Science.gov

Sample records for point light source

  1. An efficient method to compute microlensed light curves for point sources

    NASA Technical Reports Server (NTRS)

    Witt, Hans J.

    1993-01-01

    We present a method to compute microlensed light curves for point sources. This method has the general advantage that all microimages contributing to the light curve are found. While a source moves along a straight line, all micro images are located either on the primary image track or on the secondary image tracks (loops). The primary image track extends from - infinity to + infinity and is made of many sequents which are continuously connected. All the secondary image tracks (loops) begin and end on the lensing point masses. The method can be applied to any microlensing situation with point masses in the deflector plane, even for the overcritical case and surface densities close to the critical. Furthermore, we present general rules to evaluate the light curve for a straight track arbitrary placed in the caustic network of a sample of many point masses.

  2. The resolution of point sources of light as analyzed by quantum detection theory

    NASA Technical Reports Server (NTRS)

    Helstrom, C. W.

    1972-01-01

    The resolvability of point sources of incoherent light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.

  3. Resolution of point sources of light as analyzed by quantum detection theory.

    NASA Technical Reports Server (NTRS)

    Helstrom, C. W.

    1973-01-01

    The resolvability of point sources of incoherent thermal light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.

  4. Point light source detection characteristics of a SEC vidicon digital TV camera.

    PubMed

    Dargis, A B

    1978-03-01

    Optimization of the point source detection properties of a Secondary Electron Conduction (SEC) vidicon TV camera tube as a detector of point light sources such as star fields or certain optical spectra requires the accurate determination of peak height, half-peak width, background, and location of the point image. Two perpendicular Gaussian curves have been used to define a point image, allowing changes in the parameters of these Gaussian curves to be used in the study of SEC vidicon point source properties as a function of electrical and optical parameters. Peak height was shown to depend on priming time and a method was developed to reduce the priming time by almost an order of magnitude by momentarily raising the target voltage during priming. Power supply specifications needed for 0.1 pixel (picture element) addressing accuracy were found to be +/-0.03 V. Focus current was optimized to obtain the best sensitivity and resolution over the entire target. Peak height, background, and half-peak width were found to be strongly dependent on readout beam current. Target voltage, over the limited range examined, was found to affect only the gain without compromising other image parameters, so that any value could be used, consistent with gain and sensitivity required.

  5. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  6. A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission

    NASA Astrophysics Data System (ADS)

    Chen, Xi

    The Cosmic Microwave Background (CMB) radiation is the remnant heat from the Big Bang. It serves as a primary tool to understand the global properties, content and evolution of the universe. Since 2001, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) satellite has been napping the full sky anisotropy with unprecedented accuracy, precision and reliability. The CMB angular power spectrum calculated from the WMAP full sky maps not only enables accurate testing of cosmological models, but also places significant constraints on model parameters. The CMB signal in the WMAP sky maps is contaminated by microwave emission from the Milky Way and from extragalactic sources. Therefore, in order to use the maps reliably for cosmological studies, the foreground signals must be well understood and removed from the maps. This thesis focuses on the separation of two foreground contaminants from the WMAP maps: extragalactic point sources and zodiacal light emission. Extragalactic point sources constitute the most important foreground on small angular scales. Various methods have been applied to the WMAP single frequency maps to extract sources. However, due to the limited angular resolution of WMAP, it is possible to confuse positive CMB excursions with point sources or miss sources that are embedded in negative CMB fluctuations. We present a novel CMB-free source finding technique that utilizes the spectrum difference of point sources and CMB to form internal linear combinations of multifrequency maps to suppress the CMB and better reveal sources. When applied to the WMAP 41, 64 and 94 GHz maps, this technique has not only enabled detection of sources that are previously cataloged by independent methods, but also allowed disclosure of new sources. Without the noise contribution from the CMB, this method responds rapidly with the integration time. The number of detections varies as 0( t 0.72 in the two-band search and 0( t 0.70 in the three-band search from one year to five years

  7. Point-source reconstruction with a sparse light-sensor array for optical TPC readout

    NASA Astrophysics Data System (ADS)

    Rutter, G.; Richards, M.; Bennieston, A. J.; Ramachers, Y. A.

    2011-07-01

    A reconstruction technique for sparse array optical signal readout is introduced and applied to the generic challenge of large-area readout of a large number of point light sources. This challenge finds a prominent example in future, large volume neutrino detector studies based on liquid argon. It is concluded that the sparse array option may be ruled out for reasons of required number of channels when compared to a benchmark derived from charge readout on wire-planes. Smaller-scale detectors, however, could benefit from this technology.

  8. Super-resolution digital holographic microscopy using multi-point light sources illumination

    NASA Astrophysics Data System (ADS)

    Phan, Anh-Hoang; Park, Jae-Hyeung; Kim, Nam; Jeon, Seok-Hee

    2010-02-01

    In this paper, we use multi-point source illumination to enhance the resolution of digital holographic microscopy without shifting the CCD camera. The specimen is illuminated from many directions by using multi-point sources which are easily created by a lens-array. The high frequency information of the specimen can be captured at a fixed position of CCD camera. All information is then synthesized to increase the resolution.

  9. Volume 2 - Point Sources

    EPA Pesticide Factsheets

    Point source emission reference materials from the Emissions Inventory Improvement Program (EIIP). Provides point source guidance on planning, emissions estimation, data collection, inventory documentation and reporting, and quality assurance/quality contr

  10. Cylindrical angular spectrum using Fourier coefficients of point light source and its application to fast hologram calculation.

    PubMed

    Oh, Seungtaik; Jeong, Il Kwon

    2015-11-16

    We will introduce a new simple analytic formula of the Fourier coefficient of the 3D field distribution of a point light source to generate a cylindrical angular spectrum which captures the object wave in 360° in the 3D Fourier space. Conceptually, the cylindrical angular spectrum can be understood as a cylindrical version of the omnidirectional spectral approach of Sando et al. Our Fourier coefficient formula is based on an intuitive observation that a point light radiates uniformly in all directions. Our formula is defined over all frequency vectors lying on the entire sphere in the 3D Fourier space and is more natural and computationally more efficient for all around recording of the object wave than that of the previous omnidirectional spectral method. A generalized frequency-based occlusion culling method for an arbitrary complex object is also proposed to enhance the 3D quality of a hologram. As a practical application of the cylindrical angular spectrum, an interactive hologram example is presented together with implementation details.

  11. Optical data storage system with a planoellipsoidal solid immersion mirror illuminated directly by a point light source.

    PubMed

    Zhang, Yaoju

    2006-12-01

    A new solid immersion mirror called the planoellipsoidal (PE) solid immersion mirror (SIM) for the near-field optical storage is proposed and developed. The PE SIM has a small aperture on the apex of the ellipsoidal surface. The intensity distribution of the transmitted field is calculated by using the vector diffraction theory. Compared with a conventional solid immersion lens (SIL), the proposed PE SIM has the following features. A PE SIM replaces three optical elements of the collimator, objective, and SIL in a conventional SIL optical storage system, so that the optical system equipped with the PE SIM is not only simple in its assembly but is also effective in making an optical head unit. The PE SIM obtains light from a point light source and focuses it directly on the recording layer, which may be useful for a compact optical data storage system. The convex ellipsoidal surface of the PE SIM can reduce the risk of the SIM touching the surface of the recording medium. In addition, the spreading of the spot size with the increase of distance is very small in the PE SIM.

  12. WOW: light print, light propel, light point

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  13. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  14. Light Sources and Lighting Circuits

    NASA Astrophysics Data System (ADS)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  15. 1SXPS: A Deep Swift X-Ray Telescope Point Source Catalog with Light Curves and Spectra

    NASA Technical Reports Server (NTRS)

    Evans, P. A.; Osborne, J. P.; Beardmore, A. P.; Page, K. L.; Willingale, R.; Mountford, C. J.; Pagani, C.; Burrows, D. N.; Kennea, J. A.; Perri, M.; Tagliaferri, G.; Gehrels, N.

    2013-01-01

    We present the 1SXPS (Swift-XRT point source) catalog of 151,524 X-ray point sources detected by the Swift-XRT in 8 yr of operation. The catalog covers 1905 sq deg distributed approximately uniformly on the sky. We analyze the data in two ways. First we consider all observations individually, for which we have a typical sensitivity of approximately 3 × 10(exp -13) erg cm(exp -2) s(exp -1) (0.3-10 keV). Then we co-add all data covering the same location on the sky: these images have a typical sensitivity of approximately 9 × 10(exp -14) erg cm(exp -2) s(exp -1) (0.3-10 keV). Our sky coverage is nearly 2.5 times that of 3XMM-DR4, although the catalog is a factor of approximately 1.5 less sensitive. The median position error is 5.5 (90% confidence), including systematics. Our source detection method improves on that used in previous X-ray Telescope (XRT) catalogs and we report greater than 68,000 new X-ray sources. The goals and observing strategy of the Swift satellite allow us to probe source variability on multiple timescales, and we find approximately 30,000 variable objects in our catalog. For every source we give positions, fluxes, time series (in four energy bands and two hardness ratios), estimates of the spectral properties, spectra and spectral fits for the brightest sources, and variability probabilities in multiple energy bands and timescales.

  16. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  17. Light pollution simulations for planar ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2008-02-20

    The light pollution model is employed to analyze spatial behavior of luminance at the night sky under cloudless and overcast conditions. Enhanced light excess is particularly identified at cloudy skies, because the clouds efficiently contribute to the downward luminous flux. It is evident that size of ground-based light sources can play an important role in the case of overcast sky conditions. Nevertheless, the realistically sized light sources are rarely embedded into light pollution modeling, and rather they are replaced by simple point sources. We discuss the discrepancies between sky luminance distributions when at first the planar light sources are considered and at second the point-source approximation is accepted. The found differences are noticeable if the size of the light source, distance to the observer, and altitude of a cloudy layer are comparable one to the other. Compared with point-source approximation, an inclusion of the size factor into modeling the light sources leads to partial elimination of the steep changes of sky luminance (typical for point sources of light). The narrow and sharp light pillars normally presented on the sky illuminated by point light sources can disappear or fuse together when two or more nearby light sources are considered with their real sizes. Sky elements situated close to the horizon will glow efficiently if luminous flux originates from two-dimensional ground-based entities (such as cities or villages).

  18. Fifth generation light sources

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2016-12-01

    Coherent light sources are one of the most fundamental research tools in biology, technology and in other areas. Synchrotron light source consists of a few basic parts: energy source - which is an electron beam accelerator, energy converter between electron and photon beams - which is an undulator, and photon user experimental lines. Each of these parts is separately a complex system, which is currently a subject to fast technological development. Future light sources of the fifth generation are based on completely new solutions of these fundamental parts, in comparison with the sources of the previous generations. Energy source is a new generation laser - plasma accelerator with electrical field in the area of multiple GV/m. A miniature undulator is tested in the MEMS technology from new materials. Classical light beam lines, vacuum, and difficult for management and beam distribution, change their meaning in the case of availability of miniature undulators positioned immediately at or even inside the experimental stations. After an introduction concerning the light sources of the previous generations, the article shows current research efforts on the mentioned key components of the fifth generation light sources. In some cases this is a continuation and modernization of the previous technologies, in the majority it is a brave endeavour to apply completely new technologies, like laser - plasma acceleration.

  19. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  20. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  1. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  2. One-dimensional array of point-like light sources based on gold nanoparticles and tetracene: Preparation and possible operation mechanisms

    SciTech Connect

    Cherepanov, V. V.; Fedorovich, R. D.; Kiyayev, O. E.; Naumovets, A. G.; Nechytaylo, V. B. Tomchuk, P. M.; Viduta, L. V.

    2014-11-10

    A method of preparation of a linear close-packed array of point-like light sources based on a nanocomposite of gold nanoparticles and tetracene is proposed. Ordered system of microleads to the light sources with packing density up to 1000 mm{sup −1} consists of linear conducting chains of cobalt nanoparticles self-assembled in a magnetic field. The electroluminescence from the gold-tetracene nanocomposite occurs in the visible range typical of organic light-emitting field-effect transistors based on tetracene. A theoretical substantiation of the possibility of excitation of tetracene molecules by hot electrons emitted from the gold nanoparticles is suggested and compared with other possible physical mechanisms.

  3. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end radiation of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency (Fig. 10.1), lifetime and color properties.

  4. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency Fig. 10.1, lifetime and color properties.

  5. Light Sources 2007

    NASA Astrophysics Data System (ADS)

    Liu, M. Q.; Devonshire, R.

    2007-04-01

    This volume contains the proceedings of the 11th International Symposium on the Science and Technology of Light Sources (LS:11) held in Fudan University, Shanghai, China in the period May 20th to 24th, 2007. In the 32 years since the first symposium was held in Loughborough, UK, the LS series has established itself as the major international event which brings together on a regular basis the world's leading scientists and engineers involved in the research and development of light source technologies. The participants come from the R&D laboratories of the world’s leading light source manufacturing companies and from research groups in universities, government laboratories and research institutes. The highly multi-disciplinary nature of the field results in a unique mix of physicists, chemists, chemical physicists, materials scientists and electrical, electronic and mechanical engineers attending the symposia. The more than 250 papers in these LS:11 proceedings provide an excellent overview of the current status of light source science and technology. The energy efficiency and light emission characteristics of existing technologies continue to be improved, solid state technologies are advancing rapidly and innovation flourishes generally. Audience Professional scientists and engineers involved in light source related R&D. Postgraduate-level students in the physical sciences, applied mathematics, materials science, and electrical and electronic engineering. The contents will also be of interest to anyone with a background in science and engineering wishing to gain an overview of current activity in this important global industry and research field.

  6. MEMS Incandescent Light Source

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas

    2001-01-01

    A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.

  7. Advanced light source

    NASA Astrophysics Data System (ADS)

    Sah, R. C.

    1983-03-01

    The Advanced Light Source (ALS) is a new synchrotron radiation source which was proposed by Lawrence Berkeley Laboratory. The ALS will be a key component in a major new research facility, the National Center for Advanced Materials. The ALS will consist of an electron linear accelerator, a booster synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines. Most of all photon beam lines will originate from wiggler and undulator magnets placed in the 12 long straight sections of the ALS. A very low electron beam emittance will provide photon beams of unsurpassed spectral brilliance from specially-designed undulators, and a high radiofrequency will produce very short pulse lengths.

  8. Nitride quantum light sources

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Oliver, R. A.

    2016-02-01

    Prototype nitride quantum light sources, particularly single-photon emitters, have been successfully demonstrated, despite the challenges inherent in this complex materials system. The large band offsets available between different nitride alloys have allowed device operation at easily accessible temperatures. A wide range of approaches has been explored: not only self-assembled quantum dot growth but also lithographic methods for site-controlled nanostructure formation. All these approaches face common challenges, particularly strong background signals which contaminate the single-photon stream and excessive spectral diffusion of the quantum dot emission wavelength. If these challenges can be successfully overcome, then ongoing rapid progress in the conventional III-V semiconductors provides a roadmap for future progress in the nitrides.

  9. The Herschel Point Source Catalogue

    NASA Astrophysics Data System (ADS)

    Marton, Gabor; Schulz, Bernhard; Altieri, Bruno; Calzoletti, Luca; Kiss, Csaba; Lim, Tanya; Lu, Nanyao; Paladini, Roberta; Papageorgiou, Andreas; Pearson, Chris; Rector, John; Shupe, David; Valtchanov, Ivan; Verebélyi, Erika; Xu, Kevin

    2015-08-01

    The Herschel Space Observatory was the fourth cornerstone mission in the European Space Agency (ESA) science programme with excellent broad band imaging capabilities in the submillimetre and far-infrared part of the spectrum. Although the spacecraft finished its observations in 2013, it left a large legacy dataset that is far from having been fully scrutinized and still has potential for new scientific discoveries. This is specifically true for the photometric observations of the PACS and SPIRE instruments that scanned >10% of the sky at 70, 100, 160, 250, 350 and 500 microns. Some source catalogs have already been produced by individual observing programs, but there are many observations that would never be analyzed for their full source content. To maximize the science return of the SPIRE and PACS data sets, our international team of instrument experts is in the process of building the Herschel Point Source Catalog (HPSC) from all scan map observations. Our homogeneous source extraction enables a systematic and unbiased comparison of sensitivity across the different Herschel fields that single programs will generally not be able to provide. The extracted point sources will contain individual YSOs of our Galaxy, unresolved YSO clusters in resolved nearby galaxies and unresolved galaxies of the local and distant Universe that are related to star formation. Such a huge dataset will help scientists better understand the evolution from interstellar clouds to individual stars. Furthermore the analysis of stellar clusters and the star formation on galactic scales will add more details to the understanding of star formation laws through time.We present our findings on comparison of different source detection and photometric tools. First results of the extractions are shown along with the description of our pipelines and catalogue entries. We also provide an additional science product, the structure noise map, that is used for the quality assessment of the catalogue in

  10. The Linac Coherent Light Source

    DOE PAGES

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  11. The Linac Coherent Light Source

    PubMed Central

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-01-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed. PMID:25931055

  12. The SAGA Light Source

    SciTech Connect

    Yoshida, K.; Iwasaki, Y.; Koda, S.; Okajima, S.; Setoyama, H.; Takabayashi, Y.; Tomimasu, T.; Yoshimura, D.; Ohgaki, H.

    2007-01-19

    Saga prefectural government operates a synchrotron light facility mainly for industrial applications of the synchrotron light. The facility comprises a 1.4 GeV storage ring, a 250 MeV linac as an electron injector and beamlines. The lattice of the storage ring is designed to perform as small emittance as 25 nm-radian and has long straight sections of 2.9 m length for installing insertion devices. Three beam lines have been prepared by Saga prefectural government and one by Saga University.

  13. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  14. Microwave generated plasma light source apparatus

    SciTech Connect

    Yoshizawa, K.; Ito, H.; Kodama, H.; Komura, H.; Minowa, Y.

    1985-02-05

    A microwave generated plasma light source including a microwave generator, a microwave cavity having a light reflecting member forming at least a portion of the cavity, and a member transparent to light and opaque to microwaves disposed across an opening of the cavity opposite the feeding opening through which the microwave generator is coupled. An electrodeless discharge bulb is disposed at a position in the cavity such that the cavity operates as a resonant cavity at least when the bulb is emitting light. In the bulb is encapsulated at least one discharge light emissive substance. The bulb has a shape and is sufficiently small that the bulb acts substantially as a point light source.

  15. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  16. National Synchrotron Light Source II

    SciTech Connect

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-04-25

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  17. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-07-12

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  18. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  19. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  20. Gender Recognition from Point-Light Walkers

    ERIC Educational Resources Information Center

    Pollick, Frank E.; Kay, Jim W.; Heim, Katrin; Stringer, Rebecca

    2005-01-01

    Point-light displays of human gait provide information sufficient to recognize the gender of a walker and are taken as evidence of the exquisite tuning of the visual system to biological motion. The authors revisit this topic with the goals of quantifying human efficiency at gender recognition. To achieve this, the authors first derive an ideal…

  1. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    NASA Astrophysics Data System (ADS)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  2. Lasers and Coherent Light Sources

    NASA Astrophysics Data System (ADS)

    Svelto, Orazio; Longhi, Stefano; Della Valle, Giuseppe; Huber, Günter; Kück, Stefan; Pollnau, Markus; Hillmer, Hartmut; Kusserow, Thomas; Engelbrecht, Rainer; Rohlfing (deceased), Frank; Kaiser, Jeffrey; Malz, Ralf; Marowsky, Gerd; Mann, Klaus; Simon, Peter; Rhodes, Charles K.; Duarte, Frank J.; Borsutzky, Annette; L'Huillier, Johannes A.; Sigrist, Markus W.; Wächter, Helen; Saldin, Evgeny; Schneidmiller, Evgeny; Yurkov, Mikhail; Sauerbrey, Roland; Hein, Joachim; Gianella, Michele; Helmcke, Jürgen; Midorikawa, Katsumi; Riehle, Fritz; Steinberg, Steffen; Brand, Hans

    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on today's most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser-matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization.

  3. Lasers and Coherent Light Sources

    NASA Astrophysics Data System (ADS)

    Svelto, Orazio; Longhi, Stefano; Valle, Giuseppe; Kück, Stefan; Huber, Günter; Pollnau, Markus; Hillmer, Hartmut; Hansmann, Stefan; Engelbrecht, Rainer; Brand, Hans; Kaiser, Jeffrey; Peterson, Alan; Malz, Ralf; Steinberg, Steffen; Marowsky, Gerd; Brinkmann, Uwe; Lo, Dennis; Borsutzky, Annette; Wächter, Helen; Sigrist, Markus; Saldin, Evgeny; Schneidmiller, Evgeny; Yurkov, Mikhail; Midorikawa, Katsumi; Hein, Joachim; Sauerbrey, Roland; Helmcke, Jürgen

    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on today's most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and X-ray ranges can be generated by free electron lasers (FEL) and advanced X-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser-matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization.

  4. MOPEX: MOsaicker and Point source EXtractor

    NASA Astrophysics Data System (ADS)

    NASA/IPAC Infrared Science Archive; JPL; Caltech; NASA

    2011-11-01

    MOPEX (MOsaicker and Point source EXtractor) is a package for reducing and analyzing imaging data, as well as MIPS SED data. MOPEX includes the point source extraction package, APEX. MOPEX is designed to allow the user to: perform sophisticated background matching of individual data framesmosaic the individual frames downloaded from the Spitzer archiveperform both temporal and spatial outlier rejection during mosaickingapply offline pointing refinement for MIPS data (refinement is already applied to IRAC data)perform source detection on the mosaics using APEXcompute aperture photometry or PRF-fitting photometry for point sourcesperform interpolation, coaddition, and spectrum extraction of MIPS SED images.MOPEX comes in two different interfaces (GUI and command-line), both of which come packaged together. We recommend that all new users start with the GUI, which is more user-friendly than the command-line interface

  5. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  6. Light Sources and Ballast Circuits

    NASA Astrophysics Data System (ADS)

    Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki

    discharge models were reported. Further, studies on ultra high-pressure mercury lamps as light sources for projectors are becoming the mainstream of HID lamp related researches. For high-pressure sodium lamps, many studies on plant growing and pest control utilizing low insect attracting aspects were also reported in 2006. Additionally, for discharge lamps, the minimum sustaining electric power for arc tubes employed in electrode-less compact fluorescent lamps was investigated. For Hg-free rare-gas fluorescent lamps, a luminance of 10,000cd/m2 was attained by a 1 meter-long external duplex spiral electrode prototype using Xe/Ne barrier discharge. As to startup circuits, the commercialization of energy saving and high value added products mainly associated with fluorescent lamps and HID lamps are becoming common. Further, the miniaturization of startup circuits for self electronic-ballasted lamps has advanced. Speaking of the overall light sources and startup circuits in 2006 and with the enforcement of RoHS in Europe in July, the momentum toward hazardous substance-free and energy saving initiatives has been enhanced from the perspective of protecting the global environment. It is anticipated that similar restrictions will be globally enforced in the future.

  7. Advanced Light Source elliptical wiggler

    NASA Astrophysics Data System (ADS)

    Hoyer, E.; Akre, J.; Humphries, D.; Marks, S.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-02-01

    A 3.5-m-long elliptical wiggler, optimized to produce elliptically polarized light in the 50 eV to 10 keV range, is currently under design and construction at the Advanced Light Source at Lawrence Berkeley Laboratory. Calculations of spectral performance show that the flux of circularly polarized photons exceeds 1013 photons/s over the 50 eV to 10 keV operating range for current of 0.4 A and 1.5 GeV electron energy. This device features vertical and horizontal magnetic structures of 14 and 141/2 periods, respectively. The period length is 20.0 cm. The vertical structure is a hybrid permanent magnet design with tapered pole tips that produce a peak field of 2.0 T. The horizontal structure is an iron core electromagnetic design, shifted longitudinally 1/4 period, that is tucked between the upper and lower vertical magnetic structure sections. A maximum peak oscillating field of 0.095 T at a frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform. The vacuum chamber is an unconventional design that is removable from the magnetic structure, after magnetic measurements, for UHV processing. The chamber is fabricated from non-magnetic stainless steel to minimize the effects of eddy currents. Device design is presented.

  8. Systematic identification of IRAS point sources

    NASA Technical Reports Server (NTRS)

    Savage, A.; Clowes, R. G.; Macgillivray, H. T.; Wolstencroft, R. D.; Leggett, S. K.; Puxley, P. J.

    1987-01-01

    A large scale program was initiated to identify IRAS point sources. At ROE the ideal facilities are at hand to undertake such a large program, viz. the rapid scanning capabilities of the COSMOS measuring machine to exploit the depth and resolution of the U.K. Schmidt Telescope J survey plates. Sources in 44 Schmidt plate areas were identified including 1300 sources and covering 1100 square degrees. The identification comprise 700 galaxy identifications and 600 stellar identifications. There are also about 40 sources with no obvious identification but which can be most easily explained by cirrus, confusion between two sources or sources just outside the 2 sigma error box. A major aim with the galaxy identification is to provide a data base from which sound statistical analyses can be made. Accurate blue magnitudes and morphological classifications for each identification were produced.

  9. Study on paper moisture measurement method by monochromatic light sources

    NASA Astrophysics Data System (ADS)

    Mo, Changtao; Du, Xin; He, Ping; Zhang, Lili; Li, Nan; Wang, Ming

    2010-10-01

    We design the emission and detection optical paths of three monochromatic infrared light sources with different wavelength. The three light sources are placed according to the different angles, so that the three kinds of monochromatic lights are converged on the same point of the sample. Using the method, we can detect the same point and improve the measurement accuracy. We choose the standard near-infrared monochromatic light source, so that we can save some equipments, such as tungsten- halogen lamp, filtered wheel, collimation focalizer, electric machine, and so on. In particular, we save the cumbersome cooling system, reduce the volume of the instrument greatly and reduce the cost. The three monochromatic light sources are supplied by the same pulse power source, to ensure their synchronous working.

  10. Independent waves in complex source point theory.

    PubMed

    Seshadri, S R

    2007-11-01

    The full-wave generalization of the scalar Gaussian paraxial beam is determined by an analytical continuation of the field of a point source for the Helmholtz equation. The regions of validity of the analytically continued fields are investigated for the outgoing and the incoming waves. The two independent wave functions valid for the two half-spaces separating the secondary source plane are deduced.

  11. Optical fiber tip with point light source of SPPs driven by three-dimensional nanostructured asymmetric metal-insulator-metal layer cap

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2015-09-01

    Numerical analysis of three dimensional optical electro-magnetic field in a circular-truncated conical optical fiber covered by asymmetric MIM structure has been performed by a commercial finite element method package, COMSOL Multiphysics coupled with Wave Optics Module. The outermost thick metallic layer has twin nano-hole, and the waveguiding twin-hole could draw surface plasmon polaritions (SPPs) excited in the MIM structure to the surface. Finally the guided two SPPs could unite each other and may create a single bright spot. The systematic simulation is continuing, and the results will give us valuable counsel for control of surface plasmon polaritons (SPPs) appearing around the MIM structure and twin nano-hole. (1) Optimal design of the 3D FEM model for 8-core Xeon server and rational approach for the FEM analysis, (2) behavior of SPPs affected by wavelength and polarization of light travel through fiber, (3) change in excitation condition of SPPs caused by shape of the MIM structure and twin-hole, (4) effectiveness of additional nanostructures that are aimed at focusing control of two SPPs come out from the corners of twin-hole, (5) scanning ability of the MIM/twin-hole probe at nanostructured sample surface (i.e. amount of forward and backward scattering of SPPs) will be presented and discussed. Several FIBed prototypes and their characteristic of light emission will also reported.

  12. Lighting system with thermal management system having point contact synthetic jets

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  13. Lighting system with thermal management system having point contact synthetic jets

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2016-08-23

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  14. Lighting system with thermal management system having point contact synthetic jets

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr, Charles Franklin; Sharma, Rajdeep

    2016-08-30

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  15. Dithering Strategies and Point-Source Photometry

    SciTech Connect

    Samsing, Johan; Kim, Alex G

    2011-02-22

    The accuracy in the photometry of a point source depends on the point-spread function (PSF), detector pixelization, and observing strategy. The PSF and pixel response describe the spatial blurring of the source, the pixel scale describes the spatial sampling of a single exposure, and the observing strategy determines the set of dithered exposures with pointing offsets from which the source flux is inferred. In a wide-field imaging survey, sources of interest are randomly distributed within the field of view and hence are centered randomly within a pixel. A given hardware configuration and observing strategy therefore have a distribution of photometric uncertainty for sources of fixed flux that fall in the field. In this article we explore the ensemble behavior of photometric and position accuracies for different PSFs, pixel scales, and dithering patterns. We find that the average uncertainty in the flux determination depends slightly on dither strategy, whereas the position determination can be strongly dependent on the dithering. For cases with pixels much larger than the PSF, the uncertainty distributions can be non-Gaussian, with rms values that are particularly sensitive to the dither strategy. We also find that for these configurations with large pixels, pointings dithered by a fractional pixel amount do not always give minimal average uncertainties; this is in contrast to image reconstruction for which fractional dithers are optimal. When fractional pixel dithering is favored, a pointing accuracy of better than {approx}0.15 {approx}0.15 pixel width is required to maintain half the advantage over random dithers.

  16. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    NASA Astrophysics Data System (ADS)

    Grandjean, N.

    2010-09-01

    comprehensive review of the different localization mechanisms and their implication for internal quantum efficiency (IQE) is proposed by Oliver and co-workers from Cambridge University. When discussing IQE in InGaN-based LEDs, the efficiency droop at high-current injection always emerges, which is a major concern for the future of SSL technology. Here, a collaborative work between Samsung and the Gwangju Institute of Science and Technology (Korea) proves that a specific design of the active region can limit this detrimental effect. Once the issue of the IQE is solved, one still has to let the photons out of the chip. Matioli and Weisbuch from the University of California at Santa Barbara introduce the use of photonic crystals (PhCs) to improve light extraction efficiency. They describe different approaches to overcoming the main limitation of LEDs when implementing surface PhCs. The technology of SSL, and in particular of colour rendering, is tackled by Zukauskas et al who studied in detail different white light sources. They show that extreme colour-fidelity indices need to cover the entire spectrum, with a broad-band at 530-610 nm and a component beyond 610 nm. Then, the reliability of GaN-based LEDs is discussed in the paper of Meneghesso and co-workers. The authors consider the most important physical mechanisms that are (i) the degradation of the active layer of LEDs, (ii) the degradation of the package/phosphor system, (iii) the failure of GaN-based LEDs against electrostatic discharge. Finally, GaN LEDs on silicon developed in the group of Egawa at the Nagoya Institute of Technology are presented. This technology could allow a significant decrease in the fabrication cost of white LEDs.

  17. Photometer for tracking a moving light source

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W. (Inventor)

    2009-01-01

    A photometer that tracks a path of a moving light source with little or no motion of the photometer components. The system includes a non-moving, truncated paraboloid of revolution, having a paraboloid axis, a paraboloid axis, a small entrance aperture, a larger exit aperture and a light-reflecting inner surface, that receives and reflects light in a direction substantially parallel to the paraboloid axis. The system also includes a light processing filter to receive and process the redirected light, and to issue the processed, redirected light as processed light, and an array of light receiving elements, at least one of which receives and measures an associated intensity of a portion of the processed light. The system tracks a light source moving along a path and produces a corresponding curvilinear image of the light source path on the array of light receiving elements. Undesired light wavelengths from the light source may be removed by coating a selected portion of the reflecting inner surface or another light receiving surface with a coating that absorbs incident light in the undesired wavelength range.

  18. Development of a circadian light source

    NASA Astrophysics Data System (ADS)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  19. The First Sources of Light

    NASA Astrophysics Data System (ADS)

    Loeb, Avi

    2011-09-01

    Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA's successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. These arrays are aiming to detect the long-wavelength (redshifted 21-cm) radio emission from hydrogen atoms. The images from these antenna arrays will reveal how the non-uniform distribution of neutral hydrogen evolved with cosmic time and eventually was extinguished by the ultra-violet radiation from the first galaxies. Theoretical research has focused in recent years on predicting the expected signals for the above instruments and motivating these ambitious observational projects.

  20. Solid-state light sources getting smart.

    PubMed

    Schubert, E Fred; Kim, Jong Kyu

    2005-05-27

    More than a century after the introduction of incandescent lighting and half a century after the introduction of fluorescent lighting, solid-state light sources are revolutionizing an increasing number of applications. Whereas the efficiency of conventional incandescent and fluorescent lights is limited by fundamental factors that cannot be overcome, the efficiency of solid-state sources is limited only by human creativity and imagination. The high efficiency of solid-state sources already provides energy savings and environmental benefits in a number of applications. However, solid-state sources also offer controllability of their spectral power distribution, spatial distribution, color temperature, temporal modulation, and polarization properties. Such "smart" light sources can adjust to specific environments and requirements, a property that could result in tremendous benefits in lighting, automobiles, transportation, communication, imaging, agriculture, and medicine.

  1. A compact, coherent light source system architecture

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  2. Light sources currently used in photochemotherapy

    NASA Astrophysics Data System (ADS)

    Kwasńy, Mirosław; Gietka, Andrzej; Kotowski, Paweł; Mierczyk, Zygmunt

    2016-12-01

    The availability of low-cost therapeutic illuminators was one of the key factors to limit clinical use of PDT. The paper presents modern light sources which have revolutionized PDT method, contributing to its more common use. The technical parameters of different illuminators are compared. Finally, own light sources were presented and developed in Polish clinics.

  3. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  4. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  5. Surveillance of clustering near point sources.

    PubMed

    Le, N D; Petkau, A J; Rosychuk, R

    Health authorities are often alerted to suspected cancer clusters near the vicinity of potential point sources by members of the public. A surveillance system, where administrative regions around the potential point sources are regularly monitored for high disease rates, would allow for responses which are easier to obtain, timelier, and less expensive than individual thorough investigations. The monitoring could be done by using the so-called 'focused' tests for detecting disease clustering. However, these tests, generally designed to detect clusters of a fixed size around the foci, are not particularly effective when dealing with administrative regions with substantial differences in populations. In this work, an approach which overcomes the problem to a certain extent is described. Here the selected cluster sizes are based on the populations of the administrative regions under examination. The approach is used to investigate whether cancer clustering appears in the vicinity of the pulp and paper mills in British Columbia for the years 1983-1989. The results indicate that the approach performs reasonably well in identifying cancer sites for which elevated risks have also been suggested in the epidemiologic literature. Consequently, this methodology could be utilized to provide guidance for further investigation even in the absence of local reports. Similarly, it could be readily utilized to provide timely responses to local reports.

  6. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    PubMed

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  7. Comparative Study of Light Sources for Household

    NASA Astrophysics Data System (ADS)

    Pawlak, Andrzej; Zalesińska, Małgorzata

    2017-03-01

    The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.

  8. The Advanced Light Source: Technical Design

    SciTech Connect

    Authors, Various

    1984-05-01

    The Advanced Light Source (ALS) is a synchrotron radiation source consisting of a 50-MeV linear accelerator, a 1.3-GeV 'booster' synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines, as shown in Figure 1. As an introduction to a detailed description of the Advanced Light Source, this section provides brief discussions on the characteristics of synchrotron radiation and on the theory of storage rings. Appendix A contents: Introduction to Synchrotron-Radiation Sources; Storage Ring; Injection System; Control System; Insertion Devices; Photon Beam Lines; and References.

  9. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  10. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  11. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)

  12. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  13. Application of Light Sources to Medical Field

    NASA Astrophysics Data System (ADS)

    Mizojiri, Takafumi; Kimura, Makoto

    The purpose of this paper is to show application of light sources to medical field. It is described the process of light sources development applied to photodynamic therapy; PDT or photodynamic diagnosis; PDD. Actually, as a successful experience, we show the verification results obtained by primary and clinical experiments using metal halide lamp which emitted spectra is optimized to absorbed wavelength of photosensitizer for PDT.

  14. Superresolving multiphoton interferences with independent light sources.

    PubMed

    Oppel, S; Büttner, T; Kok, P; von Zanthier, J

    2012-12-07

    We propose to use multiphoton interferences from statistically independent light sources in combination with linear optical detection techniques to enhance the resolution in imaging. Experimental results with up to five independent thermal light sources confirm this approach to improve the spatial resolution. Since no involved quantum state preparation or detection is required, the experiment can be considered an extension of the Hanbury Brown-Twiss experiment for spatial intensity correlations of order N>2.

  15. Bright diode laser light source.

    PubMed

    Lassila, Erkki; Hernberg, Rolf

    2006-05-20

    A simplified multiwavelength prototype of an axially symmetric diode laser device based on stacks made of single emitters has been made, and the performance of the device has been demonstrated experimentally. The results verify that kilowatt-level light power can be focused into a circular spot with a 1/e2 diameter of 360 microm, a focal length of 100 mm, and a numerical aperture of 0.24, thus producing an average power density in excess of 10 kW/mm2 and a brightness of 6x10(10) W m-2 sr-1. The experiments also predict that it will be possible to increase these values to more than 60 kW/mm2 and 3x10(11) W m-2 sr-1.

  16. Advanced controls for light sources

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Edelen, A. L.; Milton, S. V.

    2016-09-01

    We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.

  17. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  18. Microelectromechanical Systems (MEMS) Broadband Light Source Developed

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    2003-01-01

    A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip

  19. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  20. Proposals for synchrotron light sources

    SciTech Connect

    Teng, L.C.

    1985-06-01

    Ever since it was first applied in the 1960's synchrotron radiation from an accelerating electron beam has been gaining popularity as a powerful tool for research and development in a wide variety of fields of science and technology. By now there are some 20 facilities operating either parasitically or dedicatedly for synchrotron radiation research in different parts of the world. In addition there are another 20 facilities either in construction or in various stages of proposal and design. The experiences gained from the operating facilities and the recent development of insertion devices such as wigglers and undulators as radiation sources led to a new set of requirements on the design of synchrotron radiation storage rings for optimum utility. The surprisingly uniform applicability and unanimous acceptance of these criteria give assurance that they are indeed valid criteria derived form mature considerations and experiences. Instead of describing the design of each of these new facilities it is, thus, more effective to discuss these desirable design features and indicate how they are incorporated in the design using machines listed as examples. 9 refs., 7 figs., 2 tabs.

  1. High-intensity sources for light ions

    SciTech Connect

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.

  2. Measurement of storage ring motion at the advanced light source

    SciTech Connect

    Krebs, G.F.

    1997-05-01

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions.

  3. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  4. Research on Modern Gas Discharge Light Sources

    NASA Astrophysics Data System (ADS)

    Born, M.; Markus, T.

    This article gives an overview of today's gas discharge light sources and their application fields with focus on research aspects. In Sect. 15.1 of this chapter, an introduction to electric light sources, the lighting market and related research topics is outlined. Due to the complexity of the subject, we have focused on selected topics in the field of high intensity discharge (HID) lamps since these represent an essential part of modern lamp research. The working principle and light technical properties of HID lamps are described in Sect. 15.2. Physical and thermochemical modelling procedures and tools as well as experimental analysis are discussed in Sects. 15.3 and 15.4, respectively. These tools result in a detailed scientific insight into the complexity of real discharge lamps. In particular, analysis and modelling are the keys for further improvement and development of existing and new products.

  5. Infrared light sources with semimetal electron injection

    DOEpatents

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  6. Robust photometric stereo using structural light sources

    NASA Astrophysics Data System (ADS)

    Han, Tian-Qi; Cheng, Yue; Shen, Hui-Liang; Du, Xin

    2014-05-01

    We propose a robust photometric stereo method by using structural arrangement of light sources. In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations. The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distinguished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of light sources. The highlight detection problem is cast as a pattern classification problem and is solved using support vector machine classifiers. Considering the possible misclassification of highlight pixels, the ℓ1 regularization is further employed in normal map estimation. Experimental results on both synthetic and real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of heavy specular reflection and outperforms the state-of-the-art techniques.

  7. Monitoring performance of the Advanced Light Source

    SciTech Connect

    Byrne, Warren E.; Lampo, Edward J.; Samuelson, Bruce C.

    2001-06-13

    Providing high quality light to users in a consistent and reliable manner is one of the main goals of the accelerator physics group at the Advanced Light source (ALS). To meet this goal considerable time is spent monitoring the performance of the machine. At the Group's weekly meeting the performance of the accelerator over the previous week's run is reviewed. This paper describes the parameters that are monitored to optimize the performance of the ALS.

  8. Light color, low softening point hydrocarbon resins

    SciTech Connect

    Evans, M.L.; Hentges, S.G.

    1990-06-12

    This patent describes a hydrocarbon resin having a softening point of from 0{degrees} C to about 40{degrees} C, a Gardner color of about 7 or less, a number average molecular weight (Mn) of from about 100 to about 600, and a M{sub {ital w}}/M{sub {ital n}} ratio of from about 1.1 to about 2.7, prepared by Friedel Crafts polymerization of a hydrocarbon feed. It comprises: from about 5% to about 75% by weight of a C{sub 8} to C{sub 10} vinyl aromatic hydrocarbon stream; up to about 35% by weight of a piperylene stream; and from about 25% to about 70% by weight of a stream containing C{sub 4} to C{sub 8} monoolefin chain transfer agent of the formula RR{prime}C {double bond} CR{double prime}R triple{prime} where R and R{prime} are C{sub 1} to C{sub 5} alkyl, R{double prime} and R triple{prime} are independently selected from H and a C{sub 1} to C{sub 4} alkyl group.

  9. LPP-EUV light source for HVM lithography

    NASA Astrophysics Data System (ADS)

    Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.

    2017-01-01

    We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.

  10. Plasmas as Light Sources for Lasers.

    DTIC Science & Technology

    1984-09-01

    RD-R159 460 PLASMS RS LIGHT SOURCES FOR LSERS(U) LBANA UNIV IN ./I HUNTSVILLE T A BARR ET AL. SEP 64 ANSMI/RH-CR-85-14 pAAHS-82-D-AS±6 N...and experimental results are presented, together with a * possible explanation of the optical radiation-tim history of the plasm . Potential...into a cold pl’sma device at Te - 1 eV and l018 / cc ions. Incidentally this experiment showed why there may be a need for a plasma light source

  11. Solid-State Spectral Light Source System

    NASA Technical Reports Server (NTRS)

    Maffione, Robert; Dana, David

    2011-01-01

    A solid-state light source combines an array of light-emitting diodes (LEDs) with advanced electronic control and stabilization over both the spectrum and overall level of the light output. The use of LEDs provides efficient operation over a wide range of wavelengths and power levels, while electronic control permits extremely stable output and dynamic control over the output. In this innovation, LEDs are used instead of incandescent bulbs. Optical feedback and digital control are used to monitor and regulate the output of each LED. Because individual LEDs generate light within narrower ranges of wavelengths than incandescent bulbs, multiple LEDs are combined to provide a broad, continuous spectrum, or to produce light within discrete wavebands that are suitable for specific radiometric sensors.

  12. Third-generation synchrotron light sources

    SciTech Connect

    Schlachter, A.S.; Wuilleumier, F.J.

    1993-09-01

    X rays are a powerful probe of matter because they interact with electrons in atoms, molecules, and solids. They are commonly produced by relativistic electrons or positrons stored in a synchrotron. Recent advances in technology are leading to the development of a new third generation of synchrotron radiation sources that produce vacuum-ultraviolet and x-ray beams of unprecedented brightness. These new sources are characterized by a very low electron-beam emittance and by long straight sections to accommodate permanent-magnet undulators and wigglers. Several new low-energy light sources, including the Advanced Light Source, presently under construction at the Lawrence Berkeley Laboratory, and ELETTRA, presently being constructed in Trieste, will deliver the world`s brightest synchrotron radiation in the VUV and soft x-ray regions of the spectrum. Applications include atomic and molecular physics and chemistry, surface and materials science, microscopy, and life sciences.

  13. Teaching Light Compensation Point: A New Practical Approach.

    ERIC Educational Resources Information Center

    Aston, T. J.; Robinson, G.

    1986-01-01

    Describes a simple method for measuring respiration, net photosynthesis, and compensation points of plants in relation to light intensity. Outlines how the method can be used in teaching physiological adaptation. Includes a set of the experiment's results. (ML)

  14. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  15. Use of an ultraviolet light at point-of-dispense faucet to eliminate Pseudomonas aeruginosa.

    PubMed

    Gerba, Charles P

    2015-05-01

    Tap water is believed to be a significant source of Pseudomonas aeruginosa in health care environments. This study evaluated an ultraviolet (UV) light point-of-dispense water treatment system for control of P aeruginosa. No P aeruginosa was detected in 30 different water dispensers in which the UV light device had been operating for 1-34 months. In comparison, P aeruginosa was found in other taps that did not feature this UV light system.

  16. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  17. Mobile-phone based visible light communication using region-grow light source tracking for unstable light source.

    PubMed

    Liang, Kevin; Chow, Chi-Wai; Liu, Yang

    2016-07-25

    In order to increase the data rate of the camera-based visible light communication (VLC) system, using rolling shutter effect has been demonstrated successfully, in which the pixel rows of the complementary-metal-oxide-semiconductor (CMOS) image sensor are activated sequentially. Previous camera-based VLCs focused on using a stable LED light source, and its illumination area is positioned at the center of an image frame. In this work, we investigate the performance of a camera-based VLC with light source at different parts of an image frame. We propose and demonstrate using region-grow algorithm to track the light source. We also evaluate and discuss different scenarios when the light source is moved. Besides, a recorded > 5 kbit/s net data rate can be achieved by using only a single phosphor-based white-light LED source. Here, we demonstrate that 4.502 pixel/bit can be achieved.

  18. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  19. Extended- and Point-Source Radiometric Program

    DTIC Science & Technology

    1962-08-08

    Radiometric Measurements of Cs1 37 Sources Made with NaI Detector. . 60 6.2 Aerial Radiometric Measurements of Co 60 Sources Made with Bioplastic ...Hanford aircraft consisted of an NaI scintillator, bioplastic scintillator, and a 40-liter ionization chamber. The aircraft employed was a twin-engine...supply, amplifier, and count rate, was transistorized portable equipment designed and fabricated at Hanford. The bioplastic instrument consisted of a 5

  20. An optoacoustic point source for acoustic scale model measurements.

    PubMed

    Bolaños, Javier Gómez; Pulkki, Ville; Karppinen, Pasi; Hæggström, Edward

    2013-04-01

    A massless acoustic source is proposed for scale model work. This source is generated by focusing a pulsed laser beam to rapidly heat the air at the focal point. This produces an expanding small plasma ball which generates a sonic impulse that may be used as an acoustic point source. Repeatability, frequency response, and directivity of the source were measured to show that it can serve as a massless point source. The impulse response of a rectangular space was determined using this type of source. A good match was found between the predicted and the measured impulse responses of the space.

  1. Photonic crystal light-emitting sources

    NASA Astrophysics Data System (ADS)

    David, Aurélien; Benisty, Henri; Weisbuch, Claude

    2012-12-01

    Photonic crystals (PhCs) are periodically structured optical media offering the opportunity for spontaneous emission (SpE) to be strongly controlled in spatial terms (directions) or in absolute terms (rates). We discuss the application of this concept for practical light-emitting sources, summarizing the principles and actual merits of various approaches based on two- and three-dimensional PhCs. We take into consideration the numerous constraints on real-world light-emitting structures and materials. The various mechanisms through which modified photonic bands and band gaps can be used are first revisited in view of their use in light sources. We then present an in-depth discussion of planar emitters and enhanced extraction of light thanks to grating diffraction. Applications to conventional III-V semiconductors and to III-nitrides are reviewed. Comparison with random surface roughening reveals some common physical limitations. Some advanced approaches with complex structures or etched active structures are also discussed. Finally, the most promising mechanism to enhance the SpE rate, the Purcell effect, is considered. Its implementation, including through plasmonic effects, is shown to be effective only for very specific sources. We conclude by outlining the mix of physics and material parameters needed to grasp the relevant issues.

  2. IR beamline at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Ph, Lerch; L, Quaroni; J, Wambach; J, Schneider; B, Armstrong D.; D, Rossetti; L, Mueller F.; P, Peier; V, Schlott; L, Carroll; P, Friedli; H, Sigg; S, Stutz; M, Tran

    2012-05-01

    The infrared beamline at the Swiss light source uses dipole radiation and is designed to transport light to four experimental stations, A, B, C, D. Branch A is dedicated to far IR work in vacuum; branch B is a micro-spectrometer; branch C is dedicated to high resolution spectroscopy in the gas phase; branch D is a pump and probe set-up. This contribution describes the optical layout and provides a brief survey of currently available experimental stations. The beamline is in regular user operation since 2009.

  3. Seeing "the Dress" in the Right Light: Perceived Colors and Inferred Light Sources.

    PubMed

    Chetverikov, Andrey; Ivanchei, Ivan

    2016-08-01

    In the well-known "dress" photograph, people either see the dress as blue with black stripes or as white with golden stripes. We suggest that the perception of colors is guided by the scene interpretation and the inferred positions of light sources. We tested this hypothesis in two online studies using color matching to estimate the colors observers see, while controlling for individual differences in gray point bias and color discrimination. Study 1 demonstrates that the interpretation of the dress corresponds to differences in perceived colors. Moreover, people who perceive the dress as blue-and-black are two times more likely to consider the light source as frontal, than those who see the white-and-gold dress. The inferred light sources, in turn, depend on the circadian changes in ambient light. The interpretation of the scene background as a wall or a mirror is consistent with the perceived colors as well. Study 2 shows that matching provides reliable results on differing devices and replicates the findings on scene interpretation and light sources. Additionally, we show that participants' environmental lighting conditions are an important cue for perceiving the dress colors. The exact mechanisms of how environmental lighting and circadian changes influence the perceived colors of the dress deserve further investigation.

  4. Advanced Light Source beam diagnostics systems

    SciTech Connect

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  5. The upgraded scheme of Hefei Light Source

    SciTech Connect

    Li Weimin; Xu Hongliang; Wang Lin; Feng Guangyao; Zhang Shancai; Hao Hao

    2010-06-23

    To enhance the performance of Hefei Light Source, which was designed and constructed two decades ago, an upgrade project would be carried out in the near future. The detail upgrade scheme was described in this paper. Firstly, the magnet lattice of storage ring should be reconstructed with 4 DBA cells, whose advantages are lower beam emittance and more straight section available for insertion devices. Secondly, the beam diagnostics, main power supply, transverse and longitudinal multi-bunch feedback, beam control and manipulation system would be upgrade to improve the beam orbit stability. Finally, the injection system of storage ring and injector, which is composed of electron linac and beam transfer line, would be updated in order to assure smooth beam accumulation process under new low emittance lattice. With above improvement, it is hopeful to increase the brilliance of Hefei Light Source by two orders approximately. After three-year upgrade project, the performance of HLS would meet the demands of advanced SR users.

  6. Rf capacitively-coupled electrodeless light source

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.; Fugitt, Jock A.

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

  7. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  8. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  9. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  10. Superbend upgrade on the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W. R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J. A.; Pipersky, P.; Portmann, G.; Ritchie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt, A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2005-02-01

    The Advanced Light Source (ALS) is a third generation synchrotron light source at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand for additional high brightness hard X-ray beamlines in the 7-40 keV range, so in August 2001, three 1.3 T normal conducting bending magnets were removed from the storage ring and replaced with 5 T superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV, making them excellent sources of hard X-rays for protein crystallography and other hard X-ray applications. The Superbends did not compromise the performance of the facility in the VUV and soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new beam lines, greatly enhancing the facility's capability and capacity in the hard X-ray region. The Superbend project is the biggest upgrade since the ALS storage ring was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  11. Infants Perceive Human Point-Light Displays as Solid Forms

    ERIC Educational Resources Information Center

    Moore, Derek G.; Goodwin, Julia E.; George, Rachel; Axelsson, Emma L.; Braddick, Fleur M. B.

    2007-01-01

    While five-month-old infants show orientation-specific sensitivity to changes in the motion and occlusion patterns of human point-light displays, it is not known whether infants are capable of binding a human representation to these displays. Furthermore, it has been suggested that infants do not encode the same physical properties for humans and…

  12. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  13. Advanced Light Source beam position monitor

    SciTech Connect

    Hinkson, J.

    1991-10-28

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics.

  14. Estimation of viable airborne microbes downwind from a point source.

    PubMed Central

    Lighthart, B; Frisch, A S

    1976-01-01

    Modification of the Pasquill atmospheric diffusion equations for estimating viable microbial airborne cell concentrations downwind form a continuous point source is presented. A graphical method is given to estimate the ground level cell concentration given (i) microbial death rate, (ii) mean wind speed, (iii) atmospheric stability class, (iv) downwind sample distance from the source, and (v) source height. PMID:1275491

  15. Light-driven tipping points in polar ecosystems.

    PubMed

    Clark, Graeme F; Stark, Jonathan S; Johnston, Emma L; Runcie, John W; Goldsworthy, Paul M; Raymond, Ben; Riddle, Martin J

    2013-12-01

    Some ecosystems can undergo abrupt transformation in response to relatively small environmental change. Identifying imminent 'tipping points' is crucial for biodiversity conservation, particularly in the face of climate change. Here, we describe a tipping point mechanism likely to induce widespread regime shifts in polar ecosystems. Seasonal snow and ice-cover periodically block sunlight reaching polar ecosystems, but the effect of this on annual light depends critically on the timing of cover within the annual solar cycle. At high latitudes, sunlight is strongly seasonal, and ice-free days around the summer solstice receive orders of magnitude more light than those in winter. Early melt that brings the date of ice-loss closer to midsummer will cause an exponential increase in the amount of sunlight reaching some ecosystems per year. This is likely to drive ecological tipping points in which primary producers (plants and algae) flourish and out-compete dark-adapted communities. We demonstrate this principle on Antarctic shallow seabed ecosystems, which our data suggest are sensitive to small changes in the timing of sea-ice loss. Algae respond to light thresholds that are easily exceeded by a slight reduction in sea-ice duration. Earlier sea-ice loss is likely to cause extensive regime shifts in which endemic shallow-water invertebrate communities are replaced by algae, reducing coastal biodiversity and fundamentally changing ecosystem functioning. Modeling shows that recent changes in ice and snow cover have already transformed annual light budgets in large areas of the Arctic and Antarctic, and both aquatic and terrestrial ecosystems are likely to experience further significant change in light. The interaction between ice-loss and solar irradiance renders polar ecosystems acutely vulnerable to abrupt ecosystem change, as light-driven tipping points are readily breached by relatively slight shifts in the timing of snow and ice-loss.

  16. Operator scheduling at the Advanced Light Source

    SciTech Connect

    Miller, B.

    1998-06-01

    Scheduling Operations staff at the Advanced Light Source (ALS) has evolved from 5 shifts/week for commissioning operations in 1992 to the present 24 hour/day, 21 shift coverage as the ALS went to full operation for users. A number of schedules were developed and implemented in an effort to accommodate changing ALS shift coverage requirements. The present work schedule and the lessons learned, address a number of issues that are useful to any facility that is operating 24 hours/day, 7 days/week.

  17. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  18. Scientific opportunities at the advanced light source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.

    1989-04-01

    The Advanced Light Source (ALS) is a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. Now under construction at the Lawrence Berkeley Laboratory with a projected completion date of September 1992, the ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in eleven long straight sections. It will also have up to 48 bending-magnet ports. Scientific opportunities in materials science, surface science, chemistry, atomic and molecular physics, life science and other fields are reflected in Letters of Interest received for the establishment of beamlines.

  19. Status of the Linac Coherent Light Source

    SciTech Connect

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  20. Research Trends in Non Point Source during 1975-2010

    NASA Astrophysics Data System (ADS)

    Yanhua, Zhuang; Thuminh, Nguyen; Beibei, Niu; ei, Shao; Song, Hong

    According to the samples of 2924 articles about non point source of SCI and SSCI databases from 1975 to 2010, this study analysed the articles in the growth trend of article outputs, subject categories and journals, international collaborations, geographic distribution and scientific research issues by using bibliometric analysis. The results showed that non point source research steadily increased over the past 35 years and the annual number of articles published in 2010 was 79 times of that in 1975. Non point source was involved into 67 kinds of subjects and appeared in 451 journals. The main study area was concentrated in North America and Europe, following by East Asia. There were 79 countries/territories participated in non point source research, and USA was the largest contributor in non point source research and had a central position in collaboration networks. A keyword analysis indicated that water quality, non point pollutions, and watershed were the hottest issues of non point source research; "GIS, "watershed management", "modeling", "simulation", "monitoring", and "remote sensing" were the most popular research methods; and "agriculture", "land use", "runoff", and "pollution" were the leading causes of non point pollution.

  1. Holographic free-electron light source

    NASA Astrophysics Data System (ADS)

    Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2016-12-01

    Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing.

  2. Holographic free-electron light source

    PubMed Central

    Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2016-01-01

    Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing. PMID:27910853

  3. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  4. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  5. EDITORIAL: Special Issue on Light Sources

    NASA Astrophysics Data System (ADS)

    Wharmby, D. O.

    2008-07-01

    The papers in this Special Issue of Journal of Physics D: Applied Physics originate from the 11th International Symposium on the Science and Technology of Light Sources (LS:11) held at Fudan University, Shanghai, China, during 20 24 May 2007. Abstracts of all papers were published in the conference book Light Sources 2007 (Sheffield: FAST-LS) edited by Muqing Liu and R Devonshire. Special issues were produced after LS:9 and LS:10 and have proved to be well-cited and important sources of information for this community. The Symposia occur at three-year intervals. In this one over 200 papers were presented—the majority as posters—with ample time provided for active discussion. As all submitted papers had to be refereed in the normal way for J. Phys. D: Appl. Phys., I was concerned that too many submissions would overwhelm the small number of referees available in this area. To ensure a broad spread of interests and opinions, I invited 10 senior colleagues to give me their recommendations about who should be asked to submit papers for this Special Issue. The criteria were that the work should be new, complete and within the scope of the journal. As a result of their suggestions 42 authors were asked to submit papers. Not all authors were able to submit a manuscript in time and some, at my request, combined their work into a single paper. The 28 papers published here are the result of that process. The issue starts with a comprehensive review by Benilov of the remarkable progress that has been made in the past 15 years in understanding the behaviour of cathode and anode terminations in arcs. It is fair to say that we now have a fundamental understanding of the formerly baffling behaviour of spot and diffuse terminations, at least in the quasi-steady state. A number of following papers cover applications of this theory, extensions to time dependence and examination of the effects of the different gaseous atmospheres in which lighting arcs operate. Mercury has very

  6. Photovoltaic maximum power point search method using a light sensor

    NASA Astrophysics Data System (ADS)

    Ostrowski, Mariusz

    2015-05-01

    The main disadvantage of PV panels is their low efficiency and non-linear current-voltage characteristic. Both of the above depend on the insolation and the temperature. That is why, it is necessary to use the maximum power point search systems. Commonly used solutions vary not only in complexity and accuracy but also in the speed of searching the maximum power point. Usually, the measurement of current and voltage is used to determine the maximum power point. The most common in literature are the perturb and observe and incremental conductance methods. The disadvantage of these solutions is the need to search across the whole current-voltage curve, which results in a significant power loss. In order to prevent it, the techniques mentioned above are combined with other methods. This procedure determines the starting point of one of the above methods and results in shortening the search time. Modern solutions use the temperature measurement to determine the open circuit voltage. The simulations show that the voltage in the maximum power point depends mainly on the temperature of the photovoltaic panel, and the current depends mainly on the lighting conditions. The proposed method uses the measurement of illuminance and calculates the current at the maximum power point, which is used as a reference signal in power conversion system. Due to the non-linearity of the light sensor and of the photovoltaic panel, the relation between them cannot be determined directly. Therefore, the proposed method use the modified correlation function to calculate current corresponding to the light.

  7. Scattering of point source illumination by an arbitrary configuration

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard

    1994-01-01

    The problem of electromagnetic scattering of an incident plane wave by an arbitrary configuration of obstacles was solved by Twersky. In this report, the results are extended to point source incidence corresponding to a Hertz dipole. Knowledge of the response of a fixed configuration of scatterers excited by a point source may provide insight to improve the accuracy of the values of bulk parameters for clouds which have been found using plane wave excitation.

  8. Point and Condensed Hα Sources in the Interior of M33

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Hintz, Eric G.; Roming, Peter; Joner, Michael D.; Bucklein, Brian

    2017-01-01

    A variety of interesting objects such as Wolf-Rayet stars, tight OB associations, planetary nebula, x-ray binaries, etc. can be discovered as point or condensed sources in Hα surveys. How these objects distribute through a galaxy sheds light on the galaxy star formation rate and history, mass distribution, and dynamics. The nearby galaxy M33 is an excellent place to study the distribution of Hα-bright point sources in a flocculant spiral galaxy. We have reprocessed an archived WIYN continuum-subtracted Hα image of the inner 6.5' of the nearby galaxy M33 and, employing both eye and machine searches, have tabulated sources with a flux greater than 1 x 10-15 erg cm-2sec-1. We have identified 152 unresolved point sources and 122 marginally resolved condensed sources, 38 of which have not been previously cataloged. We present a map of these sources and discuss their probable identifications.

  9. Survey of light sources for image display systems to achieve brightness with efficient energy

    NASA Astrophysics Data System (ADS)

    Cheng, Dah Yu; Chen, Li-Min

    1995-04-01

    This paper will review the currently available light sources, and also introduces a new, patented compound orthogonal parabolic reflector to be integrated with the light source, which focuses a relatively large light source into a very small point. The reflector creates a nearly ideal intense point source for all next generation image display systems. The proposed system is not limited by the radiation source whether it is a short arc lamp or a long tungsten filament lamp. Our technologies take the finite size of radiation sources into account to address the common problem for all reflector lamp systems, i.e., intensity and uniformity (dark hole). Successful examples will be shown on how to make the efficient intense light source match the requirements of LCD and DMD display systems. A method for reducing U.V. and I.R. radiation will also be demonstrated.

  10. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are

  11. Simulating Dicke-like superradiance with classical light sources

    NASA Astrophysics Data System (ADS)

    Bhatti, D.; Oppel, S.; Wiegner, R.; Agarwal, G. S.; von Zanthier, J.

    2016-07-01

    In this paper we investigate the close relationship between Dicke superradiance, originally predicted for an ensemble of two-level atoms in entangled states, and the Hanbury Brown and Twiss effect, initially established in astronomy to determine the dimensions of classical light sources such as stars. By studying the state evolution of the fields produced by classical sources—defined by a positive Glauber-Sudarshan P function—when recording intensity correlations of higher order in a generalized Hanbury Brown and Twiss setup we find that the angular distribution of the last detected photon, apart from an offset, is identical to the superradiant emission pattern generated by an ensemble of two-level atoms in entangled symmetric Dicke states. We show that the phenomenon derives from projective measurements induced by the measurement of photons in the far field of the sources and the permutative superposition of quantum paths identical to those leading to superradiance in the case of single photon emitters. We thus point out an important similarity between classical sources and quantum emitters upon detection of photons if the particular photon source remains unknown. We finally present a compact result for the characteristic functional which generates intensity correlations of arbitrary order for any kind of light source.

  12. Optical microscopy using a single-molecule light source

    PubMed

    Michaelis; Hettich; Mlynek; Sandoghdar

    2000-05-18

    Rapid progress in science on nanoscopic scales has promoted increasing interest in techniques of ultrahigh-resolution optical microscopy. The diffraction limit can be surpassed by illuminating an object in the near field through a sub-wavelength aperture at the end of a sharp metallic probe. Proposed modifications of this technique involve replacing the physical aperture by a nanoscopic active light source. Advances in the spatial and spectral detection of individual fluorescent molecules, using near-field and far-field methods, suggest the possibility of using a single molecule as the illumination source. Here we present optical images taken with a single molecule as a point-like source of illumination, by combining fluorescence excitation spectroscopy with shear-force microscopy. Our single-molecule probe has potential for achieving molecular resolution in optical microscopy; it should also facilitate controlled studies of nanometre-scale phenomena (such as resonant energy transfer) with improved lateral and axial spatial resolution.

  13. Status of SESAME Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Tarawneh, Hamed

    2013-04-01

    During this presentation, I will talk about the current status of the SESAME synchrotron radiation source (SESAME: Synchrotron light for Experimental Science and Application in the Middle East). SESAME is an international research center located in Allan, Jordan and the accelerator complex consists of new storage ring of an energy of 2.5 GeV injected at 800 MeV and the injector is based on the upgraded 22.5 MeV Microtron and 800 MeV booster from the BESSY-I machine donated by Germany. The results of the design work and the optimizations of the beam optics for the SESAME storage ring and booster accelerators' lattices will be presented. I will also report on the status of the storage ring main sub-systems and the scientific case of the SESAME facility with the planned day-one beamlines.

  14. Status of the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Marx, Jay N.

    1991-01-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory will be a national user facility for the production ofhigh-brightness and partially coherent soft x-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1. 5 GeV with insertion devices in 10 long straight sections and 24 premier bend-magnet ports. High-brightness photon beams from less than 10 eV to more than 2 keY will be produced by undulators thereby providing many research opportunities in materials and surface science biology atomic physics and chemistry. Wigglers and bend magnets will provide high-flux broad-band radiation at energies to 10 keY. 2.

  15. Research opportunities at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1991-05-01

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is a third-generation synchrotron radiation facility based on a low-emittance, 1.5-GeV electron storage ring with ten long straight sections available for insertion devices and, initially, 24 bend-magnet ports. Undulators will provide high-brightness radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes to above 10 keV. Scheduled to begin operations as a US Department of Energy national user facility in the spring of 1993, the ALS will support an extensive research program in which soft X-ray and ultraviolet radiation is used to study matter in all its varied gaseous, liquid and solid forms. Participating research teams to implement the initial scientific program have been selected.

  16. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  17. ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE

    SciTech Connect

    Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp

    2015-04-01

    A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.

  18. Status of the SAGA Light Source

    SciTech Connect

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S.

    2010-06-23

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installed in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.

  19. Integrated source of broadband quadrature squeezed light.

    PubMed

    Hoff, Ulrich B; Nielsen, Bo M; Andersen, Ulrik L

    2015-05-04

    An integrated silicon nitride resonator is proposed as an ultra-compact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output squeezing spectrum for intra-cavity pump self-phase modulation. Subject to standard material loss and detection efficiencies, we find that the device holds promises for generating substantial quantum noise squeezing over a bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -6 dB squeezing is predicted for a pump power of only 75 mW.

  20. LED intense headband light source for fingerprint analysis

    DOEpatents

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  1. An ALS (Advanced Light Source) handbook

    SciTech Connect

    Not Available

    1988-11-01

    This booklet aims to provide the prospective user of the Advanced Light Source with a concise description of the radiation a researcher might expect at his or her experimental station. The focus is therefore on the characteristics of the light that emerges from insertion devices and bending magnets and on how components of the beam lines further alter the properties of the radiation. The specifications and operating parameters of the ALS injection system and storage ring are of only peripheral interest. To this end, Sections 3 and 5 and most of Section 4 are devoted to summary presentations, by means of performance plots and tabular compilations, of radiation characteristics at the ALS--spectral brightness, flux, coherent power, resolution, time structure, etc.--assuming a representative set of four undulators and one wiggler and a corresponding set of five beam lines. As a complement to these performance summaries, Section 1 is a general introductory discussion of synchrotron radiation and the ALS, and Section 2 provides a compendious introduction to the characteristics of synchrotron radiation from bending magnets, wigglers, and undulators. In addition, Section 4 briefly introduces the theory of diffraction grating and crystal monochromators. 15 refs., 28 figs., 5 tabs.

  2. A point particle model of lightly bound skyrmions

    NASA Astrophysics Data System (ADS)

    Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin

    2017-04-01

    A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.

  3. Diamond Light Source: status and perspectives.

    PubMed

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I

    2015-03-06

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives.

  4. Status of the Metrology Light Source

    NASA Astrophysics Data System (ADS)

    Klein, R.; Ulm, G.; Feikes, J.; Hartrott, M. v.; Wüstefeld, G.

    2010-06-01

    The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has set up the low-energy electron storage ring Metrology Light Source (MLS) in close cooperation with the Helmholtz-Zentrum Berlin (HZB, formerly BESSY). This new storage ring has been in regular user operation since April 2008 and is dedicated to synchrotron-radiation-based metrology and technological developments in the far-IR/THz, IR, UV, VUV and EUV spectral range. The MLS has a double-bend-achromate lattice structure, injection is from a 105 MeV racetrack microtron. The electron energy can be ramped to any value from 105 MeV up to 630 MeV and the electron beam current covers the range from one stored electron (1 pA) up to 200 mA. The MLS is the first electron storage ring optimized for the generation of coherent synchrotron radiation, based on an electron bunch shortening mode. In this mode, MLS delivers coherent radiation in the far-IR/THz spectral range with enhanced intensity as compared to the normal mode of operation. Several beamlines are in operation or in construction, including one undulator beamline, bending magnet beamlines for the calibration of radiation sources and detectors and for reflectometry, an EUV metrology beamline and three IR/THz beamlines.

  5. Diamond Light Source: status and perspectives

    PubMed Central

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I.

    2015-01-01

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. PMID:25624517

  6. The 4th Generation Light Source at Jefferson Lab

    SciTech Connect

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  7. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  8. The Sun: the Earth light source

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of

  9. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  10. A Point Source Reconstruction in an Urban like Environment

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Feiz, Amir Ali; Ngae, Pierre; Singh, Sarvesh Kumar; Joseph, Damien; Barbosa, Emerson; Turbelin, Grégory; Issartel, Jean Pierre

    2015-04-01

    Retrieval of a point source of air pollutants in an urban environment is a challenging problem due to the complexity in interaction of plume and flow field perturbed by the obstacles in that area. The increasing threat of chemical, biological and radiological (CBR) attacks in urban areas has also resulted a significant interest in research on fast identification and detection of these toxic agents. In this study, a computational fluid dynamics (CFD) model is utilized to reconstruct a continuous point source in urban like environment of the Mock Urban Setting Test (MUST) field tracer experiment. The MUST experiments was conducted mostly in neutral and stable atmospheric conditions. The CFD model is coupled in adjoint mode with a recently proposed inversion technique, based on renormalization theory, for identifying a continuous point source release in an urban like environment of MUST field experiment. The estimated source strengths for selected trials from MUST field experiment were over-predicting from the true source release. However, in most of the trials, the source strength was estimated within a factor of two. With the real measurements from the selected trials in MUST field experiment, the source location were retrieved close to their true release locations. The study shows the effectiveness of the renormalization inversion technique to estimate the source parameters in an urban area and highlights the detection feasibility of unknown releases in an urban-like environment with use of a more sophisticated model.

  11. Broiler performance when reared under various light sources.

    PubMed

    Zimmermann, N G

    1988-01-01

    Three trials were conducted to determine if modern energy-efficient light sources, which vary in wavelength emission, affect broiler growth performance. The effect of light source on growth performance was determined by measuring body weight, feed conversion, and livability at intervals throughout rearing and at market age in three flocks of approximately 3,600 broilers each. Illuminance within the light-proof experimental facility was approximately 5 1x and photoregimen was 1 h dark:23 h light. Trial 1 compared incandescent (IN), warm white fluorescent (WWF), and daylight fluorescent (DLF) light sources. The WWF source provided superior body weight compared to IN light but feed conversion ratios were similar. Both IN and WWF light sources resulted in better body weight and feed conversion than that of the DLF light source. Trial 2 used IN, WWF, DLF, PL-5 fluorescent (PLF), design white fluorescent (DWF), and high pressure sodium (HPS) light sources. The PLF source resulted in mean body weight significantly higher than those produced by IN, HPS, and DWF. No other significant differences were observed. Trial 3 used IN, WWF, DLF, PLF, HPS, and low pressure sodium (LPS) light sources. Feed conversion for the HPS treatment was superior to that of PLF and LPS treatments. No other significant differences were observed. Light source did not affect livability in any of the trials. These trials demonstrated that energy-efficient light sources varying in wavelength emission may affect broiler growth performance, but consistent differences were not observed. Generally, IN light sources may be replaced with more energy-efficient light sources without adverse effects on broiler growth performance.

  12. Critical points for point source pollution in the Yser catchment area (Flanders-France).

    PubMed

    Mestdagh, Inge; Maillet-Mezeray, Julie; Calus, André; Franssens, Vanessa; Röttele, Manfred

    2008-01-01

    In the frame of the European TOPPS project (Train the Operator to prevent Pollution from Point Sources), 200 on farm audits and 300 tele interviews were performed in the Yser catchment area. The objective was to determine the critical points for point source pollution within the spraying process and to inform advisors, intermediaries and farmers on practical measures and achievable solutions to reduce the contamination of the surface water by Plant Protection Products (PPP) due to point source pollution. For the on farm auditing, the Aquasite tool (Arvalis-France) was used. This audit was performed on 100 farms in the Flemish Yser catchment and on 100 farms at the French side. This audit reveals the weak points in infrastructure and technology on the farm in relation to the spraying process. Next, 150 tele interviews were held in the respective catchment areas. These interviews assess the awareness and behaviour of the farmers on point source pollution. The strength of these studies is in giving a view on the real situation on the farms with respect to spraying. The critical points and risks for point source pollution were similar for both regions. Especially the filling and mixing of the sprayer, internal and external cleaning of the sprayer and the management of the waste fraction need specific training, demonstration and advice. However, there is a large difference in the risk perception of point source pollution between farmers on both sides of the border. The transgressing approach of the Yser catchment allows to make a comparison between both regions and allows to assess in which way the legislation had part in explaining the differences between the regions as the agriculture in both regions is similar. Also, the results stress the importance of trainings and sensibilisation at a regional scale.

  13. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  14. High light acclimation of Chromera velia points to photoprotective NPQ.

    PubMed

    Belgio, Erica; Trsková, Eliška; Kotabová, Eva; Ewe, Daniela; Prášil, Ondřej; Kaňa, Radek

    2017-04-12

    It has previously been shown that the long-term treatment of Arabidopsis thaliana with the chloroplast inhibitor lincomycin leads to photosynthetic membranes enriched in antennas, strongly reduced in photosystem II reaction centers (PSII) and with enhanced nonphotochemical quenching (NPQ) (Belgio et al. Biophys J 102:2761-2771, 2012). Here, a similar physiological response was found in the microalga Chromera velia grown under high light (HL). In comparison to cells acclimated to low light, HL cells displayed a severe re-organization of the photosynthetic membrane characterized by (1) a reduction of PSII but similar antenna content; (2) partial uncoupling of antennas from PSII; (3) enhanced NPQ. The decrease in the number of PSII represents a rather unusual acclimation response compared to other phototrophs, where a smaller PSII antenna size is more commonly found under high light. Despite the diminished PSII content, no net damage could be detected on the basis of the Photosynthesis versus irradiance curve and electron transport rates pointing at the excess capacity of PSII. We therefore concluded that the photoinhibition is minimized under high light by a lower PSII content and that cells are protected by NPQ in the antennas.

  15. Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  16. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  17. The Linac Coherent Light Source (LCLS)*

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2002-04-01

    Advances in technology make it possible to use the SLAC linac to drive the LCLS (1), a coherent x-ray source which will deliver sub-picosecond pulses at wavelengths down to 1.5 Angstroms with an instantaneous (peak) power up to 10 GW, corresponding to a brightness 10 orders of magnitude greater than x-ray beams from the most advanced synchrotron light sources. The LCLS operates on the principle of Self-Amplified Spontaneous Emission-SASE (2); i.e., coherent emission is achieved without an optical cavity by inducing a bunch-density modulation at the scale of the optical wavelength in a single pass of a high peak current, low emittance, 15 GeV electron beam through a 100m undulator. The LCLS, and a similar project planned at DESY in Hamburg, exploit recent technological developments; high-brightness rf photocathode electron guns, emittance preservation during acceleration and compression, precision undulator magnets, and high power x-ray optics. The unique properties of LCLS radiation enable new scientific opportunities in femtochemistry, nanoscale dynamics in condensed matter, atomic physics, biological imaging, plasma physics, and warm condensed matter. A collaboration including 4 US national labs (Argonne, Brookhaven, Lawrence Livermore, and Los Alamos) along with SLAC and UCLA is conducting r&d aiming for an LCLS construction start in 2004. 1. P.Emma; Proc. Part. Accel. Conf.(PAC2001); June 18-22, 2001. 2. R.Bonifacio, C.Pellegrini, L.Narducci; Optics Comm. 50,373(1984) *Supported by the Office of Basic Energy Sciences, US Dept. of Energy.

  18. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  19. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  20. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  1. Matrix light and pixel light: optical system architecture and requirements to the light source

    NASA Astrophysics Data System (ADS)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  2. Radioluminescent light source for the development of optical sensor arrays.

    PubMed

    Holthoff, William G; Tehan, Elizabeth C; Bukowski, Rachel M; Kent, Nigel; Maccraith, Brian D; Bright, Frank V

    2005-01-15

    A radioluminescent (RL) light source is evaluated for the development of photonically based chemical-responsive sensor arrays (CRSAs). The RL light source is comprised of a strontium-90 (90Sr) radionuclide and a plastic scintillator. The beta particles emitted from the 90Sr generate blue light (lambda(max) = 435 nm) from the plastic scintillator, and the blue light excites the analyte-responsive luminophores within the CRSA. To assess the RL light source utility, we have determined the analytical figures of merit from two tris(4,7'-diphenyl-1,10'-phenathroline)ruthenium(II)-doped xerogel-based sensor platforms: (i) a planar 5 x 5 multielement array and (ii) a discrete sensor element formed on the proximal face of poly(styrene) pillars that have a frustrated cone (frustum) geometry. We compare the performance from each platform when it is excited by a He-Cd laser (442 nm), a blue light-emitting diode (460-470 nm), and the RL light source. The RL light source yields results that are statistically equivalent to results from either electrically powered light source. The RL light source consumes no electrical power, is compact and simple, and has an extremely stable time-averaged signal. The primary trade-offs for these advantages are the RL light source's lower radiant power and the corresponding longer data acquisition times.

  3. Searches for point sources in the Galactic Center region

    NASA Astrophysics Data System (ADS)

    di Mauro, Mattia; Fermi-LAT Collaboration

    2017-01-01

    Several groups have demonstrated the existence of an excess in the gamma-ray emission around the Galactic Center (GC) with respect to the predictions from a variety of Galactic Interstellar Emission Models (GIEMs) and point source catalogs. The origin of this excess, peaked at a few GeV, is still under debate. A possible interpretation is that it comes from a population of unresolved Millisecond Pulsars (MSPs) in the Galactic bulge. We investigate the detection of point sources in the GC region using new tools which the Fermi-LAT Collaboration is developing in the context of searches for Dark Matter (DM) signals. These new tools perform very fast scans iteratively testing for additional point sources at each of the pixels of the region of interest. We show also how to discriminate between point sources and structural residuals from the GIEM. We apply these methods to the GC region considering different GIEMs and testing the DM and MSPs intepretations for the GC excess. Additionally, we create a list of promising MSP candidates that could represent the brightest sources of a MSP bulge population.

  4. Radio Point Sources Toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Carlstrom, J. E.; Bonamente, M.; Dawson, K.; Holzapfel, W.; Joy, M.; LaRoque, S.; Reese, E. D.

    2006-01-01

    Extra-galactic point sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio point sources toward galaxy clusters at 28.5 GHz. We compute counts of mJy point source fluxes from 90 fields centered on known massive galaxy clusters and 8 non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We also compute counts towards clusters as a function of luminosity in three redshift bins out to z = 1.0 and see no clear evidence for evolution with redshift. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz. The distribution is skewed, with a median spectral index of 0.76 and 25th and 75th percentiles of 0.55 and 0.95, respectively. This is steeper than the spectral indices of brighter field point sources measured by other surveys.

  5. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  6. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  7. Depth perception from point-light biological motion displays.

    PubMed

    de Lussanet, Marc H E; Lappe, Markus

    2012-10-22

    Humans have a clear impression of facing in depth for point-light biological motion. However, this has not been measured systematically nor is it known on which cues humans rely for their judgment. In the present study subjects judged the facing orientation-in-depth of point-light displays. The displays represented natural walking and modified versions in which the time sequence was reversed, action was perturbed, the limbs and joints were nonrigid, the temporal sequence was scrambled, or the joint positions were scrambled. We found that the subjects were best at judging the facing direction of normal and reversed walking with an accuracy of 6° and 10° precision. The results show that pendular motion of the limb segments and the implicit knowledge of the human body play an important role for the precision of the judgment. Three further factors were relevant for the judgment of facing direction: (a) the discrimination of the front and back side, (b) the facing bias, and (c) the impression of depth from the display, probably due to the kinetic depth effect. The latter influences the accuracy, which differed strongly between subjects. The results suggest that the facing bias, to perceive the figure as facing toward the observer rather than away, is not related to the recognition of a human figure but rather to the presence of oscillating movements of the dots in the display.

  8. Chandra Spectra of the Cassiopeia A Point Source

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.; Joss, Paul C.

    2001-09-01

    We present the first Chandra High Energy Transmission Grating (HETG) spectra of the X-ray point source (XPS) at the center of the Cassiopeia A supernova remnant, using our recent HETGS observation of Cas A (Obsid 1046), as well as spectra extracted from the long duration archival 50 ksec ACIS-S3 observation (Obsid 114). Discovered in the Chandra first light image, the flux and spectrum of XPS strongly indicate that it is associated with the remnant, but it has been difficult to classify the point source unambiguously. The assertion that the XPS is a weakly magnetized neutron star (B <= 1010 G) radiating primarily via thermal emission is supported by the recent discovery of weak X-ray pulsations with a 13 ms period (H. Tananbaum, talk presented at 198th Mtg. AAS). Such a source is an ideal candidate to fit with our new theoretical atmosphere models (Joss, Madej, and Stage, these proceedings). Early data fit well to a variety of spectral forms, including power laws, model neutron star atmospheres, pure blackbody, and thermal bremsstrahlung (Chakrabarty et al., ApJ 548: 800; Pavlov et al., ApJ 531: L53). With our longer duration and higher resolution observations, we have greater ability to discriminate among the possible spectral models. We have previously carried out model atmosphere fits to a spectrum extracted from the archival 50 ksec observation. Our results yielded effective temperatures (kTeff ~= 0.2 keV) and radii (Reff ~= 2 km) that are comparable to those obtained in earlier fits to neutron-star model atmospheres (Chakrabarty et. al.). The lack of detection of radio pulsations or of a synchrotron nebula from the location of the XPS (McLaughlin et al., ApJ 547: L41) suggests that the XPS is not a classical young pulsar, a result with which we agree. The quality of our model atmosphere fits is superior to those we obtained using simple power law or blackbody models. Furthermore, recent upper limits on the emission from the XPS at near infrared and optical

  9. TMDLS: AFTER POINT SOURCES, WHAT CAN WE DO NEXT?

    EPA Science Inventory

    Section 303(d) of the Clean Water Act required TMDLs (total maximum daily loads) for all waters for which effluent or point source limitations are insufficient to meet water quality standards. Concerns may arise regarding the manner by which TMDLs are established, the corrective ...

  10. Undulators at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Hoyer, E.; Akre, J.; Chin, J.; Gath, W.; Hassenzahl, W. V.; Humphries, D.; Kincaid, B.; Marks, S.; Pipersky, P.; Plate, D.; Portmann, G.; Schlueter, R.

    1995-02-01

    At Lawrence Berkeley Laboratory's Advanced Light Source, three 4.6 m long undulators have been completed, tested, and installed. A fourth is under construction. The completed undulators include two 5.0 cm period length, 89 period devices (U5.0s) which achieve a 0.85 T effective field at a 14 mm minimum gap and a 8.0 cm period length, 55 period device (U8.0) that reaches a 1.2 T effective field at a 14 mm minimum gap. The undulator under construction is a 10.0 cm period length, 43 period device (U10.0) that is designed to achieve 0.98 T at a 23 mm gap. Undulator magnetic gap variation (rms) is within 25 μm over the periodic structure length. Reproducibility of the adjustable magnetic gap has been measured to be within ±5 μm. Gap adjusting range is from 14 to 210 mm, which can be scanned in 1 min. The 5.1 m long vacuum chambers are flat in the vertical direction to within 0.74 mm and straight in the horizontal direction to within 0.08 mm over the 4.6 m magnetic structure sections. Vacuum chamber base pressures after UHV beam conditioning are in the mid-10-11 Torr range and storage ring operating pressures with full current are in the low 10-10 Torr range. Measurements show that the uncorrelated magnetic field errors are 0.23% and 0.20% for the two U5.0s and the U8.0, respectively, and that the field integrals are small over the 1 cm×6 cm beam aperture. Device description, fabrication, and measurements are presented.

  11. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  12. Barium light source method and apparatus

    NASA Technical Reports Server (NTRS)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  13. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  14. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  15. [A review on non-point source pollution models].

    PubMed

    Zhang, Qiu-Ling; Chen, Ying-Xu; Yu, Qiao-Gang; Deng, Hua; Tian, Ping

    2007-08-01

    With the effective control of point source pollution, the non-point source pollution (NPSP) of water environment has been paid more and more attention, and NPSP models are thriving with the development of 3S technology. This paper made a brief introduction about the classification and evolution of NPSP models. Ten NPSP models commonly used abroad were selected and compared, with their software developers and providers, data input and output, pollutant- and sediment types, time scale, simulation progress and characteristics, and model types illustrated. Based on the model applications and related literature reports, a qualitative evaluation was made from the viewpoint of the suitability of NPSP models to different watershed situation. Finally, the existing research insufficiency was analyzed, and the future development trend of non-point research was discussed, which would be helpful to the development of NPSP models and their applications in water management in China.

  16. Point and non-point microbial source pollution: A case study of Delhi

    NASA Astrophysics Data System (ADS)

    Jamwal, Priyanka; Mittal, Atul K.; Mouchel, Jean-Marie

    The present study identifies major point and non-point sources of microbial pollution during dry and wet weather in Delhi watershed which is the first prerequisite for planning and management of water quality of the river Yamuna. Fecal coliforms (FC) and fecal streptococci (FS) levels were determined from two types of sources - point source (effluent from sewage treatment plants) and non-point source (stormwater runoff during dry and wet weather). FC and FS levels in the river Yamuna were also monitored, which is an ultimate sink for all microbial loads in Delhi watershed. Effluent from sewage treatment plants (STPs) employing different treatment technologies were evaluated. FC and FS levels greater than the effluent discharge standard (1000 MPN/100 ml) were observed in the effluents from all STPs except “oxidation pond Timarpur”. This study also involved field program for characterization of urban runoff from different land-uses. Results indicated that the microbial quality of urban runoff produced during wet weather from different land-uses was similar to that of raw sewage. Sewage overflows along with human and animal sources were responsible for high FC and FS levels in the runoff samples. Wet weather FC and FS levels in river Yamuna were higher as compared to the dry weather levels suggesting that dilution of the river water during wet weather does not affect its microbiological quality. Thus on the basis of this study it was found that urban runoff also contributes to the microbial quality of the river Yamuna.

  17. The distribution of Infrared point sources in nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gogoi, Rupjyoti; Misra, Ranjeev; Puthiyaveettil, Shalima

    Infra-red point sources in nearby early-type galaxies are often counterparts of sources in other wavebands such as optical and X-rays. In particular, the IR counterpart of X-ray sources may be due to a globular cluster hosting the X-ray source or could be associated directly with the binary, providing crucial information regarding their environment. In general, the IR sources would be from globular clusters and their IR colors would provide insight into their stellar composition. However, many of the IR sources maybe background objects and it is important to identify them or at least quantify the level of background contamination. Archival Spitzer IRAC images provide a unique opportunity to study these sources in nearby Ellipticals and in particular to estimate the distributions of their IR luminosity, color and distance from the center. We will present the results of such an analysis for three nearby galaxies. We have also estimated the background contamination using several blank fields. Our preliminary results suggest that IR colors can be effectively used to differentiate between the background and sources in the galaxy, and that the distribution of sources are markedly different for different Elliptical galaxies.

  18. Flexible microstructured organic light sources for automotive applications

    NASA Astrophysics Data System (ADS)

    Melpignano, Patrizia; Sinesi, Sabino; Toaldo, A. Baron; Biondo, Viviana; Muccini, Michele; Zamboni, Roberto; Gale, Michael T.; Westenhofer, Susanne

    2004-09-01

    Organic light-emitting diodes (OLED) are rapidly reaching large-scale marketing figures, driven by attractive features like low cost and fast response, being also suitable for application on flexible substrates. All these aspects enable a wide range of applications such as displays, innovative devices in optoelectronics and novel light sources. Furthermore, the benefits expected from OLEDs based devices, if compared to "classical semiconductors" based devices consist of low production costs, lightweight and geometrical flexibility. Novel OLEDs based light sources fulfilling the above-mentioned requirements, call for a considerable effort both in the production processes and in product innovation. Among the variety of possible applicative OLED applications, we focused our research effort on the Automotive sector. Our envisioned approach enabling control of light distribution from an OLED light source include modeling and patterning of the light source, design and fabrication of suitable micro-optics coupled to the flexible transparent Organic Light Emitting Diode (OLED) substrate.

  19. Discretizing singular point sources in hyperbolic wave propagation problems

    NASA Astrophysics Data System (ADS)

    Petersson, N. Anders; O'Reilly, Ossian; Sjögreen, Björn; Bydlon, Samuel

    2016-09-01

    We develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as the number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.

  20. Discretizing singular point sources in hyperbolic wave propagation problems

    DOE PAGES

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less

  1. Discretizing singular point sources in hyperbolic wave propagation problems

    SciTech Connect

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; Bydlon, Samuel

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as the number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.

  2. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  3. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  4. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  5. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  6. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  7. Phosphor-Free Solid State Light Sources

    SciTech Connect

    Nause, Jeff E; Ferguson, Ian; Doolittle, Alan

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  8. Simple, fast, bright, and stable light sources.

    PubMed

    Tordera, Daniel; Meier, Sebastian; Lenes, Martijn; Costa, Rubén D; Ortí, Enrique; Sarfert, Wiebke; Bolink, Henk J

    2012-02-14

    In this work we show that solution-processed light-emitting electrochemical cells (LECs) based on only an ionic iridium complex and a small amount of ionic liquid exhibit exceptionally good performances when applying a pulsed current: sub-second turn-on times and almost constant high luminances (>600 cd m(-2) ) and power efficiencies over the first 600 h. This demonstrates the potential of LECs for applications in solid-state signage and lighting.

  9. On the reflection point where light reflects to a known destination on quadratic surfaces.

    PubMed

    Gonçalves, Nuno

    2010-01-15

    We address the problem of determining the reflection point on a specular surface where a light ray that travels from a source to a target is reflected. The specular surfaces considered are those expressed by a quadratic equation. So far, there is no closed form explicit equation for the general solution of this determination of the reflection point, and the usual approach is to use the Snell law or the Fermat principle whose equations are derived in multidimensional nonlinear minimizations. We prove in this Letter that one can impose a set of three restrictions to the reflection point that can impose a set of three restrictions that culminates in a very elegant formalism of searching the reflection point in a unidimensional curve in space. This curve is the intersection of two quadratic equations. Some applications of this framework are also discussed.

  10. UV emissions from low energy artificial light sources.

    PubMed

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses.

  11. Point source solutions and coupling parameters in cratering mechanics

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.; Schmidt, R. M.

    1987-01-01

    The use of a point source of an impactor energy and momentum to replace the effects of the impactor is examined. The general framework and notation of the impact cratering problems are described; it is determined that the cratering phenomena are governed by Froude, Cauchy, and Reynolds numbers. The coupling parameter concept is defined mathematically as the measure that governs limit point source solutions. Examples of cases where coupling parameters are used are presented. The relationships of the coupling parameter concept with steady flow and the Z-model of cratering of Maxwell (1973, 1977) are studied. Crater size, ejecta distributions, growth histories, time of formation, melt volume, and shock decay for various scale factors for impact cratering mechanics are calculated, and the applicability of the coupling parameter to the study of cratering mechanics is revealed.

  12. The Extraction of the NIRS Point Source Catalogs

    NASA Technical Reports Server (NTRS)

    Freund, Minoru M.

    1999-01-01

    The Near Infrared Spectrometer (NIRS) on the Infrared Telescope in Space, IRTS (a Japanese-US collaboration project), surveyed about 7% of the sky during its one month mission. In this work we extracted spectro-photometric point source (PS) data between 1.4 and 4 micron of high quality absolutely calibrated (2% flux uncertainties) and unbiased PS spectra in the near-IR. This database facilitates the study and understanding of a variety of science objectives, including stellar evolution of late type stars, determination of the Cosmic Infrared Background (CIB), and provides unprecedented faint stellar spectral calibrators. The objective of this work was to provide the community with a series of absolutely calibrated NIRS point source catalogs (PSC), with classification and association files. The catalogs will be archived at IRSA/IPAC.

  13. Light extraction by Lambertian sources from light emitting diodes

    NASA Astrophysics Data System (ADS)

    Nagel, James R.

    2013-03-01

    Internal back-and-forth propagation of photons within a light emitting diode (LED) will naturally tend towards a Lambertian intensity profile when surface texturing is sufficiently rough. Novel designs in light extraction efficiency (LEE) can therefore benefit by optimizing under this expectation. This paper develops a framework for calculating LEE from a planar LED structure with textured surface features under the assumption of Lambertian intensity within the substrate. The method can estimate the total LEE value when given a substrate width w, an attenuation constant α, and the transmittance function T(θ,Φ) through the top interface. We demonstrate our theory on a pyramidal surface texture over a GaSb substrate at 4.5 μm wavelength by computing the expected LEE as a function of w.

  14. Algorithm for astronomical, point source, signal to noise ratio calculations

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.; Schroeder, D. J.

    1984-01-01

    An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

  15. Is a wind turbine a point source? (L).

    PubMed

    Makarewicz, Rufin

    2011-02-01

    Measurements show that practically all noise of wind turbine noise is produced by turbine blades, sometimes a few tens of meters long, despite that the model of a point source located at the hub height is commonly used. The plane of rotating blades is the critical location of the receiver because the distances to the blades are the shortest. It is shown that such location requires certain condition to be met. The model is valid far away from the wind turbine as well.

  16. High resolution digital holography based on the point source scanning

    NASA Astrophysics Data System (ADS)

    Wang, Minchao; Wang, Dayong; Rong, Lu; Wang, Yunxin; Wang, Fengpeng; Lin, Qiaowen

    2016-10-01

    Digital holographic microscopy has been widely used for the imaging of micro-objects and biological samples. Lensless in-line digital holographic microscopy is capable of wide field-of-view imaging. However the spatial resolution of the reconstructed images is limited by the pixel size of the detector. The relative position shift between the sample and the detector can effectively improve the resolution in the traditional sub-pixel shifting method, but it requires a high precision of translation stage. To overcome this problem, we propose a method based on the point source scanning to realize sub-pixel shifting. High precision sub-pixel shifting is achieved easily by using the geometric between point source and detector. Through moving the point source, multiple holograms with sub-pixel shifts are captured. These holograms are merged together to obtained a high resolution hologram by a synthesizing algorithm. Then, the high resolution reconstructed image of the object can be obtained by the angular spectrum algorithm. The feasibility of the proposed method is demonstrated by simulation and experiments. A USAF resolution test target was used as the object. Compared with the traditional digital holography, a higher resolution reconstructed image is obtained by our method. The proposed method has the advantages of simple recording setup and lower precision requirement of the translation stage. It can achieve the wide field-of-view and high resolution imaging.

  17. Incremental theory of diffraction for complex point source illumination

    NASA Astrophysics Data System (ADS)

    Polemi, A.; Carluccio, G.; Albani, M.; Toccafondi, A.; Maci, S.

    2007-12-01

    The complex point source (CPS) is a solution of the Helmholtz equation obtained by analytical continuation of the free-space Green's function for complex position of the point source. The CPS representation of radiated fields can be used within a ray code to predict the interaction between an antenna and its actual environment, when standard diffraction formulations are extended to the CPS illumination. In the past, ray-based diffraction theories such as the geometrical theory of diffraction and its uniform version (UTD) were extended to complex point source fields, leaving, however, open some problematic issues concerning the "complex ray tracing". In this paper, the generalization of the incremental theory of diffraction (ITD) to CPS is formulated. The total field scattered by the object is given in terms of line integration along edge discontinuities of ITD diffraction coefficients plus the discontinuous geometrical optics (GO). An incremental form of the discontinuous GO is also proposed to overcome GO "complex ray tracing" difficulties. The final formulation is very simple and leads to accurate results that are successfully validated by comparison against a method of moment solution.

  18. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  19. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  20. Next Generation Accelerator-Based Light Sources

    SciTech Connect

    Gwyn Williams

    2005-06-26

    We discuss the physics which is driving the evolution of new sources for microscopy and spectroscopy. A new generation of sources, called energy recovery linacs or ERL’s, will be described and reviewed with particular emphasis on the examples of imaging and spectroscopic applications enabled by them.

  1. Correcting STIS CCD Point-Source Spectra for CTE Loss

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Bohlin, Ralph C.; Maiz-Apellaniz, Jesus

    2006-01-01

    We review the on-orbit spectroscopic observations that are being used to characterize the Charge Transfer Efficiency (CTE) of the STIS CCD in spectroscopic mode. We parameterize the CTE-related loss for spectrophotometry of point sources in terms of dependencies on the brightness of the source, the background level, the signal in the PSF outside the standard extraction box, and the time of observation. Primary constraints on our correction algorithm are provided by measurements of the CTE loss rates for simulated spectra (images of a tungsten lamp taken through slits oriented along the dispersion axis) combined with estimates of CTE losses for actual spectra of spectrophotometric standard stars in the first order CCD modes. For point-source spectra at the standard reference position at the CCD center, CTE losses as large as 30% are corrected to within approx.1% RMS after application of the algorithm presented here, rendering the Poisson noise associated with the source detection itself to be the dominant contributor to the total flux calibration uncertainty.

  2. Development of implantable light source for optogenetics

    NASA Astrophysics Data System (ADS)

    Rusakov, Konstantin; Radzewicz, Czesław

    2016-09-01

    The research described here aims at a design and fabrication of a light emitting module for a mobile optogenetic device for animals that are freely moving in the IntelliCage system cages. The device is designed to stimulate selected brain areas of the animal with light. The approach described here is based on a LED chip attached to the tip of a cannula which will be directly implanted into a mouse's brain. The device has been fabricated and tested in a laboratory. In addition, we have observed optogenetic effect on the slice of mice brain tissue in vitro stimulated with our implants.

  3. Status and Prospects of Coherent Light Source Developments at UVSOR-II

    SciTech Connect

    Adachi, Masahiro; Katoh, Masahiro; Zen, Heishun; Tanikawa, Takanori; Hosaka, Masahito; Takashima, Yoshifumi; Yamamoto, Naoto; Taira, Yoshitaka

    2010-06-23

    We are developing coherent light sources at the UVSOR-II electron storage ring. We have developed a resonator type free electron laser in the visible to the deep UV range, coherent harmonic generation source in VUV range and coherent synchrotron radiation source in the terahertz range. A new five year plan has been started from FY2008, where a new 4m straight section will be created by moving the beam injection point, a new optical klystron type undulator will be installed and dedicated beam-lines will be constructed. Great advances on the coherent light source developments at the new straight section are expected.

  4. Studies of acoustic emission from point and extended sources

    NASA Technical Reports Server (NTRS)

    Sachse, W.; Kim, K. Y.; Chen, C. P.

    1986-01-01

    The use of simulated and controlled acoustic emission signals forms the basis of a powerful tool for the detailed study of various deformation and wave interaction processes in materials. The results of experiments and signal analyses of acoustic emission resulting from point sources such as various types of indentation-produced cracks in brittle materials and the growth of fatigue cracks in 7075-T6 aluminum panels are discussed. Recent work dealing with the modeling and subsequent signal processing of an extended source of emission in a material is reviewed. Results of the forward problem and the inverse problem are presented with the example of a source distributed through the interior of a specimen.

  5. Engineering design point for a 1MW fusion neutron source

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Melnik, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald

    2016-10-01

    Compact fusion neutron sources are currently serving important roles in medical isotope production, and could be used for waste transmutation if sufficient fluence can be attained. The engineering design point for a compact neutron source with target rateof e17n/sbased on the adiabatic compression of a spheromak is presented. The compression coils and passive structure are designed to maintain stability during compression. The power supplies consist of 4 separate banks of MJ each; Pspice simulations and power requirement calculations will be shown. We outline the diagnostic set that will be required for an experimental campaign to address issues relating to both formation efficiency and energy confinement scaling during compression. Work supported in part by DARPA Grant N66001-14-1-4044 and IAEA CRP on compac fusion neutron sources.

  6. Transport characteristics of aerosol from urban point sources

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Lawrence, Mark G.; Kerkweg, Astrid; Tost, Holger; Jöckel, Patrick; Borrmann, Stephan

    2010-05-01

    Urban aerosols are an important source of regional and global air pollution. The local buildup, long-range transport, and dry and wet deposition of aerosols depend strongly on the aerosol size distribution and on the regional meteorological characteristics. We examine the characteristics of urban aerosol dispersion based on simulations of monodisperse passive aerosol tracers with sizes of 0.1, 1.0, 2.5, and 10.0 μm, performed with the global chemistry circulation model EMAC (ECHAM5-MESSy-Atmospheric-Chemistry). 39 point sources were selected for the analysis, originating from major population centers (MPCs) around the world. All tracers, one for each source and size, have the same total, constant emission flux, and undergo dry and wet aerosol deposition. Sensitivity simulations are performed in which either there is no activation of the aerosol as cloud condensation nuclei (CCN), or all aerosol is activated as CCN. Using the same constant emission rate for each MPC allows us to compare how different large point sources pollute the atmosphere and the surface on different horizontal scales. The transport and deposition of the aerosol tracers from each MPC are quantitatively compared by the application of metrics. The analysis focuses on: the efficiency of short- and long-range horizontal transport; the fraction of tracer transported to the upper troposphere; and the fractions which are dry or wet deposited. Smaller particles with longer lifetimes (two to 14 days) are more effective at polluting remote locations (horizontal and vertical) and are deposited mostly by scavenging, while larger particles, with shorter lifetimes (several hours to a couple of days) more effectively pollute the environment nearby their source, and are most strongly removed by dry deposition from the atmosphere. By means of considering the same emission for each city, the presentation provides a detailed view of how aerosol tracers disperse and deposit on different spatial scales, depending

  7. A new storage-ring light source

    SciTech Connect

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  8. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  9. Cathodoluminescent Source of Intense White Light

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    The device described exploits cathodoluminescence to generate intense light in the visible and near-infrared regions of the spectrum. In this device, the material to be excited to luminescence is a layer of quartz or alumina powder on an electrically conductive plate exposed to a low-pressure plasma discharge. The plate is electrically biased positively to collect electron current.

  10. LEDs as light source: examining quality of acquired images

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Funtanilla, Jeng; Hernandez, Jose

    2004-05-01

    Recent advances in technology have made light emitting diodes (LEDs) viable in a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. This paper presents the results of comparing images taken by a videoscope using two different light sources. One of the sources is the internal metal halide lamp and the other is a LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. The paper will present the results and discuss the usefulness and shortcomings of various comparison methods.

  11. An experiment on the color rendering of different light sources

    NASA Astrophysics Data System (ADS)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  12. THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG

    SciTech Connect

    Elvis, Martin; Civano, Francesca; Aldcroft, T. L.; Fruscione, Antonella; Vignali, Cristian; Puccetti, Simonetta; Fiore, Fabrizio; Cappelluti, Nico; Brusa, Marcella; Finoguenov, Alexis; Brunner, Hermann; Zamorani, G.; Comastri, Andrea; Gilli, Roberto; Miyaji, Takamitsu; Damiani, Francesco; Koekemoer, Anton M.; Urry, C.M.; Silverman, John; Mainieri, Vincenzo

    2009-09-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg{sup 2} of the COSMOS field (centered at 10 {sup h}, +02 deg.) with an effective exposure of {approx}160 ks, and an outer 0.4 deg{sup 2} area with an effective exposure of {approx}80 ks. The limiting source detection depths are 1.9 x 10{sup -16} erg cm{sup -2} s{sup -1} in the soft (0.5-2 keV) band, 7.3 x 10{sup -16} erg cm{sup -2} s{sup -1} in the hard (2-10 keV) band, and 5.7 x 10{sup -16} erg cm{sup -2} s{sup -1} in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 x 10{sup -5} (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily ({approx}50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform ({+-}12%) exposure across the inner 0.5 deg{sup 2} field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.

  13. A Search for Point Sources of EeV Photons

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Auger Collaboration102, The Pierre

    2014-07-01

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85° to +20°, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm-2 s-1, and no celestial direction exceeds 0.25 eV cm-2 s-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.

  14. Limitation of point source pesticide pollution: results of bioremediation system.

    PubMed

    Spanoghe, P; Maes, A; Steurbaut, W

    2004-01-01

    Groundwater and surface water is at risk of contamination from the use of some agricultural pesticides. In many circumstances pesticide contamination of water resources is more likely to result from point sources than from diffuse sources following approved application to crops in the field. Such point sources include areas on farms where pesticides are handled, filled into sprayers or where sprayers are washed down. To overcome this way of contamination different kind of bio-remediation systems are nowadays in development. In Flanders, Belgium two pilot plants of bioremediation systems for the in situ retention and/or degradation of pesticides were installed. Both systems were based on the Phytobac concept, a watertight excavation filled with straw, peat, compost and soil. The channel was made in the bottom from plastic foil. All kinds of spray rests were captured by the phytobacs. This study focuses on what level pesticides leach, bio-degrade or are retained by the filling of the phytobac. The soil-properties of the filling were investigated. Pesticide tracers were added for monitoring to both phytobacs. Soil and water samples were taken during one year. Pesticides are retained at least for one month by the filling of the phytobac. Almost no pesticide leached out. In winter hardly any pesticide degradation was observed in the filling of the phytobac. In summer no detectable pesticides were still left in the phytobacs.

  15. A search for point sources of EeV photons

    SciTech Connect

    Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration102; and others

    2014-07-10

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from –85° to +20°, in an energy range from 10{sup 17.3} eV to 10{sup 18.5} eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of –2, is 0.06 eV cm{sup –2} s{sup –1}, and no celestial direction exceeds 0.25 eV cm{sup –2} s{sup –1}. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.

  16. Measurement of the speed of light from extraterrestrial sources

    NASA Astrophysics Data System (ADS)

    Wu, Jingshown; Huang, Yen-Ru; Tsao, Hen-Wai; Lee, San-Liang; Chang, Shenq-Tsong; Tsay, Ho-Lin; Young, Hong-Tsu

    2015-09-01

    The conventional measurements of the speed of light were performed before the early twentieth century. Only few used extraterrestrial sources and got the result with large uncertainty. We design a transmitter to modulate the rays from the local infrared light source and the extraterrestrial sources simultaneously into pulses. Both are received by a distant receiver. We have the white light travelling exactly along the path of the starlight pulses for calibration. It is found that the travel times of Aldebaran and Capella pulses are longer than that of Vega pulses. The results indicate that the speeds of starlights are different.

  17. Potential Sources of Polarized Light from a Plant Canopy

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  18. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  19. Pulse-modulated light source for psychometric and vision experiments.

    PubMed

    Scholfield, C N; Murdock, M

    1987-03-01

    Light-emitting diodes (LED) of various colours were used to produce accurately controllable light sources. Variable light intensity was obtained by applying 800-ns current pulses to the LEDs at frequencies 1-1000 kHz using a single potentiometer. These current pulses were generated from an oscillator which was voltage-controlled from a potentiometer and an antilogarithmic amplifier. Its output was gated to produce an optional flicker of 1-100 Hz. The light intensity was indicated by a frequency meter connected to the oscillator. The reading of this was found to linearly indicate light intensity.

  20. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  1. Depth Estimation and Specular Removal for Glossy Surfaces Using Point and Line Consistency with Light-Field Cameras.

    PubMed

    Tao, Michael W; Su, Jong-Chyi; Wang, Ting-Chun; Malik, Jitendra; Ramamoorthi, Ravi

    2016-06-01

    Light-field cameras have now become available in both consumer and industrial applications, and recent papers have demonstrated practical algorithms for depth recovery from a passive single-shot capture. However, current light-field depth estimation methods are designed for Lambertian objects and fail or degrade for glossy or specular surfaces. The standard Lambertian photoconsistency measure considers the variance of different views, effectively enforcing point-consistency, i.e., that all views map to the same point in RGB space. This variance or point-consistency condition is a poor metric for glossy surfaces. In this paper, we present a novel theory of the relationship between light-field data and reflectance from the dichromatic model. We present a physically-based and practical method to estimate the light source color and separate specularity. We present a new photo consistency metric, line-consistency, which represents how viewpoint changes affect specular points. We then show how the new metric can be used in combination with the standard Lambertian variance or point-consistency measure to give us results that are robust against scenes with glossy surfaces. With our analysis, we can also robustly estimate multiple light source colors and remove the specular component from glossy objects. We show that our method outperforms current state-of-the-art specular removal and depth estimation algorithms in multiple real world scenarios using the consumer Lytro and Lytro Illum light field cameras.

  2. Lighting system combining daylight concentrators and an artificial source

    DOEpatents

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  3. Interference of light from independent sources

    SciTech Connect

    Pegg, David T.

    2006-12-15

    We extend and generalize previous work on the interference of light from independent cavities that began with the suggestion of Pfleegor and Mandel [Phys. Rev. 159, 1084 (1967)] that their observed interference of laser beams should not be associated too closely with particular states of the beams but more with the detection process itself. In particular we examine how the detection of interference induces a nonrandom-phase difference between internal cavity states with initial random phases for a much broader range of such states than has previously been considered. We find that a subsequent interference measurement should give results consistent with the induced phase difference. The inclusion of more cavities in the interference measurements enables the construction in principle of a laboratory in the sense used by Aharonov and Susskind, made up of cavity fields that can serve as frames of phase reference. We also show reasonably simply how intrinsic phase coherence of a beam of light leaking from a single cavity arises for any internal cavity state, even a photon number state. Although the work presented here may have some implications for the current controversy over whether or not a typical laboratory laser produces a coherent state, it is not the purpose of this paper to enter this controversy; rather it is to examine the interesting quantum physics that arises for cavities with more general internal states.

  4. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  5. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  6. Interferometer combines laser light source and digital counting system

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of small linear displacements in digital readouts with extreme accuracy and sensitivity is achieved by an interferometer. The instrument combines a digital electro-optical fringe-counting system and a laser light source.

  7. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  8. Science and Technology of Future Light Sources

    SciTech Connect

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  9. Science and Technology of Future Light Sources

    SciTech Connect

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stohr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  10. Survey, alignment, and beam stability at the Advanced Light Source

    SciTech Connect

    Krebs, G.F.

    1997-10-01

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring.

  11. New Directions in X-Ray Light Sources

    ScienceCinema

    Falcone, Roger

    2016-07-12

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  12. Performance of single mechanoluminescent particle as ubiquitous light source.

    PubMed

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order.

  13. New Directions in X-Ray Light Sources

    SciTech Connect

    Falcone, Roger

    2008-07-18

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  14. Modification of light sources for appropriate biological action

    NASA Astrophysics Data System (ADS)

    Kozakov, R.; Schöpp, H.; Franke, St.; Stoll, C.; Kunz, D.

    2010-06-01

    The impact of the non-visual action of light on the design of novel light sources is discussed. Therefore possible modifications of lamps dealing with spectral tailoring and their action on melatonin suppression in usual life situations are investigated. The results of melatonin suppression by plasma lamps are presented. It is shown that even short-time exposure to usual light levels in working areas has an influence on the melatonin onset.

  15. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  16. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  17. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  18. Single Crystal Diamond Needle as Point Electron Source

    PubMed Central

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-01-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics. PMID:27731379

  19. Single Crystal Diamond Needle as Point Electron Source

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-10-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  20. Compact synchrotron light source of the HSRC.

    PubMed

    Yoshida, K; Takayama, T; Hori, T

    1998-05-01

    A 700 MeV synchrotron radiation source optimized in order to be incorporated in the university laboratory is under commissioning at Hiroshima University. The storage ring is of a racetrack type with two long straight sections for installing undulators. The bending field is as strong as 2.7 T, produced by normal-conducting magnet technology, and delivers synchrotron radiation with a critical wavelength of 1.42 nm. The strong magnetic field also enables a low-energy injection scheme to be employed owing to the fast radiation damping. A 150 MeV microtron has been adopted as the injector.

  1. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  2. Electrically driven and electrically tunable quantum light sources

    NASA Astrophysics Data System (ADS)

    Lee, J. P.; Murray, E.; Bennett, A. J.; Ellis, D. J. P.; Dangel, C.; Farrer, I.; Spencer, P.; Ritchie, D. A.; Shields, A. J.

    2017-02-01

    Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single chip can function as a tunable, all-electric quantum light source. Light emitted by an electrically excited driving LED is used to excite quantum dots in the neighbouring diode. The wavelength of the quantum dot emission from the neighbouring driven diode is tuned via the quantum confined Stark effect. We also show that we can electrically tune the fine structure splitting.

  3. A multi-source portable light emitting diode spectrofluorometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra usi...

  4. Conversion degrees of resin composites using different light sources

    PubMed Central

    Ozturk, Bora; Cobanoglu, Nevin; Cetin, Ali Rıza; Gunduz, Beniz

    2013-01-01

    Objective: The objective of this study was to compare the conversion degree of six different composite materials (Filtek Z 250, Filtek P60, Spectrum TPH, Pertac II, Clearfil AP-X, and Clearfil Photo Posterior) using three different light sources (blue light-emitting diode [LED], plasma arc curing [PAC], and conventional halogen lamp [QTH]). Methods: Composites were placed in a 2 mm thick and 5 mm diameter Teflon molds and light cured from the top using three methods: LED for 40 s, PAC for 10 s, and QTH for 40 s. A Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate the degree of conversion (DC) (n=5). The results were analyzed with two-way analysis of variance and Tukey HSD test. Results: DC was significantly influenced by two variables, light source and composite (P<.05). QTH revealed significantly higher DC values than LED (P<.05). However, there were no significant differences between DC values of QTH and PAC or between DC values of LED and PAC (P>.05). The highest DC was observed in the Z 250 composite specimens following photopolymerization with QTH (70%). The lowest DC was observed in Clearfil Photo Posterior composite specimens following photo-polymerization with LED (43%). Conclusions: The DC was found to be changing according to both light sources and composite materials used. Conventional light halogen (QTH) from light sources and Filtek Z 250 and Filtek P 60 among composite materials showed the most DC performance. PMID:23407765

  5. Demonstration of the light source color on a photograph

    NASA Astrophysics Data System (ADS)

    Yamauchi, Rumi; Ikeda, Mitsuo; Shinoda, Hiroyuki

    2002-06-01

    We don't normally perceive the light source color in a night scene photograph even at the spot of a shining lamp, although of course we do perceive the color if we are in the corresponding real world. This different experience can be nicely explained by the concept of the recognized visual space of illumination, RVSI. We see the light source color for a shining lamp in a real world because its luminance is too high to be included within the RVSI constructed for the world. On the contrary, the luminance of the shining lamp in the photograph never goes beyond that of N10 in Munsell Value and it is easily included within the RVSI constructed for the space where the photograph is observed. The spot should appear a mere white, not a light source color. We proposed in the present paper a new method to perceive the light source color in a printed photograph. A subject used a dimension-up goggle to input only the photograph into his/her monocular eye so that he/she can perceive a 3D scene in it. The RVSI of a small brightness size was made for the scene by employing a night scene photograph and a spot in the scene was perceived as the light source color when the area had lightness 8.1 or larger in Munsell Value.

  6. Cell structure imaging with bright and homogeneous nanometric light source.

    PubMed

    Fukuta, Masahiro; Ono, Atsushi; Nawa, Yasunori; Inami, Wataru; Shen, Lin; Kawata, Yoshimasa; Terekawa, Susumu

    2017-04-01

    Label-free optical nano-imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label-free macrophage receptor with collagenous structure-expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal-to-noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR.

  7. Perception of Pointing from Biological Motion Point-Light Displays in Typically Developing Children and Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Swettenham, John; Remington, Anna; Laing, Katherine; Fletcher, Rosemary; Coleman, Mike; Gomez, Juan-Carlos

    2013-01-01

    We examined whether the movement involved in a pointing gesture, depicted using point-light displays, is sufficient to cue attention in typically developing children (TD) and children with autism spectrum disorder (ASD) (aged 8-11 years). Using a Posner-type paradigm, a centrally located display indicated the location of a forthcoming target on 80…

  8. A discharge with a magnetic X-point as a negative hydrogen ion source

    SciTech Connect

    Tsankov, Tsanko; Czarnetzki, Uwe

    2011-09-26

    The study presents first results from investigations of a novel low-pressure plasma source, intended for a negative hydrogen ion production. The source utilizes a dc magnetic field, shaped to form a cusp with a magnetic null-point (X-point). Beside the common role of filtering out the high energy electrons, this magnetic field configuration ensures in the present case also an interesting mechanism of coupling the RF power to the plasma. Investigations performed using radio frequency modulation spectroscopy (RFMOS) reveal that the main power coupling to the electrons is confined in the region on one side of the X-point. The modulation of the light intensity indicates also the presence of a strong dc drift close to the plane of the X-point. Several hypothesises for its explanation are raised: an azimuthal diamagnetic drift due to strong axial gradients of the electron energy, the excitation of a standing helicon wave, which couples to the radial magnetic field in the plane of the X-point, or a Trivelpiece-Gould wave which is resonantly absorbed near the plane of the X-point.

  9. Status of the MAX IV Light Source Project

    SciTech Connect

    Wallen, Erik; Eriksson, Mikael; Berglund, Magnus; Malmgren, Lars; Lindgren, Lars-Johan; Tarawneh, Hamed; Brandin, Mathias; Werin, Sverker; Thorin, Sara; Sjoestroem, Magnus; Svensson, Haakan; Kumbaro, Dionis; Hansen, Tue

    2007-01-19

    The MAX IV light source project is presented. The MAX IV light source will consist of three low emittance storage rings and a 3 GeV injector linac. The three storage rings will be operated at 700 MeV, 1.5 GeV, and 3.0 GeV, which make it possible to cover a large spectral range from IR to hard X-rays with high brilliance undulator radiation from insertion devices optimised for each storage ring. The preparation of the injector linac to serve as a short pulse source and the major sub-systems of the facility are also presented.

  10. Explanatory supplement of the ISOGAL-DENIS Point Source Catalogue

    NASA Astrophysics Data System (ADS)

    Schuller, F.; Ganesh, S.; Messineo, M.; Moneti, A.; Blommaert, J. A. D. L.; Alard, C.; Aracil, B.; Miville-Deschênes, M.-A.; Omont, A.; Schultheis, M.; Simon, G.; Soive, A.; Testi, L.

    2003-06-01

    We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC), containing more than 100 000 point sources detected at 7 and/or 15 mu m in the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the Infrared Space Observatory (ISO). These sources are cross-identified, wherever possible, with near-infrared (0.8-2.2 mu m) data from the DENIS survey. The overall surface covered by the ISOGAL survey is about 16 square degrees, mostly (95%) distributed near the Galactic plane ( | b | <~ 1deg), where the source extraction can become confusion limited and perturbed by the high background emission. Therefore, special care has been taken aimed at limiting the photometric error to ~ 0.2 mag down to a sensitivity limit of typically 10 mJy. The present paper gives a complete description of the entries and the information which can be found in this catalogue, as well as a detailed discussion of the data processing and the quality checks which have been completed. The catalogue is available at the Centre de Données Astronomiques de Strasbourg (via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/955) and also via the server at the Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete version of this paper, including a detailed description of the data processing, is available in electronic form through the ADS service and at http://www.edpsciences.org. This is paper No. 18 in a refereed journal based on data from the ISOGAL project. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the UK) and with the participation of ISAS and NASA; and on DENIS observations collected at the European Southern Observatory, Chile.

  11. String point of view for heavy-light mesons

    NASA Astrophysics Data System (ADS)

    Dong, Yubing; Lü, Qi-Fang; Matsuki, Takayuki

    2017-03-01

    An approximate rotational symmetry of a heavy-light meson is viewed from a string picture. Using a simple string configuration, we derive a formula, (M-mc)2 = πσL, whose coeffcient of the r.h.s. is just 1/2 of that of a light meson with two light quarks. A numerical plot is obtained for D mesons of experimental data as well as several theoretical models, which shows good agreement with this formula. A talk given by T. Matsuki at XII Quark Confinement and the Hadron Spectrum.

  12. EDITORIAL: Special Issue on advanced and emerging light sources Special Issue on advanced and emerging light sources

    NASA Astrophysics Data System (ADS)

    Haverlag, Marco; Kroesen, Gerrit; Ferguson, Ian

    2011-06-01

    -based light sources. However, the progress in the last few years in LED and OLED sources has been even greater. In the editorial for the LS-11 conference by previous guest editor David Wharmby, it was stated that most LED lighting was still mostly used for signalling and decorative sources. In the three years that have passed, things have changed considerably and we now see LED light sources entering every application, ranging from street lighting and parking lots to shop lighting and even greenhouses. Currently LED prices for traditional lighting applications are high, but they are dropping rapidly. The papers published in this special issue give some indications of things to come. The paper by Jamil et al deals with the possibility of using silicon wafers as substrate material instead of the now commonly used (but more expensive) sapphire substrates. This is attractive from a cost price point of view, but leads to an increased lattice mismatch and therefore strain-induced defects. In this paper it is shown that when using intermediate matching layers it is possible to retain the same electrical and optical properties as with structures on sapphire. Another aspect that directly relates to cost is efficiency and droop in green InGaN devices, which is addressed in the paper by Lee et al. They show that by providing a flow of trymethylindium prior to the growth of the quantum wells it is possible to significantly increase the internal quantum efficiency of green LEDs. Improvement of the optical out-coupling of InGaN LEDs is discussed by Mak et al, and it is found that localized plasmon resonance of metallic nanoparticles (and especially silver) can help to increase the optical out-coupling in the wavelength region of interest. Nanoparticles in the form of ZnO nanorods are described by Willander et al as a possibility for phosphor-free wavelength conversion on polymer (O)LEDs. More advanced functions besides light emission can be achieved with OLEDs and this is demonstrated in

  13. Fifth-Generation Free-Electron Laser Light Sources

    SciTech Connect

    Pellegrini, Claudio

    2011-03-02

    During the past few years, the Linac Coherent Light Source (LCLS) and the Free-Electron Laser in Hamburg (FLASH) have demonstrated the outstanding capability of free-electron lasers (FELs) as sources of coherent radiation in the soft and hard x-ray region. The high intensity, tens of GW, short pulses (few to less than 100 femtoseconds, and the unique transverse coherence properties are opening a new window to study the structure and dynamics of atomic and molecular systems. The LCLS, FLASH, and the other FELs now under construction are only the beginning of the development of these light sources. The next generations will reach new levels of performance: terawatt, atto-second, ultra-small line-width, high repetition rate, full longitudinal and transverse coherence. These future developments and the R&D needed to successfully build and operate the next generation of FEL light sources will be discussed.

  14. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  15. Physicsdesign point for a 1MW fusion neutron source

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Melnik, Paul; Sieck, Paul; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald

    2016-10-01

    We are developing a design point for a spheromak experiment heated by adiabatic compression for use as a compact neutron source. We utilize the CORSICA and NIMROD MHD codes as well as analytic modeling to assess a concept with target parameters R0 =0.5m, Rf =0.17m, T0 =1keV, Tf =8keV, n0 =2e20m-3 and nf = 5e21m-3, with radial convergence of C =R0/Rf =3. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. We present results simulations of magnetic compression using the NIMROD code to examine the role of rotation on the stability and confinement of the spheromak as it is compressed. Supported by DARPA Grant N66001-14-1-4044 and IAEA CRP on Compact Fusion Neutron Sources.

  16. LED-based endoscopic light source for spectral imaging

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.

    2016-03-01

    Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.

  17. Alternate Tunings for the Linac Coherent Light Source Photoinjector

    SciTech Connect

    Limborg-Deprey, C.; Emma, P.; /SLAC

    2006-03-17

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10-ps long electron bunches of 1 nC with a normalized projected transverse emittance smaller than 1.2 mm-mrad at 135 MeV. Tolerances and regulation requirements are tight for this tuning. Half of the total emittance at the end of the injector comes from the ''cathode emittance'' which is 0.7 mm-mrad for our nominal 1nC tuning. As the ''cathode emittance'' scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2 nC charge, we believe we can achieve an emittance closer to 0.4 mm-mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the 1 nC case. In the second half of this paper, we discuss optimum laser pulse shapes. We demonstrate that the benefits of the ellipsoidal shapes seem to be important enough so that serious investigations should be carried out in the production of such pulses.

  18. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering

    PubMed Central

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions. PMID:26973689

  19. Phototaxis of Grapholitha molesta (Lepidoptera: Olethreutidae) to Different Light Sources.

    PubMed

    Sun, Y-X; Tian, A; Zhang, X-B; Zhao, Z-G; Zhang, Z-W; Ma, R-Y

    2014-10-01

    The Oriental Fruit Moth Grapholita molesta (Busck) causes substantial damage to stone and pome fruit crops worldwide. Light-based traps offer a potential means for pest monitoring and management. In this study, we tested the preference of G. molesta for the following light sources: monochromatic light produced from light-emitting diodes (LEDs) (red, orange, yellow, green, blue, violet, and white), specific wavelengths of light produced from filters (405, 450, 480, 512, 540, 576, and 610 nm), and polychromatic light produced by different numbers (0, 12, 24, and 36) of green, blue, and violet LEDs. The arrangement of polychromatic lights was based on an orthogonal design matrix of L16 (4(3)). Based on the results of former studies, we further determined the optimal number of green and violet LEDs. The results showed that: 1) G. molesta strongly preferred the green, violet, and blue LEDs; 2) G. molesta significantly preferred light at 405 nm, followed by 540 nm, and showed no phototaxis to 480 nm; 3) for the polychromatic light configuration, violet and green were the factors that determined the preference of G. molesta, and the lamp with 12 violet LEDs captured the most moths; and 4) for the lamps with different light intensities, 36 violet LEDs or 12 green LEDs attracted the most moths, with the former performing better.

  20. Data format standard for sharing light source measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. Groot; Ashdown, Ian; Brandenburg, Willi; Chabaud, Dominique; Dross, Oliver; Gangadhara, Sanjay; Garcia, Kevin; Gauvin, Michael; Hansen, Dirk; Haraguchi, Kei; Hasna, Günther; Jiao, Jianzhong; Kelley, Ryan; Koshel, John; Muschaweck, Julius

    2013-09-01

    Optical design requires accurate characterization of light sources for computer aided design (CAD) software. Various methods have been used to model sources, from accurate physical models to measurement of light output. It has become common practice for designers to include measured source data for design simulations. Typically, a measured source will contain rays which sample the output distribution of the source. The ray data must then be exported to various formats suitable for import into optical analysis or design software. Source manufacturers are also making measurements of their products and supplying CAD models along with ray data sets for designers. The increasing availability of data has been beneficial to the design community but has caused a large expansion in storage needs for the source manufacturers since each software program uses a unique format to describe the source distribution. In 2012, the Illuminating Engineering Society (IES) formed a working group to understand the data requirements for ray data and recommend a standard file format. The working group included representatives from software companies supplying the analysis and design tools, source measurement companies providing metrology, source manufacturers creating the data and users from the design community. Within one year the working group proposed a file format which was recently approved by the IES for publication as TM-25. This paper will discuss the process used to define the proposed format, highlight some of the significant decisions leading to the format and list the data to be included in the first version of the standard.

  1. Electrodeless lighting RF power source development. Final report

    SciTech Connect

    1996-08-30

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  2. A Multipurpose LED Light Source for Optics Experiments

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen

    2004-12-01

    The traditional light source for studying lenses and mirrors is either a bare white light bulb, or one encased inside a lamphouse.2, 3 A simple pattern like an arrow, mounted on an optical bench or printed on the window of a lamphouse, serves as the object. Ironically, the image captured on a translucent screen is often the shadow of the pattern with no light falling on it. Although LEDs have been used in commercial display boards for decades, the advantage of using LEDs as a multipurpose light source in the physics laboratory has been overlooked by many physics teachers. In this paper, we remind readers of a few examples of how LEDs can be used to replace the incandescent lamp for geometrical optics, physical optics, and fiber optics experiments.

  3. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  4. Tunable light source for use in photoacoustic spectrometers

    DOEpatents

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  5. Structural biology research at the National Synchroton Light Source

    SciTech Connect

    1996-05-01

    The world`s foremost facility for scientific research using x-rays and ultraviolet and infrared radiation is operated by the national synchrotron Light Source Department. This year alone, a total of 2200 guest researchers performed experiments at the world`s largest source of synchrotron light. Researchers are trying to define the three- dimensional structures of biological macromolecules to create a map of life, a guide for exploring the biological and chemical interactions of the vast variety of molecules found in living organisms. Studies in structural biology may lead to new insights into how biological systems are formed and nourished, how they survive and grow, how they are damaged and die. This document discusses some the the structural biological research done at the National Synchrotron Light Source.

  6. Color and Variability Characteristics of Point Sources in the Faint Sky Variability Survey

    SciTech Connect

    Huber, M E; Everett, M E; Howell, S B

    2005-03-07

    The authors present an analysis of the color and variability characteristics for point sources in the Faint Sky Variability Survey (FSVS). The FSVS cataloged {approx} 23 square degrees in BVI filters from {approx} 16-24 mag to investigate variability in faint sources at moderate to high Galactic latitudes. Point source completeness is found to be >83% for a selected representative sample (V - 17.5-22.0 mag, B-V = 0.0-1.5) containing both photometric B, V detections and 80% of the time-sampled V data available compared to a basic internal source completeness of 99%. Multi-epoch (10-30) observations in V spanning minutes to years modeled by light curve simulations reveal amplitude sensitivities to {approx} 0.015-0.075 mag over a representative V = 18-22 mag range. Periodicity determinations appear viable to time-scales of an order 1 day or less using the most sampled fields ({approx} 30 epochs). The fraction of point sources is found to be generally variable at 5-8% over V = 17.5-22.0 mag. For V brighter than 19 mag, the variable population is dominated by low amplitude (< 0.05 mag) and blue (B-V < 0.35) sources, possibly representing a population of {gamma} Doradus stars. Overall, the dominant population of variable sources are bluer than B-V = 0.65 and have Main Sequence colors, likely reflecting larger populations of RR Lyrae, SX Phe, {gamma} Doradus, and W UMa variables.

  7. Infrared point sources aligned with the SgrA(asterisk) non-thermal radio source

    NASA Technical Reports Server (NTRS)

    Stein, W. A.; Forrest, W. J.

    1986-01-01

    Assembled 0.7-5.0 micron observational data for two point sources approximately aligned with the compact nonthermal radio source SgrA(asterisk) in the Galactic center, thus far interpreted as being from the same object on the basis of their position and spectral continuity, are presently given alternative interpretations. While the object must be a hot star surrounded by a circumstellar dust cloud if it is a foreground star, a Galactic center position calls for an unorthodox extinction curve which suggests that the IR emission may be the Rayleigh-Jeans tail of a hot star or star cluster, or perhaps a thermal accretion disk.

  8. Does the light source affect the repairability of composite resins?

    PubMed

    Karaman, Emel; Gönülol, Nihan

    2014-01-01

    The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.

  9. A study on the evaporation process with multiple point-sources

    NASA Astrophysics Data System (ADS)

    Jun, Sunghoon; Kim, Minseok; Kim, Suk Han; Lee, Moon Yong; Lee, Eung Ki

    2013-10-01

    In Organic Light Emitting Display (OLED) manufacturing processes, there is a need to enlarge the mother glass substrate to raise its productivity and enable OLED TV. The larger the size of the glass substrate, the more difficult it is to establish a uniform thickness profile of the organic thin-film layer in the vacuum evaporation process. In this paper, a multiple point-source evaporation process is proposed to deposit a uniform organic layer uniformly. Using this method, a uniformity of 3.75% was achieved along a 1,300 mm length of Gen. 5.5 glass substrate (1300 × 1500 mm2).

  10. Investigation of Relative Illuminance as a Function of Distance between Reflector and Fluorescent Light Source

    NASA Astrophysics Data System (ADS)

    Softic, Amela

    2007-04-01

    Although fluorescent lighting is considerably more efficient then incandescent, and is in wide use, manufacturers find new ways to improve its configuration and reduce energy use. Based on the fundamentals of ``Non-imaging Optics'', was experimentally investigated the dependence of illumination of a point in the space on the distance between the reflection and fluorescent light source. Monitoring of changes in illumination is performed by optical sensor and corresponding computer software. Investigation of the influence of the distance between the fluorescent light and the reflector on the relative illumination has shown, for the tested geometries, that by reducing the distance between them the illumination increased, even though the distance among the source and the measuring point got greater.

  11. Study on paper's basis weight measurement method by double monochromatic light sources

    NASA Astrophysics Data System (ADS)

    Mo, Changtao; Wang, Guangming; Huan, Shuai; Wen, Jingji; Xu, Zhidan; Su, Hailin; Zhang, Lili; Lv, Jia; Wang, Ming

    2016-09-01

    Given monochromatic infrared LED (light emitting diode) device best modulation current, frequency, distance to reach its maximum output power and improve the measuring accuracy of quantifier. Design a wavelength of 2.12 μm, 1.89 μm monochromatic infrared emissions and detection optical path, two monochromatic infrared lights which the photo source sends out after transmits the analyte across the same point to achieve the same point detection and improve the accuracy of the measurement. After the paper samples basis weight have carried out nondestructive testing, which was improved from the aspects of structure. By using the light source, halogen tungsten lamp, filter wheel, electrical equipment can be saved, and it can simplify the measuring system. The experimental results show that when measuring the thickness of the paper in the range, the relative error is within 1%.

  12. POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING

    SciTech Connect

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.; Viero, Marco; Bond, J. Richard; Devlin, Mark J.; Reese, Erik D.; Halpern, Mark; Scott, Douglas; Hlozek, Renee; Marriage, Tobias A.; Spergel, David N.; Moodley, Kavilan; Wollack, Edward

    2012-06-20

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  13. Power-Law Template for IR Point Source Clustering

    NASA Technical Reports Server (NTRS)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglass; Spergel, David N.; Staggs,Suzanne T.; Wollack, Edward

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 < I < 2200), the Balloonborne Large-Aperture Submillimeter Telescope (BLAST; 250, 350 and 500 microns; 1000 < I < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  14. Power-Law Template for Infrared Point-Source Clustering

    NASA Technical Reports Server (NTRS)

    Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglas; Spergel, David N.; Staggs, Suzanne T.; Wollack, Edward

    2012-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx < l approx < 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 micron; 1000 approx < l approx < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  15. Atmospheric measurement of point source fossil CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2014-05-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.

  16. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  17. Radio-Quiet Pulsars and Point Sources in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Helfand, David

    2002-04-01

    Since Baade and Zwicky made their prescient remark identifying the central blue star in the Crab Nebula as a neutron star, this pulsar's period has increased by 0.9 msec, turning 10^48 ergs of rotational kinetic energy into a relativistic wind that has been deposited in its surroundings. This makes the compact remnant of the supernova of 1054 AD highly conspicuous. It also makes this remnant highly anomalous. Nowhere else in the Galaxy does such a luminous young pulsar exists, despite the fact that at least half a dozen core-collapse supernovae have occurred since the Crab's birth. Indeed, the newly discovered central object in Cas A is four orders of magnitude less luminous in the X-ray band. While the Chandra and XMM-Newton Observatories are discovering an increasing number of Crab-like synchrotron nebulae (albeit, far less luminous than the prototype), they are also revealing X-ray point sources inside supernova remnants that lack detectable radio pulses and show no evidence of a relativistic outflow to power a surrounding nebula. I will provide an inventory of these objects, discuss whether or not truly radio-silent young neutron stars exist, and speculate on the emission mechanisms and power sources which make such objects shine. I will conclude with a commentary on the implications of this population for the distributions of pulsar birth parameters such as spin period, magnetic field strength, and space velocity, as well as offer a glimpse of what future observations might reveal about the demographics of core-collapse remnants.

  18. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  19. Environmental Science Program at the Advanced Light Source

    SciTech Connect

    Nico, Peter; A; Anastasio, Cort; Dodge, Cleveland; Fendorf, Scott; Francis, A.J.; Hubbard, Susan; Shuh, David; Tomutsa, Liviu; Tufano, Kate; Tyliszczak, Tolek; Werner, Michelle; Williams, Ken

    2006-04-05

    The Advanced Light Source (ALS) has a variety of capabilities that are applicable to very different types of environmental systems. Shown are the basic descriptions of four of the approximately 35 beam lines at the ALS. The complimentary capabilities of these four beam lines allow for investigations that range from a spatial scale of a few nanometers to several millimeters. The Environmental Science Program at the Advanced Light Source seeks to promote and assist environmental research, particularly on the four beam lines described in this report. Several short examples of the types of research conducted on these beam lines are also described.

  20. Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia-nitrogen flux

    NASA Astrophysics Data System (ADS)

    Zhang, W. S.; Swaney, D. P.; Li, X. Y.; Hong, B.; Howarth, R. W.; Ding, S. H.

    2015-07-01

    This study provides a new approach to estimate both anthropogenic non-point-source and point-source nitrogen (N) inputs to the landscape, and determines their impacts on riverine ammonia-nitrogen (AN) flux, providing a foundation for further exploration of anthropogenic effects on N pollution. Our study site is Huai River basin of China, a water-shed with one of the highest levels of N input in the world. Multi-year average (2003-2010) inputs of N to the watershed are 27 200 ± 1100 kg N km-2 yr-1. Non-point sources comprised about 98 % of total N input, and only 2 % of inputs are directly added to the aquatic ecosystem as point sources. Fertilizer application was the largest non-point source of new N to the Huai River basin (69 % of net anthropogenic N inputs), followed by atmospheric deposition (20 %), N fixation in croplands (7 %), and N content of imported food and feed (2 %). High N inputs showed impacts on riverine AN flux: fertilizer application, point-source N input, and atmospheric N deposition were proved as more direct sources to riverine AN flux. Modes of N delivery and losses associated with biological denitrification in rivers, water consumption, interception by dams may influence the extent of export of riverine AN flux from N sources. Our findings highlight the importance of anthropogenic N inputs from both point sources and non-point sources in heavily polluted watersheds, and provide some implications for AN prediction and management.

  1. Applications of laser wakefield accelerator-based light sources

    SciTech Connect

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  2. Applications of laser wakefield accelerator-based light sources

    NASA Astrophysics Data System (ADS)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  3. Brazilian Synchrotron Light Source: current results and future perspectives

    NASA Astrophysics Data System (ADS)

    Roque da Silva, Antonio Jose

    2013-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Brazil gave an important contribution to science in Latin America through the development of the necessary technology and the construction of the first synchrotron in the southern hemisphere, still the only one in Latin America. The Laboratório Nacional de Luz Síncrotron - LNLS, operates this installation as an open facility since 1997, having today more than 1300 users yearly. Despite all this success, the current Brazilian light source is a second-generation machine, with relatively low electron energy, high emittance and few straight sections for insertion devices. LNLS is currently engaged in the design and construction of a new, third-generation synchrotron light source. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. In this talk an overview of the status of the current Brazilian light source will be provided, illustrated with some experimental results from users, as well as the future perspectives of the new synchrotron source.

  4. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  5. The light spectrum near the Argyres-Douglas point

    NASA Astrophysics Data System (ADS)

    Gustavsson, A.; Henningson, M.

    1999-09-01

    We consider /N=2 super Yang-Mills theory with /SU(2) gauge group and a single quark hypermultiplet in the fundamental representation. For a specific value of the quark bare mass and at a certain point in the moduli space of vacua, the central charges corresponding to two mutually non-local electro-magnetic charges vanish simultaneously, indicating the possibility of massless such states in the spectrum. By realizing the theory as an M-theory configuration, we show that these states indeed exist in the spectrum near the critical point.

  6. Chandra Observations of Point Sources in Abell 2255

    NASA Technical Reports Server (NTRS)

    Davis, David S.; Miller, Neal A.; Mushotzky, Richard F.

    2003-01-01

    In our search for "hidden" AGN we present results from a Chandra observation of the nearby cluster Abell 2255. Eight cluster galaxies are associated with point-like X-ray emission, and we classify these galaxies based on their X-ray, radio, and optical properties. At least three are associated with active galactic nuclei (AGN) with no optical signatures of nuclear activity, with a further two being potential AGN. Of the potential AGN, one corresponds to a galaxy with a post-starburst optical spectrum. The remaining three X-ray detected cluster galaxies consist of two starbursts and an elliptical with luminous hot gas. Of the eight cluster galaxies five are associated with luminous (massive) galaxies and the remaining three lie in much lower luminosity systems. We note that the use of X-ray to optical flux ratios for classification of X-ray sources is often misleading, and strengthen the claim that the fraction of cluster galaxies hosting an AGN based on optical data is significantly lower than the fraction based on X-ray and radio data.

  7. The power spectrum of the Point Source Catalogue redshift survey

    NASA Astrophysics Data System (ADS)

    Sutherland, W.; Tadros, H.; Efstathiou, G.; Frenk, C. S.; Keeble, O.; Maddox, S.; McMahon, R. G.; Oliver, S.; Rowan-Robinson, M.; Saunders, W.; White, S. D. M.

    1999-09-01

    We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14 500 galaxies over 84 per cent of the sky with 60-μm flux >=0.6 Jy. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors resulting from the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2-Jy surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion σ_V. Assuming a realistic σ_V ~ 300 km s^-1 yields a shape parameter Γ ~ 0.25 and normalization bσ_8 ~ 0.75; if σ_V is as high as 600 km s^-1 then Γ = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.

  8. High-speed OCT light sources and systems [Invited

    PubMed Central

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  9. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  10. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

    NASA Astrophysics Data System (ADS)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben

    2015-09-01

    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  11. Determining and quantifying specific sources of light alkane

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.

    2015-12-01

    Determining and quantifying specific sources of emission of methane (an important greenhouse gas) and light alkanes from abandoned gas and oil wells, hydraulic fracturing or associated with CO2 sequestration are a challenge in determining their contribution to the atmospheric greenhouse gas budget or to identify source of groundwater contamination. Here, we review organic biogeochemistry proprieties and isotopic fingerprinting of C1-C5 alkanes to address this problem. For instance, the concentration ratios of CH4 to C2-C5 alkanes can be used to distinguish between thermogenic and microbial generated CH4. Together C and H isotopes of CH4 are used to differentiate bacterial generated sources and thermogenic CH4 and may also identify processes such as alteration and source mixing. Carbon isotope ratios pattern of C1-C5 alkanes highlight sources and oxidation processes in the gas reservoirs. Stable carbon isotope measurements are a viable tool for monitoring the degradation progress of methane and light hydrocarbons. The carbon isotope ratios of the reactants and products are independent of the concentration and only depend on the relative progress of the particular reaction. Oxidation/degradation of light alkanes are typically associated with increasing ð13C values. Isotopic mass balances offer the possibility to independently determine the fractions coming from microbial versus thermogenic and would also permit differentiation of the isotope fractionations associated with degradation. Unlike conventional concentration measurements, this approach is constrained by the different isotopic signatures of various sources and sinks.

  12. 75 FR 13142 - Florida Power and Light Company; Turkey Point, Units 3 and 4; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... COMMISSION Florida Power and Light Company; Turkey Point, Units 3 and 4; Exemption 1.0 Background Florida Power and Light Company (FPL, the licensee), is the holder of Facility Operating License Nos. DPR-31 and... of light water nuclear power reactors need to provide adequate margins of safety during any...

  13. PREFACE: Diagnostics for electrical discharge light sources: pushing the limits Diagnostics for electrical discharge light sources: pushing the limits

    NASA Astrophysics Data System (ADS)

    Zissis, Georges; Haverlag, Marco

    2010-06-01

    Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from

  14. The effect of light-activation sources on tooth bleaching

    PubMed Central

    Baroudi, Kusai; Hassan, Nadia Aly

    2014-01-01

    Vital bleaching is one of the most requested cosmetic dental procedures asked by patients who seek a more pleasing smile. This procedure consists of carbamide or hydrogen peroxide gel applications that can be applied in-office or by the patient (at-home/overnight bleaching system). Some in-office treatments utilise whitening light with the objective of speeding up the whitening process. The objective of this article is to review and summarise the current literature with regard to the effect of light-activation sources on in-office tooth bleaching. A literature search was conducted using Medline, accessed via the National Library of Medicine Pub Med from 2003 to 2013 searching for articles relating to effectiveness of light activation sources on in-office tooth bleaching. This study found conflicting evidence on whether light truly improve tooth whitening. Other factors such as, type of stain, initial tooth colour and subject age which can influence tooth bleaching outcome were discussed. Conclusions: The use of light activator sources with in-office bleaching treatment of vital teeth did not increase the efficacy of bleaching or accelerate the bleaching. PMID:25298598

  15. Propagation problems connected with an infinitesimal point source

    NASA Astrophysics Data System (ADS)

    Bremmer, H.

    1980-05-01

    I have been asked to give two talks [Walker-Ames Lecture at the University of Washington, June 18, 1979] on recent developments in branches of my main interest. Unfortunately, I have not been able to follow the most recent literature, but I believe it is worthwhile to recognize the essential features of modern computation techniques by confronting them with older ones; this might be achieved by a historical survey, to be given in particular in my first talk, while the second one will emphasize the common aspects of procedures which in the literature have been worked out only for one special branch of physics or technology but are just as well applicable to other related fields. This division requires, moreover, that my first talk almost exclusively concern phenomena the essential properties of which already follow from the effects produced by a single infinitesimal source, while the second lecture considers the consequences of the detailed structure of the source in view of its finite dimensions. Thus let me begin with a discussion of the propagation of terrestrial radio waves, a problem the development of which I have followed with great interest during my scientific career. Represented in its simplest idealized form, we here want to know the electromagnetic field of a point source transmitter situated near the earth's surface and situated there in the presence of a homogeneous, spherical earth surrounded by an also homogeneous medium, the atmosphere. The interest in this diffraction problem arose when, in 1902, Marconi succeeded for the first time in transmitting damped radio waves across the Atlantic Ocean. Although this success was in the beginning mainly viewed from the economical side (possible future competition with telecommunication using sea cables), a bit later scientists wondered about its physical aspect, since here the curvature of the earth excluded rectilinear propagation; indeed the latter should take place along a chord through the earth, which

  16. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  17. Enabling instrumentation and technology for 21st century light sources

    SciTech Connect

    Byrd, J.M.; Shea, T.J.; Denes, P.; Siddons, P.; Attwood, D.; Kaertner, F.; Moog, L.; Li, Y.; Sakdinawat, A.; Schlueter, R.

    2010-06-01

    We present the summary from the Accelerator Instrumentation and Technology working group, one of the five working groups that participated in the BES-sponsored Workshop on Accelerator Physics of Future Light Sources held in Gaithersburg, MD September 15-17, 2009. We describe progress and potential in three areas: attosecond instrumentation, photon detectors for user experiments, and insertion devices.

  18. Miniature Incandescent Lamps as Fiber-Optic Light Sources

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; Collura, Joe; Helvajian, Henry; Pocha, Michael; Meyer, Glenn; McConaghy, Charles F.; Olsen, Barry L.

    2008-01-01

    Miniature incandescent lamps of a special type have been invented to satisfy a need for compact, rapid-response, rugged, broadband, power-efficient, fiber-optic-coupled light sources for diverse purposes that could include calibrating spectrometers, interrogating optical sensors, spot illumination, and spot heating.

  19. Research by industry at the National Synchrotron Light Source

    SciTech Connect

    1995-05-01

    The world`s foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.).

  20. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  1. Compact X-ray Light Source Workshop Report

    SciTech Connect

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  2. Superconducting RF Linac Technology for ERL Light Sources

    SciTech Connect

    Tennant, Chris

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity's Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  3. The light curve of a transient X-ray source

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Eadie, G.; Pounds, K. A.; Ricketts, M. J.; Watson, M.

    1975-01-01

    The Ariel-5 satellite has monitored the X-ray light curve of A1524-62 almost continuously from 40 days prior to maximum light until its disappearance below the effective experimental sensitivity. The source exhibited maximum light on Dec. 4, 1974, at a level of 0.9 the apparent magnitude of the Crab Nebula in the energy band 3-6 keV. Although similar to previously reported transient sources with a decay time constant of about 2 months, the source exhibited an extended, variable preflare on-state of about 1 month at a level of greater than 0.1 maximum light. The four bright (greater than 0.2 of the Crab Nebula) transient sources observed during the first half-year of Ariel-5 operation are indicative of a galactic disk distribution, a luminosity at maximum in excess of 10 to the 37-th power ergs/sec, a frequency of occurrence which may be as high as 100/yr, and a median decay time which is less than 1 month.

  4. 40 CFR 125.64 - Effect of the discharge on other point and nonpoint sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 125.64 Effect of the discharge on other point and nonpoint sources. (a) No modified discharge may result in any additional pollution control requirements on any other point or nonpoint source. (b) The... pollution control, or other requirement on any other point or nonpoint sources. The State...

  5. 40 CFR 433.10 - Applicability; description of the metal finishing point source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal finishing point source category. 433.10 Section 433.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL FINISHING POINT SOURCE CATEGORY Metal Finishing Subcategory § 433.10 Applicability; description of the metal finishing point source category....

  6. The Materials Science beamline upgrade at the Swiss Light Source

    PubMed Central

    Willmott, P. R.; Meister, D.; Leake, S. J.; Lange, M.; Bergamaschi, A.; Böge, M.; Calvi, M.; Cancellieri, C.; Casati, N.; Cervellino, A.; Chen, Q.; David, C.; Flechsig, U.; Gozzo, F.; Henrich, B.; Jäggi-Spielmann, S.; Jakob, B.; Kalichava, I.; Karvinen, P.; Krempasky, J.; Lüdeke, A.; Lüscher, R.; Maag, S.; Quitmann, C.; Reinle-Schmitt, M. L.; Schmidt, T.; Schmitt, B.; Streun, A.; Vartiainen, I.; Vitins, M.; Wang, X.; Wullschleger, R.

    2013-01-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs. PMID:23955029

  7. The topology of the IRAS Point Source Catalogue Redshift Survey

    NASA Astrophysics Data System (ADS)

    Canavezes, A.; Springel, V.; Oliver, S. J.; Rowan-Robinson, M.; Keeble, O.; White, S. D. M.; Saunders, W.; Efstathiou, G.; Frenk, C. S.; McMahon, R. G.; Maddox, S.; Sutherland, W.; Tadros, H.

    1998-07-01

    We investigate the topology of the new Point Source Catalogue Redshift Survey (PSCz) of IRAS galaxies by means of the genus statistic. The survey maps the local Universe with approximately 15 000 galaxies over 84.1 per cent of the sky, and provides an unprecedented number of resolution elements for the topological analysis. For comparison with the PSCz data we also examine the genus of large N-body simulations of four variants of the cold dark matter (CDM) cosmogony. The simulations are part of the Virgo project to simulate the formation of structure in the Universe. We assume that the statistical properties of the galaxy distribution can be identified with those of the dark matter particles in the simulations. We extend the standard genus analysis by examining the influence of sampling noise on the genus curve and introducing a statistic able to quantify the amount of phase correlation present in the density field, the amplitude drop of the genus compared to a Gaussian field with identical power spectrum. The results for PSCz are consistent with the hypothesis of random-phase initial conditions. In particular, no strong phase correlation is detected on scales ranging from 10 to 32 h^-1 Mpc, whereas there is a positive detection of phase correlation at smaller scales. Among the simulations, phase correlations are detected in all models at small scales, albeit with different strengths. When scaled to a common normalization, the amplitude drop depends primarily on the shape of the power spectrum. We find that the constant-bias standard CDM model can be ruled out at high significance, because the shape of its power spectrum is not consistent with PSCz. The other CDM models with more large-scale power all fit the PSCz data almost equally well, with a slight preference for a high-density tauCDM model.

  8. Improving the Efficiency of Solid State Light Sources

    SciTech Connect

    Joanna McKittrick

    2003-03-31

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths ({lambda}=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range ({lambda}=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution.

  9. Light extraction by directional sources within optically dense media.

    PubMed

    Nagel, James R

    2012-12-03

    Light extraction efficiency (LEE) from a light-emitting diode is commonly referenced against an isotropic radiator within a dense dielectric medium. However, this description is not necessarily accurate for photonic devices with directional source elements. We therefore derive exact solutions for the LEE of a directive radiating source next to a planar dielectric boundary, accounting for any Fresnel reflections at the interface. These results can be used to validate numerical simulations and to quantify the baseline LEE for different source models. Four variations are explored, including the isotropic radiator, parallel and perpendicular orientations of the Hertzian dipole, and Lambertian scattering. Due to index matching, Fresnel reflections are generally negligible for materials with large escape cones, but reduce LEE by 20 % or more when critical angle is below 25°.

  10. Simulation of point light concentration with parabolic trough collector

    NASA Astrophysics Data System (ADS)

    Danylyuk, Andriy; Zettl, Marcus; Lynass, Mark

    2010-08-01

    As the amount of solar generated energy usage increases worldwide, researches are turning to more advanced methods to increase collection efficiencies and drive down system costs. In this paper, four different optical system designs for solar concentrator applications are discussed. Each of the designs studied utilizes a parabolic trough optical element. The use of the parabolic trough in conjunction with a secondary optical component eliminates the need for expensive complicated 2-axis tracking, whilst still allowing the precise point focus normally only possible with more complex paraboloid systems. The result is an optical system, which offers all the advantages of a linear focus geometry combined with the possibility to utilize point focus concentration. The results were obtained using photometric geometrical ray tracing methods. Ideal surface simulations were initially used to separate surface from geometrical loss contributions. Later, more realistic simulations, including surface and reflectivity data of typical manufacturing methods and materials, were used to compare optical output power densities and system losses. For the systems studied, the minimum and maximum optical efficiencies obtained were 76.73% and 81% respectively. The AM 1.5 solar spectrum power densities in the absorption plane ranged from 50 to 195.8Wm-2.

  11. 75 FR 34776 - Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... COMMISSION Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4; Environmental... licensee), for operation of the Turkey Point Nuclear Generating Plant, Units 3 and 4, located in Florida... consider approval of an exemption for Turkey Point, Units 3 and 4, from certain requirements of 10 CFR...

  12. Effects of laryngoscope handle light source on the light intensity from disposable laryngoscope blades.

    PubMed

    Milne, A D; Brousseau, P A; Brousseau, C A

    2014-12-01

    A bench-top study was performed to assess the effects of different laryngoscope handles on the light intensity delivered from disposable metal or plastic laryngoscope blades. The light intensity from both the handle light sources themselves and the combined handle and laryngoscope blade sets was measured using a custom-designed testing system and light meter. Five samples of each disposable blade type were tested and compared with a standard re-usable stainless steel blade using three different handle/light sources (Vital Signs LED, Heine 2.5 V Xenon and 3.5 V Xenon). The light intensity delivered by the disposable blades ranged from 790 to 3846 lux for the different handle types. Overall, the 3.5 V Heine handle delivered the highest light output (p < 0.007) in comparison with the other handles. For the disposable blades, the overall light output was significantly higher from the plastic than the metal blades (p < 0.001).

  13. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  14. Effects of aging on identifying emotions conveyed by point-light walkers.

    PubMed

    Spencer, Justine M Y; Sekuler, Allison B; Bennett, Patrick J; Giese, Martin A; Pilz, Karin S

    2016-02-01

    The visual system is able to recognize human motion simply from point lights attached to the major joints of an actor. Moreover, it has been shown that younger adults are able to recognize emotions from such dynamic point-light displays. Previous research has suggested that the ability to perceive emotional stimuli changes with age. For example, it has been shown that older adults are impaired in recognizing emotional expressions from static faces. In addition, it has been shown that older adults have difficulties perceiving visual motion, which might be helpful to recognize emotions from point-light displays. In the current study, 4 experiments were completed in which older and younger adults were asked to identify 3 emotions (happy, sad, and angry) displayed by 4 types of point-light walkers: upright and inverted normal walkers, which contained both local motion and global form information; upright scrambled walkers, which contained only local motion information; and upright random-position walkers, which contained only global form information. Overall, emotion discrimination accuracy was lower in older participants compared with younger participants, specifically when identifying sad and angry point-light walkers. In addition, observers in both age groups were able to recognize emotions from all types of point-light walkers, suggesting that both older and younger adults are able to recognize emotions from point-light walkers on the basis of local motion or global form.

  15. Effects of light sources and visible light-activated titanium dioxide photocatalyst on bleaching.

    PubMed

    Suyama, Yuji; Otsuki, Masayuki; Ogisu, Shinichiro; Kishikawa, Ryuzo; Tagami, Junji; Ikeda, Masaomi; Kurata, Hiroshi; Cho, Takahiro

    2009-11-01

    The objective of this study was to evaluate, using methylene blue (MB), the effects of various light sources on the bleaching action of hydrogen peroxide (H(2)O(2)) with two titanium dioxide (TiO(2)) photocatalysts - an ultraviolet light-activated TiO(2) photocatalyst (UVTiO(2)) versus a visible light-activated TiO(2) photocatalyst (VL-TiO(2)). Five experimental solutions (VL-TiO(2)+H(2)O(2), UV-TiO(2)+H(2)O(2), H(2)O(2), VL-TiO(2), UV-TiO(2)) were prepared by mixing varying concentrations of H(2)O(2 )and/or TiO(2 )photocatalyst with MB solution. For H(2)O(2)-containing solutions (VL-TiO(2)+H(2)O(2), UV-TiO(2)+H(2)O(2), and H(2)O(2)), the concentration of H(2)O(2) was adjusted to 3.5%. For the four different light sources, low- and high-intensity halogen lamps and blue LED LCUs were used. All the experimental solutions were irradiated by each of the light sources for 7 minutes, and the absorbance at 660 nm was measured every 30 seconds to determine the concentration of MB as an indicator of the bleaching effect. On the interaction between the effects of light source and bleaching treatment, the high-intensity halogen with VL-TiO(2)+H(2)O(2) caused the most significant reduction in MB concentration. On the effect of light sources, the halogen lamps resulted in a greater bleaching effect than the blue LED LCUs.

  16. Developing electron beam bunching technology for improving light sources

    SciTech Connect

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source.

  17. The advanced light source: America`s brightest light for science and industry

    SciTech Connect

    Cross, J.; Lawler, G.

    1994-03-01

    America`s brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap.

  18. General model for the pointing error analysis of Risley-prism system based on ray direction deviation in light refraction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing

    2016-09-01

    The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.

  19. In situ image segmentation using the convexity of illumination distribution of the light sources.

    PubMed

    Zhang, Li

    2008-10-01

    When separating objects from a background in an image, we often meet difficulties in obtaining the precise output due to the unclear edges of the objects, as well as the poor or nonuniform illumination. In order to solve this problem, this paper presents an in situ segmentation method which takes advantages of the distribution feature of illumination of light sources, rather than analyzing the image pixels themselves. After analyzing the convexity of illumination distribution (CID) of point and linear light sources, the paper makes use of the CID features to find pixels belonging to the background. Then some background pixels are selected as control points to reconstruct the image background by means of B-spline; finally, by subtracting the reconstructed background from the original image, global thresholding can be employed to make the final segmentation. Quantitative evaluation experiments are made to test the performance of the method.

  20. Method and apparatus for acquisition and tracking of light sources in a transient event rich environment

    NASA Technical Reports Server (NTRS)

    Kissh, Frank (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Abreu, Rene (Inventor); Miklus, Kenneth (Inventor); Bolin, Kenneth (Inventor)

    1993-01-01

    A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.

  1. New markets and new light-sources for projection

    NASA Astrophysics Data System (ADS)

    Moench, Holger

    2008-02-01

    Projection systems have the unique advantage that they can produce large images from compact devices. The specialized UHP and Ujoy lamps enabled a tremendous progress towards compact and highly efficient systems. Beyond the existing markets of rear and professional front projection new applications are possible addressing personal projection and micro-projection. These new applications can profit from laser light sources. Today laser technology is still costly and complicated especially for green wavelengths. Several competing approaches for a green laser are reviewed and the basic requirements of a laser source for projection are described.

  2. Ultraminiature broadband light source with spiral shaped filament

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Helvajian, Henry (Inventor); Pocha, Michael D. (Inventor); Meyer, Glenn A. (Inventor); McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Hansen, William W (Inventor)

    2012-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light source is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  3. Insertion devices for the Advanced Light Source at LBL

    SciTech Connect

    Hassenzahl, W.; Chin, J.; Halbach, K.; Hoyer, E.; Humphries, D.; Kincaid, B.; Savoy, R.

    1989-03-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab.

  4. Cathode R&D for Future Light Sources

    SciTech Connect

    Dowell, D.H.; Bazarov, I.; Dunham, B.; Harkay, K.; Hernandez-Garcia; Legg, R.; Padmore, H.; Rao, T.; Smedley, J.; Wan, W.; /LBL, Berkeley

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  5. New robust and highly customizable light source management system

    NASA Astrophysics Data System (ADS)

    Minegishi, Yuji; Takahisa, Kenji; Ochiai, Hideyuki; Ohta, Takeshi; Enami, Tatsuo

    2015-03-01

    In semiconductor lithography, light sources play a significant role in the wafer production process as well as impacting the manufacturing cost per wafer. Chip manufacturers going forward will be challenged to develop new ways to become more cost effective than their competitors, and the software tools necessary to compete in this environment must be capable of effectively adapting to the unique needs of each manufacturer. Gigaphoton has developed a new highly customizable software system for managing light sources. It not only offers a simple and intuitive user interface that can be operated using a standard web browser on PCs, tablets, and smartphones, but also a platform for users and third parties to develop unique extensions and optimizations.

  6. The advanced light source at the Lawrence Berkeley laboratory

    NASA Astrophysics Data System (ADS)

    Jackson, Alan

    1991-05-01

    The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.

  7. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; ...

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  8. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  9. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  10. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  11. Theory of light emission from a dipole source embedded in a chiral sculptured thin film.

    PubMed

    Mackay, Tom G; Lakhtakia, Akhlesh

    2007-10-29

    Developing a theory based on a spectral Green function for light emission from a point-dipole source embedded in a chiral sculptured thin film (CSTF), we found that the intensity and polarization of the emitted light are strongly influenced by the structural handedness of the CSTF as well as the placement and orientation of the source dipole. The emission patterns across both pupils of the dipole-containing CSTF can be explained in terms of the circular Bragg phenomenon exhibited by CSTFs when illuminated by normally as well as obliquely incident plane waves. The emission characteristics augur well for the future of CSTFs as optical biosensors as well as light emitters with controlled circular polarization and bandwidth.

  12. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  13. Circular dichroism beamline B23 at the Diamond Light Source.

    PubMed

    Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano

    2012-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well established technique in structural biology. The first UV-VIS beamline, dedicated to circular dichroism, at Diamond Light Source Ltd, a third-generation synchrotron facility in south Oxfordshire, UK, has recently become operational and it is now available for the user community. Herein the main characteristics of the B23 SRCD beamline, the ancillary facilities available for users, and some of the recent advances achieved are summarized.

  14. Experimental stations at I13 beamline at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Pešić, Z. D.; De Fanis, A.; Wagner, U.; Rau, C.

    2013-03-01

    The I13 beamline of Diamond Light Source has been operational since December 2011. The beamline encompass two fully independent branches devoted to coherent imaging experiments (coherent x-ray diffraction, coherent diffraction imaging and ptychography) and x-ray imaging (in-line phase contrast imaging, tomography and full-field microscopy). This paper gives an overview of the current status of experimental stations on both branches and outlines planned developments.

  15. National Synchrotron Light Source safety-analysis report

    SciTech Connect

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given.

  16. Learning a complex motor skill from video and point-light demonstrations.

    PubMed

    Rodrigues, Sérgio T; Ferracioli, Marcela de C; Denardi, Renata A

    2010-10-01

    The aim of this study was to compare the learning process of a highly complex ballet skill following demonstrations of point-light and video models. 16 participants divided into point-light and video groups (ns = 8) performed 160 trials of a pirouette, equally distributed in blocks of 20 trials, alternating periods of demonstration and practice, with a retention test a day later. Measures of head and trunk oscillation, coordination disparity from the model, and movement time difference showed similarities between video and point-light groups; ballet experts' evaluations indicated superiority of performance in the video over the point-light group. Results are discussed in terms of the task requirements of dissociation between head and trunk rotations, focusing on the hypothesis of sufficiency and higher relevance of information contained in biological motion models applied to learning of complex motor skills.

  17. [Spatial distribution and pollution source identification of agricultural non-point source pollution in Fujiang watershed].

    PubMed

    Ding, Xiao-Wen; Shen, Zhen-Yao

    2012-11-01

    In order to provide regulatory support for management and control of non-point source (NPS) pollution in Fujiang watershed, agricultural NPS pollution is simulated, spatial distribution characteristics of NPS pollution are analyzed, and the primary pollution sources are also identified, by export coefficient model (ECM) and geographic information system (GIS). Agricultural NPS total nitrogen (TN) loading was of research area was 9.11 x 10(4) t in 2010, and the average loading was intensity was 3.10 t x km(-2). Agricultural NPS TN loading mainly distributed over dry lands, Mianyang city and gentle slope areas; high loading intensity areas were dry lands, Deyang city and gentle slope areas. Agricultural land use, of which contribution rate was 62. 12%, was the most important pollution source; fertilizer loss in dry lands, of which contribution rate was 50.49%, was the prominent. Improving methods of agricultural cultivation, implementing "farm land returning to woodland" policy, and enhancing treatment efficiency of domestic sewage and livestock waster wate are effective measures.

  18. OBJECT X: THE BRIGHTEST MID-INFRARED POINT SOURCE IN M33

    SciTech Connect

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.; Bonanos, A. Z. E-mail: kstanek@astronomy.ohio-state.edu E-mail: bonanos@astro.noa.gr

    2011-05-01

    We discuss the nature of the brightest mid-IR point source (which we dub Object X) in the nearby galaxy M33. Although multi-wavelength data on this object have existed in the literature for some time, it had not previously been recognized as the most luminous mid-IR object in M33 because it is entirely unremarkable in both optical and near-IR light. In the Local Group Galaxies Survey, Object X is a faint red source visible in VRI and H{alpha} but not U or B. It was easily seen at JHK{sub s} in the Two Micron All Sky Survey. It is the brightest point source in all four Spitzer IRAC bands and is also visible in the MIPS 24 {mu}m band. Its bolometric luminosity is {approx}5 x 10{sup 5} L{sub sun}. The source is optically variable on short timescales (tens of days) and is also slightly variable in the mid-IR, indicating that it is a star. Archival photographic plates (from 1949 and 1991) show no optical source, so the star has been obscured for at least half a century. Its properties are similar to those of the Galactic OH/IR star IRC+10420, which has a complex dusty circumstellar structure resulting from episodic low-velocity mass ejections. We propose that Object X is an M {approx}> 30 M{sub sun} evolved star obscured in its own dust ejected during episodic mass-loss events over at least {approx}half a century. It may emerge from its current ultra-short evolutionary phase as a hotter post-red-supergiant star analogous to M33 Var A. The existence and rarity of such objects can be an important probe of a very brief yet eventful stellar evolutionary phase.

  19. Ultraviolet light output of compact fluorescent lamps: comparison to conventional incandescent and halogen residential lighting sources.

    PubMed

    Nuzum-Keim, A D; Sontheimer, R D

    2009-05-01

    Patients with photosensitive dermatologic and systemic diseases often question the ultraviolet light (UVL) output of household lighting sources. Such individuals have increasing concern about potential UVL exposure from energy-efficient compact fluorescent lamps (CFL), as little data have been presented concerning their UVL output. The objective was to compare, via pilot study, the levels of ultraviolet A (UVA) and ultraviolet B (UVB) leak between residential lighting sources. Equivalent wattage CFL, incandescent and halogen bulbs were purchased from local retailers in Oklahoma City, Oklahoma, USA. The UVA and UVB outputs of these sources were measured under controlled conditions at 10, 25, 50, 100 and 150 cm away from the light source using an IL-1700 research radiometer equipped with UVA and UVB detectors. Negligible UVB and UVA was detected at 100 and 150 cm. Therefore, data were analysed from measurements at 10, 25 and 50 cm only. The results demonstrated UVA leak highest from incandescent and halogen bulbs, and UVB leak highest from CFL. The overall UVA/UVB leak was lowest from CFL shielded during the manufacturing process. In conclusion, patients with photosensitivity have choices depending on their relative risk from different UVL wavelength spectra. UVB exposure risk may be reduced the greatest by utilising CFL with manufacturer-provided shields.

  20. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  1. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-07

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm(-1). For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm(-1). With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  2. Sole-Source Lighting for Controlled-Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Mitchell.Cary; Stutte, Gary W.

    2015-01-01

    Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.

  3. 76 FR 802 - Florida Power and Light Company, Turkey Point, Units 3 and 4; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Florida Power and Light Company, Turkey Point, Units 3 and 4; Exemption 1.0 Background Florida Power and Light Company (FPL, the licensee) is the holder of Facility Operating License Nos. DPR-31...

  4. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources

    PubMed Central

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-01-01

    Young’s double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources. PMID:27021589

  5. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    PubMed

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  6. 40 CFR 125.64 - Effect of the discharge on other point and nonpoint sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... result in any additional pollution control requirements on any other point or nonpoint source. (b) The... pollution control, or other requirement on any other point or nonpoint sources. The State determination... and nonpoint sources. 125.64 Section 125.64 Protection of Environment ENVIRONMENTAL PROTECTION...

  7. 40 CFR 1066.930 - Equipment for point-source measurement of running losses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Equipment for point-source measurement of running losses. 1066.930 Section 1066.930 Protection of Environment ENVIRONMENTAL PROTECTION...-source measurement of running losses. For point-source measurement of running loss emissions,...

  8. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and

  9. Inhomogeneous Magnetic Field Geometry Light Ion Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Mori, Yoshitaka; Nakashima, Hideki; Goulding, R. H.; Carter Baity, M. D., Jr.; Sparks, D. O.; Barber, G. C.; White, K. F.; Jaeger, E. F.; Chang-Díaz, F. R.; Squire, J. P.

    2002-11-01

    Helicon plasma source is a well-known high-density plasma source for many applications including plasma processing and fusion. However, most helicon research has been focused on a uniform static magnetic field and relatively heavy ions. Light ion helicon operation is more sensitive to magnetic field strength and geometry than heavy ions. The axially inhomogeneous Mini-Radio Frequency Test Facility (Mini-RFTF) has a capability for controlling static magnetic fields then is applicative for light ion source plasma operation. Inhomogeneous static magnetic field geometry also can procedure a high velocity to plasma exhaust when combined with ICRF heating enabling the possibility of use in plasma propulsion. In this poster, we will show how the source has been optimized for a hydrogen operation and a specific plasma propulsion concept: The Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Measurements of the rf magnetic fields and profile of plasma parameters for several magnetic field strengths and geometries will be discussed. Comparisons with a RF modeling code EMIR3 also will be reported here.

  10. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lyon, Elliott; Kuang, Zheng; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2014-11-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion - a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed.

  11. Ideas for a Future PEP-X Light Source

    SciTech Connect

    Hettel, R.O.; Bane, K.L.F.; Bentson, L.D.; Bertsche, Kirk J.; Brennan, S.M.; Cai, Y.; Chao, A.; DeBarger, S.; Dolgashev, V.A.; Huang, X.; Huang, Z.; Kharakh, D.; Nosochkov, Y.; Rabedeau, T.; Safranek, J.A.; Seeman, J.; Stohr, J.; Stupakov, G.V.; Tantawi, S.G.; Wang, L.; Wang, M.H.; /SLAC /Stanford U., Phys. Dept. /UCLA

    2011-11-02

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing synchrotron source -- PEP-X -- a new storage ring that would occupy the existing PEP-II tunnel and support two experimental halls, each containing 16 x-ray beam lines. Operating at 4.5 GeV and 1.5 A with a horizontal emittance of 0.14 nm-rad, reached using 90 m of damping wigglers, PEP-X would have an order of magnitude higher average brightness and flux in the 1-{angstrom} x-ray range than any existing or planned future storage ring sources. Higher brightness in the soft x-ray regime might be reached with partial lasing in long undulators, and high peak brightness could be reached with seeded FEL emission. The status of preliminary studies of PEP-X is presented.

  12. Multifrequency light curves of low-frequency variable radio sources

    NASA Technical Reports Server (NTRS)

    Altschuler, D. R.; Broderick, J. J.; Dennison, B.; Mitchell, K. J.; Odell, S. L.; Condon, J. J.; Payne, H. E.

    1984-01-01

    Light curves for the low-frequency variable sources AO 0235 + 16, NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3, obtained in monthly observations at 318, 430, and 606 MHz using the 305-m telescope at Arecibo and in bimonthly observations at 880 MHz and 1.4 GHz using the 91-m Green Bank transit telescope during 1980-1983, are presented and analyzed. AO 0235 + 16 is found to have basically canonical variability which is attributed to relativistically moving evolving synchrotron components; but in the other sources, strong simultaneous variations at 318, 430, and 606 MHz are observed to be greatly diminished in amplitude at 880 MHz and 1.4 GHz, confirming the existence of the intermediate-frequency gap at about 1 GHz proposed by Spangler and Cotton (1981). The possibility that a second variability mechanism is active in these sources is explored.

  13. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  14. Multifrequency light curves of low-frequency variable radio sources

    NASA Astrophysics Data System (ADS)

    Altschuler, D. R.; Broderick, J. J.; Dennison, B.; Mitchell, K. J.; Odell, S. L.; Condon, J. J.; Payne, H. E.

    1984-12-01

    Light curves for the low-frequency variable sources AO 0235 + 16, NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3, obtained in monthly observations at 318, 430, and 606 MHz using the 305-m telescope at Arecibo and in bimonthly observations at 880 MHz and 1.4 GHz using the 91-m Green Bank transit telescope during 1980-1983, are presented and analyzed. AO 0235 + 16 is found to have basically canonical variability which is attributed to relativistically moving evolving synchrotron components; but in the other sources, strong simultaneous variations at 318, 430, and 606 MHz are observed to be greatly diminished in amplitude at 880 MHz and 1.4 GHz, confirming the existence of the intermediate-frequency gap at about 1 GHz proposed by Spangler and Cotton (1981). The possibility that a second variability mechanism is active in these sources is explored.

  15. The linac coherent light source single particle imaging road map

    DOE PAGES

    Aquila, A.; Barty, A.; Bostedt, C.; ...

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  16. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  17. Linac Coherent Light Source: The first five years

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph; Boutet, Sébastien; Fritz, David M.; Huang, Zhirong; Lee, Hae Ja; Lemke, Henrik T.; Robert, Aymeric; Schlotter, William F.; Turner, Joshua J.; Williams, Garth J.

    2016-01-01

    A new scientific frontier opened in 2009 with the start of operations of the world's first x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), at SLAC National Accelerator Laboratory. LCLS provides femtosecond pulses of x rays (270 eV to 11.2 keV) with very high peak brightness to access new domains of ultrafast x-ray science. This article presents the fundamental FEL physics and outlines the LCLS source characteristics along with the experimental challenges, strategies, and instrumentation that accompany this novel type of x-ray source. The main part of the article reviews the scientific achievements since the inception of LCLS in the five primary areas it serves: atomic, molecular, and optical physics; condensed matter physics; matter in extreme conditions; chemistry and soft matter, and biology.

  18. Photoacoustic imaging of clinical metal needle by a LED light source integrated transducer

    NASA Astrophysics Data System (ADS)

    Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Shigeta, Yusuke; Tanaka, Chizuyo

    2016-03-01

    We have achieved penetration depth of 30mm by photoacoustic imaging system using LED light source integrated transducer to image a clinical metal needle inserted into a tissue mimicking phantom. We developed the transducer that integrated near-infrared LED array light source, which was connected to a photoacoustic imaging system which drove LED array light source and controlled photoacoustic data acquisition process. Conventionally solid-state laser has been used as the light source for photoacoustic imaging system. Because LED is diffused light source, laser safety glasses is not necessary, also inflexible fibers are not used to guide light close to a transducer, and we integrated LED light source inside the transducer, which became compact and practical size for conventional ultrasound equipment users. We made LED light source unit as detachable to the transducer easily, so wave-length of light can be selectable by changing the LED light source unit.

  19. Beacon system based on light-emitting diode sources for runways lighting

    NASA Astrophysics Data System (ADS)

    Montes, Mario González; Vázquez, Daniel; Fernandez-Balbuena, Antonio A.; Bernabeu, Eusebio

    2014-06-01

    New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane's tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ˜1500 operating hours) and the lamp's technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED's lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.

  20. Point Cloud Visualization in AN Open Source 3d Globe

    NASA Astrophysics Data System (ADS)

    De La Calle, M.; Gómez-Deck, D.; Koehler, O.; Pulido, F.

    2011-09-01

    During the last years the usage of 3D applications in GIS is becoming more popular. Since the appearance of Google Earth, users are familiarized with 3D environments. On the other hand, nowadays computers with 3D acceleration are common, broadband access is widespread and the public information that can be used in GIS clients that are able to use data from the Internet is constantly increasing. There are currently several libraries suitable for this kind of applications. Based on these facts, and using libraries that are already developed and connected to our own developments, we are working on the implementation of a real 3D GIS with analysis capabilities. Since a 3D GIS such as this can be very interesting for tasks like LiDAR or Laser Scanner point clouds rendering and analysis, special attention is given to get an optimal handling of very large data sets. Glob3 will be a multidimensional GIS in which 3D point clouds could be explored and analysed, even if they are consist of several million points.The latest addition to our visualization libraries is the development of a points cloud server that works regardless of the cloud's size. The server receives and processes petitions from a 3d client (for example glob3, but could be any other, such as one based on WebGL) and delivers the data in the form of pre-processed tiles, depending on the required level of detail.

  1. UV light source adaptive sensing technology for flue gas measurement

    NASA Astrophysics Data System (ADS)

    Sun, Changku; Zhang, Chi; Sun, Bo; Liu, Bin; Wang, Peng

    2010-11-01

    The UV absorption spectrometry technique DOAS (Differential Optical Absorption Spectroscopy) has been widely used in continuous monitoring of flue gas, and has achieved good results. DOAS method is based on the basic law of light absorption--Lambert-Beer law. SO2, NOX are the principal component of the flue gas. These components are considered by DOAS method at the same time. And certain mathematical methods are used for concentrations measuring. The Continuous Emission Monitoring System (CEMS) based on the principle of DOAS mainly has two probe-styles present: in-situ probe-style and extractive probe-style. For the in-situ probe-style CEMS based on DOAS method, prolonged use for the UV light source, contaminated lens caused by floating oil and complex environment of the flue will all bring attenuation of the spectral intensity, it will affect the accuracy of measurement. In this article, an in-situ continuous monitoring system based on DOAS method is described, and a component adaptive sensing technology is proposed. By using this adaptive sensing technology, CEMS can adjust the integral time of the spectrometer according to the non-measuring attenuation of the light source intensity and automatically compensate the loss of spectral intensity. Under the laboratory conditions, the experiments for SO2, NO standard gas measurement using adaptive sensing technology is made. Many different levels of light intensity attenuation are considered in the experiments. The results show that the adaptive sensing technology can well compensate the non-measuring loss of spectral intensity. In the field measurement, this technology can well reduce the measurement error brought by attenuation of light intensity, compared with the handheld gas analyzer, the average error of concentration measurement is less than 2% FS(Full Scale).

  2. Optical counterparts of unidentified IRAS point sources Infrared luminous galaxies

    NASA Astrophysics Data System (ADS)

    Aaronson, M.; Olszewski, E. W.

    1984-05-01

    The results of a survey of deep, near-red pointlike objects using mainly the IRAS CCD array focused on sources emitting in the 60 micron region are reported. Data were gathered on 0358 + 223, 0404 + 101, 0412 + 085, 0413 + 122, 0422 + 009 and 0425 + 012. Photometric data of these and other objects are provided in terms of R - I colors. Spectra were obtained for 0422 + 009 and 0425 + 012. The IRAS data indicated that the sources are high intensity IR galaxies. The intense emissions may arise from star formation bursts or an embedded active Seyfert nucleus. Further spectroscopic and radio observations are required to characterize the sources of the IR emissions more accurately.

  3. Light source comprising a common substrate, a first led device and a second led device

    DOEpatents

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  4. Evaluation of the Legibility for Characters Composed of Multiple Point Sources in Fog

    NASA Astrophysics Data System (ADS)

    Tsukada, Yuki; Toyofuku, Yoshinori; Aoki, Yoshiro

    The luminance conditions were investigated, at that the characters composed of multiple point sources were as legible as a character having a uniformly luminous surface in fog, in order to make the use of variable-message signs practical at airports. As the results, it was found that the thicker the fog or the higher the illuminance, the better the legibility of the point source characters become compared with the uniformly luminous surface characters. It is supposed that the ease of extracting each individual point source makes the characters composed of multiple point sources more legible even if their luminance is low. So the results show that if the conventional luminance standard is applied to the average luminance of a character composed of multiple point sources, a character composed of multiple point sources could be recognized without any degradation in legibility.

  5. Design of reflector contours to satisfy photometric criteria using physically realizable light sources

    NASA Astrophysics Data System (ADS)

    Spencer, Domina E.

    2001-11-01

    Traditionally reflector design has been confined to the use of surfaces defined in terms of conic sections, assuming that all light sources can be considered to be point sources. In the middle of the twentieth century, it was recognized that major improvements could be made if the shape of the reflector was designed to produce a desired distribution of light form an actual light source. Cylindrical reflectors were created which illuminated airport runways using fluorescent lamps in such a way that pilots could make visual landings safely even in fog. These reflector contours were called macrofocal parabolic cylinders. Other new reflector contours introduced were macrofocal elliptic cylinders which confined the light to long rectangles. Surfaces of revolution the fourth degree were also developed which made possible uniform floodlighting of a circular region. These were called horned and peaked quartics. The optimum solution of the automotive head lighting problem has not yet been found. The paper concludes with a discussion of the possibility of developing reflectors which are neither cylindrical nor rotational but will produce the optimum field of view for the automobile driver both in clear weather and in fog.

  6. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  7. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  8. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM

    USGS Publications Warehouse

    Boore, D.M.

    2009-01-01

    Comparisons of ground motions from two widely used point-source and finite-source ground-motion simulation programs (SMSIM and EXSIM) show that the following simple modifications in EXSIM will produce agreement in the motions from a small earthquake at a large distance for the two programs: (1) base the scaling of high frequencies on the integral of the squared Fourier acceleration spectrum; (2) do not truncate the time series from each subfault; (3) use the inverse of the subfault corner frequency for the duration of motions from each subfault; and (4) use a filter function to boost spectral amplitudes at frequencies near and less than the subfault corner frequencies. In addition, for SMSIM an effective distance is defined that accounts for geometrical spreading and anelastic attenuation from various parts of a finite fault. With these modifications, the Fourier and response spectra from SMSIM and EXSIM are similar to one another, even close to a large earthquake (M 7), when the motions are averaged over a random distribution of hypocenters. The modifications to EXSIM remove most of the differences in the Fourier spectra from simulations using pulsing and static subfaults; they also essentially eliminate any dependence of the EXSIM simulations on the number of subfaults. Simulations with the revised programs suggest that the results of Atkinson and Boore (2006), computed using an average stress parameter of 140 bars and the original version of EXSIM, are consistent with the revised EXSIM with a stress parameter near 250 bars.

  9. Application of semiconductor light sources for investigations of photochemical reactions

    NASA Astrophysics Data System (ADS)

    Landgraf, S.

    2001-09-01

    Semiconductor light sources, like laser diodes or ultrabright light emitting diodes, are widely used in optical spectroscopy. In this presentation an overview of applications in photochemistry is given. Since the beginning of the 1990s an increasing number of publications with the application of semiconductor light sources appeared. Three different techniques were used: single photon counting with short pulses, phase-modulation fluorometry using a conventional modulation spectrometer, or a lock-in amplifier. Using continuous wave laser diodes in the visible region, which are available from 690 to 630 nm (and, recently, down to 400 nm), a new compact fluorescence spectrometer was developed in our laboratory. Using the phase fluorometric method, measurements down to 100 ps are now possible. Values can be measured in steps of 10 ps with good reproducibility using a high-frequency signal generator and a GHz digital storage oscilloscope. Several investigations have been carried out applying this technique including time-resolved detection of crude oil as an example for possible practical applications.

  10. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    NASA Technical Reports Server (NTRS)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a

  11. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    PubMed Central

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 s, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes. PMID:22238663

  12. An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging.

    PubMed

    Wagenaar, Daniel A

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 μs, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes.

  13. Revised accident source terms for light-water reactors

    SciTech Connect

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  14. Spheroidal harmonic expansions for the solution of Laplace's equation for a point source near a sphere

    NASA Astrophysics Data System (ADS)

    Majić, Matt R. A.; Auguié, Baptiste; Le Ru, Eric C.

    2017-03-01

    We propose a powerful approach to solve Laplace's equation for point sources near a spherical object. The central new idea is to use prolate spheroidal solid harmonics, which are separable solutions of Laplace's equation in spheroidal coordinates, instead of the more natural spherical solid harmonics. Using electrostatics as an example, we motivate this choice and show that the resulting series expansions converge much faster. This improvement is discussed in terms of the singularity of the solution and its analytic continuation. The benefits of this approach are further illustrated for a specific example: the calculation of modified decay rates of light emitters close to nanostructures in the quasistatic approximation. We expect the general approach to be applicable with similar benefits to the solution of Laplace's equation for other geometries and to other equations of mathematical physics.

  15. 40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...

  16. 40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...

  17. 40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...

  18. 40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...

  19. 40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...

  20. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOEpatents

    Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  1. Concepts for the PEP-X Light Source

    SciTech Connect

    Hettel, Robert; Bane, Karl; Bertsche, Kirk; Cai, Yunhai; Chao, Alex; Dolgashev, Valery; Fox, John; Huang, Xiaobiao; Huang, Zhirong; Mastorides, Themistoklis; Ng, Cho; Nosochkov, Yuri; Novokhatski, Alexander; Rabedeau, Thomas; Rivetta, Claudio; Safranek, James; Seeman, John; Stohr, Joachim; Stupakov, Gennady; Tantawi, Sami G.; Wang, Lanfa; /SLAC /Stanford U. /UCLA

    2010-08-26

    SSRL and SLAC groups are developing a long-range plan to transfer its evolving scientific programs from the SPEAR3 light source to a much higher performing photon source that would be housed in the 2.2-km PEP-II tunnel. While various concepts for the PEP-X light source are under consideration, including ultimate storage ring and ERL configurations, the present baseline design is a very low-emittance storage ring. A hybrid lattice has double bend achromat (DBA) cells in two of the six arcs that provide a total 30 straight sections for insertion device (ID) beam lines extending into two new experimental halls. The remaining arcs contain TME cells. Using 90 m of damping wigglers the horizontal emittance at 4.5 GeV would be 100 pm-rad with 1.5-A stored beam. PEP-X will produce photon beams having brightnesses near 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV. Studies indicate that a 90-m undulator could have FEL gain and brightness enhancement at soft x-ray wavelengths with the stored beam. Crab cavities or other beam manipulation systems could be used to reduce bunch length or otherwise enhance photon emission properties. The present status of the design of PEP-X as a storage ring is presented.

  2. Tokamak Startup Using Point-Source dc Helicity Injection

    SciTech Connect

    Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Redd, A. J.; Sontag, A. C.

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  3. plas.io: Open Source, Browser-based WebGL Point Cloud Visualization

    NASA Astrophysics Data System (ADS)

    Butler, H.; Finnegan, D. C.; Gadomski, P. J.; Verma, U. K.

    2014-12-01

    Point cloud data, in the form of Light Detection and Ranging (LiDAR), RADAR, or semi-global matching (SGM) image processing, are rapidly becoming a foundational data type to quantify and characterize geospatial processes. Visualization of these data, due to overall volume and irregular arrangement, is often difficult. Technological advancement in web browsers, in the form of WebGL and HTML5, have made interactivity and visualization capabilities ubiquitously available which once only existed in desktop software. plas.io is an open source JavaScript application that provides point cloud visualization, exploitation, and compression features in a web-browser platform, reducing the reliance for client-based desktop applications. The wide reach of WebGL and browser-based technologies mean plas.io's capabilities can be delivered to a diverse list of devices -- from phones and tablets to high-end workstations -- with very little custom software development. These properties make plas.io an ideal open platform for researchers and software developers to communicate visualizations of complex and rich point cloud data to devices to which everyone has easy access.

  4. Tapered monocapillary-optics for point source applications

    DOEpatents

    Hirsch, Gregory

    2000-01-01

    A glass or metal wire is precisely etched to form the paraboloidal or ellipsoidal shape of the final desired capillary optic. This shape is created by carefully controlling the withdrawal speed of the wire from an etchant bath. In the case of a complete ellipsoidal capillary, the etching operation is performed twice in opposite directions on adjacent wire segments. The etched wire undergoes a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation. This reflective surface may be a single layer for wideband reflectivity, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The coated wire is built up with a reinforcing layer, typically by a plating operation. The initial wire is removed by either an etching procedure or mechanical force. Prior to removing the wire, the capillary is typically bonded to a support substrate. One option for attaching the wire to the substrate produces a monolithic structure by essentially burying it under a layer of plating which covers both the wire and the substrate. The capillary optic is used for efficiently collecting and redirecting the divergent radiation from a source which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, or some other source of radiation.

  5. Ultraminiature Broadband Light Source and Method of Manufacturing Same

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Helvajian, Henry (Inventor); Pocha, Michael D. (Inventor); Meyer, Glenn A. (Inventor); McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Hansen, William W. (Inventor)

    2010-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light ource is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  6. A 75 MHz light source for femtosecond stimulated raman microscopy.

    PubMed

    Ploetz, E; Marx, B; Klein, T; Huber, R; Gilch, P

    2009-10-12

    In femtosecond stimulated Raman microscopy (FSRM) a spectrally broad pulse (Raman probe) and a spectrally narrow pulse (Raman pump) interact in a sample and thereby generate a Raman spectrum of the focal volume. Here a novel light source for FSRM is presented. It consists of an 8-fs laser (repetition rate of 75 MHz) operating as Raman probe. A Yb(3+) based fiber amplifier generates the Raman pump light at 980 nm. The amplifier is seeded by the spectral wing of the 8-fs laser output which ensures synchronisation of pump and probe pulses. Spectral and temporal characteristics of these pulses are reported and simultaneous recording of broadband Raman spectra relying on these pulses is demonstrated.

  7. Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany

    NASA Astrophysics Data System (ADS)

    Pohlert, T.; Huisman, J. A.; Breuer, L.; Frede, H.-G.

    2005-12-01

    We used the Soil and Water Assessment Tool (SWAT) to simulate point and non-point source pollution of nitrate in a mesoscale mountainous catchment. The results show that the model efficiency for daily discharge is 0.81 for the calibration period (November 1990 to December 1993) and 0.56 for the validation period (April 2000 to January 2003). The model efficiency for monthly nitrate load is 0.66 and 0.77 for the calibration period (April 2000 to March 2002) and validation period (April 2002 to January 2003), respectively. However, the model efficiency for daily loads is low (0.15), which cannot only be attributed to the quality of input data of point source effluents. An analysis of the internal fluxes and cycles of nitrogen pointed out considerable weaknesses in the models conceptualisation of the nitrogen modules which will be improved in future research.

  8. Hard X-ray phase-contrast imaging with the Compact Light Source based on inverse Compton X-rays

    PubMed Central

    Bech, Martin; Bunk, Oliver; David, Christian; Ruth, Ronald; Rifkin, Jeff; Loewen, Rod; Feidenhans’l, Robert; Pfeiffer, Franz

    2009-01-01

    The first imaging results obtained from a small-size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X-rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specifications make the Compact Light Source ideal for a recently developed grating-based differential phase-contrast imaging method. PMID:19096173

  9. Point source atom interferometry with a cloud of finite size

    NASA Astrophysics Data System (ADS)

    Hoth, Gregory W.; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A.

    2016-08-01

    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1-5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  10. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  11. Radiation properties of Turkish light source facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Zafer

    2015-09-01

    The synchrotron light source TURKAY, which is one of the sub-project of Turkish Accelerator Center (TAC), has been supported by Ministry of Development of Turkey since 2006. The facility is designed to generate synchrotron radiation (SR) in range 0.01-60 keV from a 3 GeV storage ring with a beam emittance of 0.51 nm rad. Synchrotron radiation will be produced from the bending magnets and insertion devices in the storage ring. In this paper design studies for possible devices to produce synchrotron radiation and radiation properties of these devices with TURKAY storage ring parameters are presented.

  12. Status report on the Advanced Light Source control system, 1993

    SciTech Connect

    Young, J.; Brown, W. Jr.; Cork, C.

    1993-10-01

    The Advanced Light Source (ALS), under construction for the past seven years, has become operational. The accelerator has been successfully commissioned using a control system based on hundreds of controllers of our own design and high performance personal computers which are the operator interface. The first beamlines are being commissioned using a control system based on VME hardware and the Experimental Physics and Industrial Control System (EPICS) software. The two systems are being integrated, and this paper reports on the current work being done.

  13. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  14. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  15. The Advanced Light Source at Lawrence Berkeley Laboratory

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Perera, R. C. C.; Schlachter, A. S.

    1992-01-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL), scheduled to be operational in the spring of 1993 as a U.S. Department of Energy national user facility, will be a next-generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide the world's brightest synchrotron radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes above 10 keV. These capabilities will support an extensive research program in a broad spectrum of scientific and technological areas in which XUV radiation is used to study and manipulate matter in all its varied gaseous, liquid, and solid forms. The ALS will also serve those interested in developing the fabrication technology for microstructures and nanostructures, as well as for characterizing them.

  16. Photoinjectors R&D for future light sources & linear colliders

    SciTech Connect

    Piot, P.; /Northern Illinois U. /Fermilab

    2006-08-01

    Linac-driven light sources and proposed linear colliders require high brightness electron beams. In addition to the small emittances and high peak currents, linear colliders also require spin-polarization and possibly the generation of asymmetric beam in the two transverse degrees of freedom. Other applications (e.g., high-average-power free-electron lasers) call for high duty cycle and/or (e.g., electron cooling) angular-momentum-dominated electron beams. We review ongoing R&D programs aiming at the production of electron beams satisfying these various requirements. We especially discuss R&D on photoemission electron sources (with focus on radiofrequency guns) along with the possible use of emittance-manipulation techniques.

  17. [A landscape ecological approach for urban non-point source pollution control].

    PubMed

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  18. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  19. Computer simulation of super-resolution point source image detection

    NASA Astrophysics Data System (ADS)

    Fillard, Jean-Pierre; M'timet, H.; Lussert, Jean-Marc; Castagne, Michel

    1993-11-01

    We present a computer simulation of the analysis of an `in-focus' 2D Airy disk. Two competing methods are used to calculate the coordinates of the center of this point spread function image. The first one is the classical technique that relies on the 2D `centroid' of the image, and the second one is a more original method that uses the frequency dependence of the argument of the Fourier transform. Comparative simulations show that the latter technique [Fourier phase shift (FPS)] allows us to obtain a very good precision of better than 1% of a pixel spacing after quantization. Perturbations such as dc offset reduction, quantization noise, and additive Gaussian noise are introduced in the simulation. The results show that there is an improved perturbation immunity for the FPS method.

  20. Source of vacuum electromagnetic zero-point energy

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    1989-11-01

    Nature provides two alternatives for the origin of electromagnetic zero-point energy (ZPE): existence by fiat as part of the boundary conditions of the universe, or generation by the (quantum-fluctuation) motion of charged particles that constitute matter. A straightforward calculation of the latter possibility has been carried out in which it is assumed that the ZPE spectrum (field distribution) drives particle motion, and that the particle motion in turn generates the ZPE spectrum, in the form of a self-regenerating cosmological feedback cycle. The result is the appropriate frequency-cubed spectral distribution of the correct order of magnitude, thus indicating a dynamic-generation process for the ZPE fields.

  1. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    PubMed

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  2. Novel fusion for hybrid optical/microcomputed tomography imaging based on natural light surface reconstruction and iterated closest point

    NASA Astrophysics Data System (ADS)

    Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo

    2014-02-01

    In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.

  3. A Search for Point Sources of EeV Neutrons

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-12-01

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90° to +15° in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  4. A SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-01

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 Degree-Sign to +15 Degree-Sign in declination using four different energy ranges above 1 EeV (10{sup 18} eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  5. Penning plasma based simultaneous light emission source of visible and VUV lights

    NASA Astrophysics Data System (ADS)

    Vyas, G. L.; Prakash, R.; Pal, U. N.; Manchanda, R.; Halder, N.

    2016-06-01

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20-106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  6. HPLC-DAD-ESI/MS identification of light harvesting and light screening pigments in the lake sediments at Edmonson Point.

    PubMed

    Giovannetti, Rita; Alibabaei, Leila; Zannotti, Marco; Ferraro, Stefano; Petetta, Laura

    2013-01-01

    The composition of sedimentary pigments in the Antarctic lake at Edmonson Point has been investigated and compared with the aim to provide a useful analytical method for pigments separation and identification, providing reference data for future assessment of possible changes in environmental conditions. Reversed phase high performance liquid chromatography (HPLC) with electrospray-mass spectrometry (ESI-MS) detection and diode array detection (DAD) has been used to identify light screening and light harvesting pigments. The results are discussed in terms of local environmental conditions.

  7. Multimodal hard X-ray imaging of a mammography phantom at a compact synchrotron light source.

    PubMed

    Schleede, Simone; Bech, Martin; Achterhold, Klaus; Potdevin, Guillaume; Gifford, Martin; Loewen, Rod; Limborg, Cecile; Ruth, Ronald; Pfeiffer, Franz

    2012-07-01

    The Compact Light Source is a miniature synchrotron producing X-rays at the interaction point of a counter-propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X-rays can be exploited in high-sensitivity differential phase-contrast imaging with a grating-based interferometer. Here, the first multimodal X-ray imaging experiments at the Compact Light Source at a clinically compatible X-ray energy of 21 keV are reported. Dose-compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark-field imaging over conventional attenuation-based projections.

  8. A multi-source portable light emitting diode spectrofluorometer.

    PubMed

    Obeidat, Safwan; Bai, Baolong; Rayson, Gary D; Anderson, Dean M; Puscheck, Adam D; Landau, Serge Y; Glasser, Tzach

    2008-03-01

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra using a light weight (<1.5 kg) spectrometer. Limits of detection for rhodamine 6G, rhodamine B, and fluorescein were 2.9, 3.2, and 11.0 nM, respectively. Generation of excitation-emission matrices (EEMs) enabled the analysis of samples containing mixtures of rhodamine B and fluorescein. Buffered saline plant and animal feed extracts were also analyzed using this instrument. These samples included the woody plants Pistacia lentiscus (Evergreen pistache or Mastic) and Philyria latifolia, and the herbaceous species Medicago sativa (alfalfa), Trifolium spp. (clover), and a feed concentrate. Application of multi-way principal component analysis (MPCA) to the resulting three-dimensional data sets enabled discernment among these various diet constituents.

  9. Light source halos in night vision goggles: psychophysical assessments

    NASA Astrophysics Data System (ADS)

    Craig, Greg; Macuda, Todd; Thomas, Paul; Allison, Rob; Jennings, Sion

    2005-05-01

    Anecdotal reports by pilots flying with Night Vision Goggles (NVGs) in urban environments suggest that halos produced by bright light sources impact flight performance. The current study developed a methodology to examine the impact of viewing distance on perceived halo size. This was a first step in characterizing the subtle phenomenon of halo. Observers provided absolute size estimates of halos generated by a red LED at several viewing distances. Physical measurements of these halos were also recorded. The results indicated that the perceived halo linear size decreased as viewing distance was decreased. Further, the data showed that halos subtended a constant visual angle on the goggles (1°48", +/-7") irrespective of distance up to 75". This invariance with distance may impact pilot visual performance. For example, the counterintuitive apparent contraction of halo size with decreasing viewing distance may impact estimates of closure rates and of the spatial layout of light sources in the scene. Preliminary results suggest that halo is a dynamic phenomenon that requires further research to characterize the specific perceptual effects that it might have on pilot performance.

  10. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  11. SESAME -- A light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-02-01

    Developed under UNESCO and modelled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. The Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey), provides the annual budget. Concrete shielding is complete, and a staff of 21 is installing the refurbished 0.8 GeV BESS Y I injector system, a gift from Germany. The facility can serve 25 simultaneous experiments. Beamline equipment has been provided by Daresbury (UK), the Helmholtz Assoc. (Germany), the Swiss Light Source, LURE (France), the Univ. of Liverpool, Elettra (Italy) and US labs. Jordan has contributed 3.3M, in addition to a building and land. The EU has contributed 4.8M. Commitments confirmed by Members look set to provide most of 35M needed to complete construction of the ring and 3 beamlines. A training program has been underway since 2000. See www.sesame.org.jo

  12. Metabolomics for in situ environmental monitoring of surface waters impacted by contaminants from both point and non-point sources

    EPA Science Inventory

    We investigated the efficacy of metabolomics for field-monitoring of fish exposed to waste water treatment plant (WWTP) effluents and non-point sources of chemical contamination. Lab-reared male fathead minnows (Pimephales promelas, FHM) were held in mobile monitoring units and e...

  13. MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID

    EPA Science Inventory

    Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...

  14. 40 CFR 433.10 - Applicability; description of the metal finishing point source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal finishing point source category. 433.10 Section 433.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL FINISHING POINT SOURCE CATEGORY Metal Finishing Subcategory § 433.10 Applicability; description of the metal finishing...

  15. 40 CFR 433.10 - Applicability; description of the metal finishing point source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal finishing point source category. 433.10 Section 433.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL FINISHING POINT SOURCE CATEGORY Metal Finishing Subcategory § 433.10 Applicability; description of the metal finishing...

  16. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  17. On the Measurement of the Velocity of Light Emitted by an Ultrarelativistic Source

    NASA Astrophysics Data System (ADS)

    Kupryaev, N. V.

    2015-01-01

    By analytical calculations it has been shown that in papers on the measurement of the velocity of light published in 2011 in the journals Uspekhi Fizicheskikh Nauk [Physics-Uspekhi] and Pis'ma v ZhETF [JRTP Letters], in actual fact the velocity of a light pulse from a relativistic clot of electrons was not measured. All that was done was to compare the velocity of light emitted by an ultrarelativistic source with the velocity of light from a fixed source, i.e., both in the first and second variants (one independent quantity was compared with another), in essence, it was simply postulated. In the first variant a glass plate was used as the fixed light source, and in the second variants, a synchrotron pulse was used as the reference signal. The velocity of light was calculated using a calculated time based on the postulate of the special theory of relativity (STR) on the invariance of the velocity of light. This, of course, contradicts the Newton-Ritz hypothesis on ballistic addition of velocities, but at the present time this idea is not taken seriously. Practically none of the serious contemporary critics of STR, apart, of course, from amateurs, holds this point of view. The result cannot be considered as a direct experimental confirmation of the second postulate of Einstein's special theory of relativity, i.e., its main part, which speaks of the constancy of the velocity of light in all inertial reference frames, but only of that part which speaks of the independence of the velocity of light on motion of the source. Moreover, this same result stands as equal proof of the so-called theory of the luminiferous ether, which held sway up to the creation of the special theory of relativity and which has now been revived, i.e., it does not distinguish between these two theories. It is fundamentally impossible in principle to measure the velocity of light by the proposed method, it is only possible to postulate it.

  18. Development of liquid-jet laser-produced plasma light source for EUV lithography

    NASA Astrophysics Data System (ADS)

    Abe, Tamotsu; Suganuma, Takashi; Imai, Yousuke; Sugimoto, Yukihiko; Someya, Hiroshi; Hoshino, Hideo; Soumagne, Georg; Komori, Hiroshi; Mizoguchi, Hakaru; Endo, Akira; Toyoda, Koichi

    2003-06-01

    The Extreme UV Lithography System Development Association (EUVA) was established in Japan in May 2002 and is supported by the Ministry of Economy, Trade and Industry (METI). EUVA started the light soruce development in September 2002. This development is done by the assocaition members Gigaphoton, Ushio, Komatsu, Canon, Nikon, the National Institute of Advanced Industrial Sciecne and Technology (AIST) and several Japanese universities. The target of the four-year project is the development of a EUV light source with 10W clean focus point power. For the end of the fiscal year 2003 the development of a 4W EUV light source (clean focus point power) is planned. Both, Laser-Produced-Plasma (LPP) and Discharge-Produced-Plasma (DPP) EUV light sources are investigated at first. Our group at the EUVA Hiratsuka R&D Center is working on LPP sources. We are currently focusing on the development of a driver laser and a liquid Xenon plasma target. The laser is a Nd:YAG MOPA (Master Oscillator and Power Amplifier) system oscillating at 1064 nm. Average power, repetition rate and pulse duration of the laser system are 500 Watt, 10 kHa and 30nsec, respectively. The Xenon liquefication system operates at a maximum pressure of 5MPa and a temperature range between 160 K and 190 K. The pressure inside the vacuum chamber is below 0.1Pa during system operation. This paper presents the current status of the EUV system component development as well as first experimental results of generated EUV radiation.

  19. Plasma-Based Studies on 4th Generation Light Sources

    SciTech Connect

    Lee, R W; Baldis, H A; Cauble, R C; Landen, O L; Wark, J S; Ng, A; Rose, S J; Lewis, C; Riley, D; Gauthier, J-C; Audebert, P

    2000-11-28

    The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warn dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (T{sub e}), the density (n{sub e}), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, n{sub e}, {ge} 10{sup 22} cm{sup -3} implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However. the possibilities end for plasmas with n{sub e} {ge} 10{sup 22} since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

  20. Terahertz Light Source and User Area at FACET

    SciTech Connect

    Wu, Z.; Li, S.Z.; Litos, M.; Fisher, A.D.; Hogan, M.J.; /SLAC

    2011-11-08

    FACET at SLAC provides high charge, high peak current, low emittance electron beam that is bunched at THz wavelength scale during its normal operation. A THz light source based coherent transition radiation (CTR) from this beam would potentially be the brightest short-pulse THz source ever constructed. Efforts have been put into building this photon source together with a user area, to provide a platform to utilize this unique THz radiation for novel nonlinear and ultrafast phenomena researches and experiments. Being a long-time underutilized portion of the electromagnetic spectrum, terahertz (100 GHz {approx} 10 THz) spectral range is experiencing a renaissance in recent years, with broad interests from chemical and biological imaging, material science, telecommunication, semiconductor and superconductor research, etc. Nevertheless, the paucity of THz sources especially strong THz radiation hinders both its commercial applications and nonlinear processes research. FACET - Facilities for Accelerator science and Experimental Test beams at SLAC - provides 23 GeV electron beam with peak currents of {approx} 20 kA that can be focused down to 100 {mu}m{sup 2} transversely. Such an intense electron beam, when compressed to sub-picosecond longitudinal bunch length, coherently radiates high intensity EM fields well within THz frequency range that are orders of magnitude stronger than those available from laboratory tabletop THz sources, which will enable a wide variety of THz related research opportunities. Together with a description of the FACET beamline and electron beam parameters, this paper will report FACET THz radiation generation via coherent transition radiation and calculated photon yield and power spectrum. A user table is being set up along the THz radiation extraction sites, and equipped with various signal diagnostics including THz power detector, Michelson interferometer, sample stages, and sets of motorized optical components. This setup will also be

  1. Optical Remote Sensing Method to Determine Strength of Non-point Sources

    DTIC Science & Technology

    2008-09-01

    1989. “Air Toxics Monitoring: A Comparison Between Remote Sensing and Point Monitoring Techniques,” In Proceedings of American Chemical Society ... Method to Determine Strength of Non-point Sources September 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...SUBTITLE Optical Remote Sensing Method to Determine Strength of Non-point Sources 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  2. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    SciTech Connect

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  3. Chandra ACIS Survey of X-ray Point Sources in 383 Nearby Galaxies. I. The Source Catalog

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng

    2011-01-01

    The Chandra data archive is a treasure for various studies, and in this paper we exploit this valuable resource to study the X-ray point source populations in nearby galaxies. By 2007 December 14, 383 galaxies within 40 Mpc with isophotal major axis above 1 arcmin had been observed by 626 public ACIS observations, most of which were for the first time analyzed by this survey to study the X-ray point sources. Uniform data analysis procedures are applied to the 626 ACIS observations and lead to the detection of 28,099 point sources, which belong to 17,599 independent sources. These include 8700 sources observed twice or more and 1000 sources observed 10 times or more, providing us a wealth of data to study the long-term variability of these X-ray sources. Cross-correlation of these sources with galaxy isophotes led to 8519 sources within the D25 isophotes of 351 galaxies, 3305 sources between the D25 and 2D25 isophotes of 309 galaxies, and additionally 5735 sources outside 2D25 isophotes of galaxies. This survey has produced a uniform catalog, by far the largest, of 11,824 X-ray point sources within 2D25 isophotes of 380 galaxies. Contamination analysis using the log N-log S relation shows that 74% of sources within 2D25 isophotes above 1039 erg s-1, 71% of sources above 1038 erg s-1, 63% of sources above 1037 erg s-1, and 56% of all sources are truly associated with galaxies. Meticulous efforts have identified 234 X-ray sources with galactic nuclei of nearby galaxies. This archival survey leads to 300 ultraluminous X-ray sources (ULXs) with LX (0.3-8 keV) >= 2 × 1039 erg s-1within D25 isophotes, 179 ULXs between D25 and 2D25 isophotes, and a total of 479 ULXs within 188 host galaxies, with about 324 ULXs truly associated with host galaxies based on the contamination analysis. About 4% of the sources exhibited at least one supersoft phase, and 70 sources are classified as ultraluminous supersoft sources with LX (0.3-8 keV) >= 2 × 1038 erg s-1. With a uniform data

  4. Optical pumping experiments on next-generation light sources

    NASA Astrophysics Data System (ADS)

    Moon, Stephen J.; Fournier, Kevin B.; Scott, H.; Chung, H.-K.; Lee, R. W.

    2004-11-01

    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with ne > 1022 cm-3 as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility (TTF) at DESY (Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE (self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 1013 photons in a 200 fs duration pulse that is tunable from ~6 nm to 100 nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with the tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can be easily monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  5. Light-emitting diodes as a radiation source for plants

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Barta, D. J.; Ignatius, R. W.; Martin, T. S.

    1991-01-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.

  6. Optical Pumping Experiments on Next Generation Light Sources

    SciTech Connect

    Moon, S J; Fournier, K B; Scott, H; Chung, H K; Lee, R W

    2004-07-29

    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with n{sub e}>10{sup 22}cm{sup -3} as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility(TTF) at DESY(Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE(self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 10{sup 13} photons in a 200 fs duration pulse that is tunable from {approx} 6nm to 100nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can easily be monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  7. State of Art in the Science and Technology of Electrical Discharge Light Sources

    NASA Astrophysics Data System (ADS)

    Zissis, Georges; Rouffet, Jean-Baptiste

    Light is vital for life: Light sources play an indispensable role to daily life of any Human being. Our World cannot be conceived without light. Quality of life, health and, somehow, urban security related with traffic and crime prevention measures depend on light and on its quality. The lighting industry is an important economic factor in Europe, USA and many Asiatic Countries. All in all, lighting is an important socio-economic factor and lighting system development should be an integral part of any Sustainable Development and of any program of improvement of Quality of Life. This presentation provides an overview of the present state of research in the science and technology of light sources. Existing technologies and future challenges for the lighting industry will be presented. To better understanding the light source technology an part of this presentation will be devoted to the physics of light sources.

  8. Light-assisted drying (LAD) of small volume biologics: a comparison of two IR light sources

    NASA Astrophysics Data System (ADS)

    Young, Madison A.; Van Vorst, Matthew; Elliott, Gloria D.; Trammell, Susan R.

    2016-03-01

    Protein therapeutics have been developed to treat diseases ranging from arthritis and psoriasis to cancer. A challenge in the development of protein-based drugs is maintaining the protein in the folded state during processing and storage. We are developing a novel processing method, light-assisted drying (LAD), to dehydrate proteins suspended in a sugar (trehalose) solution for storage at supra-zero temperatures. Our technique selectively heats the water in small volume samples using near-IR light to speed dehydration which prevents sugar crystallization that can damage embedded proteins. In this study, we compare the end moisture content (EMC) as a function of processing time of samples dried with two different light sources, Nd:YAG (1064 nm) and Thulium fiber (1850 nm) lasers. EMC is the ratio of water to dry weight in a sample and the lower the EMC the higher the possible storage temperature. LAD with the 1064 and 1850 nm lasers yielded 78% and 65% lower EMC, respectively, than standard air-drying. After 40 minutes of LAD with 1064 and 1850 nm sources, EMCs of 0.27+/-.27 and 0.15+/-.05 gH2O/gDryWeight were reached, which are near the desired value of 0.10 gH2O/gDryWeight that enables storage in a glassy state without refrigeration. LAD is a promising new technique for the preparation of biologics for anhydrous preservation.

  9. Costs and water quality effects of controlling point and nonpoint pollution sources

    SciTech Connect

    Macal, C.M.; Broomfield, B.J.

    1980-01-01

    Costs and water quality effects of controlling point and nonpoint pollution sources are compared for the DuPage River basin in northern Illinois. Costs are estimated for effluent standards for municipal wastewater treatment plants and for the alternative, controlling runoff from nonpoint sources such as streets, agricultural lands, and forests. A dynamic water-quality/hydrology simulation model is used to determine water quality effects of various treatment plant standards and nonpoint-source controls. Costs and water quality data are combined, and the point-source and nonpoint-source plans are compared on a cost-effectiveness basis. Nonpoint-source controls are found to be more cost-effective than stricter control of pollutants from point sources.

  10. X-ray Optics for BES Light Source Facilities

    SciTech Connect

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of

  11. Net effect of many gravitational fields on the intensity of celestial light sources. Master's thesis

    SciTech Connect

    Cipperly, G.E.

    1982-12-01

    This thesis investigates the lens-like action of the gravitational fields of celestial bodies, which can alter the apparent intensity of more distant sources. Previous work in this area has shown that the chance of an individual body being sufficiently well aligned with a source to cause a very large gravitational intensity change is small. The issue addressed in this study is the possibility of there being a significant total change in the intensity of a source due to the combined effects of the gravitational fields of all celestial bodies, and in particular, the potential impact on intensity distance measurements, that is, determination of the distances of celestial light sources by means of intensity comparisons. It is first shown that the problem can be treated in flat space by associating an appropriate index of refraction with gravitational fields. A wave approach is taken in deriving the total deflection of a ray by the field of a single point mass. A statistical analysis is then performed to determine the expression for the mean total change in the intensity of celestial light sources due to the combined fields of all intervening bodies.

  12. LED based powerful nanosecond light sources for calibration systems of deep underwater neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Lubsandorzhiev, B. K.; Poleshuk, R. V.; Shaibonov, B. A. J.; Vyatchin, Y. E.

    2009-04-01

    Powerful nanosecond light sources based on LEDs have been developed for use in calibration systems of deep underwater neutrino telescopes. The light sources use either matrixes of ultra bright blue InGaN LEDs or new generation high power blue LEDs. It is shown that such light sources have light yield of up to 1010-1012 photons per pulse with very fast light emission kinetics. The developed light sources are currently used in a number of astroparticle physics experiments, namely: the lake Baikal neutrino experiment, the TUNKA EAS experiment, etc.

  13. National Synchrotron Light Source II storage ring vacuum systems

    SciTech Connect

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; Wilson, King; Xu, Huijuan; Zigrosser, Douglas

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, this paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.

  14. Supercontinuum as a light source for miniaturized endoscopes.

    PubMed

    Lu, M K; Lin, H Y; Hsieh, C C; Kao, F J

    2016-09-01

    In this work, we have successfully implemented supercontinuum based illumination through single fiber coupling. The integration of a single fiber illumination with a miniature CMOS sensor forms a very slim and powerful camera module for endoscopic imaging. A set of tests and in vivo animal experiments are conducted accordingly to characterize the corresponding illuminance, spectral profile, intensity distribution, and image quality. The key illumination parameters of the supercontinuum, including color rendering index (CRI: 72%~97%) and correlated color temperature (CCT: 3,100K~5,200K), are modified with external filters and compared with those from a LED light source (CRI~76% & CCT~6,500K). The very high spatial coherence of the supercontinuum allows high luminosity conduction through a single multimode fiber (core size~400μm), whose distal end tip is attached with a diffussion tip to broaden the solid angle of illumination (from less than 10° to more than 80°).

  15. Supercontinuum as a light source for miniaturized endoscopes

    PubMed Central

    Lu, M. K.; Lin, H. Y.; Hsieh, C. C.; Kao, F. J.

    2016-01-01

    In this work, we have successfully implemented supercontinuum based illumination through single fiber coupling. The integration of a single fiber illumination with a miniature CMOS sensor forms a very slim and powerful camera module for endoscopic imaging. A set of tests and in vivo animal experiments are conducted accordingly to characterize the corresponding illuminance, spectral profile, intensity distribution, and image quality. The key illumination parameters of the supercontinuum, including color rendering index (CRI: 72%~97%) and correlated color temperature (CCT: 3,100K~5,200K), are modified with external filters and compared with those from a LED light source (CRI~76% & CCT~6,500K). The very high spatial coherence of the supercontinuum allows high luminosity conduction through a single multimode fiber (core size~400μm), whose distal end tip is attached with a diffussion tip to broaden the solid angle of illumination (from less than 10° to more than 80°). PMID:27699102

  16. Design of the Advanced Light Source timing system

    SciTech Connect

    Fahmie, M.

    1993-05-01

    The Advanced Light Source (ALS) is a third generation synchrotron radiation facility, and as such, has several unique timing requirements. Arbitrary Storage Ring filling patterns and high single bunch purity requirements demand a highly stable, low jitter timing system with the flexibility to reconfigure on a pulse-to-pulse basis. This modular system utilizes a highly linear Gauss Clock with ``on the fly`` programmable setpoints to track a free-running Booster ramping magnet and provides digitally programmable sequencing and delay for Electron Gun, Linac, Booster Ring, and Storage Ring RF, Pulsed Magnet, and Instrumentation systems. It has proven itself over the last year of accelerator operation to be reliable and rock solid.

  17. Observations of collective effects at the Advanced Light Source

    SciTech Connect

    Byrd, J.M.; Barry, W.; Corlett, J.N.; Fox, J.; Teytelman, D.

    1995-10-01

    We present a summary of measurements of single beam collective effects in the Advanced Light Source (ALS). We describe measurements of coupled-bunch instabilities, including some recent results using the newly commissioned feedback systems and the results of an initial search for the fast ion instability. Single bunch effects include bunch lengthening, energy spread increase, HOM loss measurements, head-tail damping rates, current dependent tune shifts, and transverse mode coupling instability threshold. The longitudinal measurements are consistent with a broadband impedance {vert_bar}{Zeta}{sub {parallel}}/{eta}{vert_bar}{sub eff} = 0.22{plus_minus}0.07 {Omega} and transverse measurements indicate broadband impedances of {Zeta}{sub y,eff} = 155 k{Omega}/m and Z{sub x,eff} = 58 k{Omega}/m.

  18. A Next Generation Light Source Facility at LBNL

    SciTech Connect

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-03-23

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ~;;2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, highrepetition- rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  19. Pixel detector system development at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Marchal, J.; Horswell, I.; Gimenez, E. N.; Tartoni, N.

    2010-10-01

    Hybrid pixel detectors consisting of an array of silicon photodiodes bump-bonded to CMOS read-out chips provide high signal-to-noise ratio and high dynamic range compared to CCD-based detectors and Image Plates. These detector features are important for SAXS experiments where a wide range of intensities are present in the images. For time resolved SAXS experiments, high frame rates are compulsory. The latest CMOS read-out chip developed by the MEDIPIX collaboration provides high frame rate and continuous acquisition mode. A read-out system for an array of MEDIPIX3 sensors is under development at Diamond Light Source. This system will support a full resolution frame rate of 1 kHz at a pixel counter depth of 12-bit and a frame rate of 30 kHz at a counter depth of 1 bit. Details concerning system design and MEDIPIX sensors characterization are presented.

  20. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D.; Jones, K.W.; Spanne, P.; Sweet, R.M.; Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y.; Singer, P.T.; Westbrook, E.M.

    1992-12-31

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  1. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D. ); Jones, K.W.; Spanne, P.; Sweet, R.M. ); Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y. ); Singer, P.T.; Westbrook, E.M. )

    1992-01-01

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  2. Compact light source performance in recessed type luminaires

    SciTech Connect

    Hammer, E.E.

    1998-11-01

    Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

  3. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  4. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  5. Workshop on scientific applications of short wavelength coherent light sources

    SciTech Connect

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses ; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

  6. Workshop on scientific applications of short wavelength coherent light sources

    SciTech Connect

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS` Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

  7. Complex space source theory of partially coherent light wave.

    PubMed

    Seshadri, S R

    2010-07-01

    The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.

  8. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  9. The ORNL beamline at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Habenschuss, Anton; Ice, Gene E.; Sparks, Cullier J.; Neiser, Richard A.

    1988-04-01

    The Oak Ridge National Laboratory's (ORNL) beamline at the National Synchrotron Light Source (NSLS) incorporates several novel features, including X-ray optics based on sagittal focusing with crystals and a cantilevered mirror whose center becomes the pivot for all downstream optical elements. Crystal focusing accepts a much larger horizontal divergence of radiation than a mirror while maintaining excellent momentum transfer and energy resolution [C.J. Sparks, G.E. Ice, J. Wong and B.W. Batterman, Nucl. Instr. and Meth. 194 (1982) 73]. This sagitally bent crystal serves as the second element of a two-crystal, nondispersive monochromator. The cantilevered mirror provides a simple design for vertical focusing of the radiation. The beamline is suitable for both X-ray scattering and spectroscopy experiments requiring good energy resolution and high intensity in the energy range from 2.5 to 40 keV. This paper describes the optics of the ORNL beamline and reports its performance to date.

  10. Semiconductor light source with electrically tunable emission wavelength

    DOEpatents

    Belenky, Gregory; Bruno, John D.; Kisin, Mikhail V.; Luryi, Serge; Shterengas, Leon; Suchalkin, Sergey; Tober, Richard L.

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  11. Performance of Advanced Light Source particle beam diagnostics

    SciTech Connect

    Hinkson, J.

    1993-05-01

    The Advanced Light Source (ALS), a third-generation synchrotron radiation facility, is complete. The particle beam diagnostics have been installed and tested. The beam injection systems have been running for two years. We have performance data on beam position monitors, beam intensity monitors, scintillators, beam collimators, a 50 {Omega} Faraday cup, and broad-band striplines and kickers used in the linac, transport lines, and the booster synchrotron. The single-turn monitoring capability of the booster beam position monitoring system has been particularly useful for studying beam dynamics. Beam diagnostics for the storage ring are being commissioned. In this paper we describe each instrument, show its performance, and outline how the instruments are controlled and their output data displayed.

  12. White-light interferometers with polarizing optics for length measurements with an applicable zero-point detection

    NASA Astrophysics Data System (ADS)

    Ullmann, V.; Emam, S.; Manske, E.

    2015-08-01

    For absolute length and form measurements at a large working distance (>150 mm) two special interferometers, a tandem interferometer and a Michelson interferometer with achromatic polarizing optics are constructed. In our experiments, both consist of a combination of one low-coherence interferometer and one laser interferometer. For the low-coherence interferometer part, a simple white-light source with less than 100 µW optical power output is chosen. It bases upon a low-cost fiber-coupled near-infrared LED with a large spectral width (FWHM > 68 nm at 825 nm). The use of achromatic polarizing optics such as broadband polarizing beamsplitters and achromatic quarter-wave plates in the low-coherence interferometer parts increases the contrast level of the white-light signal fringe pattern to nearly 100%. Furthermore, the fringe pattern in a polarized interferometer has no subsignatures and is unique. Hence, different algorithms are tested for signal processing and automated zero-point detection of the white-light signature. The software for an automated measurement is tested in a standard room without thermal control and without damped oscillation. Therefore, in experiments with the tandem interferometer, it was possible to measure the zero-point position of a white-light signature with a peak-to-peak difference of 154 nm under uncontrolled environmental conditions without thermal stabilization. The white-light Michelson interferometer with polarizing achromatic optics allows zero-point detections with a standard deviation (mean value) of less than 15 nm. The drift is proved through measurement results.

  13. Distinguishing dark matter from unresolved point sources in the Inner Galaxy with photon statistics

    SciTech Connect

    Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R. E-mail: mlisanti@princeton.edu

    2015-05-01

    Data from the Fermi Large Area Telescope suggests that there is an extended excess of GeV gamma-ray photons in the Inner Galaxy. Identifying potential astrophysical sources that contribute to this excess is an important step in verifying whether the signal originates from annihilating dark matter. In this paper, we focus on the potential contribution of unresolved point sources, such as millisecond pulsars (MSPs). We propose that the statistics of the photons—in particular, the flux probability density function (PDF) of the photon counts below the point-source detection threshold—can potentially distinguish between the dark-matter and point-source interpretations. We calculate the flux PDF via the method of generating functions for these two models of the excess. Working in the framework of Bayesian model comparison, we then demonstrate that the flux PDF can potentially provide evidence for an unresolved MSP-like point-source population.

  14. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  15. Young Infants Detect the Direction of Biological Motion in Point-Light Displays

    ERIC Educational Resources Information Center

    Kuhlmeier, Valerie A.; Troje, Nikolaus F.; Lee, Vivian

    2010-01-01

    In the present study, we examined if young infants can extract information regarding the directionality of biological motion. We report that 6-month-old infants can differentiate leftward and rightward motions from a movie depicting the sagittal view of an upright human point-light walker, walking as if on a treadmill. Inversion of the stimuli…

  16. Inference of Unresolved Point Sources at High Galactic Latitudes Using Probabilistic Catalogs

    NASA Astrophysics Data System (ADS)

    Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.

    2017-04-01

    The detection of point sources in images is a fundamental operation in astrophysics, and is crucial for constraining population models of the underlying point sources or characterizing the background emission. Standard techniques fall short in the crowded-field limit, losing sensitivity to faint sources and failing to track their covariance with close neighbors. We construct a Bayesian framework to perform inference of faint or overlapping point sources. The method involves probabilistic cataloging, where samples are taken from the posterior probability distribution of catalogs consistent with an observed photon count map. In order to validate our method, we sample random catalogs of the gamma-ray sky in the direction of the North Galactic Pole (NGP) by binning the data in energy and point-spread function classes. Using three energy bins spanning 0.3–1, 1–3, and 3–10 GeV, we identify {270}-10+30 point sources inside a 40^\\circ × 40^\\circ region around the NGP above our point-source inclusion limit of 3× {10}-11 cm‑2 s‑1 sr‑1 GeV‑1 at the 1–3 GeV energy bin. Modeling the flux distribution as a power law, we infer the slope to be -{1.92}-0.05+0.07 and estimate the contribution of point sources to the total emission as {18}-2+2%. These uncertainties in the flux distribution are fully marginalized over the number as well as the spatial and spectral properties of the unresolved point sources. This marginalization allows a robust test of whether the apparently isotropic emission in an image is due to unresolved point sources or of truly diffuse origin.

  17. Apparent spatial blurring and displacement of a point optical source due to cloud scattering

    SciTech Connect

    Brower, K.L.

    1997-09-01

    A Monte Carlo algorithm is used to determine the apparent spatial blurring of a terrestrial 1.07 micron optical point source due to cloud scattering as seen from space. The virtual image of a point source over a virtual source plane area 22.4 x 22.4 square kilometers arising from cloud scattering was determined for stratus clouds (NASA cloud number 5) and altostratus clouds optical source arises from photon scattering by cloud water droplets. Displacement of the virtual source is due to the apparent illumination of the cloud top region directly about the actual source which when viewed at a nonzero look angle gives a projected displacement of the apparent source relative to the actual source. These features are quantified by an analysis of the Monte Carlo computational results.

  18. Mapping Correlation of Two Point Sources in the Gamma-Ray Sky

    SciTech Connect

    Gibson, Alexander

    2015-08-20

    The Fermi Gamma-Ray Space Telescope has been taking data on high energy photons or γ rays since June 11th, 2008, and people have been cataloging and profiling point sources of these γ rays ever since. After roughly one year of being in operation over 1400 sources were cataloged. Now, in 2015 we have 3033 sources cataloged. With the increasing amount of sources it’s important to think about the limitations of likelihood analysis for highly correlated sources. In this paper I will present the problems of using likelihood analysis for sources that are highly correlated as well as show under what circumstances sources can be considered highly correlated. Dark matter over densities may show up as a point source, so it is a necessary step to learn how the two signals will interact to allow for a proper search for dark matter.

  19. Determination of liquid-liquid critical point composition using 90∘ laser light scattering

    NASA Astrophysics Data System (ADS)

    Williamson, J. Charles; Brown, Allison M.; Helvie, Elise N.; Dean, Kevin M.

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90∘ light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90∘ light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  20. Determination of liquid-liquid critical point composition using 90^{∘} laser light scattering.

    PubMed

    Williamson, J Charles; Brown, Allison M; Helvie, Elise N; Dean, Kevin M

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90^{∘} light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90^{∘} light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  1. Experience with low-alpha lattices at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Martin, I. P. S.; Rehm, G.; Thomas, C.; Bartolini, R.

    2011-04-01

    In this paper we present the experience at Diamond Light Source in the design, implementation, and operation of low momentum compaction factor lattices for the generation of short x-ray pulses and coherent THz radiation. The effects of higher-order terms in the expansion of the momentum compaction factor on beam dynamics are reviewed from a theoretical point of view, and the details of both high- and low-emittance solutions at Diamond are discussed. Measurements taken to characterize the lattices under a variety of machine conditions are presented, along with the practical limitations that exist as the momentum compaction factor is made to approach zero.

  2. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    SciTech Connect

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light.

  3. Dynamic Fizeau interferometer based on the lateral displacements of the point sources

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Chen, Lei; Zheng, Donghui; Meng, Shi; Yang, Ying; Liu, Zhiyuan; Han, Zhigang; Li, Jinpeng

    2017-04-01

    A novel dynamic Fizeau interferometer (DFI) is proposed based on simultaneous phase shifting with different incident angles through the lateral displacements of the point sources. Four point sources with identical intensity are generated using a phase grating and the corresponding interferograms with equal phase step are introduced by properly adjusting each point source to the optical axis of the interferometer. The interferograms are separated and clearly imaged at the CCD target in a single shot by putting a lens array in the imaging system, thereby realizing dynamic interferometry. The experimental results show the feasibility and high precision of the DFI.

  4. Scientific program of the advanced light source at LBL

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1992-08-01

    Construction of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory is nearing completion, with operation as a US Department of Energy national user facility scheduled to begin in the spring of 1993. Based on a low-emittance, 1.5 GeV electron storage ring with ten long straight sections available for insertion devices and, initially, 24 bend-magnet ports, the ALS will be a third-generation source of soft X-ray and ultraviolet (collectively, the XUV) synchrotron radiation. Experimental facilities (insertion devices, beamlines, and end stations) will be developed and operated by participating research teams working with the ALS staff. The ability to exploit the high spectral brightness of the ALS was the main criterion for PRT selection. In the XUV spectral regions served by the ALS, a major benefit of high brightness will be the ability to achieve spatial resolution in the neighborhood of 200 Å in X-ray microscopy and holography and in spatially resolved spectroscopy. Other beneficiaries of high brightness include very-high-resolution spectroscopy, spectroscopy of dilute species, diffraction from very small samples, and time-resolved spectroscopy and diffraction.

  5. Status of PEP-X Light Source Design Study

    SciTech Connect

    Bane, K.L.F.; Bertsche, K.J.; Cai, Y.; Chao, A.; Huang, X.; Jiao, Y.; Ng, C.-K.; Nosochkov, Y.; Novokhatski, A.; Rivetta, C.H.; Safranek, J.A.; Stupakov, G.V.; Wang, L.; Wang, M.-H.; Xiao, L.; Hettel, R.O.; Rabedeau, T.; /SLAC

    2011-12-14

    The SLAC Beam Physics group and other SLAC collaborators continue to study options for implementing a near diffraction-limited ring-based light source in the 2.2-km PEP-II tunnel that will serve the SSRL scientific program in the future. The study team has completed the baseline design for a 4.5-GeV storage ring having 160 pm-rad emittance with stored beam current of 1.5 A, providing >10{sup 22} brightness for multi-keV photon beams from 3.5-m undulator sources. The team has also investigated possible 5-GeV ERL configurations which, similar to the Cornell and KEK ERL plans, would have {approx}30 pm-rad emittance with 100 mA current, and {approx}10 pm-rad emittance with 25 mA or less. Now a 4.5-GeV 'ultimate' storage ring having emittance similar to the ERL and operating with {approx}200 mA is under study. An overview of the progress of the PEP-X design study and SSRL's plans for defining performance parameters that will guide the choice of ring options is presented.

  6. A two-metric proposal to specify the color-rendering properties of light sources for retail lighting

    NASA Astrophysics Data System (ADS)

    Freyssinier, Jean Paul; Rea, Mark

    2010-08-01

    Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.

  7. 75 FR 4426 - Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... COMMISSION Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental... to Florida Power and Light Company (the licensee), for operation of the Turkey Point Units 3 and 4... the beltline region of the Turkey Point Units 3 and 4 reactor pressure vessels. Environmental...

  8. Eternal triangle: the interaction of light source, electrical control gear, and optics

    NASA Astrophysics Data System (ADS)

    S'heeren, Griet

    1998-04-01

    In this particular 'affair' the participants are less than human but have individual personalities they bring to their relationship with each other. High pressure metal halide lamps such as BriteArc lamps have the highest luminance and radiance of all continuously operating practical light source. Since these lamps have short arcs and are available in power ratings from about 30W to 30kW they have found applications with various optical systems. Besides the lamps, such systems include an electrical control device and an optical system. To fulfil the user's requirements for a specific application, it is not only important to choose the right lamp, but crucial to achieve a harmonious marriage between the light source, electrical control device and the optics. To run a high pressure discharge lamp an ignitor/ballast system is essential This stabilizes the lamp parameters. The chemical components inside the lamp determine the lamp voltage and the gear determines, via the current, the lamp power. These are directly related in the luminance and color temperature of the emitted light. Therefore lamp performance and effective life are dependent on the ignitor, control gear and lamp combination. Since the lamp emits radiation in all directions, collection of the light from a lamp can be improved by using reflectors to deliver the light into a lens system. Since lamps with short arc gaps approach a point source they appear ideal for optical system applications. The shape of the reflector and the focusing of the lamp determine which part of the light is collected out of the light-arc. In the case of an LCD projector, the final light output also depends on the transmission characteristics of the LCD panels. Their nonlinearity causes the color of the emitted light to be different from the lamp color. All these parameters have to be optimized to obtain the highest performance. This leads to the conclusion that a carefully matched combination of lamp, ignitor/ballast and optics

  9. Lowering IceCube's Energy Threshold for Point Source Searches in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-06-01

    Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (˜100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.

  10. Inference of Dim Gamma-Ray Point Sources Using Probabilistic Catalogues

    NASA Astrophysics Data System (ADS)

    Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.

    2016-07-01

    Poisson regression of the Fermi-LAT data in the inner Milky Way reveals an extended gamma-ray excess. The anomalous emission falls steeply away from the galactic center and has an energy spectrum that peaks at 1-2 GeV. An important question is whether the signal is coming from a collection of unresolved point sources, possibly recycled pulsars, or constitutes a truly diffuse emission component. Previous analyses have relied on non-Poissonian template fits or wavelet decomposition of the Fermi-LAT data, which find evidence for a population of dim point sources just below the 3FGL flux limit. In order to draw conclusions about a potentially dim population, we propose to sample from the catalog space of point sources, where the model dimensionality, i.e., the number of sources, is unknown. Although being a computationally expensive sampling problem, this approach allows us to infer the number, flux and radial distribution of the point sources consistent with the observed count data. Probabilistic cataloging is specifically useful in the crowded field limit, such as in the galactic disk, where the typical separation between point sources is comparable to the PSF. Using this approach, we recover the results of the deterministic Fermi-LAT 3FGL catalog, as well as sub-detection threshold information and fold the point source parameter degeneracies into the model-choice problem of whether an emission is coming from unresolved MSPs or dark matter annihilation.

  11. Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico.

    PubMed

    Sracek, Ondra; Armienta, María Aurora; Rodríguez, Ramiro; Villaseñor, Guadalupe

    2010-01-01

    There are two principal sources of arsenic in Zimapán. Point sources are linked to mining and smelting activities and especially to mine tailings. Diffuse sources are not well defined and are linked to regional flow systems in carbonate rocks. Both sources are caused by the oxidation of arsenic-rich sulfidic mineralization. Point sources are characterized by Ca-SO(4)-HCO(3) ground water type and relatively enriched values of deltaD, delta(18)O, and delta(34)S(SO(4)). Diffuse sources are characterized by Ca-Na-HCO(3) type of ground water and more depleted values of deltaD, delta(18)O, and delta(34)S(SO(4)). Values of deltaD and delta(18)O indicate similar altitude of recharge for both arsenic sources and stronger impact of evaporation for point sources in mine tailings. There are also different values of delta(34)S(SO(4)) for both sources, presumably due to different types of mineralization or isotopic zonality in deposits. In Principal Component Analysis (PCA), the principal component 1 (PC1), which describes the impact of sulfide oxidation and neutralization by the dissolution of carbonates, has higher values in samples from point sources. In spite of similar concentrations of As in ground water affected by diffuse sources and point sources (mean values 0.21 mg L(-1) and 0.31 mg L(-1), respectively, in the years from 2003 to 2008), the diffuse sources have more impact on the health of population in Zimapán. This is caused by the extraction of ground water from wells tapping regional flow system. In contrast, wells located in the proximity of mine tailings are not generally used for water supply.

  12. Time dependence of the field energy densities surrounding sources: Application to scalar mesons near point sources and to electromagnetic fields near molecules

    NASA Astrophysics Data System (ADS)

    Persico, F.; Power, E. A.

    1987-07-01

    The time dependence of the dressing-undressing process, i.e., the acquiring or losing by a source of a boson field intensity and hence of a field energy density in its neighborhood, is considered by examining some simple soluble models. First, the loss of the virtual field is followed in time when a point source is suddenly decoupled from a neutral scalar meson field. Second, an initially bare point source acquires a virtual meson cloud as the coupling is switched on. The third example is that of an initially bare molecule interacting with the vacuum of the electromagnetic field to acquire a virtual photon cloud. In all three cases the dressing-undressing is shown to take place within an expanding sphere of radius r=ct centered at the source. At each point in space the energy density tends, for large times, to that of the ground state of the total system. Differences in the time dependence of the dressing between the massive scalar field and the massless electromagnetic field are discussed. The results are also briefly discussed in the light of Feinberg's ideas on the nature of half-dressed states in quantum field theory.

  13. A guide to differences between stochastic point-source and stochastic finite-fault simulations

    USGS Publications Warehouse

    Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.

    2009-01-01

    Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control

  14. Parameterized source term in the diffusion approximation for enhanced near-field modeling of collimated light

    NASA Astrophysics Data System (ADS)

    Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan

    2016-03-01

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.

  15. Detection of point sources with spark chamber gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Mattox, J. R.

    1991-01-01

    The sensitivity of cross correlation and maximum likelihood, two methods under consideration by the EGRET team for detecting point sources, is analyzed numerically. Cross correlation is found to be 9 +/- 2 percent more sensitive than maximum likelihood.

  16. Comparison of line- and point-source releases of tracer gases

    NASA Astrophysics Data System (ADS)

    Eklund, Bart

    Field measurements were made of greenhouse gas emissions from a wastewater treatment system using open path monitoring with detection by FTIR spectroscopy. Emission rates were determined by the ratio technique using a sulfur hexafluoride tracer gas released from a line source. As a quality control check, a second tracer gas - ethylene - was released from various single point locations. This paper presents a comparison of the line-source and point-source tracer releases for approximating emissions from the area source. The two types of tracer release showed excellent agreement when both release points were two hundred meters from the FTIR beam path. Data for other release points also were comparable, once differences in vertical dispersion as a function of distance are taken into account.

  17. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger.

  18. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    NASA Astrophysics Data System (ADS)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N-log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s-1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov-Smirnov (K-S) criterion (P K-S < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (˜2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In addition

  19. Coronal X-ray sources in the Hyades: A 40 kilosecond ROSAT pointing

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.; Schmitt, Jurgen H. M. M.; Pye, John P.; Hodgkin, Simon T.; Stauffer, John R.; Simon, Theodore

    1994-01-01

    We present results of a 40 ks ROSAT pointed observation of the Hyades cluster. The limiting L(sub x) is approximately = 2 x 10(exp 27) ergs/sec at field center, increasing to approximately = 2 x 10(exp 28) ergs/sec at 40 min off-axis. This represents the most sensitive X-ray observation to date in the Hyades region. More than 30 sources have been detected in the Position Sensitive Proportional Counter (PSPC) standard processing, of which 15 are Hyades members, five are cluster candidates that are likely non-members, four are foreground or background stars, and the remainder are unidentified. One Hyad, VB 173 (= VA 276), lies in a confused region, but is detected as a distinct source in the soft band only (E approximately less than 0.5 keV). We report upper limits for four other Hyades members in our field, all M dwarfs. Of the 16 Hyades detections, two represent the optically faintest members seen to date in X-rays; VA 260 (V = 16.68) and VA 368 (V = 16.25). These are both M dwarfs of mass approximately = 0.15-0.2 solar mass and are fully convective stars according to current theory. Analysis of X-ray light curves using 1 ks bins indicates some variability in the strongest sources and a possible flare in VA 383. Two Hyades stars, VB 141 and VB 71, were also detected with the co-aligned Wide Field Camera (WFC) EUV instrument. VB 141, the second brightest X-ray source in the Hyades, remains an enigma: a rapidly rotating FO star with a fainter, long-period companion, this object has an X-ray spectrum indicative of strong coronal activity. X-ray pulse-height analysis demonstrates that coronal models with at least two temperatures are required for most of the stronger X-ray sources. The ROSAT X-ray spectra generally require higher temperatures for the hotter component in the M dwarfs compared to the F-G dwarfs.

  20. Control system features of the argonne 6 GeV synchrotron light source

    SciTech Connect

    Knott, M.; Gunderson, G.; Lenkszus, F.; McDowell, W.

    1985-10-01

    The Argonne 6 GeV synchrotron light source design consists of an electron/positron linac, a fast-cycling 6 GeV synchrotron, and the storage ring itself. The design attributes are presented elsewhere in this conference. Three aspects of the overall design call for special attention in the control system design: First, the operation of a high energy positron accelerator in a fast cycling mode may demand high processing performance and high data throughput rates. Second, the high energy and small beam size projected (100 x 200 microns) will call for high resolution data processing and control precision in many areas. Finally, the necessity to provide independent, orthogonal control for each of up to 32 insertion device light beams both from the point of view of the experimental requirements and from the need to remove the effects of component vibration will require dedicated, high performance processors.

  1. Complex source point theory of paraxial and nonparaxial cosine-Gauss and Bessel-Gauss beams.

    PubMed

    Sheppard, Colin J R

    2013-02-15

    It shown how cosine-Gauss and Bessel-Gauss beams can be generated using the complex source point theory. Paraxial beams are treated first. An analytic expression is derived for the nonparaxial cosine-Gaussian beam, based on the complex source point approach, and numerical results are presented to illustrate its behavior. A way to generate nonparaxial Bessel-Gauss beams is also indicated.

  2. Variable light source with a million-to-one intensity ratio

    NASA Technical Reports Server (NTRS)

    Snow, W. B.

    1964-01-01

    A wide range, variable intensity light source of constant color characteristics has been developed for testing and calibrating photomultiplier tubes. A light attenuator first diffuses light from a constant source, then permits variable attenuation through a series of chambers and adjustable apertures.

  3. The Development of the Linac Coherent Light Source RF Gun

    SciTech Connect

    Dowell, David H.; Jongewaard, Erik; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling; /SLAC

    2008-09-24

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of

  4. [Study on water quality monitoring scheme based on non-point source pollution].

    PubMed

    Wu, Xi-Jun; Li, Huai-En; Li, Jia-Ke; Li, Qiang-Kun; Dong, Wen

    2013-06-01

    In order to improve standardization and normalization of non-point source pollution monitoring, this paper summarized the non-point source pollution monitoring scheme that based on conventional technology condition. The scheme firstly emphasized the preparation work before monitoring, including situation investigation and index selection of the monitoring area and so on; In the process of establishing monitoring scheme, the monitoring area was divided into three types: city, agriculture and watershed. Take urban area monitoring scheme for Xi'an as an example, through dividing function zone setting sampling point, summarized sampling time interval, frequency and sampling methods during a rainfall process. An irrigation district was an example for agricultural monitoring scheme, through unit division, setting sampling point at the approach channel and drain channel, introduced sampling times, interval time and so on in the process of irrigation. Watershed monitoring scheme's example was the Weihe GuanZhong section, raised the setting principle of each sample section, and analyzed each section's sampling law in the process of rainfall. Finally the principal character of different non-point source pollution monitoring areas was discussed, and concluded that non-point source pollution monitoring scheme is the base of non-point source pollution study and control.

  5. Mapping correlation of a simulated dark matter source and a point source in the gamma-ray sky - Oral Presentation

    SciTech Connect

    Gibson, Alexander

    2015-08-23

    In my research, I analyzed how two gamma-ray source models interact with one another when optimizing to fit data. This is important because it becomes hard to distinguish between the two point sources when they are close together or looking at low energy photons. The reason for the first is obvious, the reason why they become harder to distinguish at lower photon energies is the resolving power of the Fermi Gamma-Ray Space Telescope gets worse at lower energies. When the two point sources are highly correlated (hard to distinguish between), we need to change our method of statistical analysis. What I did was show that highly correlated sources have larger uncertainties associated with them, caused by an optimizer not knowing which point source’s parameters to optimize. I also mapped out where their is high correlation for 2 different theoretical mass dark matter point sources so that people analyzing them in the future knew where they had to use more sophisticated statistical analysis.

  6. Transverse Anderson localization of light near Dirac points of photonic nanostructures.

    PubMed

    Deng, Hanying; Chen, Xianfeng; Malomed, Boris A; Panoiu, Nicolae C; Ye, Fangwei

    2015-10-26

    We perform a comparative study of the Anderson localization of light beams in disordered layered photonic nanostructures that, in the limit of periodic layer distribution, possess either a Dirac point or a Bragg gap in the spectrum of the wavevectors. In particular, we demonstrate that the localization length of the Anderson modes increases when the width of the Bragg gap decreases, such that in the vanishingly small bandgap limit, namely when a Dirac point is formed, even extremely high levels of disorder are unable to localize the optical modes residing near the Dirac point. A comparative analysis of the key features of the propagation of Anderson modes formed in the Bragg gap or near the Dirac point is also presented. Our findings could provide valuable guidelines in assessing the influence of structural disorder on the functionality of a broad array of optical nanodevices.

  7. Transverse Anderson localization of light near Dirac points of photonic nanostructures

    PubMed Central

    Deng, Hanying; Chen, Xianfeng; Malomed, Boris A.; Panoiu, Nicolae C.; Ye, Fangwei

    2015-01-01

    We perform a comparative study of the Anderson localization of light beams in disordered layered photonic nanostructures that, in the limit of periodic layer distribution, possess either a Dirac point or a Bragg gap in the spectrum of the wavevectors. In particular, we demonstrate that the localization length of the Anderson modes increases when the width of the Bragg gap decreases, such that in the vanishingly small bandgap limit, namely when a Dirac point is formed, even extremely high levels of disorder are unable to localize the optical modes residing near the Dirac point. A comparative analysis of the key features of the propagation of Anderson modes formed in the Bragg gap or near the Dirac point is also presented. Our findings could provide valuable guidelines in assessing the influence of structural disorder on the functionality of a broad array of optical nanodevices. PMID:26498634

  8. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  9. Status of the BATSE Enhanced Earth Occultation Analysis Package for Studying Point Sources

    NASA Technical Reports Server (NTRS)

    Skelton, R. T.; Ling, J. C.; Radocinski, R.; Wheaton, Wm. A.

    1993-01-01

    The compton Gama-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25keV--2MeV range of cosmic point sources using occultation by the Earth.

  10. Diffuse and point sources of silica in the Seine River watershed.

    PubMed

    Sferratore, Agata; Garnier, Josette; Billen, Gilles; Conley, Daniel I; Pinault, Séverine

    2006-11-01

    Dissolved silica (DSi) is believed to enter aquatic ecosystems primarily through diffuse sources by weathering. Point sources have generally been considered negligible, although recent reports of DSi inputs from domestic and industrial sources suggest otherwise. In addition, particulate amorphous silica (ASi) inputs from terrestrial ecosystems during soil erosion and in vegetation can dissolve and also be a significant source of DSi. We quantify here both point and diffuse sources of DSi and particulate ASi to the Seine River watershed. The total per capita point source inputs of Si (DSi + ASi) were found to be 1.0 and 0.8 g Si inhabitant(-1) d(-1) in raw and treated waters of the Achères wastewater treatment plant, in agreement with calculations based on average food intake and silica-containing washing products consumption. A mass balance of Si inputs and outputs for the Seine drainage network was established for wet and dry hydrological conditions (2001 and 2003, respectively). Diffuse sources of Si are of 1775 kg Si km(-2) y(-1) in wet conditions and 762 kg Si km(-2) y(-1) in dry conditions, with the proportion of ASi around 6%. Point sources of Si from urban discharge can contribute to more than 8% of the total Si inputs at the basin scale in hydrologically dry years. An in-stream retention of 6% of total inputs in dry conditions and 12% in wet conditions is inferred from the budget.

  11. Use of an alternative light source to assess strangulation victims.

    PubMed

    Holbrook, Debra S; Jackson, M Christine

    2013-01-01

    Alternative light sources (ALSs) are commonly used at crime scenes and in forensic laboratories to collect evidence such as latent fingerprints, body fluids, hair, and fibers. This article describes the use of this technology to reveal soft tissue injuries that are not visible to the naked or unaided eye in patients who report strangulation. The value of this information to the medical, nursing, and judicial systems is discussed. The records of the 172 strangulation patients seen in our forensic nurse examiner program between 2009 and 2010 were reviewed. The SPEX Crimescope (SPEX Forensics, Edison, New Jersey) was used during the assessment of all of them. Ninety-three percent of the patients had no visible evidence of external injuries on physical examination. The ALS revealed positive findings of intradermal injuries in 98% of that group. Information obtained with ALS devices helps medical and nursing practitioners understand the gravity of patients' injuries, influences medical treatment decisions and follow-up care, and supports the prosecution of the perpetrators of crimes of violence. Educational programs about the application of ALS and the interpretation of its findings are valuable for medical, nursing, and other forensic disciplines.

  12. Single-layer mirrors for advanced research light sources

    NASA Astrophysics Data System (ADS)

    Störmer, M.; Horstmann, C.; Siewert, F.; Scholze, F.; Krumrey, M.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-01

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  13. Single-layer mirrors for advanced research light sources

    SciTech Connect

    Stoermer, M.; Horstmann, C.; Siewert, F.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-23

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  14. Handling high data rate detectors at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Pedersen, U. K.; Rees, N.; Basham, M.; Ferner, F. J. K.

    2013-03-01

    An increasing number of area detectors, in use at Diamond Light Source, produce high rates of data. In order to capture, store and process this data High Performance Computing (HPC) systems have been implemented. This paper will present the architecture and usage for handling high rate data: detector data capture, large volume storage and parallel processing. The EPICS area Detector frame work has been adopted to abstract the detectors for common tasks including live processing, file format and storage. The chosen data format is HDF5 which provides multidimensional data storage and NeXuS compatibility. The storage system and related computing infrastructure include: a centralised Lustre based parallel file system, a dedicated network and a HPC cluster. A well defined roadmap is in place for the evolution of this to meet demand as the requirements and technology advances. For processing the science data the HPC cluster allow efficient parallel computing, on a mixture of ×86 and GPU processing units. The nature of the Lustre storage system in combination with the parallel HDF5 library allow efficient disk I/O during computation jobs. Software developments, which include utilising optimised parallel file reading for a variety of post processing techniques, are being developed in collaboration as part of the Pan-Data EU Project (www.pan-data.eu). These are particularly applicable to tomographic reconstruction and processing of non crystalline diffraction data.

  15. Water cooled metal optics for the Advanced Light Source

    SciTech Connect

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-10-28

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

  16. SESAME, a Synchrotron Light Source for the Middle East Region

    SciTech Connect

    Einfeld, D.; Sarraf, R.H.; Attal, M.; Tavakoli, K.; Hashemi, H.; Hassanzadegan, H.; Elsisi, A.; Amro, A.; Foudeh, D.; Kalantari, B.; Aladwan, A.; Varnasery, S.; Al-Dmour, E.; Tarawneh, H.

    2003-08-26

    Developed under the auspices of UNESCO, SESAME (Synchrotron light for Experimental Science and Application in the Middle East) will be a major international research centre in the Middle East / Mediterranean region. Most of the applications require hard x-rays up to 20 keV photons. SESAME will be a 2GeV 3rd Generation Ligth Source with an emittance of 17 nmrad and 13 places for the installation of insertion devices with a length around 3 meter. The circumference of the machine will be 120m. As injector the 800 MeVBooster Synchrotron will be used with small changes. Furthermore also the BESSY I quadrupoles and sextupoles can be used. In a later stage these new ones will be replaced in order to increase the length of the straight sections and to introduce mini beta sections for the reduction of the beam cross section. At SESAME around 35 % of the circumference can be used for the installation of insertion devices.

  17. Beam-based Feedback for the Linac Coherent Light Source

    SciTech Connect

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  18. New Large Volume Press Beamlines at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Hormes, J.; Lauterjung, J.; Secco, R.; Hallin, E.

    2013-12-01

    The Canadian Light Source, the German Research Centre for Geosciences and the Western University recently agreed to establish two new large volume press beamlines at the Canadian Lightsource. As the first step a 250 tons DIA-LVP will be installed at the IDEAS beamline in 2014. The further development is associated with the construction of a superconducting wiggler beamline at the Brockhouse sector. A 1750 tons DIA LVP will be installed there about 2 years later. Up to the completion of this wiggler beamline the big press will be used for offline high pressure high temperature experiments under simulated Earth's mantle conditions. In addition to X-ray diffraction, all up-to-date high pressure techniques as ultrasonic interferometry, deformation analyses by X-radiography, X-ray densitometry, falling sphere viscosimetry, multi-staging etc. will be available at both beamlines. After the required commissioning the beamlines will be open to the worldwide user community from Geosciences, general material sciences, physics, chemistry, biology etc. based on the evaluation and ranking of the submitted user proposals by an international review panel.

  19. Ozone production at the National Synchrotron Light Source

    SciTech Connect

    Weilandics, C.; Rohrig, N.; Gmur, N.F.

    1987-01-01

    Ozone production by synchrotron radiation as a function of power density in air was investigated using a white beam at the BNL National Synchrotron Light Source (NSLS) x-ray ring. Power densities were calculated from the energy spectrum at 2.52 GeV. Ozone concentrations in small beam pipes were measured for power densities between I = 10/sup 12/ and 10/sup 15/ eV . cm/sup -3/ . sec/sup -1/. The measured ozone half-life was 37 +- 2 min. The measured G-value was 2.69 +- 0.14 mol/100 eV and the ozone destruction factor k was less than 7 x 10/sup -19/ cm/sup 3/ . eV/sup -1/. The random uncertainties stated are approximately one standard error. The large departure of the values for G and k from previous values suggest that some undiscovered systematic error may exist in the experiment. Ozone concentration in excess of the 0.1 ppM ACGIH TLV can be generated in the experimental hutches but can readily be controlled. Industrial hygiene aspects of operation and possible control measures will be discussed. 19 refs., 7 figs., 3 tabs.

  20. Biological infrared microspectroscopy at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-06-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c.