GLCCI1 in the phosphoinositide 3-kinase (PI3K) pathway using high glucose-induced podocytes and streptozotocin-induced diabetic rats. In podocytes and rat kidneys, GLCCI1 was found to be highly specific for the glomerulus and podocyte foot processes similar to other podocyte-specific proteins (nephrin, podocin, synatopodin and podocalyxin) based on reverse transcription-PCR, western blotting, immunofluorescence and immunoelectron microscopy analyses. In addition, the decrease in the GLCCI1 expression level under hyperglycemic conditions was restored by treatment with a PI3K inhibitor (wortmannin). Immunofluorescence analysis confirmed that GLCCI1 colocalized with nephrin and synaptopodin both in vivo and in vitro. Finally, immunoelectron microscopy data from streptozotocin-induced diabetic rats showed that GLCCI1 also localized in podocyte foot processes. Hence, GLCCI1 is a component of podocyte foot processes, and its expression appears to be regulated via the PI3K pathway. PMID:27174202

  20. Cyclin-dependent kinase 2 protects podocytes from apoptosis

    PubMed Central

    Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna

    2016-01-01

    Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN. PMID:26876672

  1. Overexpression of Mafb in Podocytes Protects against Diabetic Nephropathy

    PubMed Central

    Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-01-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. PMID:24722438

  2. Overexpression of Mafb in podocytes protects against diabetic nephropathy.

    PubMed

    Morito, Naoki; Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-11-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target.

  3. Genetic causes of proteinuria and nephrotic syndrome: Impact on podocyte pathobiology

    PubMed Central

    Akchurin, Oleh; Reidy, Kimberly J.

    2014-01-01

    In the past 20 years, multiple genetic mutations have been identified in patients with congenital nephrotic syndrome (CNS) and both familial and sporadic focal segmental glomerulosclerosis (FSGS). Characterization of the genetic basis of CNS and FSGS has led to the recognition of the importance of podocyte injury to the development of glomerulosclerosis. Genetic mutations induce injury due to effects on the podocyte’s structure, actin cytoskeleton, calcium signaling, and lysosomal and mitochondrial function. Transgenic animal studies have contributed to our understanding of podocyte pathobiology. Podocyte endoplasmic reticulum stress response, cell polarity, and autophagy play a role in maintenance of podocyte health. Further investigations related to the effects of genetic mutations on podocytes may identify new pathways for targeting therapeutics for nephrotic syndrome. PMID:24584664

  4. Transient light-induced intracellular oxidation revealed by redox biosensor

    SciTech Connect

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  5. β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury.

    PubMed

    Buelli, Simona; Rosanò, Laura; Gagliardini, Elena; Corna, Daniela; Longaretti, Lorena; Pezzotta, Anna; Perico, Luca; Conti, Sara; Rizzo, Paola; Novelli, Rubina; Morigi, Marina; Zoja, Carlamaria; Remuzzi, Giuseppe; Bagnato, Anna; Benigni, Ariela

    2014-03-01

    Activation of endothelin-A receptor (ET(A)R) by endothelin-1 (ET-1) drives epithelial-to-mesenchymal transition in ovarian tumor cells through β-arrestin signaling. Here, we investigated whether this pathogenetic pathway could affect podocyte phenotype in proliferative glomerular disorders. In cultured mouse podocytes, ET-1 caused loss of the podocyte differentiation marker synaptopodin and acquisition of the mesenchymal marker α-smooth muscle actin. ET-1 promoted podocyte migration via ET(A)R activation and increased β-arrestin-1 expression. Activated ET(A)R recruited β-arrestin-1 to form a trimeric complex with Src leading to epithelial growth factor receptor (EGFR) transactivation and β-catenin phosphorylation, which promoted gene transcription of Snail. Increased Snail expression fostered ET-1-induced migration as confirmed by Snail knockdown experiments. Silencing of β-arrestin-1 prevented podocyte phenotypic changes and motility and inhibited ET(A)R-driven signaling. In vitro findings were confirmed in doxorubicin (Adriamycin)-induced nephropathy. Mice receiving Adriamycin developed renal injury with loss of podocytes and hyperplastic lesion formation; β-arrestin-1 expression increased in visceral podocytes and in podocytes entrapped in pseudo-crescents. Administration of the selective ET(A)R antagonist sitaxsentan prevented podocyte loss, formation of the hyperplastic lesions, and normalized expression of glomerular β-arrestin-1 and Snail. Increased β-arrestin-1 levels in podocytes retrieved from crescents of patients with proliferative glomerulopathies confirmed the translational relevance of these findings and suggest the therapeutic potential of ET(A)R antagonism for a group of diseases still needing a specific treatment.

  6. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli.

    PubMed

    Ilatovskaya, Daria V; Palygin, Oleg; Levchenko, Vladislav; Staruschenko, Alexander

    2015-01-01

    Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca(2+) concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels. PMID:26167808

  7. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli

    PubMed Central

    Ilatovskaya, Daria V.; Palygin, Oleg; Levchenko, Vladislav; Staruschenko, Alexander

    2015-01-01

    Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca2+ concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels. PMID:26167808

  8. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes.

    PubMed

    Mato, Susana; Victoria Sánchez-Gómez, María; Matute, Carlos

    2010-11-01

    Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.

  9. Spironolactone inhibits podocyte motility via decreasing integrin β1 and increasing integrin β3 in podocytes under high-glucose conditions.

    PubMed

    Li, Zhuo; Zhang, Li; Shi, Wei; Chen, Yuanhan; Zhang, Hong; Liu, Shuangxin; Liang, Xinling; Ling, Ting; Yu, Chunping; Huang, Zhongshun; Tan, Xiaofan; Zhao, Xinchen; Ye, Zhiming; Zhang, Bin; Wang, Wenjian; Li, Ruizhao; Ma, Jianchao

    2015-11-01

    Integrin β1 and β3 expression by podocytes is required to maintain glomerular structural integrity. Previous studies have shown that aldosterone (ALD) is involved in glomerular podocyte injury, and mineralocorticoid receptor (MR) blocker spironolactone effectively reduces proteinuria in patients with diabetic nephropathy. The present study was designed to observe the effects of spironolactone on β1 and β3 integrin expression and podocyte motility under in vitro diabetic conditions. Immortalized mouse podocytes were cultured in media containing normal glucose (NG) levels, high glucose (HG) or HG plus spironolacton. The expression of β1 and β3 integrin in podocytes was detected by reverse transcription quantitative polymerase chain reaction, immunofluorescence and western blot analyses. The effects of spironolacton on podocyte motility was further evaluated using a wound healing assay. HG stimulation markedly decreased mRNA and protein expression of integrin β1, and significantly increased mRNA and protein expression of integrin β3 in cultured podocytes. However, simultaneous treatment with spironolacton (10‑7 mol/l) significantly attenuated HG-mediated increases in integrin β3 and decreases in integrin β1 expression. Furthermore, the migration of podocytes induced by HG was abrogated by concomitant treatment with spironolacton. In conclusion, the present study suggested that HG decreased the expression of integrin β1 in cultured podocytes, accompanied with an increase of integrin β3. Spironolactone inhibited cell motility and stabilized podoctyes treated with HG, probably through partly normalizing the expression of integrin β1 and decreasing the expression of integrin β3. PMID:26352002

  10. Puromycin aminonucleoside increases podocyte permeability by modulating ZO-1 in an oxidative stress-dependent manner.

    PubMed

    Ha, Tae-Sun; Park, Hye-Young; Seong, Su-Bin; Ahn, Hee Yul

    2016-01-01

    Puromycin aminonucleoside (PAN)-induced nephrosis is a widely studied animal model of human idiopathic nephrotic syndrome because PAN injection into rats results in increased glomerular permeability with the characteristic ultrastructural changes in podocytes similar to human nephrosis. To investigate the role of zonula occludens (ZO)-1 and oxidative stress on PAN-induced podocyte phenotypical changes and hyperpermeability in vitro, we cultured rat and mouse podocytes and treated with various concentrations of PAN. PAN treatment increased oxidative stress level of podocytes significantly with the induction of Nox4. In addition, PAN changed the ultrastructure of podocytes, such as shortening and fusion of microvilli, and the separation of intercellular gaps, which were improved by anti-oxidative vitamin C and Nox4 siRNA. PAN also disrupted the intercellular linear ZO-1 staining and induced inner cytoplasmic re-localization of ZO-1 protein, resulting in increased podocyte intercellular permeability. PAN reduced ZO-1 protein amount and mRNA expression in a dose-dependent manner, which means that PAN could also modulate ZO-1 protein transcriptionally. However, the decreased ZO-1 protein of podocytes by PAN was improved by Nox4 siRNA transfection. Furthermore, vitamin C mitigated the quantitative and distributional disturbances of ZO-1 protein caused by PAN. Our results demonstrate that the phenotypical changes of intercellular ZO-1 by oxidative stress via Nox4 likely contribute to the glomerular hyperpermeability caused by PAN. PMID:26683996

  11. Epithelial-to-Mesenchymal Transition in Podocytes Mediated by Activation of NADPH Oxidase in Hyperhomocysteinemia

    PubMed Central

    Zhang, Chun; Xia, Min; Boini, Krishna M.; Li, Cai-Xia; Abais, Justine M.; Li, Xiao-Xue; Laperle, Laura A.; Li, Pin-Lan

    2012-01-01

    The present study tested the hypothesis that hyperhomocysteinemia (hHcys) induces podocytes to undergo epithelial-to-mesenchymal transition (EMT) through the activation of NADPH oxidase (Nox). It was found that increased homocysteine (Hcys) level suppressed the expression of slit diaphragm-associated proteins, P-cadherin and zonula occludens-1 (ZO-1) in conditionally immortalized mouse podocytes, indicating the loss of their epithelial features. Meanwhile, Hcys remarkably increased the abundance of mesenchymal markers, such as fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA). These phenotype changes in podocytes induced by Hcys were accompanied by enhanced superoxide (O2.−) production, which was substantially suppressed by inhibition of Nox activity. Functionally, Hcys significantly enhanced the permeability of the podocyte monolayer coupled with increased EMT, and this EMT-related increase in cell permeability could be restored by Nox inhibitors. In mice lacking gp91phox (gp91−/−), an essential Nox subunit gene, hHcys-enhanced podocyte EMT and consequent glomerular injury were examined. In wild-type (gp91+/+) mice, hHcys induced by a folate-free (FF) diet markedly enhanced expression of mesenchymal markers (FSP-1 and α-SMA) but decreased expression of epithelial markers of podocytes in glomeruli, which were not observed in gp91−/− mouse glomeruli. Podocyte injury, glomerular sclerotic pathology, and marked albuminuria observed in gp91+/+ mice with hHcys were all significantly attenuated in gp91−/− mice. These results suggest that hHcys induces EMT of podocytes through activation of Nox, which represents a novel mechanism of hHcys-associated podocyte injury. PMID:21647593

  12. Autophagy Induced by Intracellular Infection of Propionibacterium acnes

    PubMed Central

    Nakamura, Teruko; Furukawa, Asuka; Uchida, Keisuke; Ogawa, Tomohisa; Tamura, Tomoki; Sakonishi, Daisuke; Wada, Yuriko; Suzuki, Yoshimi; Ishige, Yuki; Minami, Junko; Akashi, Takumi

    2016-01-01

    Background Sarcoidosis is caused by Th1-type immune responses to unknown agents, and is linked to the infectious agent Propionibacterium acnes. Many strains of P. acnes isolated from sarcoid lesions cause intracellular infection and autophagy may contribute to the pathogenesis of sarcoidosis. We examined whether P. acnes induces autophagy. Methods Three cell lines from macrophages (Raw264.7), mesenchymal cells (MEF), and epithelial cells (HeLa) were infected by viable or heat-killed P. acnes (clinical isolate from sarcoid lymph node) at a multiplicity of infection (MOI) of 100 or 1000 for 1 h. Extracellular bacteria were killed by washing and culturing infected cells with antibiotics. Samples were examined by colony assay, electron-microscopy, and fluorescence-microscopy with anti-LC3 and anti-LAMP1 antibodies. Autophagy-deficient (Atg5-/-) MEF cells were also used. Results Small and large (≥5 μm in diameter) LC3-positive vacuoles containing few or many P. acnes cells (LC3-positive P. acnes) were frequently found in the three cell lines when infected by viable P. acnes at MOI 1000. LC3-positive large vacuoles were mostly LAMP1-positive. A few small LC3-positive/LAMP1-negative vacuoles were consistently observed in some infected cells for 24 h postinfection. The number of LC3-positive P. acnes was decreased at MOI 100 and completely abolished when heat-killed P. acnes was used. LC3-positive P. acnes was not found in autophagy-deficient Atg5-/- cells where the rate of infection was 25.3 and 17.6 times greater than that in wild-type Atg5+/+ cells at 48 h postinfection at MOI 100 and 1000, respectively. Electron-microscopic examination revealed bacterial cells surrounded mostly by a single-membrane including the large vacuoles and sometimes a double or multi-layered membrane, with occasional undigested bacterial cells in ruptured late endosomes or in the cytoplasm. Conclusion Autophagy was induced by intracellular P. acnes infection and contributed to intracellular

  13. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:

    NASA Astrophysics Data System (ADS)

    Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F.

    2006-11-01

    Photoreceptor cells are incessantly bombarded with photons of light, which, along with the cells' high rate of oxygen metabolism, continuously exposes them to elevated levels of toxic reactive oxygen intermediates (ROIs). Vacancy-engineered mixed-valence-state cerium oxide nanoparticles (nanoceria particles) scavenge ROIs. Our data show that nanoceria particles prevent increases in the intracellular concentrations of ROIs in primary cell cultures of rat retina and, in vivo, prevent loss of vision due to light-induced degeneration of photoreceptor cells. These data indicate that the nanoceria particles may be effective in inhibiting the progression of ROI-induced cell death, which is thought to be involved in macular degeneration, retinitis pigmentosa and other blinding diseases, as well as the ROI-induced death of other cell types in diabetes, Alzheimer's disease, atherosclerosis, stroke and so on. The use of nanoceria particles as a direct therapy for multiple diseases represents a novel strategy and suggests that they may represent a unique platform technology.

  14. Angiopoietin-Like-4, a Potential Target of Tacrolimus, Predicts Earlier Podocyte Injury in Minimal Change Disease.

    PubMed

    Li, Jian-Si; Chen, Xiao; Peng, Lei; Wei, Shi-Yao; Zhao, Shi-Lei; Diao, Tian-Tian; He, Yi-Xin; Liu, Fang; Wei, Qiu-Ju; Zhang, Qing-Fang; Li, Bing

    2015-01-01

    Podocyte injury plays central roles in proteinuria and kidney dysfunction, therefore, identifying specific biomarker to evaluate earlier podocyte injury is highly desirable. Podocyte-secreted angiopoietin-like-4 (Angptl4) mediates proteinuria in different types of podocytopathy. In the present study, we established an experimental minimal change disease (MCD) rat model, induced by adriamycin (ADR) and resulted in definite podocyte injury, to identify the dynamic changes in Angptl4 expression. We also investigated the direct effects of tacrolimus on Angptl4 and podocyte repair. We determined that the glomerular Angptl4 expression was rapidly upregulated and reached a peak earlier than desmin, an injured podocyte marker, in the ADR rats. Furthermore, this upregulation occurred prior to heavy proteinuria and was accompanied by increased urinary Angptl4. We observed that the Angptl4 upregulation occurred only when podocyte was mainly damaged since we didn't observe little Angptl4 upregulation in MsPGN patients. In addition, we observed the glomerular Angptl4 mainly located in injured podocytes rather than normal podocytes. Moreover, we found that tacrolimus treatment significantly promoted podocyte repair and reduced glomerular and urinary Angptl4 expression at an earlier stage with a significant serum Angptl4 upregulation. And similar results were confirmed in MCD patients. In conclusion, this study represents the first investigation to demonstrate that Angptl4 can predict podocyte injury at earlier stages in MCD and the identification of earlier podocyte injury biomarkers could facilitate the prompt diagnosis and treatment of patients with podocytopathy, as well as determination of the prognosis and treatment efficacy in these diseases.

  15. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria.

    PubMed

    Hayashi, Kaori; Sasamura, Hiroyuki; Nakamura, Mari; Azegami, Tatsuhiko; Oguchi, Hideyo; Sakamaki, Yusuke; Itoh, Hiroshi

    2014-06-01

    The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria. PMID:24812666

  16. In Vivo 17β-Estradiol Treatment Contributes to Podocyte Actin Stabilization in Female db/db Mice

    PubMed Central

    Fornoni, Alessia; Pereira-Simon, Simone; Wu, Fayi; Burnstein, Kerry L.; Xia, Xiaomei; Conti, Francesco; Lenzi, Andrea; Elliot, Sharon

    2012-01-01

    We recently showed that 17β-estradiol (E2) treatment ameliorated type 2 diabetic glomerulosclerosis in mice in part by protecting podocyte structure and function. Progressive podocyte damage is characterized by foot process effacement, vacuolization, detachment of podocytes from the glomerular basement membrane, and apoptosis. In addition, podocytes are highly dependent on the preservation of their actin cytoskeleton to ensure proper function and survival. Because E2 administration prevented podocyte damage in our study on diabetic db/db mice and has been shown to regulate both actin cytoskeleton and apoptosis in other cell types and tissues, we investigated whether actin remodeling and apoptosis were prevented in podocytes isolated from E2-treated diabetic db/db mice. We performed G-actin/F-actin assays, Western analysis for Hsp25 expression, Ras-related C3 botulinum toxin substrate 1 (Rac1) activity, and apoptosis assays on previously characterized podocytes isolated from both in vivo-treated placebo and E2 female db/db mice. We found that in vivo E2 protects against a phenotype change in the cultured podocytes characterized by a percent increase of F-actin vs. G-actin, suppression of Hsp25 expression and transcriptional activation, increase of Rac1 activity, and decreased apoptotic intermediates. We conclude from these studies that E2 treatment protects against podocyte damage and may prevent/reduce diabetes-induced kidney disease. PMID:23070549

  17. Interconnected network motifs control podocyte morphology and kidney function.

    PubMed

    Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi

    2014-02-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  18. Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes

    PubMed Central

    Vivas, Yurena; Velasco, Ismael; Yeo, Tet-Kin; Chen, Sheldon; Medina-Gomez, Gema

    2015-01-01

    In the last few decades a change in lifestyle has led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance (IR), dyslipidemia, type 2 diabetes and renal disease. The excess calories are stored as triglycerides in adipose tissue, but also may accumulate ectopically in other organs, including the kidney, which contributes to the damage through a toxic process named lipotoxicity. Recently, the evidence suggests that renal lipid accumulation leads to glomerular damage and, more specifically, produces dysfunction in podocytes, key cells that compose and maintain the glomerular filtration barrier. Our aim was to analyze the early mechanisms underlying the development of renal disease associated with the process of lipotoxicity in podocytes. Our results show that treatment of podocytes with palmitic acid produced intracellular accumulation of lipid droplets and abnormal glucose and lipid metabolism. This was accompanied by the development of inflammation, oxidative stress and endoplasmic reticulum stress and insulin resistance. We found specific rearrangements of the actin cytoskeleton and slit diaphragm proteins (Nephrin, P-Cadherin, Vimentin) associated with this insulin resistance in palmitic-treated podocytes. We conclude that lipotoxicity accelerates glomerular disease through lipid accumulation and inflammation. Moreover, saturated fatty acids specifically promote insulin resistance by disturbing the cytoarchitecture of podocytes. These data suggest that renal lipid metabolism and cytoskeleton rearrangements may serve as a target for specific therapies aimed at slowing the progression of podocyte failure during metabolic syndrome. PMID:26545114

  19. Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes.

    PubMed

    Martínez-García, Cristina; Izquierdo-Lahuerta, Adriana; Vivas, Yurena; Velasco, Ismael; Yeo, Tet-Kin; Chen, Sheldon; Medina-Gomez, Gema

    2015-01-01

    In the last few decades a change in lifestyle has led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance (IR), dyslipidemia, type 2 diabetes and renal disease. The excess calories are stored as triglycerides in adipose tissue, but also may accumulate ectopically in other organs, including the kidney, which contributes to the damage through a toxic process named lipotoxicity. Recently, the evidence suggests that renal lipid accumulation leads to glomerular damage and, more specifically, produces dysfunction in podocytes, key cells that compose and maintain the glomerular filtration barrier. Our aim was to analyze the early mechanisms underlying the development of renal disease associated with the process of lipotoxicity in podocytes. Our results show that treatment of podocytes with palmitic acid produced intracellular accumulation of lipid droplets and abnormal glucose and lipid metabolism. This was accompanied by the development of inflammation, oxidative stress and endoplasmic reticulum stress and insulin resistance. We found specific rearrangements of the actin cytoskeleton and slit diaphragm proteins (Nephrin, P-Cadherin, Vimentin) associated with this insulin resistance in palmitic-treated podocytes. We conclude that lipotoxicity accelerates glomerular disease through lipid accumulation and inflammation. Moreover, saturated fatty acids specifically promote insulin resistance by disturbing the cytoarchitecture of podocytes. These data suggest that renal lipid metabolism and cytoskeleton rearrangements may serve as a target for specific therapies aimed at slowing the progression of podocyte failure during metabolic syndrome. PMID:26545114

  20. TGF-β–Activated Kinase 1 Is Crucial in Podocyte Differentiation and Glomerular Capillary Formation

    PubMed Central

    Lee, So-Young; Wang, Zhibo; Ding, Yan; Haque, Nadeem; Zhang, Jiwang; Zhou, Jing

    2014-01-01

    TGF-β–activated kinase 1 (TAK1) is a key intermediate in signal transduction induced by TGF-β or inflammatory cytokines, such as TNF-α and IL-1, which are potent inducers of podocyte injury responses that lead to proteinuria and glomerulosclerosis. Nevertheless, little is known about the physiologic and pathologic roles of TAK1 in podocytes. To examine the in vivo role of TAK1, we generated podocyte-specific Tak1 knockout mice (Nphs2-Cre+:Tak1fx/fx; Tak1∆/∆). Targeted deletion of Tak1 in podocytes resulted in perinatal lethality, with approximately 50% of animals dying soon after birth and 90% of animals dying within 1 week of birth. Tak1∆/∆ mice developed proteinuria from P1 and exhibited delayed glomerulogenesis and reduced expression of Wilms’ tumor suppressor 1 and nephrin in podocytes. Compared with Tak1fx/fx mice, Tak1∆/∆ mice exhibited impaired formation of podocyte foot processes that caused disruption of the podocyte architecture with prominent foot process effacement. Intriguingly, Tak1∆/∆ mice displayed increased expression of vascular endothelial growth factor within the glomerulus and abnormally enlarged glomerular capillaries. Furthermore, 4- and 7-week-old Tak1∆/∆ mice with proteinuria had increased collagen deposition in the mesangium and the adjacent tubulointerstitial area. Thus, loss of Tak1 in podocytes is associated with the development of proteinuria and glomerulosclerosis. Taken together, our data show that TAK1 regulates the expression of Wilms’ tumor suppressor 1, nephrin, and vascular endothelial growth factor and that TAK1 signaling has a crucial role in podocyte differentiation and attainment of normal glomerular microvasculature during kidney development and glomerular filtration barrier homeostasis. PMID:24652804

  1. Silencing of Histone Deacetylase 9 Expression in Podocytes Attenuates Kidney Injury in Diabetic Nephropathy.

    PubMed

    Liu, Feng; Zong, Ming; Wen, Xiaofei; Li, Xuezhu; Wang, Jun; Wang, Yi; Jiang, Wei; Li, Xiaojun; Guo, Zhongliang; Qi, Hualin

    2016-01-01

    Podocyte dysfunction is important in the onset and development of diabetic nephropathy (DN). Histone deacetylases (HDACs) have been recently proved to play critical roles in the pathogenesis of DN. As one subtype of the class IIa HDACs, HDAC9 is capable to repress/de-repress their target genes in tumor, inflammation, atherosclerosis and metabolic diseases. In the present study, we investigate whether HDAC9 is involved in the pathophysiologic process of DN, especially the podocyte injury. Firstly, we explored the expression patterns and localization of HDAC9 and found that HDAC9 expression was significantly up-regulated in high glucose (HG)-treated mouse podocytes, as well as kidney tissues from diabetic db/db mice and patients with DN. Secondly, knockdown of HDAC9 in mouse podocytes significantly suppressed HG-induced reactive oxygen species (ROS) generation, cell apoptosis and inflammation through JAK2/STAT3 pathway and reduced the podocytes injury by decreasing the expression levels of Nephrin and Podocin. Moreover, in diabetic db/db mice, silencing of HDAC9 attenuated the glomerulosclerosis, inflammatory cytokine release, podocyte apoptosis and renal injury. Collectively, these data indicate that HDAC9 may be involved in the process of DN, especially podocyte injury. Our study suggest that inhibition of HDAC9 may have a therapeutic potential in DN treatment. PMID:27633396

  2. Silencing of Histone Deacetylase 9 Expression in Podocytes Attenuates Kidney Injury in Diabetic Nephropathy

    PubMed Central

    Liu, Feng; Zong, Ming; Wen, Xiaofei; Li, Xuezhu; Wang, Jun; Wang, Yi; Jiang, Wei; Li, Xiaojun; Guo, Zhongliang; Qi, Hualin

    2016-01-01

    Podocyte dysfunction is important in the onset and development of diabetic nephropathy (DN). Histone deacetylases (HDACs) have been recently proved to play critical roles in the pathogenesis of DN. As one subtype of the class IIa HDACs, HDAC9 is capable to repress/de-repress their target genes in tumor, inflammation, atherosclerosis and metabolic diseases. In the present study, we investigate whether HDAC9 is involved in the pathophysiologic process of DN, especially the podocyte injury. Firstly, we explored the expression patterns and localization of HDAC9 and found that HDAC9 expression was significantly up-regulated in high glucose (HG)-treated mouse podocytes, as well as kidney tissues from diabetic db/db mice and patients with DN. Secondly, knockdown of HDAC9 in mouse podocytes significantly suppressed HG-induced reactive oxygen species (ROS) generation, cell apoptosis and inflammation through JAK2/STAT3 pathway and reduced the podocytes injury by decreasing the expression levels of Nephrin and Podocin. Moreover, in diabetic db/db mice, silencing of HDAC9 attenuated the glomerulosclerosis, inflammatory cytokine release, podocyte apoptosis and renal injury. Collectively, these data indicate that HDAC9 may be involved in the process of DN, especially podocyte injury. Our study suggest that inhibition of HDAC9 may have a therapeutic potential in DN treatment. PMID:27633396

  3. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury.

    PubMed

    Pedigo, Christopher E; Ducasa, Gloria Michelle; Leclercq, Farah; Sloan, Alexis; Mitrofanova, Alla; Hashmi, Tahreem; Molina-David, Judith; Ge, Mengyuan; Lassenius, Mariann I; Forsblom, Carol; Lehto, Markku; Groop, Per-Henrik; Kretzler, Matthias; Eddy, Sean; Martini, Sebastian; Reich, Heather; Wahl, Patricia; Ghiggeri, GianMarco; Faul, Christian; Burke, George W; Kretz, Oliver; Huber, Tobias B; Mendez, Armando J; Merscher, Sandra; Fornoni, Alessia

    2016-09-01

    High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol-dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1-mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-O-acyltransferase 1 (SOAT1). TNF-induced albuminuria was aggravated in mice with podocyte-specific ABCA1 deficiency and was partially prevented by cholesterol depletion with cyclodextrin. TNF-stimulated free cholesterol-dependent apoptosis in podocytes was mediated by nuclear factor of activated T cells 1 (NFATc1). ABCA1 overexpression or cholesterol depletion was sufficient to reduce albuminuria in mice with podocyte-specific NFATc1 activation. Our data implicate an NFATc1/ABCA1-dependent mechanism in which local TNF is sufficient to cause free cholesterol-dependent podocyte injury irrespective of TNF, TNFR1, or TNFR2 serum levels. PMID:27482889

  4. Wnt/β-Catenin Signaling Mediated-UCH-L1 Expression in Podocytes of Diabetic Nephropathy

    PubMed Central

    Zhang, Hongxia; Luo, Weili; Sun, Yonghong; Qiao, Yanchun; Zhang, Liying; Zhao, Zhilian; Lv, Shijun

    2016-01-01

    Increasing studies identified podocyte injury as a key early risk factor resulting in diabetic nephropathy (DN). The ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) participates in podocyte differentiation and injury, which is elevated in the podocytes of a variety of nephritis. Whether UCH-L1 expression is positively related to podocyte injury of DN remains unclear. In this study, elevated expression of UCH-L1 and its intrinsic mechanism in high glucose (HG)-stimulated murine podocytes were investigated using western blot and real-time quantitative PCR. Kidney biopsies of DN patients and health individuals were stained by immunofluorescence (IF) method. The morphological and functional changes of podocytes were tested by F-actin staining and cell migration assay. Results demonstrated that HG induced upregulation of UCH-L1 and activation of the Wnt/β-catenin signaling pathway in podocytes. However, blocking of the Wnt pathway by dickkopf related protein 1 (DKK1) eliminated the above changes. Furthermore, IF staining confirmed that, compared with healthy individuals, the expression of UCH-L1 and β-catenin were obviously increased in kidney biopsy of DN patients. Overexpression of UCH-L1 remodeled its actin cytoskeleton, increased its cell migration and impacted its important proteins. All the findings manifested that Wnt/β-catenin/UCH-L1 may be a new potential therapy method in the treatment of DN in future. PMID:27571062

  5. Alteration of Forkhead Box O (Foxo4) Acetylation Mediates Apoptosis of Podocytes in Diabetes Mellitus

    PubMed Central

    Chuang, Peter Y.; Dai, Yan; Liu, Ruijie; He, Helen; Kretzler, Matthias; Jim, Belinda; Cohen, Clemens D.; He, John C.

    2011-01-01

    The number of kidney podocytes is reduced in diabetic nephropathy. Advanced glycation end products (AGEs) accumulate in patients with diabetes and promote the apoptosis of podocyte by activating the forkhead box O4 (Foxo4) transcription factor to increase the expression of a pro-apoptosis gene, Bcl2l11. Using chromatin immunoprecipitation we demonstrate that AGE-modified bovine serum albumin (AGE-BSA) enhances Foxo4 binding to a forkhead binding element in the promoter of Bcl2lll. AGE-BSA also increases the acetylation of Foxo4. Lysine acetylation of Foxo4 is required for Foxo4 binding and transcription of Bcl2l11 in podocytes treated with AGE-BSA. The expression of a protein deacetylase that targets Foxo4 for deacetylation, sirtuin (Sirt1), is down regulated in cultured podocytes by AGE-BSA treatment and in glomeruli of diabetic patients. SIRT1 over expression in cultured murine podocytes prevents AGE-induced apoptosis. Glomeruli isolated from diabetic db/db mice have increased acetylation of Foxo4, suppressed expression of Sirt1, and increased expression of Bcl2l11 compared to non-diabetic littermates. Together, our data provide evidence that alteration of Foxo4 acetylation and down regulation of Sirt1 expression in diabetes promote podocyte apoptosis. Strategies to preserve Sirt1 expression or reduce Foxo4 acetylation could be used to prevent podocyte loss in diabetes. PMID:21858169

  6. Activation of NFAT signaling in podocytes causes glomerulosclerosis.

    PubMed

    Wang, Yinqiu; Jarad, George; Tripathi, Piyush; Pan, Minggui; Cunningham, Jeanette; Martin, Daniel R; Liapis, Helen; Miner, Jeffrey H; Chen, Feng

    2010-10-01

    Mutant forms of TRPC6 can activate NFAT-dependent transcription in vitro via calcium influx and activation of calcineurin. The same TRPC6 mutants can cause FSGS, but whether this involves an NFAT-dependent mechanism is unknown. Here, we generated mice that allow conditional induction of NFATc1. Mice with NFAT activation in nascent podocytes in utero developed proteinuria and glomerulosclerosis postnatally, resembling FSGS. NFAT activation in adult mice also caused progressive proteinuria and FSGS. Ultrastructural studies revealed podocyte foot process effacement and deposition of extracellular matrix. NFAT activation did not initially affect expression of podocin, synaptopodin, and nephrin but reduced their expression as glomerular injury progressed. In contrast, we observed upregulation of Wnt6 and Fzd9 in the mutant glomeruli before the onset of significant proteinuria, suggesting a potential role for Wnt signaling in the pathogenesis of NFAT-induced podocyte injury and FSGS. These results provide in vivo evidence for the involvement of NFAT signaling in podocytes, proteinuria, and glomerulosclerosis. Furthermore, this study suggests that NFAT activation may be a key intermediate step in the pathogenesis of mutant TRPC6-mediated FSGS and that suppression of NFAT activity may contribute to the antiproteinuric effects of calcineurin inhibitors.

  7. A Novel Source of Cultured Podocytes

    PubMed Central

    Da Sacco, Stefano; Lemley, Kevin V.; Sedrakyan, Sargis; Zanusso, Ilenia; Petrosyan, Astgik; Peti-Peterdi, Janos; Burford, James; De Filippo, Roger E.; Perin, Laura

    2013-01-01

    Amniotic fluid is in continuity with multiple developing organ systems, including the kidney. Committed, but still stem-like cells from these organs may thus appear in amniotic fluid. We report having established for the first time a stem-like cell population derived from human amniotic fluid and possessing characteristics of podocyte precursors. Using a method of triple positive selection we obtained a population of cells (hAKPC-P) that can be propagated in vitro for many passages without immortalization or genetic manipulation. Under specific culture conditions, these cells can be differentiated to mature podocytes. In this work we compared these cells with conditionally immortalized podocytes, the current gold standard for in vitro studies. After in vitro differentiation, both cell lines have similar expression of the major podocyte proteins, such as nephrin and type IV collagen, that are characteristic of mature functional podocytes. In addition, differentiated hAKPC-P respond to angiotensin II and the podocyte toxin, puromycin aminonucleoside, in a way typical of podocytes. In contrast to immortalized cells, hAKPC-P have a more nearly normal cell cycle regulation and a pronounced developmental pattern of specific protein expression, suggesting their suitability for studies of podocyte development for the first time in vitro. These novel progenitor cells appear to have several distinct advantages for studies of podocyte cell biology and potentially for translational therapies. PMID:24349133

  8. Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway

    PubMed Central

    Saurus, P; Kuusela, S; Lehtonen, E; Hyvönen, M E; Ristola, M; Fogarty, C L; Tienari, J; Lassenius, M I; Forsblom, C; Lehto, M; Saleem, M A; Groop, P-H; Holthöfer, H; Lehtonen, S

    2015-01-01

    High serum lipopolysaccharide (LPS) activity in normoalbuminuric patients with type 1 diabetes (T1D) predicts the progression of diabetic nephropathy (DN), but the mechanisms behind this remain unclear. We observed that treatment of cultured human podocytes with sera from normoalbuminuric T1D patients with high LPS activity downregulated 3-phosphoinositide-dependent kinase-1 (PDK1), an activator of the Akt cell survival pathway, and induced apoptosis. Knockdown of PDK1 in cultured human podocytes inhibited antiapoptotic Akt pathway, stimulated proapoptotic p38 MAPK pathway, and increased apoptosis demonstrating an antiapoptotic role for PDK1 in podocytes. Interestingly, PDK1 was downregulated in the glomeruli of diabetic rats and patients with type 2 diabetes before the onset of proteinuria, further suggesting that reduced expression of PDK1 associates with podocyte injury and development of DN. Treatment of podocytes in vitro and mice in vivo with LPS reduced PDK1 expression and induced apoptosis, which were prevented by inhibiting the Toll-like receptor (TLR) signaling pathway with the immunomodulatory agent GIT27. Our data show that LPS downregulates the cell survival factor PDK1 and induces podocyte apoptosis, and that blocking the TLR pathway with GIT27 may provide a non-nephrotoxic means to prevent the progression of DN. PMID:25950482

  9. Non-canonical NFκB activation promotes chemokine expression in podocytes

    PubMed Central

    Valiño-Rivas, Lara; Gonzalez-Lafuente, Laura; Sanz, Ana B.; Ruiz-Ortega, Marta; Ortiz, Alberto; Sanchez-Niño, Maria D.

    2016-01-01

    TNF-like weak inducer of apoptosis (TWEAK) receptor Fn14 is expressed by podocytes and Fn14 deficiency protects from experimental proteinuric kidney disease. However, the downstream effectors of TWEAK/Fn14 in podocytes are poorly characterized. We have explored TWEAK activation of non-canonical NFκB signaling in cultured podocytes. In cultured podocytes, TWEAK increased the expression of the chemokines CCL21, CCL19 and RANTES in a time-dependent manner. The inhibitor of canonical NFκB activation parthenolide inhibited the CCL19 and the early RANTES responses, but not the CCL21 or late RANTES responses. In this regard, TWEAK induced non-canonical NFκB activation in podocytes, characterized by NFκB2/p100 processing to NFκB2/p52 and nuclear migration of RelB/p52. Silencing by a specific siRNA of NIK, the upstream kinase of the non-canonical NFκB pathway, prevented CCL21 upregulation but did not modulate CCL19 or RANTES expression in response to TWEAK, thus establishing CCL21 as a non-canonical NFκB target in podocytes. Increased kidney Fn14 and CCL21 expression was also observed in rat proteinuric kidney disease induced by puromycin, and was localized to podocytes. In conclusion, TWEAK activates the non-canonical NFκB pathway in podocytes, leading to upregulation of CCL21 expression. The non-canonical NFκB pathway should be explored as a potential therapeutic target in proteinuric kidney disease. PMID:27353019

  10. Drug Targets for Oxidative Podocyte Injury in Diabetic Nephropathy

    PubMed Central

    Usman, Muhammad

    2015-01-01

    Diabetic nephropathy (DN) is one the most prevalent chronic complications of diabetes mellitus that affects as much as one-third of diabetic patients irrespective of the type of diabetes. Hyperglycemia is the key trigger for DN that initiates a number of microscopic and ultramicroscopic changes in kidney architecture. Microscopic changes include thickening of the glomerular basement membrane (GBM), tubular basement membrane (TBM), mesangial proliferation, arteriosclerosis, and glomerulotubular junction abnormalities (GTJA). Among the ultramicroscopic changes, effacement of podocytes and decrease in their density seem to be the centerpiece of DN pathogenesis. These changes in kidney architecture then produce functional deficits, such as microalbuminuria and decreased glomerular filtration rate (GFR). Among several mechanisms involved in inflicting damage to podocytes, injuries sustained by increased oxidative stress turns out to be the most important mechanism. Different variables that are included in increased production of reactive oxygen species (ROS) include a hyperglycemia-induced reduction in glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation via hyperglycemia, advanced glycation end products (AGEs), protein kinase C (PKC), and renin-angiotensin-aldosterone system (RAAS). Unfortunately, control of podocyte injury hasn’t received much attention as a treatment approach for DN. Therefore, this review article is mainly concerned with the exploration of various treatment options that might help in decreasing the podocyte injury, mainly by reducing the level of NADPH oxidase-mediated generation of ROS. This article concludes with a view that certain NADPH oxidase inhibitors, RAAS inhibitors, statins, antidiabetic drugs, and antioxidant vitamins might be useful in decreasing podocyte injury and resultant structural and functional kidney impairments in DN. PMID:26798569

  11. TNFR2 interposes the proliferative and NF-κB-mediated inflammatory response by podocytes to TNF-α

    PubMed Central

    Bruggeman, Leslie A.; Drawz, Paul E.; Kahoud, Nicole; Lin, Ke; Barisoni, Laura; Nelson, Peter J.

    2010-01-01

    The development of proliferative podocytopathies has been linked to ligation of TNFR2 expressed on the renal parenchyma; however, the TNFR2 positive cells within the kidney responsible for podocyte injury are unknown. We detected de novo expression of TNFR2 on podocytes prior to hyperplastic injury in crescentic glomerulonephritis of mice with nephrotoxic nephritis, and in collapsing glomerulopathy of Tg26HIV/nl mice, kd/kd mice, and humans. We further found that serum levels of soluble TNF-α and TNFR2 correlated significantly with renal injury in Tg26HIV/nl mice. Thus, we asked whether ligand binding of TNFR2 on podocytes ex vivo precipitates the characteristic proliferative and pro-inflammatory diseased podocyte phenotypes. Soluble TNF-α activated NF-κB and dose-dependently induced podocyte proliferation, marked by expression of the podocyte G1 cyclin and NF-κB target gene, cyclin D1. Microarray gene and chemokine protein expression profiling showed a marked pro-inflammatory NF-κB signature, and activated podocytes secreting CCL2 and CCL5 induced macrophage migration in transwell assays. Neutralization of TNFR2 on podocytes with blocking antibodies abrogated NF-κB activation and the induction of cyclin D1 by TNF-α, and identified TNFR2 as the primary receptor that induced IκBα degradation, the initiating event in NF-κB activation. These results suggest that TNFR2 expressed on podocytes and its canonical NF-κB signaling may directly interpose the compound pathogenic responses by podocytes to TNF-α, absent other TNFR2 positive renal cell-types in proliferative podocytopathies. PMID:21221075

  12. Effect of Tongxinluo on Podocyte Apoptosis via Inhibition of Oxidative Stress and P38 Pathway in Diabetic Rats

    PubMed Central

    Cui, Fangqiang; Zhao, Wenjing; Zou, Dawei; Wu, Xiaoming; Tian, Nianxiu; Wang, Xiaolei; Liu, Jing; Tong, Yu

    2016-01-01

    Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3. PMID:27672400

  13. Effect of Tongxinluo on Podocyte Apoptosis via Inhibition of Oxidative Stress and P38 Pathway in Diabetic Rats.

    PubMed

    Cui, Fangqiang; Gao, Yanbin; Zhao, Wenjing; Zou, Dawei; Zhu, Zhiyao; Wu, Xiaoming; Tian, Nianxiu; Wang, Xiaolei; Liu, Jing; Tong, Yu

    2016-01-01

    Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3. PMID:27672400

  14. Effect of Tongxinluo on Podocyte Apoptosis via Inhibition of Oxidative Stress and P38 Pathway in Diabetic Rats

    PubMed Central

    Cui, Fangqiang; Zhao, Wenjing; Zou, Dawei; Wu, Xiaoming; Tian, Nianxiu; Wang, Xiaolei; Liu, Jing; Tong, Yu

    2016-01-01

    Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3.

  15. Podocyte EphB4 signaling helps recovery from glomerular injury.

    PubMed

    Wnuk, Monika; Hlushchuk, Ruslan; Janot, Mathilde; Tuffin, Gérald; Martiny-Baron, Georg; Holzer, Philipp; Imbach-Weese, Patricia; Djonov, Valentin; Huynh-Do, Uyen

    2012-06-01

    Eph receptor tyrosine kinases and their ligands (ephrins) have a pivotal role in the homeostasis of many adult organs and are widely expressed in the kidney. Glomerular diseases beginning with mesangiolysis can recover, with podocytes having a critical role in this healing process. We studied here the role of Eph signaling in glomerular disease recovery following mesangiolytic Thy1.1 nephritis in rats. EphB4 and ephrinBs were expressed in healthy glomerular podocytes and were upregulated during Thy1.1 nephritis, with EphB4 strongly phosphorylated around day 9. Treatment with NPV-BHG712, an inhibitor of EphB4 phosphorylation, did not cause glomerular changes in control animals. Nephritic animals treated with vehicle did not have morphological evidence of podocyte injury or loss; however, application of this inhibitor to nephritic rats induced glomerular microaneurysms, podocyte damage, and loss. Prolonged NPV-BHG712 treatment resulted in increased albuminuria and dysregulated mesangial recovery. Additionally, NPV-BHG712 inhibited capillary repair by intussusceptive angiogenesis (an alternative to sprouting angiogenesis), indicating a previously unrecognized role of podocytes in regulating intussusceptive vessel splitting. Thus, our results identify EphB4 signaling as a pathway allowing podocytes to survive transient capillary collapse during glomerular disease.

  16. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels

    PubMed Central

    Ilatovskaya, Daria V.; Levchenko, Vladislav; Lowing, Andrea; Shuyskiy, Leonid S.; Palygin, Oleg; Staruschenko, Alexander

    2015-01-01

    Injury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats, and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation. PMID:26656101

  17. N-WASP Is Required for Stabilization of Podocyte Foot Processes

    PubMed Central

    Schell, Christoph; Baumhakl, Lisa; Salou, Sarah; Conzelmann, Ann-Christin; Meyer, Charlotte; Helmstädter, Martin; Wrede, Christoph; Grahammer, Florian; Eimer, Stefan; Kerjaschki, Dontscho; Walz, Gerd; Snapper, Scott

    2013-01-01

    Alteration of cortical actin structures is the common final pathway leading to podocyte foot process effacement and proteinuria. The molecular mechanisms that safeguard podocyte foot process architecture and maintain the three-dimensional actin network remain elusive. Here, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP), which promotes actin nucleation, is required to stabilize podocyte foot processes. Mice lacking N-WASP specifically in podocytes were born with normal kidney function but developed significant proteinuria 3 weeks after birth, suggesting an important role for N-WASP in maintaining foot processes. In addition, inducing deletion of N-WASP in adult mice resulted in severe proteinuria and kidney failure. Electron microscopy showed an accumulation of electron-dense patches of actin and strikingly altered morphology of podocyte foot processes. Although basic actin-based processes such as cell migration were not affected, primary cultures of N-WASP–deficient podocytes revealed significant impairment of dynamic actin reorganization events, including the formation of circular dorsal ruffles. Taken together, our findings suggest that N-WASP–mediated actin nucleation of branched microfilament networks is specifically required for the maintenance of foot processes, presumably sustaining the mechanical resistance of the filtration barrier. PMID:23471198

  18. Possible regulation of caffeine-induced intracellular Ca2+ mobilization by intracellular free Na+.

    PubMed

    Sorimachi, M; Yamagami, K; Nishimura, S; Kuramoto, K

    1992-12-01

    To gain some understanding of the regulatory mechanism involved in caffeine-induced Ca2+ release in adrenal chromaffin cells, we took advantage of the paradoxical observation that removal of divalent cations potentiated the secretory response to caffeine. We measured the concentration of cytosolic free Ca2+ ([Ca]in) in isolated cat chromaffin cells, by fura-2 microfluorometry, to see whether there was any correlation between the secretory response and the rise in [Ca]in. The caffeine-induced [Ca]in rise and catecholamine secretion were increased by treatment of cells with a divalent cation-deficient solution. These potentiated responses were strongly inhibited either by pretreatment with ryanodine, by the reduction of the external Na+ concentration, or by the addition of Ca2+ channel blockers. Removal of divalent cations caused a large rise in the cytosolic free Na+ concentration ([Na]in), which was measured using SBFI microfluorometry. This rise in [Na]in was reduced either by adding Ca2+ channel blockers or by reducing the external Na+ concentration. These results show a good correlation between caffeine-induced Ca2+ release and [Na]in at the time of stimulation, suggesting that caffeine-induced Ca2+ release is regulated by [Na]in. PMID:1431907

  19. Nuclear hormone receptors in podocytes

    PubMed Central

    2012-01-01

    Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses. PMID:22995171

  20. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    SciTech Connect

    Zhang, Yue; Li, Hongbo; Hao, Jun; Zhou, Yi; Liu, Wei

    2014-08-15

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have not yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1

  1. Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement.

    PubMed

    Rigothier, Claire; Saleem, Moin Ahson; Bourget, Chantal; Mathieson, Peter William; Combe, Christian; Welsh, Gavin Iain

    2016-10-01

    IQGAP1, a protein that links the actin cytoskeleton to slit diaphragm proteins, is involved in podocyte motility and permeability. Its regulation in glomerular disease is not known. We have exposed human podocytes to puromycin aminonucleoside (PAN), an inducer of nephrotic syndrome in rats, and studied the effects on IQGAP1 biology and function. In human podocytes exposed to PAN, a nuclear translocation of IQGAP1 was observed by immunocytolocalization and confirmed by Western blot after selective nuclear/cytoplasmic extraction. In contrast to IQGAP1, IQGAP2 expression remained cytoplasmic. IQGAP1 nuclear translocation was associated with a significant decrease in its interaction with nephrin and podocalyxin. Activation of the ERK pathway was observed in PAN treated podocytes with a preponderant nuclear localization of the phosphorylated form of ERK (P-ERK). The interaction between IQGAP1 and P-ERK increased upon podocyte exposure to PAN. Inhibitors of ERK pathway activation blocked IQGAP1 nuclear translocation (p<0.02). Chromatin interaction protein assays demonstrated an interaction of IQGAP1 with chromatin and with Histone H3, which increased in response to PAN. In summary, PAN induces the ERK dependent translocation of IQGAP1 into the nuclei in human podocytes which leads to the interaction of IQGAP1 with chromatin and Histone H3, and decreased interactions between IQGAP1 and slit-diaphragm proteins. Therefore, IQGAP1 may have a role in podocyte gene regulation in glomerular disease.

  2. Podocytes: a new player for glutamate signaling.

    PubMed

    Armelloni, S; Li, M; Messa, P; Rastaldi, M P

    2012-12-01

    In the renal glomerulus, podocytes envelop the external side of the capillary basement membrane with their intertwining ramifications, and ensure elimination of metabolic waste within the urine, while proteins and important blood components are retained into the circulation. To preserve the integrity of the glomerular filter, which is constantly exposed to a high variety of stimuli, podocytes need to communicate by rapid and precise signaling, likely similar to that used by neuronal cells. In the last years, we and others have shown that podocytes are indeed molecularly equipped for communicating in a synaptic-like way, where glutamate and its receptors seem to have a pivotal role, because altering glutamatergic communication leads to podocyte damage and increased filter permeability. Major components of glutamatergic signaling are organized at foot process junctions by adhesion molecules, chiefly by nephrin, and are connected to the actin cytoskeleton, that governs the health of podocytes. Further advances in understanding podocyte physiological behavior and signaling properties have the potential to improve the knowledge of podocyte diseases, first among them idiopathic focal segmental glomerulosclerosis that still needs more precise molecular-based diagnosis and targeted treatment. PMID:23018105

  3. Intracellular mediators of potassium-induced aldosterone secretion

    SciTech Connect

    Ganguly, A.; Chiou, S.; Davis, J.S. )

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) in {sup 3}H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium.

  4. Following specific podocyte injury captopril protects against progressive long term renal damage

    PubMed Central

    Zhou, Yu S; Ihmoda, Ihmoda A; Phelps, Richard G; Bellamy, Christopher OS; Turner, A Neil

    2015-01-01

    Background: Angiotensin converting enzyme inhibitors (ACEi) reduce proteinuria and preserve kidney function in proteinuric renal diseases. Their nephroprotective effect exceeds that attributable to lowering of blood pressure alone. This study examines the potential of ACEi to protect from progression of injury after a highly specific injury to podocytes in a mouse model. Methods: We created transgenic (Podo-DTR) mice in which graded specific podocyte injury could be induced by a single injection of diphtheria toxin. Transgenic and wild-type mice were given the ACEi captopril in drinking water, or water alone, commencing 24h after toxin injection. Kidneys were examined histologically at 8 weeks and injury assessed by observers blinded to experimental group. Results: After toxin injection, Podo-DTR mice developed acute proteinuria, and at higher doses transient renal impairment, which subsided within 3 weeks to be followed by a slow glomerular scarring process. Captopril treatment in Podo-DTR line 57 after toxin injection at 5ng/g body weight reduced proteinuria and ameliorated glomerular scarring, matrix accumulation and glomerulosclerosis almost to baseline (toxin: 17%; toxin + ACEi 10%, p<0.04; control 7% glomerular scarring). Podocyte counts were reduced after toxin treatment and showed no recovery irrespective of captopril treatment (7.1 and 7.3 podocytes per glomerular cross section in water and captopril-treated animals compared with 8.2 of wild-type controls, p<0.05). Conclusions: Observations in Podo-DTR mice support the hypothesis that continuing podocyte dysfunction is a key abnormality in proteinuric disease. Our model is ideal for studying strategies to protect the kidney from progressive injury following podocyte depletion. Demonstrable protective effects from captopril occur, despite indiscernible preservation or restoration of podocyte counts, at least after this degree of relatively mild injury. PMID:26629332

  5. Nonimmunologic targets of immunosuppressive agents in podocytes

    PubMed Central

    Yoo, Tae-Hyun; Fornoni, Alessia

    2015-01-01

    Proteinuria is a characteristic finding in glomerular diseases and is closely associated with renal outcomes. In addition, therapeutic interventions that reduce proteinuria improve renal prognosis. Accumulating evidence has demonstrated that podocytes act as key modulators of glomerular injury and proteinuria. The podocyte, or glomerular visceral epithelial cell, is a highly specialized and differentiated cell that forms interdigitated foot processes with neighboring podocytes, which are bridged together by an extracellular structure known as the “slit diaphragm” (SD). The SD acts as a size- and charge-selective barrier to plasma protein. Derangement of SD structure or loss of SD-associated protein results in podocyte injury and proteinuria. During the past decades, several immune-modulating agents have been used for the treatment of glomerular diseases and for the reduction of proteinuria. Interestingly, recent studies have demonstrated that immunosuppressive agents can have a direct effect on the SD-associated proteins and stabilize actin cytoskeleton in podocyte and have therefore introduced the concept of nonimmunologic mechanism of renoprotection by immunomodulators. This review focuses on the evidence that immuno-modulating agents directly target podocytes. PMID:26484025

  6. Counting glomeruli and podocytes: rationale and methodologies

    PubMed Central

    Puelles, Victor G.; Bertram, John F.

    2015-01-01

    Purpose of review There is currently much interest in the numbers of both glomeruli and podocytes. This interest stems from greater understanding of the effects of suboptimal fetal events on nephron endowment, the associations between low nephron number and chronic cardiovascular and kidney disease in adults, and the emergence of the podocyte depletion hypothesis. Recent findings Obtaining accurate and precise estimates of glomerular and podocyte number has proven surprisingly difficult. When whole kidneys or large tissue samples are available, design-based stereological methods are considered gold-standard because they are based on principles that negate systematic bias. However, these methods are often tedious and time-consuming, and oftentimes inapplicable when dealing with small samples such as biopsies. Therefore, novel methods suitable for small tissue samples, and innovative approaches to facilitate high through put measurements, such as magnetic resonance imaging (MRI) to estimate glomerular number and flow cytometry to estimate podocyte number, have recently been described. Summary This review describes current gold-standard methods for estimating glomerular and podocyte number, as well as methods developed in the past 3 years. We are now better placed than ever before to accurately and precisely estimate glomerular and podocyte number, and to examine relationships between these measurements and kidney health and disease. PMID:25887899

  7. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    SciTech Connect

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  8. Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes.

    PubMed

    Piwkowska, Agnieszka; Rogacka, Dorota; Audzeyenka, Irena; Kasztan, Małgorzata; Angielski, Stefan; Jankowski, Maciej

    2015-08-01

    Podocytes are highly specialized cells that wrap around glomerular capillaries and comprise a key component of the glomerular filtration barrier. They are uniquely sensitive to insulin; like skeletal muscle and fat cells, they exhibit insulin-stimulated glucose uptake and express glucose transporters. Podocyte insulin signaling is mediated by protein kinase G type I (PKGI), and it leads to changes in glomerular permeability to albumin. Here, we investigated whether large-conductance Ca²⁺-activated K⁺ channels (BKCa) were involved in insulin-mediated, PKGIα-dependent filtration barrier permeability. Insulin-induced glomerular permeability was measured in glomeruli isolated from Wistar rats. Transepithelial albumin flux was measured in cultured rat podocyte monolayers. Expression of BKCa subunits was detected by RT-PCR. BKCa, PKGIα, and upstream protein expression were examined in podocytes with Western blotting and immunofluorescence. The BKCa-PKGIα interaction was assessed with co-immunoprecipitation. RT-PCR showed that primary cultured rat podocytes expressed mRNAs that encoded the pore-forming α subunit and four accessory β subunits of BKCa. The BKCa inhibitor, iberiotoxin (ibTX), abolished insulin-dependent glomerular albumin permeability and PKGI-dependent transepithelial albumin flux. Insulin-evoked albumin permeability across podocyte monolayers was also blocked with BKCa siRNA. Moreover, ibTX blocked insulin-induced disruption of the actin cytoskeleton and changes in the phosphorylation of PKG target proteins, MYPT1 and RhoA. These results indicated that insulin increased filtration barrier permeability through mobilization of BKCa channels via PKGI in cultured rat podocytes. This molecular mechanism may explain podocyte injury and proteinuria in diabetes. PMID:25952906

  9. ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON?

    EPA Science Inventory

    ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON? UP Kodavanti1, MCJ Schladweiler1, S Becker2, DL Costa1, P Mayer3, A Ziesenis3, WG Kreyling3, 1ETD, 2HSDivision, NHEERL, USEPA, Research Triangle Park, NC, USA, and 3GSF, Inhalation Biology...

  10. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion.

    PubMed

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-06-13

    The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-l-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor. PMID:24802401

  11. Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria.

    PubMed

    Brähler, Sebastian; Ising, Christina; Hagmann, Henning; Rasmus, Melanie; Hoehne, Martin; Kurschat, Christine; Kisner, Tuelay; Goebel, Heike; Shankland, Stuart; Addicks, Klaus; Thaiss, Friedrich; Schermer, Bernhard; Pasparakis, Manolis; Benzing, Thomas; Brinkkoetter, Paul Thomas

    2012-11-15

    Inflammation conveys the development of glomerular injury and is a major cause of progressive kidney disease. NF-κB signaling is among the most important regulators of proinflammatory signaling. Its role in podocytes, the epithelial cells at the kidney filtration barrier, is poorly understood. Here, we inhibited NF-κB signaling in podocytes by specific ablation of the NF-κB essential modulator (NEMO, IKKγ). Podocyte-specific NEMO-deficient mice (NEMO(pko)) were viable and did not show proteinuria or overt changes in kidney morphology. After induction of glomerulonephritis, both NEMO(pko) and control mice developed significant proteinuria. However, NEMO(pko) mice recovered much faster, showing rapid remission of proteinuria and restoration of podocyte morphology. Interestingly, quantification of infiltrating macrophages, T-lymphocytes, and granulocytes at day 7 revealed no significant difference between wild-type and NEMO(pko). To further investigate the underlying mechanisms, we created a stable NEMO knockdown mouse podocyte cell line. Again, no overt changes in morphology were observed. Translocation of NF-κB to the nucleus after stimulation with TNFα or IL-1 was sufficiently inhibited. Moreover, secretion of proinflammatory chemokines from podocytes after stimulation with TNFα or IL-1 was significantly reduced in NEMO-deficient podocytes and in glomerular samples obtained at day 7 after induction of nephrotoxic nephritis. Collectively, these results show that proinflammatory activity of NF-κB in podocytes aggravates proteinuria in experimental glomerulonephritis in mice. Based on these data, it may be speculated that immunosuppressive drugs may not only target professional immune cells but also podocytes directly to convey their beneficial effects in various types of glomerulonephritis.

  12. Podocyte biology and pathogenesis of kidney disease.

    PubMed

    Reiser, Jochen; Sever, Sanja

    2013-01-01

    Proteinuric chronic kidney disease (CKD), once a rare affliction believed to be mainly caused by genetic mutations, has become a global pandemic that severely diminishes the quality of life for millions. Despite the changing face of CKD, treatment options and resources remain woefully antiquated and have failed to arrest or reverse the effects of kidney-related diseases. Histological and genetic data strongly implicate one promising target: the podocyte. Podocytes are terminally differentiated cells of the kidney glomerulus that are essential for the integrity of the kidney filter. Their function is primarily based on their intricate structure, which includes foot processes. Loss of these actin-driven membrane extensions is tightly connected to the presence of protein in the urine, podocyte loss, development of CKD, and ultimately renal failure.

  13. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress

    PubMed Central

    Li, Dong; Lu, Zhenyu; Xu, Zhongwei; Ji, Junya; Zheng, Zhenfeng; Lin, Shan; Yan, Tiekun

    2016-01-01

    Mechanical stress which would cause deleterious adhesive effects on podocytes is considered a major contributor to the early progress of diabetic nephropathy (DN). Our previous study has shown that spironolactone could ameliorate podocytic adhesive capacity in diabetic rats. Autophagy has been reported to have a protective role against renal injury. The present study investigated the underlying mechanisms by which spironolactone reduced adhesive capacity damage in podocytes under mechanical stress, focusing on the involvement of autophagy. Human conditional immortalized podocytes exposed to mechanical stress were treated with spironolactone, LY294002 or rapamycin for 48 h. The accumulation of LC3 puncta was detected by immunofluorescence staining. Podocyte expression of mineralocorticoid receptor (MR), integrin β1, LC3, Atg5, p85-PI3K, p-Akt, p-mTOR were detected by Western blotting. Podocyte adhesion to collagen type IV was also performed with spectrophotometry. Immunofluorescence staining showed that the normal level of autophagy was reduced in podocytes under mechanical stress. Decreased integrin β1, LC3, Atg5 and abnormal activation of the PI3K/Akt/mTOR pathway were also detected in podocytes under mechanical stress. Spironolactone up-regulated integrin β1, LC3, Atg5 expression, down-regulated p85-PI3K, p-Akt, p-mTOR expression and reduced podocytic adhesive capacity damage. Our data demonstrated that spironolactone inhibited mechanical-stress-induced podocytic adhesive capacity damage through blocking PI3K/Akt/mTOR pathway and restoring autophagy activity. PMID:27129295

  14. Ovariectomy aggravated sodium induced hypertension associated with altered platelet intracellular Ca2+ in Dahl rats.

    PubMed

    Otsuka, K; Ohno, Y; Sasaki, T; Yamakawa, H; Hayashida, T; Suzawa, T; Suzuki, H; Saruta, T

    1997-12-01

    Our purpose was to determine the effect of ovariectomy on intracellular Ca2+ mobilization and platelet aggregation in sodium induced hypertension. At the age of 12 weeks ovariectomy or sham operation was performed in female Dahl-Iwai salt sensitive rats on a 0.3% NaCl diet. Four weeks later we assessed the effects of ovariectomy and an 8% NaCl diet on agonist induced intracellular Ca2+ mobilization in fura-2 loaded platelets and platelet aggregation. Ovariectomy enhanced the increase of systolic blood pressure and heart to body weight ratio on an 8% NaCl diet. However, thrombin evoked intracellular Ca2+ was not correlated with systolic blood pressure (r = -0.338, P = .17), and was lowered by sodium loading and ovariectomy (360+/-23 to 285+/-9, 296+/-10 nmol/L, P < .05). Furthermore, the ionomycin induced intracellular calcium fraction in the absence of external Ca2+ that reflected internal Ca2+ discharge capacity was reduced in ovariectomized rats compared with sham operated rats on an 8% NaCl diet (648+/-15 v 768+/-35 nmol/L, P < .05). The internal Ca2+ discharge capacity was inversely correlated with systolic blood pressure (r = -0.506, P = .03). In addition to the decreased internal Ca2+ discharge capacity, intracellular Ca2+-independent platelet aggregation by phorbol 12-myristate 13-acetate, a protein kinase C activator, was significantly enhanced in hypertensive rats. We concluded that ovariectomy enhanced sodium induced hypertension associated with the decreased internal Ca2+ discharge capacity and increased platelet aggregation in Dahl-Iwai salt-sensitive rats.

  15. Brucella canis Is an Intracellular Pathogen That Induces a Lower Proinflammatory Response than Smooth Zoonotic Counterparts

    PubMed Central

    Chacón-Díaz, Carlos; Altamirano-Silva, Pamela; González-Espinoza, Gabriela; Medina, María-Concepción; Alfaro-Alarcón, Alejandro; Bouza-Mora, Laura; Jiménez-Rojas, César; Wong, Melissa; Barquero-Calvo, Elías; Rojas, Norman; Guzmán-Verri, Caterina

    2015-01-01

    Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly. PMID:26438796

  16. Podocyte NF-κB is dispensable for the pathogenesis of renal ischemia-reperfusion injury.

    PubMed

    Yamashita, Maho; Yoshida, Tadashi; Hayashi, Matsuhiko

    2016-08-01

    Podocytes play a central role in the formation of the glomerular filtration barrier in the kidney, and their dysfunction has been shown to result in multiple proteinuric kidney diseases. In this study, we sought to determine whether NF-κB, a proinflammatory signaling, within podocytes was involved in renal ischemia-reperfusion (I/R) injury. Podocyte-specific IκBΔN transgenic (Pod-IκBΔN) mice, in which NF-κB was inhibited specifically in podocytes, were generated by the Cre-loxP technology, and their phenotype was compared with control mice after bilateral renal ischemia. The effect of systemic administration of a NF-κB inhibitor, pyrrolidinedithiocarbamate (PDTC), on renal I/R injury was also examined. Pod-IκBΔN mice were phenotypically normal before surgery. Following renal I/R injury, serum concentrations of urea nitrogen and creatinine were elevated in both Pod-IκBΔN and control mice to a similar extent, whereas PDTC treatment attenuated the elevation of these parameters. Renal histological damage in I/R-injured Pod-IκBΔN mice was also similar to I/R-injured control mice, although it was improved by PDTC treatment. Moreover, I/R induced accumulation of inflammatory cells, such as neutrophils and macrophages, was reduced by PDTC treatment, but not by podocyte-specific NF-κB inhibition. These results provide evidence that the NF-κB activity in podocytes does not contribute to the pathogenesis of renal I/R injury. PMID:27565904

  17. The Brucella suis virB operon is induced intracellularly in macrophages.

    PubMed

    Boschiroli, Maria Laura; Ouahrani-Bettache, Safia; Foulongne, Vincent; Michaux-Charachon, Sylvie; Bourg, Gisele; Allardet-Servent, Annick; Cazevieille, Chantal; Liautard, Jean Pierre; Ramuz, Michel; O'Callaghan, David

    2002-02-01

    A type IV secretion system similar to the VirB system of the phytopathogen Agrobacterium tumefaciens is essential for the intracellular survival and multiplication of the mammalian pathogen Brucella. Reverse transcriptase-PCR showed that the 12 genes encoding the Brucella suis VirB system form an operon. Semiquantitative measurements of virB mRNA levels by slot blotting showed that transcription of the virB operon, but not the flanking genes, is regulated by environmental factors in vitro. Flow cytometry used to measure green fluorescent protein expression from the virB promoter confirmed the data from slot blots. Fluorescence-activated cell sorter analysis and fluorescence microscopy showed that the virB promoter is induced in macrophages within 3 h after infection. Induction only occurred once the bacteria were inside the cells, and phagosome acidification was shown to be the major signal inducing intracellular expression. Because phagosome acidification is essential for the intracellular multiplication of Brucella, we suggest that it is the signal that triggers the secretion of unknown effector molecules. These effector molecules play a role in the remodeling of the phagosome to create the unique intracellular compartment in which Brucella replicates. PMID:11830669

  18. The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis.

    PubMed

    Rudolf, Emil; Cervinka, Miroslav

    2006-09-25

    Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.

  19. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels.

    PubMed

    Yang, Xinhui; Jiang, Jiangtao; Yang, Xinyan; Han, Jichun; Zheng, Qiusheng

    2016-07-01

    Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be

  20. Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response

    PubMed Central

    Schell, Christoph; Kretz, Oliver; Bregenzer, Andreas; Rogg, Manuel; Helmstädter, Martin; Lisewski, Ulrike; Gotthardt, Michael; Tharaux, Pierre-Louis; Huber, Tobias B.; Grahammer, Florian

    2015-01-01

    The coxsackie- and adenovirus receptor (CXADR) is a member of the immunoglobulin protein superfamily, present in various epithelial cells including glomerular epithelial cells. Beside its known function as a virus receptor, it also constitutes an integral part of cell-junctions. Previous studies in the zebrafish pronephros postulated a potential role of CXADR for the terminal differentiation of glomerular podocytes and correct patterning of the elaborated foot process architecture. However, due to early embryonic lethality of constitutive Cxadr knockout mice, mammalian data on kidney epithelial cells have been lacking. Interestingly, Cxadr is robustly expressed during podocyte development and in adulthood in response to glomerular injury. We therefore used a conditional transgenic approach to elucidate the function of Cxadr for podocyte development and stress response. Surprisingly, we could not discern a developmental phenotype in podocyte specific Cxadr knock-out mice. In addition, despite a significant up regulation of CXADR during toxic, genetic and immunologic podocyte injury, we could not detect any impact of Cxadr on these injury models. Thus these data indicate that in contrast to lower vertebrate models, mammalian podocytes have acquired molecular programs to compensate for the loss of Cxadr. PMID:26076477

  1. Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Rekha, Rokeya Sultana; Rao Muvva, S S V Jagadeeswara; Wan, Min; Raqib, Rubhana; Bergman, Peter; Brighenti, Susanna; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2015-01-01

    LL-37 is a human antimicrobial peptide (AMP) of the cathelicidin family with multiple activities including a mediator of vitamin D-induced autophagy in human macrophages, resulting in intracellular killing of Mycobacterium tuberculosis (Mtb). In a previous trial in healthy volunteers, we have shown that LL-37 expression and subsequent Mtb-killing can be further enhanced by 4-phenylbutyrate (PBA), also an inducer of LL-37 expression. Here, we explore a potential mechanism(s) behind PBA and LL-37-induced autophagy and intracellular killing of Mtb. Mtb infection of macrophages downregulated the expression of both the CAMP transcript and LL-37 peptide as well as certain autophagy-related genes (BECN1 and ATG5) at both the mRNA and protein levels. In addition, activation of LC3-II in primary macrophages and THP-1 cells was not detected. PBA and the active form of vitamin D3 (1,25[OH]2D3), separately or particularly in combination, were able to overcome Mtb-induced suppression of LL-37 expression. Notably, reactivation of autophagy occurred by stimulation of macrophages with PBA and promoted colocalization of LL-37 and LC3-II in autophagosomes. Importantly, PBA treatment failed to induce autophagy in Mtb-infected THP-1 cells, when the expression of LL-37 was silenced. However, PBA-induced autophagy was restored when the LL-37 knockdown cells were supplemented with synthetic LL-37. Interestingly, we have found that LL-37-induced autophagy was mediated via P2RX7 receptor followed by enhanced cytosolic free Ca(2+), and activation of AMPK and PtdIns3K pathways. Altogether, these results suggest a novel activity for PBA as an inducer of autophagy, which is LL-37-dependent and promotes intracellular killing of Mtb in human macrophages.

  2. Intracellular application of guanosine-5'-O-(3-thiotriphosphate) induces exocytotic granule fusion in guinea pig eosinophils

    PubMed Central

    1990-01-01

    The mechanism of eosinophil secretion was studied in guinea pig eosinophils by measuring release of hexosaminidase from cell suspensions (greater than 98% pure) permeabilized with streptolysin-O and by whole-cell patch-clamp capacitance measurements. It is shown that release of eosinophil granule components occurs by an exocytotic mechanism in which individual granules fuse with the plasma membrane. Exocytosis can be induced by intracellular application of the nonhydrolyzable GTP analog guanosine-5'-O-(3-thiotriphosphate) (GTP- gamma-S), suggesting the involvement of a GTP-binding protein. The activation is modulated by the intracellular calcium concentration, with activation by GTP-gamma-S inducing transient elevations in the concentration of Ca2+. Thus, the nature and regulation of the release mechanism appear to be very similar to that of the mast cell and neutrophil. PMID:2137856

  3. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE.

    PubMed

    McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut

    2015-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.

  4. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro

    PubMed Central

    Canfrán-Duque, Alberto; Pastor, Oscar; Reina, Manuel; Lerma, Milagros; Cruz-Jentoft, Alfonso J.

    2015-01-01

    Scope First- and second-generation antipsychotics (FGAs and SGAs, respectively), both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation. Methods HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation. Results Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics. Conclusion Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids) accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials. PMID:26517556

  5. Neurexin-1, a presynaptic adhesion molecule, localizes at the slit diaphragm of the glomerular podocytes in kidneys.

    PubMed

    Saito, Akira; Miyauchi, Naoko; Hashimoto, Taeko; Karasawa, Tamaki; Han, Gi Dong; Kayaba, Mutsumi; Sumi, Tomoyuki; Tomita, Masayuki; Ikezumi, Yohei; Suzuki, Kenji; Koitabashi, Yasushi; Shimizu, Fujio; Kawachi, Hiroshi

    2011-02-01

    The slit diaphragm connecting the adjacent foot processes of glomerular epithelial cells (podocytes) is the final barrier of the glomerular capillary wall and serves to prevent proteinuria. Podocytes are understood to be terminally differentiated cells and share some common features with neurons. Neurexin is a presynaptic adhesion molecule that plays a role in synaptic differentiation. Although neurexin has been understood to be specifically expressed in neuronal tissues, we found that neurexin was expressed in several organs. Several forms of splice variants of neurexin-1α were detected in the cerebrum, but only one form of neurexin-1α was detected in glomeruli. Immunohistochemical study showed that neurexin restrictedly expressed in the podocytes in kidneys. Dual-labeling analyses showed that neurexin was colocalized with CD2AP, an intracellular component of the slit diaphragm. Immunoprecipitation assay using glomerular lysate showed that neurexin interacted with CD2AP and CASK. These observations indicated that neurexin localized at the slit diaphragm area. The staining intensity of neurexin in podocytes was clearly lowered, and their staining pattern shifted to a more discontinuous patchy pattern in the disease models showing severe proteinuria. The expression and localization of neurexin in these models altered more clearly and rapidly than that of other slit diaphragm components. We propose that neurexin is available as an early diagnostic marker to detect podocyte injury. Neurexin coincided with nephrin, a key molecule of the slit diaphragm detected in a presumptive podocyte of the developing glomeruli and in the glomeruli for which the slit diaphragm is repairing injury. These observations suggest that neurexin is involved in the formation of the slit diaphragm and the maintenance of its function.

  6. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  7. Intracellular cholesterol changes induced by translocator protein (18 kDa) TSPO/PBR ligands.

    PubMed

    Falchi, Angela Maria; Battetta, Barbara; Sanna, Francesca; Piludu, Marco; Sogos, Valeria; Serra, Mariangela; Melis, Marta; Putzolu, Martina; Diaz, Giacomo

    2007-08-01

    One of the main functions of the translocator protein (18 kDa) or TSPO, previously known as peripheral-type benzodiazepine receptor, is the regulation of cholesterol import into mitochondria for steroid biosynthesis. In this paper we show that TSPO ligands induce changes in the distribution of intracellular cholesterol in astrocytes and fibroblasts. NBD-cholesterol, a fluorescent analog of cholesterol, was rapidly removed from membranes and accumulated into lipid droplets. This change was followed by a block of cholesterol esterification, but not by modification of intracellular cholesterol synthesis. NBD-cholesterol droplets were in part released in the medium, and increased cholesterol efflux was observed in [(3)H]cholesterol-prelabeled cells. TSPO ligands also induced a prominent shrinkage and depolarization of mitochondria and depletion of acidic vesicles with cytoplasmic acidification. Consistent with NBD-cholesterol changes, MTT assay showed enhanced accumulation of formazan into lipid droplets and inhibition of formazan exocytosis after treatment with TSPO ligands. The effects of specific TSPO ligands PK 11195 and Ro5-4864 were reproduced by diazepam, which binds with high affinity both TSPO and central benzodiazepine receptors, but not by clonazepam, which binds exclusively to GABA receptor, and other amphiphilic substances such as DIDS and propranolol. All these effects and the parallel immunocytochemical detection of TSPO in potentially steroidogenic cells (astrocytes) and non-steroidogenic cells (fibroblasts) suggest that TSPO is involved in the regulation and trafficking of intracellular cholesterol by means of mechanisms not necessarily related to steroid biosynthesis.

  8. EBP50 induces apoptosis in macrophages by upregulating nitric oxide production to eliminate intracellular Mycobacterium tuberculosis

    PubMed Central

    Guo, Yang; Deng, Yating; Huang, Zikun; Luo, Qing; Peng, Yiping; Chen, Jie; Jiang, Hong; Ye, Jianqing; Li, Junming

    2016-01-01

    Mycobacterium bovis BCG is known to have the capacity to inhibit the positioning of iNOS on BCG-containing phagosomes by interfering with EBP50, a scaffolding protein that controls the recruitment of inducible nitric oxide synthase (iNOS) at the vicinity of phagosomes in macrophages. However, knockdown of the expression of EBP50 still facilitates the intracellular survival of BCG, which suggested that EBP50 may have some other unknown antimycobacterial properties. In this study we show that overexpression of EBP50 by a recombinant lentivirus had no effect on the iNOS recruitment to M.tuberculosis-containing phagosomes, but significantly promoted the elimination of intracellular M.tuberculosis. We revealed in the present study that the enhancement of intracellular killing to M. tuberculosis upon EBP50 overexpression was due to the increased level of apoptosis in macrophages. We showed that EBP50 overexpression significantly increased the expression of iNOS and generation of nitric oxide (NO), and EBP50-induced apoptosis was NO-dependent and mediated by Bax and caspase-3. We found that M. tuberculosis decreases while Mycobacterium smegmatis increases the expression of EBP50 in RAW264.7 cells, which suggested that virulent mycobacteria are capable of modulating the antimycobacterial properties of macrophages by inhibiting the expression and interfering with the function of EBP50. PMID:26729618

  9. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    PubMed

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system. PMID:24136144

  10. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron

    2009-01-01

    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  11. β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy

    PubMed Central

    Liu, J; Li, Q X; Wang, X J; Zhang, C; Duan, Y Q; Wang, Z Y; Zhang, Y; Yu, X; Li, N J; Sun, J P; Yi, F

    2016-01-01

    β-Arrestins are multifunctional proteins originally identified as negative adaptors of G protein-coupled receptors (GPCRs). Emerging evidence has also indicated that β-arrestins can activate signaling pathways independent of GPCR activation. This study was to elucidate the role of β-arrestins in diabetic nephropathy (DN) and hypothesized that β-arrestins contribute to diabetic renal injury by mediating podocyte autophagic process. We first found that both β-arrestin-1 and β-arrestin-2 were upregulated in the kidney from streptozotocin-induced diabetic mice, diabetic db/db mice and kidney biopsies from diabetic patients. We further revealed that either β-arrestin-1 or β-arrestin-2 deficiency (Arrb1−/− or Arrb2−/−) ameliorated renal injury in diabetic mice. In vitro, we observed that podocytes increased both β-arrestin-1 and β-arrestin-2 expression levels under hyperglycemia condition and further demonstrated that β-arrestin-1 and β-arrestin-2 shared common mechanisms to suppress podocyte autophagy by negative regulation of ATG12–ATG5 conjugation. Collectively, this study for the first time demonstrates that β-arrestin-1 and β-arrestin-2 mediate podocyte autophagic activity, indicating that β-arrestins are critical components of signal transduction pathways that link renal injury to reduce autophagy in DN. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with DN. PMID:27054338

  12. Intracellular methamphetamine prevents the dopamine-induced enhancement of neuronal firing.

    PubMed

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D; Lin, Landon M; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-08-01

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na(+) or Cl(-) ion. Although isosmotic substitution of extracellular Na(+) ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl(-) ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons.

  13. Human podocytes perform polarized, caveolae-dependent albumin endocytosis.

    PubMed

    Dobrinskikh, Evgenia; Okamura, Kayo; Kopp, Jeffrey B; Doctor, R Brian; Blaine, Judith

    2014-05-01

    The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes.

  14. Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes.

    PubMed

    Audzeyenka, Irena; Rogacka, Dorota; Piwkowska, Agnieszka; Rychlowski, Michal; Bierla, Joanna Beata; Czarnowska, Elżbieta; Angielski, Stefan; Jankowski, Maciej

    2016-06-01

    Autophagy is an intracellular defense mechanism responsible for the turnover of damaged or non-functional cellular constituents. This process provides cells with energy and essential compounds under unfavorable environmental conditions-such as oxidative stress and hyperglycemia, which are both observed in diabetes. The most common diabetes complication is diabetic nephropathy (DN), which can lead to renal failure. This condition often includes impaired podocyte function. Here we investigated autophagic activity in rat podocytes cultured with a high insulin concentration (300nM). Autophagy was activated after 60min of insulin stimulation. Moreover, this effect was abolished following pharmacological (apocynin) or genetic (siRNA) inhibition of NAD(P)H oxidase activity, indicating that insulin-dependent autophagy stimulation involved reactive oxygen species (ROS). We also observed a continuous and time-dependent increase of podocyte albumin permeability in response to insulin, and this process was slightly improved by autophagy inhibition following short-term insulin exposure. Our results suggest that insulin may be a factor affecting the development of diabetic nephropathy. PMID:27026581

  15. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-02-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: 'indium release ITO' or 'tin release ITO'. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects.

  16. Optical and acoustical monitoring of femtosecond laser-induced intracellular contrast agents: initial cell culture studies

    NASA Astrophysics Data System (ADS)

    Zohdy, Marwa J.; Tse, Christine; Ye, Jing Yong; Balogh, Lajos P.; Norris, Theodore B.; O'Donnell, Matthew

    2005-04-01

    Acoustical monitoring of laser-induced optical breakdown can be used as an important tool for diagnostics and therapeutics in living cells. Laser-induced intracellular microbubbles provide measurable contrast when detected with high-frequency ultrasound, and the bioeffects of these bubbles can be controlled to be within two distinct regimes. In the nondestructive regime, a single, transient, detectable bubble can be generated within a cell, without affecting its viability. In the destructive regime, the induced photodisruption can kill a target cell. To generate and monitor this range of effects in real time, we have developed a system integrating a femtosecond pulsed laser source with optical and acoustical microscopy. Experiments were performed on monolayers of Chinese hamster ovary cells. A Ti:Sapphire laser (793 nm wavelength, 100 fs pulse duration) was pulsed at 3.8 kHz and tightly focused to a 1 μm spot within each cell, and a high-frequency (50 MHz) ultrasonic transducer monitored the generated bubble with continuous pulse-echo recordings. The photodisruption was also observed with bright field optical microscopy, and cell viability was assessed after laser exposure using a colorimetric live/dead stain. By controlling laser pulse fluence, exposure duration, and the intracellular location of the laser focus, either nondestructive or destructive bubbles could be generated.

  17. Polymerization-Induced Self-Assembly of Galactose-Functionalized Biocompatible Diblock Copolymers for Intracellular Delivery

    PubMed Central

    2013-01-01

    Recent advances in polymer science are enabling substantial progress in nanobiotechnology, particularly in the design of new tools for enhanced understanding of cell biology and for smart drug delivery formulations. Herein, a range of novel galactosylated diblock copolymer nano-objects is prepared directly in concentrated aqueous solution via reversible addition–fragmentation chain transfer polymerization using polymerization-induced self-assembly. The resulting nanospheres, worm-like micelles, or vesicles interact in vitro with galectins as judged by a turbidity assay. In addition, galactosylated vesicles are highly biocompatible and allow intracellular delivery of an encapsulated molecular cargo. PMID:23941545

  18. Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    Gravity-induced changes in intracellular potentials in primary roots of 2-day-old mung bean (Vigna mungo L. cv. black matpe) seedlings were investigated using glass microelectrodes held by 3-dimensional hydraulic micro-drives. The electrodes were inserted into outer cortical cells within the elongation zone. Intracellular potentials, angle of root orientation with respect to gravity, and position within the root of the impaled cortical cell were measured simultaneously. Gravistimulation caused intracellular potential changes in cortical cells of the elongation zone. When the roots were oriented vertically, the intracellular potentials of the outer cortical cells (2 mm behind the root apex) were approximately - 115 mV. When the roots were placed horizontally cortical cells on the upper side hyperpolarized to - 154 mV within 30 s while cortical cells on the lower side depolarized to about - 62 mV. This electrical asymmetry did not occur in cells of the maturation zone. Because attempts to insert the electrode into cells of the root cap were unsuccessful, these cells were not measured. The hyperpolarization of cortical cells on the upper side was greatly reduced upon application of N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of respiratory energy coupling. When stimulated roots were returned to the vertical, the degree of hyperpolarization of cortical cells on the previous upper side decreased within 30 s and approached that of cortical cells in non-stimulated roots. This cycle of hyperpolarization/loss of hyperpolarization was repeatable at least ten times by alternately turning the root from the vertical to the horizontal and back again. The very short (<30 s) lag period of these electrical changes indicates that they may result from stimulus-perception and transduction within the elongation zone rather than from transmission of a signal from the root cap.

  19. Development of podocyte injuries in Osborne-Mendel rats is accompanied by reduced expression of podocyte proteins.

    PubMed

    Yasuno, K; Araki, S; Sakashita, H; Kobayashi, R; Baba, T; Kawakami, H; Kamiie, J; Ogihara, K; Shirota, K

    2013-01-01

    Osborne-Mendel (OM) rats spontaneously develop glomerulopathy with progressive podocyte injury. Changes in protein expression levels in the foot processes of podocytes have been suggested to play an important role in the development of renal disease. The aim of this study was to investigate the temporal relationship between the expression of five podocyte proteins (nephrin, podocin, synaptopodin, α-actinin-4 and α3-integrin) and the development of podocyte injuries, proteinuria and glomerulosclerosis in OM rats. Male OM rats 5-20 weeks of age and age-matched Fischer 344 rats were used. Semiquantitative analysis of expression of the five podocyte proteins was performed by immunofluorescence labelling. Nephrin mRNA expression was determined by quantitative real-time reverse transcriptase polymerase chain reaction and nephrin protein expression was determined by mass spectrometry. Progressive reduction in expression of the podocyte proteins correlated with the progression of podocyte injuries, the development of proteinuria and the subsequent development of glomerulosclerosis. Nephrin mRNA expression and nephrin concentration also showed temporal decreases in OM rats. Altered expression of podocyte proteins preceded the development of proteinuria and glomerulosclerosis, suggesting that this event contributes to podocyte dysfunction and progression to glomerulosclerosis.

  20. APPL1 acts as a protective factor against podocytes injury in high glucose environment

    PubMed Central

    Ji, Zhenzhong; Hu, Zhengguo; Xu, Yancheng

    2015-01-01

    APPL1, an intracellular adaptor protein, takes part in numerous metabolic reactions. Although APPL1 plays a key role in glucose metabolism via adiponectin pathway and has been proved associated with type 2 diabetes, little is known about its role in diabetic nephropathy. To explore the role of APPL1 in diabetic nephropathy, we upregulated the expression of APPL1 in cultured mouse podocytes by adenovirus infection and tested the effects of APPL1 overexpression in podocytes treated with high glucose. Here, a mouse podocyte cell line (generated from H-2Kb-tsA58 immortmouse) was cultured and divided into four groups: Group 1 (normal glucose, NG), Group 2 (high glucose, HG), Group 3 (HG and infected with control adenovirus) and Group 4 (HG and infected with Ad-APPL1). Cell vitality of Group 4 is significantly higher than Group 2, but notably lower than Group 1 (P<0.01). The apoptosis rate of Group 4 was much lower (P<0.01) than Group 2 and Group 3. A decrease in phase G0/G1 and an increase in phase S was observed in Group 4 compared with Group 2 (P<0.01). These data suggested the protective role of APPL1 overexpression in high glucose condition. Moreover, the levels of Nephrin, AMPK and p-AMPK were decreased by high-glucose treatment, but increased by APPL1 overexpression. In conclusion, in the experimental high glucose condition, APPL1 acts as a protective factor against podocytes injury through regulating AMPK signaling, and may be a new therapy target for diabetic nephropathy. PMID:26261560

  1. Intracellular Staphylococcus aureus Escapes the Endosome and Induces Apoptosis in Epithelial Cells

    PubMed Central

    Bayles, Kenneth W.; Wesson, Carla A.; Liou, Linda E.; Fox, Lawrence K.; Bohach, Gregory A.; Trumble, W. R.

    1998-01-01

    We examined the invasion of an established bovine mammary epithelial cell line (MAC-T) by a Staphylococcus aureus mastitis isolate to study the potential role of intracellular survival in the persistence of staphylococcal infections. S. aureus cells displayed dose-dependent invasion of MAC-T cells and intracellular survival. An electron microscopic examination of infected cells indicated that the bacteria induced internalization via a mechanism involving membrane pseudopod formation and then escaped into the cytoplasm following lysis of the endosomal membrane. Two hours after the internalization of S. aureus, MAC-T cells exhibited detachment from the matrix, rounding, a mottled cell membrane, and vacuolization of the cytoplasm, all of which are indicative of cells undergoing programmed cell death (apoptosis). By 18 h, the majority of the MAC-T cell population exhibited an apoptotic morphology. Other evidence for apoptosis was the generation of MAC-T cell DNA fragments differing in size by increments of approximately 180 bp and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of the fragmented nuclear DNA of the infected host cells. These results demonstrate that after internalization S. aureus escapes the endosome and induces apoptosis in nonprofessional phagocytes. PMID:9423876

  2. Delta-tocotrienol induces apoptotic cell death via depletion of intracellular squalene in ED40515 cells.

    PubMed

    Yamasaki, Masao; Nishimura, Misato; Sakakibara, Yoichi; Suiko, Masahito; Morishita, Kazuhiro; Nishiyama, Kazuo

    2014-11-01

    Here, we examined the effect of tocotrienols (T3) on the growth of adult T-cell leukemia (ATL) cells. All three forms (β-, γ-, and δ-T3) inhibited cell proliferation in a dose-dependent manner; δ-T3 showed the strongest growth-inhibitory effect. δ-T3 increased the G1, G2/M, and subG1 populations and induced internucleosomal DNA fragmentation. δ-T3 treatment also increased the levels of cleaved caspase-3, -6, -7, -9, and poly-ADP ribose polymerase (PARP), and this was accompanied by downregulation of Bcl-2, Bcl-xL, and XIAP. Moreover, δ-T3 decreased nuclear p65 NF-κB levels, indicating downregulation of NF-κB activity. This cytotoxic effect of δ-T3 was abrogated by squalene (SQL) but not mevalonate (MVL), farnesyl diphosphate (FPP), geranylgeranyl diphosphate (GGPP), or cholesterol (CL). δ-T3 decreased intracellular SQL levels, and inhibition of de novo cholesterol synthesis did not affect the action of SQL. Furthermore, δ-T3 significantly decreased farnesyl-diphosphate farnesyltransferase 1 (FDFT1) expression. Taken together, it is evident that δ-T3, due to its ability to potently induce apoptosis via the depletion of intracellular SQL, shows the potential to be considered a therapeutic agent in patients with ATL.

  3. Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell

    PubMed Central

    2011-01-01

    Background NSAIDs exhibit protective properties towards some cancers, especially colon cancer. Yet, it is not clear how they play their protective role. PGE2 is generally shown as the only target of the NSAIDs anticancerous activity. However, PGE2 known targets become more and more manifold, considering both the molecular pathways involved and the target cells in the tumour. The role of PGE2 in tumour progression thus appears complex and multipurpose. Methods To gain understanding into the role of PGE2 in colon cancer, we focused on the activity of PGE2 in apoptosis in colon cancer cell lines. Results We observed that an increase in intracellular PGE2 induced an apoptotic cell death, which was dependent on the expression of the proapoptotic protein Bax. This increase was induced by increasing PGE2 intracellular concentration, either by PGE2 microinjection or by the pharmacological inhibition of PGE2 exportation and enzymatic degradation. Conclusions We present here a new sight onto PGE2 in colon cancer cells opening the way to a new prospective therapeutic strategy in cancer, alternative to NSAIDs. PMID:21524287

  4. A minimal generic model of bacteria-induced intracellular Ca2+ oscillations in epithelial cells.

    PubMed

    Oxhamre, Camilla; Richter-Dahlfors, Agneta; Zhdanov, Vladimir P; Kasemo, Bengt

    2005-04-01

    The toxin alpha-hemolysin expressed by uropathogenic Escherichia coli bacteria was recently shown as the first pathophysiologically relevant protein to induce oscillations of the intracellular Ca(2+) concentration in target cells. Here, we propose a generic three-variable kinetic model describing the Ca(2+) oscillations induced in single rat renal epithelial cells by this toxin. Specifically, we take into account the interplay between 1), the cytosolic Ca(2+) concentration; 2), IP(3)-sensitive Ca(2+) channels located in the membrane separating the cytosol and endoplasmic reticulum; and 3), toxin-related activation of production of IP(3) by phospholipase C. With these ingredients, the predicted response of cells exposed to the toxin is in good agreement with the results of experiments.

  5. Modeling of progesterone-induced intracellular calcium signaling in human spermatozoa.

    PubMed

    Li, Long-Fei; Xiang, Cheng; Zhu, Ya-Bing; Qin, Kai-Rong

    2014-06-21

    Calcium ion is a secondary messenger of mammalian spermatozoa. The dynamic change of its concentration plays a vital role in the process of sperm motility, capacitation, acrosome and fertilization. Progesterone released by the cumulus cells, as a potent stimulator of fertilization, can activate the calcium channels on the plasma membrane, which in turn triggers the dynamic change of intracellular calcium concentration. In this paper, a mathematical model of calcium dynamic response in mammalian spermatozoa induced by progesterone is proposed and numerical simulation of the dynamic model is conducted. The results show that the dynamic response of calcium concentration predicted by the model is in accordance with experimental evidence. The proposed dynamic model can be used to explain the phenomena observed in the experiments and predict new phenomena to be revealed by experimental investigations, which will provide the basis to quantitatively investigate the fluid mechanics and biochemistry for the sperm motility induced by progesterone.

  6. Intracellular calcium affects prestin's voltage operating point indirectly via turgor-induced membrane tension

    NASA Astrophysics Data System (ADS)

    Song, Lei; Santos-Sacchi, Joseph

    2015-12-01

    Recent identification of a calmodulin binding site within prestin's C-terminus indicates that calcium can significantly alter prestin's operating voltage range as gauged by the Boltzmann parameter Vh (Keller et al., J. Neuroscience, 2014). We reasoned that those experiments may have identified the molecular substrate for the protein's tension sensitivity. In an effort to understand how this may happen, we evaluated the effects of turgor pressure on such shifts produced by calcium. We find that the shifts are induced by calcium's ability to reduce turgor pressure during whole cell voltage clamp recording. Clamping turgor pressure to 1kPa, the cell's normal intracellular pressure, completely counters the calcium effect. Furthermore, following unrestrained shifts, collapsing the cells abolishes induced shifts. We conclude that calcium does not work by direct action on prestin's conformational state. The possibility remains that calcium interaction with prestin alters water movements within the cell, possibly via its anion transport function.

  7. Podocyte Injury–Driven Lipid Peroxidation Accelerates the Infiltration of Glomerular Foam Cells in Focal Segmental Glomerulosclerosis

    PubMed Central

    Hara, Satoshi; Kobayashi, Namiko; Sakamoto, Kazuo; Ueno, Toshiharu; Manabe, Shun; Takashima, Yasutoshi; Hamada, Juri; Pastan, Ira; Fukamizu, Akiyoshi; Matsusaka, Taiji; Nagata, Michio

    2016-01-01

    Intracapillary foam cell infiltration with podocyte alterations is a characteristic pathology of focal segmental glomerulosclerosis (FSGS). We investigated the possible role of podocyte injury in glomerular macrophage and foam cell infiltration in a podocyte-selective injury model (NEP25 mice) and hypercholesterolemic model [low-density lipoprotein receptor deficiency (LDLR−/−) mice] with doxorubicin–induced nephropathy. Acute podocyte selective injury alone failed to induce glomerular macrophages in the NEP25 mice. However, in the doxorubicin-treated hypercholesterolemic LDLR−/− mice, glomerular macrophages/foam cells significantly increased and were accompanied by lipid deposition and the formation and ingestion of oxidized phospholipids (oxPLs). Glomerular macrophages significantly correlated with the amount of glomerular oxPL. The NEP25/LDLR−/− mice exhibited severe hypercholesterolemia, glomerular lipid deposition, and renal dysfunction. Imaging mass spectrometry revealed that a major component of oxidized low-density lipoprotein, lysophosphatidylcholine 16:0 and 18:0, was present only in the glomeruli of NEP25/LDLR−/− mice. Lysophosphatidylcholine 16:0 stimulated mesangial cells and macrophages, and lysophosphatidylcholine 18:0 stimulated glomerular endothelial cells to express adhesion molecules and chemokines, promoting macrophage adhesion and migration in vitro. In human FSGS, glomerular macrophage–derived foam cells contained oxPLs accompanied by the expression of chemokines in the tuft. In conclusion, glomerular lipid modification represents a novel pathology by podocyte injury, promoting FSGS. Podocyte injury–driven lysophosphatidylcholine de novo accelerated glomerular macrophage–derived foam cell infiltration via lysophosphatidylcholine–mediated expression of adhesion molecules and chemokines in glomerular resident cells. PMID:26072030

  8. Ribavirin-induced intracellular GTP depletion activates transcription elongation in coagulation factor VII gene expression.

    PubMed

    Suzuki, Atsuo; Miyawaki, Yuhri; Okuyama, Eriko; Murata, Moe; Ando, Yumi; Kato, Io; Takagi, Yuki; Takagi, Akira; Murate, Takashi; Saito, Hidehiko; Kojima, Tetsuhito

    2013-01-01

    Coagulation FVII (Factor VII) is a vitamin K-dependent glycoprotein synthesized in hepatocytes. It was reported previously that FVII gene (F7) expression was up-regulated by ribavirin treatment in hepatitis C virus-infected haemophilia patients; however, its precise mechanism is still unknown. In the present study, we investigated the molecular mechanism of ribavirin-induced up-regulation of F7 expression in HepG2 (human hepatoma cell line). We found that intracellular GTP depletion by ribavirin as well as other IMPDH (inosine-5'-monophosphate dehydrogenase) inhibitors, such as mycophenolic acid and 6-mercaptopurine, up-regulated F7 expression. FVII mRNA transcription was mainly enhanced by accelerated transcription elongation, which was mediated by the P-TEFb (positive-transcription elongation factor b) complex, rather than by promoter activation. Ribavirin unregulated ELL (eleven-nineteen lysine-rich leukaemia) 3 mRNA expression before F7 up-regulation. We observed that ribavirin enhanced ELL3 recruitment to F7, whereas knockdown of ELL3 diminished ribavirin-induced FVII mRNA up-regulation. Ribavirin also enhanced recruitment of CDK9 (cyclin-dependent kinase 9) and AFF4 to F7. These data suggest that ribavirin-induced intracellular GTP depletion recruits a super elongation complex containing P-TEFb, AFF4 and ELL3, to F7, and modulates FVII mRNA transcription elongation. Collectively, we have elucidated a basal mechanism for ribavirin-induced FVII mRNA up-regulation by acceleration of transcription elongation, which may be crucial in understanding its pleiotropic functions in vivo.

  9. The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage

    SciTech Connect

    Qu, Jian; Ren, Xian; Hou, Rui-ying; Dai, Xing-ping; Zhao, Ying-chun; Xu, Xiao-jing; Zhang, Wei; Zhou, Gan; Zhou, Hong-hao; Liu, Zhao-qian

    2011-07-22

    Highlights: {yields} LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. {yields} LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. {yields} LAB plays an important role against glucose-induced intracellular oxidative damage. {yields} The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway. -- Abstract: Objectives: To investigate the effects of magnesium lithospermate B (LAB) on intracellular reactive oxygen species (ROS) production induced by high dose of glucose or H{sub 2}O{sub 2}, we explored the influences of LAB on the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor-2 (Nrf2) in HEK293T cells after treatment with high dose of glucose. Materials and methods: The total nuclear proteins in HEK293T cells were extracted with Cytoplasmic Protein Extraction Kit. The ROS level was determined by flow cytometry. The mRNA and protein expression of HO-1 and Nrf2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results: LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. The amount of Nrf2 translocation was enhanced after cells were pretreated with 50 {mu}mol/L or 100 {mu}mol/L LAB. Silencing of Nrf2 gene eliminated the enhanced expression of HO-1 protein induced by high dose of glucose plus LAB. Conclusions: LAB plays an important role against glucose-induced intracellular oxidative damage. The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway.

  10. Actin-associated Proteins in the Pathogenesis of Podocyte Injury

    PubMed Central

    He, Fang-Fang; Chen, Shan; Su, Hua; Meng, Xian-Fang; Zhang, Chun

    2013-01-01

    Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies. PMID:24396279

  11. Both cyclin I and p35 are required for maximal survival benefit of cyclin-dependent kinase 5 in kidney podocytes.

    PubMed

    Taniguchi, Yoshinori; Pippin, Jeffrey W; Hagmann, Henning; Krofft, Ronald D; Chang, Alice M; Zhang, Jiong; Terada, Yoshio; Brinkkoetter, Paul; Shankland, Stuart J

    2012-05-01

    Cyclin-dependent kinase (Cdk)-5 is activated by both cyclin I and the noncyclin activator p35 in terminally differentiated cells such as kidney podocytes and neurons. Cyclin I and p35 are restricted to podocytes in the kidney, and each limit podocyte apoptosis by activating Cdk5. To determine whether both activators are necessary, or whether they serve backup roles, a double cyclin I-p35 null mouse was generated. Experimental glomerular disease characterized by podocyte apoptosis was then induced by administering an anti-podocyte antibody. The results showed that under nonstressed conditions double mutants had normal kidney structure and function and were indistinguishable from wild-type, cyclin I(-/-), or p35(-/-) mice. In contrast, when stressed with disease, podocyte apoptosis increased fourfold compared with diseased cyclin I(-/-) or p35(-/-) mice. This resulted in a more pronounced decrease in podocyte number, proteinuria, and glomerulosclerosis. Under normal states and nephritic states, levels for the prosurvival protein Bcl-2 were lower in double cyclin I(-/-) p35(-/-) mice than the other mice. Similarly, levels of Bcl-xL, another prosurvival member, were lower in normal and nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. Moreover, levels of ERK1/2 and MEK1/2 activation were lower in nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. The results demonstrate that the activators of Cdk5, p35, and cyclin I are not required for normal kidney function. However, they play pivotal coordinated roles in maintaining podocyte survival during stress states in disease.

  12. A Novel Intracellular Isoform of Matrix Metalloproteinase-2 Induced by Oxidative Stress Activates Innate Immunity

    PubMed Central

    Lovett, David H.; Mahimkar, Rajeev; Raffai, Robert L.; Cape, Leslie; Maklashina, Elena; Cecchini, Gary; Karliner, Joel S.

    2012-01-01

    Background Experimental and clinical evidence has pinpointed a critical role for matrix metalloproteinase-2 (MMP-2) in ischemic ventricular remodeling and systolic heart failure. Prior studies have demonstrated that transgenic expression of the full-length, 68 kDa, secreted form of MMP-2 induces severe systolic failure. These mice also had unexpected and severe mitochondrial structural abnormalities and dysfunction. We hypothesized that an additional intracellular isoform of MMP-2, which affects mitochondrial function is induced under conditions of systolic failure-associated oxidative stress. Methodology and Principal Findings Western blots of cardiac mitochondria from the full length MMP-2 transgenics, ageing mice and a model of accelerated atherogenesis revealed a smaller 65 kDa MMP-2 isoform. Cultured cardiomyoblasts subjected to transient oxidative stress generated the 65 kDa MMP-2 isoform. The 65 kDa MMP-2 isoform was also induced by hypoxic culture of cardiomyoblasts. Genomic database analysis of the MMP-2 gene mapped transcriptional start sites and RNA transcripts induced by hypoxia or epigenetic modifiers within the first intron of the MMP-2 gene. Translation of these transcripts yields a 65 kDa N-terminal truncated isoform beginning at M77, thereby deleting the signal sequence and inhibitory prodomain. Cellular trafficking studies demonstrated that the 65 kDa MMP-2 isoform is not secreted and is present in cytosolic and mitochondrial fractions, while the full length 68 kDa isoform was found only in the extracellular space. Expression of the 65 kDa MMP-2 isoform induced mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-κB, NFAT and IRF transcriptional pathways. By microarray, the 65 kDa MMP-2 induces an innate immunity transcriptome, including viral stress response genes, innate immunity transcription factor IRF7, chemokines and pro-apoptosis genes. Conclusion A novel N-terminal truncated intracellular isoform of MMP-2 is

  13. Mechanism of the process formation; podocytes vs. neurons.

    PubMed

    Kobayashi, Naoto

    2002-05-15

    In this review article we discuss the common mechanism for cellular process formation. Besides the podocyte, the mechanism of process formation, including cytoskeletal organization and signal transduction, etc., has been studied using neurons and glias as model systems. There has been an accumulation of data showing common cell biological features of the podocyte and the neuron: 1) Both cells possess long and short cell processes equipped with highly organized cytoskeletal systems; 2) Both show cytoskeletal segregation; microtubules (MTs) and intermediate filaments (IFs) in podocyte primary processes and in neurites, while actin filaments (AFs) are abundant in podocyte foot processes in neuronal synaptic regions; 3) In both cells, process formation is mechanically dependent on MTs, whose assembly is regulated by various microtubule- associated proteins (MAPs); 4) In both cells, process formation is positively regulated by PP2A, a Ser/Thr protein phosphatase; 5) In both cells, process formation is accelerated by laminin, an extracellular matrix protein. In addition, recent data from our and other laboratories have shown that podocyte processes share many features with neuronal dendrites: 1) Podocyte processes and neuronal dendrites possess MTs with mixed polarity, namely, plus-end-distal and minus-end-distal MTs coexist in these processes; 2) To establish the mixed polarity of MTs, both express CHO1/MKLP1, a kinesin-related motor protein, and when its expression is inhibited formation of both podocyte processes and neuronal dendrites is abolished; 3) The elongation of both podocyte processes and neuronal dendrites is supported by rab8-regulated basolateral-type membrane transport; 4) Both podocyte processes and neuronal dendrites express synaptopodin, an actin-associated protein, in a development-dependent manner; interestingly, in both cells, synaptopodin is localized not in the main shaft of processes but in thin short projections from the main shaft. We propose

  14. [New insight in pathogenesis of podocyte disfunction in minimal change disease].

    PubMed

    Liu, Shanshan; Chen, Jianghua

    2016-03-01

    Minimal change disease (MCD) is a common pathological type of nephrotic syndrome. Its main histology is the fusion of podocyte foot process. The pathogenesis of MCD is not clear, but previously it was thought to be related to immune mechanism. In recent years more studies show that podocyte injury is the key link in the pathogenesis of MCD. In MCD mouse model and human kidney tissues, the expressions of podocyte slit membrane protein-nephrin and podocin, skeleton protein-synaptopodin are decreased, and the expression of synaptopodin is correlated with the response to hormone therapy. In addition, newest studies focused on another two potocyte associated proteins, CD80 and Angiopoietin-like-4. CD80, a T cell stimulating molecule, is expressed in potocyte. Kappa B gene sequences can be activated by external microbes, antigens through acting potocytes, which can induce the upregulation of CD80 expression, cytoskeletal protein damage and the glomerular filtration rate changes, resulting in proteinuria. Angiopoietin-like-4 can be expressed in normal potocytes, but over-expression of angiopoietin-like-4 may injure the GBM charge barrier and induce the foot process fusion, leading to MCD. However, further studies on the factors inducing CD80 and Angiopoietin-like-4 expression, and the interaction between glomerular basement membrane and the two proteins are needed. Based on the mechanism of MCD, NF-kappa B inhibitors and sialylation therapy would be a novel non-immune therapy for MCD.

  15. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes

    PubMed Central

    Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D’Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C.; Rastaldi, Maria Pia; Saleem, Moin A.; Mavilio, Domenico; Mikulak, Joanna

    2015-01-01

    Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915

  16. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes.

    PubMed

    Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D'Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C; Rastaldi, Maria Pia; Saleem, Moin A; Mavilio, Domenico; Mikulak, Joanna

    2015-09-18

    Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms' tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur(-/-) mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR.

  17. Requirement of intracellular free thiols for hydrogen peroxide-induced hypertrophy in cardiomyocytes.

    PubMed

    Tanaka, Hiroyuki; Sakurai, Koichi; Takahashi, Kiyoshi; Fujimoto, Yukio

    2003-08-01

    Reactive oxygen species (ROS) are by-products of aerobic metabolism and are implicated in the pathogenesis of several diseases. H(2)O(2) produces oxidative stress and acts as a second messenger in several cell types. We tested whether the effect of H(2)O(2) on cellular events could be altered by changes in the intracellular redox status in a cardiomyocyte cell line. Using flow cytometric measurements, we found that adding H(2)O(2) induced hypertrophy in control cells in a time-dependent manner. Pre-incubation of the cells with buthionine sulfoximine (BSO), an inhibitor of de novo GSH synthesis, induced increase in the number of cells of small sizes by the addition of H(2)O(2) as compared to non-BSO pre-incubated control cells, and exacerbated the decrease in viability. Total thiol and GSH levels in H9c2 cells pre-incubated with BSO were about 75 and 30% of control, respectively, and GSH levels fell to below the limitation of detection after the addition of H(2)O(2), although total thiol levels were not markedly decreased. In the cells pre-incubated with BSO, hypertrophy was not observed by the addition of H(2)O(2) at any level of concentration. N-acetyl-L-cysteine and cysteine not only prevented increase in the number of cells of small sizes caused by H(2)O(2) but also induced hypertrophy in cells pre-incubated with BSO. These results suggest that the intracellular free thiol levels determine whether cell death or hypertrophy occurs in cardiomyocytes in the presence of H(2)O(2). On the other hand, the hypertrophied cells did not become larger by adding H(2)O(2), but had high levels of cellular GSH, suggesting the possibility that the hypertrophied cells have tolerance to oxidative stress.

  18. The intracellular Ca(2+)-pump inhibitors thapsigargin and cyclopiazonic acid induce stress proteins in mammalian chondrocytes.

    PubMed

    Cheng, T C; Benton, H P

    1994-07-15

    Primary cultures of mammalian articular chondrocytes respond to treatment with the intracellular Ca(2+)-pump inhibitors thapsigargin (TG) and cyclopiazonic acid by specific changes in protein synthesis consistent with a stress response. Two-dimensional gel electrophoresis of newly synthesized proteins confirmed that the response was consistent with the induction of glucose-regulated proteins. The effects of low-dose TG (10 nM), measured by changes in [35S]methionine labelling of newly synthesized proteins, can first be observed by 10 h and are maximal by 24 h. The pattern of changes induced by TG is shared with cyclopiazonic acid, but effects of both perturbants differ significantly from changes induced by heat shock. Upon removal of TG, normal protein synthesis is restored by 48 h. Immunoblots showed increased concentrations of the stress proteins HSP90, HSP72/73 and HSP60 in chondrocytes treated with TG, but induction of newly synthesized heat-shock proteins by TG was not apparent on [35S]methionine-labelled gels. The alterations in protein synthesis induced by Ca(2+)-pump inhibitors were unaffected by BAPTA-AM loading, which clamped cytosolic Ca2+ at resting levels. We conclude that inhibition of intracellular Ca(2+)-pump activity can elicit a stress response, which has important implications for the interpretation of chronic use of Ca(2+)-pump inhibitors. In particular, the activation of the cellular shock response should be considered in interpreting the regulation of protein synthesis and cell survival by Ca(2+)-pump inhibitors such as TG. PMID:8043004

  19. Lead Poisoning Disturbs Oligodendrocytes Differentiation Involved in Decreased Expression of NCX3 Inducing Intracellular Calcium Overload.

    PubMed

    Ma, Teng; Wu, Xiyan; Cai, Qiyan; Wang, Yun; Xiao, Lan; Tian, Yanping; Li, Hongli

    2015-08-13

    Lead (Pb) poisoning has always been a serious health concern, as it permanently damages the central nervous system. Chronic Pb accumulation in the human body disturbs oligodendrocytes (OLs) differentiation, resulting in dysmyelination, but the molecular mechanism remains unknown. In this study, Pb at 1 μM inhibits OLs precursor cells (OPCs) differentiation via decreasing the expression of Olig 2, CNPase proteins in vitro. Moreover, Pb treatment inhibits the sodium/calcium exchanger 3 (NCX3) mRNA expression, one of the major means of calcium (Ca(2+)) extrusion at the plasma membrane during OPCs differentiation. Also addition of KB-R7943, NCX3 inhibitor, to simulate Pb toxicity, resulted in decreased myelin basic protein (MBP) expression and cell branching. Ca(2+) response trace with Pb and KB-R7943 treatment did not drop down in the same recovery time as the control, which elevated intracellular Ca(2+) concentration reducing MBP expression. In contrast, over-expression of NCX3 in Pb exposed OPCs displayed significant increase MBP fluorescence signal in positive regions and CNPase expression, which recovered OPCs differentiation to counterbalance Pb toxicity. In conclusion, Pb exposure disturbs OLs differentiation via affecting the function of NCX3 by inducing intracellular calcium overload.

  20. Palmitate induces insulin resistance without significant intracellular triglyceride accumulation in HepG2 cells.

    PubMed

    Lee, Jin-young; Cho, Hyang-Ki; Kwon, Young Hye

    2010-07-01

    Previous studies showed that increased release of free fatty acids from adipocytes leads to insulin resistance and triglyceride (TG) accumulation in the liver, which may progress into hepatic steatohepatitis. We and other investigators have previously reported that palmitate induces endoplasmic reticulum stress-mediated toxicity in several tissues. This work investigated whether palmitate could induce insulin resistance and steatosis in HepG2 cells. We treated cells with either saturated fatty acid (palmitate) or unsaturated fatty acid (oleate), and observed that palmitate significantly activated c-jun N-terminal kinase and inactivated protein kinase B. Both 4-phenylbutyric acid and glycerol significantly activated protein kinase B, confirming the involvement of endoplasmic reticulum stress in palmitate-mediated insulin resistance. Oleate, but not palmitate, significantly induced intracellular TG deposition and activated sterol regulatory element binding protein-1. Instead, diacylglycerol level and protein kinase C epsilon activity were significantly increased by palmitate, suggesting the possible role of diacylglycerol in palmitate-mediated lipotoxicity. Therefore, the present study clearly showed that palmitate impairs insulin resistance, but does not induce significant TG accumulation in HepG2 cells. PMID:20006364

  1. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization

    NASA Astrophysics Data System (ADS)

    Chiappini, C.; De Rosa, E.; Martinez, J. O.; Liu, X.; Steele, J.; Stevens, M. M.; Tasciotti, E.

    2015-05-01

    The controlled delivery of nucleic acids to selected tissues remains an inefficient process mired by low transfection efficacy, poor scalability because of varying efficiency with cell type and location, and questionable safety as a result of toxicity issues arising from the typical materials and procedures employed. High efficiency and minimal toxicity in vitro has been shown for intracellular delivery of nuclei acids by using nanoneedles, yet extending these characteristics to in vivo delivery has been difficult, as current interfacing strategies rely on complex equipment or active cell internalization through prolonged interfacing. Here, we show that a tunable array of biodegradable nanoneedles fabricated by metal-assisted chemical etching of silicon can access the cytosol to co-deliver DNA and siRNA with an efficiency greater than 90%, and that in vivo the nanoneedles transfect the VEGF-165 gene, inducing sustained neovascularization and a localized sixfold increase in blood perfusion in a target region of the muscle.

  2. Depletion of Rab32 decreases intracellular lipid accumulation and induces lipolysis through enhancing ATGL expression in hepatocytes.

    PubMed

    Li, Qing; Wang, Jun; Wan, Ying; Chen, Dongfeng

    2016-03-18

    Nonalcoholic fatty liver disease (NAFLD) is a disease caused by the accumulation of lipids in hepatocytes. To date, however, the pathogenesis of NAFLD is still unclear. Recent studies have shown that Rab GTPases, a major protein family in vesicle trafficking, are associated with intracellular lipid accumulation. Here, we show that Rab32, the only Rab GTPase located in mitochondria, participates in hepatic steatosis. Ablation of Rab32 can decrease intracellular lipid accumulation in hepatocytes (HepG2, L02). Further studying the possible mechanism, we found that knockdown of Rab32 can enhance lipolysis instead of lipogenesis via inducing the expression of adipose triglyceride lipase (ATGL), a key enzyme on the surface of lipid droplets which has been proved to be significant in controlling intracellular lipid accumulation. Co-immunoprecipitation shows that Rab32 and ATGL are not directly associated. These findings suggest that knockdown of Rab32 indirectly affects lipolysis through increasing the expression of ATGL. Taken together, our study reveals that Rab32 can participate in regulating intracellular lipid accumulation and that knockdown of Rab32 can decrease intracellular lipid accumulation in hepatocytes. We also demonstrated that ablation of Rab32 can induce intracellular lipolysis by enhancing the expression of ATGL. PMID:26882978

  3. Renal Podocyte Injury in a Rat Model of Type 2 Diabetes Is Prevented by Metformin

    PubMed Central

    Kim, Junghyun; Shon, Eunjin; Kim, Chan-Sik; Kim, Jin Sook

    2012-01-01

    Hyperglycemia promotes oxidative stress and hence generation of reactive oxygen species (ROS), which is known to play a crucial role in the pathogenesis of diabetic nephropathy. Metformin, an oral hypoglycemic drug, possesses antioxidant effects. The aim of this paper is to investigate the protective effects of metformin on the injury of renal podocytes in spontaneously diabetic Torii (SDT) rats, a new model for nonobese type 2 diabetes. Metformin (350 mg/kg/day) was given to SDT rats for 17 weeks. Blood glucose, glycated haemoglobin (HbA1c), and albuminuria were examined. Kidney histopathology, renal 8-hydroxydeoxyguanosine (8-OHdG) levels and apoptosis were examined. In 43-week-old SDT rats, severe hyperglycemia was developed, and albuminuria was markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, urinary and renal 8-OHdG levels were highly increased, and podocyte loss was shown through application of the TUNEL and synaptopodin staining. However, treatment of SDT rats with metformin restored all these renal changes. Our data suggested that diabetes-induced podocyte loss in diabetic nephropathy could be suppressed by the antidiabetes drug, metformin, through the repression of oxidative injury. PMID:23056035

  4. Metformin Ameliorates Podocyte Damage by Restoring Renal Tissue Podocalyxin Expression in Type 2 Diabetic Rats

    PubMed Central

    Zhai, Limin; Gu, Junfei; Yang, Di; Wang, Wei; Ye, Shandong

    2015-01-01

    Podocalyxin (PCX) is a signature molecule of the glomerular podocyte and of maintaining integrity of filtration function of glomerulus. The aim of this study was to observe the effect of different doses of metformin on renal tissue PCX expression in type 2 diabetic rats and clarify its protection on glomerular podocytes. Type 2 diabetic Sprague-Dawley (SD) rats in which diabetes was induced by high-fat diet/streptozotocin (HFD-STZ) were treated with different doses of metformin (150, 300, and 500 mg/kg per day, resp.) for 8 weeks. Various biochemical parameters, kidney histopathology, and renal tissue PCX expression levels were examined. In type 2 diabetic rats, severe hyperglycemia and hyperlipidemia were developed. Urinary albumin and PCX were markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, protein and mRNA expression of renal tissue PCX were highly decreased. However, treatment of rats with different doses of metformin restored all these changes to a varying degree. These results suggested that metformin can ameliorate glomerular podocyte damage in type 2 diabetic rats, which may be partly associated with its role in restoring PCX expression and inhibiting urinary excretion of PCX with dose dependence. PMID:26075281

  5. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes

    PubMed Central

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S.

    2010-01-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo. PMID:20668098

  6. Deficits in sialylation impair podocyte maturation.

    PubMed

    Weinhold, Birgit; Sellmeier, Melanie; Schaper, Wiebke; Blume, Linda; Philippens, Brigitte; Kats, Elina; Bernard, Ulrike; Galuska, Sebastian P; Geyer, Hildegard; Geyer, Rudolf; Worthmann, Kirstin; Schiffer, Mario; Groos, Stephanie; Gerardy-Schahn, Rita; Münster-Kühnel, Anja K

    2012-08-01

    The role of sialylation in kidney biology is not fully understood. The synthesis of sialoglycoconjugates, which form the outermost structures of animal cells, requires CMP-sialic acid, which is a product of the nuclear enzyme CMAS. We used a knock-in strategy to create a mouse with point mutations in the canonical nuclear localization signal of CMAS, which relocated the enzyme to the cytoplasm of transfected cells without affecting its activity. Although insufficient to prevent nuclear entry in mice, the mutation led to a drastically reduced concentration of nuclear-expressed enzyme. Mice homozygous for the mutation died from kidney failure within 72 hours after birth. The Cmas(nls) mouse exhibited podocyte foot process effacement, absence of slit diaphragms, and massive proteinuria, recapitulating features of nephrin-knockout mice and of patients with Finnish-type congenital nephrotic syndrome. Although the Cmas(nls) mouse displayed normal sialylation in all organs including kidney, a critical shortage of CMP-sialic acid prevented sialylation of nephrin and podocalyxin in the maturing podocyte where it is required during the formation of foot processes. Accordingly, the sialylation defects progressed with time and paralleled the morphologic changes. In summary, sialylation is critical during the development of the glomerular filtration barrier and required for the proper function of nephrin. Whether altered sialylation impairs nephrin function in human disease requires further study.

  7. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification.

    PubMed Central

    Gottlieb, R A; Nordberg, J; Skowronski, E; Babior, B M

    1996-01-01

    We have previously shown that in neutrophils deprived of granulocyte colony-stimulating factor, apoptosis is preceded by acidification and that the protection against apoptosis conferred on neutrophils by granulocyte colony-stimulating factor is dependent upon delay of this acidification. To test the hypothesis that acidification could be a general feature of apoptosis, we examined intracellular pH changes in another cell line. Jurkat cells, a T-lymphoblastoid line, were induced to undergo apoptosis with anti-Fas IgM, cycloheximide, or exposure to short-wavelength UV light. We found that acidification occurred in response to treatment with these agents and that acidification preceded DNA fragmentation. Jurkat cells were also found to possess an acid endonuclease that is active below pH 6.8, compatible with a possible role for this enzyme in chromatin digestion during apoptosis. Incubation of the cells with the bases imidazole or chloroquine during treatment with anti-Fas antibody or cycloheximide or after UV exposure decreased apoptosis as assessed by nuclear morphology and DNA content. The alkalinizing effect of imidazole and chloroquine was shown by the demonstration that the percentage of cells with an intracellular pH below 6.8 after treatment with anti-Fas antibody, cycloheximide, or UV was diminished in the presence of base as compared with similarly treated cells incubated in the absence of base. We conclude that acidification is an early event in programmed cell death and may be essential for genome destruction. Images Fig. 5 PMID:8570610

  8. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?

    PubMed Central

    Zea, Arnold H.; Stewart, Tyrus; Ascani, Jeannine; Tate, David J.; Finkel-Jimenez, Beatriz; Wilk, Anna; Reiss, Krzysztof; Smoyer, William E.; Aviles, Diego H.

    2016-01-01

    The renal podocyte plays an important role in maintaining the structural integrity of the glomerular basement membrane. We have previously reported that patients with idiopathic nephrotic syndrome (INS) have increased IL-2 production. We hypothesized that podocytes express an IL-2 receptor (IL-2R) and signaling through this receptor can result in podocyte injury. To confirm the presence of the IL-2R, we tested a conditionally immortalized murine podocyte cell line by flow cytometry, qPCR, and Western blot. To test for the presence of the IL-2R in vivo, immunohistochemical staining was performed on human renal biopsies in children with FSGS and control. Podocytes were stimulated with IL-2 in vitro, to study signaling events via the JAK/STAT pathway. The results showed that stimulation with IL-2 resulted in increased mRNA and protein expression of STAT 5a, phosphorylated STAT 5, JAK 3, and phosphorylated JAK 3. We then investigated for signs of cellular injury and the data showed that pro-apoptotic markers Bax and cFLIP were significantly increased following IL-2 exposure, whereas LC3 II was decreased. Furthermore, mitochondrial depolarization and apoptosis were both significantly increased following activation of the IL-2R. We used a paracellular permeability assay to monitor the structural integrity of a podocyte monolayer following IL-2 exposure. The results showed that podocytes exposed to IL-2 have increased albumin leakage across the monolayer. We conclude that murine podocytes express the IL-2R, and that activation through the IL-2R results in podocyte injury. PMID:27389192

  9. Inter- and intracellular signaling induced by magnetomechanical actuation of plasma membrane channels

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Rozhkova, Elena A.; Novosad, Valentyn; Bader, Samuel D.

    2012-02-01

    Magnetic particles allow for non-invasive control over their spatial orientation and motion which makes them ideally suitable for studying real-time processes in living cells. Lithographically defined ferromagnetic disks with spin-vortex ground state have the advantage of zero net magnetization in remanence. This eliminates long-range magnetic forces which otherwise lead to the interaction between particles and their agglomeration. Moreover, magnetically soft permalloy particles have high magnetization of saturation thus requiring very low external field for inducing high magnetomotive force, compared to superparamagnetic particles. Our group has previously demonstrated that micron-sized permalloy disks can be used for destruction of cancer cells (D.-H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, V. Novosad, Nat. Mater. 9, 165-171 (2010). In this work, we investigate the effects of magnetomechanical stimulation of human brain cancer cells with these particles. It will be shown that the actuation of ion channels in cell plasma membrane induces, on the one hand side, intracellular signaling triggering cell apoptosis and, on the other hand, it stimulates the energy transfer between the cells which carries the information about apoptotic signal.

  10. A tautomeric zinc sensor for ratiometric fluorescence imaging: application to nitric oxide-induced release of intracellular zinc.

    PubMed

    Chang, Christopher J; Jaworski, Jacek; Nolan, Elizabeth M; Sheng, Morgan; Lippard, Stephen J

    2004-02-01

    Zinc is an essential metal ion for human growth and development, the disruption of cellular Zn(2+) homeostasis being implicated in several major disorders including Alzheimer's disease, diabetes, and cancer. The molecular mechanisms of Zn(2+) physiology and pathology are insufficiently understood, however, owing in part to the lack of tools for measuring changes in intracellular Zn(2+) concentrations with high spatial and temporal fidelity. To address this critical need, we have synthesized, characterized, and applied an intracellular fluorescent probe for the ratiometric imaging of Zn(2+) based on a tautomeric seminaphthofluorescein platform. Zin-naphthopyr 1 (ZNP1) affords single-excitation, dual-emission ratiometric detection of intracellular Zn(2+) through Zn(2+)-controlled switching between fluorescein and naphthofluorescein tautomeric forms. The probe features visible excitation and emission profiles, excellent selectivity responses for Zn(2+) over competing Ca(2+) and Mg(2+) ions at intracellular concentrations, a dissociation constant (K(d)) for Zn(2+) of <1 nM, and an 18-fold increase in fluorescence emission intensity ratio (lambda(624)/lambda(528)) upon zinc binding. We demonstrate the value of the ZNP1 platform for biological applications by imaging changes in intracellular [Zn(2+)] in living mammalian cells. Included is the ratiometric detection of endogenous pools of intracellular Zn(2+) after NO-induced release of Zn(2+) from cellular metalloproteins. We anticipate that ZNP1 and related probes should find utility for interrogating the biology of Zn(2+).

  11. Effect of simvastatin on the expression of nephrin, podocin, and vascular endothelial growth factor (VEGF) in podocytes of diabetic rat

    PubMed Central

    Chen, Shujun; Chen, Haiping; Liu, Qi; Ma, Qing

    2015-01-01

    This study aims to investigate the effects and mechanisms of simvastatin on podocyte injuries in diabetic rats. Streptozotocin was used to induce diabetes in a rat model. Three groups were tested: normal control (NC) group, diabetes mellitus control (DM) group, and simvastatin (SVT) group. The serum creatinine, cholesterol, and urinary albumin excretion rate (UAER) were measured 4 to 8 weeks after administering either saline or the drug. Renal pathological changes were observed, and immunohistochemistry was performed to determine the expression of nephrin, podocin, and vascular endothelial growth factor (VEGF). Real-time PCR was performed to detect the mRNA expression levels of nephrin, podocin, and VEGF. Serum creatinine levels and the UAER were higher in the DM group than in the NC group (P < 0.01). The protein and mRNA expression levels of nephrin and podocin were lower in the DM group than in the NC group (P < 0.01); whereas, the expression of VEGF protein and mRNA was higher in the DM group than in the NC group (P < 0.01). Simvastatin (SVT) could reduce serum creatinine levels and the UAER, maintain the expression of nephrin and podocin, reduce the expression of VEGF, and improve the pathological changes of podocytes, which were much more pronounced at 8 weeks (P < 0.01). Simvastatin could maintain the distribution of nephrin and podocin in podocytes, inhibit VEGF expression, and thus improve podocyte injuries and protect kidney functions in diabetic rats. PMID:26770424

  12. Integration of Cistromic and Transcriptomic Analyses Identifies Nphs2, Mafb, and Magi2 as Wilms’ Tumor 1 Target Genes in Podocyte Differentiation and Maintenance

    PubMed Central

    Dong, Lihua; Pietsch, Stefan; Tan, Zenglai; Perner, Birgit; Sierig, Ralph; Kruspe, Dagmar; Groth, Marco; Witzgall, Ralph; Gröne, Hermann-Josef; Platzer, Matthias

    2015-01-01

    The Wilms’ tumor suppressor gene 1 (WT1) encodes a zinc finger transcription factor. Mutation of WT1 in humans leads to Wilms’ tumor, a pediatric kidney tumor, or other kidney diseases, such as Denys–Drash and Frasier syndromes. We showed previously that inactivation of WT1 in podocytes of adult mice results in proteinuria, foot process effacement, and glomerulosclerosis. However, the WT1-dependent transcriptional network regulating podocyte development and maintenance in vivo remains unknown. Here, we performed chromatin immunoprecipitation followed by high-throughput sequencing with glomeruli from wild-type mice. Additionally, we performed a cDNA microarray screen on an inducible podocyte–specific WT1 knockout mouse model. By integration of cistromic and transcriptomic analyses, we identified the WT1 targetome in mature podocytes. To further analyze the function and targets of WT1 in podocyte maturation, we used an Nphs2-Cre model, in which WT1 is deleted during podocyte differentiation. These mice display anuria and kidney hemorrhage and die within 24 hours after birth. To address the evolutionary conservation of WT1 targets, we performed functional assays using zebrafish as a model and identified Nphs2, Mafb, and Magi2 as novel WT1 target genes required for podocyte development. Our data also show that both Mafb and Magi2 are required for normal development of the embryonic zebrafish kidney. Collectively, our work provides insights into the transcriptional networks controlled by WT1 and identifies novel WT1 target genes that mediate the function of WT1 in podocyte differentiation and maintenance. PMID:25556170

  13. Involvement of intracellular oxidative stress-sensitive pathway in phloxine B-induced photocytotoxicity in human T lymphocytic leukemia cells.

    PubMed

    Qi, Hang; Zhu, Beiwei; Abe, Naomi; Shin, Yuko; Murata, Yoshiyuki; Nakamura, Yoshimasa

    2012-06-01

    We investigated the molecular mechanisms underlying phloxine B (PhB)-induced photocytotoxicity in human T lymphocytic leukemia Jurkat cells. In addition to apoptosis-related biochemical events, photo-irradiated PhB generated intracellular reactive oxygen species (ROS), induced phosphorylation of c-Jun-N-terminal kinase (JNK) in an oxidative stress-dependent manner and up-regulated the gene expression of interferon (IFN)-γ, an inducer of diverse apoptosis-related molecules in activated T cells. PhB-induced apoptosis was significantly inhibited by N-acetyl-l-cysteine, but not by catalase, indicating that ROS generation occurred intracellularly, and by SP600125 and AG490, specific inhibitors of JNK and IFN-γ signaling, respectively, confirming their roles in the apoptotic pathway. IFN-γ up-regulation was also inhibited by SP600125, indicating that it was downstream of JNK activation. These results suggest that PhB-induced apoptosis in Jurkat cells partially involves the intracellular oxidative stress-sensitive and T cell-specific IFN-γ pathway. These data present a novel insight into the mechanisms of photocytotoxicity induced by artificial food colorants in human T lymphocytic leukemia cells. PMID:22440610

  14. Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells

    PubMed Central

    Burkard, Miriam; Ölke, Martha; Daniel, Christoph; Amann, Kerstin; Hugo, Christian; Kurts, Christian; Steinkasserer, Alexander; Gessner, André

    2013-01-01

    Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC–antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection. PMID:23539760

  15. Iberis amara Extract Induces Intracellular Formation of Reactive Oxygen Species and Inhibits Colon Cancer.

    PubMed

    Weidner, Christopher; Rousseau, Morten; Plauth, Annabell; Wowro, Sylvia J; Fischer, Cornelius; Abdel-Aziz, Heba; Sauer, Sascha

    2016-01-01

    Massively increasing global incidences of colorectal cancer require efficient treatment and prevention strategies. Here, we report unexpected anticancerogenic effects of hydroethanolic Iberis amara extract (IAE), which is known as a widely used phytomedical product for treating gastrointestinal complaints. IAE significantly inhibited the proliferation of HT-29 and T84 colon carcinoma cells with an inhibitory concentration (IC50) of 6 and 9 μg/ml, respectively, and further generated inhibitory effects in PC-3 prostate and MCF7 breast cancer cells. Inhibition of proliferation in HT-29 cells was associated with a G2/M phase cell cycle arrest including reduced expression of various regulatory marker proteins. Notably, in HT-29 cells IAE further induced apoptosis by intracellular formation of reactive oxygen species (ROS). Consistent with predictions derived from our in vitro experiments, bidaily oral gavage of 50 mg/kg of IAE over 4 weeks resulted in significant inhibition of tumor growth in a mouse HT-29 tumor xenograft model. Taken together, Iberis amara extracts could become useful alternatives for preventing and treating the progression of colon cancer.

  16. Iberis amara Extract Induces Intracellular Formation of Reactive Oxygen Species and Inhibits Colon Cancer

    PubMed Central

    Plauth, Annabell; Wowro, Sylvia J.; Fischer, Cornelius; Abdel-Aziz, Heba; Sauer, Sascha

    2016-01-01

    Massively increasing global incidences of colorectal cancer require efficient treatment and prevention strategies. Here, we report unexpected anticancerogenic effects of hydroethanolic Iberis amara extract (IAE), which is known as a widely used phytomedical product for treating gastrointestinal complaints. IAE significantly inhibited the proliferation of HT-29 and T84 colon carcinoma cells with an inhibitory concentration (IC50) of 6 and 9 μg/ml, respectively, and further generated inhibitory effects in PC-3 prostate and MCF7 breast cancer cells. Inhibition of proliferation in HT-29 cells was associated with a G2/M phase cell cycle arrest including reduced expression of various regulatory marker proteins. Notably, in HT-29 cells IAE further induced apoptosis by intracellular formation of reactive oxygen species (ROS). Consistent with predictions derived from our in vitro experiments, bidaily oral gavage of 50 mg/kg of IAE over 4 weeks resulted in significant inhibition of tumor growth in a mouse HT-29 tumor xenograft model. Taken together, Iberis amara extracts could become useful alternatives for preventing and treating the progression of colon cancer. PMID:27050665

  17. Acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

    PubMed

    Allam, Uday Sankar; Krishna, M Gopala; Sen, Minakshi; Thomas, Rony; Lahiri, Amit; Gnanadhas, Divya Prakash; Chakravortty, Dipshikha

    2012-01-01

    During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

  18. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells.

    PubMed

    Babica, Pavel; Zurabian, Rimma; Kumar, Esha R; Chopra, Rajus; Mianecki, Maxwell J; Park, Joon-Suk; Jaša, Libor; Trosko, James E; Upham, Brad L

    2016-09-01

    Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors. PMID:27413106

  19. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells.

    PubMed

    Babica, Pavel; Zurabian, Rimma; Kumar, Esha R; Chopra, Rajus; Mianecki, Maxwell J; Park, Joon-Suk; Jaša, Libor; Trosko, James E; Upham, Brad L

    2016-09-01

    Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors.

  20. CO2 induced acute respiratory acidosis and brain tissue intracellular pH: a 31P NMR study in swine.

    PubMed

    Martoft, L; Stødkilde-Jørgensen, H; Forslid, A; Pedersen, H D; Jørgensen, P F

    2003-07-01

    High concentration carbon dioxide (CO(2)) is used to promote pre-slaughter anaesthesia in swine and poultry, as well as short-lasting surgical anaesthesia and euthanasia in laboratory animals. Questions related to animal welfare have been raised, as CO(2) anaesthesia does not set in momentarily. Carbon dioxide promotes anaesthesia by lowering the intracellular pH in the brain cells, but the dynamics of the changes in response to a high concentration of CO(2) is not known. Based on (31)P NMR spectroscopy, we describe CO(2)-induced changes in intracellular pH in the brains of five pigs inhaling 90% CO(2) in ambient air for a period of 60 s, and compare the results to changes in arterial blood pH, P(CO2), O(2) saturation and HCO(3)(-) concentration. The intracellular pH paralleled the arterial pH and P(CO2) during inhalation of CO(2); and it is suggested that the acute reaction to CO(2) inhalation mainly reflects respiratory acidosis, and not metabolic regulation as for example transmembrane fluxes of H(+)/HCO(3)(-). The intracellular pH decreased to approximately 6.7 within the 60 s inhalation period, and the situation was metabolically reversible after the end of CO(2) inhalation. The fast decrease in intracellular pH supports the conclusion that high concentration CO(2) leads to anaesthesia soon after the start of inhalation. PMID:12869287

  1. Serum amyloid A and inflammation in diabetic kidney disease and podocytes

    PubMed Central

    Anderberg, Robert J; Meek, Rick L; Hudkins, Kelly L; Cooney, Sheryl K; Alpers, Charles E; Leboeuf, Renee C; Tuttle, Katherine R

    2015-01-01

    corresponding diabetic mouse models. Podocytes are likely to be key responder cells to SAA-induced inflammation in the diabetic kidney. SAA is a compelling candidate for DKD therapeutic and biomarker discovery. PMID:25531567

  2. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis.

    PubMed

    Jorgensen, Ine; Zhang, Yue; Krantz, Bryan A; Miao, Edward A

    2016-09-19

    Inflammasomes activate caspase-1 in response to cytosolic contamination or perturbation. This inflammatory caspase triggers the opening of the GSDMD pore in the plasma membrane, resulting in lytic cell death called pyroptosis. We had previously assumed that pyroptosis releases intracellular bacteria to the extracellular space. Here, we find that viable bacteria instead remain trapped within the cellular debris of pyroptotic macrophages. This trapping appears to be an inevitable consequence of how osmotic lysis ruptures the plasma membrane, and may also apply to necroptosis and some forms of nonprogrammed necrosis. Although membrane tears release soluble cytosolic contents, they are small enough to retain organelles and bacteria. We call this structure the pore-induced intracellular trap (PIT), which is conceptually parallel to the neutrophil extracellular trap (NET). The PIT coordinates innate immune responses via complement and scavenger receptors to drive recruitment of and efferocytosis by neutrophils. Ultimately, this secondary phagocyte kills the bacteria. Hence, caspase-1-driven pore-induced cell death triggers a multifaceted defense against intracellular bacteria facilitated by trapping the pathogen within the cellular debris. Bona fide intracellular bacterial pathogens, such as Salmonella, must prevent or delay pyroptosis to avoid being trapped in the PIT and subsequently killed by neutrophils. PMID:27573815

  3. Fine-tuning of NFκB by Glycogen Synthase Kinase 3β directs the fate of glomerular podocytes upon injury

    PubMed Central

    Bao, Hui; Ge, Yan; Peng, Ai; Gong, Rujun

    2014-01-01

    NFκB is regulated by a myriad of signaling cascades including glycogen synthase kinase (GSK) 3β and plays a Janus role in podocyte injury. In vitro, lipopolysaccharide or adriamycin elicited podocyte injury and cytoskeletal disruption, associated with NFκB activation and induced expression of NFκB target molecules, including pro-survival Bcl-xL and podocytopathic mediators like MCP-1, cathepsin L and B7-1. Broad range inhibition of NFκB diminished the expression of all NFκB target genes, restored cytoskeleton integrity, but potentiated apoptosis. In contrast, blockade of GSK3β by lithium or TDZD-8, mitigated the expression of podocytopathic mediators, ameliorated podocyte injury, but barely affected Bcl-xL expression or sensitized apoptosis. Mechanistically, GSK3β was sufficient and essential for RelA/p65 phosphorylation specifically at serine 467, which specifies the expression of selective NFκB target molecules, including podocytopathic mediators, but not Bcl-xL. In vivo, lithium or TDZD-8 therapy improved podocyte injury and proteinuria in mice treated with lipopolysaccharide or adriamycin, concomitant with suppression of podocytopathic mediators but retained Bcl-xL in glomerulus. Broad range inhibition of NFκB conferred similar but much weakened antiproteinuric and podoprotective effects accompanied with a blunted glomerular expression of Bcl-xL and marked podocyte apoptosis. Thus, the GSK3β dictated fine-tuning of NFκB may serve as a novel therapeutic target for podocytopathy. PMID:25629551

  4. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells

    PubMed Central

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels. PMID:26682007

  5. Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.

    PubMed

    Ito, Naoki; Ruegg, Urs T; Kudo, Akira; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2013-01-01

    Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.

  6. Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells.

    PubMed

    Wu, Li-Hua; Li, Peng; Zhao, Qing-Li; Piao, Jin-Lan; Jiao, Yu-Fei; Kadowaki, Makoto; Kondo, Takashi

    2014-11-01

    Ionizing radiation (IR) can generate reactive oxygen species (ROS). Excessive ROS have the potential to damage cellular macromolecules including DNA, proteins, and lipids and eventually lead to cell death. In this study, we evaluated the potential of arbutin, a drug chosen from a series of traditional herbal medicine by measuring intracellular hydroxyl radical scavenging ability in X-irradiated U937 cells. Arbutin (hydroquinone-β-D-glucopyranoside), a naturally occurring glucoside of hydroquinone, has been traditionally used to treat pigmentary disorders. However, there are no reports describing the effect of arbutin on IR-induced apoptosis. We confirmed that arbutin can protect cells from apoptosis induced by X-irradiation. The combination of arbutin and X-irradiation could reduce intracellular hydroxyl radical production and prevent mitochondrial membrane potential loss. It also could down-regulate the expression of phospho-JNK, phospho-p38 in whole cell lysate and activate Bax in mitochondria. Arbutin also inhibits cytochrome C release from mitochondria to cytosol. To verify the role of JNK in X-irradiation-induced apoptosis, the cells were pretreated with a JNK inhibitor, and found that JNK inhibitor could reduce apoptosis induced by X-irradiation. Taken together, our data indicate that arbutin plays an anti-apoptotic role via decreasing intracellular hydroxyl radical production, inhibition of Bax-mitochondria pathway and activation of the JNK/p38 MAPK pathway.

  7. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys.

    PubMed

    Sugahara, Go; Kamiie, Junichi; Kobayashi, Ryosuke; Mineshige, Takayuki; Shirota, Kinji

    2016-06-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R.

  8. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys

    PubMed Central

    SUGAHARA, Go; KAMIIE, Junichi; KOBAYASHI, Ryosuke; MINESHIGE, Takayuki; SHIROTA, Kinji

    2016-01-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R. PMID:26854253

  9. Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using arsenazo III

    PubMed Central

    Brown, J. E.; Brown, P. K.; Pinto, L. H.

    1977-01-01

    1. The metallochromic indicator dye, arsenazo III, was injected intracellularly into Limulus ventral photoreceptor cells to concentrations greater than 1 mM. 2. The absorption spectrum (450-750 nm) of the dye in single dark-adapted cells was measured by a scanning microspectrophotometer. When a cell was light-adapted, the absorption of the dye changed; the difference spectrum had two maxima at about 610 and 660 nm, a broad minimum at about 540 nm and an isosbestic point at about 585 nm. 3. When intracellular calcium concentration was raised in dark-adapted cells previously injected with arsenazo III, the difference spectum had two maxima at about 610 and 660 nm, a broad minimum at about 530 nm and an isosbestic point at about 585 nm. The injection of Mg2+ into dark-adapted cells previously injected with the dye induced a difference spectrum that had a single maximum at about 620 nm. Also, decreasing the intracellular pH of cells previously injected with the dye induced a difference spectrum that had a minimum at about 620 nm. The evidence suggests that there is a rise of intracellular ionized calcium when a Limulus ventral photoreceptor is light-adapted. 4. The intracellular calcium concentration, [Ca2+]1, in light-adapted photoreceptors was estimated to reach at least 10-4 M by compaing the light-induced difference spectra measured in ventral photoreceptors with a standard curve determined in microcuvettes containing 2mM arsenazo III in 400 mM-KCl, 1 mM-MgCl2 and 25 mM MOPS at pH 7·0. 5. In cells injected to less than 3 mM arsenazo III, light induced a transient decrease in optical transmission at 660 nm (T660). This decrease in T660 indicates that illumination of a ventral photoreceptor normally causes a transient increase of [Ca2+]1. 6. Arsenazo III was found to be sensitive, selective and rapid enough to measure light-induced changes of intracellular ionized calcium in Limulus ventral photoreceptor cells. PMID:17732

  10. Thermally induced changes in intracellular pH and modulators of phosphofructokinase in trout white muscle

    PubMed

    Lehoux; Guderley

    1997-01-01

    The intracellular pH (pHi) and the concentrations of lactate and selected modulators of phosphofructokinase (PFK; EC 2.7.1.11) were measured in white epaxial muscle of 15 °C-acclimated rainbow trout (Oncorhynchus mykiss) maintained at 8, 15 or 22 °C for 48 h and sampled at rest and after 10 min of exhaustive exercise. The lactate accumulation resulting from exercise was 13 % smaller at 22 °C than at 8 and 15 °C. The estimated duration of burst performance was shorter at cold than at warm temperatures, whereas the average rate of lactate accumulation during burst performance was higher at 8 °C than at 15 and 22 °C. pHi rose when temperature decreased, but less than predicted by the imidazole alphastat hypothesis of Reeves. The effects of temperature on the pre-exercise concentrations of PFK modulators [adenylates, fructose 6-phosphate (F6P) and fructose 1,6-bisphosphate (FBP)] were generally negligible. In exhausted trout, adenylate concentrations were almost unaffected by temperature. In contrast, post-exercise FBP and F6P concentrations were significantly higher at low than at high temperatures. We interpret the response of F6P to temperature as an indication that the covariation of pHi and temperature is insufficient to prevent a cold-enhancement of PFK inhibition. Since F6P is a potent activator of PFK, we conclude that, in trout white muscle, thermally induced changes in F6P concentration probably help buffer the effects of temperature change on PFK activity. PMID:9318724

  11. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    PubMed

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons. PMID:21946944

  12. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes.

    PubMed

    Cheng, Yu-Chi; Chen, Chien-An; Chang, Jer-Ming; Chen, Hung-Chun

    2015-08-01

    Proteinuria is a major hallmark of glomerular nephropathy and endoplasmic reticulum (ER) stress plays an important role in glomerular nephropathy. The protein levels of integrin-β1 in podocytes are found to be negative correlation with amount of proteinuria. This study investigated whether urinary protein, particularly albumin, induced ER stress that consequently reduced integrin-β1 expression. All experiments were performed using primary cultured rat podocyte. Protein and mRNA expression were measured by western blotting and semiquantified reverse transcriptase polymerase chain reaction. Albumin uptake was found at 1 h after albumin addition. Albumin reduced precursor and mature forms of integrin-β1, but did not change mRNA levels of integrin-β1. Albumin induced reactive oxygen species (ROS) generation and ER stress. Antioxidant (N-acetylcysteine) suppressed albumin-induced ER stress and decrements in precursor and mature forms of integrin-β1. Then, ER stress inhibitors (4-phenylbutyrate and salubrinal) also inhibited albumin-induced decrements in precursor and mature forms of integrin-β1. The potent ER stress inducers (thapsigargin and tunicamycin) directly decreased precursor and mature forms of integrin-β1 and led appearance of unglycosylated core protein of integrin-β1. Our results show that in proteinuric disease, albumin decreases precursor and mature forms of integrin-β1 through ROS-ER stress pathway in podocytes.

  13. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes.

    PubMed

    Cheng, Yu-Chi; Chen, Chien-An; Chang, Jer-Ming; Chen, Hung-Chun

    2015-08-01

    Proteinuria is a major hallmark of glomerular nephropathy and endoplasmic reticulum (ER) stress plays an important role in glomerular nephropathy. The protein levels of integrin-β1 in podocytes are found to be negative correlation with amount of proteinuria. This study investigated whether urinary protein, particularly albumin, induced ER stress that consequently reduced integrin-β1 expression. All experiments were performed using primary cultured rat podocyte. Protein and mRNA expression were measured by western blotting and semiquantified reverse transcriptase polymerase chain reaction. Albumin uptake was found at 1 h after albumin addition. Albumin reduced precursor and mature forms of integrin-β1, but did not change mRNA levels of integrin-β1. Albumin induced reactive oxygen species (ROS) generation and ER stress. Antioxidant (N-acetylcysteine) suppressed albumin-induced ER stress and decrements in precursor and mature forms of integrin-β1. Then, ER stress inhibitors (4-phenylbutyrate and salubrinal) also inhibited albumin-induced decrements in precursor and mature forms of integrin-β1. The potent ER stress inducers (thapsigargin and tunicamycin) directly decreased precursor and mature forms of integrin-β1 and led appearance of unglycosylated core protein of integrin-β1. Our results show that in proteinuric disease, albumin decreases precursor and mature forms of integrin-β1 through ROS-ER stress pathway in podocytes. PMID:25713411

  14. Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus.

    PubMed

    Roset, Mara S; García Fernández, Lucía; DelVecchio, Vito G; Briones, Gabriel

    2013-02-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells.

  15. Intracellularly Induced Cyclophilins Play an Important Role in Stress Adaptation and Virulence of Brucella abortus

    PubMed Central

    García Fernández, Lucía; DelVecchio, Vito G.; Briones, Gabriel

    2013-01-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells. PMID:23230297

  16. Cell swelling-induced ATP release is tightly dependent on intracellular calcium elevations

    PubMed Central

    Boudreault, Francis; Grygorczyk, Ryszard

    2004-01-01

    Mechanical stresses release ATP from a variety of cells by a poorly defined mechanism(s). Using custom-designed flow-through chambers, we investigated the kinetics of cell swelling-induced ATP secretion, cell volume and intracellular calcium changes in epithelial A549 and 16HBE14o− cells, and NIH/3T3 fibroblasts. Fifty per cent hypotonic shock triggered transient ATP release from cell confluent monolayers, which consistently peaked at around 1 min 45 s for A549 and NIH/3T3, and at 3 min for 16HBE14o− cells, then declined to baseline within the next 15 min. Whereas the release time course had a similar pattern for the three cell types, the peak rates differed significantly (294 ± 67, 70 ± 22 and 17 ± 2.8 pmol min−1 (106 cells)−1, for A549, 16HBE14o− and NIH/3T3, respectively). The concomitant volume changes of substrate-attached cells were analysed by a 3-dimensional cell shape reconstruction method based on images acquired from two perpendicular directions. The three cell types swelled at a similar rate, reaching maximal expansion in 1 min 45 s, but differed in the duration of the volume plateau and regulatory volume decrease (RVD). These experiments revealed that ATP release does not correlate with either cell volume expansion and the expected activation of stretch-sensitive channels, or with the activation of volume-sensitive, 5-nitro-2-(3-phenylpropylamino) benzoic acid-inhibitable anion channels during RVD. By contrast, ATP release was tightly synchronized, in all three cell types, with cytosolic calcium elevations. Furthermore, loading A549 cells with the calcium chelator BAPTA significantly diminished ATP release (71% inhibition of the peak rate), while the calcium ionophore ionomycin triggered ATP release in the absence of cell swelling. Lowering the temperature to 10°C almost completely abolished A549 cell swelling-induced ATP release (95% inhibition of the peak rate). These results strongly suggest that calcium-dependent exocytosis plays a

  17. Transgenic Strategies to Study Podocyte Loss and Regeneration

    PubMed Central

    Lombardi, Duccio

    2015-01-01

    Podocyte death and regeneration are major topics in kidney research but remain controversial. Data obtained in humans demonstrate the existence of cells sited along Bowman's capsule that behave as podocyte progenitors in vitro and in in vivo mouse models of podocyte injury xenotrasplanted with this human-derived population. However, this podocyte reservoir still remains elusive in murine models, where it could be more easily studied. Transgenic models can be a powerful tool to identify this population and to better understand its dynamics and hierarchies in both physiological and pathological conditions. Indeed, exploiting transgenic approaches allows detecting, at the single cell level, movements, cell death, and replacement. Moreover, through lineage tracing it is now possible to identify specific population increase and to point out clonal expansions during or after the regenerative processes. However, applying transgenic strategies to study glomerular regeneration requires the search of markers to unequivocally identify this progenitor population. Achieving this aim would lead to a deep comprehension of the biological processes that underlie glomerular regeneration and clarify how different cell pools interface during this phase. Here we discuss strategies that have been used and new approaches in transgenic models finalized to study podocyte loss and subsequent replacement. PMID:26089920

  18. Toward the development of podocyte-specific drugs

    PubMed Central

    Reiser, Jochen; Gupta, Vineet; Kistler, Andreas D.

    2014-01-01

    Most kidney diseases that ultimately lead to end-stage renal failure originate within the glomerulus and are associated with proteinuria. Treatment options are unspecific and offer partial cures at best because available therapies do not primarily treat glomerular cells but rather act systemically and thus cause many side effects. Most glomerulopathies directly stem from injury to podocytes, cells that have a key role in the maintenance of the glomerular filter. Thus, these cells constitute an obvious and promising target for the development of novel kidney-protective drugs. During the last decade, enormous advances have been made in the understanding of podocyte structure and function. A number of pathways that are altered during glomerular diseases may be targeted by novel small- and large-molecule drugs as well as biologicals that have been identified in nephrology and other areas of drug development. Cultured podocytes provide a valuable model for high-throughput drug screening assays. Furthermore, podocytes have been shown to possess many features that make them particularly good target cells for renal protection. This mini-review discusses some of the most recent promising data related to potential drug therapy for proteinuria and kidney disease through direct podocyte targeting. PMID:20130528

  19. The effect of albumin on podocytes: The role of the fatty acid moiety and the potential role of CD36 scavenger receptor

    SciTech Connect

    Pawluczyk, I.Z.A.; Pervez, A.; Ghaderi Najafabadi, M.; Saleem, M.A.; Topham, P.S.

    2014-08-15

    Evidence is emerging that podocytes are able to endocytose proteins such as albumin using kinetics consistent with a receptor-mediated process. To date the role of the fatty acid moiety on albumin uptake kinetics has not been delineated and the receptor responsible for uptake is yet to be identified. Albumin uptake studies were carried out on cultured human podocytes exposed to FITC-labelled human serum albumin either carrying fatty acids (HSA{sub +FA}) or depleted of them (HSA{sub −FA}). Receptor-mediated endocytosis of FITC-HSA{sub +FA} over 60 min was 5 times greater than that of FITC-HSA{sub −FA}. 24 h exposure of podocytes to albumin up-regulated nephrin expression and induced the activation of caspase-3. These effects were more pronounced in response to HSA{sub −FA.} Individually, anti-CD36 antibodies had no effect upon endocytosis of FITC-HSA. However, a cocktail of 2 antibodies reduced uptake by nearly 50%. Albumin endocytosis was enhanced in the presence of the CD36 specific inhibitor sulfo-N-succinimidyl oleate (SSO) while knock-down of CD36 using CD36siRNA had no effect on uptake. These data suggest that receptor-mediated endocytosis of albumin by podocytes is regulated by the fatty acid moiety, although, some of the detrimental effects are induced independently of it. CD36 does not play a direct role in the uptake of albumin. - Highlights: • The fatty acid moiety is essential for receptor mediated endocytosis of albumin. • Fatty acid depleted albumin is more pathogenic to podocytes. • CD36 is not directly involved in albumin uptake by podocytes.

  20. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway.

    PubMed

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho; Lee, Youn Ju

    2016-07-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  1. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway

    PubMed Central

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho

    2016-01-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  2. DNA Damage–Induced Bcl-xL Deamidation Is Mediated by NHE-1 Antiport Regulated Intracellular pH

    PubMed Central

    Zhao, Rui; Oxley, David; Smith, Trevor S; Follows, George A; Green, Anthony R; Alexander, Denis R

    2007-01-01

    The pro-survival protein Bcl-xL is critical for the resistance of tumour cells to DNA damage. We have previously demonstrated, using a mouse cancer model, that oncogenic tyrosine kinase inhibition of DNA damage–induced Bcl-xL deamidation tightly correlates with T cell transformation in vivo, although the pathway to Bcl-xL deamidation remains unknown and its functional consequences unclear. We show here that rBcl-xL deamidation generates an iso-Asp52/iso-Asp66 species that is unable to sequester pro-apoptotic BH3-only proteins such as Bim and Puma. DNA damage in thymocytes results in increased expression of the NHE-1 Na/H antiport, an event both necessary and sufficient for subsequent intracellular alkalinisation, Bcl-xL deamidation, and apoptosis. In murine thymocytes and tumour cells expressing an oncogenic tyrosine kinase, this DNA damage–induced cascade is blocked. Enforced intracellular alkalinisation mimics the effects of DNA damage in murine tumour cells and human B-lineage chronic lymphocytic leukaemia cells, thereby causing Bcl-xL deamidation and increased apoptosis. Our results define a signalling pathway leading from DNA damage to up-regulation of the NHE-1 antiport, to intracellular alkalanisation to Bcl-xL deamidation, to apoptosis, representing the first example, to our knowledge, of how deamidation of internal asparagine residues can be regulated in a protein in vivo. Our findings also suggest novel approaches to cancer therapy. PMID:17177603

  3. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative.

    PubMed

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Ma, Jianbiao; Gao, Hui

    2015-12-30

    Characteristic aggregation-induced quenching of π-fluorophores imposed substantial hindrance to their utilization in nanomedicine for insight into microscopic intracellular trafficking of therapeutic payload. To address this obstacle, we attempted to introduce a novel aggregation-induced emission (AIE) fluorophore into the cationic polymer, which was further used for formulation of a gene delivery carrier. Note that the selective restriction of the intramolecular rotation of the AIE fluorophore through its covalent bond to the polymer conduced to immense AIE. Furthermore, DNA payload labeled with the appropriate fluorophore as the Förster resonance energy transfer (FRET) acceptor verified a facile strategy to trace intracellular DNA releasing activity relying on the distance limitation requested by FRET (AIE fluorophore as FRET donor). Moreover, the hydrophobic nature of the AIE fluorophore appeared to promote colloidal stability of the constructed formulation. Together with other chemistry functionalization strategies (including endosome escape), the ultimate formulation exerted dramatic gene transfection efficiency. Hence, this report manifested a first nanomedicine platform combining AIE and FRET for microscopic insight into DNA intracellular trafficking activity. PMID:26634294

  4. The Importance of Podocyte Adhesion for a Healthy Glomerulus

    PubMed Central

    Lennon, Rachel; Randles, Michael J.; Humphries, Martin J.

    2014-01-01

    Podocytes are specialized epithelial cells that cover the outer surfaces of glomerular capillaries. Unique cell junctions, known as slit diaphragms, which feature nephrin and Neph family proteins in addition to components of adherens, tight, and gap junctions, connect adjacent podocyte foot processes. Single gene disorders affecting the slit diaphragm result in nephrotic syndrome in humans, characterized by massive loss of protein across the capillary wall. In addition to specialized cell junctions, interconnecting podocytes also adhere to the glomerular basement membrane (GBM) of the capillary wall. The GBM is a dense network of secreted, extracellular matrix (ECM) components and contains tissue-restricted isoforms of collagen IV and laminin in addition to other structural proteins and ECM regulators such as proteases and growth factors. The specialized niche of the GBM provides a scaffold for endothelial cells and podocytes to support their unique functions and human genetic mutations in GBM components lead to renal failure, thus highlighting the importance of cell–matrix interactions in the glomerulus. Cells adhere to ECM via adhesion receptors, including integrins, syndecans, and dystroglycan and in particular the integrin heterodimer α3β1 is required to maintain barrier integrity. Therefore, the sophisticated function of glomerular filtration relies on podocyte adhesion both at cell junctions and at the interface with the ECM. In health, the podocyte coordinates signals from cell junctions and cell–matrix interactions, in response to environmental cues in order to regulate filtration and as our understanding of mechanisms that control cell adhesion in the glomerulus develops, then insight into the effects of disease will improve. The ultimate goal will be to develop targeted therapies to prevent or repair defects in the filtration barrier and to restore glomerular function. PMID:25352829

  5. Triclocarban-induced change in intracellular Ca²⁺ level in rat thymocytes: cytometric analysis with Fluo-3 under Zn²⁺-free conditions.

    PubMed

    Miura, Yukari; Chen, Xiaohui; Yamada, Saki; Sugihara, Aya; Enkhjargal, Molomjamts; Sun, Yuanzhi; Kuroda, Keiko; Satoh, Masaya; Oyama, Yasuo

    2014-03-01

    Triclocarban (TCC) is an antimicrobial used in personal hygiene products. Recent health concerns arose after TCC was detected in the blood of human subjects who showered with soap containing TCC. In this study, the effect of TCC on intracellular Ca(2+) concentration in rat thymocytes was examined using Fluo-3, an indicator of intracellular Ca(2+). TCC at concentrations ranging from 0.1 μM to 3 μM increased intracellular Ca(2+) concentration biphasically: first by releasing Ca(2+) from intracellular Ca(2+) stores and then inducing Ca(2+) influx through store-operated Ca(2+) channels. The threshold TCC concentration to increase intracellular Ca(2+) concentration in this study was lower than the maximum TCC concentrations reported in human blood samples. Therefore, we anticipate that TCC at concentrations reported in human blood samples might disturb intracellular Ca(2+) signaling in human lymphocytes. PMID:24562054

  6. A Potential Role for Mechanical Forces in the Detachment of Podocytes and the Progression of CKD

    PubMed Central

    Lemley, Kevin V.

    2015-01-01

    Loss of podocytes underlies progression of CKD. Detachment of podocytes from the glomerular basement membrane (GBM) rather than apoptosis or necrosis seems to be the major mechanism of podocyte loss. Such detachment of viable podocytes may be caused by increased mechanical distending and shear forces and/or impaired adhesion to the GBM. This review considers the mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces. Furthermore, we detail the cellular mechanisms by which podocytes respond to these challenges, discuss the protective effects of angiotensin blockade, and note the questions that must be addressed to better understand the relationship between podocyte detachment and progression of CKD. PMID:25060060

  7. Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression

    PubMed Central

    Jeruschke, Stefanie; Jeruschke, Kay; DiStasio, Andrew; Karaterzi, Sinem; Büscher, Anja K.; Nalbant, Perihan; Klein-Hitpass, Ludger; Hoyer, Peter F.; Weiss, Jürgen; Stottmann, Rolf W.; Weber, Stefanie

    2015-01-01

    Background Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far. Methods To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. Results Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involved in cytoskeletal reorganization, cell adhesion, migration and extracellular matrix composition to be affected. Everolimus was capable of protecting podocytes from injury, both on transcriptional and protein level. Rescued genes included tubulin beta 2B class IIb (TUBB2B) and doublecortin domain containing 2 (DCDC2), both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Validating gene expression data, Western-blot analysis in cultured podocytes demonstrated an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Interestingly, Tubb2bbrdp/brdp mice revealed a delay in glomerular podocyte development as showed by podocyte-specific markers Wilm’s tumour 1, Podocin, Nephrin and Synaptopodin. Conclusions Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton

  8. Effects of Tumor Necrosis Factor-α on Podocyte Expression of Monocyte Chemoattractant Protein-1 and in Diabetic Nephropathy

    PubMed Central

    Chung, Choon Hee; Fan, Jingyi; Lee, Eun Young; Kang, Jeong Suk; Lee, Seung Joo; Pyagay, Petr E.; Khoury, Charbel C.; Yeo, Tet-Kin; Khayat, Mark F.; Wang, Amy; Chen, Sheldon

    2015-01-01

    Background/Aims Tumor necrosis factor (TNF)-α is believed to play a role in diabetic kidney disease. This study explores the specific effects of TNF-α with regard to nephropathy-relevant parameters in the podocyte. Methods Cultured mouse podocytes were treated with recombinant TNF-α and assayed for production of monocyte chemoattractant protein-1 (MCP-1) by enzyme-linked immunosorbent assay (ELISA). TNF-α signaling of MCP-1 was elucidated by antibodies against TNF receptor (TNFR) 1 or TNFR2 or inhibitors of nuclear factor-kappaB (NF-κB), phosphatidylinositol 3-kinase (PI3K) or Akt. In vivo studies were done on male db/m and type 2 diabetic db/db mice. Levels of TNF-α and MCP-1 were measured by RT-qPCR and ELISA in the urine, kidney and plasma of the two cohorts and correlated with albuminuria. Results Podocytes treated with TNF-α showed a robust increase (∼900%) in the secretion of MCP-1, induced in a dose- and time-dependent manner. Signaling of MCP-1 expression occurred through TNFR2, which was inducible by TNF-α ligand, but did not depend on TNFR1. TNF-α then proceeded via the NF-κB and the PI3K/Akt systems, based on the effectiveness of the inhibitors of those pathways. For in vivo relevance to diabetic kidney disease, TNF-α and MCP-1 levels were found to be elevated in the urine of db/db mice but not in the plasma. Conclusion TNF-α potently stimulates podocytes to produce MCP-1, utilizing the TNFR2 receptor and the NF-κB and PI3K/Akt pathways. Both TNF-α and MCP-1 levels were increased in the urine of diabetic db/db mice, correlating with the severity of diabetic albuminuria. PMID:25852733

  9. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway.

    PubMed

    Nijenhuis, Tom; Sloan, Alexis J; Hoenderop, Joost G J; Flesche, Jan; van Goor, Harry; Kistler, Andreas D; Bakker, Marinka; Bindels, Rene J M; de Boer, Rudolf A; Möller, Clemens C; Hamming, Inge; Navis, Gerjan; Wetzels, Jack F M; Berden, Jo H M; Reiser, Jochen; Faul, Christian; van der Vlag, Johan

    2011-10-01

    The transient receptor potential channel C6 (TRPC6) is a slit diaphragm-associated protein in podocytes involved in regulating glomerular filter function. Gain-of-function mutations in TRPC6 cause hereditary focal segmental glomerulosclerosis (FSGS), and several human acquired proteinuric diseases show increased glomerular TRPC6 expression. Angiotensin II (AngII) is a key contributor to glomerular disease and may regulate TRPC6 expression in nonrenal cells. We demonstrate that AngII regulates TRPC6 mRNA and protein levels in cultured podocytes and that AngII infusion enhances glomerular TRPC6 expression in vivo. In animal models for human FSGS (doxorubicin nephropathy) and increased renin-angiotensin system activity (Ren2 transgenic rats), glomerular TRPC6 expression was increased in an AngII-dependent manner. TRPC6 expression correlated with glomerular damage markers and glomerulosclerosis. We show that the regulation of TRPC6 expression by AngII and doxorubicin requires TRPC6-mediated Ca(2+) influx and the activation of the Ca(2+)-dependent protein phosphatase calcineurin and its substrate nuclear factor of activated T cells (NFAT). Accordingly, calcineurin inhibition by cyclosporine decreased TRPC6 expression and reduced proteinuria in doxorubicin nephropathy, whereas podocyte-specific inducible expression of a constitutively active NFAT mutant increased TRPC6 expression and induced severe proteinuria. Our findings demonstrate that the deleterious effects of AngII on podocytes and its pathogenic role in glomerular disease involve enhanced TRPC6 expression via a calcineurin/NFAT positive feedback signaling pathway. PMID:21839714

  10. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission

    PubMed Central

    Jalini, Shirin; Ye, Hui; Tonkikh, Alexander A.; Charlton, Milton P.; Carlen, Peter L.

    2016-01-01

    Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery. PMID:26934214

  11. Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings.

    PubMed

    Sherstneva, O N; Vodeneev, V A; Katicheva, L A; Surova, L M; Sukhov, V S

    2015-06-01

    Electrical signals presented in plants by action potential and by variation potential (VP) can induce a reversible inactivation of photosynthesis. Changes in the intracellular and extracellular pH during VP generation are a potential mechanism of photosynthetic response induction; however, this hypothesis requires additional experimental investigation. The purpose of the present work was to analyze the influence of pH changes on induction of the photosynthetic response in pumpkin. It was shown that a burning of the cotyledon induced VP propagation into true leaves of pumpkin seedlings inducing a decrease in the photosynthetic CO2 assimilation and an increase in non-photochemical quenching of fluorescence, whereas respiration was activated insignificantly. The photosynthetic response magnitude depended linearly on the VP amplitude. The intracellular and extracellular concentrations of protons were analyzed using pH-sensitive fluorescent probes, and the VP generation was shown to be accompanied by apoplast alkalization (0.4 pH unit) and cytoplasm acidification (0.3 pH unit). The influence of changes in the incubation medium pH on the non-photochemical quenching of fluorescence of isolated chloroplasts was also investigated. It was found that acidification of the medium stimulated the non-photochemical quenching, and the magnitude of this increase depended on the decrease in pH. Our results confirm the contribution of changes in intracellular and extracellular pH to induction of the photosynthetic response caused by VP. Possible mechanisms of the influence of pH changes on photosynthesis are discussed.

  12. Genes and Podocytes – New Insights into Mechanisms of Podocytopathy

    PubMed Central

    Bierzynska, Agnieszka; Soderquest, Katrina; Koziell, Ania

    2014-01-01

    After decades of primarily morphological study, positional cloning of the NPHS1 gene was the landmark event that established aberrant podocyte genetics as a pivotal cause of malfunction of the glomerular filter. This ended any uncertainty whether genetic mutation plays a significant role in hereditary nephrotic syndromes (NS) and confirmed podocytes as critical players in regulating glomerular protein filtration. Although subsequent sequencing of candidate genes chosen on the basis of podocyte biology had less success, unbiased analysis of genetically informative kindreds and syndromic disease has led to further gene discovery. However, the 45 genes currently associated with human NS explain not more than 20–30% of hereditary and only 10–20% of sporadic cases. It is becoming increasingly clear both from genetic analysis and phenotypic data – including occasional response to immunosuppressive agents and post-transplant disease recurrence in Mendelian disease – that monogenic inheritance of abnormalities in podocyte-specific genes disrupting filter function is only part of the story. Recent advances in genetic screening technology combined with increasingly robust bioinformatics are set to allow identification and characterization of novel disease causing variants and more importantly, disease modifying genes. Emerging data also support a significant but incompletely characterized immunoregulatory component. PMID:25667580

  13. Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes

    PubMed Central

    Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena

    2013-01-01

    The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190

  14. Increased intracellular Ca2+ selectively suppresses IL-1-induced NO production by reducing iNOS mRNA stability

    PubMed Central

    1995-01-01

    This study addresses the role of intracellular calcium (Ca2+) in the expression of iNOS, an IL-1 inducible gene in human articular chondrocytes. The calcium ionophore A23187 and ionomycin did not induce NO release or iNOS expression but inhibited dose dependently IL-1- induced NO release with IC50 of 200 nM and 100 nM, respectively. Increased intracellular Ca2+ induced by thapsigargin or cyclopiazonic acid, inhibitors of the endoplasmic reticulum Ca2+ ATPase, had similar inhibitory effects with IC50 of 1 nM and 3 microM, respectively. LPS and TNF alpha induced NO production were also suppressed by these Ca2+ elevating drugs. Levels of IL-1-induced iNOS protein were reduced by A23187, thapsigargin, and cyclopiazonic acid. These drugs as well as Bay K 8644 and KCl inhibited IL-1-induced iNOS mRNA expression. To analyze the role of Ca2+ in the expression of other IL-1 responsive genes in chondrocytes, these Ca2+ modulating drugs were tested for effects on COXII. In contrast to the inhibitory effects on iNOS mRNA, these drugs induced COXII mRNA expression and in combination with IL-1, enhanced COXII mRNA levels. Ca2+ mediated increases in COXII mRNA expression were associated with an increase in COXII protein. The kinetics of Ca2+ effects on IL-1-induced iNOS mRNA levels suggested a posttranscriptional mechanism. Analysis of iNOS mRNA half life showed that it was 6-7 h in IL-1-stimulated cells and decreased by A23187 to 2- 3 h. In conclusion, these results show that Ca2+ inhibits IL-1-induced NO release, iNOS protein, and mRNA expression in human articular chondrocytes by reducing iNOS mRNA stability. Under identical conditions increased Ca2+ enhances IL-1-induced COXII gene and protein expression. PMID:7540612

  15. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species.

    PubMed

    Wu, Dandan; Zhang, Jixiang; Wang, Jing; Li, Jiao; Liao, Fei; Dong, Weiguo

    2016-03-01

    Esophageal cancer is of high prevalence and poor prognosis. Hesperetin has been reported to exert antitumor ability by inducing apoptosis in many cancers in vitro and in vivo without obvious toxicity. However, there is no study concerning about the effect of hesperetin on esophageal cancer. In this study, we aimed to investigate whether hesperetin could induce apoptosis in esophageal cancer cells and explore its potential mechanism. We found that hesperetin induced esophageal cancer cells apoptosis in a concentration-dependent and time-dependent manner compared with the untreated cells. Hoechst 33258 staining and flow cytometry analysis showed more apoptotic cells in the hesperetin-treated group (p < 0.05, respectively). The intracellular reactive oxygen species (ROS) increased significantly, and glutathione (GSH) was depleted. The loss of △Ψ m was more tremendous in the hesperetin-treated cells. N-acetylcysteine (NAC) reduced the proapoptotic ability of hesperetin, while DL-buthionine-S, R-sulfoximine (BSO) enhanced the anticancer effect. Western blotting showed that the expression levels of cytochrome C (Cyt C) and apoptosis-inducing factor (AIF) decreased in mitochondria and increased in cytoplasm (p < 0.05). The levels of intracellular cleaved caspase-9, cleaved caspase-3, Apaf-1, Bcl-2-associated X protein (Bax), and suppressor of fused (SuFu) increased, while B cell lymphoma 2 (Bcl-2) and Survivin decreased. What is more, in xenograft tumor model, hesperetin inhibited the tumor growth significantly via induction of cell apoptosis which was detected by TUNEL assay (p < 0.05). Taken together, our study demonstrated that hesperetin could induce cell apoptosis in esophageal cancer cells via mitochondrial-mediated intrinsic pathway by accumulation of ROS.

  16. The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy

    PubMed Central

    Andeen, Nicole K.; Nguyen, Tri Q.; Steegh, Floor; Hudkins, Kelly L.; Najafian, Behzad; Alpers, Charles E.

    2015-01-01

    Reversal of diabetic nephropathy (DN) has been achieved in humans and mice, but only rarely and under special circumstances. Since progression of DN is related to podocyte loss, reversal of DN requires restoration of podocytes. Here we identified and quantified potential glomerular progenitor cells that could be a source for restored podocytes. DN was identified in 31 human renal biopsy cases and separated into morphologically early or advanced lesions. Markers of podocytes (WT-1, p57), parietal epithelial cells (claudin-1) and cell proliferation (Ki-67) were identified by immunohistochemistry. Podocyte density was progressively reduced with DN. Cells marking as podocytes (p57) were present infrequently on Bowman's capsule in controls, but significantly increased in histologically early DN. Ki-67 expressing cells were identified on the glomerular tuft and Bowman's capsule in DN, but rarely in controls. Cells marking as PECs were present on the glomerular tuft, particularly in morphologically advanced DN. These findings show evidence of phenotypic plasticity in podocyte and PEC populations and are consistent with studies in the BTBR ob/ob murine model in which reversibility of DN occurs with podocytes potentially regenerating from PEC precursors. Thus, our findings support, but do not prove, that podocytes may regenerate from PEC progenitors in human DN. If so, progression of DN may represent a modifiable net balance between podocyte loss and regeneration. PMID:26376129

  17. Discovery of new glomerular disease-relevant genes by translational profiling of podocytes in vivo

    PubMed Central

    Grgic, Ivica; Hofmeister, Andreas F.; Genovese, Giulio; Bernhardy, Andrea J.; Sun, Hua; Maarouf, Omar H.; Bijol, Vanesa; Pollak, Martin R.; Humphreys, Benjamin D.

    2014-01-01

    Identifying new biomarkers and therapeutic targets for podocytopathies such as focal segmental glomerulosclerosis (FSGS) requires a detailed analysis of transcriptional changes in podocytes over the course of disease. Here we used translating ribosome affinity purification (TRAP) to isolate and profile podocyte-specific mRNA in two different models of FSGS. Expressed eGFP-tagged ribosomal protein L10a in podocytes under the control of the Collagen-1α1 promoter enabled podocyte-specific mRNA isolation in a one-step process over the course of disease. This TRAP protocol robustly enriched known podocyte-specific mRNAs. We crossed col1α1-L10a mice with the actn4−/− and actn4+/K256E models of FSGS and analyzed podocyte transcriptional profiles at 2, 6 and 44 weeks of age. Two upregulated podocyte genes in murine FSGS (CXCL1 and DMPK) were found to be upregulated at the protein level in biopsies from patients with FSGS, validating this approach. There was no dilution of podocyte-specific transcripts during disease. These are the first podocyte-specific RNA expression datasets during aging and in two models of FSGS. This approach identified new podocyte proteins that are upregulated in FSGS and help define novel biomarkers and therapeutic targets for human glomerular disease. PMID:24940801

  18. The Histone Methyltransferase Enzyme Enhancer of Zeste Homolog 2 Protects against Podocyte Oxidative Stress and Renal Injury in Diabetes.

    PubMed

    Siddiqi, Ferhan S; Majumder, Syamantak; Thai, Kerri; Abdalla, Moustafa; Hu, Pingzhao; Advani, Suzanne L; White, Kathryn E; Bowskill, Bridgit B; Guarna, Giuliana; Dos Santos, Claudia C; Connelly, Kim A; Advani, Andrew

    2016-07-01

    Epigenetic regulation of oxidative stress is emerging as a critical mediator of diabetic nephropathy. In diabetes, oxidative damage occurs when there is an imbalance between reactive oxygen species generation and enzymatic antioxidant repair. Here, we investigated the function of the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) in attenuating oxidative injury in podocytes, focusing on its regulation of the endogenous antioxidant inhibitor thioredoxin interacting protein (TxnIP). Pharmacologic or genetic depletion of EZH2 augmented TxnIP expression and oxidative stress in podocytes cultured under high-glucose conditions. Conversely, EZH2 upregulation through inhibition of its regulatory microRNA, microRNA-101, downregulated TxnIP and attenuated oxidative stress. In diabetic rats, depletion of EZH2 decreased histone 3 lysine 27 trimethylation (H3K27me3), increased glomerular TxnIP expression, induced podocyte injury, and augmented oxidative stress and proteinuria. Chromatin immunoprecipitation sequencing revealed H3K27me3 enrichment at the promoter of the transcription factor Pax6, which was upregulated on EZH2 depletion and bound to the TxnIP promoter, controlling expression of its gene product. In high glucose-exposed podocytes and the kidneys of diabetic rats, the lower EZH2 expression detected coincided with upregulation of Pax6 and TxnIP. Finally, in a gene expression array, TxnIP was among seven of 30,854 genes upregulated by high glucose, EZH2 depletion, and the combination thereof. Thus, EZH2 represses the transcription factor Pax6, which controls expression of the antioxidant inhibitor TxnIP, and in diabetes, downregulation of EZH2 promotes oxidative stress. These findings expand the extent to which epigenetic processes affect the diabetic kidney to include antioxidant repair.

  19. Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium.

    PubMed

    Smith, Cassandra L; Steele, Jessica E; Stauber, Jennifer L; Jolley, Dianne F

    2014-11-01

    Phytochelatins and glutathione (reduced (GSH) and oxidised (GSSG)) are important intracellular ligands involved in metal sequestration and detoxification in algae. Intracellular ratios of GSH:GSSG are sensitive indicators of metal stress in algae, and like phytochelatin production are influenced by metal speciation, concentration, exposure time and the biological species. This study investigated the effect of copper exposure on phytochelatin and glutathione content in two marine diatoms Phaeodactylum tricornutum and Ceratoneis closterium at various time intervals between 0.5 and 72h. Liberation of cellular glutathione and phytochelatins was optimised using freeze/thaw cycles and chemical extraction, respectively. Extracted phytochelatins were derivatised (by fluorescent tagging of thiol compounds), separated and quantified using HPLC with fluorescence detection. Glutathione ratios were determined using a commercially available kit, which uses the enzyme glutathione reductase to measure total and oxidised glutathione. Despite similarities in size and shape between the two diatoms, differences in internalised copper, phytochelatin production (both chain length and quantity) and reduced glutathione concentrations were observed. P. tricornutum maintained reduced glutathione at between 58 and 80% of total glutathione levels at all time points, which would indicate low cellular stress. In C. closterium reduced glutathione constituted <10% of total glutathione after 48h. P. tricornutum also produced more phytochelatins and phytochelatins of longer chain length than C. closterium despite the latter species internalising significantly more copper. PMID:25261820

  20. Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium.

    PubMed

    Smith, Cassandra L; Steele, Jessica E; Stauber, Jennifer L; Jolley, Dianne F

    2014-11-01

    Phytochelatins and glutathione (reduced (GSH) and oxidised (GSSG)) are important intracellular ligands involved in metal sequestration and detoxification in algae. Intracellular ratios of GSH:GSSG are sensitive indicators of metal stress in algae, and like phytochelatin production are influenced by metal speciation, concentration, exposure time and the biological species. This study investigated the effect of copper exposure on phytochelatin and glutathione content in two marine diatoms Phaeodactylum tricornutum and Ceratoneis closterium at various time intervals between 0.5 and 72h. Liberation of cellular glutathione and phytochelatins was optimised using freeze/thaw cycles and chemical extraction, respectively. Extracted phytochelatins were derivatised (by fluorescent tagging of thiol compounds), separated and quantified using HPLC with fluorescence detection. Glutathione ratios were determined using a commercially available kit, which uses the enzyme glutathione reductase to measure total and oxidised glutathione. Despite similarities in size and shape between the two diatoms, differences in internalised copper, phytochelatin production (both chain length and quantity) and reduced glutathione concentrations were observed. P. tricornutum maintained reduced glutathione at between 58 and 80% of total glutathione levels at all time points, which would indicate low cellular stress. In C. closterium reduced glutathione constituted <10% of total glutathione after 48h. P. tricornutum also produced more phytochelatins and phytochelatins of longer chain length than C. closterium despite the latter species internalising significantly more copper.

  1. ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells

    PubMed Central

    Wang, Caixia; Hu, Xiaoke; Gao, Yan; Ji, Yinglu

    2015-01-01

    Owing to the wide use of novel nanoparticles (NPs) such as zinc oxide (ZnO) in all aspects of life, toxicological research on ZnO NPs is receiving increasing attention in these days. In this study, the toxicity of ZnO NPs in a human pulmonary adenocarcinoma cell line LTEP-a-2 was tested in vitro. Log-phase cells were exposed to different levels of ZnO NPs for hours, followed by colorimetric cell viability assay using tetrazolium salt and cell survival rate assay using trypan blue dye. Cell morphological changes were observed by Giemsa staining and light microscopy. Apoptosis was detected by using fluorescence microscopy and caspase-3 activity assay. Both intracellular reactive oxygen species (ROS) and reduced glutathione (GSH) were examined by a microplate-reader method. Results showed that ZnO NPs (≥0.01 μg/mL) significantly inhibited proliferation (P < 0.05) and induced substantial apoptosis in LTEP-a-2 cells after 4 h of exposure. The intracellular ROS level rose up to 30–40% corresponding to significant depletion (approximately 70–80%) in GSH content in LTEP-a-2 cells (P < 0.05), suggesting that ZnO NPs induced apoptosis mainly through increased ROS production. This study elucidates the toxicological mechanism of ZnO NPs in human pulmonary adenocarcinoma cells and provides reference data for application of nanomaterials in the environment. PMID:26339612

  2. ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells.

    PubMed

    Wang, Caixia; Hu, Xiaoke; Gao, Yan; Ji, Yinglu

    2015-01-01

    Owing to the wide use of novel nanoparticles (NPs) such as zinc oxide (ZnO) in all aspects of life, toxicological research on ZnO NPs is receiving increasing attention in these days. In this study, the toxicity of ZnO NPs in a human pulmonary adenocarcinoma cell line LTEP-a-2 was tested in vitro. Log-phase cells were exposed to different levels of ZnO NPs for hours, followed by colorimetric cell viability assay using tetrazolium salt and cell survival rate assay using trypan blue dye. Cell morphological changes were observed by Giemsa staining and light microscopy. Apoptosis was detected by using fluorescence microscopy and caspase-3 activity assay. Both intracellular reactive oxygen species (ROS) and reduced glutathione (GSH) were examined by a microplate-reader method. Results showed that ZnO NPs (≥ 0.01 μg/mL) significantly inhibited proliferation (P < 0.05) and induced substantial apoptosis in LTEP-a-2 cells after 4 h of exposure. The intracellular ROS level rose up to 30-40% corresponding to significant depletion (approximately 70-80%) in GSH content in LTEP-a-2 cells (P < 0.05), suggesting that ZnO NPs induced apoptosis mainly through increased ROS production. This study elucidates the toxicological mechanism of ZnO NPs in human pulmonary adenocarcinoma cells and provides reference data for application of nanomaterials in the environment. PMID:26339612

  3. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons.

    PubMed

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L; Anggono, Victor; Gether, Ulrik; Huganir, Richard L; Madsen, Kenneth L

    2013-08-27

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity. PMID:23940334

  4. Mountain cedar pollen induces IgE-independent mast cell degranulation, IL-4 production, and intracellular reactive oxygen species generation

    PubMed Central

    Endo, Shuichiro; Hochman, Daniel J.; Midoro-Horiuti, Terumi; Goldblum, Randall M.; Brooks, Edward G.

    2011-01-01

    Cedar pollens cause severe allergic disease throughout the world. We have previously characterized allergenic pollen glycoproteins from mountain cedar (Juniperus ashei) that bind to allergen-specific immunoglobulin E (IgE). In the present report, we investigated an alternative pathway of mast cell activation by mountain cedar pollen extract through IgE-independent mechanisms. We show that mountain cedar pollen directly induces mast cell serotonin and IL-4 release and enhances release induced by IgE cross-linking. Concomitant with mediator release, high levels of intracellular reactive oxygen species (ROS) were generated, and both ROS and serotonin release were inhibited by anti-oxidants. These findings suggest that alternative mechanisms exist whereby pollen exposure enhances allergic inflammatory mediator release through mechanisms that involve ROS. These mechanisms have the potential for enhancing the allergenic potency of pollens. PMID:21944563

  5. Functional importance of inositol-1,4,5-triphosphate-induced intracellular Ca2+ mobilization in galanin-induced microglial migration.

    PubMed

    Ifuku, Masataka; Okuno, Yuko; Yamakawa, Yukiko; Izumi, Kyoko; Seifert, Stefanie; Kettenmann, Helmut; Noda, Mami

    2011-04-01

    Galanin (GAL) is a neuropeptide which is up-regulated following neuronal axotomy or inflammation. One subtype of GAL receptor (GalR2) is reported to be expressed in the brain's immune cell population, microglia. In the present study, we investigated the effect of GAL on microglial migration and compared the mechanism with that of bradykinin (BK). GAL significantly increased the migration of rat cultured microglia at 0.1 pM. The GAL-induced signal cascade was partly similar to that induced by BK. It was not dependent on G(i/o) protein but involved activation of protein kinase C, phosphoinositide 3-kinase and Ca(2+)-dependent K(+) channels. However, reverse-mode activation of the Na(+) /Ca(2+) -exchanger 1 was not involved in GAL-induced microglial migration, unlike BK-induced migration. Likewise, nominally-free extracellular Ca(2+) inhibited BK-induced migration but not GAL-induced migration. An inositol-1,4,5-triphosphate receptor antagonist significantly inhibited GAL-induced migration. GAL-induced Ca(2+) signaling did not induce nitric oxide synthase expression, but up-regulated class II major histocompatibility complex expression. These results indicate that activation of inositol-1,4,5-triphosphate receptor and increase in intracellular Ca(2+) are important for GAL-induced migration and immunoreactivity in microglia. The differences in down-stream signal transduction induced by GAL and BK suggest that GAL and BK may control distinct microglial functions under pathological conditions.

  6. The redox sensitive glycogen synthase kinase 3β suppresses the self-protective antioxidant response in podocytes upon oxidative glomerular injury.

    PubMed

    Li, Changbin; Ge, Yan; Peng, Ai; Gong, Rujun

    2015-11-24

    The redox sensitive glycogen synthase kinase (GSK) 3 has been recently implicated in the pathogenesis of proteinuric glomerulopathy. However, prior studies are less conclusive because they relied solely on chemical inhibitors of GSK3, which provide poor discrimination between the isoforms of GSK3 apart from potential off target activities. In murine kidneys, the β rather than the α isoform of GSK3 was predominantly expressed in glomeruli and distributed intensely in podocytes. By employing the doxycycline-activated Cre-loxP site specific gene targeting system, GSK3β was successfully knocked out (KO) selectively in podocytes in adult mice, resulting in a phenotype no different from control littermates. Electron microscopy of glomeruli in KO mice demonstrated more glycogen accumulation in podocytes but otherwise normal ultrastructures. Upon oxidative glomerular injury induced by protein overload, KO mice excreted significantly less albuminuria and had much attenuated podocytopathy and glomerular damage. The anti-proteinuric and glomerular protective effect was concomitant with diminished accumulation of reactive oxygen species in glomeruli in KO mice, which was likely secondary to a reinforced Nrf2 antioxidant response in podocytes. Collectively, our data suggest that GSK3β is dispensable for glomerular function and histology under normal circumstances but may serve as a therapeutic target for protecting from oxidative glomerular injuries.

  7. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    PubMed

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  8. The redox sensitive glycogen synthase kinase 3β suppresses the self-protective antioxidant response in podocytes upon oxidative glomerular injury

    PubMed Central

    Li, Changbin; Ge, Yan; Peng, Ai; Gong, Rujun

    2015-01-01

    The redox sensitive glycogen synthase kinase (GSK) 3 has been recently implicated in the pathogenesis of proteinuric glomerulopathy. However, prior studies are less conclusive because they relied solely on chemical inhibitors of GSK3, which provide poor discrimination between the isoforms of GSK3 apart from potential off target activities. In murine kidneys, the β rather than the α isoform of GSK3 was predominantly expressed in glomeruli and distributed intensely in podocytes. By employing the doxycycline-activated Cre-loxP site specific gene targeting system, GSK3β was successfully knocked out (KO) selectively in podocytes in adult mice, resulting in a phenotype no different from control littermates. Electron microscopy of glomeruli in KO mice demonstrated more glycogen accumulation in podocytes but otherwise normal ultrastructures. Upon oxidative glomerular injury induced by protein overload, KO mice excreted significantly less albuminuria and had much attenuated podocytopathy and glomerular damage. The anti-proteinuric and glomerular protective effect was concomitant with diminished accumulation of reactive oxygen species in glomeruli in KO mice, which was likely secondary to a reinforced Nrf2 antioxidant response in podocytes. Collectively, our data suggest that GSK3β is dispensable for glomerular function and histology under normal circumstances but may serve as a therapeutic target for protecting from oxidative glomerular injuries. PMID:26567873

  9. Evidence for light-induced release of Ca2+ from intracellular stores in bee photoreceptors.

    PubMed

    Ziegler, A; Walz, B

    1990-03-26

    In the drone retina light elicits an increase in the extracellular Ca2+ concentration ([Ca]o). After withdrawal of extracellular Ca2+ and addition of 1 mM EGTA (ethyleneglycol-bis (beta-aminoethyl ether) N,N,N',N'-tetraacetic acid) a short light flash still caused an increase in [Ca]o as measured with Ca2(+)-sensitive microelectrodes. This increase vanished after a few flashes. When [Ca]o was reduced to 10(-5) M Ca2+ (no EGTA) the rise in Cao disappeared after several light flashes. Subsequent stimulation with a dim steady light produced a decrease in [Ca]o and caused a recovery of the increase in [Ca]o elicited by a test flash. The results show that bee photoreceptors have a light-depletable intracellular Ca2+ store which can be reloaded by dim continuous lights.

  10. Intracellular acidification-induced alkali metal cation/H+ exchange in human neutrophils

    PubMed Central

    1987-01-01

    Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types. PMID:3694176

  11. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione.

    PubMed

    Zhu, Jingsong; Krom, Bastiaan P; Sanglard, Dominique; Intapa, Chaidan; Dawson, Clinton C; Peters, Brian M; Shirtliff, Mark E; Jabra-Rizk, Mary Ann

    2011-01-01

    Farnesol is a key derivative in the sterol biosynthesis pathway in eukaryotic cells previously identified as a quorum sensing molecule in the human fungal pathogen Candida albicans. Recently, we demonstrated that above threshold concentrations, farnesol is capable of triggering apoptosis in C. albicans. However, the exact mechanism of farnesol cytotoxicity is not fully elucidated. Lipophilic compounds such as farnesol are known to conjugate with glutathione, an antioxidant crucial for cellular detoxification against damaging compounds. Glutathione conjugates act as substrates for ATP-dependent ABC transporters and are extruded from the cell. To that end, this current study was undertaken to validate the hypothesis that farnesol conjugation with intracellular glutathione coupled with Cdr1p-mediated extrusion of glutathione conjugates, results in total glutathione depletion, oxidative stress and ultimately fungal cell death. The combined findings demonstrated a significant decrease in intracellular glutathione levels concomitant with up-regulation of CDR1 and decreased cell viability. However, addition of exogenous reduced glutathione maintained intracellular glutathione levels and enhanced viability. In contrast, farnesol toxicity was decreased in a mutant lacking CDR1, whereas it was increased in a CDR1-overexpressing strain. Further, gene expression studies demonstrated significant up-regulation of the SOD genes, primary enzymes responsible for defense against oxidative stress, with no changes in expression in CDR1. This is the first study describing the involvement of Cdr1p-mediated glutathione efflux as a mechanism preceding the farnesol-induced apoptotic process in C. albicans. Understanding of the mechanisms underlying farnesol-cytotoxicity in C. albicans may lead to the development of this redox-cycling agent as an alternative antifungal agent. PMID:22205973

  12. Effect of gadolinium on stretch-induced changes in contraction and intracellularly recorded action- and afterpotentials of rat isolated atrium.

    PubMed Central

    Tavi, P.; Laine, M.; Weckström, M.

    1996-01-01

    1. Atrial arrhythmias, like atrial fibrillation and extrasystoles, are common in clinical situations when atrial pressure is increased. Although cardiac mechanoelectrical feedback has been under intensive study for many years, the mechanisms of stretch-induced arrhythmias are not known in detail. This is partly due to methodological difficulties in recording intracellular voltage during stretch stimulation. In this study we investigated the effects of gadolinium (Gd3+), a blocker of stretch-activated (SA) channels, on stretch-induced changes in rat atrial action potentials and contraction force. 2. By intracellular voltage recordings from rat isolated atria we studied the effects of Gd3+ (80 microM) on stretch-induced changes in action potentials. The stretch was induced by increasing pressure inside the atrium (1 mmHg to 7 mmHg). An elastic electrode holder that moved along the atrial tissue was used in the recordings. Thus the mechanical artifacts were eliminated and the cell-electrode contact was made more stable. To examine the influence of Gd3+ on atrial contraction we stretched the atria at different diastolic pressure levels (1 to 7 mmHg) with Gd3+ application of (80 microM) or diltiazem (5.0 microM). Contraction force was monitored by recording the pressure changes generated by the atrial contractions. 3. Our results show that: (1) atrial stretch induces delayed afterdepolarizations (DADs), increase in action potential amplitude and increase in relative conduction speed; (ii) Gd3+ blocks stretch-induced DADs and action potential changes; (iii) Gd3+ inhibits pressure-stimulated increase in the atrial contraction force, while similar inhibition is not observed with diltiazem, a blocker of L-type calcium channels. 4. This study suggests that Gd3+ inhibits stretch-induced changes in cell electrophysiology and contraction in the rat atrial cells and that the effects of gadolinium are due to rather specific block of stretch-activated ion channels with only a

  13. Minimal change disease in graft versus host disease: a podocyte response to the graft?

    PubMed

    Huskey, Janna; Rivard, Chris; Myint, Han; Lucia, Scott; Smith, Maxwell; Shimada, Michiko; Ishimoto, Takuji; Araya, Carlos; Garin, Eduardo H; Johnson, Richard J

    2013-12-01

    Nephrotic syndrome is a rare complication of hematopoietic cell transplantation. It has been suggested that nephrotic syndrome may represent a limited form of graft-versus-host disease although the pathological link between these two entities remains unclear. In this paper, we report a case of a 61-year-old female who underwent nonmyeloablative allogenic stem cell transplantation for T-cell prolymphocytic leukemia and subsequently developed biopsy proven minimal change disease shortly after cessation of her immunosuppression therapy. Urinary CD80 was markedly elevated during active disease and disappeared following corticosteroid-induced remission. We hypothesize that alloreactive donor T cells target the kidney and induce podocyte expression of CD80 that results in proteinuria from limited 'graft versus host' disease.

  14. A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin.

    PubMed

    Hernández-Gras, Francesc; Boronat, Albert

    2015-06-01

    Temperature-induced lipocalins (TILs) play an essential role in the response of plants to different abiotic stresses. In agreement with their proposed role in protecting membrane lipids, TILs have been reported to be associated to cell membranes. However, TILs show an overall hydrophilic character and do not contain any signal for membrane targeting nor hydrophobic sequences that could represent transmembrane domains. Arabidopsis TIL (AtTIL) is considered the ortholog of human ApoD, a protein known to associate to membranes through a short hydrophobic loop protruding from strands 5 and 6 of the lipocalin β-barrel. An equivalent loop (referred to as HPR motif) is also present between β-strands 5 and 6 of TILs. The HPR motif, which is highly conserved among TIL proteins, extends over as short stretch of eight amino acids and contains four invariant proline residues. Subcellular localization studies have shown that TILs are targeted to a variety of cell membranes and organelles. We have also found that the HPR motif is necessary and sufficient for the intracellular targeting of TILs. Modeling studies suggest that the HPR motif may directly anchor TILs to cell membranes, favoring in this way further contact with the polar group of membrane lipids. However, some particular features of the HPR motif open the possibility that targeting of TILs to cell membranes could be mediated by interaction with other proteins. The functional analysis of the HPR motif unveils the existence of novel mechanisms involved in the intracellular targeting of proteins in plants.

  15. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  16. Edwardsiella tarda-Induced Inhibition of Apoptosis: A Strategy for Intracellular Survival

    PubMed Central

    Zhou, Ze-jun; Sun, Li

    2016-01-01

    Edwardsiella tarda is a Gram-negative bacterial pathogen that can infect a wide range of freshwater and marine fish. One salient feature of E. tarda is the ability to survive and replicate in various host cells. In this study, we observed that E. tarda replicated robustly in the zebrafish cell line ZF4, and that E. tarda-infected cells exhibited no detectable signs of apoptosis. Global transcriptome analysis and quantitative real-time RT-PCR revealed that E. tarda infection generally significantly downregulated pro-apoptotic genes and upregulated anti-apoptotic genes. To investigate the role of apoptosis in E. tarda infection, two upregulated anti-apoptotic genes (Fech and Prx3) and two downregulated pro-apoptotic genes (Brms1a and Ivns1a) were overexpressed in zebrafish. Subsequent infection study showed that Fech and Prx3 overexpression significantly promoted E. tarda dissemination in and colonization of fish tissues, while Brms1a and Ivns1a overexpression significantly reduced E. tarda dissemination and colonization. Consistently, when Fech and Prx3 were knocked down in zebrafish, E. tarda infection was significantly inhibited, whereas Brms1a and Ivns1a knockdown significantly enhanced E. tarda infection. These results indicate for the first time that E. tarda prevents apoptosis in teleost as a strategy for intracellular survival, and that some putative apoptotic genes of teleost function in the apoptosis pathway probably in a manner similar to that in mammalian systems. PMID:27471679

  17. A Specific Transitory Increase in Intracellular Calcium Induced by Progesterone Promotes Acrosomal Exocytosis in Mouse Sperm.

    PubMed

    Romarowski, Ana; Sánchez-Cárdenas, Claudia; Ramírez-Gómez, Héctor V; Puga Molina, Lis del C; Treviño, Claudia L; Hernández-Cruz, Arturo; Darszon, Alberto; Buffone, Mariano G

    2016-03-01

    During capacitation, sperm acquire the ability to undergo the acrosome reaction (AR), an essential step in fertilization. Progesterone produced by cumulus cells has been associated with various physiological processes in sperm, including stimulation of AR. An increase in intracellular Ca(2+) ([Ca(2+)]i) is necessary for AR to occur. In this study, we investigated the spatiotemporal correlation between the changes in [Ca(2+)]i and AR in single mouse spermatozoa in response to progesterone. We found that progesterone stimulates an [Ca(2+)]i increase in five different patterns: gradual increase, oscillatory, late transitory, immediate transitory, and sustained. We also observed that the [Ca(2+)]i increase promoted by progesterone starts at either the flagellum or the head. We validated the use of FM4-64 as an indicator for the occurrence of the AR by simultaneously detecting its fluorescence increase and the loss of EGFP in transgenic EGFPAcr sperm. For the first time, we have simultaneously visualized the rise in [Ca(2+)]i and the process of exocytosis in response to progesterone and found that only a specific transitory increase in [Ca(2+)]i originating in the sperm head promotes the initiation of AR. PMID:26819478

  18. Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis.

    PubMed

    Liu, D; Martino, G; Thangaraju, M; Sharma, M; Halwani, F; Shen, S H; Patel, Y C; Srikant, C B

    2000-03-31

    Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.

  19. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death.

    PubMed

    Zhang, Bao; Qin, Yuxuan; Han, Yuzhu; Dong, Chunjuan; Li, Pinglan; Shang, Qingmao

    2016-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins.

  20. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death.

    PubMed

    Zhang, Bao; Qin, Yuxuan; Han, Yuzhu; Dong, Chunjuan; Li, Pinglan; Shang, Qingmao

    2016-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins. PMID:27267622

  1. Anion exchanger 1 interacts with nephrin in podocytes.

    PubMed

    Wu, Fiona; Saleem, Moin A; Kampik, Nicole B; Satchwell, Timothy J; Williamson, Rosalind C; Blattner, Simone M; Ni, Lan; Toth, Tibor; White, Graham; Young, Mark T; Parker, Mark D; Alper, Seth L; Wagner, Carsten A; Toye, Ashley M

    2010-09-01

    The central role of the multifunctional protein nephrin within the macromolecular complex forming the glomerular slit diaphragm is well established, but the mechanisms linking the slit diaphragm to the cytoskeleton and to the signaling pathways involved in maintaining the integrity of the glomerular filter remain incompletely understood. Here, we report that nephrin interacts with the bicarbonate/chloride transporter kidney anion exchanger 1 (kAE1), detected by yeast two-hybrid assay and confirmed by immunoprecipitation and co-localization studies. We confirmed low-level glomerular expression of kAE1 in human and mouse kidneys by immunoblotting and immunofluorescence microscopy. We observed less kAE1 in human glomeruli homozygous for the NPHS1(FinMaj) nephrin mutation, whereas kAE1 expression remained unchanged in the collecting duct. We could not detect endogenous kAE1 expression in NPHS1(FinMaj) podocytes in primary culture, but heterologous re-introduction of wild-type nephrin into these podocytes rescued kAE1 expression. In kidneys of Ae1(-/-) mice, nephrin abundance was normal but its distribution was altered along with the reported kAE1-binding protein integrin-linked kinase (ILK). Ae1(-/-) mice had increased albuminuria with glomerular enlargement, mesangial expansion, mesangiosclerosis, and expansion of the glomerular basement membrane. Glomeruli with ILK-deficient podocytes also demonstrated altered AE1 and nephrin expression, further supporting the functional interdependence of these proteins. These data suggest that the podocyte protein kAE1 interacts with nephrin and ILK to maintain the structure and function of the glomerular basement membrane.

  2. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases.

    PubMed

    Merscher, Sandra; Fornoni, Alessia

    2014-01-01

    Sphingolipids are components of the lipid rafts in plasma membranes, which are important for proper function of podocytes, a key element of the glomerular filtration barrier. Research revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disorders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate in Gaucher disease in glomerular cells and are associated with clinical proteinuria initiated intensive research into the function of other sphingolipids in glomerular disorders. The accumulation of sphingolipids in other genetic diseases including Tay-Sachs, Sandhoff, Fabry, hereditary inclusion body myopathy 2, Niemann-Pick, and nephrotic syndrome of the Finnish type and its implications with respect to glomerular pathology will be discussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmental glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous interest. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is expressed in podocytes where it modulates acid sphingomyelinase activity and acts as a master modulator of danger signaling. Decreased SMPDL3b expression in post-reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates with the recurrence of proteinuria in patients and in experimental models of xenotransplantation. Increased SMPDL3b expression is associated with DKD. The consequences of differential SMPDL3b expression in podocytes in these diseases with respect to their pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm in the glomerulus will be discussed. PMID:25126087

  3. Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor.

    PubMed

    Karpus, Olga N; Hsiao, Cheng-Chih; de Kort, Hanneke; Tak, Paul P; Hamann, Jörg

    2016-08-26

    Fibroblast-like synoviocytes (FLS) express functional membranous and cytoplasmic sensors for double-stranded (ds)RNA. Notably, FLS undergo apoptosis upon transfection with the synthetic dsRNA analog poly(I:C). We here studied the mechanism of intracellular poly(I:C) recognition and subsequent cell death in FLS. FLS responded similarly to poly(I:C) or 3pRNA transfection; however, only intracellular delivery of poly(I:C) induced significant cell death, accompanied by upregulation of pro-apoptotic proteins Puma and Noxa, caspase 3 cleavage, and nuclear segregation. Knockdown of the DExD/H-box helicase MDA5 did not affect the response to intracellular poly(I:C); in contrast, knockdown of RIG-I abrogated the response to 3pRNA. Knockdown of the downstream adaptor proteins IPS, STING, and TRIF or inhibition of TBK1 did not affect the response to intracellular poly(I:C), while knockdown of IFNAR blocked intracellular poly(I:C)-mediated signaling and cell death. We conclude that a so far unknown intracellular sensor recognizes linear dsRNA and induces apoptosis in FLS. PMID:27343555

  4. Extracellular ATP is cytotoxic to mononuclear phagocytes but does not induce killing of intracellular Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Woo, Seng-Ryong; Barletta, Raúl G; Czuprynski, Charles J

    2007-09-01

    Mycobacterium avium subsp. paratuberculosis is the etiologic agent of Johne's disease, a chronic granulomatous enteritis in ruminants. ATP has been reported to induce cell death of macrophages and killing of Mycobacterium species in human and murine macrophages. In this study we investigated the short-term effect of ATP on the viability of M. avium subsp. paratuberculosis-infected bovine mononuclear phagocytes and the bacilli within them. Addition of 5 mM ATP to M. avium subsp. paratuberculosis-infected bovine monocytes resulted in 50% cytotoxicity of bovine monocytes at 24 h. Addition of 2'(3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt (Bz-ATP), which is a longer-lived ATP homologue and purinergic receptor agonist, significantly increased the uptake of YO-PRO, which is a marker for membrane pore activation by P2X receptors. Addition of Bz-ATP also stimulated lactate dehydrogenase release and caspase-3 activity in infected bovine monocytes. Neither ATP nor Bz-ATP reduced the survival of M. avium subsp. paratuberculosis in bovine mononuclear phagocytes. Likewise, addition of ATP or Bz-ATP was cytotoxic to murine macrophage cell lines (RAW 264.7 and J774A.1 cells) but did not affect the intracellular survival of M. avium subsp. paratuberculosis, nor were the numbers of viable Mycobacterium avium subsp. avium or Mycobacterium bovis BCG cells altered in bovine mononuclear phagocytes or J774A.1 cells following ATP or Bz-ATP treatment. These data suggest that extracellular ATP does not induce the killing of intracellular M. avium subsp. paratuberculosis in bovine mononuclear phagocytes.

  5. CD2AP Regulates SUMOylation of CIN85 in Podocytes

    PubMed Central

    Niedenthal, Rainer; Klaus, Malte; Teng, Beina; Worthmann, Kirstin; King, Benjamin L.; Peterson, Kevin J.; Haller, Hermann

    2012-01-01

    Podocytes are highly differentiated and polarized epithelial cells located on the visceral side of the glomerulus. They form an indispensable component of the glomerular filter, the slit diaphragm, formed by several transmembrane proteins and adaptor molecules. Disruption of the slit diaphragm can lead to massive proteinuria and nephrotic syndrome in mice and humans. CD2AP is an adaptor protein that is important for the maintenance of the slit diaphragm. Together with its paralogue, CIN85, CD2AP belongs to a family of adaptor proteins that are primarily described as being involved in endocytosis and downregulation of receptor tyrosine kinase activity. We have shown that full-length CIN85 is upregulated in podocytes in the absence of CD2AP, whereas in wild-type cells, full-length CIN85 is not detectable. In this study, we show that full-length CIN85 is postranslationally modified by SUMOylation in wild-type podocytes. We can demonstrate that CIN85 is SUMOylated by SUMO-1, -2, and -3 and that SUMOylation is enhanced in the presence of CD2AP. Conversion of lysine 598 to arginine completely abolishes SUMOylation and leads to increased binding of CIN85 to nephrin. Our results indicate a novel role for CD2AP in regulating posttranslational modification of CIN85. PMID:22203040

  6. Intracellular Metabolite Pool Changes in Response to Nutrient Depletion Induced Metabolic Switching in Streptomyces coelicolor.

    PubMed

    Wentzel, Alexander; Sletta, Havard; Ellingsen, Trond E; Bruheim, Per

    2012-02-17

    A metabolite profiling study of the antibiotic producing bacterium Streptomyces coelicolor A3(2) has been performed. The aim of this study was to monitor intracellular metabolite pool changes occurring as strains of S. coelicolor react to nutrient depletion with metabolic re-modeling, so-called metabolic switching, and transition from growth to secondary metabolite production phase. Two different culture media were applied, providing depletion of the key nutrients phosphate and L-glutamate, respectively, as the triggers for metabolic switching. Targeted GC-MS and LC-MS methods were employed to quantify important primary metabolite groups like amino acids, organic acids, sugar phosphates and other phosphorylated metabolites, and nucleotides in time-course samples withdrawn from fully-controlled batch fermentations. A general decline, starting already in the early growth phase, was observed for nucleotide pools and phosphorylated metabolite pools for both the phosphate and glutamate limited cultures. The change in amino acid and organic acid pools were more scattered, especially in the phosphate limited situation while a general decrease in amino acid and non-amino organic acid pools was observed in the L-glutamate limited situation. A phoP deletion mutant showed basically the same metabolite pool changes as the wild-type strain M145 when cultivated on phosphate limited medium. This implies that the inactivation of the phoP gene has only little effect on the detected metabolite levels in the cell. The energy charge was found to be relatively constant during growth, transition and secondary metabolite production phase. The results of this study and the employed targeted metabolite profiling methodology are directly relevant for the evaluation of precursor metabolite and energy supply for both natural and heterologous production of secondary metabolites in S. coelicolor.

  7. Sulfur mustard-induced increase in intracellular calcium: A mechanism of mustard toxicity

    SciTech Connect

    Ray, R.; Majerus, B.J.; Munavalli, G.S.; Petrali, J.P.

    1993-05-13

    The effect of sulfur mustard SM, bis-(2-chloroethyl) sulfide on intracellular free Ca2+ concentration (Ca2+)i was studied in vitro using the clonal mouse neuroblastoma-rat glioma hybrid NG108-15 and primary normal human epidermal keratinocyte (NHEK) cell culture models. SM depletes cellular glutathione (GSH) and thus may inhibit GSH-dependent Ca2+-ATPase (Ca2+ pump), leading to a high (Ca2+) and consequent cellular toxicity. Following 0.3 mM SM exposure, GSH levels decreased 20-34% between 1-6 hr in NG108-15 cells. SM increased (Ca2+)i, measured using the Ca2+-specific fluorescent probe Fluo-3 AM, in both NG108-15 cells (1030% between 2-6 hr) and NHEK (23-30% between 0.5-3 hr) . Depletion of cellular GSH by buthionine sulfoximine (1 mM), a specific GSH biosynthesis inhibitor, also increased Ca2+, (88% at 1 hr) in NHEK, suggesting that GSH depletion may lead to increased (Ca2+)i. Calcium, localized cytochemically with antimony, accumulated in increased amounts around mitochondria and endoplasmic reticula, in the cytosol, and in particular in the euchromatin regions of the nucleus beginning at 6 hr after 0.3 mM SM exposure of NG108-15 cells. Cell membrane integrity examined with the fluorescent membrane probe calcein AM was unaffected through 6 hr following 1 mM SM exposure; and cell viability (NG108-15 cells) measured by trypan blue exclusion was >80% of control through 9 hr following 0.3 mM SM exposure.

  8. Gravity induced changes in intracellular potentials in statocytes of cress roots.

    PubMed

    Sievers, A; Sondag, C; Trebacz, K; Hejnowicz, Z

    1995-09-01

    Two glass microelectrodes were inserted from opposite sides of the root cap into statocytes of Lepidium sativum L. immersed in medium with or without cytochalasin D (CD). Intracellular potentials (Eis) of statocytes were measured with reference to an earthed electrode in the bathing solution. In the absence of CD, Ei values were -160 +/- 2 mV (n = 52) in vertical roots. During the recording of Eis, the roots were tilted from the vertical by 45 degrees so that in a tilted root one electrode was on the upper side and the other on the lower side; after 5 min the roots were returned to the vertical. At approximately 64 s after tilting (lasting 5-15 s) there was a transient lowering of Ei (more negative) by an average of 4.7 mV on both the upper and lower sides (n = 52). In some cases, this decrease in Ei was preceded by a transitory increase. Returning the roots to the vertical resulted in a response similar to that obtained by tilting. In roots treated with CD at a concentration of 3 (microM for 1 h, the initial Ei was -145 +/- 2 mV (n = 43), and the lowering of Ei on position change (tilting or returning) was smaller (2.0 mV) in some statocytes (n = 50) and higher (8.1 mV) in others (n = 14) compared to control roots (without and with DMSO). A higher concentration (10 microM) of CD and longer treatment (2 h) further reduced the decrease in Ei (1.1 mV) on position change (n = 26). The observed effects of CD support the hypothesis that statoliths in statocytes are anchored by actin filaments to the plasma membrane and/or to the cortical endoplasmic reticulum. Movement of statoliths during the first step of graviperception may lead to stress changes in actin filaments, affecting the transmembrane potential and also the Ei.

  9. Intracellular Metabolite Pool Changes in Response to Nutrient Depletion Induced Metabolic Switching in Streptomyces coelicolor

    PubMed Central

    Wentzel, Alexander; Sletta, Havard; Consortium, Stream; Ellingsen, Trond E.; Bruheim, Per

    2012-01-01

    A metabolite profiling study of the antibiotic producing bacterium Streptomyces coelicolor A3(2) has been performed. The aim of this study was to monitor intracellular metabolite pool changes occurring as strains of S. coelicolor react to nutrient depletion with metabolic re-modeling, so-called metabolic switching, and transition from growth to secondary metabolite production phase. Two different culture media were applied, providing depletion of the key nutrients phosphate and L-glutamate, respectively, as the triggers for metabolic switching. Targeted GC-MS and LC-MS methods were employed to quantify important primary metabolite groups like amino acids, organic acids, sugar phosphates and other phosphorylated metabolites, and nucleotides in time-course samples withdrawn from fully-controlled batch fermentations. A general decline, starting already in the early growth phase, was observed for nucleotide pools and phosphorylated metabolite pools for both the phosphate and glutamate limited cultures. The change in amino acid and organic acid pools were more scattered, especially in the phosphate limited situation while a general decrease in amino acid and non-amino organic acid pools was observed in the L-glutamate limited situation. A phoP deletion mutant showed basically the same metabolite pool changes as the wild-type strain M145 when cultivated on phosphate limited medium. This implies that the inactivation of the phoP gene has only little effect on the detected metabolite levels in the cell. The energy charge was found to be relatively constant during growth, transition and secondary metabolite production phase. The results of this study and the employed targeted metabolite profiling methodology are directly relevant for the evaluation of precursor metabolite and energy supply for both natural and heterologous production of secondary metabolites in S. coelicolor. PMID:24957373

  10. Intracellular potassium as a possible inducer of amino acid transport across hamster jejunal enterocytes.

    PubMed Central

    Cremaschi, D; James, P S; Meyer, G; Rossetti, C; Smith, M W

    1986-01-01

    Brush border membrane potentials (Vm), intracellular K+ activity (aiK) and alanine uptake were measured in different parts of villi in mid-jejunal tissue taken from hamsters fed different amounts of food at high and low environmental temperatures. Basal villus enterocytes (Y cells) were found to have lower values for Vm and aiK than upper villus enterocytes (O cells). Alanine uptake was confined to O cells. The position on the villus where values for Vm and aiK changed, and where alanine uptake could first be seen to take place, depended on the energy intake and environmental temperature at which hamsters were kept. Na+-dependent alanine uptake and Vm were both higher in O cells of hamsters fed 10 kcal day-1 at 30 degrees C (10 k/30 degrees C) compared with animals fed 30 kcal day-1 at an environmental temperature of 12 degrees C (30 k/12 degrees C hamsters). The rates at which enterocytes migrated along the crypt-villus axis, measured separately in thymidine-labelling experiments, were 6.9 and 16.1 micron h-1 for 10 k/30 degrees C and 30 k/12 degrees C hamsters respectively. Both Vm and aiK were estimated, from these measurements, to have increased significantly by the time enterocytes became 30 h old. Alanine uptake began 15 h later. Neither of these parameters were influenced by previous adaptation conditions. The close temporal and variable positional relationship found between changes in aiK and onset of transport suggests that early changes in electrolyte composition might initiate a second phase of development enabling the enterocyte to absorb nutrients. The possibility that other ions besides K+ might also be involved in this aspect of regulation is also discussed. PMID:3795055

  11. Contribution of Endogenously Produced Reactive Oxygen Species to the Activation of Podocyte NLRP3 Inflammasomes in Hyperhomocysteinemia

    PubMed Central

    Abais, Justine M.; Xia, Min; Li, Guangbi; Gehr, Todd W. B.; Boini, Krishna M.; Li, Pin-Lan

    2013-01-01

    Hyperhomocysteinemia (hHcys) is an important pathogenic factor contributing to the progression of end-stage renal disease. Recent studies have demonstrated the implication of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated NLRP3 inflammasome activation in the development of podocyte injury and glomerular sclerosis during hHcys. However, it remains unknown which reactive oxygen species (ROS) are responsible for this activation of NLRP3 inflammasomes and how such action of ROS is controlled. The present study tested the contribution of common endogenous ROS including superoxide (O2•−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) to the activation of NLRP3 inflammasomes in mouse podocytes and glomeruli. In vitro, confocal microscopy and size exclusion chromatography demonstrated that dismutation of O2•− by 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL) and decomposition of H2O2 by catalase prevented Hcys-induced aggregation of NLRP3 inflammasome proteins and inhibited Hcys-induced caspase-1 activation and IL-1β production in mouse podocytes. However, •OH scavenger tetramethylthiourea (TMTU) had no significant effect on either Hcys-induced NLRP3 inflammasome formation or activation. In vivo, scavenging of O2•− by TEMPOL and removal of H2O2 by catalase substantially inhibited NLRP3 inflammasome formation and activation in glomeruli of hHcys mice as shown by reduced colocalization of NLRP3 with ASC or caspase-1 and inhibition of caspase-1 activation and IL-1β production. Furthermore, TEMPOL and catalase significantly attenuated hHcys-induced glomerular injury. In conclusion, endogenously produced O2•− and H2O2 primarily contribute to NLRP3 inflammasome formation and activation in mouse glomeruli resulting in glomerular injury or consequent sclerosis during hHcys. PMID:24140862

  12. Stress-induced inhibition of nonsense mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11

    PubMed Central

    Martin, Leenus; Gardner, Lawrence B.

    2014-01-01

    SLC7A11 encodes a subunit of the xCT cystine/glutamate amino acid transport system and plays a critical role in the generation of glutathione and the protection of cells from oxidative stress. Expression of SLC7A11 promotes tumorigenesis and chemotherapy resistance, but while SLC7A11 has been previously noted to be upregulated in hypoxic cells its regulation has not been fully delineated. We have recently shown that nonsense mediated RNA decay (NMD) is inhibited by cellular stresses generated by the tumor microenvironment, including hypoxia, and augments tumorigenesis. Here we demonstrate that the inhibition of NMD by various cellular stresses leads to the stabilization and upregulation of SLC7A11 mRNA and protein. The inhibition of NMD and upregulation of SLC7A11 augments intracellular cystine transport, and increases intracellular levels of cysteine and glutathione. Accordinglyy, the inhibition of NMD protects cells against oxidative stress via SLC7A11 upregulation. Together our studies identify a mechanism for the dynamic regulation of SLC7A11, through the stress-inhibited regulation of NMD, and add to the growing evidence that the inhibition of NMD is an adaptive response. PMID:25399695

  13. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    SciTech Connect

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  14. Tau Protein Mediates APP Intracellular Domain (AICD)-Induced Alzheimer’s-Like Pathological Features in Mice

    PubMed Central

    Dawson, Hana N.; Pimplikar, Sanjay W.

    2016-01-01

    Amyloid precursor protein (APP) is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ) and APP Intracellular Domain (AICD) peptides. Aβ plays a pivotal role in Alzheimer’s disease (AD) pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg) exhibit AD-like features such as tau pathology, aberrant neuronal activity, memory deficits and neurodegeneration in an age-dependent manner. Since AD is a tauopathy and tau has been shown to mediate Aβ–induced toxicity, we examined the role of tau in AICD-induced pathological features. We report that ablating endogenous tau protects AICD-Tg mice from deficits in adult neurogenesis, seizure severity, short-term memory deficits and neurodegeneration. Deletion of tau restored abnormal phosphorylation of NMDA receptors, which is likely to underlie hyperexcitability and associated excitotoxicity in AICD-Tg mice. Conversely, overexpression of wild-type human tau aggravated receptor phosphorylation, impaired adult neurogenesis, memory deficits and neurodegeneration. Our findings show that tau is essential for mediating the deleterious effects of AICD. Since tau also mediates Aβ-induced toxic effects, our findings suggest that tau is a common downstream factor in both amyloid-dependent and–independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD. PMID:27459671

  15. Fullerenol Nanoparticles with Structural Activity Induce Variable Intracellular Actin Filament Morphologies.

    PubMed

    Jin, Junjiang; Dong, Ying; Wang, Ying; Xia, Lin; Gu, Weihong; Bai, Xue; Chang, Yanan; Zhang, Mingyi; Chen, Kui; Li, Juan; Zhao, Lina; Xing, Gengmei

    2016-06-01

    Fullerenol nanoparticles are promising for various biological applications; many studies have shown that they induce variable and diverse biological effects including side effects. Separation and purification of two fractions of fullerenols has demonstrated that they have varied chemical structures on the surfaces of their carbon cages. Actin is an important structural protein that is able to transform functional structures under varied physiological conditions. We assessed the abilities of the two fractions of fullerenols to attach to actin and induce variable morphological features in actin filament structures. Specifically the fullerenol fraction with a surface electric charge of -1.913 ± 0.008q (x10(-6) C) has percentages of C-OH and C=O on the carbon cage of 16.14 ± 0.60 and 17.55 ± 0.69. These features allow it to form intermolecular hydrogen bonds with actin at a stoichiometric ratio of four fullerenols per actin subunit. Molecular simulations revealed these specific binding sites and binding modes in atomic details in the interaction between the active fullerenol and actin filament. Conversely, these interactions were not possible for the other fraction of fullerenol with that percentages of C-OH and C=O on the carbon cage were 15.59 ± 0.01 and 1.94 ± 0.11. Neither sample induced appreciable cytotoxicity or acute cell death. After entering cells, active fullerenol binding to actin induces variable morphological features and may transform ATP-actin to ADP-actin. These changes facilitate the binding of ADF/cofilin, allowing cofilin to sever actin filaments to form cofilin/actin/fullerenol rods. Our findings suggest that fullerenol with structural activity binding disturbs actin filament structure, which may inhibit locomotion of cell or induce chronic side effects in to cells. PMID:27319217

  16. Sensitization of H2O2-induced TRPM2 activation and subsequent interleukin-8 (CXCL8) production by intracellular Fe(2+) in human monocytic U937 cells.

    PubMed

    Shimizu, Shunichi; Yonezawa, Ryo; Negoro, Takaharu; Yamamoto, Shinichiro; Numata, Tomohiro; Ishii, Masakazu; Mori, Yasuo; Toda, Takahiro

    2015-11-01

    Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca(2+)-permeable channel. In monocytes/macrophages, H2O2-induced TRPM2 activation causes cell death and/or production of chemokines that aggravate inflammatory diseases. However, relatively high concentrations of H2O2 are required for activation of TRPM2 channels in vitro. Thus, in the present study, factors that sensitize TRPM2 channels to H2O2 were identified and subsequent physiological responses were examined in U937 human monocytes. Temperature increase from 30°C to 37°C enhanced H2O2-induced TRPM2-mediated increase in intracellular free Ca(2+) ([Ca(2+)]i) in TRPM2-expressing HEK 293 cells (TRPM2/HEK cells). The H2O2-induced TRPM2 activation enhanced by the higher temperature was dramatically sensitized by intracellular Fe(2+)-accumulation following pretreatment with FeSO4. Thus intracellular Fe(2+)-accumulation sensitizes H2O2-induced TRPM2 activation at around body temperature. Moreover, intracellular Fe(2+)-accumulation increased poly(ADP-ribose) levels in nuclei by H2O2 treatment, and the sensitization of H2O2-induced TRPM2 activation were almost completely blocked by poly(ADP-ribose) polymerase inhibitors, suggesting that intracellular Fe(2+)-accumulation enhances H2O2-induced TRPM2 activation by increase of ADP-ribose production through poly(ADP-ribose) polymerase pathway. Similarly, pretreatment with FeSO4 stimulated H2O2-induced TRPM2 activation at 37°C in U937 cells and enhanced H2O2-induced ERK phosphorylation and interleukin-8 (CXCL8) production. Although the addition of H2O2 to cells under conditions of intracellular Fe(2+)-accumulation caused cell death, concentration of H2O2 required for CXCL8 production was lower than that resulting in cell death. These results indicate that intracellular Fe(2+)-accumulation sensitizes TRPM2 channels to H2O2 and subsequently produces CXCL8 at around body temperature. It is possible that sensitization of H2O2-induced TRPM2

  17. Sensitization of H2O2-induced TRPM2 activation and subsequent interleukin-8 (CXCL8) production by intracellular Fe(2+) in human monocytic U937 cells.

    PubMed

    Shimizu, Shunichi; Yonezawa, Ryo; Negoro, Takaharu; Yamamoto, Shinichiro; Numata, Tomohiro; Ishii, Masakazu; Mori, Yasuo; Toda, Takahiro

    2015-11-01

    Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca(2+)-permeable channel. In monocytes/macrophages, H2O2-induced TRPM2 activation causes cell death and/or production of chemokines that aggravate inflammatory diseases. However, relatively high concentrations of H2O2 are required for activation of TRPM2 channels in vitro. Thus, in the present study, factors that sensitize TRPM2 channels to H2O2 were identified and subsequent physiological responses were examined in U937 human monocytes. Temperature increase from 30°C to 37°C enhanced H2O2-induced TRPM2-mediated increase in intracellular free Ca(2+) ([Ca(2+)]i) in TRPM2-expressing HEK 293 cells (TRPM2/HEK cells). The H2O2-induced TRPM2 activation enhanced by the higher temperature was dramatically sensitized by intracellular Fe(2+)-accumulation following pretreatment with FeSO4. Thus intracellular Fe(2+)-accumulation sensitizes H2O2-induced TRPM2 activation at around body temperature. Moreover, intracellular Fe(2+)-accumulation increased poly(ADP-ribose) levels in nuclei by H2O2 treatment, and the sensitization of H2O2-induced TRPM2 activation were almost completely blocked by poly(ADP-ribose) polymerase inhibitors, suggesting that intracellular Fe(2+)-accumulation enhances H2O2-induced TRPM2 activation by increase of ADP-ribose production through poly(ADP-ribose) polymerase pathway. Similarly, pretreatment with FeSO4 stimulated H2O2-induced TRPM2 activation at 37°C in U937 cells and enhanced H2O2-induced ERK phosphorylation and interleukin-8 (CXCL8) production. Although the addition of H2O2 to cells under conditions of intracellular Fe(2+)-accumulation caused cell death, concentration of H2O2 required for CXCL8 production was lower than that resulting in cell death. These results indicate that intracellular Fe(2+)-accumulation sensitizes TRPM2 channels to H2O2 and subsequently produces CXCL8 at around body temperature. It is possible that sensitization of H2O2-induced TRPM2

  18. Different ataxin-3 amyloid aggregates induce intracellular Ca(2+) deregulation by different mechanisms in cerebellar granule cells.

    PubMed

    Pellistri, Francesca; Bucciantini, Monica; Invernizzi, Gaetano; Gatta, Elena; Penco, Amanda; Frana, Anna Maria; Nosi, Daniele; Relini, Annalisa; Regonesi, Maria Elena; Gliozzi, Alessandra; Tortora, Paolo; Robello, Mauro; Stefani, Massimo

    2013-12-01

    This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.

  19. Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Xie, T; McCann, U D; Kim, S; Yuan, J; Ricaurte, G A

    2000-10-15

    Hyperthermia exacerbates and hypothermia attenuates methamphetamine (METH)-induced dopamine (DA) neurotoxicity. The mechanisms underlying these temperature effects are unknown. Given the essential role of the DA transporter (DAT) in the expression of METH-induced DA neurotoxicity, we hypothesized that the effect of temperature on METH-induced DA neurotoxicity is mediated, at least in part, at the level of the DAT. To test this hypothesis, the effects of small, physiologically relevant temperature changes on DAT function were evaluated in two types of cultured neuronal cells: (1) a neuroblastoma cell line stably transfected with human DAT cDNA and (2) rat embryonic mesencephalic primary cells that naturally express the DAT. Temperatures for studies of DAT function were selected based on core temperature measurements in animals exposed to METH under usual ambient (22 degrees C) and hypothermic (6 degrees C) temperature conditions, where METH neurotoxicity was fully expressed and blocked, respectively. DAT function, determined by measuring accumulation of radiolabeled DA and 1-methyl-4-phenylpyridinium (MPP(+)), was found to directly correlate with temperature, with higher levels of substrate uptake at 40 degrees C, intermediate levels at 37 degrees C, and lower levels at 34 degrees C. DAT-mediated accumulation of METH also directly correlated with temperature, with greater accumulation at higher temperatures. These findings indicate that relatively small, physiologically relevant changes in temperature significantly alter DAT function and intracellular METH accumulation, and suggest that the effect of temperature on METH-induced DA neurotoxicity is mediated, at least in part, at the level of the DAT.

  20. Diethyldithiocarbamate induces apoptosis in neuroblastoma cells by raising the intracellular copper level, triggering cytochrome c release and caspase activation.

    PubMed

    Matias, Andreza C; Manieri, Tânia M; Cipriano, Samantha S; Carioni, Vivian M O; Nomura, Cassiana S; Machado, Camila M L; Cerchiaro, Giselle

    2013-02-01

    Dithiocarbamates are nitrogen- and sulfur-containing compounds commonly used in pharmacology, medicine and agriculture. The molecular effects of dithiocarbamates on neuronal cell systems are not fully understood, especially in terms of their ability to accumulate copper ions inside the cell. In this work, the molecular effects of N,N-diethyldithiocarbamate (DEDTC) were studied in human SH-SY5Y neuroblastoma cells to determine the role of copper in the DEDTC toxicity and the pathway trigged in cell by the complex Cu-DEDTC. From concentration-dependent studies, we found that 5 μM of this compound induced a drastic decrease in viable cells with a concomitant accumulation in intracellular copper resulted from complexation with DEDTC, measured by atomic absorption spectroscopy. The mechanism of DEDTC-induced apoptosis in neuronal model cells is thought to occur through the death receptor signaling triggered by DEDTC-copper complex in low concentration that is associated with the activation of caspase 8. Our results indicated that the mechanism of cell death involves cytochrome c release forming the apoptosome together with Apaf-1 and caspase 9, converting the caspase 9 into its active form, allowing it to activate caspase 3 as observed by immunofluorescence. This pathway is induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions present in the culture medium and transports them into the cell, suggesting that the DEDTC by itself was not able to cause cell death and the major effect is from its copper-complex in neuroblastoma cells. The present study suggests a role for the influence of copper by low concentrations of DEDTC in the extracellular media, the absorption and accumulation of copper in the cell and apoptotic events, induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions. PMID:22951949

  1. Granulocyte Macrophage-Colony Stimulating Factor-induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival

    PubMed Central

    Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Porollo, Aleksey; Caruso, Joseph A.; Deepe, George S.

    2013-01-01

    SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function. PMID:24138881

  2. Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP(+)/NADPH ratio.

    PubMed

    Itsumi, M; Inoue, S; Elia, A J; Murakami, K; Sasaki, M; Lind, E F; Brenner, D; Harris, I S; Chio, I I C; Afzal, S; Cairns, R A; Cescon, D W; Elford, A R; Ye, J; Lang, P A; Li, W Y; Wakeham, A; Duncan, G S; Haight, J; You-Ten, A; Snow, B; Yamamoto, K; Ohashi, P S; Mak, T W

    2015-11-01

    Isocitrate dehydrogenase-1 (Idh1) is an important metabolic enzyme that produces NADPH by converting isocitrate to α-ketoglutarate. Idh1 is known to reduce reactive oxygen species (ROS) induced in cells by treatment with lipopolysaccharide (LPS) in vitro. Here, we used Idh1-deficient knockout (Idh1 KO) mice to investigate the role of Idh1 in antioxidant defense in vivo. Idh1 KO mice showed heightened susceptibility to death induced by LPS and exhibited increased serum levels of inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. The serum of LPS-injected Idh1 KO mice also contained elevated levels of AST, a marker of inflammatory liver damage. Furthermore, after LPS injection, livers of Idh1 KO mice showed histological evidence of elevated oxidative DNA damage compared with livers of wild-type (WT) mice. Idh1 KO livers showed a faster and more pronounced oxidative stress than WT livers. In line with that, Idh1 KO hepatocytes showed higher ROS levels and an increase in the NADP(+)/NADPH ratio when compared with hepatocytes isolated from WT mice. These results suggest that Idh1 has a physiological function in protecting cells from oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Our findings suggest that stimulation of Idh1 activity may be an effective therapeutic strategy for reducing oxidative stress during inflammatory responses, including the early stages of septic shock.

  3. BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat.

    PubMed

    Bechara, Ranya G; Lyne, Ronan; Kelly, Áine M

    2014-12-15

    Exercise-induced improvements in learning are associated with neurotrophic and neurogenic changes in the dentate gyrus, but the intracellular signalling mechanisms that may mediate these improvements remain unknown. In the current study we investigate the effects of one week of forced exercise on spatial memory and analyse in parallel BDNF-stimulated signalling pathways in cells of the dentate gyrus. Additionally, we test whether a single intracerebroventricular (i.c.v.) injection of BDNF can mimic the observed cognitive and signalling changes. Male Wistar rats were assigned to exercised and sedentary groups and tested in a spatial task post-exercise. Tissue from the dentate gyrus was assessed for expression and release of BDNF, and for changes in expression and activation of TrkB, ERK and synapsin-1. In a separate set of experiments, male Wistar rats received a single i.c.v. injection of BDNF and were then tested in the same spatial learning task. Exercised and BDNF-treated (but not control) rats could successfully complete an object displacement task that tests spatial learning. Exercised rats and BDNF-treated rats displayed increases BDNF expression and ERK1 activation, while exercised rats showed increases in cell division, stimulated BDNF release, TrkB activation, and synapsin-1 expression in the dentate gyrus. We conclude that exercise-induced increases in BDNF in the dentate gyrus are sufficient to cause improvements in spatial memory by activating signalling cascades that enhance synaptic transmission in the hippocampus.

  4. Leishmania donovani: intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells.

    PubMed

    Sen, Nilkantha; Das, Benu Brata; Ganguly, Agneyo; Banerjee, Bijoylaxhmi; Sen, Tanusree; Majumder, Hemanta K

    2006-11-01

    Leishmaniasis presents a spectrum of diseases ranging from benign cutaneous lesions to the often-fatal visceralizing form. Luteolin, a dietary flavone induces apoptosis-like death in both promastigote and amastigote forms of Leishmania, the causative agent of the diseases. Here, we have elucidated the mechanism of action of luteolin by analyzing the mitochondrial and cytosolic changes associated with apoptosis-like death of leishmanial cells. In Leishmania donovani, treatment with luteolin induces the loss of both maxicircles and minicircles which resulted in the formation of dyskinetoplastid cells. The loss of mitochondrial DNA causes reduction in the activities of complex I, II, III, and IV of electron transport chain. However, the mitochondrial ATPase activity of complex V remains almost unaltered during treatment with luteolin but the sensitivity to oligomycin is lost. The inactivation of ETC complex is associated with decrease in mitochondrial as well as glycolytic ATP production, which is responsible for depolarization of Deltapsi(m) and alteration in mitochondrial structure. This event is followed by the release of cytochrome c from mitochondria in mt-DNA depleted leishmanial cells and causes an activation of caspase like proteases. Collectively our results provide the first insight into the mechanistic pathway of apoptosis-like death where inhibition of glycolytic ATP production is an essential event responsible for depolarization of Deltapsi(m) in mt-DNA depleted cells to propagate apoptosis-like death in leishmanial cells. PMID:16707127

  5. Upregulation of α3β1-Integrin in Podocytes in Early-Stage Diabetic Nephropathy

    PubMed Central

    Sawada, Kaichiro; Kaneyama, Noriko; Shiraiwa, Sawako; Moriya, Hitomi; Miyatake, Han; Tanaka, Eitaro; Yamamoto, Naoyuki; Miyauchi, Masaaki; Kimura, Moritsugu; Wada, Takehiko; Fukagawa, Masafumi

    2016-01-01

    Background. Podocyte injury plays an important role in the onset and progression of diabetic nephropathy (DN). Downregulation of α3β1-integrin expression in podocytes is thought to be associated with podocyte detachment from the glomerular basement membrane, although the mechanisms remain obscure. To determine the mechanism of podocyte detachment, we analyzed the expression levels of α3β1-integrin in podocytes in early and advanced stages of DN. Methods. Surgical specimens from DN patients were examined by in situ hybridization, and the expression levels of α3- and β1-integrin subunits in glomeruli of early (n = 6) and advanced (n = 8) stages were compared with those of normal glomeruli (n = 5). Heat-sensitive mouse podocytes (HSMP) were cultured with TGF-β1 to reproduce the microenvironment of glomeruli of DN, and the expression levels of integrin subunits and the properties of migration and attachment were examined. Results. Podocytes of early-stage DN showed upregulation of α3- and β1-integrin expression while those of advanced stage showed downregulation. Real-time PCR indicated a tendency for upregulation of α3- and β1-integrin in HSMP cultured with TGF-β1. TGF-β1-stimulated HSMP also showed enhanced in vitro migration and attachment on collagen substrate. Conclusions. The results suggested that podocyte detachment during early stage of DN is mediated through upregulation of α3β1-integrin. PMID:27340677

  6. Using zebrafish to study podocyte genesis during kidney development and regeneration.

    PubMed

    Kroeger, Paul T; Wingert, Rebecca A

    2014-09-01

    During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.

  7. Vps34 Deficiency Reveals the Importance of Endocytosis for Podocyte Homeostasis

    PubMed Central

    Bechtel, Wibke; Helmstädter, Martin; Balica, Jan; Hartleben, Björn; Kiefer, Betina; Hrnjic, Fatima; Schell, Christoph; Kretz, Oliver; Liu, Shuya; Geist, Felix; Kerjaschki, Dontscho; Walz, Gerd

    2013-01-01

    The molecular mechanisms that maintain podocytes and consequently, the integrity of the glomerular filtration barrier are incompletely understood. Here, we show that the class III phosphoinositide 3-kinase vacuolar protein sorting 34 (Vps34) plays a central role in modulating endocytic pathways, maintaining podocyte homeostasis. In mice, podocyte-specific conditional knockout of Vps34 led to early proteinuria, glomerular scarring, and death within 3–9 weeks of age. Vps34-deficient podocytes exhibited substantial vacuolization and foot process effacement. Although the formation of autophagosomes and autophagic flux were impaired, comparisons between podocyte-specific Vps34-deficient mice, autophagy-deficient mice, and doubly deficient mice suggested that defective autophagy was not primarily responsible for the severe phenotype caused by the loss of Vps34. In fact, Rab5-positive endosomal compartments, endocytosis, and fluid-phase uptake were severely disrupted in Vps34-deficient podocytes. Vps34 deficiency in nephrocytes, the podocyte-like cells of Drosophila melanogaster, resulted in a block between Rab5- and Rab7-positive endosomal compartments. In summary, these data identify Vps34 as a major regulator of endolysosomal pathways in podocytes and underline the fundamental roles of endocytosis and fluid-phase uptake for the maintenance of the glomerular filtration barrier. PMID:23492732

  8. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics.

    PubMed

    Schneekloth, Ashley R; Pucheault, Mathieu; Tae, Hyun Seop; Crews, Craig M

    2008-11-15

    We have developed a heterobifunctional all-small molecule PROTAC (PROteolysis TArgeting Chimera) capable of inducing proteasomal degradation of the androgen receptor. This cell permeable PROTAC consists of a non-steroidal androgen receptor ligand (SARM) and the MDM2 ligand known as nutlin, connected by a PEG-based linker. The SARM-nutlin PROTAC recruits the androgen receptor to MDM2, which functions as an E3 ubiquitin ligase. This leads to the ubiquitination of the androgen receptor, and its subsequent degradation by the proteasome. Upon treatment of HeLa cells with 10microM PROTAC for 7h, we were able to observe a decrease in androgen receptor levels. This degradation is proteasome dependent, as it is mitigated in cells pre-treated with 10microM epoxomicin, a specific proteasome inhibitor. These results have implications for the potential study and treatment of various cancers with increased androgen receptor levels.

  9. Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis.

    PubMed

    Mantzaris, M D; Bellou, S; Skiada, V; Kitsati, N; Fotsis, T; Galaris, D

    2016-08-01

    Hydrogen peroxide (H2O2) acts as a second messenger in signal transduction participating in several redox regulated pathways, including cytokine and growth factor stimulated signals. However, the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this work, using Jurkat T lymphoma cells and primary human umbilical vein endothelial cells, it was observed that changes in intracellular "labile iron" were able to modulate signal transduction in H2O2-induced apoptosis. Chelation of intracellular labile iron by desferrioxamine rendered cells resistant to H2O2-induced apoptosis. In order to identify the exact points of iron action, we investigated selected steps in H2O2-mediated apoptotic pathway, focusing on mitogen activated protein kinases (MAPKs) JNK, p38 and ERK. It was observed that spatiotemporal changes in intracellular labile iron, induced by H2O2, influenced the oxidation pattern of the upstream MAP3K ASK1 and promoted the sustained activation of JNK-p38 axis in a defined time-dependent context. Moreover, we indicate that H2O2 induced spatiotemporal changes in intracellular labile iron, at least in part, by triggering the destabilization of lysosomal compartments, promoting a concomitant early response in proteins of iron homeostasis. These results raise the possibility that iron-mediated oxidation of distinct proteins may be implicated in redox signaling processes. Since labile iron can be pharmacologically modified in vivo, it may represent a promising target for therapeutic interventions in related pathological conditions.

  10. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  11. The mechanism of injury-induced intracellular calcium concentration oscillations in the endothelium of excised rat aorta.

    PubMed

    Berra-Romani, Roberto; Raqeeb, Abdul; Torres-Jácome, Julián; Guzman-Silva, Alejandro; Guerra, Germano; Tanzi, Franco; Moccia, Francesco

    2012-01-01

    Endothelial injury is the primary event that leads to a variety of severe vascular disorders. Mechanical injury elicits a Ca(2+) response in the endothelium of excised rat aorta, which comprises an initial Ca(2+) release from inositol-1,4,5-trisphosphate (InsP(3))-sensitive stores followed by a long-lasting decay phase due to Ca(2+) entry through uncoupled connexons. The Ca(2+) signal may also adopt an oscillatory pattern, the molecular underpinnings of which are unclear. In the light of the role played by Ca(2+) spiking in tissue regeneration, this study aimed to unveil the mechanisms underlying injury-induced Ca(2+) oscillations. The latter reversibly ceased upon removal of extracellular Ca(2+) or addition of the gap junction blockers heptanol, 18 α,β-glycyrrhetinic acid, La(3+) and Ni(2+), but were insensitive to BTP-2 and SKF 96365. The spiking response was abolished by inhibiting the Ca(2+) entry mode of the Na(+)/Ca(2+) exchanger (NCX). The InsP(3)-producing agonist ATP resumed Ca(2+) oscillations in silent cells, while the phospholipase C inhibitor U73122 suppressed them. Injury-induced Ca(2+) transients were prevented by the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) blockers thapsigargin and cyclopiazonic acid, while they were unaffected by suramin and genistein. These data show for the first time that the coordinated interplay between NCX-mediated Ca(2+) entry and InsP(3)-dependent Ca(2+) release contributes to injury-induced intracellular Ca(2+) concentration oscillations.

  12. Juice of Bryophyllum pinnatum (Lam.) inhibits oxytocin-induced increase of the intracellular calcium concentration in human myometrial cells.

    PubMed

    Simões-Wüst, A P; Grãos, M; Duarte, C B; Brenneisen, R; Hamburger, M; Mennet, M; Ramos, M H; Schnelle, M; Wächter, R; Worel, A M; von Mandach, U

    2010-10-01

    The use of preparations from Bryophyllum pinnatum in tocolysis is supported by both clinical (retrospective comparative studies) and experimental (using uterus strips) evidence. We studied here the effect of B. pinnatum juice on the response of cultured human myometrial cells to stimulation by oxytocin, a hormone known to be involved in the control of uterine contractions by increasing the intracellular free calcium concentration ([Ca2+]i). In this work, [Ca2+]i was measured online during stimulation of human myometrial cells (hTERT-C3 and M11) with oxytocin, which had been pre-incubated in the absence or in the presence of B. pinnatum juice. Since no functional voltage-gated Ca2+ channels could be detected in these myometrial cells, the effect of B. pinnatum juice was as well studied in SH-SY5Y neuroblastoma cells, which are known to have such channels and can be depolarised with KCl. B. pinnatum juice prevented the oxytocin-induced increase in [Ca2+]i in hTERT-C3 human myometrial cells in a dose-dependent manner, achieving a ca. 80% inhibition at a 2% concentration. Comparable results were obtained with M11 human primary myometrial cells. In hTERT-C3 cells, prevention of the oxytocin-induced increase in [Ca2+]i was independent of the extracellular Ca2+ concentration and of voltage-dependent Ca2+-channels. B. pinnatum juice delayed, but did not prevent the depolarization-induced increase in [Ca2+]i in SH-SY5Y cells. Taken together, the data suggest a specific and concentration-dependent effect of B. pinnatum juice on the oxytocin signalling pathway, which seems to corroborate its use in tocolysis. Such a specific mechanism would explain the rare and minor side-effects in tocolysis with B. pinnatum as well as its high therapeutic index. PMID:20381326

  13. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Perreault, C. L.; Shannon, R. P.; Komamura, K.; Vatner, S. F.; Morgan, J. P.

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.

  14. Intracellular Delivery by Shape Anisotropic Magnetic Particle-Induced Cell Membrane Cuts.

    PubMed

    Lin, Ming-Yu; Wu, Yi-Chien; Lee, Ji-Ann; Tung, Kuan-Wen; Zhou, Jessica; Teitell, Michael A; Yeh, J Andrew; Chiou, Pei Yu

    2016-08-01

    Introducing functional macromolecules into a variety of living cells is challenging but important for biology research and cell-based therapies. We report a novel cell delivery platform based on rotating shape anisotropic magnetic particles (SAMPs), which make very small cuts on cell membranes for macromolecule delivery with high efficiency and high survivability. SAMP delivery is performed by placing commercially available nickel powder onto cells grown in standard cell culture dishes. Application of a uniform magnetic field causes the magnetic particles to rotate because of mechanical torques induced by shape anisotropic magnetization. Cells touching these rotating particles are nicked, which generates transient membrane pores that enable the delivery of macromolecules into the cytosol of cells. Calcein dye, 3 and 40 kDa dextran polymers, a green fluorescence protein (GFP) plasmid, siRNA, and an enzyme (β-lactamase) were successfully delivered into HeLa cells, primary normal human dermal fibroblasts (NHDFs), and mouse cortical neurons that can be difficult to transfect. The SAMP approach offers several advantages, including easy implementation, low cost, high throughput, and efficient delivery of a broad range of macromolecules. Collectively, SAMP delivery has great potential for a broad range of academic and industrial applications. PMID:26882924

  15. Detection of urinary podocytes and nephrin as markers for children with glomerular diseases

    PubMed Central

    Wang, Pei; Li, Min; Liu, Qicai; Chen, Bo

    2015-01-01

    The purpose of this study was to detect the urinary podocytes and its related protein, nephrin, in the urine of the children with glomerular disease in order to analyze the relationship of the clinical testing with the significance of the glomerular disease. A total of 65 children with nephrotic syndrome were selected for this study. The podocytes and nephrin were detected in the urinary sediment by indirect immunofluorescence, enzyme-linked immunosorbent assay, and Western blotting. The urinary podocytes and nephrin positive rates were 53.8% and 50.8%, respectively, in the children with glomerular disease. The serum total protein and albumin decreased in the podocyte-positive children, while the urine total protein at 24 h, urinary albumin/creatinine ratio, blood urea nitrogen, and serum creatinine were significantly elevated as compared to those of the podocyte-negative patients. Furthermore, the results were the same in the patients with positive nephrin as compared to that of the patients with negative nephrin. The podocyte number and nephrin level were significantly higher in the lupus nephritis group as compared to those of the other groups. Likewise, the podocyte number and nephrin level dramatically increased in the focal segmental glomerulosclerosis group as compared to those of the mesangial proliferative glomerulonephritis and minimal change disease groups. In addition, the podocyte numbers and nephrin expression were significantly higher in severe proteinuria group as compared to those of the mild proteinuria group. The urinary nephrin expression was positively related to podocyte and urinary albumin/creatinine ratio. We concluded that the detection of the urinary podocytes and nephrin could be taken as markers for children with glomerular disease, reflecting the type of the disease. Therefore, this can be used as a noninvasive method to evaluate the severity of the kidney disease in children. PMID:25245074

  16. Structural Analysis of How Podocytes Detach from the Glomerular Basement Membrane Under Hypertrophic Stress

    PubMed Central

    Kriz, Wilhelm; Hähnel, Brunhilde; Hosser, Hiltraud; Rösener, Sigrid; Waldherr, Rüdiger

    2014-01-01

    Podocytes are lost by detachment from the GBM as viable cells; details are largely unknown. We studied this process in the rat after growth stimulation with FGF-2. Endothelial and mesangial cells responded by hyperplasia, podocytes underwent hypertrophy, but, in the long run, developed various changes that could either be interpreted showing progressing stages in detachment from the GBM or stages leading to a tighter attachment by foot process effacement (FPE). This occurred in microdomains within the same podocyte; thus, features of detachment and of reinforced attachment may simultaneously be found in the same podocyte. (1) Initially, hypertrophied podocytes underwent cell body attenuation and formed large pseudocysts, i.e., expansions of the subpodocyte space. (2) Podocytes entered the process of FPE starting with the retraction of foot processes (FPs) and the replacement of the slit diaphragm by occluding junctions, thereby sealing the filtration slits. Successful completion of this process led to broad attachments of podocyte cell bodies to the GBM. (3) Failure of sealing the slits led to gaps of varying width between retracting FPs facilitating the outflow of the filtrate from the GBM. (4) Since those gaps are frequently overarched by broadened primary processes, the drainage of the filtrate into the Bowman’s space may be hindered leading to the formation of small pseudocysts associated with bare areas of GBM. (5) The merging of pseudocysts created a system of communicating chambers through which the filtrate has to pass to reach Bowman’s space. Multiple flow resistances in series likely generated an expansile force on podocytes contributing to detachment. (6) Such a situation appears to proceed to complete disconnection generally of a group of podocytes owing to the junctional connections between them. (7) Since such groups of detaching podocytes generally make contact to parietal cells, they start the formation of tuft adhesions to Bowman’s capsule

  17. Disruption of the intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes

    SciTech Connect

    Fu Min; Wu Meng; Wang Jifeng; Qiao Yanjiang; Wang Zhao . E-mail: zwang@tsinghua.edu.cn

    2007-03-23

    Aconitine is an effective ingredient in Aconite tuber, an important traditional Chinese medicine. Aconitine is also known to be a highly toxic diterpenoid alkaloid with arrhythmogenic effects. In the present study, we have characterized the properties of arrhythmic cytotoxicity and explored the possible mechanisms of aconitine-induced cardiomyocytes. Results show that aconitine induces significant abnormity in the spontaneous beating rate, amplitude of spontaneous oscillations and the relative intracellular Ca{sup 2+} concentration. Also, mRNA transcription levels and protein expressions of SR Ca{sup 2+} release channel RyR{sub 2} and sarcolemmal NCX were elevated in aconitine-induced cardiomyocytes. However, co-treatment with ruthenium red (RR), a RyR channel inhibitor, could reverse the aconitine-induced abnormity in intracellular Ca{sup 2+} signals. These results demonstrate that disruption of intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling (EC coupling) is a crucial mechanism of arrhythmic cytotoxicity in aconitine-induced cardiomyocytes. Moreover, certain inhibitors appear to play an important role in the detoxification of aconitine-induced Ca{sup 2+}-dependent arrhythmias.

  18. Cobalt-induced hormonal and intracellular alterations in rat ovarian fragments in vitro.

    PubMed

    Roychoudhury, Shubhadeep; Sirotkin, Alexander V; Toman, Robert; Kolesarova, Adriana

    2014-01-01

    The objective of this in vitro study was to examine dose-dependent changes in the secretion activity (progesterone, 17β-estradiol and insulin-like growth factor-I) of rat ovarian fragments after experimental cobalt (Co) administration including the apoptotic potential of Co on rat ovarian fragments by evaluating the expression of apoptotic markers Bax and caspase-3. Ovarian fragments were incubated with cobalt sulphate (CoSO4.7H2O) at the doses 90, 170, 330 and 500 μg.mL(-1) for 24 h and compared with control group without Co addition. Release of progesterone (P4) 17β-estradiol and insulin-like growth factor-I (IGF-I) by ovarian fragments was assessed by RIA, expression of Bax and caspase-3 by SDS-PAGE and Western blotting. Observations show that P4 release by ovarian fragments was significantly (P < 0.05) inhibited after cobalt sulphate addition at higher doses 170-500 μg.mL(-1) used in the study in comparison to control. However, cobalt sulphate addition did not cause any significant change in the release of 17β-estradiol by ovarian fragments at all the doses used in the study (90-500 μg.mL(-1)) in comparison to control. On the contrary, IGF-I release by ovarian fragments was significantly (P < 0.05) stimulated after cobalt sulphate addition at the lowest dose 90 μg.mL(-1) in comparison to control, while other doses did not cause any significant change. Also, addition of cobalt sulphate decreased the expression of both the apoptotic peptides Bax and caspase-3 at the higher doses 170, 330 and 500 μg.mL(-1), but not at the lowest dose 90 μg.mL(-1) used in the study. Obtained results suggest Co induced (1) inhibition in secretion of steroid hormone progesterone, (2) dose-dependent increase in the release of growth factor IGF-I, and (3) decrease in the expression of markers of apoptosis (Bax and caspase-3) of rat ovarian fragments.

  19. Epigenetic Modulation of Human Podocyte Vitamin D Receptor in HIV Milieu.

    PubMed

    Chandel, Nirupama; Ayasolla, Kameshwar S; Lan, Xiqian; Sultana-Syed, Maria; Chawla, Amrita; Lederman, Rivka; Vethantham, Vasupradha; Saleem, Moin A; Chander, Praveen N; Malhotra, Ashwani; Singhal, Pravin C

    2015-10-01

    HIV (human immunodeficiency virus) has been reported to induce podocyte injury through down regulation of vitamin D receptor (VDR) and activation of renin angiotensin system; however, the involved mechanism is not clear. Since HIV has been reported to modulate gene expression via epigenetic phenomena, we asked whether epigenetic factors contribute to down regulation of VDR. Kidney cells in HIV transgenic mice and HIV-infected podocytes (HIV/HPs) displayed enhanced expression of SNAIL, a repressor of VDR. To elucidate the mechanism, we studied the effect of HIV on expression of molecules involved in SNAIL repressor complex formation and demonstrated that HIV enhances expression of the histone deacetylase HDAC1 and DNA methyl transferases DNMT3b and DNMT1. 293T cells, when stably transfected with SNAIL (SNAIL/293T), displayed suppressed transcription and translation of VDR. In SNAIL/293T cells, co-immunoprecipitation studies revealed the association of HDAC1, DNMT3b, DNMT1, and mSin3A with SNAIL. Chromatin immunoprecipitation experiments confirmed the presence of the SNAIL repressor complex at the VDR promoter. Consistent with the enhanced DNA methyl transferase expression in HIV/HPs, there was an increased CpG methylation at the VDR promoter. Chromatin immunoprecipitation assay confirmed occurrence of H3K4 trimethylation on SNAIL promoter. Neither a VDR agonist (VDA) nor an HDAC inhibitor (HDACI) nor a demethylating agent (DAC) individually could optimally up regulate VDR in HIV milieu. However, VDA and HDACI when combined were successful in de-repressing VDR expression. Our findings demonstrate that SNAIL recruits multiple chromatin enzymes to form a repressor complex in HIV milieu that down regulates VDR expression.

  20. Regulation by intracellular Ca sup 2+ and cyclic AMP of the growth factor-induced ruffling membrane formation and stimulation of fluid-phase endocytosis and exocytosis

    SciTech Connect

    Miyata, Yoshihiko Tokyo Metropolitan Inst. of Medical Science ); Nishida, Eisuke; Sakai, Hikoichi ); Koyasu, Shigeo; Yahara, Ichiro )

    1989-04-01

    Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) induce formation of ruffling membranes and stimulate the fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells. An increase in intracellular Ca{sup 2+} concentration by treatment with A23187, a calcium ionophore, or an increase in intracellular cAMP level by treatment with dibutyryl cAMP or forskolin almost completely inhibited the insulin-, IGF-I-, or EGF-induced formation of ruffling membranes. Increases in Ca{sup 2+} or cAMP concentration also inhibited almost completely the stimulation of fluid-phase endocytosis and exocytosis elicited by these growth factors. These results suggest that the growth factor-induced ruffling membrane formation and the stimulation of fluid-phase endocytosis and exocytosis have a common regulatory mechanism involving intracellular concentrations of Ca{sup 2+} and cAMP. {sup 125}I-EGF binding assays and immunoprecipitation experiments with anti-phosphotyrosine antibody revealed that treatment of KB cells with A23187, dibutyryl cAMP, or forskolin did not inhibit the EGF binding to the cells nor subsequent tyrosine autophosphorylation of its receptors. These results indicate that Ca{sup 2+}- and/or cAMP-sensitive intracellular reactions exist downstream from the receptor kinase activation in the process of these early cellular responses.

  1. DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions.

    PubMed

    Wu, Dan; Ma, Xiuli; Lin, Francis

    2013-01-01

    Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.

  2. Cryptococcus neoformans induces antimicrobial responses and behaves as a facultative intracellular pathogen in the non mammalian model Galleria mellonella

    PubMed Central

    Trevijano-Contador, Nuria; Herrero-Fernández, Inés; García-Barbazán, Irene; Scorzoni, Liliana; Rueda, Cristina; Rossi, Suélen Andreia; García-Rodas, Rocío; Zaragoza, Oscar

    2015-01-01

    Cryptococcus neoformans is an encapsulated opportunistic fungal pathogen that is found in multiple niches in the environment and that can cause fatal meningoencephalitis in susceptible patients, mainly HIV+ individuals. Cryptococcus also infects environmental hosts such as nematodes, insects and plants. In particular, C. neoformans can kill the lepidopteran Galleria mellonella, which offers a useful tool to study microbial virulence and drug efficacy. Galleria mellonella immunity relies on innate responses based on melanization, accumulation of antimicrobial peptides, and cellular responses as phagocytosis or multicellular encapsulation. In this work we have investigated the immune response of G. mellonella during cryptococcal infection. We found that G. mellonella infected with C. neoformans had a high lytic activity in their hemolymph. This response was temperature- and capsule-dependent. During interaction with phagocytic cells, C. neoformans behaved as an intracellular pathogen since it could replicate within hemocytes. Non-lytic events were also observed. In contrast to Candida species, C. neoformans did not induce melanization of G. mellonella after infection. Finally, passage of C. neoformans through G. mellonella resulted in changes in capsule structure as it has been also reported during infection in mammals. Our results highlight that G. mellonella is an optimal model to investigate innate immune responses against C. neoformans. PMID:25531532

  3. Microprobe XRF mapping and XAS investigations of the intracellular metabolism of arsenic for understanding arsenic-induced toxicity.

    PubMed

    Munro, Kristie L; Mariana, Anna; Klavins, Andrejs I; Foster, Amalanie J; Lai, Barry; Vogt, Stefan; Cai, ZhongHou; Harris, Hugh H; Dillon, Carolyn T

    2008-09-01

    Arsenic (As) is responsible for mass-poisonings worldwide following the ingestion of As-contaminated drinking water. Importantly, however, As toxicity is exploited in the antileukemia drug, Trisenox (As2O3), which successfully cures 65-80% of patients suffering relapsed acute promyelocytic leukemia. In an effort to determine the intracellular organelle and biomolecular targets of As, microprobe X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) analyses were performed on HepG2 cells following their exposure to high doses of arsenite (1 mM) or arsenate (20 mM). Microprobe XRF elemental mapping of thin-sectioned cells showed As accumulation in the euchromatin region of the cell nucleus (following arsenite exposure) synonymous with As targeting of DNA or proteins involved in DNA transcription. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of arsenite-treated cells, however, showed the predominance of an As tris-sulfur species, providing increased credence to As interactions with nuclear proteins as a key factor in As-induced toxicity. PMID:18597498

  4. Amino acid sequence of an intracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells.

    PubMed

    Löffler, A; Glund, K; Irie, M

    1993-06-15

    The primary structure of an intracellular ribonuclease (RNase LX) from cultured tomato (Lycopersicon esculentum) cells has been determined. Previous studies have shown that the protein is located inside the tomato cells but outside the vacuoles and that its synthesis is induced after depleting the cells for phosphate [Löffler, A., Abel, S., Jost, W., Beintema, J. J., Glund, K. (1992) Plant Physiol. 98, 1472-1478]. Sequence analysis was carried out by analysis of peptides isolated after enzymatic and chemical cleavage of the protein. RNase LX consists of 213 amino acids and has a molecular mass of 24300 Da and an isoelectric point of 5.33. The enzyme contains 10 half-cystines and there are no potential N-glycosylation sites detectable in the sequence. RNase LX, as compared to an extracellular tomato RNase (RNase LE), which is also phosphate regulated and the amino acid sequence of which was recently established [Jost, W., Bak, H., Glund, K., Terpstra, P. & Beintema, J. J. (1991) Eur. J. Biochem. 198, 1-6] has 60% of all amino acids identical and in identical positions, revealing a high degree of similarity between both proteins. In contrast to RNase LE, RNase LX has a C-terminal extension of nine amino acids. The C-terminal tetrapeptide HDEF may be a retention signal of the protein in the endoplasmic reticulum. PMID:8319673

  5. One Year of Enzyme Replacement Therapy Reduces Globotriaosylceramide Inclusions in Podocytes in Male Adult Patients with Fabry Disease

    PubMed Central

    Najafian, Behzad; Tøndel, Camilla; Svarstad, Einar; Sokolovkiy, Alexey; Smith, Kelly; Mauer, Michael

    2016-01-01

    Fabry nephropathy is associated with progressive accumulation of globotriaosylceramide (GL3) in podocytes. Reducing this GL3 burden may reduce podocyte injury. Sensitive methods to quantify podocyte GL3 content may determine whether a given strategy can benefit podocytes in Fabry disease. We developed an unbiased electron microscopic stereological method to estimate the average volume of podocytes and their GL3 inclusions in 6 paired pre- and post-enzyme replacement therapy (ERT) biopsies from 5 men with Fabry disease. Podocyte GL3 content was regularly reduced (average 73%) after 11–12 months of ERT. This was not detectable using a semi-quantitative approach. Parallel to GL3 reduction, podocytes became remarkably smaller (average 63%). These reductions in podocyte GL3 content or size were not significantly correlated with changes in foot process width (FPW). However, FPW after ERT was significantly correlated with the magnitude of the decrease in podocyte GL3 content from baseline to 11–12 months of ERT. Also podocytes exocytosed GL3 inclusions, a phenomenon correlated with their reduction in their GL3 content. Demonstrable after11–12 months, reduction in podocyte GL3 content allows for early assessment of treatment efficacy and shorter clinical trials in Fabry disease. PMID:27081853

  6. One Year of Enzyme Replacement Therapy Reduces Globotriaosylceramide Inclusions in Podocytes in Male Adult Patients with Fabry Disease.

    PubMed

    Najafian, Behzad; Tøndel, Camilla; Svarstad, Einar; Sokolovkiy, Alexey; Smith, Kelly; Mauer, Michael

    2016-01-01

    Fabry nephropathy is associated with progressive accumulation of globotriaosylceramide (GL3) in podocytes. Reducing this GL3 burden may reduce podocyte injury. Sensitive methods to quantify podocyte GL3 content may determine whether a given strategy can benefit podocytes in Fabry disease. We developed an unbiased electron microscopic stereological method to estimate the average volume of podocytes and their GL3 inclusions in 6 paired pre- and post-enzyme replacement therapy (ERT) biopsies from 5 men with Fabry disease. Podocyte GL3 content was regularly reduced (average 73%) after 11-12 months of ERT. This was not detectable using a semi-quantitative approach. Parallel to GL3 reduction, podocytes became remarkably smaller (average 63%). These reductions in podocyte GL3 content or size were not significantly correlated with changes in foot process width (FPW). However, FPW after ERT was significantly correlated with the magnitude of the decrease in podocyte GL3 content from baseline to 11-12 months of ERT. Also podocytes exocytosed GL3 inclusions, a phenomenon correlated with their reduction in their GL3 content. Demonstrable after11-12 months, reduction in podocyte GL3 content allows for early assessment of treatment efficacy and shorter clinical trials in Fabry disease. PMID:27081853

  7. Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide.

    PubMed

    Matsunaga, Toshiyuki; Kotamraju, Srigiridhar; Kalivendi, Shasi V; Dhanasekaran, Anuradha; Joseph, Joy; Kalyanaraman, B

    2004-07-01

    Sphingolipid ceramide (N-acetylsphingosine), a bioactive second messenger lipid, was shown to activate reactive oxygen species (ROS), mitochondrial oxidative damage, and apoptosis in neuronal and vascular cells. The proapoptotic effects of tumor necrosis factor-alpha, hypoxia, and chemotherapeutic drugs were attributed to increased ceramide formation. Here we investigated the protective role of nitric oxide (.NO) during hydrogen peroxide (H(2)O(2))-mediated transferrin receptor (TfR)-dependent iron signaling and apoptosis in C(2)-ceramide (C(2)-cer)-treated bovine aortic endothelial cells (BAECs). Addition of C(2)-cer (5-20 microm) to BAECs enhanced .NO generation. However, at higher concentrations of C(2)-cer (> or =20 microm), .NO generation did not increase proportionately. C(2)-cer (20-50 microm) also resulted in H(2)O(2)-mediated dichlorodihydrofluorescein oxidation, reduced glutathione depletion, aconitase inactivation, TfR overexpression, TfR-dependent uptake of (55)Fe, release of cytochrome c from mitochondria into cytosol, caspase-3 activation, and DNA fragmentation. N(w)-Nitro-l-arginine methyl ester (l-NAME), a nonspecific inhibitor of nitricoxide synthases, augmented these effects in BAECs at much lower (i.e. nonapoptotic) concentrations of C(2)-cer. The 26 S proteasomal activity in BAECs was slightly elevated at lower concentrations of C(2)-cer (< or =10 microm) but was greatly suppressed at higher concentrations (>10 microm). Intracellular scavengers of H(2)O(2), cell-permeable iron chelators, anti-TfR receptor antibody, or mitochondria-targeted antioxidant greatly abrogated C(2)-cer- and/or l-NAME-induced oxidative damage, iron signaling, and apoptosis. We conclude that C(2)-cer-induced H(2)O(2) and TfR-dependent iron signaling are responsible for its prooxidant and proapoptotic effects and that .NO exerts an antioxidative and cytoprotective role.

  8. Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling

    PubMed Central

    Rafiee, Parvaneh; Heidemann, Jan; Ogawa, Hitoshi; Johnson, Nathan A; Fisher, Pamela J; Li, Mona S; Otterson, Mary F; Johnson, Christopher P; Binion, David G

    2004-01-01

    The immunosuppressive agent cyclosporin A (CsA), a calcineurin inhibitor which blocks T cell activation has provided the pharmacologic foundation for organ transplantation. CsA exerts additional effects on non-immune cell populations and may adversely effect microvascular endothelial cells, contributing to chronic rejection, a long-term clinical complication and significant cause of mortality in solid-organ transplants, including patients with small bowel allografts. Growth of new blood vessels, or angiogenesis, is a critical homeostatic mechanism in organs and tissues, and regulates vascular populations in response to physiologic requirements. We hypothesized that CsA would inhibit the angiogenic capacity of human gut microvessels. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were used to evaluate CsA's effect on four in vitro measures of angiogenesis, including endothelial stress fiber assembly, migration, proliferation and tube formation, in response to the endothelial growth factor VEGF. We characterized the effect of CsA on intracellular signaling mechanisms following VEGF stimulation. CsA affected all VEGF induced angiogenic events assessed in HIMEC. CsA differentially inhibited signaling pathways which mediated distinct steps of the angiogenic process. CsA blocked VEGF induced nuclear translocation of the transcription factor NFAT, activation of p44/42 MAPK, and partially inhibited JNK and p38 MAPK. CsA differentially affected signaling cascades in a dose dependent fashion and completely blocked expression of COX-2, which was integrally linked to HIMEC angiogenesis. These data suggest that CsA inhibits the ability of microvascular endothelial cells to undergo angiogenesis, impairing vascular homeostatic mechanisms and contributing to the vasculopathy associated with chronic rejection. PMID:15175101

  9. Methylmercury-induced toxicity is mediated by enhanced intracellular calcium through activation of phosphatidylcholine-specific phospholipase C

    SciTech Connect

    Kang, Mi Sun; Jeong, Ju Yeon; Seo, Ji Heui; Jeon, Hyung Jun; Jung, Kwang Mook; Chin, Mi-Reyoung; Moon, Chang-Kiu; Bonventre, Joseph V.; Jung, Sung Yun; Kim, Dae Kyong . E-mail: proteinlab@hanmail.net

    2006-10-15

    Methylmercury (MeHg) is a ubiquitous environmental toxicant to which humans can be exposed by ingestion of contaminated food. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of free intracellular Ca{sup 2+} levels ([Ca{sup 2+}]{sub i}). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity in MDCK cells. D609, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner with concomitant inhibition of the diacylglycerol (DAG) generation and the phosphatidylcholine (PC)-breakdown. MeHg activated the group IV cytosolic phospholipase A{sub 2} (cPLA{sub 2}) and acidic form of sphingomyelinase (A-SMase) downstream of PC-PLC, but these enzymes as well as protein kinase C (PKC) were not linked to the toxicity by MeHg. Furthermore, MeHg produced ROS, which did not affect the toxicity. Addition of EGTA to culture media resulted in partial decrease of [Ca{sup 2+}]{sub i} and partially blocked the toxicity. In contrast, when the cells were treated with MeHg in the presence of Ca{sup 2+} in the culture media, D609 completely prevented cell death with parallel decrease in [Ca{sup 2+}]{sub i}. Our results demonstrated that MeHg-induced toxicity was linked to elevation of [Ca{sup 2+}]{sub i} through activation of PC-PLC, but not attributable to the signaling pathways such as cPLA{sub 2}, A-SMase, and PKC, or to the generation of ROS.

  10. The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells.

    PubMed

    Jiménez-Aspee, Felipe; Theoduloz, Cristina; Ávila, Felipe; Thomas-Valdés, Samanta; Mardones, Claudia; von Baer, Dietrich; Schmeda-Hirschmann, Guillermo

    2016-03-01

    The Chilean raspberry Rubus geoides Sm. (Rosaceae) is a native species occurring in the Patagonia. Five R. geoides samples were assessed for phenolic content and composition, antioxidant activity, effect on total reduced glutathione (GSH) synthesis and protective effect against H2O2 and methylglyoxal (MGO)-induced stress in epithelial gastric AGS cells. The HPLC-DAD/ESI-MS profiles allowed the tentative identification of 39 phenolics including flavonol glycosides and tannins. R. geoides presented higher total phenolic and flavonoid content than Rubus idaeus. Two out of the five phenolic enriched R. geoides extracts (PEEs) exhibited better antioxidant activity than R. idaeus in the DPPH, FRAP and TEAC assays. A significant cytoprotective activity was observed when AGS cells were pre-incubated with extracts and subsequently challenged with H2O2 or MGO. Treatment with the PEEs increased the intracellular GSH content. R. geoides fruit extracts may induce the activation of intracellular protection mechanisms against oxidative and dicarbonyl-induced stress.

  11. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    SciTech Connect

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by

  12. 4-Hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and depleting intracellular glutathione in intestinal epithelial cells

    PubMed Central

    Ji, Yun; Dai, Zhaolai; Wu, Guoyao; Wu, Zhenlong

    2016-01-01

    Excessive reactive oxygen species (ROS) induces oxidative damage to cellular constituents, ultimately leading to induction of apoptotic cell death and the pathogenesis of various diseases. The molecular mechanisms for the action of ROS in intestinal diseases remain poorly defined. Here, we reported that 4-hydroxy-2-nonenal (4-HNE) treatment led to capses-3-dependent apoptosis accompanied by increased intracellular ROS level and reduced glutathione concentration in intestinal epithelial cells. These effects of 4-HNE were markedly abolished by the antioxidant L-cysteine derivative N-acetylcysteine (NAC). Further studies demonstrated that the protective effect of NAC was associated with restoration of intracellular redox state by Nrf2-related regulation of expression of genes involved in intracellular glutathione (GSH) biosynthesis and inactivation of 4-HNE-induced phosphorylation of extracellular signal-regulated protein kinases (ERK1/2). The 4-HNE-induced ERK1/2 activation was mediated by repressing mitogen-activated protein kinase phosphatase-1 (MKP-1), a negative regulator of ERK1/2, through a proteasome-dependent degradation mechanism. Importantly, either overexpression of MKP-1 or NAC treatment blocked 4-HNE-induced MKP-1 degradation, thereby protecting cell from apoptosis. These novel findings provide new insights into a functional role of MKP-1 in oxidative stress-induced cell death by regulating ERK1/2 MAP kinase in intestinal epithelial cells. PMID:27620528

  13. 4-Hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and depleting intracellular glutathione in intestinal epithelial cells.

    PubMed

    Ji, Yun; Dai, Zhaolai; Wu, Guoyao; Wu, Zhenlong

    2016-01-01

    Excessive reactive oxygen species (ROS) induces oxidative damage to cellular constituents, ultimately leading to induction of apoptotic cell death and the pathogenesis of various diseases. The molecular mechanisms for the action of ROS in intestinal diseases remain poorly defined. Here, we reported that 4-hydroxy-2-nonenal (4-HNE) treatment led to capses-3-dependent apoptosis accompanied by increased intracellular ROS level and reduced glutathione concentration in intestinal epithelial cells. These effects of 4-HNE were markedly abolished by the antioxidant L-cysteine derivative N-acetylcysteine (NAC). Further studies demonstrated that the protective effect of NAC was associated with restoration of intracellular redox state by Nrf2-related regulation of expression of genes involved in intracellular glutathione (GSH) biosynthesis and inactivation of 4-HNE-induced phosphorylation of extracellular signal-regulated protein kinases (ERK1/2). The 4-HNE-induced ERK1/2 activation was mediated by repressing mitogen-activated protein kinase phosphatase-1 (MKP-1), a negative regulator of ERK1/2, through a proteasome-dependent degradation mechanism. Importantly, either overexpression of MKP-1 or NAC treatment blocked 4-HNE-induced MKP-1 degradation, thereby protecting cell from apoptosis. These novel findings provide new insights into a functional role of MKP-1 in oxidative stress-induced cell death by regulating ERK1/2 MAP kinase in intestinal epithelial cells. PMID:27620528

  14. Mitogenic hormone-induced intracellular message: assay and partial characterization of an activator of DNA replication induced by epidermal growth factor.

    PubMed Central

    Das, M

    1980-01-01

    This paper explores the pathway from nuclear quiescence to mitogenesis. It describes an in vitro assay for an activator of DNA replication induced by epidermal growth factor (EGF) in responsive cells. Cytoplasmic extracts from EGF-treated 3T3 cells were found to contain substances that can stimulate DNA synthesis in isolated nuclei from spleen cells of adult frogs. Extracts from untreated resting 3T3 cells lack this activity, and EGF itself is incapable of stimulating DNA synthesis in these cell-free systems. The extract-induced stimulation of incorporation of [3H]dTTP into nuclear DNA is ATP dependent and requires the presence of the four deoxyribonucleoside triphosphates, suggesting the occurrence of replication rather than repair synthesis. This cell-free assay has been used to obtain some initial insights into the mechanism of induction and biochemical characterization of the intermediate in EGF action. Half-maximal induction of the active intracellular substance is achieved at about 0.08 nM EGF, a concentration that correlates well with the concentration required for half-maximal mitogenesis. Studies on the biochemical characteristics of this active substance strongly suggest that the activity is associated with a protein. The activity is nondialyzable and sensitive to trypsin and heat. Sucrose gradient centrifugation of the extract revealed three peaks of activity with molecular weights of 46,000, 110,000, and 270,000 (sedimentation coefficients: 3.7 S, 6.6 S, and 12 S, respectively). These results indicate that receptor-EGF interaction at the cell surface leads to the intracellular generation of protein that are capable of stimulating quiescent nuclei into activity. PMID:6965791

  15. Cilnidipine suppresses podocyte injury and proteinuria in metabolic syndrome rats: possible involvement of N-type calcium channel in podocyte

    PubMed Central

    Fan, Yu-Yan; Kohno, Masakazu; Nakano, Daisuke; Ohsaki, Hiroyuki; Kobori, Hiroyuki; Diah, Suwarni; Ohashi, Naro; Hitomi, Hirofumi; Asanuma, Katsuhiko; Noma, Takahisa; Tomino, Yasuhiko; Fujita, Toshiro; Nishiyama, Akira

    2010-01-01

    Objectives Clinical studies have indicated the beneficial effect of an L/N-type calcium channel blocker (CCB), cilnidipine, on the progression of proteinuria in hypertensive patients compared with an L-type CCB, amlodipine. In the present study, we examined the effects of cilnidipine and amlodipine on the renal injury in spontaneously hypertensive rat/ND mcr-cp (SHR/ND) and their underlying mechanism. Methods and results SHR/ND were treated with vehicle (n = 10), cilnidipine [33 mg/kg per day, orally (p.o.); n = 11] or amlodipine (20 mg/kg per day, p.o.; n = 9) for 20 weeks. SHR/ND developed proteinuria in an age-dependent manner. Cilnidipine suppressed the proteinuria greater than amlodipine did. The immunohistochemical analysis showed that N-type calcium channel and Wilm’s tumor factor, a marker of podocyte, were co-expressed. SHR/ND had significantly greater desmin staining, an indicator of podocyte injury, with lower podocin and nephrin expression in the glomeruli than Wistar–Kyoto rat or SHR. Cilnidipine significantly prevented the increase in desmin staining and restored the glomerular podocin and nephrin expression compared with amlodipine. Cilnidipine also prevented the increase in renal angiotensin II content, the expression and membrane translocation of NADPH oxidase subunits and dihydroethidium staining in SHR/ND. In contrast, amlodipine failed to change these renal parameters. Conclusion These data suggest that cilnidipine suppressed the development of proteinuria greater than amlodipine possibly through inhibiting N-type calcium channel-dependent podocyte injury in SHR/ND. PMID:20411599

  16. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS.

    PubMed

    Duong, Cao Nguyen; Kim, Jae Young

    2016-01-01

    Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury.

  17. IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes.

    PubMed

    Santamaria, Beatriz; Marquez, Eva; Lay, Abigail; Carew, RoseaMarie M; González-Rodríguez, Águeda; Welsh, Gavin I; Ni, Lan; Hale, Lorna J; Ortiz, Alberto; Saleem, Moin A; Brazil, Derek P; Coward, Richard J; Valverde, Ángela M

    2015-12-01

    Insulin signaling to the glomerular podocyte is important for normal kidney function and is implicated in the pathogenesis of diabetic nephropathy (DN). This study determined the role of the insulin receptor substrate 2 (IRS2) in this system. Conditionally immortalized murine podocytes were generated from wild-type (WT) and insulin receptor substrate 2-deficient mice (Irs2(-/-)). Insulin signaling, glucose transport, cellular motility and cytoskeleton rearrangement were then analyzed. Within the glomerulus IRS2 is enriched in the podocyte and is preferentially phosphorylated by insulin in comparison to IRS1. Irs2(-/-) podocytes are significantly insulin resistant in respect to AKT signaling, insulin-stimulated GLUT4-mediated glucose uptake, filamentous actin (F-actin) cytoskeleton remodeling and cell motility. Mechanistically, we discovered that Irs2 deficiency causes insulin resistance through up-regulation of the phosphatase and tensin homolog (PTEN). Importantly, suppressing PTEN in Irs2(-/-) podocytes rescued insulin sensitivity. In conclusion, this study has identified for the first time IRS2 as a critical molecule for sensitizing the podocyte to insulin actions through its ability to modulate PTEN expression. This finding reveals two potential molecular targets in the podocyte for modulating insulin sensitivity and treating DN.

  18. Overexpression of VEGF165b in Podocytes Reduces Glomerular Permeability

    PubMed Central

    Qiu, Yan; Ferguson, Joanne; Oltean, Sebastian; Neal, Chris R.; Kaura, Amit; Bevan, Heather; Wood, Emma; Sage, Leslie M.; Lanati, Silvia; Nowak, Dawid G.; Salmon, Andy H.J.; Bates, David

    2010-01-01

    The observation that therapeutic agents targeting vascular endothelial growth factor-A (VEGF-A) associate with renal toxicity suggests that VEGF plays a role in the maintenance of the glomerular filtration barrier. Alternative mRNA splicing produces the VEGFxxxb family, which consists of antiangiogenic peptides that reduce permeability and inhibit tumor growth; the contribution of these peptides to normal glomerular function is unknown. Here, we established and characterized heterozygous and homozygous transgenic mice that overexpress VEGF165b specifically in podocytes. We confirmed excess production of glomerular VEGF165b by reverse transcriptase–PCR, immunohistochemistry, and ELISA in both heterozygous and homozygous animals. Macroscopically, the mice seemed normal up to 18 months of age, unlike the phenotype of transgenic podocyte-specific VEGF164-overexpressing mice. Animals overexpressing VEGF165b, however, had a significantly reduced normalized glomerular ultrafiltration fraction with accompanying changes in ultrastructure of the glomerular filtration barrier on the vascular side of the glomerular basement membrane. These data highlight the contrasting properties of VEGF splice variants and their impact on glomerular function and phenotype. PMID:20688932

  19. Actin filament organization of foot processes in vertebrate glomerular podocytes.

    PubMed

    Ichimura, Koichiro; Kurihara, Hidetake; Sakai, Tatsuo

    2007-09-01

    We investigated the actin filament organization and immunolocalization of actin-binding proteins (alpha-actinin and cortactin) in the podocyte foot processes of eight vertebrate species (lamprey, carp, newt, frog, gecko, turtle, quail, and rat). Three types of actin cytoskeleton were found in these foot processes. (1) A cortical actin network with cortactin filling the space between the plasma membrane and the other actin cytoskeletons described below was found in all of the species examined here. The data indicated that the cortical actin network was the minimal essential actin cytoskeleton for the formation and maintenance of the foot processes in vertebrate podocytes. (2) An actin bundle with alpha-actinin existing along the longitudinal axis of foot process above the level of slit diaphragms was only observed in quail and rat. (3) An actin fascicle consisting of much fewer numbers of actin filaments than that of the actin bundle was observed in the species other than quail and rat, but at various frequencies. These findings suggest that the actin bundle is an additional actin cytoskeleton reflecting a functional state peculiar to quail and rat glomeruli. Considering the higher intraglomerular pressure and the extremely thin filtration barrier in birds and mammals, the foot processes probably mainly protect the thinner filtration barrier from the higher internal pressure occurring in quail and rat glomeruli. Therefore, we consider that the actin bundle plays a crucial role in the mechanical protection of the filtration barrier. Moreover, the actin fascicle may be a potential precursor of the actin bundle.

  20. Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    PubMed Central

    Brunskill, Eric W.; Georgas, Kylie; Rumballe, Bree; Little, Melissa H.; Potter, S. Steven

    2011-01-01

    Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells. PMID:21931791

  1. Podocyte Detachment Is Associated with Renal Prognosis in ANCA-Associated Glomerulonephritis

    PubMed Central

    Zou, Rong; Wang, Su-xia; Liu, Gang; Yu, Feng; Chen, Min; Zhao, Ming-Hui

    2016-01-01

    Abstract The prognosis of antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis (ANCA-GN) is unfavorable despite immunosuppressive therapy. It has been suggested that the loss of podocytes is a hallmark of progressive kidney disease. However, it is unclear about podocyte injuries and their predictive values on the prognosis in ANCA-GN. Therefore, the current study aimed to investigate the podocyte injury in renal histopathology and its association with renal prognosis of patients with ANCA-GN. A total of 170 patients with ANCA-GN were recruited in this study. Morphometric investigation of podocytes by electron microscopy including foot process width (FPW), podocyte density per glomerulus (Nv), and glomerular basement membrane (GBM) width were measured and calculated in ANCA-GN patients. Cox regression analysis was used to analyze the association between podocyte injuries and prognosis of patients with ANCA-GN. Foot processes broadening, podocyte detachment, and GBM thickening could be observed in electron micrographs in the specimens of 158/170 (92.9%), 142/170 (83.5%), and 150/170 (88.2%) patients, respectively. Compared with normal controls, FPW and GBM width in ANCA-GN patients was significantly higher (1269.39 ± 680.19 vs 585.81 ± 77.16, P = 0.004; 668.23 ± 208.73 vs 354.23 ± 52.70, P = 0.000, respectively), while the podocyte density was significantly lower (55.90 ± 36.32 vs 255.23 ± 47.29, P = 0.000). The podocyte density was independently associated with the recovery of renal function in logistic regression analysis (OR, 1.083; 95% CI, 1.025–1.440; P = 0.005). Furthermore, multivariate analysis revealed that podocyte density was an independent predictor of end-stage renal disease (ESRD) (model A: HR, 0.950; 95% CI, 0.919–1.982; P = 0.002; model B: HR, 0.953; 95% CI, 0.922–0.985; P = 0.004). Podocyte structural damage and detachment occurred frequently in patients with ANCA

  2. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy

    PubMed Central

    Yilmaz, E; Gold, MS

    2015-01-01

    The purpose of the present study was to test the prediction that the unique manifestation of chemotherapeutic-induced peripheral neuropathy (CIPN) would be reflected in a specific pattern of changes in the regulation of the intracellular Ca2+ concentration ([Ca2+]i) in subpopulations of cutaneous neurons. To test this prediction, we characterized the pattern of changes in mechanical nociceptive threshold associated with paclitaxel administration (2 mg/kg, iv, every other day for four days), as well as the impact of target of innervation and paclitaxel treatment on the regulation of [Ca2+]i in subpopulations of putative nociceptive and non-nociceptive neurons. Neurons innervating the glabrous and hairy skin of the hindpaw as well as the thigh were identified with retrograde tracers, and fura-2 was used to assess changes in [Ca2+]i. Paclitaxel was associated with a persistent decrease in mechanical nociceptive threshold in response to stimuli applied to the glabrous skin of the hindpaw, but not the hairy skin of the hindpaw or the thigh. However, in both putative nociceptive and non-nociceptive neurons, resting [Ca2+]i was significantly lower in neurons innervating the thigh after treatment. The magnitude of the depolarization-evoked Ca2+ transient was also lower in putative non-nociceptive thigh neurons. More interestingly, while paclitaxel had no detectable influence on either resting or depolarization-evoked Ca2+ transients in putative non-nociceptive neurons, in putative nociceptive neurons there was a subpopulation- specific decrease in the duration of the evoked Ca2+ transient that was largely restricted to neurons innervating the glabrous skin. These results suggest that peripheral nerve length alone, does not account for the selective distribution of CIPN symptoms. Rather, they suggest the symptoms of CIPN reflect an interaction between the toxic actions of the therapeutic and unique properties of the neurons deleteriously impacted. PMID:25982563

  3. Regression of superficial glomerular podocyte injury in type 2 diabetic rats with overt albuminuria: effect of angiotensin II blockade

    PubMed Central

    Ihara, Genei; Kiyomoto, Hideyasu; Kobori, Hiroyuki; Nagai, Yukiko; Ohashi, Naro; Hitomi, Hirofumi; Nakano, Daisuke; Pelisch, Nicolas; Hara, Taiga; Mori, Takefumi; Ito, Sadayoshi; Kohno, Masakazu; Nishiyama, Akira

    2010-01-01

    Objective Clinical studies indicate that the remission, regression or both of nephrotic-range albuminuria are exerted by angiotensin II receptor blockers (ARBs) in diabetes. The current study was performed to test the hypothesis that these effects of ARBs are associated with regression of glomerular podocyte injury. Methods We examined the effects of an ARB, olmesartan, on glomerular podocyte injury in type 2 diabetic Otsuka–Long–Evans–Tokushima-Fatty rats with overt albuminuria. Results At baseline (55-week-old), diabetic Otsuka–Long–Evans–Tokushima-Fatty rats showed severe albuminuria with desmin-positive areas (an index of podocyte injury) in both superficial and juxtamedullary glomeruli, and podocyte injury was much greater in juxtamedullary than in superficial glomeruli. At 75-week-old, Otsuka–Long–Evans–Tokushima-Fatty rats had developed more severe albuminuria and superficial glomerular podocyte injury, whereas juxtamedullary glomerular podocyte injury did not advance further. Olmesartan (10 mg/kg per day) decreased albuminuria and superficial glomerular desmin staining to levels that were lower than those at baseline, whereas advanced juxtamedullary glomerular podocyte injury was not changed. Conclusion The current study demonstrates for the first time that juxtamedullary glomerular podocyte injury reaches a severe condition at an earlier time than superficial glomerular podocyte injury during the progression of overt albuminuria in type 2 diabetic rats. Our data also support the hypothesis that the antialbuminuric effects of ARBs are associated with regression of superficial glomerular podocyte injury in type 2 diabetes with nephrotic-range albuminuria. PMID:20706133

  4. Podocyte Number in Children and Adults: Associations with Glomerular Size and Numbers of Other Glomerular Resident Cells.

    PubMed

    Puelles, Victor G; Douglas-Denton, Rebecca N; Cullen-McEwen, Luise A; Li, Jinhua; Hughson, Michael D; Hoy, Wendy E; Kerr, Peter G; Bertram, John F

    2015-09-01

    Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335-502), 389 NECs (IQR=265-498), and 146 PECs (IQR=111-206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431-746; P<0.01), 1383 NECs (IQR=998-2042; P<0.001), and 367 PECs (IQR=309-673; P<0.001). However, large adult glomeruli showed markedly lower podocyte density (183 podocytes per 10(6) µm(3)) than small glomeruli from adults and children (932 podocytes per 10(6) µm(3); P<0.001). In conclusion, large adult glomeruli contained more podocytes than small glomeruli from children and adults, raising questions about the origin of these podocytes. The increased number of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology.

  5. Knockdown of Expression of Cdk5 or p35 (a Cdk5 Activator) Results in Podocyte Apoptosis

    PubMed Central

    Zheng, Ya-Li; Zhang, Xia; Fu, Hai-Xia; Guo, Mei; Shukla, Varsha; Amin, Niranjana D.; E, Jing; Bao, Li; Luo, Hong-Yan; Li, Bo; Lu, Xiao-Hua; Gao, Yong-Cai

    2016-01-01

    Podocytes are terminally differentiated glomerular epithelial cells. Podocyte loss has been found in many renal diseases. Cdk5 is a cyclin-dependent protein kinase which is predominantly regulated by p35. To study the role of Cdk5/p35 in podocyte survival, we first applied western blotting (WB) analysis to confirm the time-course expression of Cdk5 and p35 during kidney development and in cultured immortalized mouse podocytes. We also demonstrated that p35 plays an important role in promoting podocyte differentiation by overexpression of p35 in podocytes. To deregulate the expression of Cdk5 or p35 in mouse podocytes, we used RNAi and analyzed cell function and apoptosis assaying for podocyte specific marker Wilms Tumor 1 (WT1) and cleaved caspase 3, respectively. We also counted viable cells using cell counting kit-8. We found that depletion of Cdk5 causes decreased expression of WT1 and apoptosis. It is noteworthy, however, that downregulation of p35 reduced Cdk5 activity, but had no effect on cleaved caspase 3 expression. It did, however, reduce expression of WT1, a transcription factor, and produced podocyte dysmorphism. On the other hand increased apoptosis could be detected in p35-deregulated podocytes using the TUNEL analysis and immunofluorescent staining with cleaved caspase3 antibody. Viability of podocytes was decreased in both Cdk5 and p35 knockdown cells. Knocking down Cdk5 or p35 gene by RNAi does not affect the cycline I expression, another Cdk5 activator in podocyes. We conclude that Cdk5 and p35 play a crucial role in maintaining podocyte differentiation and survival, and suggest these proteins as targets for therapeutic intervention in podocyte-damaged kidney diseases. PMID:27479491

  6. Downregulation of intracellular nm23-H1 prevents cisplatin-induced DNA damage in oesophageal cancer cells: possible association with Na+, K+-ATPase

    PubMed Central

    lizuka, N; Miyamoto, K; Tangoku, A; Hayashi, H; Hazama, S; Yoshino, S; Yoshimura, K; Hirose, K; Yoshida, H; Oka, M

    2000-01-01

    Previously, we showed that expression of nm23-H1 is associated inversely with sensitivity to cisplatin in human oesophageal squamous cell carcinoma (OSCC). The present study was undertaken to investigate the association of nm23-H1 expression with cisplatin-induced DNA damage in OSCC using antisense nm23-H1 transfectants. YES-2/AS-12, an antisense nm23-H1-transfected OSCC cell line, showed significantly reduced expression of intracellular nm23-H1 protein compared with that in parental YES-2 cells and YES-2/Neo transfectants. Surface expression of nm23-H1 protein was not observed in any of the three cell lines. PCR analysis for DNA damage demonstrated that YES-2/AS-12 cells were more resistant to nuclear and mitochondrial DNA damage by cisplatin than were YES-2/Neo cells. In addition, mitochondrial membrane potentials and DNA fragmentation assays confirmed that YES-2/AS-12 was more resistant than YES-2/Neo to apoptosis induced by cisplatin. In contrast, YES-2/AS-12 was more sensitive to ouabain, a selective inhibitor of Na+, K+-ATPase, than YES-2 and YES-2/Neo. Pre-treatment with ouabain resulted in no differences in cisplatin sensitivity between the three cell lines examined. Intracellular platinum level in YES-2/AS-12 was significantly lower than that in YES-2 and YES-2/Neo following incubation with cisplatin, whereas ouabain pre-treatment resulted in no differences in intracellular platinum accumulations between the three cell lines. Our data support the conclusion that reduced expression of intracellular nm23-H1 in OSCC cells is associated with cisplatin resistance via the prevention of both nuclear and mitochondrial DNA damage and suggest that it may be related to Na+, K+-ATPase activity, which is responsible for intracellular cisplatin accumulation. © 2000 Cancer Research Campaign PMID:11027435

  7. Gitelman syndrome and glomerular proteinuria: a link between loss of sodium-chloride cotransporter and podocyte dysfunction?

    PubMed

    Demoulin, Nathalie; Aydin, Selda; Cosyns, Jean-Pierre; Dahan, Karin; Cornet, Georges; Auberger, Ines; Loffing, Johannes; Devuyst, Olivier

    2014-09-01

    We report on a 27-year-old patient presenting with chronic hypokalaemia, inappropriate kaliuresis, hypomagnesaemia and alkalosis, associated with moderate proteinuria. Genetic analysis evidenced a homozygous mutation (p.Arg399Cys) in the SLC12A3 gene coding for the sodium-chloride cotransporter (NCC), confirming the diagnosis of Gitelman syndrome. Further genetic testing did not show any mutation in NPHS2. A renal biopsy was performed in view of the unusual association with proteinuria. Light microscopy showed hypertrophy of the juxtaglomerular apparatus and discrete mesangial thickening. In addition to possible focal segmental glomerular sclerosis lesions, electron microscopy showed extensive segments of variably thickened glomerular basement membrane (GBM), contrasting with segments of regular GBM of low range thickness, and effacement of podocyte foot processes. Of interest, alterations of the GBM were also observed in a Slc12a3 knock-out mouse model for Gitelman syndrome. These data suggest that the association between Gitelman syndrome and secondary changes of the GBM is probably not coincidental. Possible mechanisms include angiotensin II- or renin-induced podocyte lesions, as well as chronic hypokalaemia.

  8. Opiates selectively increase intracellular calcium in developing type-1 astrocytes: role of calcium in morphine-induced morphologic differentiation.

    PubMed

    Stiene-Martin, A; Mattson, M P; Hauser, K F

    1993-12-17

    Endogenous opioids and opiate drugs inhibit nervous system maturation, in part, by affecting the growth of astrocytes. Opiates inhibit astrocyte proliferation and cause premature differentiation. The emerging importance of Ca2+ in astrocyte function prompted us to explore whether opiates might affect astrocyte development by altering Ca2+ homeostasis. Astrocyte-enriched cultures were derived from newborn ICR mouse cerebra. Quantitative fluorescent measurements of intracellular free Ca2+ ([Ca2+]i) using Fura-2 as well as fluo-3 and computer-aided image analysis showed that 1 microM morphine significantly increased [Ca2+]i in flat, polyhedral, glial fibrillary acidic protein (GFAP) immunoreactive astrocytes at 2 and 6 min, and at 72 h. Co-administration of 3 microM naloxone blocked morphine-dependent increases in [Ca2+]i. Treatment with 1 microM concentrations of the kappa-opioid receptor agonist, U69,593, but not equimolar amounts of mu ([D-Ala2,MePhe4,Gly(ol)5]enkephalin)- or delta ([D-Pen2,D-Pen5]enkephalin)-opioid receptor agonists, significantly increased [Ca2+]i in astrocytes. To assess the role of Ca2+ in morphine-induced astrocyte differentiation, untreated and 1 microM morphine-treated astrocyte cultures were incubated for 5 days in < 0.01, 0.3, 1.0, or 3.0 mM extracellular Ca2+ ([Ca2+]o), or incubated with 1.0 mM [Ca2+]o in the presence of 1 microM of the Ca2+ ionophore, A23187. The areas of single astrocytes were measured and there was a positive correlation between astrocyte area and [Ca2+]o. Morphine had an additive effect on area and form factor measures when [Ca2+]o was 1.0 mM. High [Ca2+]o (3.0 mM) alone mimicked the action of morphine. Morphine alone had no effect on astrocyte area in the presence of 3.0 mM Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Lack of CD2AP disrupts Glut4 trafficking and attenuates glucose uptake in podocytes.

    PubMed

    Tolvanen, Tuomas A; Dash, Surjya Narayan; Polianskyte-Prause, Zydrune; Dumont, Vincent; Lehtonen, Sanna

    2015-12-15

    The adapter protein CD2-associated protein (CD2AP) functions in various signaling and vesicle trafficking pathways, including endosomal sorting and/or trafficking and degradation pathways. Here, we investigated the role of CD2AP in insulin-dependent glucose transporter 4 (Glut4, also known as SLC2A4) trafficking and glucose uptake. Glucose uptake was attenuated in CD2AP(-/-) podocytes compared with wild-type podocytes in the basal state, and CD2AP(-/-) podocytes failed to increase glucose uptake in response to insulin. Live-cell imaging revealed dynamic trafficking of HA-Glut4-GFP in wild-type podocytes, whereas in CD2AP(-/-) podocytes, HA-Glut4-GFP clustered perinuclearly. In subcellular membrane fractionations, CD2AP co-fractionated with Glut4, IRAP (also known as LNPEP) and sortilin, constituents of Glut4 storage vesicles (GSVs). We further found that CD2AP forms a complex with GGA2, a clathrin adaptor, which sorts Glut4 to GSVs, suggesting a role for CD2AP in this process. We also found that CD2AP forms a complex with clathrin and connects clathrin to actin in the perinuclear region. Furthermore, clathrin recycling back to trans-Golgi membranes from the vesicular fraction containing GSVs was defective in the absence of CD2AP. This leads to reduced insulin-stimulated trafficking of GSVs and attenuated glucose uptake into CD2AP(-/-) podocytes.

  10. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells.

    PubMed

    Paola, D; Domenicotti, C; Nitti, M; Vitali, A; Borghi, R; Cottalasso, D; Zaccheo, D; Odetti, P; Strocchi, P; Marinari, U M; Tabaton, M; Pronzato, M A

    2000-02-16

    Amyloid beta-protein (Abeta) aggregation produces an oxidative stress in neuronal cells that, in turn, may induce an amyloidogenic shift of neuronal metabolism. To investigate this hypothesis, we analyzed intra- and extracellular Abeta content in NT2 differentiated cells incubated with 4-hydroxy-2,3-nonenal (HNE), a major product of lipid peroxidation. In parallel, we evaluated protein kinase C (PKC) isoenzymes activity, a signaling system suspected to modulate amyloid precursor protein (APP) processing. Low HNE concentrations (0.1-1 microM) induced a 2-6 fold increase of intracellular Abeta production that was concomitant with selective activation of betaI and betaII PKC isoforms, without affecting either cell viability or APP full-length expression. Selective activation of the same PKC isoforms was observed following NT2 differentiation. Our findings suggest that PKC beta isoenzymes are part of cellular mechanisms that regulate production of the intracellular Abeta pool. Moreover, they indicate that lipid peroxidation fosters intracellular Abeta accumulation, creating a vicious neurodegenerative loop. PMID:10679257

  11. [Commemorative lecture of receiving Imamura Memorial Prize. Characterization of immunosuppressive macrophages induced in mice infected with Mycobacterium intracellulare].

    PubMed

    Tomioka, H

    1993-12-01

    Functional changes in T lymphocytes and macrophages (M phi s) in host mice during the course of Mycobacterium intracellulare infection were studied. In both strains of mice, BALB/c or C57BL/6 (susceptible to M. avium complex) and CBA/JN or C3H/He (resistant to M. avium complex), the smooth, opaque and dome-shaped colonial (SmD) variants of M. intracellulare were easily eliminated from the sites after week 2 of infection. In contrast, the smooth, transparent and irregularly shaped colonial (SmT) variants showed steady growth in the former strains of mice and persisted for long time even in the latter strains of mice. No difference was found between persistence of the organisms in euthymic (+/+) and athymic (nu/nu) BALB/c mice during the first 4 weeks after infection. Thereafter, more rapid growth was seen in the spleens and lungs of nu/nu mice. Thus, matured T cells may be important for the prevention of the progression of M. intracellulare infection to the terminal state. Next, the profiles of generation and characteristics of splenic M phi s which suppress the Con A mitogenic response of splenic T cells in host CBA/JN or BALB/c mice during the course of M. intracellulare infection were investigated. In M. intracellulare--infected mice, reduction in some cellular functions of host splenic T cells, such as the Con A mitogenic response and mixed leucocyte reaction, were seen around 2 weeks after infection, and this was accompanied by appearance of immunosuppressive M phi s in spleen cells (SPCs).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8301920

  12. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    SciTech Connect

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi; Fujita, Norihisa

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  13. Huaiqihuang may protect from proteinuria by resisting MPC5 podocyte damage via targeting p-ERK/CHOP pathway

    PubMed Central

    Li, Tingxia; Mao, Jianhua; Huang, Lei; Fu, Haidong; Chen, Shuohui; Liu, Aimin; Liang, Yuqin

    2016-01-01

    The purpose of this study was to investigate the potential effects of Huaiqihuang (HQH) granule, a Chinese herbal medicine, in treating proteinuria and to reveal its possible mechanism. MPC5 podocytes were cultured in vitro at 37°C and induced with tunicamycin (TM). The TM-induced cells were treated with HQH at different concentrations. The cell proliferation was detected using the MTT assay. The optimal effective dose of HQH for MPC5 cells was determined by the MTT assay and LDH assay respectively. The influences of HQH on the proteinuria-related protein expression and the signaling pathway associated protein expression were also detected using quantitative reverse transcription PCR and Western blotting analysis. The results showed that the MPC5 cell model was successfully constructed in vitro. The HQH application could improve the harmful effects induced by TM on the MPC5 cells, including promoted cell proliferation and suppressed cell apoptosis. Furthermore, the protein expression, including podocin, nephrin, and synaptopodin was down-regulated by the TM treatment in the MPC5 cells. On contrary, the expression of these proteins was up-regulated after the HQH application. Also, the effect of TM on integrin α3 and integrin β1 expressions was also reversed by the HQH treatment. Moreover, the HQH application decreased the expression of p-ERK and DNA-damage-inducible transcript 3 (DDIT3 or CHOP) in the MPC5 cells, which was opposite to the effect observed in the cells treated with TM. Taken together, our study suggest that HQH application may protect podocytes from TM damage by suppressing the p-ERK/CHOP signaling pathway.

  14. The atrazine metabolite diaminochlorotriazine suppresses LH release from murine LβT2 cells by suppressing GnRH-induced intracellular calcium transients.

    PubMed

    Dooley, Gregory P; Tjalkens, Ronald B; Hanneman, William H

    2013-05-01

    The primary metabolite of the herbicide atrazine (ATRA), diaminochlorotriazine (DACT), has been suggested to cause disruption in the hypothalamic-pituitary-gonadal axis leading to inhibition of luteinizing hormone (LH) release. DACT is a reactive electrophile known to form covalent protein adducts both in vitro and in vivo following ATRA exposure and maybe targeting proteins involved in GnRH-induced calcium signaling and subsequent LH release. To test this hypothesis, LβT2 pituitary cells were exposed to 300 μM DACT for 24 hrs and examined by fluorescence microscopy for GnRH-induced changes in intracellular calcium and LH release. LβT2 cells exposed to DACT had markedly diminished GnRH-induced intracellular calcium transients and a significant decreased LH release in response to GnRH. DACT appeared to cause a selective decrease in caffeine-sensitive ryanodine receptor-operated calcium stores in LβT2 cells, rather than in thapsigargin-sensitive ER calcium stores. This sensitivity correlated with the formation of covalent protein adducts by DACT, as determined by mass spectrometry. ERp57 was identified by mass spectrometry as a target of DACT adduction in the ER that could potentially mediate the effects of DACT on inhibition of GnRH-induced calcium signaling and inhibition of LH release. Intracellular calcium responses to GnRH and release of LH were restored in DACT-treated cells with the addition of a calcium ionophore (A23187). These data suggest that DACT forms adducts on proteins involved in calcium handling within the ER and that dysfunction in this critical signaling system is associated with loss of normal sensitivity to GnRH and subsequent decreased release of LH.

  15. Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction

    PubMed Central

    Thellung, S; Corsaro, A; Villa, V; Simi, A; Vella, S; Pagano, A; Florio, T

    2011-01-01

    To define the mechanisms by which hPrP90-231 induces cell death, we analyzed its interaction with living cells and monitored its intracellular fate. Treatment of SH-SY5Y cells with fluorescein-5-isothiocyanate (FITC)-conjugated hPrP90-231 caused the accumulation of cytosolic aggregates of the prion protein fragment that increased in number and size in a time-dependent manner. The formation of large intracellular hPrP90-231 aggregates correlated with the activation of apoptosis. hPrP90-231 aggregates occurred within lysotracker-positive vesicles and induced the formation of activated cathepsin D (CD), indicating that hPrP90-231 is partitioned into the endosomal–lysosomal system structures, activating the proteolytic machinery. Remarkably, the inhibition of CD activity significantly reduced hPrP-90-231-dependent apoptosis. Internalized hPrP90-231 forms detergent-insoluble and SDS-stable aggregates, displaying partial resistance to proteolysis. By confocal microscopy analysis of lucifer yellow (LY) intracellular partition, we show that hPrP90-231 accumulation induces lysosome destabilization and loss of lysosomal membrane impermeability. In fact, although control cells evidenced a vesicular pattern of LY fluorescence (index of healthy lysosomes), hPrP90-231-treated cells showed diffuse cytosolic fluorescence, indicating LY diffusion through damaged lysosomes. In conclusion, these data indicate that exogenously added hPrP90-231 forms intralysosomal deposits having features of insoluble, protease-resistant aggregates and could trigger a lysosome-mediated apoptosis by inducing lysosome membrane permeabilization, followed by the release of hydrolytic enzymes. PMID:21451573

  16. The atrazine metabolite diaminochlorotriazine suppresses LH release from murine LβT2 cells by suppressing GnRH-induced intracellular calcium transients

    PubMed Central

    Dooley, Gregory P.; Tjalkens, Ronald B.; Hanneman, William H.

    2013-01-01

    The primary metabolite of the herbicide atrazine (ATRA), diaminochlorotriazine (DACT), has been suggested to cause disruption in the hypothalamic-pituitary-gonadal axis leading to inhibition of luteinizing hormone (LH) release. DACT is a reactive electrophile known to form covalent protein adducts both in vitro and in vivo following ATRA exposure and maybe targeting proteins involved in GnRH-induced calcium signaling and subsequent LH release. To test this hypothesis, LβT2 pituitary cells were exposed to 300 μM DACT for 24 hrs and examined by fluorescence microscopy for GnRH-induced changes in intracellular calcium and LH release. LβT2 cells exposed to DACT had markedly diminished GnRH-induced intracellular calcium transients and a significant decreased LH release in response to GnRH. DACT appeared to cause a selective decrease in caffeine-sensitive ryanodine receptor-operated calcium stores in LβT2 cells, rather than in thapsigargin-sensitive ER calcium stores. This sensitivity correlated with the formation of covalent protein adducts by DACT, as determined by mass spectrometry. ERp57 was identified by mass spectrometry as a target of DACT adduction in the ER that could potentially mediate the effects of DACT on inhibition of GnRH-induced calcium signaling and inhibition of LH release. Intracellular calcium responses to GnRH and release of LH were restored in DACT-treated cells with the addition of a calcium ionophore (A23187). These data suggest that DACT forms adducts on proteins involved in calcium handling within the ER and that dysfunction in this critical signaling system is associated with loss of normal sensitivity to GnRH and subsequent decreased release of LH. PMID:24052811

  17. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons.

    PubMed

    Wang, Xiaohui; Wang, Li; Jiang, Ruirui; Yuan, Yuan; Yu, Qianqian; Li, Yameng

    2015-11-19

    An imbalance of intracellular calcium homeostasis induced by amyloid β-protein (Aβ) contributes to the pathogenesis of Alzheimer's disease (AD), such as deficits in learning and memory. Therefore, regulation of calcium homeostasis may represent a new strategy for treatment of AD. Growing evidence suggests that type 2 diabetes mellitus (T2DM) and AD are closely related in pathogenesis. Thus, drugs used in treatment of T2DM may modify the pathogenesis of AD. This study demonstrated that Exendin-4, which is a glucagon-like peptide-1 (GLP-1) analog used as a therapeutic drug for T2DM, significantly antagonized suppression of long-term potentiation (LTP) induced by Aβ1-42 in the rat hippocampal CA1 region in vivo. This neuroprotection may be mediated by regulation of calcium homeostasis. Pretreatment with Exendin-4 suppressed Aβ1-42-induced elevation in intracellular calcium concentration ([Ca(2+)]i) through L-type voltage-dependent calcium channels (L-VDCCs) and N-methyl-D-aspartate receptors (NMDARs). Furthermore, Exendin-4 antagonized the decrease in p-Ca(2+)/calmodulin-dependent protein kinase IIα (p-CaMKIIα) induced by Aβ1-42 in the rat hippocampal CA1 region. Thus, the neuroprotective effects of Exendin-4, which likely involve regulation of calcium homeostasis, provide theoretical support for using Exendin-4 to treat and prevent AD in the future.

  18. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons.

    PubMed

    Wang, Xiaohui; Wang, Li; Jiang, Ruirui; Yuan, Yuan; Yu, Qianqian; Li, Yameng

    2015-11-19

    An imbalance of intracellular calcium homeostasis induced by amyloid β-protein (Aβ) contributes to the pathogenesis of Alzheimer's disease (AD), such as deficits in learning and memory. Therefore, regulation of calcium homeostasis may represent a new strategy for treatment of AD. Growing evidence suggests that type 2 diabetes mellitus (T2DM) and AD are closely related in pathogenesis. Thus, drugs used in treatment of T2DM may modify the pathogenesis of AD. This study demonstrated that Exendin-4, which is a glucagon-like peptide-1 (GLP-1) analog used as a therapeutic drug for T2DM, significantly antagonized suppression of long-term potentiation (LTP) induced by Aβ1-42 in the rat hippocampal CA1 region in vivo. This neuroprotection may be mediated by regulation of calcium homeostasis. Pretreatment with Exendin-4 suppressed Aβ1-42-induced elevation in intracellular calcium concentration ([Ca(2+)]i) through L-type voltage-dependent calcium channels (L-VDCCs) and N-methyl-D-aspartate receptors (NMDARs). Furthermore, Exendin-4 antagonized the decrease in p-Ca(2+)/calmodulin-dependent protein kinase IIα (p-CaMKIIα) induced by Aβ1-42 in the rat hippocampal CA1 region. Thus, the neuroprotective effects of Exendin-4, which likely involve regulation of calcium homeostasis, provide theoretical support for using Exendin-4 to treat and prevent AD in the future. PMID:26390937

  19. Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis.

    PubMed Central

    Shirato, I.; Sakai, T.; Kimura, K.; Tomino, Y.; Kriz, W.

    1996-01-01

    Foot process effacement represents the most characteristic change in podocyte phenotype under a great variety of experimental as well as human glomerulopathies. It consists in simplification up to a total disappearance of an interdigitating foot process pattern. Finally, podocytes affix to the glomerular basement membrane by outspread epithelial sheets. Structural and immunocytochemical techniques were applied to analyze the cytoskeletal changes associated with foot process effacement in Masugi nephritis. Three days after injection of the anti-glomerular-basement-membrane serum an interdigitating foot process pattern was almost fully lost; more than 90 percent of the outer glomerular capillary surface were covered by expanded sheets of podocyte epithelium that contain a highly organized cytoskeleton adhering to the basal cell membrane. Structurally, this cytoskeleton consists of an interwoven network of microfilaments with regularly distributed dense bodies, which obviously serve as cross-linkers within this network. Immunocytochemically, the expression of actin, alpha-actinin, and pp44 (a specific podocyte protein normally associated with the cytoskeleton of foot processes) were increased in this structure; alpha-actinin was especially prominent in the dense bodies. The results are consistent with the view that foot process effacement represents an adaptive change in cell shape including hypertrophy of the contractile apparatus, reinforcing the supportive role of podocytes. Several factors associated with increased distending forces to podocytes may underlie this phenotype change including loss of mesangial support, elevated glomerular pressures, and impairment of GBM substructure as well as of podocyte-GBM-contacts. Twenty-eight days after serum injection a remodeling of the foot process pattern was seen. It appears that this restitution depends on a preceding repair of mesangial support function to glomerular capillaries. Images Figure 1 Figure 2 Figure 3 Figure

  20. Early-onset podocyte injury and glomerular sclerosis in osborne-mendel rats.

    PubMed

    Yasuno, Kyohei; Ishihara, Shoko; Saito, Rio; Ishikawa, Makoto; Kato, Takashi; Kobayashi, Ryosuke; Baba, Tomoshige; Kawano, Kazuya; Ogihara, Kikumi; Kamiie, Junichi; Shirota, Kinji

    2010-10-01

    Progressive glomerular injury associated with early-onset proteinuria was investigated in male Osborne-Mendel (OM) rats aged 5 to 20 weeks. Age-matched male Fischer 344 (F344) rats were used for comparison. OM rats developed mild hypertension and selective proteinuria (albuminuria) from 5 weeks of age, and non-selective proteinuria from 7 weeks of age. Light microscopy of OM kidney revealed hyaline droplets in the podocyte at 5 weeks of age and vacuolation of podocytes and adhesion of the capillary loop to the Bowman's capsule at 7 weeks of age. Segmental glomerulosclerosis developed in OM rats from 15 weeks of age, and global sclerosis appeared at 20 weeks of age. Desmin, a marker of podocye injury, was expressed in podocytes from 10 weeks of age, and the intensity of expression increased with age. Ultrastructurally, damage to podocytes such as effacement of foot processes, decreasing number of filtration slits, and rearrangement of the actin cytoskeleton were observed from 5 weeks of age in OM rat. Glomerular volume in OM rats increased with age and was consistently higher than in age-matched F344 rats. The number of WT-1-positive podocytes and vimentin-positive podocyte area were lower in OM rats and decreased with age. These findings suggest that glomerulonephropathy in male OM rats is associated with glomerular hypertrophy, progressive podocytopathy, and a reduction in podocyte number and area. Renal injury in OM rats was associated with development of early-onset proteinuria and was more progressive than in age-matched F344 rats.

  1. Hypoxia induces an increase in intracellular magnesium via transient receptor potential melastatin 7 (TRPM7) channels in rat hippocampal neurons in vitro.

    PubMed

    Zhang, Jing; Zhao, Fengbo; Zhao, Yin; Wang, Jing; Pei, Lei; Sun, Ning; Shi, Jing

    2011-06-10

    TRPM7, a divalent cation channel, plays an important role in neurons damaged from cerebral ischemia due to permitting intracellular calcium overload. This study aimed to explore whether magnesium was transported via a TRPM7 channel into the intracellular space of rat hippocampal neurons after 1 h of oxygen-glucose deprivation (OGD) and acute chemical ischemia (CI) by using methods of the Mg(2+) fluorescent probe Mag-Fura-2 to detect intracellular magnesium concentration ([Mg(2+)](i)) and flame atomic absorption spectrometry to measure extracellular magnesium concentration ([Mg(2+)](o)). The results showed that the neuronal [Mg(2+)](i) was 1.51-fold higher after 1 h of OGD at a basal level, and the increase of neuronal [Mg(2+)](i) reached a peak after 1 h of OGD and was kept for 60 min with re-oxygenation. Meanwhile, the [Mg(2+)](o) decreased after 1 h of OGD and recovered to the pre-ischemic level within 15 min after re-oxygenation. In the case of CI, the [Mg(2+)](i) peak immediately appeared in hippocampal neurons. This increase of [Mg(2+)](i) declined by removing extracellular magnesium in OGD or CI. Furthermore, by using Gd(3+) or 2-aminoethoxydiphenyl borate to inhibit TRPM7 channels, the [Mg(2+)](i) increase, which was induced by OGD or CI, was attenuated without altering the basal level of [Mg(2+)](i). By silencing TRPM7 with shRNA in hippocampal neurons, it was found that not only was the increase of [Mg(2+)](i) induced by OGD or CI but also the basal levels of [Mg(2+)](i) were attenuated. In contrast, overexpression of TRPM7 in HEK293 cells exaggerated both the basal levels and increased [Mg(2+)](i) after 1 h of OGD/CI. These results suggest that anoxia induced the increase of [Mg(2+)](i) via TRPM7 channels in rat hippocampal neurons. PMID:21487014

  2. Human gastric signet ring carcinoma (KATO-III) cell apoptosis induced by Vitex agnus-castus fruit extract through intracellular oxidative stress.

    PubMed

    Ohyama, Kunio; Akaike, Takenori; Imai, Masahiko; Toyoda, Hiroo; Hirobe, Chieko; Bessho, Toshio

    2005-07-01

    We have previously reported that an ethanol extract of the dried ripe fruit of Vitex agnus-castus (Vitex) displays cytotoxic activity against certain kinds of human cancer cell line resulting in the induction of apoptosis. In this paper, we investigate the molecular mechanism of apoptosis induced by Vitex using a human gastric signet ring carcinoma cell line, KATO-III. DNA fragmentation was observed in Vitex-treated KATO-III cells in a time- and dose-dependent manner. DNA fragmentation was accompanied by the following phenomena: elevation in the level of hemeoxygenase-1 protein and thioredoxin reductase mRNA; repression of Mn-superoxide dismutase and catalase mRNAs; release of cytochrome c from mitochondria into the cytosol; activation of caspases-8, -9 and -3; decrease in the level of Bcl-2, Bcl-XL and Bid protein; increase in the level of Bad protein. The intracellular oxidized state, measured using 2',7'-dichlorofluorescin diacetate, increased after Vitex treatment. While the amount of intracellular GSH decreased significantly after treatment with Vitex, the level of GSSG was unaffected. Furthermore, no significant perturbation in the amount of proteins/mRNAs related to glutathione metabolism could be detected. These apoptotic alterations induced by exposure to Vitex were blocked by the presence of an anti-oxidative reagent, N-acetyl-l-cysteine, or the addition of exogenous GSH. Our results demonstrate that intracellular oxidative stress and mitochondrial membrane damage is responsible for Vitex-induced apoptosis, which may be mediated by a diminution of reduced type glutathione within the cell. PMID:15833280

  3. Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase and intracellular Ca2+ release in rat skeletal myotubes.

    PubMed

    Liberona, José Luis; Cárdenas, J César; Reyes, Roberto; Hidalgo, Jorge; Molgó, Jordi; Jaimovich, Enrique

    2008-09-01

    Brevetoxin-3 (PbTx-3), described to increase the open probability of voltage-dependent sodium channels, caused trains of action potentials and fast oscillatory changes in fluorescence intensity of fluo-3-loaded rat skeletal muscle cells in primary culture, indicating that the toxin increased intracellular Ca2+ levels. PbTx-3 did not elicit calcium transients in dysgenic myotubes (GLT cell line), lacking the alpha1 subunit of the dihydropyridine receptor (DHPR), but after transfection of the alpha1DHPR cDNA to GLT cells, PbTx-3 induced slow calcium transients that were similar to those of normal cells. Ca2+ signals evoked by PbTx-3 were inhibited by blocking either IP3 receptors, with 2-aminoethoxydiphenyl borate, or phospholipase C with U73122. PbTx-3 caused a tetrodotoxin-sensitive increase in intracellular IP3 mass levels, dependent on extra-cellular Na+. A similar increase in IP3 mass was induced by high K+ depolarization but no action potential trains (nor calcium signals) were elicited by prolonged depolarization under current clamp conditions. The increase in IP3 mass induced by either PbTx-3 or K+ was also detected in Ca2+-free medium. These results establish that the effect of the toxin on both intracellular Ca2+ and IP3 levels occurs via a membrane potential sensor instead of directly by Na+ flux and supports the notion of a train of action potentials being more efficient as a stimulus than sustained depolarization, suggesting that tetanus is the physiological stimulus for the IP3-dependent calcium signal involved in regulation of gene expression. PMID:18276006

  4. The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells.

    PubMed

    Jiménez-Aspee, Felipe; Theoduloz, Cristina; Ávila, Felipe; Thomas-Valdés, Samanta; Mardones, Claudia; von Baer, Dietrich; Schmeda-Hirschmann, Guillermo

    2016-03-01

    The Chilean raspberry Rubus geoides Sm. (Rosaceae) is a native species occurring in the Patagonia. Five R. geoides samples were assessed for phenolic content and composition, antioxidant activity, effect on total reduced glutathione (GSH) synthesis and protective effect against H2O2 and methylglyoxal (MGO)-induced stress in epithelial gastric AGS cells. The HPLC-DAD/ESI-MS profiles allowed the tentative identification of 39 phenolics including flavonol glycosides and tannins. R. geoides presented higher total phenolic and flavonoid content than Rubus idaeus. Two out of the five phenolic enriched R. geoides extracts (PEEs) exhibited better antioxidant activity than R. idaeus in the DPPH, FRAP and TEAC assays. A significant cytoprotective activity was observed when AGS cells were pre-incubated with extracts and subsequently challenged with H2O2 or MGO. Treatment with the PEEs increased the intracellular GSH content. R. geoides fruit extracts may induce the activation of intracellular protection mechanisms against oxidative and dicarbonyl-induced stress. PMID:26471634

  5. Preincubation of pneumococci with beta-lactams alone or combined with levofloxacin prevents quinolone-induced resistance without increasing intracellular levels of levofloxacin.

    PubMed

    Cottagnoud, Philippe; Johnson, Maggie; Cottagnoud, Marianne; Piddock, Laura

    2005-08-01

    Preincubation of pneumococci with sub-MIC concentrations of ceftriaxone (1/16x MIC), cefotaxime (1/8x MIC), and meropenem (1/4x MIC) alone or combined with levofloxacin (1/8x MIC) over 6 h prevents the emergence of levofloxacin-resistant mutants after 96 h of incubation but does not affect the intracellular accumulation of levofloxacin in two penicillin-resistant pneumococcal strains, suggesting a link between the mechanism of action of beta-lactams and the emergence of quinolone-induced resistance in pneumococci.

  6. Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats.

    PubMed

    Segura-Chama, Pedro; López-Bistrain, Patricia; Pérez-Armendáriz, Elia Martha; Jiménez-Pérez, Nicolás; Millán-Aldaco, Diana; Hernández-Cruz, Arturo

    2015-11-01

    Adrenal chromaffin cells (CCs) from spontaneously hypertensive rats (SHRs) secrete more catecholamine (CA) upon stimulation than CCs from normotensive Wistar Kyoto rats (WKY). Unitary CA exocytosis events, both spontaneous and stimulated, were amperometrically recorded from cultured WKY and SHR CCs. Both strains display spontaneous amperometric spikes but SHR CCs produce more spikes and of higher mean amplitude. After a brief stimulation with high K(+) or caffeine which produces voltage-gated Ca(2+) influx or intracellular Ca(2+) release, respectively, more spikes and of greater mean amplitude and unitary charge were recorded in SHR CCs. Consequently, peak cumulative charge was ~2-fold higher in SHR CCs. Ryanodine (10 μM), a specific blocker of the ryanodine receptors reduced depolarization-induced peak cumulative charge by ~10 % in WKY and ~77 % in SHR CCs, suggesting, a larger contribution of Ca(2+)-induced Ca(2+) release to CA exocytosis in SHR CCs. Accordingly, Ca(2+) imaging showed larger [Ca(2+)]i signals induced both by depolarization and caffeine in SHR CCs. Distribution amplitude histograms showed that small amperometric spikes (0-50 pA) are more frequent in WKY than in SHR CCs. Conversely, medium (50-190 pA) and large (190-290 pA) spikes are more numerous in SHR than in WKY CCs. This study reveals that the enhanced CA secretion in SHR CCs results from a combination of (1) larger depolarization-induced Ca(2+) transients, due to a greater Ca(2+)-induced intracellular Ca(2+) release, (2) more exocytosis events per time unit, and (3) a greater proportion of medium and large amperometric spikes probably due to a higher mean CA content per granule. Enhanced CA release by excessive amplification by Ca(2+) induced Ca(2+) release and larger granule catecholamine content contributes to the increased CA plasma levels and vasomotor tone in SHRs. PMID:25791627

  7. Role of NADPH Oxidase-Mediated Reactive Oxygen Species in Podocyte Injury

    PubMed Central

    Chen, Shan; Meng, Xian-Fang; Zhang, Chun

    2013-01-01

    Proteinuria is an independent risk factor for end-stage renal disease (ESRD) (Shankland, 2006). Recent studies highlighted the mechanisms of podocyte injury and implications for potential treatment strategies in proteinuric kidney diseases (Zhang et al., 2012). Reactive oxygen species (ROS) are cellular signals which are closely associated with the development and progression of glomerular sclerosis. NADPH oxidase is a district enzymatic source of cellular ROS production and prominently expressed in podocytes (Zhang et al., 2010). In the last decade, it has become evident that NADPH oxidase-derived ROS overproduction is a key trigger of podocyte injury, such as renin-angiotensin-aldosterone system activation (Whaley-Connell et al., 2006), epithelial-to-mesenchymal transition (Zhang et al., 2011), and inflammatory priming (Abais et al., 2013). This review focuses on the mechanism of NADPH oxidase-mediated ROS in podocyte injury under different pathophysiological conditions. In addition, we also reviewed the therapeutic perspectives of NADPH oxidase in kidney diseases related to podocyte injury. PMID:24319690

  8. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria.

    PubMed

    Hayashi, Kaori; Sasamura, Hiroyuki; Nakamura, Mari; Sakamaki, Yusuke; Azegami, Tatsuhiko; Oguchi, Hideyo; Tokuyama, Hirobumi; Wakino, Shu; Hayashi, Koichi; Itoh, Hiroshi

    2015-10-01

    Proteinuria is a central component of chronic kidney disease and an independent risk factor for cardiovascular disease. Kidney podocytes have an essential role as a filtration barrier against proteinuria. Kruppel-like Factor 4 (KLF4) is expressed in podocytes and decreased in glomerular diseases leading to methylation of the nephrin promoter, decreased nephrin expression and proteinuria. Treatment with an angiotensin receptor blocker (ARB) reduced methylation of the nephrin promoter in murine glomeruli of an adriamycin nephropathy model with recovery of KLF4 expression and a decrease in albuminuria. In podocyte-specific KLF4 knockout mice, the effect of ARB on albuminuria and the nephrin promoter methylation was attenuated. In cultured human podocytes, angiotensin II reduced KLF4 expression and caused methylation of the nephrin promoter with decreased nephrin expression. In patients, nephrin promoter methylation was increased in proteinuric kidney diseases with decreased KLF4 and nephrin expression. KLF4 expression in ARB-treated patients was higher in patients with than without ARB treatment. Thus, angiotensin II can modulate epigenetic regulation in podocytes and ARB inhibits these actions in part via KLF4 in proteinuric kidney diseases. This study provides a new concept that renin-angiotensin system blockade can exert therapeutic effects through epigenetic modulation of the kidney gene expression. PMID:26108068

  9. Upregulation of c-mip is closely related to podocyte dysfunction in membranous nephropathy

    PubMed Central

    Sendeyo, Kelhia; Audard, Vincent; Zhang, Shao-Yu; Fan, Qingfeng; Bouachi, Khedidja; Ollero, Mario; Rucker-Martin, Catherine; Gouadon, Elodie; Desvaux, Dominique; Bridoux, Franck; Guellaën, Georges; Ronco, Pierre; Lang, Philippe; Pawlak, Andre; Sahali, Djillali

    2013-01-01

    Membranous nephropathy (MN) is a glomerular disease characterized by a nephrotic syndrome without infiltration of inflammatory cells or proliferation of resident cells. Although the cause of the disease is unknown, the primary pathogenic mechanism responsible for the accumulation of immune deposits on the outer aspect of the glomerular basement membrane involves the generation of autoantibodies against antigen targets expressed at the membrane surface of podocyte. The molecular mechanisms of nephrotic proteinuria, which reflects a profound disorder of podocyte function, remain unclear. We show here that induction of c-mip in passive type Heymann nephritis (PHN) coincides with the occurrence of proteinuria. c-mip expression is not detectable in the glomeruli of PHN rats receiving a single dose of anti-megalin polyclonal antibody, yet the immune complexes are readily present but without triggering of proteinuria. Rats reinjected with anti-megalin develop a few days later heavy proteinuria concomitantly with c-mip overproduction in podocytes. We show that overexpression of c-mip is associated with downregulation of synaptopodin in human MN, PHN rats and c-mip transgenic mice, while the abundance of death-associated protein kinase (DAPK) and integrin linked kinase (ILK) is increased. Finally, cyclosporine treatment reduces significantly proteinuria in PHN rats, concomitantly with downregulation of c-mip abundance in podocytes. These results suggest that c-mip plays an active role in podocyte disorders of MN. PMID:23302718

  10. Intracellular Zn(2+) Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species.

    PubMed

    Tuncay, Erkan; Turan, Belma

    2016-02-01

    Oxidants increase intracellular free Zn(2+) concentration ([Zn(2+)]i) in ventricular myocytes, which contributes to oxidant-induced alterations in excitation-contraction coupling (ECC). However, it is not clear whether increased [Zn(2+)]i in cardiomyocytes via increased reactive nitrogen species (RNS) has a role on heart function under pathological conditions, such as hyperglycemia. In this study, first we aimed to investigate the role of increased [Zn(2+)]i under in vitro condition in the development of both electrical and mechanical dysfunction of isolated papillary muscle strips from rat heart via exposed samples to a Zn(2+)-ionophore (Zn-pyrithione; 1 μM) for 20 min. Under simultaneous measurement of intracellular action potential and contractile activity in these preparations, Zn-pyrithione exposure caused marked prolongation in action potential repolarization phase and slowdown in both contraction and relaxation rates of twitch activity. Second, in order to demonstrate an association between increased [Zn(2+)]i and increased RNS, we monitored intracellular [Zn(2+)]i under an acute exposure of nitric oxide (NO) donor sodium nitroprusside, SNP, in freshly isolated quiescent cardiomyocytes loaded with FluoZin-3. Resting level of free Zn(2+) is significantly higher in cardiomyocytes under hyperglycemic condition compared to those of the controls, which seems to be associated with increased level of RNS production in hyperglycemic cardiomyocytes. Western blot analysis showed that Zn-pyrithione exposure induced a marked decrease in the activity of protein phosphatase 1 and 2A, member of macromolecular protein complex of cardiac ryanodine receptors, RyR2, besides significant increase in the phosphorylation level of extracellular signal-regulated kinase1/2 as a concentration-dependent manner. Overall, the present data demonstrated that there is a cross-relationship between increased RNS production and increased [Zn(2+)]i level in cardiomyocytes under pathological

  11. The Structural and Functional Organization of the Podocyte Filtration Slits Is Regulated by Tjp1/ZO-1

    PubMed Central

    Itoh, Masahiko; Nakadate, Kazuhiko; Horibata, Yasuhiro; Matsusaka, Taiji; Xu, Jianliang; Hunziker, Walter; Sugimoto, Hiroyuki

    2014-01-01

    Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target. PMID:25184792

  12. Genome-Wide Analysis of Wilms’ Tumor 1-Controlled Gene Expression in Podocytes Reveals Key Regulatory Mechanisms

    PubMed Central

    Kann, Martin; Ettou, Sandrine; Jung, Youngsook L.; Lenz, Maximilian O.; Taglienti, Mary E.; Park, Peter J.; Schermer, Bernhard

    2015-01-01

    The transcription factor Wilms’ tumor suppressor 1 (WT1) is key to podocyte development and viability; however, WT1 transcriptional networks in podocytes remain elusive. We provide a comprehensive analysis of the genome-wide WT1 transcriptional network in podocytes in vivo using chromatin immunoprecipitation followed by sequencing (ChIPseq) and RNA sequencing techniques. Our data show a specific role for WT1 in regulating the podocyte-specific transcriptome through binding to both promoters and enhancers of target genes. Furthermore, we inferred a podocyte transcription factor network consisting of WT1, LMX1B, TCF21, Fox-class and TEAD family transcription factors, and MAFB that uses tissue-specific enhancers to control podocyte gene expression. In addition to previously described WT1-dependent target genes, ChIPseq identified novel WT1-dependent signaling systems. These targets included components of the Hippo signaling system, underscoring the power of genome-wide transcriptional-network analyses. Together, our data elucidate a comprehensive gene regulatory network in podocytes suggesting that WT1 gene regulatory function and podocyte cell-type specification can best be understood in the context of transcription factor-regulatory element network interplay. PMID:25636411

  13. Mitochondrial DNA 10609T promotes hypoxia-induced increase of intracellular ROS and is a risk factor of high altitude polycythemia.

    PubMed

    Jiang, Chunhua; Cui, Jianhua; Liu, Fuyu; Gao, Liang; Luo, Yongjun; Li, Peng; Guan, Libin; Gao, Yuqi

    2014-01-01

    Hypobaric hypoxia is the primary cause of high altitude polycythemia (HAPC). Mitochondria are critical organelles that consume high levels of oxygen and generate ATP. We hypothesize that the mitochondrion may be at the center of HAPC, and mitochondrial DNA (mtDNA) SNPs may be involved in its development. First, we conducted a case-control study to investigate the association of mtDNA variants with HAPC in Han Chinese migrating to the Qinghai-Tibetan Plateau. Pearson's chi-square tests revealed that mtDNA 8414T (MU) frequency (19.5%) in the HAPC group was significantly higher than that of the control (13.0%, P = 0.04, OR = 1.615, 95%CI: 1.020-2.555). The multivariate logistic regression analysis, after adjustment for environmental factors, revealed that mtDNA 10609T (WT) was significantly associated with an increased risk of HAPC (P<0.01, OR = 2.558, 95%CI: 1.250-5.236). Second, to verify the association, in vitro experiments of transmitochondrial cybrids was performed and revealed that the mtDNA 10609 variant promoted hypoxia-induced increase of intracellular ROS, but the mtDNA 8414 variant did not. Our findings provide evidence that, in Han Chinese, mtDNA 10609T promotes hypoxia-induced increase of intracellular ROS and is a HAPC risk factor.

  14. Inhibitory effect of gallic acid and its esters on 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes.

    PubMed

    Ximenes, Valdecir F; Lopes, Mariana G; Petrônio, Maicon Segalla; Regasini, Luis Octavio; Silva, Dulce H Siqueira; da Fonseca, Luiz M

    2010-05-12

    The protective effect of gallic acid and its esters, methyl, propyl, and lauryl gallate, against 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione (GSH) in erythrocytes was studied. The inhibition of hemolysis was dose-dependent, and the esters were significantly more effective than gallic acid. Gallic acid and its esters were compared with regard to their reactivity to free radicals, using the DPPH and AAPH/pyranine free-cell assays, and no significant difference was obtained. Gallic acid and its esters not only failed to inhibit the depletion of intracellular GSH in erythrocytes induced by AAPH but exacerbated it. Similarly, the oxidation of GSH by AAPH or horseradish peroxidase/H(2)O(2) in cell-free systems was exacerbated by gallic acid or gallates. This property could be involved in the recent findings on pro-apoptotic and pro-oxidant activities of gallates in tumor cells. We provide evidence that lipophilicity and not only radical scavenger potency is an important factor regarding the efficiency of antihemolytic substances.

  15. Notoginsenoside R1 ameliorates podocyte injury in rats with diabetic nephropathy by activating the PI3K/Akt signaling pathway.

    PubMed

    Huang, Guodong; Lv, Jianzhen; Li, Tongyu; Huai, Guoli; Li, Xiang; Xiang, Shaowei; Wang, Longlong; Qin, Zhenlin; Pang, Jianli; Zou, Bingyu; Wang, Yi

    2016-10-01

    The present study was designed to examine the protective effect of notoginsenoside R1 (NR1) on podocytes in a rat model of streptozotocin (STZ)‑induced diabetic nephropathy (DN), and to explore the mechanism responsible for NR1-induced renal protection. Diabetes was induced by a single injection of STZ, and NR1 was administered daily at a dose of 5 mg/kg (low dose), 10 mg/kg (medium) and 20 mg/kg (high) for 16 weeks in Sprague-Dawley rats. Blood glucose levels, body weight and proteinuria were measured every 4 weeks, starting on the day that the rats received NR1. Furthermore, on the day of sacrifice, blood, urine and kidneys were collected in order to assess renal function according to general parameters. Pathological staining was performed to evaluate the renal protective effect of NR1, and the expression of the key slit diaphragm proteins, namely neprhin, podocin and desmin, were evaluated. In addition, the serum levels of inflammatory cytokines [tumor necrosis factor-α (TNF-α), tumor growth factor-β1 (TGF-β1), interleukin (IL)-1 and IL-6] as well as an anti-inflammatory cytokine (IL-10) were assessed, and the apoptosis of podocytes was quantified. Finally, the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and the involvement of nuclear factor-κB (NF-κB) inactivation was further analyzed. In this study, NR1 improved renal function by ameliorating histological alterations, increasing the expression of nephrin and podocin, decreasing the expression of desmin, and inhibiting both the inflammatory response as well as the apoptosis of podocytes. Furthermore, NR1 treatment increased the phosphorylation of both PI3K (p85) and Akt, indicating that activation of the PI3K/Akt signaling pathway was involved. Moreover, NR1 treatment decreased the phosphorylation of NF-κB (p65), suggesting the downregulation of NF-κB. This is the first study to the best of our knowledge, to clearly demonstrate that NR1 treatment ameliorates podocyte injury

  16. Notoginsenoside R1 ameliorates podocyte injury in rats with diabetic nephropathy by activating the PI3K/Akt signaling pathway

    PubMed Central

    Huang, Guodong; Lv, Jianzhen; Li, Tongyu; Huai, Guoli; Li, Xiang; Xiang, Shaowei; Wang, Longlong; Qin, Zhenlin; Pang, Jianli; Zou, Bingyu; Wang, Yi

    2016-01-01

    The present study was designed to examine the protective effect of notoginsenoside R1 (NR1) on podocytes in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN), and to explore the mechanism responsible for NR1-induced renal protection. Diabetes was induced by a single injection of STZ, and NR1 was administered daily at a dose of 5 mg/kg (low dose), 10 mg/kg (medium) and 20 mg/kg (high) for 16 weeks in Sprague-Dawley rats. Blood glucose levels, body weight and proteinuria were measured every 4 weeks, starting on the day that the rats received NR1. Furthermore, on the day of sacrifice, blood, urine and kidneys were collected in order to assess renal function according to general parameters. Pathological staining was performed to evaluate the renal protective effect of NR1, and the expression of the key slit diaphragm proteins, namely neprhin, podocin and desmin, were evaluated. In addition, the serum levels of inflammatory cytokines [tumor necrosis factor-α (TNF-α), tumor growth factor-β1 (TGF-β1), interleukin (IL)-1 and IL-6] as well as an anti-inflammatory cytokine (IL-10) were assessed, and the apoptosis of podocytes was quantified. Finally, the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and the involvement of nuclear factor-κB (NF-κB) inactivation was further analyzed. In this study, NR1 improved renal function by ameliorating histological alterations, increasing the expression of nephrin and podocin, decreasing the expression of desmin, and inhibiting both the inflammatory response as well as the apoptosis of podocytes. Furthermore, NR1 treatment increased the phosphorylation of both PI3K (p85) and Akt, indicating that activation of the PI3K/Akt signaling pathway was involved. Moreover, NR1 treatment decreased the phosphorylation of NF-κB (p65), suggesting the downregulation of NF-κB. This is the first study to the best of our knowledge, to clearly demonstrate that NR1 treatment ameliorates podocyte injury by inhibiting both

  17. Visualization of podocyte substructure with structured illumination microscopy (SIM): a new approach to nephrotic disease

    PubMed Central

    Pullman, James M.; Nylk, Jonathan; Campbell, Elaine C.; Gunn-Moore, Frank J.; Prystowsky, Michael B.; Dholakia, Kishan

    2016-01-01

    A detailed microscopic analysis of renal podocyte substructure is essential to understand and diagnose nephrotic kidney disease. Currently only time consuming electron microscopy (EM) can resolve this substructure. We used structured illumination microscopy (SIM) to examine frozen sections of renal biopsies stained with an immunofluorescence marker for podocin, a protein localized to the perimeter of the podocyte foot processes and compared them with EM in both normal and nephrotic disease biopsies. SIM images of normal glomeruli revealed curvilinear patterns of podocin densely covering capillary walls similar to podocyte foot processes seen by EM. Podocin staining of all nephrotic disease biopsies were significantly different than normal, corresponding to and better visualizing effaced foot processes seen by EM. The findings support the first potential use of SIM in the diagnosis of nephrotic disease. PMID:26977341

  18. Visualization of podocyte substructure with structured illumination microscopy (SIM): a new approach to nephrotic disease.

    PubMed

    Pullman, James M; Nylk, Jonathan; Campbell, Elaine C; Gunn-Moore, Frank J; Prystowsky, Michael B; Dholakia, Kishan

    2016-02-01

    A detailed microscopic analysis of renal podocyte substructure is essential to understand and diagnose nephrotic kidney disease. Currently only time consuming electron microscopy (EM) can resolve this substructure. We used structured illumination microscopy (SIM) to examine frozen sections of renal biopsies stained with an immunofluorescence marker for podocin, a protein localized to the perimeter of the podocyte foot processes and compared them with EM in both normal and nephrotic disease biopsies. SIM images of normal glomeruli revealed curvilinear patterns of podocin densely covering capillary walls similar to podocyte foot processes seen by EM. Podocin staining of all nephrotic disease biopsies were significantly different than normal, corresponding to and better visualizing effaced foot processes seen by EM. The findings support the first potential use of SIM in the diagnosis of nephrotic disease. PMID:26977341

  19. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  20. Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release.

    PubMed

    Haorah, James; Knipe, Bryan; Gorantla, Santhi; Zheng, Jialin; Persidsky, Yuri

    2007-01-01

    The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5-triphosphate receptor (IP(3)R)-operated intracellular calcium (Ca(2+)) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP(3)R protein and IP(3)R-gated intracellular Ca(2+) release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP(3)R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP(3)R-gated intracellular Ca(2+) release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro-inflammatory disorders promoting leukocyte migration across the BBB.

  1. Thrombospondin 1 Deficiency Ameliorates the Development of Adriamycin-Induced Proteinuric Kidney Disease

    PubMed Central

    Maimaitiyiming, Hasiyeti; Zhou, Qi; Wang, Shuxia

    2016-01-01

    Accumulating evidence suggests that thrombospondin 1 (TSP1) is an important player in diabetic nephropathy. However, the role of TSP1 in podocyte injury and the development of non-diabetic proteinuric kidney disease is largely unknown. In the current study, by using a well-established podocyte injury model (adriamycin-induced nephropathy mouse model), we examined the contribution of TSP1 to the development of proteinuric kidney disease. We found that TSP1 was up-regulated in the glomeruli, notably in podocytes, in adriamycin injected mice before the onset of proteinuria. ADR treatment also stimulated TSP1 expression in cultured human podocytes in vitro. Moreover, increased TSP1 mediated ADR-induced podocyte apoptosis and actin cytoskeleton disorganization. This TSP1’s effect was through a CD36-dependent mechanism and involved in the stimulation of p38MAPK pathway. Importantly, in vivo data demonstrated that TSP1 deficiency protected mice from ADR induced podocyte loss and foot process effacement. ADR induced proteinuria, glomerulosclerosis, renal macrophage infiltration and inflammation was also attenuated in TSP1 deficient mice. Taken together, these studies provide new evidence that TSP1 contributes to the development of non-diabetic proteinuric kidney disease by stimulating podocyte injury and the progression of renal inflammation. PMID:27196103

  2. Apoptosis induced by glycoprotein (150-kDa) isolated from Solanum nigrum L. is not related to intracellular reactive oxygen species (ROS) in HCT-116 cells.

    PubMed

    Lee, Sei-Jung; Lim, Kye-Taek

    2006-04-01

    This study was carried out to investigate the apoptotic effects of glycoprotein [Solanum nigrum L. (SNL) glycoprotein, 150-kDa] isolated from Solanum nigrum L., which has been used as an antipyretic and anticancer agent in folk medicine. With the purified SNL glycoprotein, we evaluated the cytotoxic and apoptotic effects of SNL glycoprotein on HCT-116 cells, DNA fragmentation and nuclear staining assays, respectively. SNL glycoprotein has an apparent cytotoxic and apoptotic effect at a concentration of 40 microg/ml after 4 h. To further verify the apoptotic effect, we investigated the changes in activity of the apoptotic-related proteins [Bid, cytochrome c, caspases and poly(ADP-ribose)polymerase (PARP)] triggered by SNL glycoprotein, using a western blot analysis. The results in this study indicated that SNL glycoprotein has a stimulatory effect on Bid activation, resulting in the release of cytochrome c, the stimulation of caspase-8, -9 and -3 activities, and the cleavage of PARP in HCT-116 cells. However, SNL glycoprotein did not significantly stimulate an increase in levels of intracellular reactive oxygen species (ROS). From the results in this experiment, it is suggested that SNL glycoprotein induces apoptosis through the mitochondrial apoptotic signal pathway in HCT-116 cells, rather than through intracellular ROS. PMID:16208518

  3. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    PubMed

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  4. Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy

    PubMed Central

    2016-01-01

    The search for efficient plasmonic photothermal therapies using nonharmful pulse laser irradiation at the near-infrared (NIR) is fundamental for biomedical cancer research. Therefore, the development of novel assembled plasmonic gold nanostructures with the aim of reducing the applied laser power density to a minimum through hot-spot-mediated cell photothermolysis is an ongoing challenge. We demonstrate that gold nanorods (Au NRs) functionalized at their tips with a pH-sensitive ligand assemble into oligomers within cell lysosomes through hydrogen-bonding attractive interactions. The unique intracellular features of the plasmonic oligomers allow us to significantly reduce the femtosecond laser power density and Au NR dose while still achieving excellent cell killing rates. The formation of gold tip-to-tip oligomers with longitudinal localized surface plasmon resonance bands at the NIR, obtained from low-aspect-ratio Au NRs close in resonance with 800 nm Ti:sapphire 90 fs laser pulses, was found to be the key parameter for realizing the enhanced plasmonic photothermal therapy. PMID:27713930

  5. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells

    NASA Astrophysics Data System (ADS)

    Ja Kim, Sun; Min Joh, Hea; Chung, T. H.

    2013-10-01

    The effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. Using a detection dye, the production of intracellular reactive oxygen species (ROS) was found to be increased in plasma-treated cells compared to non-treated and gas flow-treated cells. A significant overproduction of ROS and a reduction in cell viability were induced by plasma exposure on cancer cells. Normal cells were observed to be less affected by the plasma-mediated ROS, and cell viability was less changed. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as a cancer therapy.

  6. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    PubMed

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  7. The roles of serine protease, intracellular and extracellular phenoloxidase in activation of prophenoloxidase system, and characterization of phenoloxidase from shrimp haemocytes induced by lipopolysaccharide or dopamine

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Pan, Luqing; Xu, Wujie; Yue, Feng

    2013-09-01

    We investigated the effects of lipopolysaccharide (LPS) and dopamine (DA) on the activation of the prophenoloxidase (proPO) system of Litopenaeus vannamei. LPS and DA were shown with a negative dose-dependent effect on hyalne cells (HC), semi-granular cells (SGC), large granular cells (LGC), and total haemocyte count (THC). When haemocytes were treated with LPS or DA, serine proteinase activity and intracellular phenoloxidase (PO) activity were significantly reduced, but extracellular PO activity increased significantly. These findings indicated that the reduction in haemocyte counts was mainly because of the degranulation and activation of the proPO system from semi-granule and large granule cells. The PKC inhibitor, chelerythrine, and the TPK inhibitor, genistein, had an inhibitory effect on extracellular PO activity, while serine proteinase and intracellular PO activity increased. This suggests that the LPS and DA induce the activation of proPO in haemocytes via PKC and TPK-related signaling pathways, but serine proteinase may be activated only by PKC, as the genistein effects were not statistically significant. Electrophoresis analysis revealed that POs induced by LPS or DA have the same molecular mass and high diphenolase activity. Two PO bands at 526 kDa and 272 kDa were observed in PAGE, while in the haemocyte lysate supernatant (HLS), only a 272-kDa band was observed. This band was resolved after SDS-PAGE under non-reducing and reducing conditions into two groups of POs, 166 kDa and 126 kDa, and 78.1 kDa and 73.6 kDa, respectively, suggesting that PO in L. vannamei is an oligomer, which may have different compositions intra- and extracellularly.

  8. Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings

    PubMed Central

    Silver, Randi B.; Poonwasi, Kumar S.; Seyedi, Nahid; Wilson, Sandy J.; Lovenberg, Timothy W.; Levi, Roberto

    2002-01-01

    Activation of presynatic histamine H3 receptors (H3R) down-regulates norepinephrine exocytosis from cardiac sympathetic nerve terminals, in both normal and ischemic conditions. Analogous to the effects of α2-adrenoceptors, which also act prejunctionally to inhibit norepinephrine release, H3R-mediated antiexocytotic effects could result from a decreased Ca2+ influx into nerve endings. We tested this hypothesis in sympathetic nerve terminals isolated from guinea pig heart (cardiac synaptosomes) and in a model human neuronal cell line (SH-SY5Y), which we stably transfected with human H3R cDNA (SH-SY5Y-H3). We found that reducing Ca2+ influx in response to membrane depolarization by inhibiting N-type Ca2+ channels with ω-conotoxin (ω-CTX) greatly attenuated the exocytosis of [3H]norepinephrine from both SH-SY5Y and SH-SY5Y-H3 cells, as well as the exocytosis of endogenous norepinephrine from cardiac synaptosomes. Similar to ω-CTX, activation of H3R with the selective H3R-agonist imetit also reduced both the rise in intracellular Ca2+ concentration (Cai) and norepinephrine exocytosis in response to membrane depolarization. The selective H3R antagonist thioperamide prevented this effect of imetit. In the parent SH-SY5Y cells lacking H3R, imetit affected neither the rise in Cai nor [3H]norepinephrine exocytosis, demonstrating that the presence of H3R is a prerequisite for a decrease in Cai in response to imetit and that H3R activation modulates norepinephrine exocytosis by limiting the magnitude of the increase in Cai. Inasmuch as excessive norepinephrine exocytosis is a leading cause of cardiac dysfunction and arrhythmias during acute myocardial ischemia, attenuation of norepinephrine release by H3R agonists may offer a novel therapeutic approach to this condition. PMID:11752397

  9. The GYF domain protein CD2BP2 is critical for embryogenesis and podocyte function.

    PubMed

    Albert, Gesa I; Schell, Christoph; Kirschner, Karin M; Schäfer, Sebastian; Naumann, Ronald; Müller, Alexandra; Kretz, Oliver; Kuropka, Benno; Girbig, Mathias; Hübner, Norbert; Krause, Eberhard; Scholz, Holger; Huber, Tobias B; Knobeloch, Klaus-Peter; Freund, Christian

    2015-10-01

    Scaffolding proteins play pivotal roles in the assembly of macromolecular machines such as the spliceosome. The adaptor protein CD2BP2, originally identified as a binding partner of the adhesion molecule CD2, is a pre-spliceosomal assembly factor that utilizes its glycine-tyrosine-phenylalanine (GYF) domain to co-localize with spliceosomal proteins. So far, its function in vertebrates is unknown. Using conditional gene targeting in mice, we show that CD2BP2 is crucial for embryogenesis, leading to growth retardation, defects in vascularization, and premature death at embryonic day 10.5 when absent. Ablation of the protein in bone marrow-derived macrophages indicates that CD2BP2 is involved in the alternative splicing of mRNA transcripts from diverse origins. At the molecular level, we identified the phosphatase PP1 to be recruited to the spliceosome via the N-terminus of CD2BP2. Given the strong expression of CD2BP2 in podocytes of the kidney, we use selective depletion of CD2BP2, in combination with next-generation sequencing, to monitor changes in exon usage of genes critical for podocyte functions, including VEGF and actin regulators. CD2BP2-depleted podocytes display foot process effacement, and cause proteinuria and ultimately lethal kidney failure in mice. Collectively, our study defines CD2BP2 as a non-redundant splicing factor essential for embryonic development and podocyte integrity.

  10. A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture

    PubMed Central

    Zennaro, Cristina; Rastaldi, Maria Pia; Bakeine, Gerald James; Delfino, Riccarda; Tonon, Federica; Farra, Rossella; Grassi, Gabriele; Artero, Mary; Tormen, Massimo; Carraro, Michele

    2016-01-01

    Although it is well recognized that cell–matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes – the gatekeepers of glomerular filtration – which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment. PMID:27757030

  11. Three-dimensional architecture of podocytes revealed by block-face scanning electron microscopy

    PubMed Central

    Ichimura, Koichiro; Miyazaki, Naoyuki; Sadayama, Shoji; Murata, Kazuyoshi; Koike, Masato; Nakamura, Kei-ichiro; Ohta, Keisuke; Sakai, Tatsuo

    2015-01-01

    Block-face imaging is a scanning electron microscopic technique which enables easier acquisition of serial ultrastructural images directly from the surface of resin-embedded biological samples with a similar quality to transmission electron micrographs. In the present study, we analyzed the three-dimensional architecture of podocytes using serial block-face imaging. It was previously believed that podocytes are divided into three kinds of subcellular compartment: cell body, primary process, and foot process, which are simply aligned in this order. When the reconstructed podocytes were viewed from their basal side, the foot processes were branched from a ridge-like prominence, which was formed on the basal surface of the primary process and was similar to the usual foot processes in structure. Moreover, from the cell body, the foot processes were also emerged via the ridge-like prominence, as found in the primary process. The ridge-like prominence anchored the cell body and primary process to the glomerular basement membrane, and connected the foot processes to the cell body and primary process. In conclusion, serial block-face imaging is a powerful tool for clear understanding the three-dimensional architecture of podocytes through its ability to reveal novel structures which were difficult to determine by conventional transmission and scanning electron microscopes alone. PMID:25759085

  12. Three-dimensional architecture of podocytes revealed by block-face scanning electron microscopy.

    PubMed

    Ichimura, Koichiro; Miyazaki, Naoyuki; Sadayama, Shoji; Murata, Kazuyoshi; Koike, Masato; Nakamura, Kei-Ichiro; Ohta, Keisuke; Sakai, Tatsuo

    2015-01-01

    Block-face imaging is a scanning electron microscopic technique which enables easier acquisition of serial ultrastructural images directly from the surface of resin-embedded biological samples with a similar quality to transmission electron micrographs. In the present study, we analyzed the three-dimensional architecture of podocytes using serial block-face imaging. It was previously believed that podocytes are divided into three kinds of subcellular compartment: cell body, primary process, and foot process, which are simply aligned in this order. When the reconstructed podocytes were viewed from their basal side, the foot processes were branched from a ridge-like prominence, which was formed on the basal surface of the primary process and was similar to the usual foot processes in structure. Moreover, from the cell body, the foot processes were also emerged via the ridge-like prominence, as found in the primary process. The ridge-like prominence anchored the cell body and primary process to the glomerular basement membrane, and connected the foot processes to the cell body and primary process. In conclusion, serial block-face imaging is a powerful tool for clear understanding the three-dimensional architecture of podocytes through its ability to reveal novel structures which were difficult to determine by conventional transmission and scanning electron microscopes alone.

  13. Quantitative podocyte parameters predict human native kidney and allograft half-lives

    PubMed Central

    Naik, Abhijit S.; Afshinnia, Farsad; Cibrik, Diane; Hodgin, Jeffrey B.; Zhang, Min; Kikuchi, Masao; Wickman, Larysa; Samaniego, Milagros; Bitzer, Markus; Wiggins, Jocelyn E.; Ojo, Akinlolu; Li, Yi; Wiggins, Roger C.

    2016-01-01

    BACKGROUND. Kidney function decreases with age. A potential mechanistic explanation for kidney and allograft half-life has evolved through the realization that linear reduction in glomerular podocyte density could drive progressive glomerulosclerosis to impact both native kidney and allograft half-lives. METHODS. Predictions from podometrics (quantitation of podocyte parameters) were tested using independent pathologic, functional, and outcome data for native kidneys and allografts derived from published reports and large registries. RESULTS. With age, native kidneys exponentially develop glomerulosclerosis, reduced renal function, and end-stage kidney disease, projecting a finite average kidney life span. The slope of allograft failure rate versus age parallels that of reduction in podocyte density versus age. Quantitative modeling projects allograft half-life at any donor age, and rate of podocyte detachment parallels the observed allograft loss rate. CONCLUSION. Native kidneys are designed to have a limited average life span of about 100–140 years. Allografts undergo an accelerated aging-like process that accounts for their unexpectedly short half-life (about 15 years), the observation that older donor age is associated with shorter allograft half-life, and the fact that long-term allograft survival has not substantially improved. Podometrics provides potential readouts for these processes, thereby offering new approaches for monitoring and intervention. FUNDING: National Institutes of Health. PMID:27280173

  14. Octapeptide somatostatin analog SMS 201-995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast adenocarcinoma cells.

    PubMed

    Srikant, C B; Shen, S H

    1996-08-01

    Somatostatin (SST) analogs exert direct antiproliferative actions in pancreatic, pituitary, and mammary tumor cells in vitro. SST receptor (SSTR)-mediated induction of membrane-associated protein tyrosine phosphatase (PTP) activity has been implicated in its anti-proliferative signaling by virtue of its ability to dephosphorylate and inactivate growth factor receptor kinases. Recently, a PTP-containing Src homology 2 domain, identified as PTP1C/SHPTP1/SHP/HCP, was found to be associated with SSTR in rat pancreatic acinar cell membranes. In the present study we investigated the antiproliferative action of the octapeptide SST analog SMS 201-995 (OCT) and its effect on PTP activity in MCF-7 human breast adenocarcinoma cells. We report here that OCT does not directly stimulate membrane-associated PTP activity, but induces translocation of intracellular PTP to the membrane in MCF-7 cells preincubated with the peptide in a time- and concentration-dependent manner. We demonstrate that this is due at least in part to OCT-induced recruitment of cytosolic PTP1C. OCT-induced recruitment of PTP1C to the cell surface as well as its ability to inhibit the growth of MCF-7 cells was G protein dependent and inhibited by orthovanadate. These findings suggest that translocation of cytosolic PTP1C by SST analogs to the cell surface is an early event in its antiproliferative signaling in tumor cells.

  15. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro

    PubMed Central

    Wang, Xiangguo; Lin, Pengfei; Li, Yang; Xiang, Caixia; Yin, Yanlong; Chen, Zhi; Du, Yue; Zhou, Dong; Jin, Yaping; Wang, Aihua

    2016-01-01

    Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER), and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2) in goat trophoblast cells (GTCs) and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm), a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA), a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR) chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist) in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection. PMID:26904517

  16. Nerve Growth Factor Mediates a Switch in Intracellular Signaling for PGE2-Induced Sensitization of Sensory Neurons from Protein Kinase A to Epac

    PubMed Central

    Vasko, Michael R.; Habashy Malty, Ramy; Guo, Chunlu; Duarte, Djane B.; Zhang, Yihong; Nicol, Grant D.

    2014-01-01

    We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund's adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation. PMID:25126967

  17. Intracellular Signal Transduction and Modification of the Tumor Microenvironment Induced by RET/PTCs in Papillary Thyroid Carcinoma

    PubMed Central

    Menicali, Elisa; Moretti, Sonia; Voce, Pasquale; Romagnoli, Serena; Avenia, Nicola; Puxeddu, Efisio

    2012-01-01

    RET gene rearrangements (RET/PTCs) represent together with BRAF point mutations the two major groups of mutations involved in papillary thyroid carcinoma (PTC) initiation and progression. In this review, we will examine the mechanisms involved in RET/PTC-induced thyroid cell transformation. In detail, we will summarize the data on the molecular mechanisms involved in RET/PTC formation and in its function as a dominant oncogene, on the activated signal transduction pathways and on the induced gene expression modifications. Moreover, we will report on the effects of RET/PTCs on the tumor microenvironment. Finally, a short review of the literature on RET/PTC prognostic significance will be presented. PMID:22661970

  18. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication.

    PubMed

    Berg, Randi K; Rahbek, Stine H; Kofod-Olsen, Emil; Holm, Christian K; Melchjorsen, Jesper; Jensen, David G; Hansen, Anne Louise; Jørgensen, Louise B; Ostergaard, Lars; Tolstrup, Martin; Larsen, Carsten S; Paludan, Søren R; Jakobsen, Martin R; Mogensen, Trine H

    2014-01-01

    HIV infects key cell types of the immune system, most notably macrophages and CD4+ T cells. Whereas macrophages represent an important viral reservoir, activated CD4+ T cells are the most permissive cell types supporting high levels of viral replication. In recent years, it has been appreciated that the innate immune system plays an important role in controlling HIV replication, e.g. via interferon (IFN)-inducible restriction factors. Moreover, innate immune responses are involved in driving chronic immune activation and the pathogenesis of progressive immunodeficiency. Several pattern recognition receptors detecting HIV have been reported, including Toll-like receptor 7 and Retinoic-inducible gene-I, which detects viral RNA. Here we report that human primary T cells fail to induce strong IFN responses, despite the fact that this cell type does express key molecules involved in DNA signaling pathways. We demonstrate that the DNA sensor IFI16 migrates to sites of foreign DNA localization in the cytoplasm and recruits the signaling molecules stimulator of IFN genes and Tank-binding kinase, but this does not result in expression of IFN and IFN-stimulated genes. Importantly, we show that cytosolic DNA fails to affect HIV replication. However, exogenous treatment of activated T cells with type I IFN has the capacity to induce expression of IFN-stimulated genes and suppress HIV replication. Our data suggest the existence of an impaired DNA signaling machinery in T cells, which may prevent this cell type from activating cell-autonomous anti-HIV responses. This phenomenon could contribute to the high permissiveness of CD4+ T cells for HIV-1.

  19. TAT-mediated intracellular delivery of NPM-derived peptide induces apoptosis in leukemic cells and suppresses leukemogenesis in mice.

    PubMed

    Zhou, Yun; Du, Wei; Koretsky, Tara; Bagby, Grover C; Pang, Qishen

    2008-09-15

    Nucleophosmin (NPM) is frequently overexpressed in leukemias and other tumors. NPM has been reported to suppress oncogene-induced senescence and apoptosis and may represent a therapeutic target for cancer. We fused a NPM-derived peptide to the HIV-TAT (TAT-NPMDeltaC) and found that the fusion peptide inhibited proliferation and induced apoptotic death of primary fibroblasts and preleukemic stem cells. TAT-NPMDeltaC down-regulated several NF-kappaB-controlled survival and inflammatory proteins and suppressed NF-kappaB-driven reporter gene activities. Using an inflammation-associated leukemia model, we demonstrate that TAT-NPMDeltaC induced proliferative suppression and apoptosis of preleukemic stem cells and significantly delayed leukemic development in mice. Mechanistically, TAT-NPMDeltaC associated with wild-type NPM proteins and formed complexes with endogenous NPM and p65 at promoters of several antiapoptotic and inflammatory genes and abrogated their transactivation by NF-kappaB in leu-kemic cells. Thus, TAT-delivered NPM peptide may provide a novel therapy for inflammation-associated tumors that require NF-kappaB signaling for survival.

  20. Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium.

    PubMed

    Zhang, Jixiang; Song, Jia; Wu, Dandan; Wang, Jing; Dong, Weiguo

    2015-04-01

    Hesperetin, a flavonoid from citrus fruits, has been proved to possess biological activity on various types of human cancers. However, few related studies on hepatocellular carcinoma are available. In this study, we aimed to investigate the effect of hesperetin on hepatocellular carcinoma cells in vitro and in vivo and clarify its potentially specific mechanism. Compared with the control group, the proliferations of hepatocellular carcinoma cells in hesperetin groups were significantly inhibited (P < 0.05), and a dose- and time-dependent inhibition of cell viability was observed. When pretreated with H2O2 (1 mM) or N-acetyl-L-cysteine (5 mM), the inhibition of cell viability by hesperetin was enhanced or reduced, respectively (P < 0.05). Similarly, the levels of intracellular ROS, ATP and Ca(2+) changed in different groups (P < 0.05). The results of Hoechst 33258 staining showed that the percentages of apoptotic cells in hesperetin groups are remarkably higher than that in control group (P < 0.05). And the results of Western blot showed that hesperetin caused an increase in the levels of cytosolic AIF, cytosolic Apaf-1, cytosolic Cyt C, caspase-3, caspase-9 and Bax and a decrease in that of Bcl-2, mitochondrial AIF, mitochondrial Apaf-1 and mitochondrial Cyt C (P < 0.05). Meanwhile, hesperetin significantly inhibited the growth of xenograft tumors. Our study suggests that hesperetin could inhibit the proliferation and induce the apoptosis of hepatocellular carcinoma via triggering the activation of the mitochondrial pathway by increasing the levels of intracellular ROS, ATP and Ca(2+).

  1. The role of intracellular high-mobility group box 1 in the early activation of Kupffer cells and the development of Con A-induced acute liver failure.

    PubMed

    Yang, Qiao; Liu, Yanning; Shi, Yu; Zheng, Min; He, Jiliang; Chen, Zhi

    2013-10-01

    Acute liver failure (ALF) is a highly complex syndrome characterized by devastating activation of early activation of Kupffer cells (KCs) has been implicated in the pathogenesis of ALF. However, the factors regulating KC early activation are virtually unexplored. The aim of present study was to determine the role of the intracellular high-mobility group box 1 (HMGB1) in modulating the early activation of KCs during ALF. The intravenous injection of Concanavalin A (Con A) was used to establish a mouse model of ALF. The dynamic pro-inflammatory properties and MHC II expression of KCs were measured by qRT-PCR and flow cytometry. HMGB1 expression in KCs was measured by qRT-PCR and Western blotting. The immunofluorescence was implemented to determine the relocation of HMGB1 in KCs, and the siRNA against HMGB1 was utilized to assess the impact of HMGB1 on KC pro-inflammatory properties. The peak of pro-inflammatory cytokines production and MHC II expression in KCs appeared at the early stage of ALF. The up-regulation of HMGB1 expression and the translocation of HMGB1 in KCs were in parallel with the early activation of KCs. The blockade of intracellular HMGB1 expression caused by siRNA significantly inhibited the production of KC-derived pro-inflammatory cytokines, and led to a down-regulation of MAP kinase activation in KCs. The self-derived HMGB1 is an "early alarmin" of KC activation during Con A-induced ALF. HMGB1 might be a potential target for cell-specific strategy in ALF.

  2. Bile acid signaling through FXR induces intracellular adhesion molecule-1 expression in mouse liver and human hepatocytes.

    PubMed

    Qin, Pu; Borges-Marcucci, Lisa A; Evans, Mark J; Harnish, Douglas C

    2005-08-01

    Previous studies have demonstrated a dramatic induction of inflammatory gene expression in livers from mice fed a high-fat, high-cholesterol diet containing cholate after 3-5 wk. To determine the contribution of cholate in mediating these inductions, C57BL/6 mice were fed a chow diet supplemented with increasing concentrations of cholic acid (CA) for 5 days. A dose-dependent induction in the hepatic levels of TNF-alpha, VCAM-1, ICAM-1, and SAA-2 mRNA were observed. As positive controls, a dose-dependent repression of cholesterol 7alpha-hydroxylase and a dose-dependent induction of small heterodimer partner (SHP) expression were also observed, suggesting that farnesoid X receptor (FXR) was activated. In addition, ICAM-1 and SHP mRNA levels were also induced in primary human hepatocytes when treated with chenodeoxycholic acid or GW4064, a FXR-selective agonist. The involvement of FXR in CA-induced inflammatory gene expression was further investigated in the human hepatic cell line HepG2. Both ICAM-1 and SHP expression were induced in a dose- and time-dependent manner by treatment with the FXR-selective agonist GW4064. Moreover, the induction of ICAM-1 by GW4064 was inhibited by the FXR antagonist guggulsterone or with transfection of FXR siRNA. Finally, the activity of FXR was mapped to a retinoic acid response element (RARE) site containing an imbedded farnesoid X response element (FXRE) on the human ICAM-1 promoter and FXR and retinoid X receptor were demonstrated to bind to this site. Finally, FXR-mediated activation of ICAM-1 could be further enhanced by TNF-alpha cotreatment in hepatocytes, suggesting a potential cooperation between cytokine and bile acid-signaling pathways during hepatic inflammatory events.

  3. Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization

    SciTech Connect

    Geiss, Brian J.; Cano, Gina L.; Tavis, John E.; Morrison, Lynda A. . E-mail: morrisla@slu.edu

    2004-12-05

    Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22. Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.

  4. Gonadotropin-releasing hormone-induced Ca2+ transients in single identified gonadotropes require both intracellular Ca2+ mobilization and Ca2+ influx.

    PubMed Central

    Shangold, G A; Murphy, S N; Miller, R J

    1988-01-01

    We examined the effects of gonadotropin-releasing hormone (GnRH) on the intracellular free Ca2+ concentration ([Ca2+]i) in single rat anterior pituitary gonadotropes identified by a reverse hemolytic plaque assay. Concentrations of GnRH greater than 10 pM elicited increases in [Ca2+]i in identified cells but not in others. In contrast, depolarization induced by 50 mM K+ increased [Ca2+]i in all cells. Ca2+ transients induced by GnRH exhibited a complex time course. After an initial rapid rise, the [Ca2+]i fell to near basal levels only to be followed by a secondary extended rise and fall. Analysis of the Ca2+ transients on a rapid time base revealed that responses frequently consisted of several rapid oscillations in [Ca2+]i. Removal of extracellular Ca2+ or addition of the dihydropyridine Ca2+-channel blocker nitrendipine completely blocked the secondary rise in [Ca2+]i but had no effect whatsoever on the initial spike. Nitrendipine also blocked 50 mM K+-induced increases in [Ca2+]i in identified gonadotropes. The secondary rise induced by GnRH could be enhanced by a phorbol ester in a nitrendipine-sensitive fashion. Multiple spike responses to GnRH stimulation of the same cell could only be obtained if subsequent Ca2+ influx was permitted either by allowing a secondary rise to occur or by producing a Ca2+ transient by depolarizing the cells with 50 mM K+. It therefore appears that the response to GnRH consists of an initial phase of Ca2+ mobilization, probably mediated by inositol trisphosphate, and a subsequent phase of Ca2+ influx through nitrendipine-sensitive Ca2+ channels that may be activated by protein kinase C. The relative roles of these phases in the control of gonadotropin secretion are discussed. Images PMID:3045819

  5. Preeclampsia serum-induced collagen I expression and intracellular calcium levels in arterial smooth muscle cells are mediated by the PLC-γ1 pathway.

    PubMed

    Jiang, Rongzhen; Teng, Yincheng; Huang, Yajuan; Gu, Jinghong; Ma, Li; Li, Ming; Zhou, Yuedi

    2014-09-26

    In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca(2+) concentrations ([Ca(2+)]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca(2+)]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia-ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca(2+)]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway.

  6. Non-Specific Inhibition of Ischemia- and Acidosis-Induced Intracellular Calcium Elevations and Membrane Currents by α-Phenyl-N-tert-butylnitrone, Butylated Hydroxytoluene and Trolox

    PubMed Central

    Katnik, Christopher; Cuevas, Javier

    2014-01-01

    Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses. PMID:24583849

  7. Glycogen synthase kinase 3-{beta} phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization

    SciTech Connect

    Han, Xiangzi; Ju, Ji-hyun; Shin, Incheol

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Novel S/T-P-S/T domains were identified in NICD. Black-Right-Pointing-Pointer Phosphorylation of NICD on the S/T-P-S/T domains induced nuclear localization. Black-Right-Pointing-Pointer GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. -- Abstract: We identified two S/T-P-S/T domains (2122-2124, 2126-2128) inducing Notch intracellular domain (NICD) nuclear localization. The GFP-NICD (1963-2145) fusion protein deletion mutant without classical NLS was localized in the nucleus like the full length GFP-NICD. However, quadruple substitution mutant (T2122A T2124A S2126A T2128A) showed increased cytoplasmic localization. GSK-3{beta} enhanced nuclear localization and transcriptional activity of WT NICD but not of quadruple substitution mutant. In vitro kinase assays revealed that GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. These results suggest that the novel S/T-P-S/T domain, phosphorylated by GSK-3{beta} is also involved in the nuclear localization of NICD as well as classical NLS.

  8. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox.

    PubMed

    Katnik, Christopher; Cuevas, Javier

    2014-02-27

    Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses.

  9. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    PubMed

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  10. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  11. Assessment of detached podocytes in the Bowman's space as a marker of disease activity in lupus nephritis.

    PubMed

    Moustafa, F E; Soliman, N A; Bakr, A M A; El Shwaf, I M

    2014-02-01

    Podocyte damage is an important pathogenic component of glomerular disease progression. This study is a trial to clarify the value of counting and scoring the number of shed Bowman's space podocytes as an activity parameter of lupus nephritis, a trial that has not been conducted before. This study was performed on 42 female patients with the clinical diagnosis of lupus nephritis. Beside the routine stains tissue sections were stained by colloidal iron and anti podocalyxin for sialomucin. Podocytes in the Bowman's space were counted and scored. Thorough statistical work was carried out to correlate the podocyte scores with the morphological lesions of lupus nephritis. This study revealed significant association and correlation of shed Bowman's space podocytes with histopathological parameters of activity in different classes of lupus nephritis. We concluded that counting and scoring shed Bowman's space podocytes is statistically significant as a marker of disease activity in lupus nephritis. It can be one of the parameters of activity index but not of chronicity index.

  12. Characterisation of neurotransmitter-induced electrolyte transport in cockroach salivary glands by intracellular Ca2+, Na+ and pH measurements in duct cells.

    PubMed

    Hille, Carsten; Walz, Bernd

    2008-02-01

    Ion-transporting acinar peripheral cells in cockroach salivary glands are innervated by dopaminergic and serotonergic fibres, but saliva-modifying duct cells are innervated only by dopaminergic fibres. We used microfluorometry to record intracellular Na+, Ca2+ and H+ concentrations ([Na+]i, [Ca2+]i and pHi) in duct cells of two types of preparation, viz ;lobes' consisting of acini with their duct system and ;isolated ducts' without acini, in order to obtain information about the transporters involved in saliva secretion and/or modification. Our results indicate that (1) stimulation of lobes by dopamine (DA) causes a strong drop of pHi and increases in [Na+]i and [Ca2+]i in duct cells; (2) in contrast, DA stimulation of isolated ducts produces only a small pHi drop and no changes in [Na+]i and [Ca2+]i; (3) pHi and [Ca2+]i changes are also induced in duct cells by serotonin (5-HT) stimulation of lobes, but not isolated ducts; (4) in the absence of CO2/HCO3(-), the DA-induced pH(i) drop is strongly reduced by removal of extracellular Cl(-) or inhibition of the Na+-K+-2Cl(-) cotransporter (NKCC); (5) in the presence of CO2/HCO3(-), the DA-induced pHi drop is not reduced by NKCC inhibition, but rather by inhibition of the Cl(-)/HCO3(-) exchanger (AE), Na+/H+ exchanger (NHE) or carbonic anhydrase. We suggest that DA and 5-HT act predominantly on acinar peripheral cells. Their activity (secretion of primary saliva) seems to cause changes in ion concentrations in duct cells. NKCC and/or AE/NHE activities are necessary for pHi changes in duct cells; we consider that these transporters are involved in the secretion of the NaCl-rich primary saliva.

  13. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca2+ concentration in rat carotid body glomus cells

    PubMed Central

    Kim, Donghee; Kim, Insook; Wang, Jiaju; White, Carl; Carroll, John L.

    2015-01-01

    Acute hypoxia depolarizes carotid body chemoreceptor (glomus) cells and elevates intracellular Ca2+ concentration ([Ca2+]i). Recent studies suggest that hydrogen sulfide (H2S) may serve as an oxygen sensor/signal in the carotid body during acute hypoxia. To further test such a role for H2S, we studied the effects of H2S on the activity of TASK channel and [Ca2+]i, which are considered important for mediating the glomus cell response to hypoxia. Like hypoxia, NaHS (a H2S donor) inhibited TASK activity and elevated [Ca2+]i. To inhibit the production of H2S, glomus cells were incubated (3 hr) with inhibitors of cystathionine-β-synthase and cystathionine-γ-lyase (DL-propargylglycine, aminooxyacetic acid, β-cyano-L-alanine; 0.3 mM). SF7 fluorescence was used to assess the level of H2S production. The inhibitors blocked L-cysteine- and hypoxia-induced elevation of SF7 fluorescence intensity. In cells treated with the inhibitors, hypoxia produced an inhibition of TASK activity and a rise in [Ca2+]i, similar in magnitude to those observed in control cells. L-cysteine produced no effect on TASK activity or [Ca2+]i and did not affect hypoxia-induced inhibition of TASK and elevation of [Ca2+]i. These findings suggest that under normal conditions, H2S is not a major signal in hypoxia-induced modulation of TASK channels and [Ca2+]i in isolated glomus cells. PMID:25956223

  14. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca(2+) concentration in rat carotid body glomus cells.

    PubMed

    Kim, Donghee; Kim, Insook; Wang, Jiaju; White, Carl; Carroll, John L

    2015-08-15

    Acute hypoxia depolarizes carotid body chemoreceptor (glomus) cells and elevates intracellular Ca(2+) concentration ([Ca(2+)]i). Recent studies suggest that hydrogen sulfide (H2S) may serve as an oxygen sensor/signal in the carotid body during acute hypoxia. To further test such a role for H2S, we studied the effects of H2S on the activity of TASK channel and [Ca(2+)]i, which are considered important for mediating the glomus cell response to hypoxia. Like hypoxia, NaHS (a H2S donor) inhibited TASK activity and elevated [Ca(2+)]i. To inhibit the production of H2S, glomus cells were incubated (3h) with inhibitors of cystathionine-β-synthase and cystathionine-γ-lyase (DL-propargylglycine, aminooxyacetic acid, β-cyano-L-alanine; 0.3 mM). SF7 fluorescence was used to assess the level of H2S production. The inhibitors blocked L-cysteine- and hypoxia-induced elevation of SF7 fluorescence intensity. In cells treated with the inhibitors, hypoxia produced an inhibition of TASK activity and a rise in [Ca(2+)]i, similar in magnitude to those observed in control cells. L-cysteine produced no effect on TASK activity or [Ca(2+)]i and did not affect hypoxia-induced inhibition of TASK and elevation of [Ca(2+)]i. These findings suggest that under normal conditions, H2S is not a major signal in hypoxia-induced modulation of TASK channels and [Ca(2+)]i in isolated glomus cells.

  15. Time-dependent stabilization of hypoxia inducible factor-1α by different intracellular sources of reactive oxygen species.

    PubMed

    Calvani, Maura; Comito, Giuseppina; Giannoni, Elisa; Chiarugi, Paola

    2012-01-01

    Intratumoral hypoxia is a major obstacle in the development of effective cancer chemotherapy, decreasing the efficacy of anti-neoplastic drugs in several solid tumours. The hypoxic environment, through its master regulator hypoxia inducible factor-1 (HIF-1), is able to maintain an anti-apoptotic potential through activation of critical genes associated with drug resistance. Besides affecting metabolism and motility of tumour cells, hypoxia also paradoxically increases production of reactive oxygen species (ROS), which contribute to stabilize HIF-1 through a redox-mediated inhibition of its proteolysis. Here we reported that 1% O(2) hypoxia increases the resistance of human metastatic melanoma cells to conventional chemotherapy with etoposide, and that the increase in chemoresistance strongly depends on ROS delivery due to hypoxia. We reported a biphasic redox-dependent role of HIF-1, involving mitochondrial complex III and NADPH oxidase as oxidants sources, synergising in enhancing survival to chemotherapy. The feed-forward loop engaged by hypoxia involves first an HIF-1-dependent vascular endothelial growth factor-A (VEGF-A) autocrine production and, in the later phase, activation of NADPH oxidase from VEGF/VEGFR2 interaction, finally leading to a further redox-dependent long lasting stabilization of HIF-1. We therefore identified a redox-dependent circuitry linking hypoxia-driven ROS to VEGF-A secretion and to enhanced melanoma cell survival to etoposide chemotherapy. PMID:23144690

  16. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  17. Brucella abortus induces intracellular retention of MHC-I molecules in human macrophages down-modulating cytotoxic CD8(+) T cell responses.

    PubMed

    Barrionuevo, Paula; Delpino, M Victoria; Pozner, Roberto G; Velásquez, Lis N; Cassataro, Juliana; Giambartolomei, Guillermo H

    2013-04-01

    Brucella abortus elicits a vigorous Th1 immune response which activates cytotoxic T lymphocytes. However, B. abortus persists in its hosts in the presence of CD8(+) T cells, establishing a chronic infection. Here, we report that B. abortus infection of human monocytes/macrophages inhibited the IFN-γ-induced MHC-I cell surface expression. This phenomenon was dependent on metabolically active viable bacteria. MHC-I down-modulation correlated with the development of diminished CD8(+) cytotoxic T cell response as evidenced by the reduced expression of the activation marker CD107a on CD8(+) T lymphocytes and a diminished percentage of IFN-γ-producing CD8(+) T cells. Inhibition of MHC-I expression was not due to changes in protein synthesis. Rather, we observed that upon B. abortus infection MHC-I molecules were retained within the Golgi apparatus. Overall, these results describe a novel mechanism based on the intracellular sequestration of MHC-I molecules whereby B. abortus would avoid CD8(+) cytotoxic T cell responses, evading their immunological surveillance. PMID:23107169

  18. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci.

    PubMed

    Kunin, C M; Rudy, J

    1991-09-01

    Staphylococci are more salt tolerant than are enterococci or Escherichia coli. They have a more rigid cell wall and higher internal turgor pressure. The mechanisms of NaCl-induced osmotic tolerance among these bacteria were examined by determining the generation of osmoprotective activity of cellular extracts and intracellular concentrations of glycine betaine and potassium (K+) in response to graded amounts of NaCl. Staphylococci as well as E. coli were shown to require choline or glycine betaine to achieve maximal salt tolerance. In response to 0.9 mol/L NaCl, E. coli exhibited a marked increase in osmoprotective activity, a 168-fold rise in glycine betaine, and a 2.3-fold rise in K+. Enterococcus faealis exhibited a small increase in osmoprotective activity, a 9.3-fold increase in glycine betaine, and a twofold increase in K+. In contrast, strains of Staphylococcus aureus, S. epidermidis, and S. saprophyticus were found to have considerably greater osmoprotective activity, glycine betaine, and K+ than other organisms, even in the absence of external osmotic stress. Glycine betaine rose in some strains, but K+ remained virtually unchanged as the concentration of NaCl was increased. The high concentrations of glycine betaine and K+ in staphylococci, even in the absence of osmotic stress, may explain in part their remarkable salt tolerance and high turgor pressure.

  19. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci.

    PubMed

    Kunin, C M; Rudy, J

    1991-09-01

    Staphylococci are more salt tolerant than are enterococci or Escherichia coli. They have a more rigid cell wall and higher internal turgor pressure. The mechanisms of NaCl-induced osmotic tolerance among these bacteria were examined by determining the generation of osmoprotective activity of cellular extracts and intracellular concentrations of glycine betaine and potassium (K+) in response to graded amounts of NaCl. Staphylococci as well as E. coli were shown to require choline or glycine betaine to achieve maximal salt tolerance. In response to 0.9 mol/L NaCl, E. coli exhibited a marked increase in osmoprotective activity, a 168-fold rise in glycine betaine, and a 2.3-fold rise in K+. Enterococcus faealis exhibited a small increase in osmoprotective activity, a 9.3-fold increase in glycine betaine, and a twofold increase in K+. In contrast, strains of Staphylococcus aureus, S. epidermidis, and S. saprophyticus were found to have considerably greater osmoprotective activity, glycine betaine, and K+ than other organisms, even in the absence of external osmotic stress. Glycine betaine rose in some strains, but K+ remained virtually unchanged as the concentration of NaCl was increased. The high concentrations of glycine betaine and K+ in staphylococci, even in the absence of osmotic stress, may explain in part their remarkable salt tolerance and high turgor pressure. PMID:1919294

  20. 20-Hydroxyeicosatetraenoic Acid (20-HETE) Modulates Canonical Transient Receptor Potential-6 (TRPC6) Channels in Podocytes

    PubMed Central

    Roshanravan, Hila; Kim, Eun Y.; Dryer, Stuart E.

    2016-01-01

    The arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) regulates renal function, including changes in glomerular function evoked during tubuloglomerular feedback (TGF). This study describes the cellular actions of 20-HETE on cultured podocytes, assessed by whole-cell recordings from cultured podocytes combined with pharmacological and cell-biological manipulations of cells. Bath superfusion of 20-HETE activates cationic currents that are blocked by the pan-TRP blocker SKF-96365 and by 50 μM La3+, and which are attenuated after siRNA knockdown of TRPC6 subunits. Similar currents are evoked by a membrane-permeable analog of diacylgycerol (OAG), but OAG does not occlude responses to maximally-activating concentrations of 20-HETE (20 μM). Exposure to 20-HETE also increased steady-state surface abundance of TRPC6 subunits in podocytes as assessed by cell-surface biotinylation assays, and increased cytosolic concentrations of reactive oxygen species (ROS). TRPC6 activation by 20-HETE was eliminated in cells pretreated with TEMPOL, a membrane-permeable superoxide dismutase mimic. Activation of TRPC6 by 20-HETE was also blocked when whole-cell recording pipettes contained GDP-βS, indicating a role for either small or heterotrimeric G proteins in the transduction cascade. Responses to 20-HETE were eliminated by siRNA knockdown of podocin, a protein that organizes NADPH oxidase complexes with TRPC6 subunits in this cell type. In summary, modulation of ionic channels in podocytes may contribute to glomerular actions of 20-HETE.

  1. 20-Hydroxyeicosatetraenoic Acid (20-HETE) Modulates Canonical Transient Receptor Potential-6 (TRPC6) Channels in Podocytes

    PubMed Central

    Roshanravan, Hila; Kim, Eun Y.; Dryer, Stuart E.

    2016-01-01

    The arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) regulates renal function, including changes in glomerular function evoked during tubuloglomerular feedback (TGF). This study describes the cellular actions of 20-HETE on cultured podocytes, assessed by whole-cell recordings from cultured podocytes combined with pharmacological and cell-biological manipulations of cells. Bath superfusion of 20-HETE activates cationic currents that are blocked by the pan-TRP blocker SKF-96365 and by 50 μM La3+, and which are attenuated after siRNA knockdown of TRPC6 subunits. Similar currents are evoked by a membrane-permeable analog of diacylgycerol (OAG), but OAG does not occlude responses to maximally-activating concentrations of 20-HETE (20 μM). Exposure to 20-HETE also increased steady-state surface abundance of TRPC6 subunits in podocytes as assessed by cell-surface biotinylation assays, and increased cytosolic concentrations of reactive oxygen species (ROS). TRPC6 activation by 20-HETE was eliminated in cells pretreated with TEMPOL, a membrane-permeable superoxide dismutase mimic. Activation of TRPC6 by 20-HETE was also blocked when whole-cell recording pipettes contained GDP-βS, indicating a role for either small or heterotrimeric G proteins in the transduction cascade. Responses to 20-HETE were eliminated by siRNA knockdown of podocin, a protein that organizes NADPH oxidase complexes with TRPC6 subunits in this cell type. In summary, modulation of ionic channels in podocytes may contribute to glomerular actions of 20-HETE. PMID:27630573

  2. A role for novel cell-cycle proteins in podocyte biology.

    PubMed

    Price, Peter M

    2010-04-01

    Cell-cycle proteins influence almost all aspects of embryogenesis and differentiation. In adults, these proteins control cell division and regeneration after injury. During the past several years, their roles in controlling reaction to stress have been demonstrated in several organ systems. In the kidney, the cell types affected include both tubular and glomerular compartments. Now a novel cell cycle-related protein is shown to influence podocyte biology.

  3. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease.

    PubMed

    Burlaka, Ievgeniia; Nilsson, Linnéa M; Scott, Lena; Holtbäck, Ulla; Eklöf, Ann-Christine; Fogo, Agnes B; Brismar, Hjalmar; Aperia, Anita

    2016-07-01

    There is a great need for treatment that arrests progression of chronic kidney disease. Increased albumin in urine leads to apoptosis and fibrosis of podocytes and tubular cells and is a major cause of functional deterioration. There have been many attempts to target fibrosis, but because of the lack of appropriate agents, few have targeted apoptosis. Our group has described an ouabain-activated Na,K-ATPase/IP3R signalosome, which protects from apoptosis. Here we show that albumin uptake in primary rat renal epithelial cells is accompanied by a time- and dose-dependent mitochondrial accumulation of the apoptotic factor Bax, down-regulation of the antiapoptotic factor Bcl-xL and mitochondrial membrane depolarization. Ouabain opposes these effects and protects from apoptosis in albumin-exposed proximal tubule cells and podocytes. The efficacy of ouabain as an antiapoptotic and kidney-protective therapeutic tool was then tested in rats with passive Heymann nephritis, a model of proteinuric chronic kidney disease. Chronic ouabain treatment preserved renal function, protected from renal cortical apoptosis, up-regulated Bax, down-regulated Bcl-xL, and rescued from glomerular tubular disconnection and podocyte loss. Thus we have identified a novel clinically feasible therapeutic tool, which has the potential to protect from apoptosis and rescue from loss of functional tissue in chronic proteinuric kidney disease. PMID:27217195

  4. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes

    PubMed Central

    Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2015-01-01

    Diabetic nephropathy is the major cause of end-stage renal failure throughout the world in both developed and developing countries. Diabetes affects all cell types of the kidney, including endothelial cells, tubulointerstitial cells, podocytes and mesangial cells. During the past decade, the importance of podocyte injury in the formation and progression of diabetic nephropathy has been established and emphasized. However, recent findings provide additional perspectives on pathogenesis of diabetic nephropathy. Glomerular endothelial damage is already present in the normoalbuminuric stage of the disease when podocyte injury starts. Genetic targeting of mice that cause endothelial injury leads to accelerated diabetic nephropathy. Tubulointerstitial damage, previously considered to be a secondary effect of glomerular protein leakage, was shown to have a primary significance in the progression of diabetic nephropathy. Emerging evidence suggests that the glomerular filtration barrier and tubulointerstitial compartment is a composite, dynamic entity where any injury of one cell type spreads to other cell types, and leads to the dysfunction of the whole apparatus. Accumulation of novel knowledge would provide a better understanding of the pathogenesis of diabetic nephropathy, and might lead to a development of a new therapeutic strategy for the disease. PMID:25621126

  5. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    PubMed Central

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  6. Stochastic resonance in an intracellular genetic perceptron

    NASA Astrophysics Data System (ADS)

    Bates, Russell; Blyuss, Oleg; Zaikin, Alexey

    2014-03-01

    Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity.

  7. Intracellularly survived Staphylococcus aureus after phagocytosis are more virulent in inducing cytotoxicity in fresh murine peritoneal macrophages utilizing TLR-2 as a possible target.

    PubMed

    Nandi, Ajeya; Bishayi, Biswadev

    2016-08-01

    Staphylococcus aureus with high virulence potential is contributing to a current public health crisis in both hospital and community settings. TLR-2 and generation of reactive oxygen species (ROS) by phagocytic cells is thought to be an important component of the host's immunity against S. aureus infection. However, response of S. aureus against modulation of host-derived ROS in absence of TLR-2 during acute staphylococcal infection is still remains unclear. Peritoneal macrophages were pretreated with either inhibitors of superoxide dismutase (SOD) or catalase in presence or absence of anti TLR-2 antibody and were infected with S. aureus strain AG-789. Bacteria were recovered after time dependent phagocytosis; intracellular killing, level and expression of SOD and catalase were measured. Phagocytosed bacteria from respective groups were further used for infection to fresh peritoneal macrophages as well as for in vivo infection. Levels of ROS, cytokine, lysozyme, antioxidant enzymes activity and TLR-2 expression were measured. Results revealed that more bacteria were escaped killing in SOD and catalase inhibitor pretreated TLR-2 neutralized macrophages, found to express more catalase and are antibiotic resistant. Infection of fresh macrophages with S. aureus, recovered from SOD and catalase inhibited TLR-2 neutralized macrophages induced lower ROS, lysozyme and cytokine production and caused increased bacterial count. Furthermore, bacterial antioxidants by modulating host-derived ROS could regulate the cell surface TLR-2 expression in murine peritoneal macrophages. So, in the early phase of infection, TLR-2 participates in the innate immune response and targeting bacterial antioxidants might be useful in the alleviation of Staphylococcus aureus infection. PMID:27270212

  8. Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes.

    PubMed

    Irles, Esperanza; Ñeco, Patricia; Lluesma, Mónica; Villar-Pazos, Sabrina; Santos-Silva, Junia Carolina; Vettorazzi, Jean F; Alonso-Magdalena, Paloma; Carneiro, Everardo M; Boschero, Antonio C; Nadal, Ángel; Quesada, Ivan

    2015-03-15

    Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.

  9. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  10. Intracellular Bacteria in Protozoa

    NASA Astrophysics Data System (ADS)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  11. Nuclear Factor Erythroid 2-Related Factor 2 Drives Podocyte-Specific Expression of Peroxisome Proliferator-Activated Receptor γ Essential for Resistance to Crescentic GN.

    PubMed

    Henique, Carole; Bollee, Guillaume; Lenoir, Olivia; Dhaun, Neeraj; Camus, Marine; Chipont, Anna; Flosseau, Kathleen; Mandet, Chantal; Yamamoto, Masayuki; Karras, Alexandre; Thervet, Eric; Bruneval, Patrick; Nochy, Dominique; Mesnard, Laurent; Tharaux, Pierre-Louis

    2016-01-01

    Necrotizing and crescentic rapidly progressive GN (RPGN) is a life-threatening syndrome characterized by a rapid loss of renal function. Evidence suggests that podocyte expression of the transcription factor peroxisome proliferator-activated receptor γ (PPARγ) may prevent podocyte injury, but the function of glomerular PPARγ in acute, severe inflammatory GN is unknown. Here, we observed marked loss of PPARγ abundance and transcriptional activity in glomerular podocytes in experimental RPGN. Blunted expression of PPARγ in podocyte nuclei was also found in kidneys from patients diagnosed with crescentic GN. Podocyte-specific Pparγ gene targeting accentuated glomerular damage, with increased urinary loss of albumin and severe kidney failure. Furthermore, a PPARγ gain-of-function approach achieved by systemic administration of thiazolidinedione (TZD) failed to prevent severe RPGN in mice with podocyte-specific Pparγ gene deficiency. In nuclear factor erythroid 2-related factor 2 (NRF2)-deficient mice, loss of podocyte PPARγ was observed at baseline. NRF2 deficiency markedly aggravated the course of RPGN, an effect that was partially prevented by TZD administration. Furthermore, delayed administration of TZD, initiated after the onset of RPGN, still alleviated the severity of experimental RPGN. These findings establish a requirement for the NRF2-PPARγ cascade in podocytes, and we suggest that these transcription factors have a role in augmenting the tolerance of glomeruli to severe immune-complex mediated injury. The NRF2-PPARγ pathway may be a therapeutic target for RPGN. PMID:25999406

  12. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle.

    PubMed

    Brandt, Nina; Gunnarsson, Thomas P; Hostrup, Morten; Tybirk, Jonas; Nybo, Lars; Pilegaard, Henriette; Bangsbo, Jens

    2016-07-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs was matched): C - cycling at 171 ± 6 W for 60 min (control); A - cycling at 171 ± 6 W for 60 min, with addition of intermittent arm exercise (98 ± 4 W). DS - cycling at 171 ± 6 W interspersed by 30 sec sprints (513 ± 19 W) every 10 min (distributed sprints); and CS - cycling at 171 ± 6 W for 40 min followed by 20 min of six 30 sec sprints (clustered sprints). Sprints were followed by 3:24 min:sec at 111 ± 4 W. A biopsy was obtained from m. vastus lateralis at rest and immediately, and 2 and 5 h after exercise. Muscle PGC-1α mRNA content was elevated (P < 0.05) three- to sixfold 2 h after exercise relative to rest in C, A, and DS, with no differences between protocols. AMPK and p38 phosphorylation was higher (P < 0.05) immediately after exercise than at rest in all protocols, and 1.3- to 2-fold higher (P < 0.05) in CS than in the other protocols. CREB phosphorylation was higher (P < 0.05) 2 and 5 h after exercise than at rest in all protocols, and higher (P < 0.05) in DS than CS 2 h after exercise. This suggests that neither plasma adrenaline nor muscle metabolic stress determines the magnitude of PGC-1α mRNA response in human muscle. Furthermore, higher exercise-induced changes in AMPK, p38, and CREB phosphorylation are not associated with differences in the PGC-1α mRNA response.

  13. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle.

    PubMed

    Brandt, Nina; Gunnarsson, Thomas P; Hostrup, Morten; Tybirk, Jonas; Nybo, Lars; Pilegaard, Henriette; Bangsbo, Jens

    2016-07-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs was matched): C - cycling at 171 ± 6 W for 60 min (control); A - cycling at 171 ± 6 W for 60 min, with addition of intermittent arm exercise (98 ± 4 W). DS - cycling at 171 ± 6 W interspersed by 30 sec sprints (513 ± 19 W) every 10 min (distributed sprints); and CS - cycling at 171 ± 6 W for 40 min followed by 20 min of six 30 sec sprints (clustered sprints). Sprints were followed by 3:24 min:sec at 111 ± 4 W. A biopsy was obtained from m. vastus lateralis at rest and immediately, and 2 and 5 h after exercise. Muscle PGC-1α mRNA content was elevated (P < 0.05) three- to sixfold 2 h after exercise relative to rest in C, A, and DS, with no differences between protocols. AMPK and p38 phosphorylation was higher (P < 0.05) immediately after exercise than at rest in all protocols, and 1.3- to 2-fold higher (P < 0.05) in CS than in the other protocols. CREB phosphorylation was higher (P < 0.05) 2 and 5 h after exercise than at rest in all protocols, and higher (P < 0.05) in DS than CS 2 h after exercise. This suggests that neither plasma adrenaline nor muscle metabolic stress determines the magnitude of PGC-1α mRNA response in human muscle. Furthermore, higher exercise-induced changes in AMPK, p38, and CREB phosphorylation are not associated with differences in the PGC-1α mRNA response. PMID:27436584

  14. Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males.

    PubMed

    McKendry, James; Pérez-López, Alberto; McLeod, Michael; Luo, Dan; Dent, Jessica R; Smeuninx, Benoit; Yu, Jinglei; Taylor, Angela E; Philp, Andrew; Breen, Leigh

    2016-07-01

    What is the central question of this study? Does shorter rest between sets of resistance exercise promote a superior circulating hormonal and acute muscle anabolic response compared with longer rest periods? What is the main finding and its importance? We demonstrate that short rest (1 min) between sets of moderate-intensity, high-volume resistance exercise blunts the acute muscle anabolic response compared with a longer rest period (5 min), despite a superior circulating hormonal milieu. These data have important implications for the development of training regimens to maximize muscle hypertrophy. Manipulating the rest-recovery interval between sets of resistance exercise may influence training-induced muscle remodelling. The aim of this study was to determine the acute muscle anabolic response to resistance exercise performed with short or long inter-set rest intervals. In a study with a parallel-group design, 16 males completed four sets of bilateral leg-press and knee-extension exercise at 75% of one-repetition maximum to momentary muscular failure, followed by ingestion of 25 g of whey protein. Resistance exercise sets were interspersed by 1 min (n = 8) or 5 min of passive rest (n = 8). Muscle biopsies were obtained at rest, 0, 4, 24 and 28 h postexercise during a primed continuous infusion of l-[ring-(13) C6 ]phenylalanine to determine myofibrillar protein synthesis and intracellular signalling. We found that the rate of myofibrillar protein synthesis increased above resting values from 0 to 4 h postexercise with 1 (76%; P = 0.047) and 5 min inter-set rest (152%; P < 0.001) and was significantly greater in the 5 min inter-set rest group (P = 0.001). Myofibrillar protein synthesis rates at 24-28 h postexercise remained elevated above resting values (P < 0.05) and were indistinguishable between groups. Postexercise p70S6K(Thr389) and rpS6(Ser240/244) phosphorylation were reduced with 1 compared with 5 min inter-set rest, whereas

  15. MicroRNA-193a Regulates the Transdifferentiation of Human Parietal Epithelial Cells toward a Podocyte Phenotype

    PubMed Central

    Kietzmann, Leonie; Guhr, Sebastian S.O.; Meyer, Tobias N.; Ni, Lan; Sachs, Marlies; Panzer, Ulf; Stahl, Rolf A.K.; Saleem, Moin A.; Kerjaschki, Dontscho; Gebeshuber, Christoph A.

    2015-01-01

    Parietal epithelial cells have been identified as potential progenitor cells in glomerular regeneration, but the molecular mechanisms underlying this process are not fully defined. Here, we established an immortalized polyclonal human parietal epithelial cell (hPEC) line from naive human Bowman’s capsule cells isolated by mechanical microdissection. These hPECs expressed high levels of PEC-specific proteins and microRNA-193a (miR-193a), a suppressor of podocyte differentiation through downregulation of Wilms’ tumor 1 in mice. We then investigated the function of miR-193a in the establishment of podocyte and PEC identity and determined whether inhibition of miR-193a influences the behavior of PECs in glomerular disease. After stable knockdown of miR-193a, hPECs adopted a podocyte-like morphology and marker expression, with decreased expression levels of PEC markers. In mice, inhibition of miR-193a by complementary locked nucleic acids resulted in an upregulation of the podocyte proteins synaptopodin and Wilms’ tumor 1. Conversely, overexpression of miR-193a in vivo resulted in the upregulation of PEC markers and the loss of podocyte markers in isolated glomeruli. Inhibition of miR-193a in a mouse model of nephrotoxic nephritis resulted in reduced crescent formation and decreased proteinuria. Together, these results show the establishment of a human PEC line and suggest that miR-193a functions as a master switch, such that glomerular epithelial cells with high levels of miR-193a adopt a PEC phenotype and cells with low levels of miR-193a adopt a podocyte phenotype. miR-193a–mediated maintenance of PECs in an undifferentiated reactive state might be a prerequisite for PEC proliferation and migration in crescent formation. PMID:25270065

  16. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.

  17. Intracellular mechanisms involved in copper-gonadotropin-releasing hormone (Cu-GnRH) complex-induced cAMP/PKA signaling in female rat anterior pituitary cells in vitro.

    PubMed

    Gajewska, Alina; Zielinska-Gorska, Marlena; Wolinska-Witort, Ewa; Siawrys, Gabriela; Baran, Marta; Kotarba, Grzegorz; Biernacka, Katarzyna

    2016-01-01

    The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu

  18. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes

    PubMed Central

    Grahammer, Florian; Wigge, Christoph; Schell, Christoph; Kretz, Oliver; Patrakka, Jaakko; Schneider, Simon; Klose, Martin; Arnold, Sebastian J.; Habermann, Anja; Bräuniger, Ricarda; Rinschen, Markus M.; Völker, Linus; Bregenzer, Andreas; Rubbenstroth, Dennis; Boerries, Melanie; Kerjaschki, Dontscho; Miner, Jeffrey H.; Walz, Gerd; Benzing, Thomas; Fornoni, Alessia; Frangakis, Achilleas S.; Huber, Tobias B.

    2016-01-01

    Vertebrate life critically depends on renal filtration and excretion of low molecular weight waste products. This process is controlled by a specialized cell-cell contact between podocyte foot processes: the slit diaphragm (SD). Using a comprehensive set of targeted KO mice of key SD molecules, we provided genetic, functional, and high-resolution ultrastructural data highlighting a concept of a flexible, dynamic, and multilayered architecture of the SD. Our data indicate that the mammalian SD is composed of NEPHRIN and NEPH1 molecules, while NEPH2 and NEPH3 do not participate in podocyte intercellular junction formation. Unexpectedly, homo- and heteromeric NEPHRIN/NEPH1 complexes are rarely observed. Instead, single NEPH1 molecules appear to form the lower part of the junction close to the glomerular basement membrane with a width of 23 nm, while single NEPHRIN molecules form an adjacent junction more apically with a width of 45 nm. In both cases, the molecules are quasiperiodically spaced 7 nm apart. These structural findings, in combination with the flexibility inherent to the repetitive Ig folds of NEPHRIN and NEPH1, indicate that the SD likely represents a highly dynamic cell-cell contact that forms an adjustable, nonclogging barrier within the renal filtration apparatus. PMID:27430022

  19. Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells.

    PubMed

    Xinaris, Christodoulos; Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2016-05-01

    Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research.

  20. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  1. FK506 ameliorates podocyte injury in type 2 diabetic nephropathy by down-regulating TRPC6 and NFAT expression.

    PubMed

    Ma, Ruixia; Liu, Liqiu; Jiang, Wei; Yu, Yanjuan; Song, Haifeng

    2015-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal failure, and podocyte injury plays a major role in the development of DN. In this study, we investigated whether tacrolimus (FK506), an immunosuppressor, can attenuate podocyte injury in a type 2 diabetic mellitus (T2DM) rat model with DN. Transmission electron microcopy was used to morphologically evaluate renal injury. The urinary albumin (UAL), creatinine clearance rate (Ccr) and major biochemical parameters, including glucose, insulin, serum creatinine (Scr), urea nitrogen, total cholesterol (CHO) and triglyceride (TG), were examined 12 weeks after the administration of FK506. The expressions of the canonical transient receptor potential 6 (TRPC6), nuclear factor of activated T-cells (NFAT) and nephrin were detected by Western blotting and qPCR. In the rat model of DN, the expressions of TRPC6 and NFAT were significantly elevated compared with the normal rat group; however, the treatment with FK506 normalized the increased expression of TRPC6 and NFAT and attenuated podocyte ultrastructure injury. UAL, Ccr and the biochemical parameters were also improved by the use of FK506. In cell experiments, FK506 improved the decreased expression of nephrin and suppressed the elevated expression of both TRPC6 and NFAT caused by high glucose in accordance with TRPC6 blocker U73122. Our results demonstrated that FK506 could ameliorate podocyte injury in T2DM, which may be related to suppressed expressions of TRPC6 and NFAT.

  2. Perturbation of podocyte plasma membrane domains in experimental nephrosis. A lectin-binding and freeze-fracture study.

    PubMed Central

    Orci, L.; Kunz, A.; Amherdt, M.; Brown, D.

    1984-01-01

    Alterations in the ultrastructural organization of podocyte plasma membrane domains were quantitatively assessed in puromycin aminonucleoside-treated rats by the use of 1) Helix pomatia lectin-gold complexes for detection of a specific glycocalyx component(s) normally associated with foot process bases and 2) freeze-fracture for detection of intramembrane particles and endocytotic invaginations on the plasma membrane. Lectin-binding sites were significantly reduced on podocyte foot process bases during the 7-day treatment period; and in freeze-fracture, the plasma membrane of the foot process base showed an increase in intramembrane particle number and size and an increased number of endocytotic invaginations, compared with the numbers in control animals. The cell body of nephrotic animals also had a significantly increased intramembrane particle density, compared with the control animals. These results provide direct evidence that the normal structure of specific plasma membrane regions is perturbed in podocytes that have lost their characteristic array of foot processes and support a role for these domains in the maintenance of normal podocyte architecture. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 p293-a Figure 7 PMID:6496656

  3. IL-4 Induces Metallothionein 3- and SLC30A4-Dependent Increase in Intracellular Zn(2+) that Promotes Pathogen Persistence in Macrophages.

    PubMed

    Subramanian Vignesh, Kavitha; Landero Figueroa, Julio A; Porollo, Aleksey; Divanovic, Senad; Caruso, Joseph A; Deepe, George S

    2016-09-20

    Alternative activation of macrophages promotes wound healing but weakens antimicrobial defenses against intracellular pathogens. The mechanisms that suppress macrophage function to create a favorable environment for pathogen growth remain elusive. We show that interleukin (IL)-4 triggers a metallothionein 3 (MT3)- and Zn exporter SLC30A4-dependent increase in the labile Zn(2+) stores in macrophages and that intracellular pathogens can exploit this increase in Zn to survive. IL-4 regulates this pathway by shuttling extracellular Zn into macrophages and by activating cathepsins that act on MT3 to release bound Zn. We show that IL-4 can modulate Zn homeostasis in both human monocytes and mice. In vivo, MT3 can repress macrophage function in an M2-polarizing environment to promote pathogen persistence. Thus, MT3 and SLC30A4 dictate the size of the labile Zn(2+) pool and promote the survival of a prototypical intracellular pathogen in M2 macrophages. PMID:27653687

  4. Intracellular growth inhibition of Histoplasma capsulatum induced in murine macrophages by recombinant gamma interferon is not due to a limitation of the supply of methionine or cysteine to the fungus.

    PubMed Central

    Wu-Hsieh, B A; Howard, D H

    1992-01-01

    Recombinant murine gamma interferon (rMuIFN-gamma) stimulates mouse peritoneal macrophages to inhibit the intracellular growth of the zoopathogenic fungus Histoplasma capsulatum. In some systems, the inhibition of growth of an intracellular parasite by rIFN-gamma has been related to nutritional constraints induced in the host cells by the lymphokine. Such an explanation might apply to H. capsulatum because the fungus is a functional methionine-cysteine (Met-Cys) auxotroph at 37 degrees C; its sulfite reductase is repressed at that temperature. For this reason, we set about to examine whether or not the antihistoplasma state induced in rMuIFN-gamma is due to a restriction in the availability of Met-Cys. Omission of Met-Cys from the medium in which macrophages were cultivated prevented H. capsulatum from growing within them. Addition of Met or Cys to the macrophage cultures did not antagonize the inhibitory effect induced in the cells by rMuIFN-gamma. Thus, there was no evidence from our work that rMuIFN-gamma evokes the antihistoplasma effect in mouse peritoneal macrophages by limiting the supply of Met-Cys to the fungus. PMID:1730506

  5. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells.

    PubMed

    Mahdi, Shah H A; Cheng, Huanyi; Li, Jinfeng; Feng, Renqing

    2015-10-01

    The contribution of Ca(2+) in TGF-β-induced EMT is poorly understood. We aimed to confirm the effect of TGF-β on the gene expression of intracellular calcium-handling proteins and to investigate the potential underlying mechanisms in TGF-β-induced EMT. T47D and MCF-7 cells were cultured in vitro and treated with TGF-β. The mRNA expression of EMT marker genes and intracellular calcium-handling proteins were quantified by qRT-PCR. qRT-PCR and Western blot analysis results verified the changes of EMT marker gene expression. Furthermore, we found that TGF-β induced cell morphological changes significantly with an increase of cell surface area and cell length. These results indicated that TGF-β induced EMT. The mRNA expression levels of SPCA1, SPCA2 and MCU were not influenced by TGF-β treatment, while NCX1 expression was decreased in T47D cells. In addition, the mRNA levels of SERCAs and IP3Rs were significantly changed due to TGF-β-induced EMT. The TGF-β-treated T47D cells exhibited markedly greater response to ATP than the control cells, and the descent velocity of cytosolic calcium concentration was faster in TGF-β-treated cells than in control cells. This is the first report to demonstrate that TGF-β-induced EMT in human breast cancer cells is associated with alterations in endoplasmic reticulum calcium homeostasis.

  6. Ultraviolet B radiation-mediated inhibition of interferon-gamma-induced keratinocyte activation is independent of interleukin-10 and other soluble mediators but associated with enhanced intracellular suppressors of cytokine-signaling expression.

    PubMed

    Friedrich, Markus; Holzmann, Ruth; Sterry, Wolfram; Wolk, Kerstin; Truppel, Andreas; Piazena, Helmut; Schonbein, Christiane; Sabat, Robert; Asadullah, Khusru

    2003-10-01

    Ultraviolet irradiation represents a well-established treatment modality for inflammatory skin diseases. The aim of this study was to investigate the mechanisms of ultraviolet B radiation-induced keratinocyte insensitivity towards interferon-gamma. Flow cytometric analyses indicated that ultraviolet B radiation temporarily inhibits the interferon-gamma-induced activation of primary keratinocyte and HaCaT cells as measured by reduced intercellular adhesion molecule-1 (CD54) and HLA-DR upregulation. Western blot experiments have suggested that this is mediated by the ultraviolet B radiation-induced inhibition of signal transduction and transcription factor-1 phosphorylation. Neither interleukin-10 neutralization nor interleukin-10 addition had any effect on the ultraviolet B radiation-induced inhibition of interferon-gamma induced intercellular adhesion molecule-1 expression. Furthermore, the supernatant from ultraviolet B-irradiated cells failed to inhibit the interferon-gamma-induced CD54 and HLA-DR upregulation in nonradiated HaCaT cells. Moreover, irradiated cells from whom the supernatant was withdrawn 4 h after irradiation still showed a diminished interferon-gamma-induced response after 24 h. Thus, not soluble but intracellular factors might be involved in the ultraviolet B radiation-induced inhibition of interferon-gamma-induced keratinocyte activation. Therefore, we analyzed the expression of members of suppressors of cytokine-signaling (SOCS) molecules using real-time polymerase chain reaction. We found a fast and strong upregulation of SOCS1 and SOCS3 but not of SOCS2 after ultraviolet B radiation. Similarly, ultraviolet B radiation induced the expression of these particular SOCS molecules in lesional psoriatic skin. As SOCS molecules are known inhibitors of signal transduction and transcription factor phosphorylation, which is essential for interferon-gamma-induced intercellular adhesion molecule-1 and HLA-DR upregulation, this may explain the interferon

  7. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  8. Intracellular mechanism of the action of inhibin on the secretion of follicular stimulating hormone and of luteinizing hormone induced by LH-RH in vitro

    NASA Technical Reports Server (NTRS)

    Lecomte-Yerna, M. J.; Hazee-Hagelstein, M. T.; Charlet-Renard, C.; Franchimont, P.

    1982-01-01

    The FSH secretion-inhibiting action of inhibin in vitro under basal conditions and also in the presence of LH-RH is suppressed by the addition of MIX, a phosphodiesterase inhibitor. In the presence of LH-RH, inhibin reduces significantly the intracellular level of cAMP in isolated pituitary cells. In contrast, the simultaneous addition of MIX and inhibin raises the cAMP level, and this stimulation is comparable to the increase observed when MIX is added alone. These observations suggest that one mode of action of inhibin could be mediated by a reduction in cAMP within the pituitary gonadotropic cell.