Sample records for point design based

  1. A Space-Based Point Design for Global Coherent Doppler Wind Lidar Profiling Matched to the Recent NASA/NOAA Draft Science Requirements

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David; Frehlich, Rod G.; Amzajerdian, Farzin; Singh, Upendra N.

    2002-01-01

    An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.

  2. Building a Better Mousetrap: How Design-Based Research Was Used to Improve Homemade PowerPoint Games

    ERIC Educational Resources Information Center

    Siko, Jason P.; Barbour, Michael K.

    2016-01-01

    This paper is a review of a three-cycle, design-based research study that explored the relationship between the pedagogical research and the actual implementation of a game design project using Microsoft PowerPoint. Much of the initial literature on using homemade PowerPoint games showed no significant improvement in test scores when students…

  3. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    NASA Astrophysics Data System (ADS)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  4. Construction of nested maximin designs based on successive local enumeration and modified novel global harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Yi, Jin; Li, Xinyu; Xiao, Mi; Xu, Junnan; Zhang, Lin

    2017-01-01

    Engineering design often involves different types of simulation, which results in expensive computational costs. Variable fidelity approximation-based design optimization approaches can realize effective simulation and efficiency optimization of the design space using approximation models with different levels of fidelity and have been widely used in different fields. As the foundations of variable fidelity approximation models, the selection of sample points of variable-fidelity approximation, called nested designs, is essential. In this article a novel nested maximin Latin hypercube design is constructed based on successive local enumeration and a modified novel global harmony search algorithm. In the proposed nested designs, successive local enumeration is employed to select sample points for a low-fidelity model, whereas the modified novel global harmony search algorithm is employed to select sample points for a high-fidelity model. A comparative study with multiple criteria and an engineering application are employed to verify the efficiency of the proposed nested designs approach.

  5. Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Acree, Cecil W.

    2014-01-01

    Optimization of tilt-rotor systems requires the consideration of performance at multiple design points. In the current study, an adjoint-based optimization of a tilt-rotor blade is considered. The optimization seeks to simultaneously maximize the rotorcraft figure of merit in hover and the propulsive efficiency in airplane-mode for a tilt-rotor system. The design is subject to minimum thrust constraints imposed at each design point. The rotor flowfields at each design point are cast as steady-state problems in a noninertial reference frame. Geometric design variables used in the study to control blade shape include: thickness, camber, twist, and taper represented by as many as 123 separate design variables. Performance weighting of each operational mode is considered in the formulation of the composite objective function, and a build up of increasing geometric degrees of freedom is used to isolate the impact of selected design variables. In all cases considered, the resulting designs successfully increase both the hover figure of merit and the airplane-mode propulsive efficiency for a rotor designed with classical techniques.

  6. Low-cost point-focus solar concentrator, phase 1

    NASA Technical Reports Server (NTRS)

    Nelson, E. V.; Derbidge, T. C.; Erskine, D.; Maraschin, R. A.; Niemeyer, W. A.; Matsushita, M. J.; Overly, P. T.

    1979-01-01

    The results of the preliminary design study for the low cost point focus solar concentrator (LCPFSC) development program are presented. A summary description of the preliminary design is given. The design philosophy used to achieve a cost effective design for mass production is described. The concentrator meets all design requirements specified and is based on practical design solutions in every possible way.

  7. A habitat-based point-count protocol for terrestrial birds, emphasizing Washington and Oregon.

    Treesearch

    Mark H. Huff; Kelly A. Bettinger; Howard L. Ferguson; Martin J. Brown; Bob. Altman

    2000-01-01

    We describe a protocol and provide a summary for point-count monitoring of landbirds that is designed for habitat-based objectives. Presentation is in four steps: preparation and planning, selecting monitoring sites, establishing monitoring stations, and conducting point counts. We describe the basis for doing habitat-based point counts, how they are organized, and how...

  8. Error-Based Design Space Windowing

    NASA Technical Reports Server (NTRS)

    Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman

    2002-01-01

    Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.

  9. Limits in point to point resolution of MOS based pixels detector arrays

    NASA Astrophysics Data System (ADS)

    Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.

    2018-01-01

    In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.

  10. Automated designation of tie-points for image-to-image coregistration.

    Treesearch

    R.E. Kennedy; W.B. Cohen

    2003-01-01

    Image-to-image registration requires identification of common points in both images (image tie-points: ITPs). Here we describe software implementing an automated, area-based technique for identifying ITPs. The ITP software was designed to follow two strategies: ( I ) capitalize on human knowledge and pattern recognition strengths, and (2) favour robustness in many...

  11. A Quartz Crystal Microbalance dew point sensor without frequency measurement.

    PubMed

    Wang, Guohua; Zhang, Weishuo; Wang, Shuo; Sun, Jinglin

    2014-11-01

    This work deals with the design of a dew point sensor based on Quartz Crystal Microbalance (QCM) without measuring the frequency. This idea is inspired by the fact that the Colpitts oscillation circuit will stop oscillating when the QCM works in the liquid media. The quartz crystal and the electrode are designed through the finite element simulation and the stop oscillating experiment is conducted to verify the sensibility. Moreover, the measurement result is calibrated to approach the true value. At last a series of dew points at the same temperature is measured with the designed sensor. Results show that the designed dew point sensor is able to detect the dew point with the proper accuracy.

  12. A quartz crystal microbalance dew point sensor without frequency measurement

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Zhang, Weishuo; Wang, Shuo; Sun, Jinglin

    2014-11-01

    This work deals with the design of a dew point sensor based on Quartz Crystal Microbalance (QCM) without measuring the frequency. This idea is inspired by the fact that the Colpitts oscillation circuit will stop oscillating when the QCM works in the liquid media. The quartz crystal and the electrode are designed through the finite element simulation and the stop oscillating experiment is conducted to verify the sensibility. Moreover, the measurement result is calibrated to approach the true value. At last a series of dew points at the same temperature is measured with the designed sensor. Results show that the designed dew point sensor is able to detect the dew point with the proper accuracy.

  13. A novel surrogate-based approach for optimal design of electromagnetic-based circuits

    NASA Astrophysics Data System (ADS)

    Hassan, Abdel-Karim S. O.; Mohamed, Ahmed S. A.; Rabie, Azza A.; Etman, Ahmed S.

    2016-02-01

    A new geometric design centring approach for optimal design of central processing unit-intensive electromagnetic (EM)-based circuits is introduced. The approach uses norms related to the probability distribution of the circuit parameters to find distances from a point to the feasible region boundaries by solving nonlinear optimization problems. Based on these normed distances, the design centring problem is formulated as a max-min optimization problem. A convergent iterative boundary search technique is exploited to find the normed distances. To alleviate the computation cost associated with the EM-based circuits design cycle, space-mapping (SM) surrogates are used to create a sequence of iteratively updated feasible region approximations. In each SM feasible region approximation, the centring process using normed distances is implemented, leading to a better centre point. The process is repeated until a final design centre is attained. Practical examples are given to show the effectiveness of the new design centring method for EM-based circuits.

  14. Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation

    NASA Technical Reports Server (NTRS)

    Orfiz, Gerardo G.; Lee, Shinhak

    2006-01-01

    A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.

  15. Cryogenic Tank Structure Sizing With Structural Optimization Method

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Johnson, T. F.; Sleight, D. W.; Saether, E.

    2001-01-01

    Structural optimization methods in MSC /NASTRAN are used to size substructures and to reduce the weight of a composite sandwich cryogenic tank for future launch vehicles. Because the feasible design space of this problem is non-convex, many local minima are found. This non-convex problem is investigated in detail by conducting a series of analyses along a design line connecting two feasible designs. Strain constraint violations occur for some design points along the design line. Since MSC/NASTRAN uses gradient-based optimization procedures. it does not guarantee that the lowest weight design can be found. In this study, a simple procedure is introduced to create a new starting point based on design variable values from previous optimization analyses. Optimization analysis using this new starting point can produce a lower weight design. Detailed inputs for setting up the MSC/NASTRAN optimization analysis and final tank design results are presented in this paper. Approaches for obtaining further weight reductions are also discussed.

  16. Design Considerations for Miniaturized Control Moment Gyroscopes for Rapid Retargeting and Precision Pointing of Small Satellites

    NASA Technical Reports Server (NTRS)

    Patankar, Kunal; Fitz-Coy, Norman; Roithmayr, Carlos M.

    2014-01-01

    This paper presents the design as well as characterization of a practical control moment gyroscope (CMG) based attitude control system (ACS) for small satellites in the 15-20 kilogram mass range performing rapid retargeting and precision pointing maneuvers. The paper focuses on the approach taken in the design of miniaturized CMGs while considering the constraints imposed by the use of commercial off-the-shelf (COTS) components as well as the size of the satellite. It is shown that a hybrid mode is more suitable for COTS based moment exchange actuators; a mode that uses the torque amplification of CMGs for rapid retargeting and direct torque capabilities of the flywheel motors for precision pointing. A simulation is provided to demonstrate on-orbit slew and pointing performance.

  17. An optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.

    1993-01-01

    An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).

  18. A new design approach to innovative spectrometers. Case study: TROPOLITE

    NASA Astrophysics Data System (ADS)

    Volatier, Jean-Baptiste; Baümer, Stefan; Kruizinga, Bob; Vink, Rob

    2014-05-01

    Designing a novel optical system is a nested iterative process. The optimization loop, from a starting point to final system is already mostly automated. However this loop is part of a wider loop which is not. This wider loop starts with an optical specification and ends with a manufacturability assessment. When designing a new spectrometer with emphasis on weight and cost, numerous iterations between the optical- and mechanical designer are inevitable. The optical designer must then be able to reliably produce optical designs based on new input gained from multidisciplinary studies. This paper presents a procedure that can automatically generate new starting points based on any kind of input or new constraint that might arise. These starting points can then be handed over to a generic optimization routine to make the design tasks extremely efficient. The optical designer job is then not to design optical systems, but to meta-design a procedure that produces optical systems paving the way for system level optimization. We present here this procedure and its application to the design of TROPOLITE a lightweight push broom imaging spectrometer.

  19. Market Based Transit Facility Design

    DOT National Transportation Integrated Search

    1989-02-01

    The purpose of this report is to provide guidelines for the planning and design of transit stations, stops, and terminals. These guidelines have been prepared form a market-based point of view. Design elements are suggested that directly relate promo...

  20. Anatomy of an experimental two-link flexible manipulator under end-point control

    NASA Technical Reports Server (NTRS)

    Oakley, Celia M.; Cannon, Robert H., Jr.

    1990-01-01

    The design and experimental implementation of an end-point controller for two-link flexible manipulators are presented. The end-point controller is based on linear quadratic Gaussian (LQG) theory and is shown to exhibit significant improvements in trajectory tracking over a conventional controller design. To understand the behavior of the manipulator structure under end-point control, a strobe sequence illustrating the link deflections during a typical slew maneuver is included.

  1. Teaching Skills to Use a Computer Mouse in Preschoolers with Developmental Disabilities: Shaping Moving a Mouse and Eye-Hand Coordination

    ERIC Educational Resources Information Center

    Shimizu, Hirofumi; Yoon, Soyoung; McDonough, Christopher S.

    2010-01-01

    We taught seven preschoolers with developmental disabilities to point-and-click with a computer mouse. The computer-based training program consisted of three parts, based on a task analysis of the behavioral prerequisites to point-and-click. Training 1 was designed to shape moving the mouse. Training 2 was designed to build eye-hand coordination…

  2. Two-way digital communications

    NASA Astrophysics Data System (ADS)

    Glenn, William E.; Daly, Ed

    1996-03-01

    The communications industry has been rapidly converting from analog to digital communications for audio, video, and data. The initial applications have been concentrating on point-to-multipoint transmission. Currently, a new revolution is occurring in which two-way point-to-point transmission is a rapidly growing market. The system designs for video compression developed for point-to-multipoint transmission are unsuitable for this new market as well as for satellite based video encoding. A new system developed by the Space Communications Technology Center has been designed to address both of these newer applications. An update on the system performance and design will be given.

  3. Recent advances in laser triangulation-based measurement of airfoil surfaces

    NASA Astrophysics Data System (ADS)

    Hageniers, Omer L.

    1995-01-01

    The measurement of aircraft jet engine turbine and compressor blades requires a high degree of accuracy. This paper will address the development and performance attributes of a noncontact electro-optical gaging system specifically designed to meet the airfoil dimensional measurement requirements inherent in turbine and compressor blade manufacture and repair. The system described consists of the following key components: a high accuracy, dual channel, laser based optical sensor, a four degree of freedom mechanical manipulator system and a computer based operator interface. Measurement modes of the system include point by point data gathering at rates up to 3 points per second and an 'on-the-fly' mode where points can be gathered at data rates up to 20 points per second at surface scanning speeds of up to 1 inch per second. Overall system accuracy is +/- 0.0005 inches in a configuration that is useable in the blade manufacturing area. The systems ability to input design data from CAD data bases and output measurement data in a CAD compatible data format is discussed.

  4. 7 CFR 4280.42 - Application evaluation and selection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engineering design)—up to 15 points; and (ii) An appropriate financial plan, including actual balance sheets... be ranked on a nationwide basis, based on the total points scored. (b) The application will be...) Nature of the Project. Rural Development will award up to 60 points based on whether the Project: (i) Is...

  5. Better Assessment Science Integrating Point and Non-point Sources (BASINS)

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  6. Design of an off-axis visual display based on a free-form projection screen to realize stereo vision

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanming; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2017-10-01

    A free-form projection screen is designed for an off-axis visual display, which shows great potential in applications such as flight training for providing both accommodation and convergence cues for pilots. The method based on point cloud is proposed for the design of the free-form surface, and the design of the point cloud is controlled by a program written in the macro-language. In the visual display based on the free-form projection screen, when the error of the screen along Z-axis is 1 mm, the error of visual distance at each filed is less than 1%. And the resolution of the design for full field is better than 1‧, which meet the requirement of resolution for human eyes.

  7. Revised Point of Departure Design Options for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Schnitzler, Bruce G.; Borowoski, Stanley

    2015-01-01

    Four Revised Point of Departure NTR Engines were Designed and Analyzed using MCNP and NESS. All Four Engines Have Thermodynamically Closed Cycles at Nominal Chamber Pressures. 111 kilonewton (25 kip-force) Cermet Design Required Dedicated Heater Elements to Close the Cycle. Cermet Based Designs had Slightly Higher TW Ratios, but Required Substantially More U-235. NERVA Derived Criticality Limited Engine Could Operate at Lower Power and Thrust Levels Compared to the Criticality Limited Cermet Design.

  8. Design and FPGA Implementation of a Universal Chaotic Signal Generator Based on the Verilog HDL Fixed-Point Algorithm and State Machine Control

    NASA Astrophysics Data System (ADS)

    Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng

    In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.

  9. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  10. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Juan; Department of Microbiology and Immunology, Nanjing Medical University; Wang, Shixia

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71more » (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.« less

  11. Reliability Assessment of a Robust Design Under Uncertainty for a 3-D Flexible Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J. -W.; Newman, Perry A.

    2003-01-01

    The paper presents reliability assessment results for the robust designs under uncertainty of a 3-D flexible wing previously reported by the authors. Reliability assessments (additional optimization problems) of the active constraints at the various probabilistic robust design points are obtained and compared with the constraint values or target constraint probabilities specified in the robust design. In addition, reliability-based sensitivity derivatives with respect to design variable mean values are also obtained and shown to agree with finite difference values. These derivatives allow one to perform reliability based design without having to obtain second-order sensitivity derivatives. However, an inner-loop optimization problem must be solved for each active constraint to find the most probable point on that constraint failure surface.

  12. Analysis and design of wedge projection display system based on ray retracing method.

    PubMed

    Lee, Chang-Kun; Lee, Taewon; Sung, Hyunsik; Min, Sung-Wook

    2013-06-10

    A design method for the wedge projection display system based on the ray retracing method is proposed. To analyze the principle of image formation on the inclined surface of the wedge-shaped waveguide, the bundle of rays is retraced from an imaging point on the inclined surface to the aperture of the waveguide. In consequence of ray retracing, we obtain the incident conditions of the ray, such as the position and the angle at the aperture, which provide clues for image formation. To illuminate the image formation, the concept of the equivalent imaging point is proposed, which is the intersection where the incident rays are extended over the space regardless of the refraction and reflection in the waveguide. Since the initial value of the rays arriving at the equivalent imaging point corresponds to that of the rays converging into the imaging point on the inclined surface, the image formation can be visualized by calculating the equivalent imaging point over the entire inclined surface. Then, we can find image characteristics, such as their size and position, and their degree of blur--by analyzing the distribution of the equivalent imaging point--and design the optimized wedge projection system by attaching the prism structure at the aperture. The simulation results show the feasibility of the ray retracing analysis and characterize the numerical relation between the waveguide parameters and the aperture structure for on-axis configuration. The experimental results verify the designed system based on the proposed method.

  13. The effect of Fisher information matrix approximation methods in population optimal design calculations.

    PubMed

    Strömberg, Eric A; Nyberg, Joakim; Hooker, Andrew C

    2016-12-01

    With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.

  14. Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area.

    PubMed

    Takemoto, Mitsuru; Fujibayashi, Shunsuke; Ota, Eigo; Otsuki, Bungo; Kimura, Hiroaki; Sakamoto, Takeshi; Kawai, Toshiyuki; Futami, Tohru; Sasaki, Kiyoyuki; Matsushita, Tomiharu; Nakamura, Takashi; Neo, Masashi; Matsuda, Shuich

    2016-06-01

    Image-based navigational patient-specific templates (PSTs) for pedicle screw (PS) placement have been described. With recent advances in three-dimensional computer-aided designs and additive manufacturing technology, various PST designs have been reported, although the template designs were not optimized. We have developed a novel PST design that reduces the contact area without sacrificing stability. It avoids susceptibility to intervening soft tissue, template geometric inaccuracy, and difficulty during template fitting. Fourteen candidate locations on the posterior aspect of the vertebra were evaluated. Among them, locations that had high reproducibility on computed tomography (CT) images and facilitated accurate PS placement were selected for the final PST design. An additive manufacturing machine (EOSINT M270) fabricated the PSTs using commercially pure titanium powder. For the clinical study, 36 scoliosis patients and 4 patients with ossification of the posterior longitudinal ligament (OPLL) were treated with thoracic PSs using our newly developed PSTs. We intraoperatively and postoperatively evaluated the accuracy of the PS hole created by the PST. Based on the segmentation reproducibility and stability analyses, we selected seven small, round contact points for our PST: bilateral superior and inferior points on the transverse process base, bilateral inferior points on the laminar, and a superior point on the spinous process. Clinically, the success rates of PS placement using this PST design were 98.6 % (414/420) for scoliosis patients and 100 % (46/46) for OPLL patients. This study provides a useful design concept for the development and introduction of patient-specific navigational templates for placing PSs.

  15. A Most Probable Point-Based Method for Reliability Analysis, Sensitivity Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Hou, Gene J.-W; Newman, Perry A. (Technical Monitor)

    2004-01-01

    A major step in a most probable point (MPP)-based method for reliability analysis is to determine the MPP. This is usually accomplished by using an optimization search algorithm. The minimum distance associated with the MPP provides a measurement of safety probability, which can be obtained by approximate probability integration methods such as FORM or SORM. The reliability sensitivity equations are derived first in this paper, based on the derivatives of the optimal solution. Examples are provided later to demonstrate the use of these derivatives for better reliability analysis and reliability-based design optimization (RBDO).

  16. A Darwinian approach to control-structure design

    NASA Technical Reports Server (NTRS)

    Zimmerman, David C.

    1993-01-01

    Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.

  17. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    NASA Astrophysics Data System (ADS)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  18. All-fiber Mach-Zehnder interferometer for tunable two quasi-continuous points' temperature sensing in seawater.

    PubMed

    Liu, Tianqi; Wang, Jing; Liao, Yipeng; Wang, Xin; Wang, Shanshan

    2018-04-30

    An all-fiber Mach-Zehnder interferometer (MZI) for two quasi-continuous points' temperature sensing in seawater is proposed. Based on the beam propagation theory, transmission spectrum is designed to present two sets of clear and independent interferences. Following this design, MZI is fabricated and two points' temperature sensing in seawater are demonstrated with sensitivities of 42.69pm/°C and 39.17pm/°C, respectively. By further optimization, sensitivity of 80.91pm/°C can be obtained, which is 3-10 times higher than fiber Bragg gratings and microfiber resonator, and higher than almost all similar MZI based temperature sensors. In addition, factors affecting sensitivities are also discussed and verified in experiment. The two points' temperature sensing demonstrated here show advantages of simple and compact construction, robust structure, easy fabrication, high sensitivity, immunity to salinity and tunable distance of 1-20 centimeters between two points, which may provide references for macroscopic oceanic research and other sensing applications based on MZIs.

  19. Adapting Cognitive Walkthrough to Support Game Based Learning Design

    ERIC Educational Resources Information Center

    Farrell, David; Moffat, David C.

    2014-01-01

    For any given Game Based Learning (GBL) project to be successful, the player must learn something. Designers may base their work on pedagogical research, but actual game design is still largely driven by intuition. People are famously poor at unsupported methodical thinking and relying so much on instinct is an obvious weak point in GBL design…

  20. Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design.

    PubMed

    Kamairudin, Norsuhaili; Gani, Siti Salwa Abd; Masoumi, Hamid Reza Fard; Hashim, Puziah

    2014-10-16

    The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data.

  1. [Valuating public health in some zoos in Colombia. Phase 1: designing and validating instruments].

    PubMed

    Agudelo-Suárez, Angela N; Villamil-Jiménez, Luis C

    2009-10-01

    Designing and validating instruments for identifying public health problems in some zoological parks in Colombia, thereby allowing them to be evaluated. Four instruments were designed and validated along with the participation of five zoos. The instruments were validated regarding appearance, content, sensitivity to change, reliability tests and determining the tools' usefulness. An evaluation scale was created which assigned a maximum of 400 points, having the following evaluation intervals: 350-400 points meant good public health management, 100-349 points for regular management and 0-99 points for deficient management. The instruments were applied to the five zoos as part of the validation, forming a base-line for future evaluation of public health in them. Four valid and useful instruments were obtained for evaluating public health in zoos in Colombia. The five zoos presented regular public health management. The base-line obtained when validating the instruments led to identifying strengths and weaknesses regarding public health management in the zoos. The instruments obtained generally and specifically evaluated public health management; they led to diagnosing, identifying, quantifying and scoring zoos in Colombia in terms of public health. The base-line provided a starting point for making comparisons and enabling future follow-up of public health in Colombian zoos.

  2. Teaching Experience: How to Make and Use PowerPoint-Based Interactive Simulations for Undergraduate IR Teaching

    ERIC Educational Resources Information Center

    Meibauer, Gustav; Aagaard Nøhr, Andreas

    2018-01-01

    This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…

  3. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    NASA Astrophysics Data System (ADS)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  4. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    NASA Technical Reports Server (NTRS)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  5. Using a Game Environment to Foster Collaborative Learning: A Design-Based Study

    ERIC Educational Resources Information Center

    Hamalainen, Raija

    2011-01-01

    Designing collaborative three-dimensional learning games for vocational learning may be one way to respond to the needs of working life. The theoretical vantage points of collaborative learning for game development and the "design-based research" methodology are described; these have been used to support collaborative learning in the…

  6. Lessons learned from the design of chemical space networks and opportunities for new applications.

    PubMed

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer-Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  7. Lessons learned from the design of chemical space networks and opportunities for new applications

    NASA Astrophysics Data System (ADS)

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer- Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  8. Space tug economic analysis study. Volume 2: Tug concepts analysis. Appendix: Tug design and performance data base

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The tug design and performance data base for the economic analysis of space tug operation are presented. A compendium of the detailed design and performance information from the data base is developed. The design data are parametric across a range of reusable space tug sizes. The performance curves are generated for selected point designs of expendable orbit injection stages and reusable tugs. Data are presented in the form of graphs for various modes of operation.

  9. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  10. Experimental high-speed network

    NASA Astrophysics Data System (ADS)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  11. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  12. A survey of ground operations tools developed to simulate the pointing of space telescopes and the design for WISE

    NASA Technical Reports Server (NTRS)

    Fabinsky, Beth

    2006-01-01

    WISE, the Wide Field Infrared Survey Explorer, is scheduled for launch in June 2010. The mission operations system for WISE requires a software modeling tool to help plan, integrate and simulate all spacecraft pointing and verify that no attitude constraints are violated. In the course of developing the requirements for this tool, an investigation was conducted into the design of similar tools for other space-based telescopes. This paper summarizes the ground software and processes used to plan and validate pointing for a selection of space telescopes; with this information as background, the design for WISE is presented.

  13. An adhered-particle analysis system based on concave points

    NASA Astrophysics Data System (ADS)

    Wang, Wencheng; Guan, Fengnian; Feng, Lin

    2018-04-01

    Particles adhered together will influence the image analysis in computer vision system. In this paper, a method based on concave point is designed. First, corner detection algorithm is adopted to obtain a rough estimation of potential concave points after image segmentation. Then, it computes the area ratio of the candidates to accurately localize the final separation points. Finally, it uses the separation points of each particle and the neighboring pixels to estimate the original particles before adhesion and provides estimated profile images. The experimental results have shown that this approach can provide good results that match the human visual cognitive mechanism.

  14. Dualism-Based Design of the Introductory Chinese MOOC "Kit de contact en langue chinoise"

    ERIC Educational Resources Information Center

    Wang-Szilas, Jue; Bellassen, Joël

    2017-01-01

    This article reviews the existing Chinese language Massive Open Online Courses (MOOCs) and points out three problems in their design: the monism-based teaching method, the non-integration of cultural elements, and the lack of learner-learner interactions. It then presents the design principles of the Introductory Chinese MOOC in an attempt to…

  15. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang

    2016-09-01

    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  16. 78 FR 53109 - Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...-AA87 Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay... Anti-Submarine Warfare Command to protect the relocated marine mammal program. These security zone... Warfare Command, the Commander of Naval Region Southwest, or a designated representative of those...

  17. Network Design in Close-Range Photogrammetry with Short Baseline Images

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.

    2017-08-01

    The avaibility of automated software for image-based 3D modelling has changed the way people acquire images for photogrammetric applications. Short baseline images are required to match image points with SIFT-like algorithms, obtaining more images than those necessary for "old fashioned" photogrammetric projects based on manual measurements. This paper describes some considerations on network design for short baseline image sequences, especially on precision and reliability of bundle adjustment. Simulated results reveal that the large number of 3D points used for image orientation has very limited impact on network precision.

  18. Changing the Way We Build Games: A Design-Based Research Study Examining the Implementation of Homemade PowerPoint Games in the Classroom

    ERIC Educational Resources Information Center

    Siko, Jason Paul

    2012-01-01

    This design-based research study examined the effects of a game design project on student test performance, with refinements made to the implementation after each of the three iterations of the study. The changes to the implementation over the three iterations were based on the literature for the three justifications for the use of homemade…

  19. A quantitative analysis of statistical power identifies obesity end points for improved in vivo preclinical study design.

    PubMed

    Selimkhanov, J; Thompson, W C; Guo, J; Hall, K D; Musante, C J

    2017-08-01

    The design of well-powered in vivo preclinical studies is a key element in building the knowledge of disease physiology for the purpose of identifying and effectively testing potential antiobesity drug targets. However, as a result of the complexity of the obese phenotype, there is limited understanding of the variability within and between study animals of macroscopic end points such as food intake and body composition. This, combined with limitations inherent in the measurement of certain end points, presents challenges to study design that can have significant consequences for an antiobesity program. Here, we analyze a large, longitudinal study of mouse food intake and body composition during diet perturbation to quantify the variability and interaction of the key metabolic end points. To demonstrate how conclusions can change as a function of study size, we show that a simulated preclinical study properly powered for one end point may lead to false conclusions based on secondary end points. We then propose the guidelines for end point selection and study size estimation under different conditions to facilitate proper power calculation for a more successful in vivo study design.

  20. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    PubMed

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  1. Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian

    2011-01-01

    Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.

  2. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.

  3. Rotational-path decomposition based recursive planning for spacecraft attitude reorientation

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying

    2018-02-01

    The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.

  4. Lightning Simulation and Design Program (LSDP)

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    This computer program simulates a user-defined lighting configuration. It has been developed as a tool to aid in the design of exterior lighting systems. Although this program is used primarily for perimeter security lighting design, it has potential use for any application where the light can be approximated by a point source. A data base of luminaire photometric information is maintained for use with this program. The user defines the surface area to be illuminated with a rectangular grid and specifies luminaire positions. Illumination values are calculated for regularly spaced points in that area and isolux contour plots are generated. The numerical and graphical output for a particular site mode are then available for analysis. The amount of time spent on point-to-point illumination computation with this progress is much less than that required for tedious hand calculations. The ease with which various parameters can be interactively modified with the progress also reduces the time and labor expended. Consequently, the feasibility of design ideas can be examined, modified, and retested more thoroughly, and overall design costs can be substantially lessened by using this progress as an adjunct to the design process.

  5. Student Mobility, Dosage, and Principal Stratification in School-Based RCTs

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2013-01-01

    In school-based randomized control trials (RCTs), a common design is to follow student cohorts over time. For such designs, education researchers usually focus on the place-based (PB) impact parameter, which is estimated using data collected on all students enrolled in the study schools at each data collection point. A potential problem with this…

  6. Pointing and figure control system for a space-based far-IR segmented telescope

    NASA Technical Reports Server (NTRS)

    Lau, Kenneth

    1993-01-01

    A pointing and figure control system for two space-based far-IR telescopes, the 10-20 m Large Deployable Reflector and the 3.6 m Submillimeter Intermediate Mission, is described. The figure maintenance control system is designed to counter the optical elements translational and rotational changes induced by long-term thermal drifts that the support structure may experience. The pointing system applies optical truss to telescope pointing; a laser metrology system is used to transfer pointing informaton from an external fine guidance sensor to the telescope optical boresight, defined by the primary mirror, secondary mirror, and focal plane assembly.

  7. SPS antenna pointing control

    NASA Technical Reports Server (NTRS)

    Hung, J. C.

    1980-01-01

    The pointing control of a microwave antenna of the Satellite Power System was investigated emphasizing: (1) the SPS antenna pointing error sensing method; (2) a rigid body pointing control design; and (3) approaches for modeling the flexible body characteristics of the solar collector. Accuracy requirements for the antenna pointing control consist of a mechanical pointing control accuracy of three arc-minutes and an electronic phased array pointing accuracy of three arc-seconds. Results based on the factors considered in current analysis, show that the three arc-minute overall pointing control accuracy can be achieved in practice.

  8. A Review of Online Evidence-based Practice Point-of-Care Information Summary Providers

    PubMed Central

    Liberati, Alessandro; Moschetti, Ivan; Tagliabue, Ludovica; Moja, Lorenzo

    2010-01-01

    Background Busy clinicians need easy access to evidence-based information to inform their clinical practice. Publishers and organizations have designed specific tools to meet doctors’ needs at the point of care. Objective The aim of this study was to describe online point-of-care summaries and evaluate their breadth, content development, and editorial policy against their claims of being “evidence-based.” Methods We searched Medline, Google, librarian association websites, and information conference proceedings from January to December 2008. We included English Web-based point-of-care summaries designed to deliver predigested, rapidly accessible, comprehensive, periodically updated, evidence-based information to clinicians. Two investigators independently extracted data on the general characteristics and content presentation of summaries. We assessed and ranked point-of-care products according to: (1) coverage (volume) of medical conditions, (2) editorial quality, and (3) evidence-based methodology. We explored how these factors were associated. Results We retrieved 30 eligible summaries. Of these products, 18 met our inclusion criteria and were qualitatively described, and 16 provided sufficient data for quantitative evaluation. The median volume of medical conditions covered was 80.6% (interquartile range, 68.9% - 84.2%) and varied for the different products. Similarly, differences emerged for editorial policy (median 8.0, interquartile range 5.8 - 10.3) and evidence-based methodology scores (median 10.0, interquartile range 1.0 - 12.8) on a 15-point scale. None of these dimensions turned out to be significantly associated with the other dimensions (editorial quality and volume, Spearman rank correlation r = -0.001, P = .99; evidence-based methodology and volume, r = -0.19, P = .48; editorial and evidence-based methodology, r = 0.43, P =.09). Conclusions Publishers are moving to develop point-of-care summary products. Some of these have better profiles than others, and there is room for improved reporting of the strengths and weaknesses of these products. PMID:20610379

  9. [The added value of information summaries supporting clinical decisions at the point-of-care.

    PubMed

    Banzi, Rita; González-Lorenzo, Marien; Kwag, Koren Hyogene; Bonovas, Stefanos; Moja, Lorenzo

    2016-11-01

    Evidence-based healthcare requires the integration of the best research evidence with clinical expertise and patients' values. International publishers are developing evidence-based information services and resources designed to overcome the difficulties in retrieving, assessing and updating medical information as well as to facilitate a rapid access to valid clinical knowledge. Point-of-care information summaries are defined as web-based medical compendia that are specifically designed to deliver pre-digested, rapidly accessible, comprehensive, and periodically updated information to health care providers. Their validity must be assessed against marketing claims that they are evidence-based. We periodically evaluate the content development processes of several international point-of-care information summaries. The number of these products has increased along with their quality. The last analysis done in 2014 identified 26 products and found that three of them (Best Practice, Dynamed e Uptodate) scored the highest across all evaluated dimensions (volume, quality of the editorial process and evidence-based methodology). Point-of-care information summaries as stand-alone products or integrated with other systems, are gaining ground to support clinical decisions. The choice of one product over another depends both on the properties of the service and the preference of users. However, even the most innovative information system must rely on transparent and valid contents. Individuals and institutions should regularly assess the value of point-of-care summaries as their quality changes rapidly over time.

  10. Classification of Mls Point Clouds in Urban Scenes Using Detrended Geometric Features from Supervoxel-Based Local Contexts

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U.

    2018-05-01

    In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3) Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for assigning eight semantic classes.

  11. Novel laser communications transceiver with internal gimbal-less pointing and tracking

    NASA Astrophysics Data System (ADS)

    Chalfant, Charles H., III; Orlando, Fred J., Jr.; Gregory, Jeff T.; Sulham, Clifford; O'Neal, Chad B.; Taylor, Geoffrey W.; Craig, Douglas M.; Foshee, James J.; Lovett, J. Timothy

    2002-12-01

    This paper describes a novel laser communications transceiver for use in multi-platform satellite networks or clusters that provides internal pointing and tracking technique allowing static mounting of the transceiver subsystems and minimal use of mechanical stabilization techniques. This eliminates the need for the large, power hungry, mechanical gimbals that are required for laser cross-link pointing, acquisition and tracking. The miniature transceiver is designed for pointing accuracies required for satellite cross-link distances of between 500 meters to 5000 meters. Specifically, the designs are targeting Air Force Research Lab's TechSat21 Program, although alternative transceiver configurations can provide for much greater link distances and other satellite systems. The receiver and transmitter are connected via fiber optic cabling from a separate electronics subsystem containing the optoelectronics PCBs, thereby eliminating active optoelectronic elements from the transceiver's mechanical housing. The internal acquisition and tracking capability is provided by an advanced micro-electro-mechanical system (MEMS) and an optical design that provides a specific field-of-view based on the satellite cluster's interface specifications. The acquisition & tracking control electronics will utilize conventional closed loop tracking techniques. The link optical power budget and optoelectronics designs allow use of transmitter sources with output powers of near 100 mW. The transceiver will provide data rates of up to 2.5 Gbps and operate at either 1310 nm or 1550 nm. In addition to space-based satellite to satellite cross-links, we are planning to develop a broad range of applications including air to air communications between highly mobile airborne platforms and terrestrial fixed point to point communications.

  12. An automation of design and modelling tasks in NX Siemens environment with original software - generator module

    NASA Astrophysics Data System (ADS)

    Zbiciak, M.; Grabowik, C.; Janik, W.

    2015-11-01

    Nowadays the design constructional process is almost exclusively aided with CAD/CAE/CAM systems. It is evaluated that nearly 80% of design activities have a routine nature. These design routine tasks are highly susceptible to automation. Design automation is usually made with API tools which allow building original software responsible for adding different engineering activities. In this paper the original software worked out in order to automate engineering tasks at the stage of a product geometrical shape design is presented. The elaborated software works exclusively in NX Siemens CAD/CAM/CAE environment and was prepared in Microsoft Visual Studio with application of the .NET technology and NX SNAP library. The software functionality allows designing and modelling of spur and helicoidal involute gears. Moreover, it is possible to estimate relative manufacturing costs. With the Generator module it is possible to design and model both standard and non-standard gear wheels. The main advantage of the model generated in such a way is its better representation of an involute curve in comparison to those which are drawn in specialized standard CAD systems tools. It comes from fact that usually in CAD systems an involute curve is drawn by 3 points that respond to points located on the addendum circle, the reference diameter of a gear and the base circle respectively. In the Generator module the involute curve is drawn by 11 involute points which are located on and upper the base and the addendum circles therefore 3D gear wheels models are highly accurate. Application of the Generator module makes the modelling process very rapid so that the gear wheel modelling time is reduced to several seconds. During the conducted research the analysis of differences between standard 3 points and 11 points involutes was made. The results and conclusions drawn upon analysis are shown in details.

  13. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.

  14. Investigating the Effects of Multimodal Feedback through Tracking State in Pen-Based Interfaces

    ERIC Educational Resources Information Center

    Sun, Minghui; Ren, Xiangshi

    2011-01-01

    A tracking state increases the bandwidth of pen-based interfaces. However, this state is difficult to detect with default visual feedback. This paper reports on two experiments that are designed to evaluate multimodal feedback for pointing tasks (both 1D and 2D) in tracking state. In 1D pointing experiments, results show that there is a…

  15. Discrete Structure-Point Testing: Problems and Alternatives. TESL Reporter, Vol. 9, No. 4.

    ERIC Educational Resources Information Center

    Aitken, Kenneth G.

    This paper presents some reasons for reconsidering the use of discrete structure-point tests of language proficiency, and suggests an alternative basis for designing proficiency tests. Discrete point tests are one of the primary tools of the audio-lingual method of teaching a foreign language and are based on certain assumptions, including the…

  16. Approximation methods for combined thermal/structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Shore, C. P.

    1979-01-01

    Two approximation concepts for combined thermal/structural design are evaluated. The first concept is an approximate thermal analysis based on the first derivatives of structural temperatures with respect to design variables. Two commonly used first-order Taylor series expansions are examined. The direct and reciprocal expansions are special members of a general family of approximations, and for some conditions other members of that family of approximations are more accurate. Several examples are used to compare the accuracy of the different expansions. The second approximation concept is the use of critical time points for combined thermal and stress analyses of structures with transient loading conditions. Significant time savings are realized by identifying critical time points and performing the stress analysis for those points only. The design of an insulated panel which is exposed to transient heating conditions is discussed.

  17. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  18. Control of Future Air Traffic Systems via Complexity Bound Management

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  19. Evidence of Cognitive Dysfunction after Soccer Playing with Ball Heading Using a Novel Tablet-Based Approach

    PubMed Central

    Lin, Angela H.; Patel, Saumil S.; Sereno, Anne B.

    2013-01-01

    Does frequent head-to-ball contact cause cognitive dysfunctions and brain injury to soccer players? An iPad-based experiment was designed to examine the impact of ball-heading among high school female soccer players. We examined both direct, stimulus-driven, or reflexive point responses (Pro-Point) as well as indirect, goal-driven, or voluntary point responses (Anti-Point), thought to require cognitive functions in the frontal lobe. The results show that soccer players were significantly slower than controls in the Anti-Point task but displayed no difference in Pro-Point latencies, indicating a disruption specific to voluntary responses. These findings suggest that even subconcussive blows in soccer can result in cognitive function changes that are consistent with mild traumatic brain injury of the frontal lobes. There is great clinical and practical potential of a tablet-based application for quick detection and monitoring of cognitive dysfunction. PMID:23460843

  20. Design and control of active vision based mechanisms for intelligent robots

    NASA Technical Reports Server (NTRS)

    Wu, Liwei; Marefat, Michael M.

    1994-01-01

    In this paper, we propose a design of an active vision system for intelligent robot application purposes. The system has the degrees of freedom of pan, tilt, vergence, camera height adjustment, and baseline adjustment with a hierarchical control system structure. Based on this vision system, we discuss two problems involved in the binocular gaze stabilization process: fixation point selection and vergence disparity extraction. A hierarchical approach to determining point of fixation from potential gaze targets using evaluation function representing human visual behavior to outside stimuli is suggested. We also characterize different visual tasks in two cameras for vergence control purposes, and a phase-based method based on binarized images to extract vergence disparity for vergence control is presented. A control algorithm for vergence control is discussed.

  1. Identification of design features to enhance utilization and acceptance of systems for Internet-based decision support at the point of care.

    PubMed

    Gadd, C S; Baskaran, P; Lobach, D F

    1998-01-01

    Extensive utilization of point-of-care decision support systems will be largely dependent on the development of user interaction capabilities that make them effective clinical tools in patient care settings. This research identified critical design features of point-of-care decision support systems that are preferred by physicians, through a multi-method formative evaluation of an evolving prototype of an Internet-based clinical decision support system. Clinicians used four versions of the system--each highlighting a different functionality. Surveys and qualitative evaluation methodologies assessed clinicians' perceptions regarding system usability and usefulness. Our analyses identified features that improve perceived usability, such as telegraphic representations of guideline-related information, facile navigation, and a forgiving, flexible interface. Users also preferred features that enhance usefulness and motivate use, such as an encounter documentation tool and the availability of physician instruction and patient education materials. In addition to identifying design features that are relevant to efforts to develop clinical systems for point-of-care decision support, this study demonstrates the value of combining quantitative and qualitative methods of formative evaluation with an iterative system development strategy to implement new information technology in complex clinical settings.

  2. A systems engineering analysis of three-point and four-point wind turbine drivetrain configurations

    DOE PAGES

    Guo, Yi; Parsons, Tyler; Dykes, Katherine; ...

    2016-08-24

    This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land-based and offshore applications. The analysis is performed with a new physics-based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind-Plant Integrated System Design & Engineering Model. DriveSE uses physics-based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree ofmore » variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three-point and four-point configurations. The simulation results quantify the trade-offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three-point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. Furthermore, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade-offs between subsystems such as the rotor, drivetrain and tower.« less

  3. A systems engineering analysis of three-point and four-point wind turbine drivetrain configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Parsons, Tyler; Dykes, Katherine

    This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land-based and offshore applications. The analysis is performed with a new physics-based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind-Plant Integrated System Design & Engineering Model. DriveSE uses physics-based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree ofmore » variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three-point and four-point configurations. The simulation results quantify the trade-offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three-point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. Furthermore, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade-offs between subsystems such as the rotor, drivetrain and tower.« less

  4. A global parallel model based design of experiments method to minimize model output uncertainty.

    PubMed

    Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E

    2012-03-01

    Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.

  5. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications.

    PubMed

    Patou, François; AlZahra'a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E

    2016-09-03

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods.

  6. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications

    PubMed Central

    Patou, François; AlZahra’a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E.

    2016-01-01

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods. PMID:27598208

  7. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening

    NASA Astrophysics Data System (ADS)

    Zavodszky, Maria I.; Sanschagrin, Paul C.; Kuhn, Leslie A.; Korde, Rajesh S.

    2002-12-01

    For the successful identification and docking of new ligands to a protein target by virtual screening, the essential features of the protein and ligand surfaces must be captured and distilled in an efficient representation. Since the running time for docking increases exponentially with the number of points representing the protein and each ligand candidate, it is important to place these points where the best interactions can be made between the protein and the ligand. This definition of favorable points of interaction can also guide protein structure-based ligand design, which typically focuses on which chemical groups provide the most energetically favorable contacts. In this paper, we present an alternative method of protein template and ligand interaction point design that identifies the most favorable points for making hydrophobic and hydrogen-bond interactions by using a knowledge base. The knowledge-based protein and ligand representations have been incorporated in version 2.0 of SLIDE and resulted in dockings closer to the crystal structure orientations when screening a set of 57 known thrombin and glutathione S-transferase (GST) ligands against the apo structures of these proteins. There was also improved scoring enrichment of the dockings, meaning better differentiation between the chemically diverse known ligands and a ˜15,000-molecule dataset of randomly-chosen small organic molecules. This approach for identifying the most important points of interaction between proteins and their ligands can equally well be used in other docking and design techniques. While much recent effort has focused on improving scoring functions for protein-ligand docking, our results indicate that improving the representation of the chemistry of proteins and their ligands is another avenue that can lead to significant improvements in the identification, docking, and scoring of ligands.

  8. The implement of Talmud property allocation algorithm based on graphic point-segment way

    NASA Astrophysics Data System (ADS)

    Cen, Haifeng

    2017-04-01

    Under the guidance of the Talmud allocation scheme's theory, the paper analyzes the algorithm implemented process via the perspective of graphic point-segment way, and designs the point-segment way's Talmud property allocation algorithm. Then it uses Java language to implement the core of allocation algorithm, by using Android programming to build a visual interface.

  9. Exact extraction method for road rutting laser lines

    NASA Astrophysics Data System (ADS)

    Hong, Zhiming

    2018-02-01

    This paper analyzes the importance of asphalt pavement rutting detection in pavement maintenance and pavement administration in today's society, the shortcomings of the existing rutting detection methods are presented and a new rutting line-laser extraction method based on peak intensity characteristic and peak continuity is proposed. The intensity of peak characteristic is enhanced by a designed transverse mean filter, and an intensity map of peak characteristic based on peak intensity calculation for the whole road image is obtained to determine the seed point of the rutting laser line. Regarding the seed point as the starting point, the light-points of a rutting line-laser are extracted based on the features of peak continuity, which providing exact basic data for subsequent calculation of pavement rutting depths.

  10. ATTRIBUTES OF FORM IN THE BUILT ENVIRONMENT THAT INFLUENCE PERCEIVED WALKABILITY.

    PubMed

    Oreskovic, Nicolas M; Charles, Pablina Roth Suzanne Lanyi; Shepherd, Dido Tsigaridi Kathrine; Nelson, Kerrie P; Bar, Moshe

    2014-01-01

    A recent focus of design and building regulations, including form-based codes and the Leadership in Energy and Environmental Design for Neighborhood Development rating system, has been on promoting pedestrian activity. This study assessed perceptions of walkability for residential and commercial streetscapes with different design attributes in order to inform form-based regulations and codes that aim to impact walkability. We scored 424 images on four design attributes purported to influence walkability: variation in building height, variation in building plane, presence of ground-floor windows, and presence of a street focal point. We then presented the images to 45 adults, who were asked to rate the images for walkability. The results showed that perceived walkability varied according to the degree to which a particular design attribute was present, with the presence of ground-floor windows and a street focal point most consistently associated with a space's perceived walkability. Understanding if and which design attributes are most related to walkability could allow planners and developers to focus on the most salient built-environment features influencing physical activity, as well as provide empirical scientific evidence for form-based regulations and zoning codes aimed at impacting walkabilit.

  11. Design and modelling of a link monitoring mechanism for the Common Data Link (CDL)

    NASA Astrophysics Data System (ADS)

    Eichelberger, John W., III

    1994-09-01

    The Common Data Link (CDL) is a full duplex, point-to-point microwave communications system used in imagery and signals intelligence collection systems. It provides a link between two remote Local Area Networks (LAN's) aboard collection and surface platforms. In a hostile environment, there is an overwhelming need to dynamically monitor the link and thus, limit the impact of jamming. This work describes steps taken to design, model, and evaluate a link monitoring system suitable for the CDL. The monitoring system is based on features and monitoring constructs of the Link Control Protocol (LCP) in the Point-to-Point Protocol (PPP) suite. The CDL model is based on a system of two remote Fiber Distributed Data Interface (FDDI) LAN's. In particular, the policies and mechanisms associated with monitoring are described in detail. An implementation of the required mechanisms using the OPNET network engineering tool is described. Performance data related to monitoring parameters is reported. Finally, integration of the FDDI-CDL model with the OPNET Internet model is described.

  12. Research of PV Power Generation MPPT based on GABP Neural Network

    NASA Astrophysics Data System (ADS)

    Su, Yu; Lin, Xianfu

    2018-05-01

    Photovoltaic power generation has become the main research direction of new energy power generation. But high investment and low efficiency of photovoltaic industry arouse concern in some extent. So maximum power point tracking of photovoltaic power generation has been a popular study point. Due to slow response, oscillation at maximum power point and low precision, the algorithm based on genetic algorithm combined with BP neural network are designed detailedly in this paper. And the modeling and simulation are completed by use of MATLAB/SIMULINK. The results show that the algorithm is effective and the maximum power point can be tracked accurately and quickly.

  13. Robustness-Based Design Optimization Under Data Uncertainty

    NASA Technical Reports Server (NTRS)

    Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence

    2010-01-01

    This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.

  14. Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL

    NASA Astrophysics Data System (ADS)

    Sapra, Gaurav; Sharma, Preetika

    2017-07-01

    The design and performance of piezoresistive MEMS-based MWCNT/epoxy composite strain sensor using COMSOL Multiphysics Toolbox has been investigated. The proposed sensor design comprises su-8 based U-shaped cantilever beam with MWCNT/epoxy composite film as an active sensing element. A point load in microscale has been applied at the tip of the cantilever beam to observe its deflection in the proposed design. Analytical simulations have been performed to optimize various design parameters of the proposed sensor, which will be helpful at the time of fabrication.

  15. Problem-Based Assignments as a Trigger for Developing Ethical and Reflective Competencies

    ERIC Educational Resources Information Center

    Euler, Dieter; Kühner, Patrizia

    2017-01-01

    The following research question serves as the starting point of this research and development project: How, in the context of a didactic design, can problem-based assignments trigger learning activities for the development of ethical and reflective competencies in students in economics courses? This paper focuses on the design of problem-based…

  16. Understanding the Life Cycle of Computer-Based Models: The Role of Expert Contributions in Design, Development and Implementation

    ERIC Educational Resources Information Center

    Waight, Noemi; Liu, Xiufeng; Gregorius, Roberto Ma.

    2015-01-01

    This paper examined the nuances of the background process of design and development and follow up classroom implementation of computer-based models for high school chemistry. More specifically, the study examined the knowledge contributions of an interdisciplinary team of experts; points of tensions, negotiations and non-negotiable aspects of…

  17. Automated design of image operators that detect interest points.

    PubMed

    Trujillo, Leonardo; Olague, Gustavo

    2008-01-01

    This work describes how evolutionary computation can be used to synthesize low-level image operators that detect interesting points on digital images. Interest point detection is an essential part of many modern computer vision systems that solve tasks such as object recognition, stereo correspondence, and image indexing, to name but a few. The design of the specialized operators is posed as an optimization/search problem that is solved with genetic programming (GP), a strategy still mostly unexplored by the computer vision community. The proposed approach automatically synthesizes operators that are competitive with state-of-the-art designs, taking into account an operator's geometric stability and the global separability of detected points during fitness evaluation. The GP search space is defined using simple primitive operations that are commonly found in point detectors proposed by the vision community. The experiments described in this paper extend previous results (Trujillo and Olague, 2006a,b) by presenting 15 new operators that were synthesized through the GP-based search. Some of the synthesized operators can be regarded as improved manmade designs because they employ well-known image processing techniques and achieve highly competitive performance. On the other hand, since the GP search also generates what can be considered as unconventional operators for point detection, these results provide a new perspective to feature extraction research.

  18. Model Development and Model-Based Control Design for High Performance Nonlinear Smart Systems

    DTIC Science & Technology

    2007-11-20

    potentially impact a broad range of flow control problems of interest to the Air Force and Boeing. Point of contact: James Mabe , Boeing Phantom Works...rotorcraft blades. In both cases, models and control designs will be validated using data from Boeing experiments and flight tests. Point of contact: James ... Mabe , Boeing Phantom Works, Seattle, WA, 206-655-0091. 3. PZT Unimorphs – Boeing: Nonlinear structural models developed through AFOSR support are being

  19. The Design of Case Products’ Shape Form Information Database Based on NURBS Surface

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Liu, Guo-zhong; Xu, Nuo-qi; Zhang, Wei-she

    2017-07-01

    In order to improve the computer design of product shape design,applying the Non-uniform Rational B-splines(NURBS) of curves and surfaces surface to the representation of the product shape helps designers to design the product effectively.On the basis of the typical product image contour extraction and using Pro/Engineer(Pro/E) to extract the geometric feature of scanning mold,in order to structure the information data base system of value point,control point and node vector parameter information,this paper put forward a unified expression method of using NURBS curves and surfaces to describe products’ geometric shape and using matrix laboratory(MATLAB) to simulate when products have the same or similar function.A case study of electric vehicle’s front cover illustrates the access process of geometric shape information of case product in this paper.This method can not only greatly reduce the capacity of information debate,but also improve the effectiveness of computer aided geometric innovation modeling.

  20. Nanosatellite optical downlink experiment: design, simulation, and prototyping

    NASA Astrophysics Data System (ADS)

    Clements, Emily; Aniceto, Raichelle; Barnes, Derek; Caplan, David; Clark, James; Portillo, Iñigo del; Haughwout, Christian; Khatsenko, Maxim; Kingsbury, Ryan; Lee, Myron; Morgan, Rachel; Twichell, Jonathan; Riesing, Kathleen; Yoon, Hyosang; Ziegler, Caleb; Cahoy, Kerri

    2016-11-01

    The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10 Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.

  1. Design, fabrication and testing of an optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Decker, R. O.; Mcclurg, W. C.

    1980-01-01

    The laboratory breadboard optical temperature sensor based on the temperature dependent absorptive characteristics of a rare earth (europium) doped optical fiber. The principles of operation, materials characterization, fiber and optical component design, design and fabrication of an electrooptic interface unit, signal processing, and initial test results are discussed. Initial tests indicated that, after a brief warmup period, the output of the sensor was stable to approximately 1 C at room temperature or approximately + or - 0.3 percent of point (K). This exceeds the goal of 1 percent of point. Recommendations are presented for further performance improvement.

  2. Visualizing Uncertainty of Point Phenomena by Redesigned Error Ellipses

    NASA Astrophysics Data System (ADS)

    Murphy, Christian E.

    2018-05-01

    Visualizing uncertainty remains one of the great challenges in modern cartography. There is no overarching strategy to display the nature of uncertainty, as an effective and efficient visualization depends, besides on the spatial data feature type, heavily on the type of uncertainty. This work presents a design strategy to visualize uncertainty con-nected to point features. The error ellipse, well-known from mathematical statistics, is adapted to display the uncer-tainty of point information originating from spatial generalization. Modified designs of the error ellipse show the po-tential of quantitative and qualitative symbolization and simultaneous point based uncertainty symbolization. The user can intuitively depict the centers of gravity, the major orientation of the point arrays as well as estimate the ex-tents and possible spatial distributions of multiple point phenomena. The error ellipse represents uncertainty in an intuitive way, particularly suitable for laymen. Furthermore it is shown how applicable an adapted design of the er-ror ellipse is to display the uncertainty of point features originating from incomplete data. The suitability of the error ellipse to display the uncertainty of point information is demonstrated within two showcases: (1) the analysis of formations of association football players, and (2) uncertain positioning of events on maps for the media.

  3. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2014-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  4. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  5. Realistic Modeling of Wireless Network Environments

    DTIC Science & Technology

    2015-03-01

    wireless environment, namely vehicular networks. We also made a number of improvements to an emulation-based wireless testbed to improve channel model...and the two wireless devices used in the experiment (bottom). This testbed was used for point-point vehicular wireless experiments that used the...DSRC-based vehicular networks (~5.9 GHz). We were able to meet that goal, as described below. Figure 3: DSP Card 3.3 System design and

  6. Starting geometry creation and design method for freeform optics.

    PubMed

    Bauer, Aaron; Schiesser, Eric M; Rolland, Jannick P

    2018-05-01

    We describe a method for designing freeform optics based on the aberration theory of freeform surfaces that guides the development of a taxonomy of starting-point geometries with an emphasis on manufacturability. An unconventional approach to the optimization of these starting designs wherein the rotationally invariant 3rd-order aberrations are left uncorrected prior to unobscuring the system is shown to be effective. The optimal starting-point geometry is created for an F/3, 200 mm aperture-class three-mirror imager and is fully optimized using a novel step-by-step method over a 4 × 4 degree field-of-view to exemplify the design method. We then optimize an alternative starting-point geometry that is common in the literature but was quantified here as a sub-optimal candidate for optimization with freeform surfaces. A comparison of the optimized geometries shows the performance of the optimal geometry is at least 16× better, which underscores the importance of the geometry when designing freeform optics.

  7. Design of compact electromagnetic impulse radiating antenna for melanoma treatment.

    PubMed

    Arockiasamy, Petrishia; Mohan, Sasikala

    2016-01-01

    Cancer therapy is one of the several new applications which use nanosecond and subnanosecond high voltage pulses. New treatment based on electromagnetic (EM) fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, subnanosecond pulses can introduce important non-thermal changes in cell biology, especially the permeabilization of the cell membrane. The motivation behind this work is to launch intense subnanosecond pulses to the target (tumors) non-invasively. This works focuses on the design of a compact intense pulsed EM radiating antenna. In tense EM waves radiated at the first focal point of the Prolate Spheroidal Reflector (PSR) are focused at the second focal point where the target (tumor) is present. Two antennas with PSR but fed with different compact wave radiator are designed to focus pulsed field at the second focal point. The PSR with modified bicone antenna feed and PSR with elliptically tapered horn antenna feed are designed. The design parameters and radiation performance are discussed.

  8. A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology

    NASA Technical Reports Server (NTRS)

    Hoy, Scott D.; Figueiredo, Marco A.

    2006-01-01

    Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:

  9. Revised Point of Departure Design Options for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce

    2015-01-01

    In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.

  10. Community-based restaurant interventions to promote healthy eating: a systematic review.

    PubMed

    Valdivia Espino, Jennifer N; Guerrero, Natalie; Rhoads, Natalie; Simon, Norma-Jean; Escaron, Anne L; Meinen, Amy; Nieto, F Javier; Martinez-Donate, Ana P

    2015-05-21

    Eating in restaurants is associated with high caloric intake. This review summarizes and evaluates the evidence supporting community-based restaurant interventions. We searched all years of PubMed and Web of Knowledge through January 2014 for original articles describing or evaluating community-based restaurant interventions to promote healthy eating. We extracted summary information and classified the interventions into 9 categories according to the strategies implemented. A scoring system was adapted to evaluate the evidence, assigning 0 to 3 points to each intervention for study design, public awareness, and effectiveness. The average values were summed and then multiplied by 1 to 3 points, according to the volume of research available for each category. These summary scores were used to determine the level of evidence (insufficient, sufficient, or strong) supporting the effectiveness of each category. This review included 27 interventions described in 25 studies published since 1979. Most interventions took place in exclusively urban areas of the United States, either in the West or the South. The most common intervention categories were the use of point-of-purchase information with promotion and communication (n = 6), and point-of-purchase information with increased availability of healthy choices (n = 6). Only the latter category had sufficient evidence. The remaining 8 categories had insufficient evidence because of interventions showing no, minimal, or mixed findings; limited reporting of awareness and effectiveness; low volume of research; or weak study designs. No intervention reported an average negative impact on outcomes. Evidence about effective community-based strategies to promote healthy eating in restaurants is limited, especially for interventions in rural areas. To expand the evidence base, more studies should be conducted using robust study designs, standardized evaluation methods, and measures of sales, behavior, and health outcomes.

  11. Community-Based Restaurant Interventions to Promote Healthy Eating: A Systematic Review

    PubMed Central

    Valdivia Espino, Jennifer N.; Guerrero, Natalie; Rhoads, Natalie; Simon, Norma-Jean; Escaron, Anne L.; Meinen, Amy; Nieto, F. Javier

    2015-01-01

    Introduction Eating in restaurants is associated with high caloric intake. This review summarizes and evaluates the evidence supporting community-based restaurant interventions. Methods We searched all years of PubMed and Web of Knowledge through January 2014 for original articles describing or evaluating community-based restaurant interventions to promote healthy eating. We extracted summary information and classified the interventions into 9 categories according to the strategies implemented. A scoring system was adapted to evaluate the evidence, assigning 0 to 3 points to each intervention for study design, public awareness, and effectiveness. The average values were summed and then multiplied by 1 to 3 points, according to the volume of research available for each category. These summary scores were used to determine the level of evidence (insufficient, sufficient, or strong) supporting the effectiveness of each category. Results This review included 27 interventions described in 25 studies published since 1979. Most interventions took place in exclusively urban areas of the United States, either in the West or the South. The most common intervention categories were the use of point-of-purchase information with promotion and communication (n = 6), and point-of-purchase information with increased availability of healthy choices (n = 6). Only the latter category had sufficient evidence. The remaining 8 categories had insufficient evidence because of interventions showing no, minimal, or mixed findings; limited reporting of awareness and effectiveness; low volume of research; or weak study designs. No intervention reported an average negative impact on outcomes. Conclusion Evidence about effective community-based strategies to promote healthy eating in restaurants is limited, especially for interventions in rural areas. To expand the evidence base, more studies should be conducted using robust study designs, standardized evaluation methods, and measures of sales, behavior, and health outcomes. PMID:25996986

  12. Inertial Pointing and Positioning System

    NASA Technical Reports Server (NTRS)

    Yee, Robert (Inventor); Robbins, Fred (Inventor)

    1998-01-01

    An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.

  13. An Optimal Design for Placements of Tsunami Observing Systems Around the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Mulia, I. E.; Gusman, A. R.; Satake, K.

    2017-12-01

    Presently, there are numerous tsunami observing systems deployed in several major tsunamigenic regions throughout the world. However, documentations on how and where to optimally place such measurement devices are limited. This study presents a methodological approach to select the best and fewest observation points for the purpose of tsunami source characterizations, particularly in the form of fault slip distributions. We apply the method to design a new tsunami observation network around the Nankai Trough, Japan. In brief, our method can be divided into two stages: initialization and optimization. The initialization stage aims to identify favorable locations of observation points, as well as to determine the initial number of observations. These points are generated based on extrema of an empirical orthogonal function (EOF) spatial modes derived from 11 hypothetical tsunami events in the region. In order to further improve the accuracy, we apply an optimization algorithm called a mesh adaptive direct search (MADS) to remove redundant measurements from the initially generated points by the first stage. A combinatorial search by the MADS will improve the accuracy and reduce the number of observations simultaneously. The EOF analysis of the hypothetical tsunamis using first 2 leading modes with 4 extrema on each mode results in 30 observation points spread along the trench. This is obtained after replacing some clustered points within the radius of 30 km with only one representative. Furthermore, the MADS optimization can improve the accuracy of the EOF-generated points by approximately 10-20% with fewer observations (23 points). Finally, we compare our result with the existing observation points (68 stations) in the region. The result shows that the optimized design with fewer number of observations can produce better source characterizations with approximately 20-60% improvement of accuracies at all the 11 hypothetical cases. It should be note, however, that our design is a tsunami-based approach, some of the existing observing systems are equipped with additional devices to measure other parameter of interests, i.e., for monitoring seismic activities.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas

    The design features developed for the Spherical Tokamak (ST) in the PPPL pilot plant study was used as the starting point in developing designs to meet the mission of a Fusion Nuclear Science Facility (FNSF) considering a range of machine sizes based on the influence of tritium consumption and maintenance strategies. The compact nature of a steady state operated ST device for this mission pushes operating conditions and places challenges in the design of components, device maintenance and the integration of supports and services. This paper reviews the general arrangement, design details and maintenance strategy of the ST-FNSF device coremore » for a 1.6-m and 1.0-m device; operating points which bracket the region between purchasing and breeding tritium.« less

  15. Parallelization of Program to Optimize Simulated Trajectories (POST3D)

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.; Korte, John J. (Technical Monitor)

    2001-01-01

    This paper describes the parallelization of the Program to Optimize Simulated Trajectories (POST3D). POST3D uses a gradient-based optimization algorithm that reaches an optimum design point by moving from one design point to the next. The gradient calculations required to complete the optimization process, dominate the computational time and have been parallelized using a Single Program Multiple Data (SPMD) on a distributed memory NUMA (non-uniform memory access) architecture. The Origin2000 was used for the tests presented.

  16. A Comparison of Lecture-Based and Challenge-Based Learning in a Workplace Setting: Course Designs, Patterns of Interactivity, and Learning Outcomes

    ERIC Educational Resources Information Center

    O'Mahony, Timothy K.; Vye, Nancy J.; Bransford, John D.; Sanders, Elizabeth A.; Stevens, Reed; Stephens, Richard D.; Richey, Michael C.; Lin, Kuen Y.; Soleiman, Moe K.

    2012-01-01

    We describe findings from a research partnership involving a global airline manufacturing company (The Boeing Company), and learning scientists and aeronautical engineers from the University of Washington. Our starting point for the partnership focused on an 8-hour introductory composites course that was designed for company employees. In phase…

  17. Research on the Bionics Design of Automobile Styling Based on the Form Gene

    NASA Astrophysics Data System (ADS)

    Aili, Zhao; Long, Jiang

    2017-09-01

    From the heritage of form gene point of view, this thesis has analyzed the gene make-up, cultural inheritance and aesthetic features in the evolution and development of forms of brand automobiles and proposed the bionic design concept and methods in the automobile styling design. And this innovative method must be based on the form gene, and the consistency and combination of form element must be maintained during the design. Taking the design of Maserati as an example, the thesis will show you the design method and philosophy in the aspects of form gene expression and bionic design innovation for the future automobile styling.

  18. Pareto Design of State Feedback Tracking Control of a Biped Robot via Multiobjective PSO in Comparison with Sigma Method and Genetic Algorithms: Modified NSGAII and MATLAB's Toolbox

    PubMed Central

    Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.

    2014-01-01

    An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619

  19. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  20. Reflector automatic acquisition and pointing based on auto-collimation theodolite.

    PubMed

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  1. Reflector automatic acquisition and pointing based on auto-collimation theodolite

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  2. Identification of design features to enhance utilization and acceptance of systems for Internet-based decision support at the point of care.

    PubMed Central

    Gadd, C. S.; Baskaran, P.; Lobach, D. F.

    1998-01-01

    Extensive utilization of point-of-care decision support systems will be largely dependent on the development of user interaction capabilities that make them effective clinical tools in patient care settings. This research identified critical design features of point-of-care decision support systems that are preferred by physicians, through a multi-method formative evaluation of an evolving prototype of an Internet-based clinical decision support system. Clinicians used four versions of the system--each highlighting a different functionality. Surveys and qualitative evaluation methodologies assessed clinicians' perceptions regarding system usability and usefulness. Our analyses identified features that improve perceived usability, such as telegraphic representations of guideline-related information, facile navigation, and a forgiving, flexible interface. Users also preferred features that enhance usefulness and motivate use, such as an encounter documentation tool and the availability of physician instruction and patient education materials. In addition to identifying design features that are relevant to efforts to develop clinical systems for point-of-care decision support, this study demonstrates the value of combining quantitative and qualitative methods of formative evaluation with an iterative system development strategy to implement new information technology in complex clinical settings. Images Figure 1 PMID:9929188

  3. A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2013-01-01

    Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014

  4. Digital analyzer for point processes based on first-in-first-out memories

    NASA Astrophysics Data System (ADS)

    Basano, Lorenzo; Ottonello, Pasquale; Schiavi, Enore

    1992-06-01

    We present an entirely new version of a multipurpose instrument designed for the statistical analysis of point processes, especially those characterized by high bunching. A long sequence of pulses can be recorded in the RAM bank of a personal computer via a suitably designed front end which employs a pair of first-in-first-out (FIFO) memories; these allow one to build an analyzer that, besides being simpler from the electronic point of view, is capable of sustaining much higher intensity fluctuations of the point process. The overflow risk of the device is evaluated by treating the FIFO pair as a queueing system. The apparatus was tested using both a deterministic signal and a sequence of photoelectrons obtained from laser light scattered by random surfaces.

  5. A CLIPS-based tool for aircraft pilot-vehicle interface design

    NASA Technical Reports Server (NTRS)

    Fowler, Thomas D.; Rogers, Steven P.

    1991-01-01

    The Pilot-Vehicle Interface of modern aircraft is the cognitive, sensory, and psychomotor link between the pilot, the avionics modules, and all other systems on board the aircraft. To assist pilot-vehicle interface designers, a C Language Integrated Production System (CLIPS) based tool was developed that allows design information to be stored in a table that can be modified by rules representing design knowledge. Developed for the Apple Macintosh, the tool allows users without any CLIPS programming experience to form simple rules using a point and click interface.

  6. 15 CFR Appendix Vi to Subpart P of... - Special-Use Areas Boundary Coordinates and Use Designations

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...)—[Based on differential Global Positioning Systems data] Point Latitude Longitude 1 24 deg.56.83′ N 80 deg... Global Positioning Systems data] Point Latitude Longitude 1 24 deg.29.84′ N 81 deg.39.59′ W. 2 24 deg.29....29.84′ N 81 deg.39.59′ W. Looe Key (Research Only)—[Based on differential Global Positioning Systems...

  7. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  8. Design and characterization of planar capacitive imaging probe based on the measurement sensitivity distribution

    NASA Astrophysics Data System (ADS)

    Yin, X.; Chen, G.; Li, W.; Huthchins, D. A.

    2013-01-01

    Previous work indicated that the capacitive imaging (CI) technique is a useful NDE tool which can be used on a wide range of materials, including metals, glass/carbon fibre composite materials and concrete. The imaging performance of the CI technique for a given application is determined by design parameters and characteristics of the CI probe. In this paper, a rapid method for calculating the whole probe sensitivity distribution based on the finite element model (FEM) is presented to provide a direct view of the imaging capabilities of the planar CI probe. Sensitivity distributions of CI probes with different geometries were obtained. Influencing factors on sensitivity distribution were studied. Comparisons between CI probes with point-to-point triangular electrode pair and back-to-back triangular electrode pair were made based on the analysis of the corresponding sensitivity distributions. The results indicated that the sensitivity distribution could be useful for optimising the probe design parameters and predicting the imaging performance.

  9. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  10. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases

    PubMed Central

    2013-01-01

    Background Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. Methods/design This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. Discussion This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight. PMID:24350728

  11. Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system

    NASA Astrophysics Data System (ADS)

    Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.

    2018-04-01

    This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.

  12. Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.

    1997-01-01

    An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.

  13. Comparing topography-based verbal behavior with stimulus selection-based verbal behavior

    PubMed Central

    Sundberg, Carl T.; Sundberg, Mark L.

    1990-01-01

    Michael (1985) distinguished between two types of verbal behavior: topography-based and stimulus selection-based verbal behavior. The current research was designed to empirically examine these two types of verbal behavior while addressing the frequently debated question, Which augmentative communication system should be used with the nonverbal developmentally disabled person? Four mentally retarded adults served as subjects. Each subject was taught to tact an object by either pointing to its corresponding symbol (selection-based verbal behavior), or making the corresponding sign (topography-based verbal behavior). They were then taught an intraverbal relation, and were tested for the emergence of stimulus equivalence relations. The results showed that signed responses were acquired more readily than pointing responses as measured by the acquisition of tacts and intraverbals, and the formation of equivalence classes. These results support Michael's (1985) analysis, and have important implications for the design of language intervention programs for the developmentally disabled. ImagesFig. 1Fig. 2 PMID:22477602

  14. Operating Point Self-Regulator for Giant Magneto-Impedance Magnetic Sensor.

    PubMed

    Zhou, Han; Pan, Zhongming; Zhang, Dasha

    2017-05-11

    The giant magneto-impedance (GMI) magnetic sensor based on the amorphous wire has been believed to be tiny dimensions, high sensitivity, quick response, and small power consumption. This kind of sensor is usually working under a bias magnetic field that is called the sensor's operating point. However, the changes in direction and intensity of the external magnetic field, or the changes in sensing direction and position of the sensor, will lead to fluctuations in operating point when the sensor is working without any magnetic shield. In this work, a GMI sensor based on the operating point self-regulator is designed to overcome the problem. The regulator is based on the compensated feedback control that can maintain the operating point of a GMI sensor in a uniform position. With the regulator, the GMI sensor exhibits a stable sensitivity regardless of the external magnetic field. In comparison with the former work, the developed operating point regulator can improve the accuracy and stability of the operating point and therefore decrease the noise and disturbances that are introduced into the GMI sensor by the previous self-regulation system.

  15. Operating Point Self-Regulator for Giant Magneto-Impedance Magnetic Sensor

    PubMed Central

    Zhou, Han; Pan, Zhongming; Zhang, Dasha

    2017-01-01

    The giant magneto-impedance (GMI) magnetic sensor based on the amorphous wire has been believed to be tiny dimensions, high sensitivity, quick response, and small power consumption. This kind of sensor is usually working under a bias magnetic field that is called the sensor’s operating point. However, the changes in direction and intensity of the external magnetic field, or the changes in sensing direction and position of the sensor, will lead to fluctuations in operating point when the sensor is working without any magnetic shield. In this work, a GMI sensor based on the operating point self-regulator is designed to overcome the problem. The regulator is based on the compensated feedback control that can maintain the operating point of a GMI sensor in a uniform position. With the regulator, the GMI sensor exhibits a stable sensitivity regardless of the external magnetic field. In comparison with the former work, the developed operating point regulator can improve the accuracy and stability of the operating point and therefore decrease the noise and disturbances that are introduced into the GMI sensor by the previous self-regulation system. PMID:28492514

  16. Help Central: Creating a Help Desk and Knowledge Portal in SharePoint

    ERIC Educational Resources Information Center

    Ennis, Lisa A.; Tims, Randy S.

    2012-01-01

    This article discusses the authors' implementation of Help Central, a site within the Lister Hill Library Collection on the University of Alabama-Birmingham's SharePoint server. Initially, Help Central was designed to address the inadequacies in the library's old, static HTML web-based support system, including haphazard issue reporting by staff…

  17. Estimating a Meaningful Point of Change: A Comparison of Exploratory Techniques Based on Nonparametric Regression

    ERIC Educational Resources Information Center

    Klotsche, Jens; Gloster, Andrew T.

    2012-01-01

    Longitudinal studies are increasingly common in psychological research. Characterized by repeated measurements, longitudinal designs aim to observe phenomena that change over time. One important question involves identification of the exact point in time when the observed phenomena begin to meaningfully change above and beyond baseline…

  18. A portable low-cost 3D point cloud acquiring method based on structure light

    NASA Astrophysics Data System (ADS)

    Gui, Li; Zheng, Shunyi; Huang, Xia; Zhao, Like; Ma, Hao; Ge, Chao; Tang, Qiuxia

    2018-03-01

    A fast and low-cost method of acquiring 3D point cloud data is proposed in this paper, which can solve the problems of lack of texture information and low efficiency of acquiring point cloud data with only one pair of cheap cameras and projector. Firstly, we put forward a scene adaptive design method of random encoding pattern, that is, a coding pattern is projected onto the target surface in order to form texture information, which is favorable for image matching. Subsequently, we design an efficient dense matching algorithm that fits the projected texture. After the optimization of global algorithm and multi-kernel parallel development with the fusion of hardware and software, a fast acquisition system of point-cloud data is accomplished. Through the evaluation of point cloud accuracy, the results show that point cloud acquired by the method proposed in this paper has higher precision. What`s more, the scanning speed meets the demand of dynamic occasion and has better practical application value.

  19. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Treesearch

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  20. The Concurrent Engineering Design Paradigm Is Now Fully Functional for Graphics Education

    ERIC Educational Resources Information Center

    Krueger, Thomas J.; Barr, Ronald E.

    2007-01-01

    Engineering design graphics education has come a long way in the past two decades. The emergence of solid geometric modeling technology has become the focal point for the graphical development of engineering design ideas. The main attraction of this 3-D modeling approach is the downstream application of the data base to analysis and…

  1. Characterization and Design of Digital Pointing Subsystem for Optical Communication Demonstrator

    NASA Technical Reports Server (NTRS)

    Racho, C.; Portillo, A.

    1998-01-01

    The Optical Communications Demonstrator (OCD) is a laboratory-based lasercom demonstration terminal designed to validate several key technologies, including beacon acquisition, high bandwidth tracking, precision bearn pointing, and point-ahead compensation functions. It has been under active development over the past few years. The instrument uses a CCD array detector for both spatial acquisition and high-bandwidth tracking, and a fiber coupled laser transmitter. The array detector tracking concept provides wide field-of-view acquisition and permits effective platform jitter compensation and point-ahead control using only one steering mirror. This paper describes the detailed design and characterization of the digital control loop system which includes the Fast Steering Mirror (FSM), the CCD image tracker, and the associated electronics. The objective is to improve the overall system performance using laboratory measured data. The. design of the digital control loop is based on a linear time invariant open loop model. The closed loop performance is predicted using the theoretical model. With the digital filter programmed into the OCD control software, data is collected to verify the predictions. This paper presents the results of the, system modeling and performance analysis. It has been shown that measurement data closely matches theoretical predictions. An important part of the laser communication experiment is the ability of FSM to track the laser beacon within the. required tolerances. The pointing must be maintained to an accuracy that is much smaller than the transmit signal beamwidth. For an earth orbit distance, the system must be able to track the receiving station to within a few microradians. The failure. to do so will result in a severely degraded system performance.

  2. Research and constructive solutions on the reduction of slosh noise

    NASA Astrophysics Data System (ADS)

    Manta (Balas, M.; Balas, R.; Doicin, C. V.

    2016-11-01

    The paper presents a product design making of, over a “delicate issue” in automotive industry as slosh noise phenomena. Even though the current market tendency shows great achievements over this occurrence, in this study, the main idea is to design concepts of slosh noise baffles adapted for serial life existing fuel tanks in the automotive industry. Moreover, starting with internal and external research, going further through reversed engineering and applying own baffle technical solutions from conceptual sketches to 3D design, the paper shows the technical solutions identified as an alternative to a new development of fuel tank. Based on personal and academic experience there were identified several problematics and the possible answers based on functional analysis, in order to avoid blocking points. The idea of developing baffles adapted to already existent fuel tanks leaded to equivalent solutions analyzed from functional point of view. Once this stage is finished, a methodology will be used so as to choose the optimum solution so as to get the functional design.

  3. Automated control of robotic camera tacheometers for measurements of industrial large scale objects

    NASA Astrophysics Data System (ADS)

    Heimonen, Teuvo; Leinonen, Jukka; Sipola, Jani

    2013-04-01

    The modern robotic tacheometers equipped with digital cameras (called also imaging total stations) and capable to measure reflectorless offer new possibilities to gather 3d data. In this paper an automated approach for the tacheometer measurements needed in the dimensional control of industrial large scale objects is proposed. There are two new contributions in the approach: the automated extraction of the vital points (i.e. the points to be measured) and the automated fine aiming of the tacheometer. The proposed approach proceeds through the following steps: First the coordinates of the vital points are automatically extracted from the computer aided design (CAD) data. The extracted design coordinates are then used to aim the tacheometer to point out to the designed location of the points, one after another. However, due to the deviations between the designed and the actual location of the points, the aiming need to be adjusted. An automated dynamic image-based look-and-move type servoing architecture is proposed to be used for this task. After a successful fine aiming, the actual coordinates of the point in question can be automatically measured by using the measuring functionalities of the tacheometer. The approach was validated experimentally and noted to be feasible. On average 97 % of the points actually measured in four different shipbuilding measurement cases were indeed proposed to be vital points by the automated extraction algorithm. The accuracy of the results obtained with the automatic control method of the tachoemeter were comparable to the results obtained with the manual control, and also the reliability of the image processing step of the method was found to be high in the laboratory experiments.

  4. Experiment Design for Nonparametric Models Based On Minimizing Bayes Risk: Application to Voriconazole1

    PubMed Central

    Bayard, David S.; Neely, Michael

    2016-01-01

    An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a nonparametric model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher Information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the nonparametric model. Specifically, the problem of identifying an individual from a nonparametric prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient’s behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (Multiple-Model Optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications. PMID:27909942

  5. Experiment design for nonparametric models based on minimizing Bayes Risk: application to voriconazole¹.

    PubMed

    Bayard, David S; Neely, Michael

    2017-04-01

    An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a NP model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the NP model. Specifically, the problem of identifying an individual from a NP prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient's behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (multiple-model optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications.

  6. EDIN design study alternate space shuttle booster replacement concepts. Volume 2: Design simulation results

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    Historical weight estimating relationships were developed for the liquid rocket booster (LRB) using Saturn technology, and modified as required to support the EDIN05 study. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the EDIN05 designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut-off points. Performance analysis was based on a point design trajectory model which optimized initial tilt rate and exo-atmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle-of-attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary.

  7. Model-based approaches to deal with detectability: a comment on Hutto (2016)

    USGS Publications Warehouse

    Marques, Tiago A.; Thomas, Len; Kéry, Marc; Buckland, Steve T.; Borchers, David L.; Rexstad, Eric; Fewster, Rachel M.; MacKenzie, Darryl I.; Royle, Andy; Guillera-Arroita, Gurutzeta; Handel, Colleen M.; Pavlacky, David C.; Camp, Richard J.

    2017-01-01

    In a recent paper, Hutto (2016a) challenges the need to account for detectability when interpreting data from point counts. A number of issues with model-based approaches to deal with detectability are presented, and an alternative suggested: surveying an area around each point over which detectability is assumed certain. The article contains a number of false claims and errors of logic, and we address these here. We provide suggestions about appropriate uses of distance sampling and occupancy modeling, arising from an intersection of design- and model-based inference.

  8. Solving Inverse Kinematics of Robot Manipulators by Means of Meta-Heuristic Optimisation

    NASA Astrophysics Data System (ADS)

    Wichapong, Kritsada; Bureerat, Sujin; Pholdee, Nantiwat

    2018-05-01

    This paper presents the use of meta-heuristic algorithms (MHs) for solving inverse kinematics of robot manipulators based on using forward kinematic. Design variables are joint angular displacements used to move a robot end-effector to the target in the Cartesian space while the design problem is posed to minimize error between target points and the positions of the robot end-effector. The problem is said to be a dynamic problem as the target points always changed by a robot user. Several well established MHs are used to solve the problem and the results obtained from using different meta-heuristics are compared based on the end-effector error and searching speed of the algorithms. From the study, the best performer will be obtained for setting as the baseline for future development of MH-based inverse kinematic solving.

  9. A novel solution for LED wall lamp design and simulation

    NASA Astrophysics Data System (ADS)

    Ge, Rui; Hong, Weibin; Li, Kuangqi; Liang, Pengxiang; Zhao, Fuli

    2014-11-01

    The model of the wall washer lamp and the practical illumination application have been established with a new design of the lens to meet the uniform illumination demand for wall washer lamp based on the Lambertian light sources. Our secondary optical design of freeform surface lens to LED wall washer lamp based on the conservation law of energy and Snell's law can improve the lighting effects as a uniform illumination. With the relationship between the surface of the lens and the surface of the target, a great number of discrete points of the freeform profile curve were obtained through the iterative method. After importing the data into our modeling program, the optical entity was obtained. Finally, to verify the feasibility of the algorithm, the model was simulated by specialized software, with both the LED Lambertian point source and LED panel source model.

  10. CAD system of design and engineering provision of die forming of compressor blades for aircraft engines

    NASA Astrophysics Data System (ADS)

    Khaimovich, I. N.

    2017-10-01

    The articles provides the calculation algorithms for blank design and die forming fitting to produce the compressor blades for aircraft engines. The design system proposed in the article allows generating drafts of trimming and reducing dies automatically, leading to significant reduction of work preparation time. The detailed analysis of the blade structural elements features was carried out, the taken limitations and technological solutions allowed forming generalized algorithms of forming parting stamp face over the entire circuit of the engraving for different configurations of die forgings. The author worked out the algorithms and programs to calculate three dimensional point locations describing the configuration of die cavity. As a result the author obtained the generic mathematical model of final die block in the form of three-dimensional array of base points. This model is the base for creation of engineering documentation of technological equipment and means of its control.

  11. Development of a Personal Digital Assistant (PDA) based client/server NICU patient data and charting system.

    PubMed

    Carroll, A E; Saluja, S; Tarczy-Hornoch, P

    2001-01-01

    Personal Digital Assistants (PDAs) offer clinicians the ability to enter and manage critical information at the point of care. Although PDAs have always been designed to be intuitive and easy to use, recent advances in technology have made them even more accessible. The ability to link data on a PDA (client) to a central database (server) allows for near-unlimited potential in developing point of care applications and systems for patient data management. Although many stand-alone systems exist for PDAs, none are designed to work in an integrated client/server environment. This paper describes the design, software and hardware selection, and preliminary testing of a PDA based patient data and charting system for use in the University of Washington Neonatal Intensive Care Unit (NICU). This system will be the subject of a subsequent study to determine its impact on patient outcomes and clinician efficiency.

  12. A low power biomedical signal processor ASIC based on hardware software codesign.

    PubMed

    Nie, Z D; Wang, L; Chen, W G; Zhang, T; Zhang, Y T

    2009-01-01

    A low power biomedical digital signal processor ASIC based on hardware and software codesign methodology was presented in this paper. The codesign methodology was used to achieve higher system performance and design flexibility. The hardware implementation included a low power 32bit RISC CPU ARM7TDMI, a low power AHB-compatible bus, and a scalable digital co-processor that was optimized for low power Fast Fourier Transform (FFT) calculations. The co-processor could be scaled for 8-point, 16-point and 32-point FFTs, taking approximate 50, 100 and 150 clock circles, respectively. The complete design was intensively simulated using ARM DSM model and was emulated by ARM Versatile platform, before conducted to silicon. The multi-million-gate ASIC was fabricated using SMIC 0.18 microm mixed-signal CMOS 1P6M technology. The die area measures 5,000 microm x 2,350 microm. The power consumption was approximately 3.6 mW at 1.8 V power supply and 1 MHz clock rate. The power consumption for FFT calculations was less than 1.5 % comparing with the conventional embedded software-based solution.

  13. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  14. Computer-Aided Instruction: College Algebra Students' Perceptions

    ERIC Educational Resources Information Center

    Aichele, Douglas B.; Tree, D. Rae; Utley, Juliana; Wescoatt, Benjamin

    2012-01-01

    Technology permeates our daily lives; education has not been untouched. Liaw (2002) points out that "teachers, trainers, and instructional designers of computer-based or Web-based instruction would benefit by being more attentive to learners' perceptions toward Web-based environments." Reviewing the earlier research into student perceptions toward…

  15. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  16. APM for a Constellation Intersatellite Link - EM Qualification and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Hartel, Frank; Kozilek, Horst

    2016-01-01

    For an Intersatellite Link (ISL) of a future constellation program, a study phase was initiated by ESA to design a mechanism for Radio Frequency communication. Airbus DS Friedrichshafen (ADSF) proposed a design based on the Antenna Pointing Mechanism (APM) family with modifications that met the stated needs of the constellation. A qualification program was started beginning in September 2015 to verify the launch and thermal loads and the equipment performance (Radio Frequency, Pointing, Microvibration and Magnetic Moment). Technical challenges identified with the Engineering Model will be discussed within this paper.

  17. Creating a Web-accessible, point-of-care, team-based information system (PointTIS): the librarian as publisher.

    PubMed

    Burrows, S C; Moore, K M; Lemkau, H L

    2001-04-01

    The Internet has created new opportunities for librarians to develop information systems that are readily accessible at the point of care. This paper describes the multiyear process used to justify, fund, design, develop, promote, and evaluate a rehabilitation prototype of a point-of-care, team-based information system (PoinTIS) and train health care providers to use this prototype for their spinal cord injury and traumatic brain injury patient care and education activities. PoinTIS is a successful model for librarians in the twenty-first century to serve as publishers of information created or used by their parent organizations and to respond to the opportunities for information dissemination provided by recent technological advances.

  18. Note: A dual-channel sensor for dew point measurement based on quartz crystal microbalance.

    PubMed

    Li, Ning; Meng, Xiaofeng; Nie, Jing

    2017-05-01

    A new sensor with dual-channel was designed for eliminating the temperature effect on the frequency measurement of the quartz crystal microbalance (QCM) in dew point detection. The sensor uses active temperature control, produces condensation on the surface of QCM, and then detects the dew point. Both the single-channel and the dual-channel methods were conducted based on the device. The measurement error of the single-channel method was less than 0.5 °C at the dew point range of -2 °C-10 °C while the dual-channel was 0.3 °C. The results showed that the dual-channel method was able to eliminate the temperature effect and yield better measurement accuracy.

  19. Note: A dual-channel sensor for dew point measurement based on quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Li, Ning; Meng, Xiaofeng; Nie, Jing

    2017-05-01

    A new sensor with dual-channel was designed for eliminating the temperature effect on the frequency measurement of the quartz crystal microbalance (QCM) in dew point detection. The sensor uses active temperature control, produces condensation on the surface of QCM, and then detects the dew point. Both the single-channel and the dual-channel methods were conducted based on the device. The measurement error of the single-channel method was less than 0.5 °C at the dew point range of -2 °C-10 °C while the dual-channel was 0.3 °C. The results showed that the dual-channel method was able to eliminate the temperature effect and yield better measurement accuracy.

  20. Standard cell-based implementation of a digital optoelectronic neural-network hardware.

    PubMed

    Maier, K D; Beckstein, C; Blickhan, R; Erhard, W

    2001-03-10

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  1. The future point-of-care detection of disease and its data capture and handling.

    PubMed

    Lopez-Barbosa, Natalia; Gamarra, Jorge D; Osma, Johann F

    2016-04-01

    Point-of-care detection is a widely studied area that attracts effort and interest from a large number of fields and companies. However, there is also increased interest from the general public in this type of device, which has driven enormous changes in the design and conception of these developments and the way data is handled. Therefore, future point-of-care detection has to include communication with front-end technology, such as smartphones and networks, automation of manufacture, and the incorporation of concepts like the Internet of Things (IoT) and cloud computing. Three key examples, based on different sensing technology, are analyzed in detail on the basis of these items to highlight a route for the future design and development of point-of-care detection devices and their data capture and handling.

  2. Virtual Bridge Design

    ERIC Educational Resources Information Center

    Bisogno, Janet; JeanPierre, Bobby

    2008-01-01

    The West Point Bridge Design (WPBD) building project engages students in project-based learning by giving them a real-life problem to solve. By using technology, students are able to become involved in solving problems that they normally would not encounter. Involvement with interactive websites, such as WPBD, assists students in using…

  3. Detection and identification of genetically modified EE-1 brinjal (Solanum melongena) by single, multiplex and SYBR® real-time PCR.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha; Gowda, Lalitha R

    2013-01-01

    Brinjal is an important vegetable crop. Major crop loss of brinjal is due to insect attack. Insect-resistant EE-1 brinjal has been developed and is awaiting approval for commercial release. Consumer health concerns and implementation of international labelling legislation demand reliable analytical detection methods for genetically modified (GM) varieties. End-point and real-time polymerase chain reaction (PCR) methods were used to detect EE-1 brinjal. In end-point PCR, primer pairs specific to 35S CaMV promoter, NOS terminator and nptII gene common to other GM crops were used. Based on the revealed 3' transgene integration sequence, primers specific for the event EE-1 brinjal were designed. These primers were used for end-point single, multiplex and SYBR-based real-time PCR. End-point single PCR showed that the designed primers were highly specific to event EE-1 with a sensitivity of 20 pg of genomic DNA, corresponding to 20 copies of haploid EE-1 brinjal genomic DNA. The limits of detection and quantification for SYBR-based real-time PCR assay were 10 and 100 copies respectively. The prior development of detection methods for this important vegetable crop will facilitate compliance with any forthcoming labelling regulations. Copyright © 2012 Society of Chemical Industry.

  4. Design, Development and Analysis of Centrifugal Blower

    NASA Astrophysics Data System (ADS)

    Baloni, Beena Devendra; Channiwala, Salim Abbasbhai; Harsha, Sugnanam Naga Ramannath

    2018-06-01

    Centrifugal blowers are widely used turbomachines equipment in all kinds of modern and domestic life. Manufacturing of blowers seldom follow an optimum design solution for individual blower. Although centrifugal blowers are developed as highly efficient machines, design is still based on various empirical and semi empirical rules proposed by fan designers. There are different methodologies used to design the impeller and other components of blowers. The objective of present study is to study explicit design methodologies and tracing unified design to get better design point performance. This unified design methodology is based more on fundamental concepts and minimum assumptions. Parametric study is also carried out for the effect of design parameters on pressure ratio and their interdependency in the design. The code is developed based on a unified design using C programming. Numerical analysis is carried out to check the flow parameters inside the blower. Two blowers, one based on the present design and other on industrial design, are developed with a standard OEM blower manufacturing unit. A comparison of both designs is done based on experimental performance analysis as per IS standard. The results suggest better efficiency and more flow rate for the same pressure head in case of the present design compared with industrial one.

  5. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    NASA Technical Reports Server (NTRS)

    Hull, P. V.; Tinker, M. L.

    2007-01-01

    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  6. A superlinear interior points algorithm for engineering design optimization

    NASA Technical Reports Server (NTRS)

    Herskovits, J.; Asquier, J.

    1990-01-01

    We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.

  7. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 7: System/subsystems requirements databook

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    This volume summarizes the basic requirements used as a guide to systems analysis, and is a basis for the selection of candidate Satellite Power Systems (SPS) point designs. Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point designs. Included is an updated version of earlier Rockwell concepts using klystrons as the specific microwave power amplification approach, as well as a more in-depth definition, analysis and preliminary point design on two concepts based on the use of advanced solid state technology to accomplish the task of high power amplification of the 2.45 GHz transmitted power beam to the Earth receiver. Finally, a preliminary definition of a concept using magnetrons as the microwave power amplifiers is presented.

  8. Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.

  9. Determination of Secondary Students' Preferences Regarding Design Features Used in Digital Textbooks

    ERIC Educational Resources Information Center

    Öngöz, Sakine; Mollamehmetoglu, Mehmet Zülküf

    2017-01-01

    The aim of this study was to determine secondary school students' choice of design features for digital textbooks. As a part of the research--which was conducted using a mixed technique--a literature review was carried out to source points to consider in the designing of digital textbooks and experts' opinions were obtained. Based on the results,…

  10. Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1995-01-01

    An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.

  11. Designing a Virtual Classroom for Distance Learning Students through the Internet.

    ERIC Educational Resources Information Center

    Bradshaw, Allen

    Advantages to using the Internet to deliver instruction include the fact that Hypertext Markup Language (HTML) can be accessed on any computer, broadening the student base to anyone with an Internet browser and a PPP (Point-to-Point Protocol) account. In addition, instructions, lectures, and examples can be linked together for use as students need…

  12. Effects of School-Based Point-of-Testing Counselling on Health Status Variables among Rural Adolescents

    ERIC Educational Resources Information Center

    Murimi, Mary W.; Chrisman, Matthew S.; Hughes, Kelly; Taylor, Chris; Kim, Yeonsoo; McAllister, Tiffany L.

    2015-01-01

    Objective: Rural areas may suffer from a lack of access to health care and programmes to promote behaviours such as healthy eating and physical activity. Point-of-testing counselling is a method of promoting a healthy lifestyle during an individual's most "teachable moment". Design/Setting: This longitudinal study examined the effects of…

  13. Thinking out of the Exams Box: Assessment through Talk?

    ERIC Educational Resources Information Center

    Coultas, Valerie

    2017-01-01

    This article examines the abandonment of talk-based assessment in favour of written exams, even when writing results in less valid assessment. It points to substantial experience of assessment through talk in English and media studies and points to its potential use in other subjects. It is followed by an example, originally designed by the…

  14. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  15. New Primary Dew-Point Generators at HMI/FSB-LPM in the Range from -70 °C to +60 °C

    NASA Astrophysics Data System (ADS)

    Zvizdic, Davor; Heinonen, Martti; Sestan, Danijel

    2012-09-01

    To extend the dew-point range and to improve the uncertainties of the humidity scale realization at HMI/FSB-LPM, new primary low- and high-range dew-point generators were developed and implemented in cooperation with MIKES, in 2009 through EUROMET Project No. 912. The low-range saturator is designed for primary realization of the dew-point temperature scale from -70 °C to + 5 °C, while the high-range saturator covers the range from 1 °C to 60 °C. The system is designed as a single-pressure, single-pass dew-point generator. MIKES designed and constructed both the saturators to be implemented in dew-point calibration systems at LPM. The LPM took care of purchasing and adapting liquid baths, of implementing the temperature and pressure measurement equipment appropriate for use in the systems, and development of gas preparation and flow control systems as well as of the computer-based automated data acquisition. The principle and the design of the generator are described in detail and schematically depicted. The tests were performed at MIKES to investigate how close both the saturators are to an ideal saturator. Results of the tests show that both the saturators are efficient enough for a primary realization of the dew-point temperature scale from -70 °C to + 60 °C, in the specified flow-rate ranges. The estimated standard uncertainties due to the non-ideal saturation efficiency are between 0.02 °C and 0.05 °C.

  16. Real-time seam tracking control system based on line laser visions

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi

    2018-07-01

    A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.

  17. Design and analysis of an underactuated anthropomorphic finger for upper limb prosthetics.

    PubMed

    Omarkulov, Nurdos; Telegenov, Kuat; Zeinullin, Maralbek; Begalinova, Ainur; Shintemirov, Almas

    2015-01-01

    This paper presents the design of a linkage based finger mechanism ensuring extended range of anthropomorphic gripping motions. The finger design is done using a path-point generation method based on geometrical dimensions and motion of a typical index human finger. Following the design description, and its kinematics analysis, the experimental evaluation of the finger gripping performance is presented using the finger 3D printed prototype. The finger underactuation is achieved by utilizing mechanical linkage system, consisting of two crossed four-bar linkage mechanisms. It is shown that the proposed finger design can be used to design a five-fingered anthropomorphic hand and has the potential for upper limb prostheses development.

  18. Communications network design and costing model programmers manual

    NASA Technical Reports Server (NTRS)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    Otpimization algorithms and techniques used in the communications network design and costing model for least cost route and least cost network problems are examined from the programmer's point of view. All system program modules, the data structures within the model, and the files which make up the data base are described.

  19. Mobile Phone-Based Behavioural Interventions for Health: A Systematic Review

    ERIC Educational Resources Information Center

    Buhi, Eric R.; Trudnak, Tara E.; Martinasek, Mary P.; Oberne, Alison B.; Fuhrmann, Hollie J.; McDermott, Robert J.

    2013-01-01

    Objective: To perform a systematic review of the literature concerning behavioural mobile health (mHealth) and summarize points related to heath topic, use of theory, audience, purpose, design, intervention components, and principal results that can inform future health education applications. Design: A systematic review of the literature. Method:…

  20. Streamline-based microfluidic device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Kasdan, Harvey (Inventor)

    2013-01-01

    The present invention provides a streamline-based device and a method for using the device for continuous separation of particles including cells in biological fluids. The device includes a main microchannel and an array of side microchannels disposed on a substrate. The main microchannel has a plurality of stagnation points with a predetermined geometric design, for example, each of the stagnation points has a predetermined distance from the upstream edge of each of the side microchannels. The particles are separated and collected in the side microchannels.

  1. Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays

    PubMed Central

    La, Moonwoo; Park, Sang Min; Kim, Dong Sung

    2015-01-01

    In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516

  2. A travel time forecasting model based on change-point detection method

    NASA Astrophysics Data System (ADS)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  3. A MEMS-based super fast dew point hygrometer—construction and medical applications

    NASA Astrophysics Data System (ADS)

    Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz

    2009-12-01

    The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.

  4. Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.

    PubMed

    Mor, Marco; Rivara, Silvia; Lodola, Alessio; Lorenzi, Simone; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Duranti, Andrea; Tontini, Andrea; Tarzia, Giorgio

    2005-11-01

    Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.

  5. Optimization of phase feeding of starter, grower, and finisher diets for male broilers by mixture experimental design: forty-eight-day production period.

    PubMed

    Roush, W B; Boykin, D; Branton, S L

    2004-08-01

    A mixture experiment, a variant of response surface methodology, was designed to determine the proportion of time to feed broiler starter (23% protein), grower (20% protein), and finisher (18% protein) diets to optimize production and processing variables based on a total production time of 48 d. Mixture designs are useful for proportion problems where the components of the experiment (i.e., length of time the diets were fed) add up to a unity (48 d). The experiment was conducted with day-old male Ross x Ross broiler chicks. The birds were placed 50 birds per pen in each of 60 pens. The experimental design was a 10-point augmented simplex-centroid (ASC) design with 6 replicates of each point. Each design point represented the portion(s) of the 48 d that each of the diets was fed. Formulation of the diets was based on NRC standards. At 49 d, each pen of birds was evaluated for production data including BW, feed conversion, and cost of feed consumed. Then, 6 birds were randomly selected from each pen for processing data. Processing variables included live weight, hot carcass weight, dressing percentage, fat pad percentage, and breast yield (pectoralis major and pectoralis minor weights). Production and processing data were fit to simplex regression models. Model terms determined not to be significant (P > 0.05) were removed. The models were found to be statistically adequate for analysis of the response surfaces. A compromise solution was calculated based on optimal constraints designated for the production and processing data. The results indicated that broilers fed a starter and finisher diet for 30 and 18 d, respectively, would meet the production and processing constraints. Trace plots showed that the production and processing variables were not very sensitive to the grower diet.

  6. Numerical and In Vitro Experimental Investigation of the Hemolytic Performance at the Off-Design Point of an Axial Ventricular Assist Pump.

    PubMed

    Liu, Guang-Mao; Jin, Dong-Hai; Jiang, Xi-Hang; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Hu, Sheng-Shou; Gui, Xing-Min

    The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.

  7. Traceable Co-C eutectic points for thermocouple calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahan, F.; Ballico, M. J.

    2013-09-11

    National Measurement Institute of Australia (NMIA) has developed a miniature crucible design suitable for measurement by both thermocouples and radiation thermometry, and has established an ensemble of five Co-C eutectic-point cells based on this design. The cells in this ensemble have been individually calibrated using both ITS-90 radiation thermometry and thermocouples calibrated on the ITS-90 by the NMIA mini-coil methodology. The assigned ITS-90 temperatures obtained using these different techniques are both repeatable and consistent, despite the use of different furnaces and measurement conditions. The results demonstrate that, if individually calibrated, such cells can be practically used as part of amore » national traceability scheme for thermocouple calibration, providing a useful intermediate calibration point between Cu and Pd.« less

  8. Centrifugal and Axial Pump Design and Off-Design Performance Prediction

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1995-01-01

    A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.

  9. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2018-06-01

    This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

  10. Enhancing efficiency and quality of statistical estimation of immunogenicity assay cut points through standardization and automation.

    PubMed

    Su, Cheng; Zhou, Lei; Hu, Zheng; Weng, Winnie; Subramani, Jayanthi; Tadkod, Vineet; Hamilton, Kortney; Bautista, Ami; Wu, Yu; Chirmule, Narendra; Zhong, Zhandong Don

    2015-10-01

    Biotherapeutics can elicit immune responses, which can alter the exposure, safety, and efficacy of the therapeutics. A well-designed and robust bioanalytical method is critical for the detection and characterization of relevant anti-drug antibody (ADA) and the success of an immunogenicity study. As a fundamental criterion in immunogenicity testing, assay cut points need to be statistically established with a risk-based approach to reduce subjectivity. This manuscript describes the development of a validated, web-based, multi-tier customized assay statistical tool (CAST) for assessing cut points of ADA assays. The tool provides an intuitive web interface that allows users to import experimental data generated from a standardized experimental design, select the assay factors, run the standardized analysis algorithms, and generate tables, figures, and listings (TFL). It allows bioanalytical scientists to perform complex statistical analysis at a click of the button to produce reliable assay parameters in support of immunogenicity studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Automated realization of the gallium melting and triple points

    NASA Astrophysics Data System (ADS)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  12. Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III

    1996-01-01

    Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.

  13. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    PubMed

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  14. A Web Based Collaborative Design Environment for Spacecraft

    NASA Technical Reports Server (NTRS)

    Dunphy, Julia

    1998-01-01

    In this era of shrinking federal budgets in the USA we need to dramatically improve our efficiency in the spacecraft engineering design process. We have come up with a method which captures much of the experts' expertise in a dataflow design graph: Seamlessly connectable set of local and remote design tools; Seamlessly connectable web based design tools; and Web browser interface to the developing spacecraft design. We have recently completed our first web browser interface and demonstrated its utility in the design of an aeroshell using design tools located at web sites at three NASA facilities. Multiple design engineers and managers are now able to interrogate the design engine simultaneously and find out what the design looks like at any point in the design cycle, what its parameters are, and how it reacts to adverse space environments.

  15. Evidence-Based Practice Point-of-Care Resources: A Quantitative Evaluation of Quality, Rigor, and Content.

    PubMed

    Campbell, Jared M; Umapathysivam, Kandiah; Xue, Yifan; Lockwood, Craig

    2015-12-01

    Clinicians and other healthcare professionals need access to summaries of evidence-based information in order to provide effective care to their patients at the point-of-care. Evidence-based practice (EBP) point-of-care resources have been developed and are available online to meet this need. This study aimed to develop a comprehensive list of available EBP point-of-care resources and evaluate their processes and policies for the development of content, in order to provide a critical analysis based upon rigor, transparency and measures of editorial quality to inform healthcare providers and promote quality improvement amongst publishers of EBP resources. A comprehensive and systematic search (Pubmed, CINAHL, and Cochrane Central) was undertaken to identify available EBP point-of-care resources, defined as "web-based medical compendia specifically designed to deliver predigested, rapidly accessible, comprehensive, periodically updated, and evidence-based information (and possibly also guidance) to clinicians." A pair of investigators independently extracted information on general characteristics, content presentation, editorial quality, evidence-based methodology, and breadth and volume. Twenty-seven summary resources were identified, of which 22 met the predefined inclusion criteria for EBP point-of-care resources, and 20 could be accessed for description and assessment. Overall, the upper quartile of EBP point-of-care providers was assessed to be UpToDate, Nursing Reference Centre, Mosby's Nursing Consult, BMJ Best Practice, and JBI COnNECT+. The choice of which EBP point-of-care resources are suitable for an organization is a decision that depends heavily on the unique requirements of that organization and the resources it has available. However, the results presented in this study should enable healthcare providers to make that assessment in a clear, evidence-based manner, and provide a comprehensive list of the available options. © 2015 Sigma Theta Tau International.

  16. Performance of differential pair circuits designed with line tunnel FET devices at different temperatures

    NASA Astrophysics Data System (ADS)

    Martino, M. D. V.; Martino, J. A.; Agopian, P. G. D.; Rooyackers, R.; Simoen, E.; Collaert, N.; Claeys, C.

    2018-07-01

    This work studies differential pair circuits designed with Line tunnel field effect transistors (TFETs), comparing their suitability with conventional Point TFETs. Differential voltage gain (A d), compliance voltage and sensitivity to channel length mismatch are analyzed experimentally for different temperatures. The first part highlights individual characteristics of Line TFETs, focusing on behaviors that affect analog circuits. In comparison to Point TFETs, Line TFETs present higher drive current, better transconductance and worse output conductance. In the second part, differential pairs are studied at room temperature for different dimensions and bias conditions. Line TFETs present the highest A d, while Point TFET decrease the susceptibility to channel length mismatch. In the last part, the temperature impact is investigated. Based on the activation energy, the impact of band-to-band tunneling and trap-assisted tunneling is discussed for different bias conditions. A general equation is proposed, including the technology and the susceptibility to temperature and dimensions. It was observed that Line TFETs are a good option to design differential pairs with higher A d and ON-state current than Point TFETs.

  17. Light refocusing with up-scalable resonant waveguide gratings in confocal prolate spheroid arrangements

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Benes, Zdenek; Martin, Olivier J. F.; Gallinet, Benjamin

    2018-01-01

    Resonant waveguide gratings (RWGs) are thin-film structures, where coupled modes interfere with the diffracted incoming wave and produce strong angular and spectral filtering. The combination of two finite-length and impedance matched RWGs allows the creation of a passive beam steering element, which is compatible with up-scalable fabrication processes. Here, we propose a design method to create large patterns of such elements able to filter, steer, and focus the light from one point source to another. The method is based on ellipsoidal mirrors to choose a system of confocal prolate spheroids where the two focal points are the source point and observation point, respectively. It allows finding the proper orientation and position of each RWG element of the pattern, such that the phase is constructively preserved at the observation point. The design techniques presented here could be implemented in a variety of systems, where large-scale patterns are needed, such as optical security, multifocal or monochromatic lenses, biosensors, and see-through optical combiners for near-eye displays.

  18. Family learning with mobile devices in the outdoors: Designing an e-Trailguide to facilitate families' joint engagement with the natural world

    NASA Astrophysics Data System (ADS)

    McClain, Lucy R.

    This study describes the implementation of a self-guiding mobile learning tool designed to support families' engagements with the natural world as they explored the flora and fauna along one nature trail at an environmental center. Thirty-one family groups (n = 105 individuals) participated in this study during the summer season and used an iPad-based e-Trailguide during their nature walk. Design-based research methods guided this study's design, which focused on the third iteration of the e-Trailguide. Data included evaluation of families' content knowledge gains related to the local biodiversity as revealed through post-hike interviews, while videorecords of each family's nature walk experience were also collected. Qualitative analyses focused on the design features within the e-Trailguide that supported the families' technology-mediated engagements with nature and their interactions with each other at one Discovery Spot along the nature trail. Findings include: (a) open-ended interviews after the e-Trailguide experience provided a descriptive understanding of the families' conceptual knowledge gains; (b) four place-based design features within the e-Trailguide enabled and supported families' observational, pointing, and tactile investigation engagements with the natural world; (c) parents took on teacher-like roles for their children by connecting information from the e-Trailguide to the natural objects nearby as evidenced through their frequency of pointing gestures; and (d) the development of an analytical framework related to joint observation strategies used between family members to support science-related sense making. Design recommendations for the future implementation of e-Trailguides in outdoor settings include the incorporation of place-based observational questions, place-based textual prompts for focusing observations, drawing activities to record observations, and place-based images to support identification of wildlife. Key words: family learning, engagement, mobile-based learning, outdoor learning, observation, environmental education, informal science learning.

  19. Rectenna system design

    NASA Technical Reports Server (NTRS)

    Brown, W. C.; Dickinson, R. M.; Nalos, E. J.; Ott, J. H.

    1980-01-01

    The function of the rectenna in the solar power satellite system is described and the basic design choices based on the desired microwave field concentration and ground clearance requirements are given. One important area of concern, from the EMI point of view, harmonic reradiation and scattering from the rectenna is also designed. An optimization of a rectenna system design to minimize costs was performed. The rectenna cost breakdown for a 56 w installation is given as an example.

  20. Optimization of Insertion Cost for Transfer Trajectories to Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Howell, K. C.; Wilson, R. S.; Lo, M. W.

    1999-01-01

    The objective of this work is the development of efficient techniques to optimize the cost associated with transfer trajectories to libration point orbits in the Sun-Earth-Moon four body problem, that may include lunar gravity assists. Initially, dynamical systems theory is used to determine invariant manifolds associated with the desired libration point orbit. These manifolds are employed to produce an initial approximation to the transfer trajectory. Specific trajectory requirements such as, transfer injection constraints, inclusion of phasing loops, and targeting of a specified state on the manifold are then incorporated into the design of the transfer trajectory. A two level differential corrections process is used to produce a fully continuous trajectory that satisfies the design constraints, and includes appropriate lunar and solar gravitational models. Based on this methodology, and using the manifold structure from dynamical systems theory, a technique is presented to optimize the cost associated with insertion onto a specified libration point orbit.

  1. Experimental study of adaptive pointing and tracking for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Boussalis, D.; Bayard, D. S.; Ih, C.; Wang, S. J.; Ahmed, A.

    1991-01-01

    This paper describes an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used in this study is based on a multivariable direct model reference adaptive control law. Several experimental validation studies were performed earlier using this algorithm for vibration damping and robust regulation, with excellent results. The current work extends previous studies by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error.

  2. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation

    PubMed Central

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-01-01

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401

  3. A multi points ultrasonic detection method for material flow of belt conveyor

    NASA Astrophysics Data System (ADS)

    Zhang, Li; He, Rongjun

    2018-03-01

    For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.

  4. Refractive laser beam shaping by means of a functional differential equation based design approach.

    PubMed

    Duerr, Fabian; Thienpont, Hugo

    2014-04-07

    Many laser applications require specific irradiance distributions to ensure optimal performance. Geometric optical design methods based on numerical calculation of two plano-aspheric lenses have been thoroughly studied in the past. In this work, we present an alternative new design approach based on functional differential equations that allows direct calculation of the rotational symmetric lens profiles described by two-point Taylor polynomials. The formalism is used to design a Gaussian to flat-top irradiance beam shaping system but also to generate a more complex dark-hollow Gaussian (donut-like) irradiance distribution with zero intensity in the on-axis region. The presented ray tracing results confirm the high accuracy of both calculated solutions and emphasize the potential of this design approach for refractive beam shaping applications.

  5. Optimizing digital elevation models (DEMs) accuracy for planning and design of mobile communication networks

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud A.

    2004-02-01

    Digital elevation models (DEMs) are important tools in the planning, design and maintenance of mobile communication networks. This research paper proposes a method for generating high accuracy DEMs based on SPOT satellite 1A stereo pair images, ground control points (GCP) and Erdas OrthoBASE Pro image processing software. DEMs with 0.2911 m mean error were achieved for the hilly and heavily populated city of Amman. The generated DEM was used to design a mobile communication network resulted in a minimum number of radio base transceiver stations, maximum number of covered regions and less than 2% of dead zones.

  6. An integrated set of UNIX based system tools at control room level

    NASA Astrophysics Data System (ADS)

    Potepan, F.; Scafuri, C.; Bortolotto, C.; Surace, G.

    1994-12-01

    The design effort of providing a simple point-and-click approach to the equipment access has led to the definition and realization of a modular set of software tools to be used at the ELETTRA control room level. Point-to-point equipment access requires neither programming nor specific knowledge of the control system architecture. The development and integration of communication, graphic, editing and global database modules are described in depth, followed by a report of their use in the first commissioning period.

  7. Person Fit Analysis in Computerized Adaptive Testing Using Tests for a Change Point

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2016-01-01

    Meijer and van Krimpen-Stoop noted that the number of person-fit statistics (PFSs) that have been designed for computerized adaptive tests (CATs) is relatively modest. This article partially addresses that concern by suggesting three new PFSs for CATs. The statistics are based on tests for a change point and can be used to detect an abrupt change…

  8. Smart design of a long-period fiber grating refractive index sensor based on dual-peak resonance near the phase-matching turning point.

    PubMed

    Ling, Qiang; Gu, Zhengtian; Gao, Kan

    2018-04-01

    This paper presents a smart design way for the long-period fiber grating (LPFG) refractive index sensor, which is based on high sensitivity of LPFG near phase-matching turning point (PMTP) to the surrounding refractive index (SRI). On the basis of the coupled mode theory of LPFG, cladding etching and film coating have opposite effects on the shift of the dual peaks. Therefore, an LPFG can be controlled by the cladding etching and film coating successively, until it operates near PMTP. Experimentally, an LPFG operating near PMTP was fabricated, and the glycerol solution concentration monitoring test was performed. The results show that the sensitivity of this LPFG to the SRI is as high as 5602 nm/refractive index unit.

  9. The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs

    NASA Astrophysics Data System (ADS)

    Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.

    2008-04-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.

  10. The development of interactive multimedia based on auditory, intellectually, repetition in repetition algorithm learning to increase learning outcome

    NASA Astrophysics Data System (ADS)

    Munir; Sutarno, H.; Aisyah, N. S.

    2018-05-01

    This research aims to find out how the development of interactive multimedia based on auditory, intellectually, and repetition can improve student learning outcomes. This interactive multimedia is developed through 5 stages. Analysis stages include the study of literature, questionnaire, interviews and observations. The design phase is done by the database design, flowchart, storyboards and repetition algorithm material while the development phase is done by the creation of web-based framework. Presentation material is adapted to the model of learning such as auditory, intellectually, repetition. Auditory points are obtained by recording the narrative material that presented by a variety of intellectual points. Multimedia as a product is validated by material and media experts. Implementation phase conducted on grade XI-TKJ2 SMKN 1 Garut. Based on index’s gain, an increasing of student learning outcomes in this study is 0.46 which is fair due to interest of student in using interactive multimedia. While the multimedia assessment earned 84.36% which is categorized as very well.

  11. An Adaptive Cross-Architecture Combination Method for Graph Traversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Kerbyson, Darren J.

    2014-06-18

    Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.

  12. Turbopump Performance Improved by Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2002-01-01

    The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.

  13. Curriculum Inquiry and Design for School-­ and Community-­Based Art Education

    ERIC Educational Resources Information Center

    Beudert, Lynn; McClure, Marissa

    2015-01-01

    This book presents a range of possibilities and starting points for--and conversations about--meaningful journeys related to the exploration of visual arts content and the engagement of learning. The authors highlight and blend theoretical, practical, and flexible approaches to integrating curriculum inquiry and curriculum design. "Curriculum…

  14. Computer aided fixture design - A case based approach

    NASA Astrophysics Data System (ADS)

    Tanji, Shekhar; Raiker, Saiesh; Mathew, Arun Tom

    2017-11-01

    Automated fixture design plays important role in process planning and integration of CAD and CAM. An automated fixture setup design system is developed where when fixturing surfaces and points are described allowing modular fixture components to get automatically select for generating fixture units and placed into position with satisfying assembled conditions. In past, various knowledge based system have been developed to implement CAFD in practice. In this paper, to obtain an acceptable automated machining fixture design, a case-based reasoning method with developed retrieval system is proposed. Visual Basic (VB) programming language is used in integrating with SolidWorks API (Application programming interface) module for better retrieval procedure reducing computational time. These properties are incorporated in numerical simulation to determine the best fit for practical use.

  15. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays.

    PubMed

    Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui

    2017-03-15

    Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.

  16. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays

    PubMed Central

    Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui

    2017-01-01

    Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996

  17. Safehold Attitude Determination Approach for GPM

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Henry; DeWeese, Keith

    2012-01-01

    Spacecraft sating designs generally have minimal goals with loose pointing requirements. Safe pointing orientations for three-axis stabilized spacecraft are usually chosen to put the spacecraft into a thermally safe and power-positive orientation. In addition, safe mode designs are required to be simple and reliable. This simplicity lends itself to the usage of analog sun sensors, because digital sun sensors will add unwanted complexity to the safe hold mode. The Global Precipitation Measurement (GPM) Mission Core Observatory will launch into lower earth orbit (LEO) at an inclination of 65 degrees. The GPM instrument suite consists of an active radar system and a passive microwave imager to provide the next-generation global observations of rain and snow. The complexity and precision of these instruments along with the operational constraints of the mission result in tight pointing requirements during all phases of the mission. To ensure the instruments are not damaged during spacecraft safing, thermal constraints dictate that the solar pointing orientation must be maintained to better than 6.5 degrees. This requirement is outside the capabilities of a typical analog sun sensor suite, primarily due to the effects of Earth's albedo. To ensure mission success, a new analog sensor, along with the appropriate algorithms, is needed. This paper discusses the design issues involving albedo effects on spacecraft pointing and the development of a simple, low-cost analog sensor and algorithm that will address the needs of the GPM mission. In addition, the algorithms are designed to be easily integrated into the existing attitude determination software by using common interfaces. The sensor design is based on a heritage, commercial off-the-shelf analog sun sensors with a limited field-of-view to reduce the effects of Earth's albedo. High fidelity simulation results are presented that demonstrate the efficacy of the design.

  18. Computing Shapes Of Cascade Diffuser Blades

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Prueger, George H.

    1993-01-01

    Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.

  19. Revisiting the Boeing B-47 and the Avro Vulcan with implications on aircraft design today

    NASA Astrophysics Data System (ADS)

    van Seeters, Philip A.

    This project compares the cruise mission performance of the historic Boeing B-47 and Avro Vulcan. The author aims to demonstrate that despite superficial similarities, these aircraft perform quite differently away from their intended design points. The investigation uses computer aided design software, and an aircraft sizing program to generate digital models of both airplanes. Subsequent simulations of various missions quantify the performance mainly in terms of fuel efficiency, and productivity. Based on this comparison, the efforts conclude that these aircraft perform indeed differently, and that a performance comparison based on a design mission alone, is insufficient.

  20. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  1. Increased Course Structure Improves Performance in Introductory Biology

    PubMed Central

    Freeman, Scott; Haak, David; Wenderoth, Mary Pat

    2011-01-01

    We tested the hypothesis that highly structured course designs, which implement reading quizzes and/or extensive in-class active-learning activities and weekly practice exams, can lower failure rates in an introductory biology course for majors, compared with low-structure course designs that are based on lecturing and a few high-risk assessments. We controlled for 1) instructor effects by analyzing data from quarters when the same instructor taught the course, 2) exam equivalence with new assessments called the Weighted Bloom's Index and Predicted Exam Score, and 3) student equivalence using a regression-based Predicted Grade. We also tested the hypothesis that points from reading quizzes, clicker questions, and other “practice” assessments in highly structured courses inflate grades and confound comparisons with low-structure course designs. We found no evidence that points from active-learning exercises inflate grades or reduce the impact of exams on final grades. When we controlled for variation in student ability, failure rates were lower in a moderately structured course design and were dramatically lower in a highly structured course design. This result supports the hypothesis that active-learning exercises can make students more skilled learners and help bridge the gap between poorly prepared students and their better-prepared peers. PMID:21633066

  2. Increased course structure improves performance in introductory biology.

    PubMed

    Freeman, Scott; Haak, David; Wenderoth, Mary Pat

    2011-01-01

    We tested the hypothesis that highly structured course designs, which implement reading quizzes and/or extensive in-class active-learning activities and weekly practice exams, can lower failure rates in an introductory biology course for majors, compared with low-structure course designs that are based on lecturing and a few high-risk assessments. We controlled for 1) instructor effects by analyzing data from quarters when the same instructor taught the course, 2) exam equivalence with new assessments called the Weighted Bloom's Index and Predicted Exam Score, and 3) student equivalence using a regression-based Predicted Grade. We also tested the hypothesis that points from reading quizzes, clicker questions, and other "practice" assessments in highly structured courses inflate grades and confound comparisons with low-structure course designs. We found no evidence that points from active-learning exercises inflate grades or reduce the impact of exams on final grades. When we controlled for variation in student ability, failure rates were lower in a moderately structured course design and were dramatically lower in a highly structured course design. This result supports the hypothesis that active-learning exercises can make students more skilled learners and help bridge the gap between poorly prepared students and their better-prepared peers.

  3. A comparison of design variables for control theory based airfoil optimization

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work in the area it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler equations with either a conformal mapping or a general coordinate system. We have also explored three-dimensional extensions of these formulations recently. The goal of our present work is to demonstrate the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-spline control points as design variables. The research also demonstrates that the parameterization of the design space is an open question in aerodynamic design.

  4. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases.

    PubMed

    Koppelmans, Vincent; Erdeniz, Burak; De Dios, Yiri E; Wood, Scott J; Reuter-Lorenz, Patricia A; Kofman, Igor; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2013-12-18

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight.

  5. Study on the high-frequency laser measurement of slot surface difference

    NASA Astrophysics Data System (ADS)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  6. New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.

    2008-01-01

    The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.

  7. A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.

    1984-01-01

    This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.

  8. A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.

    1983-01-01

    This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.

  9. Deciphering assumptions about stepped wedge designs: the case of Ebola vaccine research.

    PubMed

    Doussau, Adélaïde; Grady, Christine

    2016-12-01

    Ethical concerns about randomising persons to a no-treatment arm in the context of Ebola epidemic led to consideration of alternative designs. The stepped wedge (SW) design, in which participants or clusters are randomised to receive an intervention at different time points, gained popularity. Common arguments in favour of using this design are (1) when an intervention is likely to do more good than harm, (2) all participants should receive the experimental intervention at some time point during the study and (3) the design might be preferable for practical reasons. We examine these assumptions when considering Ebola vaccine research. First, based on the claim that a stepped wedge design is indicated when it is likely that the intervention will do more good than harm, we reviewed published and ongoing SW trials to explore previous use of this design to test experimental drugs or vaccines, and found that SW design has never been used for trials of experimental drugs or vaccines. Given that Ebola vaccines were all experimental with no prior efficacy data, the use of a stepped wedge design would have been unprecedented. Second, we show that it is rarely true that all participants receive the intervention in SW studies, but rather, depending on certain design features, all clusters receive the intervention. Third, we explore whether the SW design is appealing for feasibility reasons and point out that there is significant complexity. In the setting of the Ebola epidemic, spatiotemporal variation may have posed problematic challenges to a stepped wedge design for vaccine research. Finally, we propose a set of points to consider for scientific reviewers and ethics committees regarding proposals for SW designs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Impact of digital systems technology on man-vehicle systems research

    NASA Technical Reports Server (NTRS)

    Bretoi, R. N.

    1983-01-01

    The present study, based on a NASA technology assessment, examines the effect of new technologies on trends in crew-systems design and their implications from the vantage point of man-vehicle systems research. Those technologies that are most relevant to future trends in crew-systems design are considered along with problems associated with the introduction of rapidly changing technologies and systems concepts from a human-factors point of view. The technologies discussed include information processing, displays and controls, flight and propulsion control, flight and systems management, air traffic control, training and simulation, and flight and resource management. The historical evolution of cockpit systems design is used to illustrate past and possible future trends in man-vehicle systems research.

  11. Radar QPE for hydrological design: Intensity-Duration-Frequency curves

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2015-04-01

    Intensity-duration-frequency (IDF) curves are widely used in flood risk management since they provide an easy link between the characteristics of a rainfall event and the probability of its occurrence. They are estimated analyzing the extreme values of rainfall records, usually basing on raingauge data. This point-based approach raises two issues: first, hydrological design applications generally need IDF information for the entire catchment rather than a point, second, the representativeness of point measurements decreases with the distance from measure location, especially in regions characterized by steep climatological gradients. Weather radar, providing high resolution distributed rainfall estimates over wide areas, has the potential to overcome these issues. Two objections usually restrain this approach: (i) the short length of data records and (ii) the reliability of quantitative precipitation estimation (QPE) of the extremes. This work explores the potential use of weather radar estimates for the identification of IDF curves by means of a long length radar archive and a combined physical- and quantitative- adjustment of radar estimates. Shacham weather radar, located in the eastern Mediterranean area (Tel Aviv, Israel), archives data since 1990 providing rainfall estimates for 23 years over a region characterized by strong climatological gradients. Radar QPE is obtained correcting the effects of pointing errors, ground echoes, beam blockage, attenuation and vertical variations of reflectivity. Quantitative accuracy is then ensured with a range-dependent bias adjustment technique and reliability of radar QPE is assessed by comparison with gauge measurements. IDF curves are derived from the radar data using the annual extremes method and compared with gauge-based curves. Results from 14 study cases will be presented focusing on the effects of record length and QPE accuracy, exploring the potential application of radar IDF curves for ungauged locations and providing insights on the use of radar QPE for hydrological design studies.

  12. Outcomes-Based Funding and Stakeholder Engagement. Lumina Issue Papers

    ERIC Educational Resources Information Center

    Kadlec, Alison; Shelton, Susan

    2015-01-01

    This paper examines the key aspects of stakeholder engagement that can strengthen the design, implementation and sustainability of outcomes-based funding policies. We seek to help policymakers understand the prevailing starting-point attitudes of institutional stakeholders, primarily college and university administrators, faculty and staff, and…

  13. A design optimization process for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Fox, George; Duquette, William H.

    1990-01-01

    The Space Station Freedom Program is used to develop and implement a process for design optimization. Because the relative worth of arbitrary design concepts cannot be assessed directly, comparisons must be based on designs that provide the same performance from the point of view of station users; such designs can be compared in terms of life cycle cost. Since the technology required to produce a space station is widely dispersed, a decentralized optimization process is essential. A formulation of the optimization process is provided and the mathematical models designed to facilitate its implementation are described.

  14. Simulation design of light field imaging based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Xiao, Xiangguo; Luan, Yadong; Zhou, Xiaobin

    2017-02-01

    Based on the principium of light field imaging, there designed a objective lens and a microlens array for gathering the light field feature, the homologous ZEMAX models was also be built. Then all the parameters were optimized using ZEMAX and the simulation image was given out. It pointed out that the position relationship between the objective lens and the microlens array had a great affect on imaging, which was the guidance when developing a prototype.

  15. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  16. GREEN: A program package for docking studies in rational drug design

    NASA Astrophysics Data System (ADS)

    Tomioka, Nobuo; Itai, Akiko

    1994-08-01

    A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.

  17. Short Wave Direction Finders

    DTIC Science & Technology

    1960-05-23

    or designing direction finders. In CIApter 1, written by candidate of technical sciences, lec- turer O.V.Belavin, are considered direction finding...direction finding methods. In the design of radio direction finders with long base, qustioons arise of the advantageous choice of an antenna system, of the...dieeoticfindors, and reoommadat4ons on the design of radio direetion finders from the point of view of reduting the asaratu errors. og-’eae re~.o dkitctlon

  18. Hercules Single-Stage Reusable Vehicle (HSRV) Operating Base

    NASA Technical Reports Server (NTRS)

    Moon, Michael J.; McCleskey, Carey M.

    2017-01-01

    Conceptual design for the layout of lunar-planetary surface support systems remains an important area needing further master planning. This paper explores a structured approach to organize the layout of a Mars-based site equipped for routinely flying a human-scale reusable taxi system. The proposed Hercules Transportation System requires a surface support capability to sustain its routine, affordable, and dependable operation. The approach organizes a conceptual Hercules operating base through functional station sets. The station set approach will allow follow-on work to trade design approaches and consider technologies for more efficient flow of material, energy, and information at future Mars bases and settlements. The station set requirements at a Mars site point to specific capabilities needed. By drawing from specific Hercules design characteristics, the technology requirements for surface-based systems will come into greater focus. This paper begins a comprehensive process for documenting functional needs, architectural design methods, and analysis techniques necessary for follow-on concept studies.

  19. A fast process development flow by applying design technology co-optimization

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chieh; Yeh, Shin-Shing; Ou, Tsong-Hua; Lin, Hung-Yu; Mai, Yung-Ching; Lin, Lawrence; Lai, Jun-Cheng; Lai, Ya Chieh; Xu, Wei; Hurat, Philippe

    2017-03-01

    Beyond 40 nm technology node, the pattern weak points and hotspot types increase dramatically. The typical patterns for lithography verification suffers huge turn-around-time (TAT) to handle the design complexity. Therefore, in order to speed up process development and increase pattern variety, accurate design guideline and realistic design combinations are required. This paper presented a flow for creating a cell-based layout, a lite realistic design, to early identify problematic patterns which will negatively affect the yield. A new random layout generating method, Design Technology Co-Optimization Pattern Generator (DTCO-PG), is reported in this paper to create cell-based design. DTCO-PG also includes how to characterize the randomness and fuzziness, so that it is able to build up the machine learning scheme which model could be trained by previous results, and then it generates patterns never seen in a lite design. This methodology not only increases pattern diversity but also finds out potential hotspot preliminarily. This paper also demonstrates an integrated flow from DTCO pattern generation to layout modification. Optical Proximity Correction, OPC and lithographic simulation is then applied to DTCO-PG design database to detect hotspots and then hotspots or weak points can be automatically fixed through the procedure or handled manually. This flow benefits the process evolution to have a faster development cycle time, more complexity pattern design, higher probability to find out potential hotspots in early stage, and a more holistic yield ramping operation.

  20. Water supply pipe dimensioning using hydraulic power dissipation

    NASA Astrophysics Data System (ADS)

    Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.

    2017-07-01

    Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.

  1. Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1989-01-01

    Sampling design for site characterization studies of solute transport in porous media is formulated as a multiobjective problem. Optimal design of a sampling network is a sequential process in which the next phase of sampling is designed on the basis of all available physical knowledge of the system. Three objectives are considered: model discrimination, parameter estimation, and cost minimization. For the first two objectives, physically based measures of the value of information obtained from a set of observations are specified. In model discrimination, value of information of an observation point is measured in terms of the difference in solute concentration predicted by hypothesized models of transport. Points of greatest difference in predictions can contribute the most information to the discriminatory power of a sampling design. Sensitivity of solute concentration to a change in a parameter contributes information on the relative variance of a parameter estimate. Inclusion of points in a sampling design with high sensitivities to parameters tends to reduce variance in parameter estimates. Cost minimization accounts for both the capital cost of well installation and the operating costs of collection and analysis of field samples. Sensitivities, discrimination information, and well installation and sampling costs are used to form coefficients in the multiobjective problem in which the decision variables are binary (zero/one), each corresponding to the selection of an observation point in time and space. The solution to the multiobjective problem is a noninferior set of designs. To gain insight into effective design strategies, a one-dimensional solute transport problem is hypothesized. Then, an approximation of the noninferior set is found by enumerating 120 designs and evaluating objective functions for each of the designs. Trade-offs between pairs of objectives are demonstrated among the models. The value of an objective function for a given design is shown to correspond to the ability of a design to actually meet an objective.

  2. Point estimation following two-stage adaptive threshold enrichment clinical trials.

    PubMed

    Kimani, Peter K; Todd, Susan; Renfro, Lindsay A; Stallard, Nigel

    2018-05-31

    Recently, several study designs incorporating treatment effect assessment in biomarker-based subpopulations have been proposed. Most statistical methodologies for such designs focus on the control of type I error rate and power. In this paper, we have developed point estimators for clinical trials that use the two-stage adaptive enrichment threshold design. The design consists of two stages, where in stage 1, patients are recruited in the full population. Stage 1 outcome data are then used to perform interim analysis to decide whether the trial continues to stage 2 with the full population or a subpopulation. The subpopulation is defined based on one of the candidate threshold values of a numerical predictive biomarker. To estimate treatment effect in the selected subpopulation, we have derived unbiased estimators, shrinkage estimators, and estimators that estimate bias and subtract it from the naive estimate. We have recommended one of the unbiased estimators. However, since none of the estimators dominated in all simulation scenarios based on both bias and mean squared error, an alternative strategy would be to use a hybrid estimator where the estimator used depends on the subpopulation selected. This would require a simulation study of plausible scenarios before the trial. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  3. [Development of the automatic dental X-ray film processor].

    PubMed

    Bai, J; Chen, H

    1999-07-01

    This paper introduces a multiple-point detecting technique of the density of dental X-ray films. With the infrared ray multiple-point detecting technique, a single-chip microcomputer control system is used to analyze the effectiveness of the film-developing in real time in order to achieve a good image. Based on the new technology, We designed the intelligent automatic dental X-ray film processing.

  4. An approach of point cloud denoising based on improved bilateral filtering

    NASA Astrophysics Data System (ADS)

    Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin

    2018-04-01

    An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.

  5. Long-period gratings in photonic crystal fibers operating near the phase-matching turning point for evanescent chemical and biochemical sensing

    NASA Astrophysics Data System (ADS)

    Kanka, Jiri

    2012-06-01

    Fiber-optic long-period grating (LPG) operating near the dispersion turning point in its phase matching curve (PMC), referred to as a Turn Around Point (TAP) LPG, is known to be extremely sensitive to external parameters. Moreover, in a TAP LPG the phase matching condition can be almost satisfied over large spectral range, yielding a broadband LPG operation. TAP LPGs have been investigated, namely for use as broadband mode convertors and biosensors. So far TAP LPGs have been realized in specially designed or post-processed conventional fibers, not yet in PCFs, which allow a great degree of freedom in engineering the fiber's dispersion properties through the control of the PCF structural parameters. We have developed the design optimization technique for TAP PCF LPGs employing the finite element method for PCF modal analysis in a combination with the Nelder-Mead simplex method for minimizing the objective function based on target-specific PCF properties. Using this tool we have designed TAP PCF LPGs for specified wavelength ranges and refractive indices of medium in the air holes. Possible TAP PCF-LPG operational regimes - dual-resonance, broadband mode conversion and transmitted intensity-based operation - will be demonstrated numerically. Potential and limitations of TAP PCF-LPGs for evanescent chemical and biochemical sensing will be assessed.

  6. Feasibility analysis on integration of luminous environment measuring and design based on exposure curve calibration

    NASA Astrophysics Data System (ADS)

    Zou, Yuan; Shen, Tianxing

    2013-03-01

    Besides illumination calculating during architecture and luminous environment design, to provide more varieties of photometric data, the paper presents combining relation between luminous environment design and SM light environment measuring system, which contains a set of experiment devices including light information collecting and processing modules, and can offer us various types of photometric data. During the research process, we introduced a simulation method for calibration, which mainly includes rebuilding experiment scenes in 3ds Max Design, calibrating this computer aid design software in simulated environment under conditions of various typical light sources, and fitting the exposure curves of rendered images. As analytical research went on, the operation sequence and points for attention during the simulated calibration were concluded, connections between Mental Ray renderer and SM light environment measuring system were established as well. From the paper, valuable reference conception for coordination between luminous environment design and SM light environment measuring system was pointed out.

  7. Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.

    2002-01-01

    We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.

  8. Identification of Critical Design Points for the EAP of a Space-based Doppler Lidar Wind Sounder

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.

    1992-01-01

    The feasibility of making tropospheric wind measurements with a space-based Doppler lidar was studied by a number of agencies over the past 10-15 years. Currently NASA has a plan to launch such an instrument, the Laser Atmospheric Wind Sounder (LAWS), within the next decade. The design of the LAWS continues to undergo a series of iterations common to most instruments targeted for a space platform. In general, the constraints of available platform power, weight allowance, and project funds continue to change. With these changes the performance and design specifications also must change.

  9. Vibration isolation and dual-stage actuation pointing system for space precision payloads

    NASA Astrophysics Data System (ADS)

    Kong, Yongfang; Huang, Hai

    2018-02-01

    Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.

  10. An Experience-Based Learning Framework: Activities for the Initial Development of Sustainability Competencies

    ERIC Educational Resources Information Center

    Caniglia, Guido; John, Beatrice; Kohler, Martin; Bellina, Leonie; Wiek, Arnim; Rojas, Christopher; Laubichler, Manfred D.; Lang, Daniel

    2016-01-01

    Purpose: This paper aims to present an experience-based learning framework that provides a bottom-up, student-centered entrance point for the development of systems thinking, normative and collaborative competencies in sustainability. Design/methodology/approach: The framework combines mental mapping with exploratory walking. It interweaves…

  11. Watershed-based survey designs

    USGS Publications Warehouse

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  12. Lenses that provide the transformation between two given wavefronts

    NASA Astrophysics Data System (ADS)

    Criado, C.; Alamo, N.

    2016-12-01

    We give an original method to design four types of lenses solving the following problems: focusing a given wavefront in a given point, and performing the transformation between two arbitrary incoming and outgoing wavefronts. The method to design the lenses profiles is based on the optical properties of the envelopes of certain families of Cartesian ovals of revolution.

  13. Meeting the Need to Belong: Predicting Effects of a Friendship Enrichment Program for Older Women

    ERIC Educational Resources Information Center

    Stevens, Nan L.; Martina, Camille M. S.; Westerhof, Gerben J.

    2006-01-01

    Purpose: This study explores the effects of participation in a program designed to enrich friendship and reduce loneliness among women in later life. Several hypotheses based on the need to belong, socioemotional selectivity theory, and the social compensation model were tested. Design and Methods: Study 1 involved two measurement points, one at…

  14. Instructional Design-Based Research on Problem Solving Strategies

    ERIC Educational Resources Information Center

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  15. Inviscid Design of Hypersonic Wind Tunnel Nozzles for a Real Gas

    NASA Technical Reports Server (NTRS)

    Korte, J. J.

    2000-01-01

    A straightforward procedure has been developed to quickly determine an inviscid design of a hypersonic wind tunnel nozzle when the test crash is both calorically and thermally imperfect. This real gas procedure divides the nozzle into four distinct parts: subsonic, throat to conical, conical, and turning flow regions. The design process is greatly simplified by treating the imperfect gas effects only in the source flow region. This simplification can be justified for a large class of hypersonic wind tunnel nozzle design problems. The final nozzle design is obtained either by doing a classical boundary layer correction or by using this inviscid design as the starting point for a viscous design optimization based on computational fluid dynamics. An example of a real gas nozzle design is used to illustrate the method. The accuracy of the real gas design procedure is shown to compare favorably with an ideal gas design based on computed flow field solutions.

  16. Design of asymptotic estimators: an approach based on neural networks and nonlinear programming.

    PubMed

    Alessandri, Angelo; Cervellera, Cristiano; Sanguineti, Marcello

    2007-01-01

    A methodology to design state estimators for a class of nonlinear continuous-time dynamic systems that is based on neural networks and nonlinear programming is proposed. The estimator has the structure of a Luenberger observer with a linear gain and a parameterized (in general, nonlinear) function, whose argument is an innovation term representing the difference between the current measurement and its prediction. The problem of the estimator design consists in finding the values of the gain and of the parameters that guarantee the asymptotic stability of the estimation error. Toward this end, if a neural network is used to take on this function, the parameters (i.e., the neural weights) are chosen, together with the gain, by constraining the derivative of a quadratic Lyapunov function for the estimation error to be negative definite on a given compact set. It is proved that it is sufficient to impose the negative definiteness of such a derivative only on a suitably dense grid of sampling points. The gain is determined by solving a Lyapunov equation. The neural weights are searched for via nonlinear programming by minimizing a cost penalizing grid-point constraints that are not satisfied. Techniques based on low-discrepancy sequences are applied to deal with a small number of sampling points, and, hence, to reduce the computational burden required to optimize the parameters. Numerical results are reported and comparisons with those obtained by the extended Kalman filter are made.

  17. The structural approach to shared knowledge: an application to engineering design teams.

    PubMed

    Avnet, Mark S; Weigel, Annalisa L

    2013-06-01

    We propose a methodology for analyzing shared knowledge in engineering design teams. Whereas prior work has focused on shared knowledge in small teams at a specific point in time, the model presented here is both scalable and dynamic. By quantifying team members' common views of design drivers, we build a network of shared mental models to reveal the structure of shared knowledge at a snapshot in time. Based on a structural comparison of networks at different points in time, a metric of change in shared knowledge is computed. Analysis of survey data from 12 conceptual space mission design sessions reveals a correlation between change in shared knowledge and each of several system attributes, including system development time, system mass, and technological maturity. From these results, we conclude that an early period of learning and consensus building could be beneficial to the design of engineered systems. Although we do not examine team performance directly, we demonstrate that shared knowledge is related to the technical design and thus provide a foundation for improving design products by incorporating the knowledge and thoughts of the engineering design team into the process.

  18. ART/Ada design project, phase 1. Task 2 report: Detailed design

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.

    1988-01-01

    Various issues are studied in the context of the design of an Ada based expert system building tool. Using an existing successful design as a starting point, the impact is analyzed of the Ada language and Ada development methodologies on that design, the Ada system is redesigned, and its performance is analyzed using both complexity-theoretic and empirical techniques. The algorithms specified in the overall design are refined, resolving and documenting any open design issues, identifying each system module, documenting the internal architecture and control logic, and describing the primary data structures involved in the module.

  19. Design definition study of a lift/cruise fan technology V/STOL airplane: Summary

    NASA Technical Reports Server (NTRS)

    Zabinsky, J. M.; Higgins, H. C.

    1975-01-01

    A two-engine three-fan V/STOL airplane was designed to fulfill naval operational requirements. A multimission airplane was developed from study of specific point designs. Based on the multimission concept, airplanes were designed to demonstrate and develop the technology and operational procedures for this class of aircraft. Use of interconnected variable pitch fans led to a good balance between high thrust with responsive control and efficient thrust at cruise speeds. The airplanes and their characteristics are presented.

  20. Design criteria for a self-actuated shutdown system to ensure limitation of core damage. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deane, N.A.; Atcheson, D.B.

    1981-09-01

    Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times.

  1. Parametric pendulum based wave energy converter

    NASA Astrophysics Data System (ADS)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  2. Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.

    PubMed

    Ette, E I; Howie, C A; Kelman, A W; Whiting, B

    1995-05-01

    Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.

  3. Selection of floating-point or fixed-point for adaptive noise canceller in somatosensory evoked potential measurement.

    PubMed

    Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong

    2007-01-01

    Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.

  4. LSAH: a fast and efficient local surface feature for point cloud registration

    NASA Astrophysics Data System (ADS)

    Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi

    2018-04-01

    Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.

  5. Methods for the development of a bioregenerative life support system

    NASA Technical Reports Server (NTRS)

    Goldman, Michelle; Gomez, Shawn; Voorhees, Mike

    1990-01-01

    Presented here is a rudimentary approach to designing a life support system based on the utilization of plants and animals. The biggest stumbling block in the initial phases of developing a bioregenerative life support system is encountered in collecting and consolidating the data. If a database existed for the systems engineer so that he or she may have accurate data and a better understanding of biological systems in engineering terms, then the design process would be simplified. Also addressed is a means of evaluating the subsystems chosen. These subsystems are unified into a common metric, kilograms of mass, and normalized in relation to the throughput of a few basic elements. The initial integration of these subsystems is based on input/output masses and eventually balanced to a point of operation within the inherent performance ranges of the organisms chosen. At this point, it becomes necessary to go beyond the simplifying assumptions of simple mass relationships and further define for each organism the processes used to manipulate the throughput matter. Mainly considered here is the fact that these organisms perform input/output functions on differing timescales, thus establishing the need for buffer volumes or appropriate subsystem phasing. At each point in a systematic design it is necessary to disturb the system and discern its sensitivity to the disturbance. This can be done either through the introduction of a catastrophic failure or by applying a small perturbation to the system. One example is increasing the crew size. Here the wide range of performance characteristics once again shows that biological systems have an inherent advantage in responding to systemic perturbations. Since the design of any space-based system depends on mass, power, and volume requirements, each subsystem must be evaluated in these terms.

  6. Set-Based Approach to Design under Uncertainty and Applications to Shaping a Hydrofoil

    DTIC Science & Technology

    2016-01-01

    given requirements. This notion of set-based designwas pioneered by Toyota and adopted by the U.S. Navy [1]. It responds to most real-world design...in such a way that all desired shape variations are allowed both on the suction and pressure side. Figure 2 gives a schematic representation of the...of the hydrofoil. The control points of the pressure side have been changed in different ways to en- sure the overall hydrodynamic performance

  7. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays.

    PubMed

    Brooks, Adam D; Yeung, Kimy; Lewis, Gregory G; Phillips, Scott T

    2015-09-07

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.

  8. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays

    PubMed Central

    Brooks, Adam D.; Yeung, Kimy; Lewis, Gregory G.

    2015-01-01

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics. PMID:26604988

  9. Active noise control using a steerable parametric array loudspeaker.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2010-06-01

    Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.

  10. Towards non-conventional methods of designing register-based epidemiological studies: An application to pediatric research.

    PubMed

    Gong, Tong; Brew, Bronwyn; Sjölander, Arvid; Almqvist, Catarina

    2017-07-01

    Various epidemiological designs have been applied to investigate the causes and consequences of fetal growth restriction in register-based observational studies. This review seeks to provide an overview of several conventional designs, including cohort, case-control and more recently applied non-conventional designs such as family-based designs. We also discuss some practical points regarding the application and interpretation of family-based designs. Definitions of each design, the study population, the exposure and the outcome measures are briefly summarised. Examples of study designs are taken from the field of low birth-weight research for illustrative purposes. Also examined are relative advantages and disadvantages of each design in terms of assumptions, potential selection and information bias, confounding and generalisability. Kinship data linkage, statistical models and result interpretation are discussed specific to family-based designs. When all information is retrieved from registers, there is no evident preference of the case-control design over the cohort design to estimate odds ratios. All conventional designs included in the review are prone to bias, particularly due to residual confounding. Family-based designs are able to reduce such bias and strengthen causal inference. In the field of low birth-weight research, family-based designs have been able to confirm a negative association not confounded by genetic or shared environmental factors between low birth weight and the risk of asthma. We conclude that there is a broader need for family-based design in observational research as evidenced by the meaningful contributions to the understanding of the potential causal association between low birth weight and subsequent outcomes.

  11. Routine Testing of Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Holý, Michal; Remišová, Eva

    2017-12-01

    The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.

  12. Applications of inertial-sensor high-inheritance instruments to DSN precision antenna pointing

    NASA Technical Reports Server (NTRS)

    Goddard, R. E.

    1992-01-01

    Laboratory test results of the initialization and tracking performance of an existing inertial-sensor-based instrument are given. The instrument, although not primarily designed for precision antenna pointing applications, demonstrated an on-average 10-hour tracking error of several millidegrees. The system-level instrument performance is shown by analysis to be sensor limited. Simulated instrument improvements show a tracking error of less than 1 mdeg, which would provide acceptable performance, i.e., low pointing loss, for the DSN 70-m antenna sub network, operating at Ka-band (1-cm wavelength).

  13. Applications of inertial-sensor high-inheritance instruments to DSN precision antenna pointing

    NASA Technical Reports Server (NTRS)

    Goddard, R. E.

    1992-01-01

    Laboratory test results of the initialization and tracking performance of an existing inertial-sensor-based instrument are given. The instrument, although not primarily designed for precision antenna pointing applications, demonstrated an on-average 10-hour tracking error of several millidegrees. The system-level instrument performance is shown by analysis to be sensor limited. Simulated instrument improvements show a tracking error of less than 1 mdeg, which would provide acceptable performance, i.e., low pointing loss, for the Deep Space Network 70-m antenna subnetwork, operating at Ka-band (1-cm wavelength).

  14. Handheld laser scanner automatic registration based on random coding

    NASA Astrophysics Data System (ADS)

    He, Lei; Yu, Chun-ping; Wang, Li

    2011-06-01

    Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser scanner. Theory analysis and experiment shows the method is reasonable and efficient.

  15. Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    NASA Technical Reports Server (NTRS)

    Cunningham, D.; Gismondi, T.; Hamilton, B.; Kendig, J.; Kiedrowski, J.; Vroman, A.; Wilson, G.

    1980-01-01

    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed.

  16. Design of multi-function sensor detection system in coal mine based on ARM

    NASA Astrophysics Data System (ADS)

    Ge, Yan-Xiang; Zhang, Quan-Zhu; Deng, Yong-Hong

    2017-06-01

    The traditional coal mine sensor in the specific measurement points, the number and type of channel will be greater than or less than the number of monitoring points, resulting in a waste of resources or cannot meet the application requirements, in order to enable the sensor to adapt to the needs of different occasions and reduce the cost, a kind of multi-functional intelligent sensor multiple sensors and ARM11 the S3C6410 processor is used to design and realize the dust, gas, temperature and humidity sensor functions together, and has storage, display, voice, pictures, data query, alarm and other new functions.

  17. Solar Glare Hazard Analysis Tool v. 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford L.; Sims, Cianan

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energymore » production while mitigating glare.« less

  18. Solar Glaze Hazard Analysis Tool v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.; Sims, Cianan A.

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energymore » production while mitigating glare.« less

  19. An efficient adaptive sampling strategy for global surrogate modeling with applications in multiphase flow simulation

    NASA Astrophysics Data System (ADS)

    Mo, S.; Lu, D.; Shi, X.; Zhang, G.; Ye, M.; Wu, J.

    2016-12-01

    Surrogate models have shown remarkable computational efficiency in hydrological simulations involving design space exploration, sensitivity analysis, uncertainty quantification, etc. The central task of constructing a global surrogate models is to achieve a prescribed approximation accuracy with as few original model executions as possible, which requires a good design strategy to optimize the distribution of data points in the parameter domains and an effective stopping criterion to automatically terminate the design process when desired approximation accuracy is achieved. This study proposes a novel adaptive sampling strategy, which starts from a small number of initial samples and adaptively selects additional samples by balancing the collection in unexplored regions and refinement in interesting areas. We define an efficient and effective evaluation metric basing on Taylor expansion to select the most promising potential samples from candidate points, and propose a robust stopping criterion basing on the approximation accuracy at new points to guarantee the achievement of desired accuracy. The numerical results of several benchmark analytical functions indicate that the proposed approach is more computationally efficient and robust than the widely used maximin distance design and two other well-known adaptive sampling strategies. The application to two complicated multiphase flow problems further demonstrates the efficiency and effectiveness of our method in constructing global surrogate models for high-dimensional and highly nonlinear problems. Acknowledgements: This work was financially supported by the National Nature Science Foundation of China grants No. 41030746 and 41172206.

  20. New Vistas in Chemical Product and Process Design.

    PubMed

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  1. New methodology for shaft design based on life expectancy

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1986-01-01

    The design of power transmission shafting for reliability has not historically received a great deal of attention. However, weight sensitive aerospace and vehicle applications and those where the penalties of shaft failure are great, require greater confidence in shaft design than earlier methods provided. This report summarizes a fatigue strength-based, design method for sizing shafts under variable amplitude loading histories for limited or nonlimited service life. Moreover, applications factors such as press-fitted collars, shaft size, residual stresses from shot peening or plating, corrosive environments can be readily accommodated into the framework of the analysis. Examples are given which illustrate the use of the method, pointing out the large life penalties due to occasional cyclic overloads.

  2. Spline-based procedures for dose-finding studies with active control

    PubMed Central

    Helms, Hans-Joachim; Benda, Norbert; Zinserling, Jörg; Kneib, Thomas; Friede, Tim

    2015-01-01

    In a dose-finding study with an active control, several doses of a new drug are compared with an established drug (the so-called active control). One goal of such studies is to characterize the dose–response relationship and to find the smallest target dose concentration d*, which leads to the same efficacy as the active control. For this purpose, the intersection point of the mean dose–response function with the expected efficacy of the active control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of the target dose without assuming a specific dose–response function. Furthermore, the construction of a spline-based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach is satisfactory, especially for bias minimal designs. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25319931

  3. High-field neutral beam injection for improving the Q of a gas dynamic trap-based fusion neutron source

    NASA Astrophysics Data System (ADS)

    Zeng, Qiusun; Chen, Dehong; Wang, Minghuang

    2017-12-01

    In order to improve the fusion energy gain (Q) of a gas dynamic trap (GDT)-based fusion neutron source, a method in which the neutral beam is obliquely injected at a higher magnetic field position rather than at the mid-plane of the GDT is proposed. This method is beneficial for confining a higher density of fast ions at the turning point in the zone with a higher magnetic field, as well as obtaining a higher mirror ratio by reducing the mid-plane field rather than increasing the mirror field. In this situation, collision scattering loss of fast ions with higher density will occur and change the confinement time, power balance and particle balance. Using an updated calculation model with high-field neutral beam injection for a GDT-based fusion neutron source conceptual design, we got four optimal design schemes for a GDT-based fusion neutron source in which Q was improved to two- to three-fold compared with a conventional design scheme and considering the limitation for avoiding plasma instabilities, especially the fire-hose instability. The distribution of fast ions could be optimized by building a proper magnetic field configuration with enough space for neutron shielding and by multi-beam neutral particle injection at different axial points.

  4. Design of the transfer line from booster to storage ring at 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less

  5. Design of an advanced flight planning system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1985-01-01

    The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).

  6. [Design of visualized medical images network and web platform based on MeVisLab].

    PubMed

    Xiang, Jun; Ye, Qing; Yuan, Xun

    2017-04-01

    With the trend of the development of "Internet +", some further requirements for the mobility of medical images have been required in the medical field. In view of this demand, this paper presents a web-based visual medical imaging platform. First, the feasibility of medical imaging is analyzed and technical points. CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) images are reconstructed three-dimensionally by MeVisLab and packaged as X3D (Extensible 3D Graphics) files shown in the present paper. Then, the B/S (Browser/Server) system specially designed for 3D image is designed by using the HTML 5 and WebGL rendering engine library, and the X3D image file is parsed and rendered by the system. The results of this study showed that the platform was suitable for multiple operating systems to realize the platform-crossing and mobilization of medical image data. The development of medical imaging platform is also pointed out in this paper. It notes that web application technology will not only promote the sharing of medical image data, but also facilitate image-based medical remote consultations and distance learning.

  7. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  8. Nursing Reference Center: a point-of-care resource.

    PubMed

    Vardell, Emily; Paulaitis, Gediminas Geddy

    2012-01-01

    Nursing Reference Center is a point-of-care resource designed for the practicing nurse, as well as nursing administrators, nursing faculty, and librarians. Users can search across multiple resources, including topical Quick Lessons, evidence-based care sheets, patient education materials, practice guidelines, and more. Additional features include continuing education modules, e-books, and a new iPhone application. A sample search and comparison with similar databases were conducted.

  9. Supporting interoperability of collaborative networks through engineering of a service-based Mediation Information System (MISE 2.0)

    NASA Astrophysics Data System (ADS)

    Benaben, Frederick; Mu, Wenxin; Boissel-Dallier, Nicolas; Barthe-Delanoe, Anne-Marie; Zribi, Sarah; Pingaud, Herve

    2015-08-01

    The Mediation Information System Engineering project is currently finishing its second iteration (MISE 2.0). The main objective of this scientific project is to provide any emerging collaborative situation with methods and tools to deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based platform, dedicated to initiating and supporting the interoperability of collaborative situations among potential partners. This MISE 2.0 platform implements a model-driven engineering approach to the design of a service-oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three layers, each providing their own key innovative points: (i) the gathering of individual and collaborative knowledge to provide appropriate collaborative business behaviour (key point: knowledge management, including semantics, exploitation and capitalisation), (ii) deployment of a mediation information system able to computerise the previously deduced collaborative processes (key point: the automatic generation of collaborative workflows, including connection with existing devices or services) (iii) the management of the agility of the obtained collaborative network of organisations (key point: supervision of collaborative situations and relevant exploitation of the gathered data). MISE covers business issues (through BPM), technical issues (through an SOA) and agility issues of collaborative situations (through EDA).

  10. Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment

    PubMed Central

    Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon

    2013-01-01

    As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970

  11. The Rhetoric of Satire: Analyzing in Freshman English.

    ERIC Educational Resources Information Center

    Proctor, Betty Jane

    1982-01-01

    Presents a series of exercises designed to provide freshman composition students with a base for analyzing works rhetorically, to point out how language can be used persuasively, and to illustrate how satire functions. (FL)

  12. Pointing control for the International Comet Mission

    NASA Technical Reports Server (NTRS)

    Leblanc, D. R.; Schumacher, L. L.

    1980-01-01

    The design of the pointing control system for the proposed International Comet Mission, intended to fly by Comet Halley and rendezvous with Comet Tempel-2 is presented. Following a review of mission objectives and the spacecraft configuration, design constraints on the pointing control system controlling the two-axis gimballed scan platform supporting the science instruments are discussed in relation to the scientific requirements of the mission. The primary design options considered for the pointing control system design for the baseline spacecraft are summarized, and the design selected, which employs a target-referenced, inertially stabilized control system, is described in detail. The four basic modes of operation of the pointing control subsystem (target acquisition, inertial hold, target track and slew) are discussed as they relate to operations at Halley and Tempel-2. It is pointed that the pointing control system design represents a significant advance in the state of the art of pointing controls for planetary missions.

  13. System-based strategies for p53 recovery.

    PubMed

    Azam, Muhammad Rizwan; Fazal, Sahar; Ullah, Mukhtar; Bhatti, Aamer I

    2018-06-01

    The authors have proposed a systems theory-based novel drug design approach for the p53 pathway. The pathway is taken as a dynamic system represented by ordinary differential equations-based mathematical model. Using control engineering practices, the system analysis and subsequent controller design is performed for the re-activation of wild-type p53. p53 revival is discussed for both modes of operation, i.e. the sustained and oscillatory. To define the problem in control system paradigm, modification in the existing mathematical model is performed to incorporate the effect of Nutlin. Attractor point analysis is carried out to select the suitable domain of attraction. A two-loop negative feedback control strategy is devised to drag the system trajectories to the attractor point and to regulate cellular concentration of Nutlin, respectively. An integrated framework is constituted to incorporate the pharmacokinetic effects of Nutlin in the cancerous cells. Bifurcation analysis is also performed on the p53 model to see the conditions for p53 oscillation.

  14. Creating Effective Web-Based Learning Environments: Relevant Research and Practice

    ERIC Educational Resources Information Center

    Wijekumar, Kay

    2005-01-01

    Web-based learning environments are a great asset only if they are designed well and used as intended. The urgency to create courses in response to the growing demand for online learning has resulted in a hurried push to drop PowerPoint notes into Web-based course management systems (WBCMSs), devise an electronic quiz, put together a few…

  15. RadShield: semiautomated shielding design using a floor plan driven graphical user interface

    PubMed Central

    Wu, Dee H.; Yang, Kai; Rutel, Isaac B.

    2016-01-01

    The purpose of this study was to introduce and describe the development of RadShield, a Java‐based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air‐kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry‐based approach and a manual approach. A series of geometry‐based equations were derived giving the maximum air‐kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)‐certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air‐kerma rate was compared against the geometry‐based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry‐based approach and RadShield's approach in finding the magnitude and location of the maximum air‐kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheterization labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air‐kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X‐ray exam distribution by a medical physicist may not be sufficient to accurately select the point of maximum air‐kerma rate or barrier thickness. PACS number(s): 87.55.N, 87.52.‐g, 87.59.Bh, 87.57.‐s PMID:27685128

  16. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    PubMed

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not be sufficient to accurately select the point of maximum air-kerma rate or barrier thickness. © 2016 The Authors.

  17. Semantic Segmentation of Building Elements Using Point Cloud Hashing

    NASA Astrophysics Data System (ADS)

    Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.

    2018-05-01

    For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).

  18. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  19. Pattern database applications from design to manufacturing

    NASA Astrophysics Data System (ADS)

    Zhuang, Linda; Zhu, Annie; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    Pattern-based approaches are becoming more common and popular as the industry moves to advanced technology nodes. At the beginning of a new technology node, a library of process weak point patterns for physical and electrical verification are starting to build up and used to prevent known hotspots from re-occurring on new designs. Then the pattern set is expanded to create test keys for process development in order to verify the manufacturing capability and precheck new tape-out designs for any potential yield detractors. With the database growing, the adoption of pattern-based approaches has expanded from design flows to technology development and then needed for mass-production purposes. This paper will present the complete downstream working flows of a design pattern database(PDB). This pattern-based data analysis flow covers different applications across different functional teams from generating enhancement kits to improving design manufacturability, populating new testing design data based on previous-learning, generating analysis data to improve mass-production efficiency and manufacturing equipment in-line control to check machine status consistency across different fab sites.

  20. Algorithm design for a gun simulator based on image processing

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Wei, Ping; Ke, Jun

    2015-08-01

    In this paper, an algorithm is designed for shooting games under strong background light. Six LEDs are uniformly distributed on the edge of a game machine screen. They are located at the four corners and in the middle of the top and the bottom edges. Three LEDs are enlightened in the odd frames, and the other three are enlightened in the even frames. A simulator is furnished with one camera, which is used to obtain the image of the LEDs by applying inter-frame difference between the even and odd frames. In the resulting images, six LED are six bright spots. To obtain the LEDs' coordinates rapidly, we proposed a method based on the area of the bright spots. After calibrating the camera based on a pinhole model, four equations can be found using the relationship between the image coordinate system and the world coordinate system with perspective transformation. The center point of the image of LEDs is supposed to be at the virtual shooting point. The perspective transformation matrix is applied to the coordinate of the center point. Then we can obtain the virtual shooting point's coordinate in the world coordinate system. When a game player shoots a target about two meters away, using the method discussed in this paper, the calculated coordinate error is less than ten mm. We can obtain 65 coordinate results per second, which meets the requirement of a real-time system. It proves the algorithm is reliable and effective.

  1. Robust hopping based on virtual pendulum posture control.

    PubMed

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  2. A Rapid Python-Based Methodology for Target-Focused Combinatorial Library Design.

    PubMed

    Li, Shiliang; Song, Yuwei; Liu, Xiaofeng; Li, Honglin

    2016-01-01

    The chemical space is so vast that only a small portion of it has been examined. As a complementary approach to systematically probe the chemical space, virtual combinatorial library design has extended enormous impacts on generating novel and diverse structures for drug discovery. Despite the favorable contributions, high attrition rates in drug development that mainly resulted from lack of efficacy and side effects make it increasingly challenging to discover good chemical starting points. In most cases, focused libraries, which are restricted to particular regions of the chemical space, are deftly exploited to maximize hit rate and improve efficiency at the beginning of the drug discovery and drug development pipeline. This paper presented a valid methodology for fast target-focused combinatorial library design in both reaction-based and production-based ways with the library creating rates of approximately 70,000 molecules per second. Simple, quick and convenient operating procedures are the specific features of the method. SHAFTS, a hybrid 3D similarity calculation software, was embedded to help refine the size of the libraries and improve hit rates. Two target-focused (p38-focused and COX2-focused) libraries were constructed efficiently in this study. This rapid library enumeration method is portable and applicable to any other targets for good chemical starting points identification collaborated with either structure-based or ligand-based virtual screening.

  3. Time as a dimension of the sample design in national-scale forest inventories

    Treesearch

    Francis Roesch; Paul Van Deusen

    2013-01-01

    Historically, the goal of forest inventories has been to determine the extent of the timber resource. Predictions of how the resource was changing were made by comparing differences between successive inventories. The general view of the associated sample design was with selection probabilities based on land area observed at a discrete point in time. Time was not...

  4. HEAO C-1 gamma-ray spectrometer. [experimental design

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Willett, J. B.; Jacobson, A. S.

    1978-01-01

    The gamma-ray spectroscopy experiment to be launched on the third High Energy Astronomy Observatory (HEAO C) will perform a complete sky search for narrow gamma-ray line emission to the level of about 00001 photons/sq cm -sec for steady point sources. The design of this experiment and its performance based on testing and calibration to date are discussed.

  5. Design and Development of an Online Video Enhanced Case-Based Learning Environment for Teacher Education

    ERIC Educational Resources Information Center

    Saltan, Fatih; Özden, M. Yasar; Kiraz, Ercan

    2016-01-01

    People generally prefer to use stories in order to provide context when expressing a point. Spreading a message without context is unlikely to be meaningful. Like stories, cases have contextual meaning and allow learners to see a situation from multiple perspectives. The main purpose of the present study was to investigate how to design and…

  6. Inflatable antenna for earth observing systems

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  7. Prefabricated Roof Beams for Hardened Shelters

    DTIC Science & Technology

    1993-08-01

    beam with a composite concrete slab. Based on the results of the concept evaluation, a test program was designed and conducted to validate the steel...ultimaw, strength. The results of these tests showed that the design procedure accurately predicts the response of the ste,-confined concrete composite...BENDING OF EXTERNALLY REINFORCED CONCRETE BEAMS ........ 67 TABLE 9. SINGLE POINT LOAD BEAM TEST RESULTS

  8. Toward Fidelity: Simulation-Based Learning for School Principal Preparation and Professional Development

    ERIC Educational Resources Information Center

    Shakeshaft, Charol; Becker, Jonathan; Mann, Dale; Reardon, Martin; Robinson, Kerry

    2013-01-01

    The authors describe a simulation-based set of full-motion video scenarios which require students studying educational leadership to make decisions that solve problems presented in "A Year in the Life of a Middle School Principal." The decision points were designed to reflect the proficiencies emphasized in ISLLC [Interstate School…

  9. DFM flow by using combination between design based metrology system and model based verification at sub-50nm memory device

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-kyun; Kim, Jungchan; Choi, Jaeseung; Yang, Hyunjo; Yim, Donggyu; Kim, Jinwoong

    2007-03-01

    As the minimum transistor length is getting smaller, the variation and uniformity of transistor length seriously effect device performance. So, the importance of optical proximity effects correction (OPC) and resolution enhancement technology (RET) cannot be overemphasized. However, OPC process is regarded by some as a necessary evil in device performance. In fact, every group which includes process and design, are interested in whole chip CD variation trend and CD uniformity, which represent real wafer. Recently, design based metrology systems are capable of detecting difference between data base to wafer SEM image. Design based metrology systems are able to extract information of whole chip CD variation. According to the results, OPC abnormality was identified and design feedback items are also disclosed. The other approaches are accomplished on EDA companies, like model based OPC verifications. Model based verification will be done for full chip area by using well-calibrated model. The object of model based verification is the prediction of potential weak point on wafer and fast feed back to OPC and design before reticle fabrication. In order to achieve robust design and sufficient device margin, appropriate combination between design based metrology system and model based verification tools is very important. Therefore, we evaluated design based metrology system and matched model based verification system for optimum combination between two systems. In our study, huge amount of data from wafer results are classified and analyzed by statistical method and classified by OPC feedback and design feedback items. Additionally, novel DFM flow would be proposed by using combination of design based metrology and model based verification tools.

  10. Coarse-to-fine markerless gait analysis based on PCA and Gauss-Laguerre decomposition

    NASA Astrophysics Data System (ADS)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Carli, Marco; Neri, Alessandro; D'Alessio, Tommaso

    2005-04-01

    Human movement analysis is generally performed through the utilization of marker-based systems, which allow reconstructing, with high levels of accuracy, the trajectories of markers allocated on specific points of the human body. Marker based systems, however, show some drawbacks that can be overcome by the use of video systems applying markerless techniques. In this paper, a specifically designed computer vision technique for the detection and tracking of relevant body points is presented. It is based on the Gauss-Laguerre Decomposition, and a Principal Component Analysis Technique (PCA) is used to circumscribe the region of interest. Results obtained on both synthetic and experimental tests provide significant reduction of the computational costs, with no significant reduction of the tracking accuracy.

  11. Development of paper-based electrochemical sensors for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  12. A new construction of measurement system based on specialized microsystem design for laryngological application

    NASA Astrophysics Data System (ADS)

    Paczesny, Daniel; Mikłaszewicz, Franciszek

    2013-10-01

    This article describes the design, construction and parameters of diagnostic medical system for air humidity measurement which can be proceeded in various places of human nasal cavities and also human throat. The system can measure dynamic changes of dew point temperature (absolute value of humidity) of inspired and expired air in different places of human upper airways. During regular respiration process dew point temperature is measured in nasal cavity, middle part cavity and nasopharynx. The presented system is the next step in construction of measurement system based on specialized microsystem for laryngological application. The microsystem fabricated on silicon substrate includes microheater, microthermoresistor and interdigitated electrodes. In comparison with previously built measurement system with current version some system functionalities and measurement parameters were improved. Additionally 3D printing technology was applied for rapid prototyping a measurement system housing. Presented measurement system is set of microprocessor module with signal conditioning circuits; heated measurement head based on specialized microsystem with disposable heated pipe for air sucking from various places of upper airways; power supplier and computer application for monitoring all system parameters and presenting on-line and off-line measured results. Some example results of constructed measurement system and dew point temperature measurements during respiration cycle are presented.

  13. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  14. A new methodology for automatic detection of reference points in 3D cephalometry: A pilot study.

    PubMed

    Ed-Dhahraouy, Mohammed; Riri, Hicham; Ezzahmouly, Manal; Bourzgui, Farid; El Moutaoukkil, Abdelmajid

    2018-04-05

    The aim of this study was to develop a new method for an automatic detection of reference points in 3D cephalometry to overcome the limits of 2D cephalometric analyses. A specific application was designed using the C++ language for automatic and manual identification of 21 (reference) points on the craniofacial structures. Our algorithm is based on the implementation of an anatomical and geometrical network adapted to the craniofacial structure. This network was constructed based on the anatomical knowledge of the 3D cephalometric (reference) points. The proposed algorithm was tested on five CBCT images. The proposed approach for the automatic 3D cephalometric identification was able to detect 21 points with a mean error of 2.32mm. In this pilot study, we propose an automated methodology for the identification of the 3D cephalometric (reference) points. A larger sample will be implemented in the future to assess the method validity and reliability. Copyright © 2018 CEO. Published by Elsevier Masson SAS. All rights reserved.

  15. Astrometric Telescope Facility isolation and pointing study

    NASA Technical Reports Server (NTRS)

    Hibble, William; Allen, Terry; Jackson, Louis; Medbery, James; Self, Richard

    1988-01-01

    The Astrometric Telescope Facility (ATF), an optical telescope designed to detect extrasolar planetary systems, is scheduled to be a major user of the Space Station's Payload Pointing System (PPS). However, because the ATF has such a stringent pointing stability specification and requires + or - 180 deg roll about its line of sight, mechanisms to enhance the basic PPS capability are required. The ATF pointing performance achievable by the addition of a magnetic isolation and pointing system (MIPS) between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base was investigated. The candidate MIPS can meet the ATF requirements in the presence of a 0.01 g disturbance. It fits within the available annular region between the PPS and the ATF while meeting power and weight limitations and providing the required roll motion, payload data and power services. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes to meet ATF pointing requirements and does not provide roll about the line of sight.

  16. Students’ Algebraic Thinking Process in Context of Point and Line Properties

    NASA Astrophysics Data System (ADS)

    Nurrahmi, H.; Suryadi, D.; Fatimah, S.

    2017-09-01

    Learning of schools algebra is limited to symbols and operating procedures, so students are able to work on problems that only require the ability to operate symbols but unable to generalize a pattern as one of part of algebraic thinking. The purpose of this study is to create a didactic design that facilitates students to do algebraic thinking process through the generalization of patterns, especially in the context of the property of point and line. This study used qualitative method and includes Didactical Design Research (DDR). The result is students are able to make factual, contextual, and symbolic generalization. This happen because the generalization arises based on facts on local terms, then the generalization produced an algebraic formula that was described in the context and perspective of each student. After that, the formula uses the algebraic letter symbol from the symbol t hat uses the students’ language. It can be concluded that the design has facilitated students to do algebraic thinking process through the generalization of patterns, especially in the context of property of the point and line. The impact of this study is this design can use as one of material teaching alternative in learning of school algebra.

  17. Tissue-Engineered Fibrin-Based Heart Valve with a Tubular Leaflet Design

    PubMed Central

    Weber, Miriam; Heta, Eriona; Moreira, Ricardo; Gesche, Valentine N.; Schermer, Thomas; Frese, Julia

    2014-01-01

    The general approach in heart valve tissue engineering is to mimic the shape of the native valve in the attempt to recreate the natural haemodynamics. In this article, we report the fabrication of the first tissue-engineered heart valve (TEHV) based on a tubular leaflet design, where the function of the leaflets of semilunar heart valves is performed by a simple tubular construct sutured along a circumferential line at the root and at three single points at the sinotubular junction. The tubular design is a recent development in pericardial (nonviable) bioprostheses, which has attracted interest because of the simplicity of the construction and the reliability of the implantation technique. Here we push the potential of the concept further from the fabrication and material point of view to realize the tube-in-tube valve: an autologous, living HV with remodelling and growing capability, physiological haemocompatibility, simple to construct and fast to implant. We developed two different fabrication/conditioning procedures and produced fibrin-based constructs embedding cells from the ovine umbilical cord artery according to the two different approaches. Tissue formation was confirmed by histology and immunohistology. The design of the tube-in-tube foresees the possibility of using a textile coscaffold (here demonstrated with a warp-knitted mesh) to achieve enhanced mechanical properties in vision of implantation in the aortic position. The tube-in-tube represents an attractive alternative to the conventional design of TEHVs aiming at reproducing the valvular geometry. PMID:23829551

  18. An evaluation of inferential procedures for adaptive clinical trial designs with pre-specified rules for modifying the sample size.

    PubMed

    Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S

    2014-09-01

    Many papers have introduced adaptive clinical trial methods that allow modifications to the sample size based on interim estimates of treatment effect. There has been extensive commentary on type I error control and efficiency considerations, but little research on estimation after an adaptive hypothesis test. We evaluate the reliability and precision of different inferential procedures in the presence of an adaptive design with pre-specified rules for modifying the sampling plan. We extend group sequential orderings of the outcome space based on the stage at stopping, likelihood ratio statistic, and sample mean to the adaptive setting in order to compute median-unbiased point estimates, exact confidence intervals, and P-values uniformly distributed under the null hypothesis. The likelihood ratio ordering is found to average shorter confidence intervals and produce higher probabilities of P-values below important thresholds than alternative approaches. The bias adjusted mean demonstrates the lowest mean squared error among candidate point estimates. A conditional error-based approach in the literature has the benefit of being the only method that accommodates unplanned adaptations. We compare the performance of this and other methods in order to quantify the cost of failing to plan ahead in settings where adaptations could realistically be pre-specified at the design stage. We find the cost to be meaningful for all designs and treatment effects considered, and to be substantial for designs frequently proposed in the literature. © 2014, The International Biometric Society.

  19. Video noise reduction

    NASA Astrophysics Data System (ADS)

    Drewery, J. O.; Storey, R.; Tanton, N. E.

    1984-07-01

    A video noise and film grain reducer is described which is based on a first-order recursive temporal filter. Filtering of moving detail is avoided by inhibiting recursion in response to the amount of motion in a picture. Motion detection is based on the point-by-point power of the picture difference signal coupled with a knowledge of the noise statistics. A control system measures the noise power and adjusts the working point of the motion detector accordingly. A field trial of a manual version of the equipment at Television Center indicated that a worthwhile improvement in the quality of noisy or grainy pictures received by the viewer could be obtained. Subsequent trials of the automated version confirmed that the improvement could be maintained. Commercial equipment based on the design is being manufactured and marketed by Pye T.V.T. under license. It is in regular use on both the BBC1 and BBC2 networks.

  20. Market-Based Approaches to Managing Science Return from Planetary Missions

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Porter, David; Hanson, Robin

    1996-01-01

    A research plan is described for the design and testing of a method for the planning and negotiation of science observations. The research plan is presented in relation to the fact that the current method, which involves a hierarchical process of science working groups, is unsuitable for the planning of the Cassini mission. The research plan involves the market-based approach in which participants are allocated budgets of scheduling points. The points are used to provide an intensity of preference for the observations being scheduled. In this way, the schedulers do not have to limit themselves to solving major conflicts, but try to maximize the number of scheduling points that result in a conflict-free timeline. Incentives are provided for the participants by the fixed budget concerning their tradeoff decisions. A degree of feedback is provided in the process so that the schedulers may rebid based on the current timeline.

  1. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    PubMed Central

    Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.

    2018-01-01

    Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424

  2. Performance Analysis and Electronics Packaging of the Optical Communications Demonstrator

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Monacos, S.

    1998-01-01

    The Optical Communications Demonstrator (OCD), under development at the Jet Propulsion Laboratory (JPL), is a laboratory-based lasercomm terminal designed to validate several key technologies, primarily precision beam pointing, high bandwidth tracking, and beacon acquisition.

  3. Combined Engineering Education Based on Regional Needs Aiming for Design Education

    NASA Astrophysics Data System (ADS)

    Hama, Katsumi; Yaegashi, Kosuke; Kobayashi, Junya

    The importance of design education that cultivates integrated competences has been suggested in higher educational institutions in fields of engineering in relation to quality assurance of engineering education. However, it is also pointed out to lay stress on cooperative education in collaboration with the community because there is a limit to correspond to the design education only by a group of educational institutions. This paper reports the outline of the practical engineering education, which is executing in the project learning of Hakodate National College of Technology, based on regional needs and the result of the activity as a model of education program for fusion and combination.

  4. A Module Language for Typing by Contracts

    NASA Technical Reports Server (NTRS)

    Glouche, Yann; Talpin, Jean-Pierre; LeGuernic, Paul; Gautier, Thierry

    2009-01-01

    Assume-guarantee reasoning is a popular and expressive paradigm for modular and compositional specification of programs. It is becoming a fundamental concept in some computer-aided design tools for embedded system design. In this paper, we elaborate foundations for contract-based embedded system design by proposing a general-purpose module language based on a Boolean algebra allowing to define contracts. In this framework, contracts are used to negotiate the correctness of assumptions made on the definition of a component at the point where it is used and provides guarantees to its environment. We illustrate this presentation with the specification of a simplified 4-stroke engine model.

  5. Hybrid Propulsion Technology Program, phase 1. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The study program was contracted to evaluate concepts of hybrid propulsion, select the most optimum, and prepare a conceptual design package. Further, this study required preparation of a technology definition package to identify hybrid propulsion enabling technologies and planning to acquire that technology in Phase 2 and demonstrate that technology in Phase 3. Researchers evaluated two design philosophies for Hybrid Rocket Booster (HRB) selection. The first is an ASRM modified hybrid wherein as many components/designs as possible were used from the present Advanced Solid Rocket Motor (ASRM) design. The second was an entirely new hybrid optimized booster using ASRM criteria as a point of departure, i.e., diameter, thrust time curve, launch facilities, and external tank attach points. Researchers selected the new design based on the logic of optimizing a hybrid booster to provide NASA with a next generation vehicle in lieu of an interim advancement over the ASRM. The enabling technologies for hybrid propulsion are applicable to either and vehicle design may be selected at a downstream point (Phase 3) at NASA's discretion. The completion of these studies resulted in ranking the various concepts of boosters from the RSRM to a turbopump fed (TF) hybrid. The scoring resulting from the Figure of Merit (FOM) scoring system clearly shows a natural growth path where the turbopump fed solid liquid staged combustion hybrid provides maximized payload and the highest safety, reliability, and low life cycle costing.

  6. Monte Carlo Simulation of THz Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Blakey, P.

    1997-01-01

    Schottky Barrier diode frequency multipliers are critical components in submillimeter and Thz space based earth observation systems. As the operating frequency of these multipliers has increased, the agreement between design predictions and experimental results has become poorer. The multiplier design is usually based on a nonlinear model using a form of harmonic balance and a model for the Schottky barrier diode. Conventional voltage dependent lumped element models do a poor job of predicting THz frequency performance. This paper will describe a large signal Monte Carlo simulation of Schottky barrier multipliers. The simulation is a time dependent particle field Monte Carlo simulation with ohmic and Schottky barrier boundary conditions included that has been combined with a fixed point solution for the nonlinear circuit interaction. The results in the paper will point out some important time constants in varactor operation and will describe the effects of current saturation and nonlinear resistances on multiplier operation.

  7. Conditional analysis of mixed Poisson processes with baseline counts: implications for trial design and analysis.

    PubMed

    Cook, Richard J; Wei, Wei

    2003-07-01

    The design of clinical trials is typically based on marginal comparisons of a primary response under two or more treatments. The considerable gains in efficiency afforded by models conditional on one or more baseline responses has been extensively studied for Gaussian models. The purpose of this article is to present methods for the design and analysis of clinical trials in which the response is a count or a point process, and a corresponding baseline count is available prior to randomization. The methods are based on a conditional negative binomial model for the response given the baseline count and can be used to examine the effect of introducing selection criteria on power and sample size requirements. We show that designs based on this approach are more efficient than those proposed by McMahon et al. (1994).

  8. Efficiency enhancement of optimized Latin hypercube sampling strategies: Application to Monte Carlo uncertainty analysis and meta-modeling

    NASA Astrophysics Data System (ADS)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad; Janssen, Hans

    2015-02-01

    The majority of literature regarding optimized Latin hypercube sampling (OLHS) is devoted to increasing the efficiency of these sampling strategies through the development of new algorithms based on the combination of innovative space-filling criteria and specialized optimization schemes. However, little attention has been given to the impact of the initial design that is fed into the optimization algorithm, on the efficiency of OLHS strategies. Previous studies, as well as codes developed for OLHS, have relied on one of the following two approaches for the selection of the initial design in OLHS: (1) the use of random points in the hypercube intervals (random LHS), and (2) the use of midpoints in the hypercube intervals (midpoint LHS). Both approaches have been extensively used, but no attempt has been previously made to compare the efficiency and robustness of their resulting sample designs. In this study we compare the two approaches and show that the space-filling characteristics of OLHS designs are sensitive to the initial design that is fed into the optimization algorithm. It is also illustrated that the space-filling characteristics of OLHS designs based on midpoint LHS are significantly better those based on random LHS. The two approaches are compared by incorporating their resulting sample designs in Monte Carlo simulation (MCS) for uncertainty propagation analysis, and then, by employing the sample designs in the selection of the training set for constructing non-intrusive polynomial chaos expansion (NIPCE) meta-models which subsequently replace the original full model in MCSs. The analysis is based on two case studies involving numerical simulation of density dependent flow and solute transport in porous media within the context of seawater intrusion in coastal aquifers. We show that the use of midpoint LHS as the initial design increases the efficiency and robustness of the resulting MCSs and NIPCE meta-models. The study also illustrates that this relative improvement decreases with increasing number of sample points and input parameter dimensions. Since the computational time and efforts for generating the sample designs in the two approaches are identical, the use of midpoint LHS as the initial design in OLHS is thus recommended.

  9. Mode Matching for Optical Antennas

    NASA Astrophysics Data System (ADS)

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2017-11-01

    The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  10. Research on reform plan of civil engineering adult education graduation design

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Sun, Shengnan; Cui, Shicai

    2017-12-01

    As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.

  11. Hardware and Software Design of FPGA-based PCIe Gen3 interface for APEnet+ network interconnect system

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2015-12-01

    In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.

  12. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  13. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  14. Mitigating the Backlash: US Airpower as a Military Instrument of Policy

    DTIC Science & Technology

    2003-06-01

    maintain their preeminence by employing strategies based more on benevolence than coercion.”31 This is a key point , as it marks a line of departure...weapons are easily defeated with smoke or fire in the target area (to defeat laser designators and thermal imaging), by adequate concealment and...create decoy surface-to-air missiles (SAMs) and radars, some quite sophisticated, and to employ previously “strategic” (immobile, point -defense

  15. Optimal design of a beam-based dynamic vibration absorber using fixed-points theory

    NASA Astrophysics Data System (ADS)

    Hua, Yingyu; Wong, Waion; Cheng, Li

    2018-05-01

    The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.

  16. PDEs on moving surfaces via the closest point method and a modified grid based particle method

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ruuth, S. J.

    2016-05-01

    Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method (Ruuth and Merriman (2008) [20]) is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose solving PDEs on moving surfaces using a combination of the CPM and a modification of the grid based particle method (Leung and Zhao (2009) [12]). The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. Our modification of the GBPM introduces a reconstruction step into the original method to ensure that all the grid points within a computational tube surrounding the surface are active. We present a number of examples to illustrate the numerical convergence properties of our combined method. Experiments for advection-diffusion equations that are strongly coupled to the velocity of the surface are also presented.

  17. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.

    PubMed

    Omer, Travis; Intes, Xavier; Hahn, Juergen

    2015-01-01

    Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.

  18. Decoding Facial Esthetics to Recreate an Esthetic Hairline: A Method Which Includes Forehead Curvature.

    PubMed

    Garg, Anil K; Garg, Seema

    2017-01-01

    The evidence suggests that our perception of physical beauty is based on how closely the features of one's face reflect phi (the golden ratio) in their proportions. By that extension, it must certainly be possible to use a mathematical parameter to design an anterior hairline in all faces. To establish a user-friendly method to design an anterior hairline in cases of male pattern alopecia. We need a flexible measuring tape and skin marker. A reference point A (glabella) is taken in between eyebrows. Mark point E, near the lateral canthus, 8 cm horizontal on either side from the central point A. A mid-frontal point (point B) is marked 8 cm from point A on the forehead in a mid-vertical plane. The frontotemporal points (C and C') are marked on the frontotemporal area, 8 cm in a horizontal plane from point B and 8 cm in a vertical plane from point E. The temporal peak points (D and D') are marked on the line joining the frontotemporal point C to the lateral canthus point E, slightly more than halfway toward lateral canthus, usually 5 cm from the frontotemporal point C. This line makes an anterior border of the temporal triangle. We have conducted a study with 431 cases of male pattern alopecia. The average distance of the mid-frontal point from glabella was 7.9 cm. The patient satisfaction reported was 94.7%. Our method gives a skeletal frame of the anterior hairline with minimal criteria, with no need of visual imagination and experience of the surgeon. It automatically takes care of the curvature of the forehead and is easy to use for a novice surgeon.

  19. Integrating opto-thermo-mechanical design tools: open engineering's project presentation

    NASA Astrophysics Data System (ADS)

    De Vincenzo, P.; Klapka, Igor

    2017-11-01

    An integrated numerical simulation package dedicated to the analysis of the coupled interactions of optical devices is presented. To reduce human interventions during data transfers, it is based on in-memory communications between the structural analysis software OOFELIE and the optical design application ZEMAX. It allows the automated enhancement of the existing optical design with information related to the deformations of optical surfaces due to thermomechanical solicitations. From the knowledge of these deformations, a grid of points or a decomposition based on Zernike polynomials can be generated for each surface. These data are then applied to the optical design. Finally, indicators can be retrieved from ZEMAX in order to compare the optical performances with those of the system in its nominal configuration.

  20. Trajectory design for Saturnian Ocean Worlds orbiters using multidimensional Poincaré maps

    NASA Astrophysics Data System (ADS)

    Davis, Diane Craig; Phillips, Sean M.; McCarthy, Brian P.

    2018-02-01

    Missions based on low-energy orbits in the vicinity of planetary moons, such as Titan or Enceladus, involve significant end-to-end trajectory design challenges due to the gravitational effects of the distant larger primary. To address these challenges, the current investigation focuses on the visualization and use of multidimensional Poincaré maps to perform preliminary design of orbits with significant out-of-plane components, including orbits that provide polar coverage. Poincaré maps facilitate the identification of families of solutions to a given orbit problem and provide the ability to easily respond to changing inputs and requirements. A visual-based design process highlights a variety of trajectory options near Saturn's ocean worlds, including both moon-centered orbits and libration point orbits.

  1. Recombination monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S. Y.; Blaskiewicz, M.

    This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au 78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au 78+ beam from the Au 79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au 78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machinemore » operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.« less

  2. Optimized Reduction of Unsteady Radial Forces in a Singlechannel Pump for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Cho, Bo-Min; Choi, Young-Seok; Lee, Kyoung-Yong; Peck, Jong-Hyeon; Kim, Seon-Chang

    2016-11-01

    A single-channel pump for wastewater treatment was optimized to reduce unsteady radial force sources caused by impeller-volute interactions. The steady and unsteady Reynolds- averaged Navier-Stokes equations using the shear-stress transport turbulence model were discretized by finite volume approximations and solved on tetrahedral grids to analyze the flow in the single-channel pump. The sweep area of radial force during one revolution and the distance of the sweep-area center of mass from the origin were selected as the objective functions; the two design variables were related to the internal flow cross-sectional area of the volute. These objective functions were integrated into one objective function by applying the weighting factor for optimization. Latin hypercube sampling was employed to generate twelve design points within the design space. A response-surface approximation model was constructed as a surrogate model for the objectives, based on the objective function values at the generated design points. The optimized results showed considerable reduction in the unsteady radial force sources in the optimum design, relative to those of the reference design.

  3. Discovery deep space optical communications (DSOC) transceiver

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  4. Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet

    NASA Astrophysics Data System (ADS)

    Putra Adnan, F.; Hartono, Firman

    2018-04-01

    In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.

  5. Risk of the residents, infrastructure and water bodies by flash floods and sediment transport - assessment for scale of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Dostál, Tomáš; Krása, Josef; Bauer, Miroslav; Strouhal, Luděk; Jáchymová, Barbora; Devátý, Jan; David, Václav; Koudelka, Petr; Dočkal, Martin

    2015-04-01

    Pluvial and flash floods, related to massive sediment transport become phenomenon nowadays, under conditions of climate changes. Storm events, related to material damages appear at unexpected places and their effective control is only possible in form of prevention. To apply preventive measures, there have to be defined localities with reasonable reliability, which are endangered by surface runoff and sediment transport produced in the subcatchments, often at agriculturally used landscape. Classification of such localities, concerning of potential damages and magnitude of sediment transport shall be also included within the analyses, to design control measures effectively. Large scale project for whole territory of the Czech Republic (ca 80.000 km2) has therefore been granted b the Ministry of Interior of the Czech Republic, with the aim to define critical points, where interaction between surface runoff connected to massive sediment transport and infrastructure or vulnerable water bodies can occur and to classify them according to potential risk. Advanced GIS routines, based on analyses of land use, soil conditions and morphology had been used to determine the critical points - points, where significant surface runoff occurs and interacts with infrastructure and vulnerable water bodies, based exclusively on the contributing area - flow accumulation. In total, ca 150.000 critical points were determined within the Czech Republic. For each of critical points, its subcatchment had then been analyzed in detail, concerning of soil loss and sediment transport, using simulation model WATEM/SEDEM. The results were used for classification of potential risk of individual critical points, based on mean soil loss within subcatchment, total sediment transport trough the outlet point and subcatchment area. The classification has been done into 5 classes. The boundaries were determined by calibration survey and statistical analysis, performed at three experimental catchments area of 100 km2 each. Concentrated flow trajectory had then been analyzed trough urban areas and potential vulnerability of incident structures has been determined. Total hazard of infrastructure has been classified again into 5 categories for each individual critical point using risk matrix, combining threat and vulnerability features. Generalized control measures (changes in land-use, changes in agrotechnology, diverting linear measures or retention structures) were then introduced into mathematical model WATEM/SEDEM in number of scenarios, to allow effective design of control measures against surface runoff and sediment transport for each individual critical point. Result of the project will be public available by WEB application and shall be useful for government, local decision makers, for planning of development of communities and also optimization of effective design of flash floods control measures. The research has been supported by the research project VG20122015092.

  6. The prediction of the flash point for binary aqueous-organic solutions.

    PubMed

    Liaw, Horng-Jang; Chiu, Yi-Yu

    2003-07-18

    A mathematical model, which may be used for predicting the flash point of aqueous-organic solutions, has been proposed and subsequently verified by experimentally-derived data. The results reveal that this model is able to precisely predict the flash point over the entire composition range of binary aqueous-organic solutions by way of utilizing the flash point data pertaining to the flammable component. The derivative of flash point with respect to composition (solution composition effect upon flash point) can be applied to process safety design/operation in order to identify as to whether the dilution of a flammable liquid solution with water is effective in reducing the fire and explosion hazard of the solution at a specified composition. Such a derivative equation was thus derived based upon the flash point prediction model referred to above and then verified by the application of experimentally-derived data.

  7. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. D.; Jogler, T.; Dumm, J.

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  8. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  9. 40 CFR 131.11 - Criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scientific rationale and must contain sufficient parameters or constituents to protect the designated use... State must provide information identifying the method by which the State intends to regulate point... scientifically defensible methods; (2) Establish narrative criteria or criteria based upon biomonitoring methods...

  10. 40 CFR 131.11 - Criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... scientific rationale and must contain sufficient parameters or constituents to protect the designated use... State must provide information identifying the method by which the State intends to regulate point... scientifically defensible methods; (2) Establish narrative criteria or criteria based upon biomonitoring methods...

  11. 40 CFR 131.11 - Criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scientific rationale and must contain sufficient parameters or constituents to protect the designated use... State must provide information identifying the method by which the State intends to regulate point... scientifically defensible methods; (2) Establish narrative criteria or criteria based upon biomonitoring methods...

  12. 40 CFR 131.11 - Criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scientific rationale and must contain sufficient parameters or constituents to protect the designated use... State must provide information identifying the method by which the State intends to regulate point... scientifically defensible methods; (2) Establish narrative criteria or criteria based upon biomonitoring methods...

  13. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  14. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  15. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  16. Traffic data collection and anonymous vehicle detection using wireless sensor networks.

    DOT National Transportation Integrated Search

    2012-05-01

    New traffic sensing devices based on wireless sensing technologies were designed and tested. Such devices encompass a cost-effective, battery-free, and energy self-sustained architecture for real-time traffic measurement over distributed points in a ...

  17. Designing and Implementing a Constructivist Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Blakely, Alan

    2000-01-01

    Describes a constructivist chemistry laboratory approach based on students' personal experiences where students had the opportunity to develop their own experimental processes. Points out both the fruitfulness and difficulties of using a graduate student as a teaching assistant. (YDS)

  18. Design of barrier bucket kicker control system

    NASA Astrophysics Data System (ADS)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  19. Pin routability and pin access analysis on standard cells for layout optimization

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wang, Jun; Zhu, ChengYu; Xu, Wei; Li, Shuai; Lin, Eason; Ou, Odie; Lai, Ya-Chieh; Qu, Shengrui

    2018-03-01

    At advanced process nodes, especially at sub-28nm technology, pin accessibility and routability of standard cells has become one of the most challenging design issues due to the limited router tracks and the increased pin density. If this issue can't be found and resolved during the cell design stage, the pin access problem will be very difficult to be fixed in implementation stage and will make the low efficiency for routing. In this paper, we will introduce a holistic approach for the pin accessibility scoring and routability analysis. For accessibility, the systematic calculator which assigns score for each pin will search the available access points, consider the surrounded router layers, basic design rule and allowed via geometry. Based on the score, the "bad" pins can be found and modified. On pin routability analysis, critical pin points (placing via on this point would lead to failed via insertion) will be searched out for either layout optimization guide or set as OBS for via insertion blocking. By using this pin routability and pin access analysis flow, we are able to improve the library quality and performance.

  20. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    DOE PAGES

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; ...

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reducemore » the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.« less

  1. Design Methodology of an Equalizer for Unipolar Non Return to Zero Binary Signals in the Presence of Additive White Gaussian Noise Using a Time Delay Neural Network on a Field Programmable Gate Array

    PubMed Central

    Pérez Suárez, Santiago T.; Travieso González, Carlos M.; Alonso Hernández, Jesús B.

    2013-01-01

    This article presents a design methodology for designing an artificial neural network as an equalizer for a binary signal. Firstly, the system is modelled in floating point format using Matlab. Afterward, the design is described for a Field Programmable Gate Array (FPGA) using fixed point format. The FPGA design is based on the System Generator from Xilinx, which is a design tool over Simulink of Matlab. System Generator allows one to design in a fast and flexible way. It uses low level details of the circuits and the functionality of the system can be fully tested. System Generator can be used to check the architecture and to analyse the effect of the number of bits on the system performance. Finally the System Generator design is compiled for the Xilinx Integrated System Environment (ISE) and the system is described using a hardware description language. In ISE the circuits are managed with high level details and physical performances are obtained. In the Conclusions section, some modifications are proposed to improve the methodology and to ensure portability across FPGA manufacturers.

  2. A Comparison of Three IRT Approaches to Examinee Ability Change Modeling in a Single-Group Anchor Test Design

    ERIC Educational Resources Information Center

    Paek, Insu; Park, Hyun-Jeong; Cai, Li; Chi, Eunlim

    2014-01-01

    Typically a longitudinal growth modeling based on item response theory (IRT) requires repeated measures data from a single group with the same test design. If operational or item exposure problems are present, the same test may not be employed to collect data for longitudinal analyses and tests at multiple time points are constructed with unique…

  3. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  4. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  5. Ares Upper Stage Processes to Implement Model Based Design - Going Paperless

    NASA Technical Reports Server (NTRS)

    Gregory, Melanie

    2012-01-01

    Computer-Aided Design (CAD) has all but replaced the drafting board for design work. Increased productivity and accuracy should be natural outcomes of using CAD. Going from paper drawings only to paper drawings based on CAD models to CAD models and no drawings, or Model Based Design (MBD), is a natural progression in today?s world. There are many advantages to MBD over traditional design methods. To make the most of those advantages, standards should be in place and the proper foundation should be laid prior to transitioning to MBD. However, without a full understanding of the implications of MBD and the proper control of the data, the advantages are greatly diminished. Transitioning from a paper design world to an electronic design world means re-thinking how information gets controlled at its origin and distributed from one point to another. It means design methodology is critical, especially for large projects. It means preparation of standardized parts and processes as well as strong communication between all parties in order to maximize the benefits of MBD.

  6. Development of a percentile based three-dimensional model of the buttocks in computer system

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; He, Xueli; Li, Hongpeng

    2016-05-01

    There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software (Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50th, 95th, 99th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.

  7. Development of Prototype Outcomes-Based Training Modules for Aesthetic Dentistry

    ERIC Educational Resources Information Center

    Andres, Maricar Joy T.; Borabo, Milagros L.

    2015-01-01

    The objective of the study is to know the essential components of Aesthetic Dentistry that will be a basis for prototype Outcomes-based training modules. Using a 5-point Likert scale, the researcher-made questionnaire assessed the different elements of Aesthetic Dentistry which are needed in the designing of the training module, the manner of…

  8. Cognitive Style and Self-Efficacy: Predicting Student Success in Online Distance Education

    ERIC Educational Resources Information Center

    DeTure, Monica

    2004-01-01

    This study was designed to identify those learner attributes that may be used to predict student success (in terms of grade point average) in a Web-based distance education setting. Students enrolled in six Web-based, general education distance education courses at a community college were asked to complete the Group Embedded Figures Test for…

  9. Supporting Situated Learning Based on QR Codes with Etiquetar App: A Pilot Study

    ERIC Educational Resources Information Center

    Camacho, Miguel Olmedo; Pérez-Sanagustín, Mar; Alario-Hoyos, Carlos; Soldani, Xavier; Kloos, Carlos Delgado; Sayago, Sergio

    2014-01-01

    EtiquetAR is an authoring tool for supporting the design and enactment of situated learning experiences based on QR tags. Practitioners use etiquetAR for creating, managing and personalizing collections of QR codes with special properties: (1) codes can have more than one link pointing at different multimedia resources, (2) codes can be updated…

  10. Extending Research on a Computer-Based Flashcard Reading Intervention to Postsecondary Students with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Cazzell, Samantha; Browarnik, Brooke; Skinner, Amy; Skinner, Christopher; Cihak, David; Ciancio, Dennis; McCurdy, Merilee; Forbes, Bethany

    2016-01-01

    A multiple-baseline across-students design was used to evaluate the effects of a computer-based flashcard reading (CFR) intervention, developed using Microsoft PowerPoint software, on students' ability to read health-related words within 3 seconds. The students were three adults with intellectual disabilities enrolled in a postsecondary college…

  11. A Comparison of Model-Based and Design-Based Impact Evaluations of Interventions in Developing Countries

    ERIC Educational Resources Information Center

    Hansen, Henrik; Klejnstrup, Ninja Ritter; Andersen, Ole Winckler

    2013-01-01

    There is a long-standing debate as to whether nonexperimental estimators of causal effects of social programs can overcome selection bias. Most existing reviews either are inconclusive or point to significant selection biases in nonexperimental studies. However, many of the reviews, the so-called "between-studies," do not make direct…

  12. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    ERIC Educational Resources Information Center

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  13. Now That Your Students Have Created Web-Based Digital Portfolios, How Do You Evaluate Them?

    ERIC Educational Resources Information Center

    Goldsby, Dianne; Fazal, Minaz

    2001-01-01

    Discussion of the growing use of digital portfolios for student assessment focuses on a program at Iona College to develop a four-point rubric to evaluate students' Web-based digital portfolios. Considers form (design and aesthetics), function and usability (ease of use), and components (presence and communication of the required samples).…

  14. Structure/function analysis of cotton-based peptide-cellulose conjugates: spatiotemporal/kinetic assessment of protease aerogels compared to nanocrystalline and paper cellulose

    USDA-ARS?s Scientific Manuscript database

    The growing incidence of chronic wounds in the world population has prompted increased interest in chronic wound dressings with protease-modulating activity and protease point of care sensors to treat and enable monitoring of elevated protease-based wound pathology. However, the overall design featu...

  15. A Cognitively-Based Communication Curriculum for Persons with Multiple Handicaps Functioning between 0-24 Months Developmentally.

    ERIC Educational Resources Information Center

    McMullen, Victoria B.

    This curriculum provides a sequence of activities designed to help develop cognitive and communication skills in severely and profoundly multi-handicapped individuals who are functioning between 0 and 24 months. Based on the principles that communication begins at birth and that educational programming must begin at the point where the handicapped…

  16. Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model.

    PubMed

    Sarkar, Mayukh; Ghosal, Prasun; Mohanty, Saraju P

    2017-09-01

    Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.

  17. Bottlenecks in the development of topical analgesics: molecule, formulation, dose-finding, and phase III design.

    PubMed

    Keppel Hesselink, Jan M; Kopsky, David J; Stahl, Stephen M

    2017-01-01

    Topical analgesics can be defined as topical formulations containing analgesics or co-analgesics. Since 2000, interest in such formulations has been on the rise. There are, however, four critical issues in the research and development phases of topical analgesics: 1) The selection of the active pharmaceutical ingredient. Analgesics and co-analgesics differ greatly in their mechanism of action, and it is required to find the most optimal fit between such mechanisms of action and the pathogenesis of the targeted (neuropathic) pain. 2) Issues concerning the optimized formulation. For relevant clinical efficacy, specific characteristics for the selected vehicle (eg, cream base or gel base) are required, depending on the physicochemical characteristics of the active pharmaceutical ingredient(s) to be delivered. 3) Well-designed phase II dose-finding studies are required, and, unfortunately, such trials are missing. In fact, we will demonstrate that underdosing is one of the major hurdles to detect meaningful and statistically relevant clinical effects of topical analgesics. 4) Selection of clinical end points and innovatively designed phase III trials. End point selection can make or break a trial. For instance, to include numbness together with tingling as a composite end point for neuropathic pain seems stretching the therapeutic impact of an analgesic too far. Given the fast onset of action of topical analgesics (usually within 30 minutes), enrichment designs might enhance the chances for success, as the placebo response might decrease. Topical analgesics may become promising inroads for the treatment of neuropathic pain, once sufficient attention is given to these four key aspects.

  18. Four-Point-Latching Microactuator

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Yang, Eui-Hyeok

    2008-01-01

    An experimental inchworm-type linear microactuator is depicted. This microactuator is a successor to one described in "MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator" (NPO-30672), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 68. Both actuators are based on the principle of using a piezoelectric transducer operated in alternation with electrostatically actuated clutches to cause a slider to move in small increments. However, the design of the present actuator incorporates several improvements over that of the previous one. The most readily apparent improvement is in geometry and, consequently, in fabrication: In the previous actuator, the inchworm motion was perpendicular to the broad faces of a flat silicon wafer on which the actuator was fabricated, and fabrication involved complex processes to form complex three-dimensional shapes in and on the wafer. In the present actuator, the inchworm motion is parallel to the broad faces of a wafer on which it is fabricated. The components needed to produce the in-plane motion are nearly planar in character and, consequently, easier to fabricate. Other advantages of the present design are described, including that the previous actuator contained two clutches (denoted 'holders' in the cited prior article), the present actuator contains four clutches. The operational sequence of the previous two-clutch actuator is similar. However, the two-clutch configuration is susceptible to tilt of the slider and a consequent large increase in drag. Hence, the primary operational advantages of the present four-point-latching design over the prior two-point-latching design are less drag and greater control robustness arising from greater stability of the orientation of the slider.

  19. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  20. Airspace Designations and Reporting Points (1997)

    DOT National Transportation Integrated Search

    1997-09-10

    This order, published yearly, provides a listing of all airspace designations : and reporting points, and pending amendments to those designations and reporting : points, established by the Federal Aviation Administration (FAA) under the : authority ...

  1. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  2. The use of experimental design to find the operating maximum power point of PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  3. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    NASA Astrophysics Data System (ADS)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers, accelerometers, etc. This low-cost, customizable platform provides researchers the ability to design immediately responsive, repeatable, high resolution experiments.

  4. Quasi-minimal active disturbance rejection control of MIMO perturbed linear systems based on differential neural networks and the attractive ellipsoid method.

    PubMed

    Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac

    2017-11-01

    This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. DSS 13 Microprocessor Antenna Controller

    NASA Technical Reports Server (NTRS)

    Gosline, R. M.

    1984-01-01

    A microprocessor based antenna controller system developed as part of the unattended station project for DSS 13 is described. Both the hardware and software top level designs are presented and the major problems encounted are discussed. Developments useful to related projects include a JPL standard 15 line interface using a single board computer, a general purpose parser, a fast floating point to ASCII conversion technique, and experience gained in using off board floating point processors with the 8080 CPU.

  6. Design of a Wireless EEG System for Point-of-Care Applications.

    PubMed

    Jia, Wenyan; Bai, Yicheng; Sun, Mingui; Sclabassi, Robert J

    2013-04-01

    This study aims to develop a wireless EEG system to provide critical point-of-care information about brain electrical activity. A novel dry electrode, which can be installed rapidly, is used to acquire EEG from the scalp. A wireless data link between the electrode and a data port (i.e., a smartphone) is established based on the Bluetooth technology. A prototype of this system has been implemented and its performance in acquiring EEG has been evaluated.

  7. Improvement of Automated POST Case Success Rate Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Zwack, Matthew R.; Dees, Patrick D.

    2017-01-01

    During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal [1]. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases [2]. Additional work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points [3]. The conclusion of the previous work illustrated the utility of the graph theory approach for completing a DOE through POST. However, this approach was still dependent upon the use of random repetitions to generate seed points for the graph. As noted in [3], only 8% of these random repetitions resulted in converged trajectories. This ultimately affects the ability of the random reps method to confidently approach the global optima for a given vehicle case in a reasonable amount of time. With only an 8% pass rate, tens or hundreds of thousands of reps may be needed to be confident that the best repetition is at least close to the global optima. However, typical design study time constraints require that fewer repetitions be attempted, sometimes resulting in seed points that have only a handful of successful completions. If a small number of successful repetitions are used to generate a seed point, the graph method may inherit some inaccuracies as it chains DOE cases from the non-global-optimal seed points. This creates inherent noise in the graph data, which can limit the accuracy of the resulting surrogate models. For this reason, the goal of this work is to improve the seed point generation method and ultimately the accuracy of the resulting POST surrogate model. The work focuses on increasing the case pass rate for seed point generation.

  8. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C.; Moisen, Gretchen G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent. ?? 2007 by the Ecological Society of America.

  9. A magnetic isolation and pointing system for the astrometric telescope facility

    NASA Technical Reports Server (NTRS)

    Smith, Marcie; Hibble, William; Wolke, Patrick J.

    1993-01-01

    The astrometric telescope facility (ATF), a 20-meter telescope designed for long-term detection and observation of planetary systems outside of the solar system, is scheduled to be a major user of the Space Station's payload pointing system (PPS) capabilities. However, because the ATF has such a stringent pointing stability specification (as low as 0.01 arcsec error over the frequency range from 5 to 200 hertz) and requires +/- 180-degree roll rotation around the telescope's line of sight, the ATF's utilization of the PPS requires the addition of a mechanism or mechanisms to enhance the basic PPS capabilities. The results of a study conducted to investigate the ATF pointing performance achievable by the addition of a magnetic isolation and pointing (MIPS) system between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base are presented. In addition, the study produced requirements on magnetic force and gap motion as a function of the level of Space Station disturbance. These results were used to support the definition of a candidate MIPS. Pointing performance results from the study indicate that a MIPS can meet the ATF pointing requirements in the presence of a PPS base transitional acceleration of up to 0.018g, with reasonable restrictions placed on the isolation and pointing bandwidths. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes (less than 0.1 hertz) to meet ATF pointing requirements. The candidate MIPS is based on an assumed base translational disturbance of 0.01g. The system fits within the available annular region between the PPS and ATF while meeting power and weight limitations and providing the required payload roll motion. Payload data and power services are provided by noncontacting transfer devices.

  10. Design data for radars based on 13.9 GHz Skylab scattering coefficient measurements

    NASA Technical Reports Server (NTRS)

    Moore, R. K. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Measurements made at 13.9 GHz with the radar scatterometer on Skylab have been combined to produce median curves of the variation of scattering coefficient with angle of incidence out to 45 deg. Because of the large number of observations, and the large area averaged for each measured data point, these curves may be used as a new design base for radars. A reasonably good fit at larger angles is obtained using the theoretical expression based on an exponential height correlation function and also using Lambert's law. For angles under 10 deg, a different fit based on the exponential correlation function, and a fit based on geometric optics expressions are both reasonably valid.

  11. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  12. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  13. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  14. Neurosurgery certification in member societies of the World Federation of Neurosurgical Societies: Asia.

    PubMed

    Gasco, Jaime; Braun, Jonathan D; McCutcheon, Ian E; Black, Peter M

    2011-01-01

    To objectively compare the complexity and diversity of the certification process in neurological surgery in member societies of the World Federation of Neurosurgical Societies. This study centers in continental Asia. We provide here an analysis based on the responses provided to a 13-item survey. The data received were analyzed, and three Regional Complexity Scores (RCS) were designed. To compare national board experience, eligibility requirements for access to the certification process, and the obligatory nature of the examinations, an RCS-Organizational score was created (20 points maximum). To analyze the complexity of the examination, an RCS-Components score was designed (20 points maximum). The sum of both is presented in a Global RCS score. Only those countries that responded to the survey and presented nationwide homogeneity in the conduction of neurosurgery examinations could be included within the scoring system. In addition, a descriptive summary of the certification process per responding society is also provided. On the basis of the data provided by our RCS system, the highest global RCS was achieved by South Korea and Malaysia (21/40 points) followed by the joint examination of Singapore and Hong-Kong (FRCS-Ed) (20/40 points), Japan (17/40 points), the Philippines (15/40 points), and Taiwan (13 points). The experience from these leading countries should be of value to all countries within Asia. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Double wedge prism based beam deflector for precise laser beam steering

    NASA Astrophysics Data System (ADS)

    Tyszka, Krzysztof; Dobosz, Marek; Bilaszewski, Tomasz

    2018-02-01

    Aiming to increase laser beam pointing stability required in interferometric measurements, we designed a laser beam deflector intended for active laser beam stabilization systems. The design is based on two wedge-prisms: the deflecting wedge driven by a tilting piezo-platform and the fixed wedge to compensate initial beam deflection. Our design allows linear beam steering, independently in the horizontal or vertical direction, with resolution of less than 1 μrad in a range of more than 100 μrad, and no initial deflection of the beam. Moreover, the ratio of the output beam deflection angle and the wedge tilt angle is less than 0.1; therefore, the noise influence is significantly reduced in comparison to standard mirror-based deflectors. The theoretical analyses support the designing process and can serve as a guide to wedge-prism selection. The experimental results are in agreement with theory and confirm the advantages of the presented double wedge system.

  16. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  17. An ultra low power ECG signal processor design for cardiovascular disease detection.

    PubMed

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2015-08-01

    This paper presents an ultra low power ASIC design based on a new cardiovascular disease diagnostic algorithm. This new algorithm based on forward search is designed for real time ECG signal processing. The algorithm is evaluated for Physionet PTB database from the point of view of cardiovascular disease diagnosis. The failed detection rate of QRS complex peak detection of our algorithm ranges from 0.07% to 0.26% for multi lead ECG signal. The ASIC is designed using 130-nm CMOS low leakage process technology. The area of ASIC is 1.21 mm(2). This ASIC consumes only 96 nW at an operating frequency of 1 kHz with a supply voltage of 0.9 V. Due to ultra low power consumption, our proposed ASIC design is most suitable for energy efficient wearable ECG monitoring devices.

  18. Reliability optimization design of the gear modification coefficient based on the meshing stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Qianqian; Wang, Hui

    2018-04-01

    Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.

  19. Study of a Secondary Power System Based on an Intermediate Bus Converter and POLs

    NASA Astrophysics Data System (ADS)

    Santoja, Almudena; Fernandez, Arturo; Tonicello, Ferdinando

    2014-08-01

    Secondary power systems in satellites are everything but standard nowadays. All sorts of options can be found and, in the end, a new custom design is used in most of the cases. Even though this might be interesting in some specific cases, for most of them it would be more convenient to have a straightforward system based on standard components. One of the options to achieve this is to design the secondary power system with an Intermediate Bus Converter (IBC) and Point of Load converters (POLs). This paper presents a study of this architecture and some experimental verifications to establish some basic rules devoted to achieve an optimum design of this system.

  20. Application of two procedures for dual-point design of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.

    1994-01-01

    Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.

  1. Simulator scene display evaluation device

    NASA Technical Reports Server (NTRS)

    Haines, R. F. (Inventor)

    1986-01-01

    An apparatus for aligning and calibrating scene displays in an aircraft simulator has a base on which all of the instruments for the aligning and calibrating are mounted. Laser directs beam at double right prism which is attached to pivoting support on base. The pivot point of the prism is located at the design eye point (DEP) of simulator during the aligning and calibrating. The objective lens in the base is movable on a track to follow the laser beam at different angles within the field of vision at the DEP. An eyepiece and a precision diopter are movable into a position behind the prism during the scene evaluation. A photometer or illuminometer is pivotable about the pivot into and out of position behind the eyepiece.

  2. Designing Interactive Multimedia Instruction to Address Soldiers’ Learning Needs

    DTIC Science & Technology

    2014-12-01

    A point of need design seeks to identify and meet specific learning needs. It does so by focusing on the learning needs of an identified group ...instructional design and tailored training techniques to address the Army Learning Model (ALM) point of need concept. The point of need concept focuses both on ...developing six IMI exemplars focused on point of need training, including three variations of needs-focused designs : familiarization, core, and tailored

  3. Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1975-01-01

    Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.

  4. 48 CFR 52.247-44 - F.o.b. Designated Air Carrier's Terminal, Point of Importation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-44 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of importation: F.o.b. Designated...

  5. 48 CFR 52.247-43 - F.o.b. Designated Air Carrier's Terminal, Point of Exportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-43 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of exportation: F.o.b. Designated...

  6. [An object-oriented intelligent engineering design approach for lake pollution control].

    PubMed

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  7. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  8. Strategy for Texture Management in Metals Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.

    Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less

  9. Improving a free air breathing proton exchange membrane fuel cell through the Maximum Efficiency Point Tracking method

    NASA Astrophysics Data System (ADS)

    Higuita Cano, Mauricio; Mousli, Mohamed Islam Aniss; Kelouwani, Sousso; Agbossou, Kodjo; Hammoudi, Mhamed; Dubé, Yves

    2017-03-01

    This work investigates the design and validation of a fuel cell management system (FCMS) which can perform when the fuel cell is at water freezing temperature. This FCMS is based on a new tracking technique with intelligent prediction, which combined the Maximum Efficiency Point Tracking with variable perturbation-current step and the fuzzy logic technique (MEPT-FL). Unlike conventional fuel cell control systems, our proposed FCMS considers the cold-weather conditions, the reduction of fuel cell set-point oscillations. In addition, the FCMS is built to respond quickly and effectively to the variations of electric load. A temperature controller stage is designed in conjunction with the MEPT-FL in order to operate the FC at low-temperature values whilst tracking at the same time the maximum efficiency point. The simulation results have as well experimental validation suggest that propose approach is effective and can achieve an average efficiency improvement up to 8%. The MEPT-FL is validated using a Proton Exchange Membrane Fuel Cell (PEMFC) of 500 W.

  10. The cislunar low-thrust trajectories via the libration point

    NASA Astrophysics Data System (ADS)

    Qu, Qingyu; Xu, Ming; Peng, Kun

    2017-05-01

    The low-thrust propulsion will be one of the most important propulsion in the future due to its large specific impulse. Different from traditional low-thrust trajectories (LTTs) yielded by some optimization algorithms, the gradient-based design methodology is investigated for LTTs in this paper with the help of invariant manifolds of LL1 point and Halo orbit near the LL1 point. Their deformations under solar gravitational perturbation are also presented to design LTTs in the restricted four-body model. The perturbed manifolds of LL1 point and its Halo orbit serve as the free-flight phase to reduce the fuel consumptions as much as possible. An open-loop control law is proposed, which is used to guide the spacecraft escaping from Earth or captured by Moon. By using a two-dimensional search strategy, the ON/OFF time of the low-thrust engine in the Earth-escaping and Moon-captured phases can be obtained. The numerical implementations show that the LTTs achieved in this paper are consistent with the one adopted by the SMART-1 mission.

  11. Strategy for Texture Management in Metals Additive Manufacturing

    DOE PAGES

    Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.; ...

    2017-01-31

    Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less

  12. Novel Principles and Techniques to Create a Natural Design in Female Hairline Correction Surgery.

    PubMed

    Park, Jae Hyun

    2015-12-01

    Female hairline correction surgery is becoming increasingly popular. However, no guidelines or methods of female hairline design have been introduced to date. The purpose of this study was to create an initial framework based on the novel principles of female hairline design and then use artistic ability and experience to fine tune this framework. An understanding of the concept of 5 areas (frontal area, frontotemporal recess area, temporal peak, infratemple area, and sideburns) and 5 points (C, A, B, T, and S) is required for female hairline correction surgery (the 5A5P principle). The general concepts of female hairline correction surgery and natural design methods are, herein, explained with a focus on the correlations between these 5 areas and 5 points. A natural and aesthetic female hairline can be created with application of the above-mentioned concepts. The 5A5P principle of forming the female hairline is very useful in female hairline correction surgery.

  13. Novel Principles and Techniques to Create a Natural Design in Female Hairline Correction Surgery

    PubMed Central

    2015-01-01

    Abstract Background: Female hairline correction surgery is becoming increasingly popular. However, no guidelines or methods of female hairline design have been introduced to date. Methods: The purpose of this study was to create an initial framework based on the novel principles of female hairline design and then use artistic ability and experience to fine tune this framework. An understanding of the concept of 5 areas (frontal area, frontotemporal recess area, temporal peak, infratemple area, and sideburns) and 5 points (C, A, B, T, and S) is required for female hairline correction surgery (the 5A5P principle). The general concepts of female hairline correction surgery and natural design methods are, herein, explained with a focus on the correlations between these 5 areas and 5 points. Results: A natural and aesthetic female hairline can be created with application of the above-mentioned concepts. Conclusion: The 5A5P principle of forming the female hairline is very useful in female hairline correction surgery. PMID:26894014

  14. On the improvement of blood sample collection at clinical laboratories

    PubMed Central

    2014-01-01

    Background Blood samples are usually collected daily from different collection points, such hospitals and health centers, and transported to a core laboratory for testing. This paper presents a project to improve the collection routes of two of the largest clinical laboratories in Spain. These routes must be designed in a cost-efficient manner while satisfying two important constraints: (i) two-hour time windows between collection and delivery, and (ii) vehicle capacity. Methods A heuristic method based on a genetic algorithm has been designed to solve the problem of blood sample collection. The user enters the following information for each collection point: postal address, average collecting time, and average demand (in thermal containers). After implementing the algorithm using C programming, this is run and, in few seconds, it obtains optimal (or near-optimal) collection routes that specify the collection sequence for each vehicle. Different scenarios using various types of vehicles have been considered. Unless new collection points are added or problem parameters are changed substantially, routes need to be designed only once. Results The two laboratories in this study previously planned routes manually for 43 and 74 collection points, respectively. These routes were covered by an external carrier company. With the implementation of this algorithm, the number of routes could be reduced from ten to seven in one laboratory and from twelve to nine in the other, which represents significant annual savings in transportation costs. Conclusions The algorithm presented can be easily implemented in other laboratories that face this type of problem, and it is particularly interesting and useful as the number of collection points increases. The method designs blood collection routes with reduced costs that meet the time and capacity constraints of the problem. PMID:24406140

  15. Influence of base of support size on arm pointing performance and associated anticipatory postural adjustments.

    PubMed

    Yiou, Eric; Hamaoui, Alain; Le Bozec, Serge

    2007-08-09

    The current study was designed to test the effect of changing the base of support (BoS) size in the initial posture on the performance of a pointing task and the associated "anticipatory postural adjustments" (APAs). Subjects performed series of arm pointing tasks at maximal velocity, from five postures that differed by the antero-posterior (AP) distance between the heels. This distance was increased stepwise from 0 cm (P0 condition) to 40 cm (P40 condition). Kinetics data were collected with a large force-plate, and kinematics data of the pointing were collected with a bi-axial accelerometer (AP and vertical direction) fixed at the wrist. ANOVA showed that the amplitude and the efficiency of the APAs, as well as the performance of the pointing, all statistically increased from P0 to P40 (with 0.0001

  16. Electronic laboratory notebook: the academic point of view.

    PubMed

    Rudolphi, Felix; Goossen, Lukas J

    2012-02-27

    Based on a requirement analysis and alternative design considerations, a platform-independent electronic laboratory notebook (ELN) has been developed that specifically targets academic users. Its intuitive design and numerous productivity features motivate chemical researchers and students to record their data electronically. The data are stored in a highly structured form that offers substantial benefits over laboratory notebooks written on paper with regard to data retrieval, data mining, and exchange of results.

  17. The design of a new laser acupuncture instrument based on internet

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Liu, Jiguang; Huang, Zhen; Jin, Zhigao

    2006-06-01

    Laser acupuncture defined as the stimulation of traditional acupuncture points with low-intensity, non-thermal laser irradiation and the therapeutic use of laser acupuncture is rapidly gaining in popularity. As recovery instrument, physiotherapy instrument has a long curing period but perfect curative effect; furthermore, the treatment scheme needs to he revised on the basis of exchanges between patients and medical staff. In this paper a new laser acupuncture instrument based on Internet is designed. This multi-functional visual physiotherapy system based on embedded TCP/IP protocol, is further developed, which can realize visual real-time communication between patients and doctors with the help of Internet. Patients can enjoy professional medical care at home. Therefore, the equipment is suitable to those where specialists are needed; such as villages, towns, communities, small private clinics, and those families applicable. For such equipment, the key is to design an embedded networked module. The solution of this paper is to design the Ethernet interface based on DSP.

  18. Moonport: Transportation node in lunar orbit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital transporation system between the Earth and Moon was designed. The design work focused on the requirements and configuration of an orbiting lunar base. The design utilized current Space Station technologies, but also focused on the specific requirements involved with a permanently manned, orbiting lunar station. A model of the recommended configuration was constructed. In order to analyze Moonport activity and requirements, a traffic model was designed, defining traffic between the lunar port, or Moonport and low Earth orbit. Also, a lunar base model was used to estimate requirements of the surface base on Moonport traffic and operations. A study was conducted to compare Moonport traffic and operations based in low lunar orbit and the L (sub 2) equilibrium point, behind the Moon. The study compared delta-V requirements to each location and possible payload deliveries to low Earth orbit from each location. Products of the Moonport location study included number of flights annually to Moonport, net payload delivery to low Earth orbit, and Moonport storage requirement.

  19. [Research on whole blending end-point evaluation method of Angong Niuhuang Wan based on QbD concept].

    PubMed

    Liu, Xiao-Na; Zheng, Qiu-Sheng; Che, Xiao-Qing; Wu, Zhi-Sheng; Qiao, Yan-Jiang

    2017-03-01

    The blending end-point determination of Angong Niuhuang Wan (AGNH) is a key technology problem. The control strategy based on quality by design (QbD) concept proposes a whole blending end-point determination method, and provides a methodology for blending the Chinese materia medica containing mineral substances. Based on QbD concept, the laser induced breakdown spectroscopy (LIBS) was used to assess the cinnabar, realgar and pearl powder blending of AGNH in a pilot-scale experiment, especially the whole blending end-point in this study. The blending variability of three mineral medicines including cinnabar, realgar and pearl powder, was measured by moving window relative standard deviation (MWRSD) based on LIBS. The time profiles of realgar and pearl powder did not produce consistent results completely, but all of them reached even blending at the last blending stage, so that the whole proposal blending end point was determined. LIBS is a promising Process Analytical Technology (PAT) for process control. Unlike other elemental determination technologies such ICP-OES, LIBS does not need an elaborate digestion procedure, which is a promising and rapid technique to understand the blending process of Chinese materia medica (CMM) containing cinnabar, realgar and other mineral traditional Chinese medicine. This study proposed a novel method for the research of large varieties of traditional Chinese medicines.. Copyright© by the Chinese Pharmaceutical Association.

  20. A comparative analysis of speed profile models for wrist pointing movements.

    PubMed

    Vaisman, Lev; Dipietro, Laura; Krebs, Hermano Igo

    2013-09-01

    Following two decades of design and clinical research on robot-mediated therapy for the shoulder and elbow, therapeutic robotic devices for other joints are being proposed: several research groups including ours have designed robots for the wrist, either to be used as stand-alone devices or in conjunction with shoulder and elbow devices. However, in contrast with robots for the shoulder and elbow which were able to take advantage of descriptive kinematic models developed in neuroscience for the past 30 years, design of wrist robots controllers cannot rely on similar prior art: wrist movement kinematics has been largely unexplored. This study aimed at examining speed profiles of fast, visually evoked, visually guided, target-directed human wrist pointing movements. One thousand three-hundred ninety-eight (1398) trials were recorded from seven unimpaired subjects who performed center-out flexion/extension and abduction/adduction wrist movements and fitted with 19 models previously proposed for describing reaching speed profiles. A nonlinear, least squares optimization procedure extracted parameters' sets that minimized error between experimental and reconstructed data. Models' performances were compared based on their ability to reconstruct experimental data. Results suggest that the support-bounded lognormal is the best model for speed profiles of fast, wrist pointing movements. Applications include design of control algorithms for therapeutic wrist robots and quantitative metrics of motor recovery.

  1. Quantitative structure-activity relationship models that stand the test of time.

    PubMed

    Davis, Andrew M; Wood, David J

    2013-04-01

    The pharmaceutical industry is in a period of intense change. While this has many drivers, attrition through the development process continues to be an important pressure. The emerging definitions of "compound quality" that are based on retrospective analyses of developmental attrition have highlighted a new direction for medicinal chemistry and the paradigm of "quality at the point of design". The time has come for retrospective analyses to catalyze prospective action. Quality at the point of design places pressure on the quality of our predictive models. Empirical QSAR models when built with care provide true predictive control, but their accuracy and precision can be improved. Here we describe AstraZeneca's experience of automation in QSAR model building and validation, and how an informatics system can provide a step-change in predictive power to project design teams, if they choose to use it.

  2. On-board B-ISDN fast packet switching architectures. Phase 1: Study

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Lee, Fred; Paul, Dilip; Shyy, Dong-Jye

    1993-01-01

    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs.

  3. Statistical plant set estimation using Schroeder-phased multisinusoidal input design

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    A frequency domain method is developed for plant set estimation. The estimation of a plant 'set' rather than a point estimate is required to support many methods of modern robust control design. The approach here is based on using a Schroeder-phased multisinusoid input design which has the special property of placing input energy only at the discrete frequency points used in the computation. A detailed analysis of the statistical properties of the frequency domain estimator is given, leading to exact expressions for the probability distribution of the estimation error, and many important properties. It is shown that, for any nominal parametric plant estimate, one can use these results to construct an overbound on the additive uncertainty to any prescribed statistical confidence. The 'soft' bound thus obtained can be used to replace 'hard' bounds presently used in many robust control analysis and synthesis methods.

  4. Fast underdetermined BSS architecture design methodology for real time applications.

    PubMed

    Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R

    2015-01-01

    In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture.

  5. The Log Handwriting Program improved children's writing legibility: a pretest-posttest study.

    PubMed

    Mackay, Nadine; McCluskey, Annie; Mayes, Rachel

    2010-01-01

    We determined the feasibility and outcomes of the Log Handwriting Program (Raynal, 1990), an 8-week training program based on task-specific practice of handwriting. We used a pretest-posttest design involving 16 first- and second-grade Australian students. Handwriting training sessions occurred in schools for 45 min per week over 8 weeks, in groups of 2 or 3. Weekly homework was provided. The primary outcome measure was the Minnesota Handwriting Assessment (range = 0 to 34; Reisman, 1999). Legibility, form, alignment, size, spacing, and speed were measured. All six assessment subscales showed statistically significant differences. Legibility improved by a mean of 4.1 points (95% confidence interval = 2.5 to 5.7); form, 5.3 points; alignment, 7.8 points; size, 7.9 points; and space, 5.3 points. Speed decreased by 3.9 points. Preliminary evidence indicates that an 8-week Log Handwriting Program is feasible and improved handwriting in primary school children.

  6. WebStars: Holistic, Arts-Based College Curriculum in a Computer Applications Course

    ERIC Educational Resources Information Center

    Karsten, Selia

    2004-01-01

    The purpose of my qualitative, action study was to gain a better understanding of the effects of an experimental college course in computer applications. This inquiry was made concerning both the teacher's and learners' points of view. A holistic, arts-based approach was used by the researcher/teacher in order to design, develop and facilitate a…

  7. Financial Aid and First-Year Collegiate GPA: A Regression Discontinuity Approach

    ERIC Educational Resources Information Center

    Curs, Bradley R.; Harper, Casandra E.

    2012-01-01

    Using a regression discontinuity design, we investigate whether a merit-based financial aid program has a causal effect on the first-year grade point average of first-time out-of-state freshmen at the University of Oregon. Our results indicate that merit-based financial aid has a positive and significant effect on first-year collegiate grade point…

  8. Auto covariance computer

    NASA Technical Reports Server (NTRS)

    Hepner, T. E.; Meyers, J. F. (Inventor)

    1985-01-01

    A laser velocimeter covariance processor which calculates the auto covariance and cross covariance functions for a turbulent flow field based on Poisson sampled measurements in time from a laser velocimeter is described. The device will process a block of data that is up to 4096 data points in length and return a 512 point covariance function with 48-bit resolution along with a 512 point histogram of the interarrival times which is used to normalize the covariance function. The device is designed to interface and be controlled by a minicomputer from which the data is received and the results returned. A typical 4096 point computation takes approximately 1.5 seconds to receive the data, compute the covariance function, and return the results to the computer.

  9. A novel method to fast fix the post OPC weak-points through Calibre eqDRC application

    NASA Astrophysics Data System (ADS)

    Jin, YaDong; Lyu, Shizhi; Deng, ZeXi; Lu, Cong

    2018-03-01

    With shrinking nodes, as the layout patterns are becoming more and more complicated, OPC accuracy and performance is becoming increasingly challenging. While we are trying to perfect our OPC script to have a clean output without weak points, in a real urgent tape-out scenario, often there will be weak points and we cannot afford the cost to run the OPC again with an updated OPC recipe. Naturally the post OPC repair becomes the only cost-effective choice. The paper studies and compares a few methods for the post OPC weak-points repair: the manual OPC repair flow and traditional repair flow based on the DRC commands. Here, we introduce a novel method based on the eqDRC commands, which are widely used in the design house but have never been used in the post OPC flow. We discuss how to apply the eqDRC into the post OPC repairs and demonstrate its advantages over the traditional methods.

  10. Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery

    PubMed Central

    Williams, Charles H.; Hong, Charles C.

    2011-01-01

    In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET) properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design. PMID:21731440

  11. Extensions of D-optimal Minimal Designs for Symmetric Mixture Models

    PubMed Central

    Raghavarao, Damaraju; Chervoneva, Inna

    2017-01-01

    The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. In This Paper, Extensions Of The D-Optimal Minimal Designs Are Developed For A General Mixture Model To Allow Additional Interior Points In The Design Space To Enable Prediction Of The Entire Response Surface Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations. PMID:29081574

  12. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  13. Process compensated resonance testing modeling for damage evolution and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Biedermann, Eric; Heffernan, Julieanne; Mayes, Alexander; Gatewood, Garrett; Jauriqui, Leanne; Goodlet, Brent; Pollock, Tresa; Torbet, Chris; Aldrin, John C.; Mazdiyasni, Siamack

    2017-02-01

    Process Compensated Resonance Testing (PCRT) is a nondestructive evaluation (NDE) method based on the fundamentals of Resonant Ultrasound Spectroscopy (RUS). PCRT is used for material characterization, defect detection, process control and life monitoring of critical gas turbine engine and aircraft components. Forward modeling and model inversion for PCRT have the potential to greatly increase the method's material characterization capability while reducing its dependence on compiling a large population of physical resonance measurements. This paper presents progress on forward modeling studies for damage mechanisms and defects in common to structural materials for gas turbine engines. Finite element method (FEM) models of single crystal (SX) Ni-based superalloy Mar-M247 dog bones and Ti-6Al-4V cylindrical bars were created, and FEM modal analyses calculated the resonance frequencies for the samples in their baseline condition. Then the frequency effects of superalloy creep (high-temperature plastic deformation) and macroscopic texture (preferred crystallographic orientation of grains detrimental to fatigue properties) were evaluated. A PCRT sorting module for creep damage in Mar-M247 was trained with a virtual database made entirely of modeled design points. The sorting module demonstrated successful discrimination of design points with as little as 1% creep strain in the gauge section from a population of acceptable design points with a range of material and geometric variation. The resonance frequency effects of macro-scale texture in Ti-6Al-4V were quantified with forward models of cylinder samples. FEM-based model inversion was demonstrated for Mar-M247 bulk material properties and variations in crystallographic orientation. PCRT uncertainty quantification (UQ) was performed using Monte Carlo studies for Mar-M247 that quantified the overall uncertainty in resonance frequencies resulting from coupled variation in geometry, material properties, crystallographic orientation and creep damage. A model calibration process was also developed that evaluates inversion fitting to differences from a designated reference sample rather than absolute property values, yielding a reduction in fit error.

  14. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  15. Interface Design and Human Factors Considerations for Model-Based Tight Glycemic Control in Critical Care

    PubMed Central

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Introduction Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. Method The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. Results The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. Conclusions The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. PMID:22401330

  16. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  17. MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Wu, D; Rutel, I

    2015-06-15

    Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancymore » factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation. We have confirmed that this software accurately calculates air-kerma rates and required barrier thicknesses for diagnostic radiography and fluoroscopic rooms.« less

  18. Quasi-experimental designs in practice-based research settings: design and implementation considerations.

    PubMed

    Handley, Margaret A; Schillinger, Dean; Shiboski, Stephen

    2011-01-01

    Although randomized controlled trials are often a gold standard for determining intervention effects, in the area of practice-based research (PBR), there are many situations in which individual randomization is not possible. Alternative approaches to evaluating interventions have received increased attention, particularly those that can retain elements of randomization such that they can be considered "controlled" trials. Methodological design elements and practical implementation considerations for two quasi-experimental design approaches that have considerable promise in PBR settings--the stepped-wedge design, and a variant of this design, a wait-list cross-over design, are presented along with a case study from a recent PBR intervention for patients with diabetes. PBR-relevant design features include: creation of a cohort over time that collects control data but allows all participants (clusters or patients) to receive the intervention; staggered introduction of clusters; multiple data collection points; and one-way cross-over into the intervention arm. Practical considerations include: randomization versus stratification, training run in phases; and extended time period for overall study completion. Several design features of practice based research studies can be adapted to local circumstances yet retain elements to improve methodological rigor. Studies that utilize these methods, such as the stepped-wedge design and the wait-list cross-over design, can increase the evidence base for controlled studies conducted within the complex environment of PBR.

  19. Hyperswitch Network For Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Madan, Herbert; Peterson, John

    1989-01-01

    Data-driven dynamic switching enables high speed data transfer. Proposed hyperswitch network based on mixed static and dynamic topologies. Routing header modified in response to congestion or faults encountered as path established. Static topology meets requirement if nodes have switching elements that perform necessary routing header revisions dynamically. Hypercube topology now being implemented with switching element in each computer node aimed at designing very-richly-interconnected multicomputer system. Interconnection network connects great number of small computer nodes, using fixed hypercube topology, characterized by point-to-point links between nodes.

  20. A Sequential Optimization Sampling Method for Metamodels with Radial Basis Functions

    PubMed Central

    Pan, Guang; Ye, Pengcheng; Yang, Zhidong

    2014-01-01

    Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve computationally expensive simulation programs. The accuracy of metamodels is strongly affected by the sampling methods. In this paper, a new sequential optimization sampling method is proposed. Based on the new sampling method, metamodels can be constructed repeatedly through the addition of sampling points, namely, extrema points of metamodels and minimum points of density function. Afterwards, the more accurate metamodels would be constructed by the procedure above. The validity and effectiveness of proposed sampling method are examined by studying typical numerical examples. PMID:25133206

  1. A Method of Accurate Bone Tunnel Placement for Anterior Cruciate Ligament Reconstruction Based on 3-Dimensional Printing Technology: A Cadaveric Study.

    PubMed

    Ni, Jianlong; Li, Dichen; Mao, Mao; Dang, Xiaoqian; Wang, Kunzheng; He, Jiankang; Shi, Zhibin

    2018-02-01

    To explore a method of bone tunnel placement for anterior cruciate ligament (ACL) reconstruction based on 3-dimensional (3D) printing technology and to assess its accuracy. Twenty human cadaveric knees were scanned by thin-layer computed tomography (CT). To obtain data on bones used to establish a knee joint model by computer software, customized bone anchors were installed before CT. The reference point was determined at the femoral and tibial footprint areas of the ACL. The site and direction of the bone tunnels of the femur and tibia were designed and calibrated on the knee joint model according to the reference point. The resin template was designed and printed by 3D printing. Placement of the bone tunnels was accomplished by use of templates, and the cadaveric knees were scanned again to compare the concordance of the internal opening of the bone tunnels and reference points. The twenty 3D printing templates were designed and printed successfully. CT data analysis between the planned and actual drilled tunnel positions showed mean deviations of 0.57 mm (range, 0-1.5 mm; standard deviation, 0.42 mm) at the femur and 0.58 mm (range, 0-1.5 mm; standard deviation, 0.47 mm) at the tibia. The accuracy of bone tunnel placement for ACL reconstruction in cadaveric adult knees based on 3D printing technology is high. This method can improve the accuracy of bone tunnel placement for ACL reconstruction in clinical sports medicine. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. [Design of a Hazard Analysis and Critical Control Points (HACCP) plan to assure the safety of a bologna product produced by a meat processing plant].

    PubMed

    Bou Rached, Lizet; Ascanio, Norelis; Hernández, Pilar

    2004-03-01

    The Hazard Analysis and Critical Control Point (HACCP) is a systematic integral program used to identify and estimate the hazards (microbiological, chemical and physical) and the risks generated during the primary production, processing, storage, distribution, expense and consumption of foods. To establish a program of HACCP has advantages, being some of them: to emphasize more in the prevention than in the detection, to diminish the costs, to minimize the risk of manufacturing faulty products, to allow bigger trust to the management, to strengthen the national and international competitiveness, among others. The present work is a proposal based on the design of an HACCP program to guarantee the safety of the Bologna Special Type elaborated by a meat products industry, through the determination of hazards (microbiological, chemical or physical), the identification of critical control points (CCP), the establishment of critical limits, plan corrective actions and the establishment of documentation and verification procedures. The used methodology was based in the application of the seven basic principles settled down by the Codex Alimentarius, obtaining the design of this program. In view of the fact that recently the meat products are linked with pathogens like E. coli O157:H7 and Listeria monocytogenes, these were contemplated as microbiological hazard for the establishment of the HACCP plan whose application will guarantee the obtaining of a safe product.

  3. Zero-moment point determination of worst-case manoeuvres leading to vehicle wheel lift

    NASA Astrophysics Data System (ADS)

    Lapapong, S.; Brown, A. A.; Swanson, K. S.; Brennan, S. N.

    2012-01-01

    This paper proposes a method to evaluate vehicle rollover propensity based on a frequency-domain representation of the zero-moment point (ZMP). Unlike other rollover metrics such as the static stability factor, which is based on the steady-state behaviour, and the load transfer ratio, which requires the calculation of tyre forces, the ZMP is based on a simplified kinematic model of the vehicle and the analysis of the contact point of the vehicle relative to the edge of the support polygon. Previous work has validated the use of the ZMP experimentally in its ability to predict wheel lift in the time domain. This work explores the use of the ZMP in the frequency domain to allow a chassis designer to understand how operating conditions and vehicle parameters affect rollover propensity. The ZMP analysis is then extended to calculate worst-case sinusoidal manoeuvres that lead to untripped wheel lift, and the analysis is tested across several vehicle configurations and compared with that of the standard Toyota J manoeuvre.

  4. Front end design of smartphone-based mobile health

    NASA Astrophysics Data System (ADS)

    Zhang, Changfan; He, Lingsong; Gao, Zhiqiang; Ling, Cong; Du, Jianhao

    2015-02-01

    Mobile health has been a new trend all over the world with the rapid development of intelligent terminals and mobile internet. It can help patients monitor health in-house and is convenient for doctors to diagnose remotely. Smart-phone-based mobile health has big advantages in cost and data sharing. Front end design of it mainly focuses on two points: one is implementation of medical sensors aimed at measuring kinds of medical signal; another is acquisition of medical signal from sensors to smart phone. In this paper, the above two aspects were both discussed. First, medical sensor implementation was proposed to refer to mature measurement solutions with ECG (electrocardiograph) sensor design taken for example. And integrated chip using can simplify design. Then second, typical data acquisition architecture of smart phones, namely Bluetooth and MIC (microphone)-based architecture, were compared. Bluetooth architecture should be equipped with an acquisition card; MIC design uses sound card of smart phone instead. Smartphone-based virtual instrument app design corresponding to above acquisition architecture was discussed. In experiments, Bluetooth and MIC architecture were used to acquire blood pressure and ECG data respectively. The results showed that Bluetooth design can guarantee high accuracy during the acquisition and transmission process, and MIC design is competitive because of low cost and convenience.

  5. An Exploratory Analysis of Waterfront Force Protection Measures Using Simulation

    DTIC Science & Technology

    2002-03-01

    LEFT BLANK 75 APPENDIX B. DESIGN POINT DATA Table 16. Design Point One Data breach - count leakers- count numberAv ailablePBs- mean numberInI...0.002469 0.006237 27.63104 7144.875 0.155223 76 Table 17. Design Point Two Data breach - count leakers- count numberAv ailablePBs- mean numberInI...0.001163 4.67E-12 29.80891 6393.874 0.188209 77 Table 18. Design Point Three Data breach - count leakers- count numberAv ailablePBs- mean

  6. A novel maximum power point tracking system employing phase comparison techniques

    NASA Astrophysics Data System (ADS)

    Avaritsiotis, J. N.; Tsitomeneas, S.; Caroubalos, C.

    A new MPPT design is presented that is based on the comparison of the phase of a perturbing signal with that of the signal which is the result of the perturbation. More specifically, a voltage ripple is induced on the power loop of the P/V system and its phase is compared to the phase of the resulting ripple on the electric power P = I x V, where I and V are the current and voltage respectively of the P/V generator. A prototype MPPT based on the previous principle has been designed, constructed, and its performance has been studied.

  7. Uncertainty management in intelligent design aiding systems

    NASA Technical Reports Server (NTRS)

    Brown, Donald E.; Gabbert, Paula S.

    1988-01-01

    A novel approach to uncertainty management which is particularly effective in intelligent design aiding systems for large-scale systems is presented. The use of this approach in the materials handling system design domain is discussed. It is noted that, during any point in the design process, a point value can be obtained for the evaluation of feasible designs; however, the techniques described provide unique solutions for these point values using only the current information about the design environment.

  8. Creation of a Novel Class of Potent and Selective MutT Homologue 1 (MTH1) Inhibitors Using Fragment-Based Screening and Structure-Based Drug Design.

    PubMed

    Rahm, Fredrik; Viklund, Jenny; Trésaugues, Lionel; Ellermann, Manuel; Giese, Anja; Ericsson, Ulrika; Forsblom, Rickard; Ginman, Tobias; Günther, Judith; Hallberg, Kenth; Lindström, Johan; Persson, Lars Boukharta; Silvander, Camilla; Talagas, Antoine; Díaz-Sáez, Laura; Fedorov, Oleg; Huber, Kilian V M; Panagakou, Ioanna; Siejka, Paulina; Gorjánácz, Mátyás; Bauser, Marcus; Andersson, Martin

    2018-03-22

    Recent literature has both suggested and questioned MTH1 as a novel cancer target. BAY-707 was just published as a target validation small molecule probe for assessing the effects of pharmacological inhibition of MTH1 on tumor cell survival, both in vitro and in vivo. (1) In this report, we describe the medicinal chemistry program creating BAY-707, where fragment-based methods were used to develop a series of highly potent and selective MTH1 inhibitors. Using structure-based drug design and rational medicinal chemistry approaches, the potency was increased over 10,000 times from the fragment starting point while maintaining high ligand efficiency and drug-like properties.

  9. Study of the Army Helicopter Design Hover Criterion Using Temperature and Pressure Altitude

    DTIC Science & Technology

    2017-09-01

    the Advanced Scout Helicopter Special Study Group reexamined the design point requirement. They recommended increasing the design point pressure...other combinations group between these two extremes. Ultimately, the design point for a helicopter has to be determined by the user of the...helicopter designs . 6. References Aviation Agency. 1972. “Heavy Lift Helicopter (HLH) Concept Formulation Study (U)”, Action Control Number 2958

  10. Development of a three-dimensional multistage inverse design method for aerodynamic matching of axial compressor blading

    NASA Astrophysics Data System (ADS)

    van Rooij, Michael P. C.

    Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall mass flow and compression ratio, and radial distribution of exit flow angle. To supplement the loading manager, mass flow inlet and exit boundary conditions have been implemented. Through appropriate combination of pressure or mass flow inflow/outflow boundary conditions and loading manager objectives, increased control over the design intent can be obtained. The three-dimensional multistage inverse design method with pressure loading manager was demonstrated to offer greatly enhanced blade row matching capabilities. Multistage design allows for simultaneous design of blade rows in a mutually interacting environment, which permits the redesigned blading to adapt to changing aerodynamic conditions resulting from the redesign. This ensures that the obtained blading geometry and performance implied by the prescribed pressure loading distribution are consistent with operation in the multi-blade row environment. The developed methodology offers high aerodynamic design quality and productivity, and constitutes a significant improvement over existing approaches used to address design-point aerodynamic matching.

  11. An ICT-Based Platform to Monitor Protocols in the Healthcare Environment.

    PubMed

    Rorís, Víctor M Alonso; Gago, Juan M Santos; Sabucedo, Luis Álvarez; Merino, Mateo Ramos; Valero, Javier Sanz

    2016-10-01

    Procedures from the healthcare domain involve highly critical actions as they may pose a risk for patients' life. Therefore, a large effort is devoted to the standardization in clinical praxis and to the control of quality for these protocols in order to minimize hazards. In this line, this work is compelled to provide an ICT-based support to carry out these controls in a simple and effective manner. Using a methodology based on HACCP and taking advantage of Semantic tools, a holistic platform of services for traceability and control of processes has been designed and implemented. The applied paradigm is based on the use of Control Points as singular points to generate traces using observations and measures relevant for the processes considered. Based on those, it is possible to offer services for advanced querying and knowledge inference. The local deployment just requires regular mobile phones or tablets making this solution cost-effective and easily replicable.

  12. A multinational clinical approach to assessing the effectiveness of catheter-based ultrasound renal denervation: The RADIANCE-HTN and REQUIRE clinical study designs.

    PubMed

    Mauri, Laura; Kario, Kazuomi; Basile, Jan; Daemen, Joost; Davies, Justin; Kirtane, Ajay J; Mahfoud, Felix; Schmieder, Roland E; Weber, Michael; Nanto, Shinsuke; Azizi, Michel

    2018-01-01

    Catheter-based renal denervation is a new approach to treat hypertension via modulation of the renal sympathetic nerves. Although nonrandomized and small, open-label randomized studies resulted in significant reductions in office blood pressure 6months after renal denervation with monopolar radiofrequency catheters, the first prospective, randomized, sham-controlled study (Symplicity HTN-3) failed to meet its blood pressure efficacy end point. New clinical trials with new catheters have since been designed to address the limitations of earlier studies. Accordingly, the RADIANCE-HTN and REQUIRE studies are multicenter, blinded, randomized, sham-controlled trials designed to assess the blood pressure-lowering efficacy of the ultrasound-based renal denervation system (Paradise) in patients with established hypertension either on or off antihypertensive medications, is designed to evaluate patients in 2 cohorts-SOLO and TRIO, in the United States and Europe. The SOLO cohort includes patients with essential hypertension, at low cardiovascular risk, and either controlled on 1 to 2 antihypertensive medications or uncontrolled on 0 to 2 antihypertensive medications. Patients undergo a 4-week medication washout period before randomization to renal denervation (treatment) or renal angiogram (sham). The TRIO cohort includes patients with hypertension resistant to at least 3 antihypertensive drugs including a diuretic. Patients will be stabilized on a single-pill, triple-antihypertensive-drug combination for 4weeks before randomization to treatment or sham. Reduction in daytime ambulatory systolic blood pressure (primary end point) will be assessed at 2months in both cohorts. A predefined medication escalation protocol, as needed for blood pressure control, is implemented between 2 and 6months in both cohorts by a study staff member blinded to the randomization process. At 6months, daytime ambulatory blood pressure and antihypertensive treatment score will be assessed. REQUIRE is designed to evaluate patients with resistant hypertension on standard of care medication in Japan and Korea. Reduction in 24-hour ambulatory systolic blood pressure will be assessed at 3months (primary end point). Both studies are enrolling patients, and their results are expected in 2018. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A Method for Optimizing Lightweight-Gypsum Design Based on Sequential Measurements of Physical Parameters

    NASA Astrophysics Data System (ADS)

    Vimmrová, Alena; Kočí, Václav; Krejsová, Jitka; Černý, Robert

    2016-06-01

    A method for lightweight-gypsum material design using waste stone dust as the foaming agent is described. The main objective is to reach several physical properties which are inversely related in a certain way. Therefore, a linear optimization method is applied to handle this task systematically. The optimization process is based on sequential measurement of physical properties. The results are subsequently point-awarded according to a complex point criterion and new composition is proposed. After 17 trials the final mixture is obtained, having the bulk density equal to (586 ± 19) kg/m3 and compressive strength (1.10 ± 0.07) MPa. According to a detailed comparative analysis with reference gypsum, the newly developed material can be used as excellent thermally insulating interior plaster with the thermal conductivity of (0.082 ± 0.005) W/(m·K). In addition, its practical application can bring substantial economic and environmental benefits as the material contains 25 % of waste stone dust.

  14. Use of personalized Dynamic Treatment Regimes (DTRs) and Sequential Multiple Assignment Randomized Trials (SMARTs) in mental health studies

    PubMed Central

    Liu, Ying; ZENG, Donglin; WANG, Yuanjia

    2014-01-01

    Summary Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where a clinical decision is made based on each patient’s time-varying characteristics and intermediate outcomes observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders call for learning optimal DTRs to dynamically adapt treatment to an individual’s response over time. The Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs using two examples in mental health studies, discusses two machine learning methods for estimating optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using simulated data. PMID:25642116

  15. Long period grating-based fiber-optic PH sensor for ocean monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Klimov, Denis; Kolber, Zbigniew

    2007-09-01

    A fiber-optic PH sensor is developed based-on the long period grating (LPG). The LPG is fabricated by using CO II laser with a point-by-point technique. Then the grating portion is coated with PH sensitive hydrogel. The hydrogel, made of PVA/PAA, swells its volume in response to the PH change in the surrounding environment and results in a change in the refractive index. As a result, the LPG can response to the refractive index change in the coating by shifting its wavelength. Therefore, change in refractive index can be measured by tracking the wavelength shift using an optical spectrum analyzer (OSA). In this research, the LPG is dip-coated by the hydrogel. A chemostat is designed to simulate the marine environment. The PH in the chemostat is varied by controlling the CO II concentration in the sea water. A PH resolution 0.046/nm using the OSA has been obtained. This sensor is designed to monitor the sea water PH change in a long term basis.

  16. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    NASA Technical Reports Server (NTRS)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  17. Structure and ligand-based design of P-glycoprotein inhibitors: a historical perspective.

    PubMed

    Palmeira, Andreia; Sousa, Emilia; Vasconcelos, M Helena; Pinto, Madalena; Fernandes, Miguel X

    2012-01-01

    Computer-assisted drug design (CADD) is a valuable approach for the discovery of new chemical entities in the field of cancer therapy. There is a pressing need to design and develop new, selective, and safe drugs for the treatment of multidrug resistance (MDR) cancer forms, specifically active against P-glycoprotein (P-gp). Recently, a crystallographic structure for mouse P-gp was obtained. However, for decades the design of new P-gp inhibitors employed mainly ligand-based approaches (SAR, QSAR, 3D-QSAR and pharmacophore studies), and structure-based studies used P-gp homology models. However, some of those results are still the pillars used as a starting point for the design of potential P-gp inhibitors. Here, pharmacophore mapping, (Q)SAR, 3D-QSAR and homology modeling, for the discovery of P-gp inhibitors are reviewed. The importance of these methods for understanding mechanisms of drug resistance at a molecular level, and design P-gp inhibitors drug candidates are discussed. The examples mentioned in the review could provide insights into the wide range of possibilities of using CADD methodologies for the discovery of efficient P-gp inhibitors.

  18. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1

    NASA Technical Reports Server (NTRS)

    Sullivan, M. R.

    1982-01-01

    The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.

  19. Extensions of D-optimal Minimal Designs for Symmetric Mixture Models.

    PubMed

    Li, Yanyan; Raghavarao, Damaraju; Chervoneva, Inna

    2017-01-01

    The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations.

  20. Design for a Crane Metallic Structure Based on Imperialist Competitive Algorithm and Inverse Reliability Strategy

    NASA Astrophysics Data System (ADS)

    Fan, Xiao-Ning; Zhi, Bo

    2017-07-01

    Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliability strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reliability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its α-percentile performance, thereby avoiding convergence failure, calculation error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.

  1. Millimeter-wave antenna design

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1977-01-01

    Problems and opportunities are discussed for adapting certain design features and construction techniques, developed for producing high accuracy ground based radio dishes, to producing milimeter wave dishes for space use. Specifically considered is a foldable telescope of 24 m aperture and 9.6 m focal length, composed of 37 rigid hexagonal panels, which will fit within the 4.5 m diameter x 18 m long payload limits of space shuttle. As here conceived, the telescope would be a free flyer with its own power and pointing systems. Some of the structural design features and construction procedures are considered.

  2. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directlymore » applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental design was completed by a center-point glass, a Vitreous State Laboratory glass, and replicates of the center point and Vitreous State Laboratory glasses.« less

  3. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    NASA Astrophysics Data System (ADS)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  4. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  5. Analytic Method for Computing Instrument Pointing Jitter

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2003-01-01

    A new method of calculating the root-mean-square (rms) pointing jitter of a scientific instrument (e.g., a camera, radar antenna, or telescope) is introduced based on a state-space concept. In comparison with the prior method of calculating the rms pointing jitter, the present method involves significantly less computation. The rms pointing jitter of an instrument (the square root of the jitter variance shown in the figure) is an important physical quantity which impacts the design of the instrument, its actuators, controls, sensory components, and sensor- output-sampling circuitry. Using the Sirlin, San Martin, and Lucke definition of pointing jitter, the prior method of computing the rms pointing jitter involves a frequency-domain integral of a rational polynomial multiplied by a transcendental weighting function, necessitating the use of numerical-integration techniques. In practice, numerical integration complicates the problem of calculating the rms pointing error. In contrast, the state-space method provides exact analytic expressions that can be evaluated without numerical integration.

  6. The Importance and Role of Intracluster Correlations in Planning Cluster Trials

    PubMed Central

    Preisser, John S.; Reboussin, Beth A.; Song, Eun-Young; Wolfson, Mark

    2008-01-01

    There is increasing recognition of the critical role of intracluster correlations of health behavior outcomes in cluster intervention trials. This study examines the estimation, reporting, and use of intracluster correlations in planning cluster trials. We use an estimating equations approach to estimate the intracluster correlations corresponding to the multiple-time-point nested cross-sectional design. Sample size formulae incorporating 2 types of intracluster correlations are examined for the purpose of planning future trials. The traditional intracluster correlation is the correlation among individuals within the same community at a specific time point. A second type is the correlation among individuals within the same community at different time points. For a “time × condition” analysis of a pretest–posttest nested cross-sectional trial design, we show that statistical power considerations based upon a posttest-only design generally are not an adequate substitute for sample size calculations that incorporate both types of intracluster correlations. Estimation, reporting, and use of intracluster correlations are illustrated for several dichotomous measures related to underage drinking collected as part of a large nonrandomized trial to enforce underage drinking laws in the United States from 1998 to 2004. PMID:17879427

  7. An alternative method for centrifugal compressor loading factor modelling

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.

    2017-08-01

    The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.

  8. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  9. 48 CFR 47.303-15 - F.o.b. designated air carrier's terminal, point of exportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. designated air... Contracts 47.303-15 F.o.b. designated air carrier's terminal, point of exportation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of exportation means free of expense to the...

  10. 48 CFR 47.303-16 - F.o.b. designated air carrier's terminal, point of importation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. designated air... Contracts 47.303-16 F.o.b. designated air carrier's terminal, point of importation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of importation means free of expense to the...

  11. Robust Spacecraft Component Detection in Point Clouds.

    PubMed

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  12. Robust Spacecraft Component Detection in Point Clouds

    PubMed Central

    Wei, Quanmao; Jiang, Zhiguo

    2018-01-01

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density. PMID:29561828

  13. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  14. An algorithm to help design fire simulation and other data base work

    Treesearch

    Romain Mees

    1974-01-01

    The data necessary for fire simulation may be made available through an algorithm based on tracing of boundaries composed of straight-line segments. Useful assumptions are that if a closed boundary does not contain a given point, then any other closed boundary contained within the former one does not contain the location; and that a given location will be contained in...

  15. Design of a Multi-Touch Tabletop for Simulation-Based Training

    DTIC Science & Technology

    2014-06-01

    receive, for example using point and click mouse-based computer interactions to specify the routes that vehicles take as part of a convoy...learning, coordination and support for planning. We first provide background in tabletop interaction in general and survey earlier efforts to use...tremendous progress over the past five years. Touch detection technologies now enable multiple users to interact simultaneously on large areas with

  16. Chemicals identified in human biological media: a data base. Third annual report, October 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cone, M.V.; Baldauf, M.F.; Martin, F.M.

    1981-12-01

    Part 2 contains the data base in tabular format. There are two sections, the first with records on nondrug substances, and the second with records on drugs. Chemicals in each section are arranged alphabetically by CAS preferred name, CAS registry number, formula, atomic weight, melting point, boiling point, and vapor pressure. Tissues are listed alphabetically with exposure route, analytical method, number of cases, range, and mean - when available in the source document. A variety of information may also be included that is pertinent to the range and mean as well as experimental design, demography, health effects, pathology, morphology, andmore » toxicity. Review articles are included in the data base; however, no data have been extracted from such documents because the original research articles are included.« less

  17. Impact of spatial variability and sampling design on model performance

    NASA Astrophysics Data System (ADS)

    Schrape, Charlotte; Schneider, Anne-Kathrin; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Many environmental physical and chemical parameters as well as species distributions display a spatial variability at different scales. In case measurements are very costly in labour time or money a choice has to be made between a high sampling resolution at small scales and a low spatial cover of the study area or a lower sampling resolution at the small scales resulting in local data uncertainties with a better spatial cover of the whole area. This dilemma is often faced in the design of field sampling campaigns for large scale studies. When the gathered field data are subsequently used for modelling purposes the choice of sampling design and resulting data quality influence the model performance criteria. We studied this influence with a virtual model study based on a large dataset of field information on spatial variation of earthworms at different scales. Therefore we built a virtual map of anecic earthworm distributions over the Weiherbach catchment (Baden-Württemberg in Germany). First of all the field scale abundance of earthworms was estimated using a catchment scale model based on 65 field measurements. Subsequently the high small scale variability was added using semi-variograms, based on five fields with a total of 430 measurements divided in a spatially nested sampling design over these fields, to estimate the nugget, range and standard deviation of measurements within the fields. With the produced maps, we performed virtual samplings of one up to 50 random points per field. We then used these data to rebuild the catchment scale models of anecic earthworm abundance with the same model parameters as in the work by Palm et al. (2013). The results of the models show clearly that a large part of the non-explained deviance of the models is due to the very high small scale variability in earthworm abundance: the models based on single virtual sampling points on average obtain an explained deviance of 0.20 and a correlation coefficient of 0.64. With increasing sampling points per field, we averaged the measured abundance of the sampling within each field to obtain a more representative value of the field average. Doubling the samplings per field strongly improved the model performance criteria (explained deviance 0.38 and correlation coefficient 0.73). With 50 sampling points per field the performance criteria were 0.91 and 0.97 respectively for explained deviance and correlation coefficient. The relationship between number of samplings and performance criteria can be described with a saturation curve. Beyond five samples per field the model improvement becomes rather small. With this contribution we wish to discuss the impact of data variability at sampling scale on model performance and the implications for sampling design and assessment of model results as well as ecological inferences.

  18. A dynamic multi-level optimal design method with embedded finite-element modeling for power transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong

    2018-05-01

    This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.

  19. Structural analysis of three space crane articulated-truss joint concepts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Sutter, Thomas R.

    1992-01-01

    Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.

  20. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.

  1. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    PubMed Central

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104

  2. Concept for a fast analysis method of the energy dissipation at mechanical joints

    NASA Astrophysics Data System (ADS)

    Wolf, Alexander; Brosius, Alexander

    2017-10-01

    When designing hybrid parts and structures one major challenge is the design, production and quality assessment of the joining points. While the polymeric composites themselves have excellent material properties, the necessary joints are often the weak link in assembled structures. This paper presents a method of measuring and analysing the energy dissipation at mechanical joining points of hybrid parts. A simplified model is applied based on the characteristic response to different excitation frequencies and amplitudes. The dissipation from damage is the result of relative moments between joining partners und damaged fibres within the composite, whereas the visco-elastic material behaviour causes the intrinsic dissipation. The ambition is to transfer these research findings to the characterisation of mechanical joints in order to quickly assess the general quality of the joint with this non-destructive testing method. The inherent challenge for realising this method is the correct interpretation of the measured energy dissipation and its attribution to either a bad joining point or intrinsic material properties. In this paper the authors present the concept for energy dissipation measurements at different joining points. By inverse analysis a simplified fast semi-analytical model will be developed that allows for a quick basic quality assessment of a given joining point.

  3. A semi-automated, field-portable microscopy platform for clinical diagnostic applications

    NASA Astrophysics Data System (ADS)

    Jagannadh, Veerendra Kalyan; Srinivasan, Rajesh; Gorthi, Sai Siva

    2015-08-01

    Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined.

  4. Polarization independent thermally tunable erbium-doped fiber amplifier gain equalizer using a cascaded Mach-Zehnder coupler.

    PubMed

    Sahu, P P

    2008-02-10

    A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.

  5. Platform based design of EAP transducers in Danfoss PolyPower A/S

    NASA Astrophysics Data System (ADS)

    Sarban, Rahimullah; Gudlaugsson, Tómas V.

    2013-04-01

    Electroactive Polymer (EAP) has gained increasing focus, in research communities, in last two decades. Research within the field of EAP has, so far, been mainly focused on material improvements, characterization, modeling and developing demonstrators. As the EAP technology matures, the need for a new area of research namely product development emerges. Product development can be based on an isolated design and production for a single product or platform design where a product family is developed. In platform design the families of products exploits commonality of platform modules while satisfying a variety of different market segments. Platform based approach has the primary benefit of being cost efficient and short lead time to market when new products emerges. Products development based on EAP technology is challenging both technologically as well as from production and processing point of view. Both the technological and processing challenges need to be addressed before a successful implementation of EAP technology into products. Based on this need Danfoss PolyPower A/S has, in 2011, launched a EAP platform project in collaboration with three Danish universities and three commercial organizations. The aim of the project is to develop platform based designs and product family for the EAP components to be used in variety of applications. This paper presents the structure of the platform project as a whole and specifically the platform based designs of EAP transducers. The underlying technologies, essential for EAP transducers, are also presented. Conceptual design and solution for the concepts are presented as well.

  6. A New Optical Design for Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  7. Two-stage, low noise advanced technology fan. 4: Aerodynamic final report

    NASA Technical Reports Server (NTRS)

    Harley, K. G.; Keenan, M. J.

    1975-01-01

    A two-stage research fan was tested to provide technology for designing a turbofan engine for an advanced, long range commercial transport having a cruise Mach number of 0.85 -0.9 and a noise level 20 EPNdB below current requirements. The fan design tip speed was 365.8m/sec (1200ft/sec);the hub/tip ratio was 0.4; the design pressure ratio was 1.9; and the design specific flow was 209.2 kg/sec/sq m(42.85lbm/sec/sq ft). Two fan-versions were tested: a baseline configuration, and an acoustically treated configuration with a sonic inlet device. The baseline version was tested with uniform inlet flow and with tip-radial and hub-radial inlet flow distortions. The baseline fan with uniform inlet flow attained an efficiency of 86.4% at design speed, but the stall margin was low. Tip-radial distortion increased stall margin 4 percentage points at design speed and reduced peak efficiency one percentage point. Hub-radial distortion decreased stall margin 4 percentage points at all speeds and reduced peak efficiency at design speed 8 percentage points. At design speed, the sonic inlet in the cruise position reduced stall margin one percentage point and efficiency 1.5 to 4.5 percentage points. The sonic inlet in the approach position reduced stall margin 2 percentage points.

  8. Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis

    USDA-ARS?s Scientific Manuscript database

    Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regiona...

  9. A High-Resolution Thermometer for the Range 0.75-1.0 K

    NASA Technical Reports Server (NTRS)

    Panek, J.; Nash, A.; Larson, M.; Mulders, N.

    1999-01-01

    We report on a new high-resolution thermometer (HRT) for use near the tricritical point in 3He-4He mixtures. It is based on an existing HRT design that uses a DC-SQUID to detect the magnetization of a paramagnetic sensing element.

  10. 18 CFR 5.18 - Application content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other reference point; describe the topography and climate; and discuss major land uses and economic... development of project works or changes in project operation. This analysis must be based on the information... environmental measures, including, but not limited to, changes in the project design or operations, to address...

  11. Geometric processing workflow for vertical and oblique hyperspectral frame images collected using UAV

    NASA Astrophysics Data System (ADS)

    Markelin, L.; Honkavaara, E.; Näsi, R.; Nurminen, K.; Hakala, T.

    2014-08-01

    Remote sensing based on unmanned airborne vehicles (UAVs) is a rapidly developing field of technology. UAVs enable accurate, flexible, low-cost and multiangular measurements of 3D geometric, radiometric, and temporal properties of land and vegetation using various sensors. In this paper we present a geometric processing chain for multiangular measurement system that is designed for measuring object directional reflectance characteristics in a wavelength range of 400-900 nm. The technique is based on a novel, lightweight spectral camera designed for UAV use. The multiangular measurement is conducted by collecting vertical and oblique area-format spectral images. End products of the geometric processing are image exterior orientations, 3D point clouds and digital surface models (DSM). This data is needed for the radiometric processing chain that produces reflectance image mosaics and multiangular bidirectional reflectance factor (BRF) observations. The geometric processing workflow consists of the following three steps: (1) determining approximate image orientations using Visual Structure from Motion (VisualSFM) software, (2) calculating improved orientations and sensor calibration using a method based on self-calibrating bundle block adjustment (standard photogrammetric software) (this step is optional), and finally (3) creating dense 3D point clouds and DSMs using Photogrammetric Surface Reconstruction from Imagery (SURE) software that is based on semi-global-matching algorithm and it is capable of providing a point density corresponding to the pixel size of the image. We have tested the geometric processing workflow over various targets, including test fields, agricultural fields, lakes and complex 3D structures like forests.

  12. NASA 9-Point LDI Code Validation Experiment

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.

    2007-01-01

    This presentation highlights the experimental work to date to obtain validation data using a 9-point lean direct injector (LDI) in support of the National Combustion Code. The LDI is designed to supply fuel lean, Jet-A and air directly into the combustor such that the liquid fuel atomizes and mixes rapidly to produce short flame zones and produce low levels of oxides of nitrogen and CO. We present NOx and CO emission results from gas sample data that support that aspect of the design concept. We describe this injector and show high speed movies of selected operating points. We present image-based species maps of OH, fuel, CH and NO obtained using planar laser induced fluorescence and chemiluminescence. We also present preliminary 2-component, axial and vertical, velocity vectors of the air flow obtained using particle image velocimetry and of the fuel drops in a combusting case. For the same combusting case, we show preliminary 3-component velocity vectors obtained using a phase Doppler anemometer. For the fueled, combusting cases especially, we found optical density is a technical concern that must be addressed, but that in general, these preliminary results are promising. All optical-based results confirm that this injector produces short flames, typically on the order of 5- to-7-mm long at typical cruise and high power engine cycle conditions.

  13. Ultra Small Aperture Terminal for Ka-Band SATCOM

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee

    1997-01-01

    An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.

  14. Design of DSP-based high-power digital solar array simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  15. Design of crashworthy structures with controlled behavior in HCA framework

    NASA Astrophysics Data System (ADS)

    Bandi, Punit

    The field of crashworthiness design is gaining more interest and attention from automakers around the world due to increasing competition and tighter safety norms. In the last two decades, topology and topometry optimization methods from structural optimization have been widely explored to improve existing designs or conceive new designs with better crashworthiness. Although many gradient-based and heuristic methods for topology- and topometry-based crashworthiness design are available these days, most of them result in stiff structures that are suitable only for a set of vehicle components in which maximizing the energy absorption or minimizing the intrusion is the main concern. However, there are some other components in a vehicle structure that should have characteristics of both stiffness and flexibility. Moreover, the load paths within the structure and potential buckle modes also play an important role in efficient functioning of such components. For example, the front bumper, side frame rails, steering column, and occupant protection devices like the knee bolster should all exhibit controlled deformation and collapse behavior. The primary objective of this research is to develop new methodologies to design crashworthy structures with controlled behavior. The well established Hybrid Cellular Automaton (HCA) method is used as the basic framework for the new methodologies, and compliant mechanism-type (sub)structures are the highlight of this research. The ability of compliant mechanisms to efficiently transfer force and/or motion from points of application of input loads to desired points within the structure is used to design solid and tubular components that exhibit controlled deformation and collapse behavior under crash loads. In addition, a new methodology for controlling the behavior of a structure under multiple crash load scenarios by adaptively changing the contributions from individual load cases is developed. Applied to practical design problems, the results demonstrate that the methodologies provide a practical tool to aid the design engineer in generating design concepts for crashworthy structures with controlled behavior. Although developed in the HCA framework, the basic ideas behind these methods are generic and can be easily implemented with other available topology- and topometry-based optimization methods.

  16. High-Temperature Gas-Cooled Test Reactor Point Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  17. Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range

    NASA Technical Reports Server (NTRS)

    Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.

  18. A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data management and processing

    NASA Astrophysics Data System (ADS)

    Cura, Rémi; Perret, Julien; Paparoditis, Nicolas

    2017-05-01

    In addition to more traditional geographical data such as images (rasters) and vectors, point cloud data are becoming increasingly available. Such data are appreciated for their precision and true three-Dimensional (3D) nature. However, managing point clouds can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a comprehensive and efficient point cloud management system based on a database server that works on groups of points (patches) rather than individual points. This system is specifically designed to cover the basic needs of point cloud users: fast loading, compressed storage, powerful patch and point filtering, easy data access and exporting, and integrated processing. Moreover, the proposed system fully integrates metadata (like sensor position) and can conjointly use point clouds with other geospatial data, such as images, vectors, topology and other point clouds. Point cloud (parallel) processing can be done in-base with fast prototyping capabilities. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the proposed system with several billion points obtained from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate loading speeds in the ˜50 million pts/h per process range, transparent-for-user and greater than 2 to 4:1 compression ratio, patch filtering in the 0.1 to 1 s range, and output in the 0.1 million pts/s per process range, along with classical processing methods, such as object detection.

  19. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo

    2017-05-01

    For sake of striking a balance between the need of drilling efficiency and the constrains of power budget on the moon, the penetrations per revolution of drill bit are generally limited in the range around 0.1 mm, and besides the geometric angle of the cutting blade need to be well designed. This paper introduces a simulation approach based on PFC3D (particle flow code 3 dimensions) for analyzing the cutting load feature on lunar rock simulant, which is derived from different geometric-angle blades with a small cutting depth. The mean values of the cutting force of five blades in the survey region (four on the boundary points and one on the center point) are selected as the macroscopic responses of model. The method of experimental design which includes Plackett-Burman (PB) design and central composite design (CCD) method is adopted in the matching procedure of microparameters in PFC model. Using the optimization method of enumeration, the optimum set of microparameters is acquired. Then, the experimental validation is implemented by using other twenty-five blades with different geometric angles, and the results from both simulations and laboratory tests give fair agreements. Additionally, the rock breaking process cut by different blades are quantified from simulation analysis. This research provides the theoretical support for the refinement of the rock cutting load prediction and the geometric design of cutting blade on the drill bit.

  20. Design of a stabilized, compact gimbal for space-based free space optical communications (FSOC)

    NASA Astrophysics Data System (ADS)

    Cline, A.; Shubert, P.; McNally, J.; Jacka, N.; Pierson, R.

    2017-02-01

    Data transmits via optical communications through fibers at 10's of Terabits per second. Given the recent rapid explosion for bandwidth and competing demand for radio frequency (RF) spectrum allocations among differing interests, the need for space-based free space optical communications (FSOC) systems is ever increasing. FSOC systems offer advantages of higher data rates, smaller size and weight, narrower beam divergence, and lower power than RF systems. Lightweight, small form factor, and high performance two-axis gimbals are of strong interest for satellite FSOC applications. Small gimbal and optical terminal designs are important for widespread implementation of optical communications systems; in particular, for satellite-to-satellite crosslinks where the advantages of more secure communications links (Lower Probability of Intercept (LPI)/Lower Probability of Detect (LPD)) are very important. We developed design concepts for a small gimbal focusing on the use of commercial off-the-shelf (COTS) subsystems to establish their feasible implementation against the pointing stabilization, size, weight and power (SWaP), and performance challenges. The design drivers for the gimbal were weight, the elevation and azimuth field of regards, the form factor envelope (1U CubeSats), 100 μrad pointing accuracy, and 10 degrees per second slew capability. Innovations required in this development included a continuous fiber passed through an Azimuth Fiber Wrap and Elevation Fiber Wrap, overcoming typical mechanical and stress related limitations encountered with fiber optic cable wraps. In this presentation, we describe the configuration trades and design of such a gimbal.

Top