Sample records for point mutation analysis

  1. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  2. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.

    PubMed

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  3. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  4. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    PubMed

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  5. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  6. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    PubMed Central

    Churkin, Alexander; Barash, Danny

    2008-01-01

    Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289

  7. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  9. Automatic extraction of protein point mutations using a graph bigram association.

    PubMed

    Lee, Lawrence C; Horn, Florence; Cohen, Fred E

    2007-02-02

    Protein point mutations are an essential component of the evolutionary and experimental analysis of protein structure and function. While many manually curated databases attempt to index point mutations, most experimentally generated point mutations and the biological impacts of the changes are described in the peer-reviewed published literature. We describe an application, Mutation GraB (Graph Bigram), that identifies, extracts, and verifies point mutations from biomedical literature. The principal problem of point mutation extraction is to link the point mutation with its associated protein and organism of origin. Our algorithm uses a graph-based bigram traversal to identify these relevant associations and exploits the Swiss-Prot protein database to verify this information. The graph bigram method is different from other models for point mutation extraction in that it incorporates frequency and positional data of all terms in an article to drive the point mutation-protein association. Our method was tested on 589 articles describing point mutations from the G protein-coupled receptor (GPCR), tyrosine kinase, and ion channel protein families. We evaluated our graph bigram metric against a word-proximity metric for term association on datasets of full-text literature in these three different protein families. Our testing shows that the graph bigram metric achieves a higher F-measure for the GPCRs (0.79 versus 0.76), protein tyrosine kinases (0.72 versus 0.69), and ion channel transporters (0.76 versus 0.74). Importantly, in situations where more than one protein can be assigned to a point mutation and disambiguation is required, the graph bigram metric achieves a precision of 0.84 compared with the word distance metric precision of 0.73. We believe the graph bigram search metric to be a significant improvement over previous search metrics for point mutation extraction and to be applicable to text-mining application requiring the association of words.

  10. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  11. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  12. A high proportion of ADA point mutations associated with a specific alanine-to-valine substitution.

    PubMed

    Markert, M L; Norby-Slycord, C; Ward, F E

    1989-09-01

    In 15%-20% of children with severe combined immunodeficiency (SCID), the underlying defect is adenosine deaminase (ADA) deficiency. The overall goal of our research has been to identify the precise molecular defects in patients with ADA-deficient SCID. In this study, we focused on a patient whom we found to have normal sized ADA mRNA by Northern analysis and an intact ADA structural gene by Southern analysis. By cloning and sequencing this patient's ADA cDNA, we found a C-to-T point mutation in exon 11. This resulted in the amino acid substitution of a valine for an alanine at position 329 of the ADA protein. Sequence analysis revealed that this mutation created a new BalI restriction site. Using Southern analyses, we were able to directly screen individuals to determine the frequency of this mutation. By combining data on eight families followed at our institution with data on five other families reported in the literature, we established that five of 13 patients (seven of 22 alleles) with known or suspected point mutations have this defect. This mutation was found to be associated with three different ADA haplotypes. This argues against a founder effect and suggests that the mutation is very old. In summary, a conservative amino acid substitution is found in a high proportion of patients with ADA deficiency; this can easily be detected by Southern analysis.

  13. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma.

    PubMed

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-10-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.

  14. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma

    PubMed Central

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-01-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637

  15. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with I-131 radiation dose and other characteristics

    PubMed Central

    Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.

    2012-01-01

    Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219

  16. Change of point mutations in Helicobacter pylori rRNA associated with clarithromycin resistance in Italy.

    PubMed

    De Francesco, Vincenzo; Zullo, Angelo; Giorgio, Floriana; Saracino, Ilaria; Zaccaro, Cristina; Hassan, Cesare; Ierardi, Enzo; Di Leo, Alfredo; Fiorini, Giulia; Castelli, Valentina; Lo Re, Giovanna; Vaira, Dino

    2014-03-01

    Primary clarithromycin resistance is the main factor affecting the efficacy of Helicobacter pylori therapy. This study aimed: (i) to assess the concordance between phenotypic (culture) and genotypic (real-time PCR) tests in resistant strains; (ii) to search, in the case of disagreement between the methods, for point mutations other than those reported as the most frequent in Europe; and (iii) to compare the MICs associated with the single point mutations. In order to perform real-time PCR, we retrieved biopsies from patients in whom H. pylori infection was successful diagnosed by bacterial culture and clarithromycin resistance was assessed using the Etest. Only patients who had never been previously treated, and with H. pylori strains that were either resistant exclusively to clarithromycin or without any resistance, were included. Biopsies from 82 infected patients were analysed, including 42 strains that were clarithromycin resistant and 40 that were clarithromycin susceptible on culture. On genotypic analysis, at least one of the three most frequently reported point mutations (A2142C, A2142G and A2143G) was detected in only 23 cases (54.8%), with a concordance between the two methods of 0.67. Novel point mutations (A2115G, G2141A and A2144T) were detected in a further 14 out of 19 discordant cases, increasing the resistance detection rate of PCR to 88% (P<0.001; odds ratio 6.1, 95% confidence interval 2-18.6) and the concordance to 0.81. No significant differences in MIC values among different point mutations were observed. This study suggests that: (i) the prevalence of the usually reported point mutations may be decreasing, with a concomitant emergence of new mutations; (ii) PCR-based methods should search for at least six point mutations to achieve good accuracy in detecting clarithromycin resistance; and (iii) none of the tested point mutations is associated with significantly higher MIC values than the others.

  17. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study.

    PubMed

    Familiades, J; Bousquet, M; Lafage-Pochitaloff, M; Béné, M-C; Beldjord, K; De Vos, J; Dastugue, N; Coyaud, E; Struski, S; Quelen, C; Prade-Houdellier, N; Dobbelstein, S; Cayuela, J-M; Soulier, J; Grardel, N; Preudhomme, C; Cavé, H; Blanchet, O; Lhéritier, V; Delannoy, A; Chalandon, Y; Ifrah, N; Pigneux, A; Brousset, P; Macintyre, E A; Huguet, F; Dombret, H; Broccardo, C; Delabesse, E

    2009-11-01

    Adult and child B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) differ in terms of incidence and prognosis. These disparities are mainly due to the molecular abnormalities associated with these two clinical entities. A genome-wide analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box domain 5) is the main target of somatic mutations in childhood BCP-ALL being altered in 38.9% of the cases. We report here the most extensive analysis of alterations of PAX5 coding sequence in 117 adult BCP-ALL patients in the unique clinical protocol GRAALL-2003/GRAAPH-2003. Our study demonstrates that PAX5 is mutated in 34% of adult BCP-ALL, mutations being partial or complete deletion, partial or complete amplification, point mutation or fusion gene. PAX5 alterations are heterogeneous consisting in complete loss in 17%, focal deletions in 10%, point mutations in 7% and translocations in 1% of the cases. PAX5 complete loss and PAX5 point mutations differ. PAX5 complete loss seems to be a secondary event and is significantly associated with BCR-ABL1 or TCF3-PBX1 fusion genes and a lower white blood cell count.

  18. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    PubMed

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  19. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation.

    PubMed

    Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K

    2000-05-01

    We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.

  20. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    PubMed

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  1. Multiple Origins of a Mitochondrial Mutation Conferring Deafness

    PubMed Central

    Hutchin, T. P.; Cortopassi, G. A.

    1997-01-01

    A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation. PMID:9055086

  2. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics.

    PubMed

    Leeman-Neill, Rebecca J; Brenner, Alina V; Little, Mark P; Bogdanova, Tetiana I; Hatch, Maureen; Zurnadzy, Liudmyla Y; Mabuchi, Kiyohiko; Tronko, Mykola D; Nikiforov, Yuri E

    2013-05-15

    Childhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Mutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored. RET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex. These results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. Copyright © 2013 American Cancer Society.

  3. Pairwise contact energy statistical potentials can help to find probability of point mutations.

    PubMed

    Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S

    2017-01-01

    To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care

    PubMed Central

    Rennert, Hanna; Eng, Kenneth; Zhang, Tuo; Tan, Adrian; Xiang, Jenny; Romanel, Alessandro; Kim, Robert; Tam, Wayne; Liu, Yen-Chun; Bhinder, Bhavneet; Cyrta, Joanna; Beltran, Himisha; Robinson, Brian; Mosquera, Juan Miguel; Fernandes, Helen; Demichelis, Francesca; Sboner, Andrea; Kluk, Michael; Rubin, Mark A; Elemento, Olivier

    2016-01-01

    We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care. PMID:28781886

  5. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    PubMed

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  6. [Analysis of prevalence of point mutations in codon 12 of oncogene K-ras from non-cancerous samples of cervical cytology positive for type 16 or 18 PVH].

    PubMed

    Golijow, C D; Mourón, S A; Gómez, M A; Dulout, F N

    1999-12-01

    Ninety-one non cancerous samples from genital specimens positives for VPH 16 or 18 and 27 non-infected samples as controls were studied. Mutations at codon 12 in K-ras gene was analyzed using enriched alelic PCR technique. Among the samples studied 17.58% showed mutations in this codon. Significant differences were observed between the control group (negative DNA-HPV) and positives DNA-HPV samples (p < 0.01). No differences were found between both viral types in relation to the mutation frequency. The presence of mutations in the K-ras gene in non cancerous cytological samples point out new questions about the role of mutations in proto-oncogenes and the development of cervical cancer.

  7. A novel mutation of PAX3 in a Chinese family with Waardenburg syndrome.

    PubMed

    Qin, Wei; Shu, Anli; Qian, Xueqing; Gao, Jianjun; Xing, Qinghe; Zhang, Juan; Zheng, Yonglan; Li, Xingwang; Li, Sheng; Feng, Guoyin; He, Lin

    2006-08-28

    The molecular characterization of 34 members of a Chinese family, with 22 members in four generations, affected with Waardenburg syndrome (WS1). A detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with haplotype analysis was performed. Mutation screening was carried out in the candidate gene by sequencing of amplified products. A maximum two-point lod score of 6.53 at theta = 0.00 was obtained with marker D2S2248. Haplotype analysis placed the WS1 locus to a 45.74 cM region between D2S117 and D2S206, in close proximity to the PAX3 gene on chromosome 2q35. Mutation screening in PAX3 identified a 701T > C mutation which converted a highly conserved Leu to Pro. This nucleotide alteration was neither seen in unaffected members of the family nor found in 50 unrelated control subjects. The present study identified a novel 701T > C mutation in PAX3. The mutation observed in this family highlights the phenotypic heterogeneity of the disorder.

  8. A Targeted Q-PCR-Based Method for Point Mutation Testing by Analyzing Circulating DNA for Cancer Management Care.

    PubMed

    Thierry, Alain R

    2016-01-01

    Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex(®) and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex(®) has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex(®) test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex(®) is limited to the mutational status of known hotspot mutation; it is a "targeted approach." However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.

  9. Random oligonucleotide mutagenesis: application to a large protein coding sequence of a major histocompatibility complex class I gene, H-2DP.

    PubMed Central

    Murray, R; Pederson, K; Prosser, H; Muller, D; Hutchison, C A; Frelinger, J A

    1988-01-01

    We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells. Images PMID:2903482

  10. Influence of the R823W mutation on the interaction of the ANKS6-ANKS3: insights from molecular dynamics simulation and free energy analysis.

    PubMed

    Kan, Wei; Fang, Fengqin; Chen, Lin; Wang, Ruige; Deng, Qigang

    2016-05-01

    The sterile alpha motif (SAM) domain of the protein ANKS6, a protein-protein interaction domain, is responsible for autosomal dominant polycystic kidney disease. Although the disease is the result of the R823W point mutation in the SAM domain of the protein ANKS6, the molecular details are still unclear. We applied molecular dynamics simulations, the principal component analysis, and the molecular mechanics Poisson-Boltzmann surface area binding free energy calculation to explore the structural and dynamic effects of the R823W point mutation on the complex ANKS6-ANKS3 (PDB ID: 4NL9) in comparison to the wild proteins. The energetic analysis presents that the wild type has a more stable structure than the mutant. The R823W point mutation not only disrupts the structure of the ANKS6 SAM domain but also negatively affects the interaction of the ANKS6-ANKS3. These results further clarify the previous experiments to understand the ANKS6-ANKS3 interaction comprehensively. In summary, this study would provide useful suggestions to understand the interaction of these proteins and their fatal action on mediating kidney function.

  11. Structure-functional prediction and analysis of cancer mutation effects in protein kinases.

    PubMed

    Dixit, Anshuman; Verkhivker, Gennady M

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal "low" activity state to the "active" state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.

  12. Development of a practical NF1 genetic testing method through the pilot analysis of five Japanese families with neurofibromatosis type 1.

    PubMed

    Okumura, Akiko; Ozaki, Mamoru; Niida, Yo

    2015-08-01

    Mutation analysis of NF1, the responsible gene for neurofibromatosis type 1 (NF1), is still difficult due to its large size, lack of mutational hotspots, the presence of many pseudogenes, and its wide spectrum of mutations. To develop a simple and inexpensive NF1 genetic testing for clinical use, we analyzed five Japanese families with NF1 as a pilot study. Our original method, CEL endonuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) was optimized for NF1 mutation screening, and reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the effect of transcription. Also, we employed DNA microarray analysis to evaluate the break points of the large deletion. A new nonsense mutation, p.Gln209(∗), was detected in family 1 and the splicing donor site mutation, c.2850+1G>T, was detected in family 2. In family 3, c.4402A>G was detected in exon 34 and the p.Ser1468Gly missense mutation was predicted. However mRNA analysis revealed that this substitution created an aberrant splicing acceptor site, thereby causing the p.Phe1457(∗) nonsense mutation. In the other two families, type-1 and unique NF1 microdeletions were detected by DNA microarray analysis. Our results show that the combination of CHIPS and RT-PCR effectively screen and characterize NF1 point mutations, and both DNA and RNA level analysis are required to understand the nature of the NF1 mutation. Our results also suggest the possibility of a higher incidence and unique profile of NF1 large deletions in the Japanese population as compared to previous studies performed in Europe. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Zinc finger point mutations within the WT1 gene in Wilms tumor patients.

    PubMed Central

    Little, M H; Prosser, J; Condie, A; Smith, P J; Van Heyningen, V; Hastie, N D

    1992-01-01

    A proposed Wilms tumor gene, WT1, which encodes a zinc finger protein, has previously been isolated from human chromosome 11p13. Chemical mismatch cleavage analysis was used to identify point mutations in the zinc finger region of this gene in a series of 32 Wilms tumors. Two exonic single base changes were detected. In zinc finger 3 of a bilateral Wilms tumor patient, a constitutional de novo C----T base change was found changing an arginine to a stop codon. One tumor from this patient showed allele loss leading to 11p hemizygosity of the abnormal allele. In zinc finger 2 of a sporadic Wilms tumor patient, a C----T base change resulted in an arginine to cysteine amino acid change. To our knowledge, a WT1 gene missense mutation has not been detected previously in a Wilms tumor. By comparison with a recent NMR and x-ray crystallographic analysis of an analogous zinc finger gene, early growth response gene 1 (EGR1), this amino acid change in WT1 occurs at a residue predicted to be critical for DNA binding capacity and site specificity. The detection of one nonsense point mutation and one missense WT1 gene point mutation adds to the accumulating evidence implicating this gene in a proportion of Wilms tumor patients. Images PMID:1317572

  14. Mutation testing in Treacher Collins Syndrome.

    PubMed

    Ellis, P E; Dawson, M; Dixon, M J

    2002-12-01

    To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.

  15. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  16. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    PubMed Central

    Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676

  17. Late-onset nonketotic hyperglycinemia with a heterozygous novel point mutation of the GLDC gene.

    PubMed

    Brenton, J Nicholas; Rust, Robert S

    2014-05-01

    Atypical nonketotic hyperglycinemia is characterized by heterogeneous phenotypes that often include nonspecific behavioral problems, cognitive deficits, and developmental delays. We describe a girl with late-onset nonketotic hyperglycinemia presenting at 5 years of age with hypotonia, chorea, ataxia, and alterations in consciousness in the setting of febrile illness. Serum amino acid analysis was mildly elevated; however, urine amino acid analysis was instrumental in demonstrating marked hyperglycinuria. Mutation testing showed a heterozygous novel sequence change/point mutation in the glycine decarboxylase gene. This patient illustrates the importance of obtaining urine amino acids in individuals whose clinical manifestations are suspicious for any form of nonketotic hyperglycinemia, because this testing may provide more prominent evidence of elevations in glycine. She also illustrates the potential for a heterozygous mutation to result in manifestations of an atypical form of nonketotic hyperglycinemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.

    PubMed

    Mutero, A; Pralavorio, M; Bride, J M; Fournier, D

    1994-06-21

    Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures.

  19. Establishing high resolution melting analysis: method validation and evaluation for c-RET proto-oncogene mutation screening.

    PubMed

    Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina

    2011-10-06

    Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.

  20. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding.

    PubMed

    Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar

    2016-11-01

    Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.

  1. Molecular basis for the Kallmann syndrome-linked fibroblast growth factor receptor mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman, Ryan D.; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy

    Highlights: Black-Right-Pointing-Pointer The structural basis of the Kallmann syndrome is elucidated. Black-Right-Pointing-Pointer Kallmann syndrome mutation (A168S) induces a subtle conformational change(s). Black-Right-Pointing-Pointer Structural interactions mediated by beta-sheet G are most perturbed. Black-Right-Pointing-Pointer Ligand (FGF)-receptor interaction(s) is completely abolished by Kallmann mutation. Black-Right-Pointing-Pointer Kallmann mutation directly affects the FGF signaling process. -- Abstract: Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associatedmore » KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. {sup 1}H-{sup 15}N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.« less

  2. Detection of KRAS G12D in colorectal cancer stool by droplet digital PCR

    PubMed Central

    Olmedillas-López, Susana; Lévano-Linares, Dennis César; Alexandre, Carmen Laura Aúz; Vega-Clemente, Luz; Sánchez, Edurne León; Villagrasa, Alejandro; Ruíz-Tovar, Jaime; García-Arranz, Mariano; García-Olmo, Damián

    2017-01-01

    AIM To assess KRAS G12D mutation detection by droplet digital PCR (ddPCR) in stool-derived DNA from colorectal cancer (CRC) patients. METHODS In this study, tumor tissue and stool samples were collected from 70 patients with stage I-IV CRC diagnosed by preoperative biopsy. KRAS mutational status was determined by pyrosequencing analysis of DNA obtained from formalin-fixed paraffin-embedded (FFPE) tumor tissues. The KRAS G12D mutation was then analyzed by ddPCR in FFPE tumors and stool-derived DNA from patients with this point mutation. Wild-type (WT) tumors, as determined by pyrosequencing, were included as controls; analysis of FFPE tissue and stool-derived DNA by ddPCR was performed for these patients as well. RESULTS Among the total 70 patients included, KRAS mutations were detected by pyrosequencing in 32 (45.71%), whereas 38 (54.29%) had WT tumors. The frequency of KRAS mutations was higher in left-sided tumors (11 located in the right colon, 15 in the left, and 6 in the rectum). The predominant point mutation was KRAS G12D (14.29%, n = 10), which was more frequent in early-stage tumors (I-IIA, n = 7). In agreement with pyrosequencing results, the KRAS G12D mutation was detected by ddPCR in FFPE tumor-derived DNA, and only a residual number of mutated copies was found in WT controls. The KRAS G12D mutation was also detected in stool-derived DNA in 80% of all fecal samples from CRC patients with this point mutation. CONCLUSION ddPCR is a reliable and sensitive method to analyze KRAS G12D mutation in stool-derived DNA from CRC patients, especially at early stages. This non-invasive approach is potentially applicable to other relevant biomarkers for CRC management. PMID:29093617

  3. Structure-Functional Prediction and Analysis of Cancer Mutation Effects in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes. PMID:24817905

  4. SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability.

    PubMed

    Jorge, Alexander A L; Souza, Silvia C; Nishi, Miriam Y; Billerbeck, Ana E; Libório, Débora C C; Kim, Chong A; Arnhold, Ivo J P; Mendonca, Berenice B

    2007-01-01

    The frequency of SHOX mutations in children with idiopathic short stature (ISS) has been found to be variable. We analysed the SHOX gene in children with ISS and Leri-Weill dyschondrosteosis (LWD) and evaluated the phenotypic variability in patients harbouring SHOX mutations. Sixty-three ISS, nine LWD children and 21 affected relatives. SHOX gene deletion was evaluated by fluorescence in situ hybridization (FISH), Southern blotting and segregation study of polymorphic marker. Point mutations were assessed by direct DNA sequencing. None of the ISS patients presented SHOX deletions, but two (3.2%) presented heterozygous point mutations, including the novel R147H mutation. However, when ISS patients were selected by sitting height : height ratio (SH/H) for age > 2 SD, mutation frequency detection increased to 22%. Eight (89%) LWD patients had SHOX deletions, but none had point mutations. Analysis of the other relatives in the families carrying SHOX mutations identified 14 children and 17 adult patients. A broad phenotypic variability was observed in all families regarding short stature severity and Madelung deformities. However, the presence of disproportional height, assessed by SH/H, was observed in all children and 82% of adult patients, being the most common feature in our patients with SHOX mutations. Patients with SHOX mutations present a broad phenotypic variability. SHOX mutations are very frequent in LWD (89%), in opposition to ISS (3.2%) in our cohort. The use of SH/H SDS as a selection criterion increases the frequency of SHOX mutation detection to 22% and should be used for selecting ISS children to undergo SHOX mutation molecular studies.

  5. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    NASA Astrophysics Data System (ADS)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  6. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms.

    PubMed

    Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.

  7. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione.

    PubMed

    Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M

    2014-04-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.

  8. CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma

    PubMed Central

    Trøen, Gunhild; Warsame, Abdirashid; Delabie, Jan

    2013-01-01

    The mutation status of genes involved in the NF-κB signaling pathway in splenic marginal zone lymphoma was examined. DNA sequence analysis of four genes was performed: CD79A, CD79B, CARD11, and MYD88 that are activated through BCR signaling or Toll-like and interleukin signaling. A single point mutation was detected in the CD79B gene (Y196H) in one of ten SMZL cases. Additionally, one point mutation was identified in the MYD88 gene (L265P) in another SMZL case. No mutations were revealed in CD79A or CARD11 genes in these SMZL cases. Neither were mutations detected in these four genes studied in 13 control MZL samples. Interestingly, the two cases with mutations of CD79B and MYD88 showed increased numbers of immunoblasts spread among the smaller and typical marginal zone lymphoma cells. Although SMZL shows few mutations of NF-κB signaling genes, our results indicate that the presence of these mutations is associated with a higher histological grade. PMID:23378931

  9. High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand.

    PubMed

    Charoenkwan, Pimlak; Sirichotiyakul, Supatra; Phusua, Arunee; Suanta, Sudjai; Fanhchaksai, Kanda; Sae-Tung, Rattika; Sanguansermsri, Torpong

    2017-12-01

    High-resolution melting (HRM) analysis is a rapid mutation analysis which assesses the pattern of reduction of fluorescence signal after subjecting the amplified PCR product with saturated fluorescence dye to an increasing temperature. We used HRM analysis for prenatal diagnosis of beta-thalassemia disease in northern Thailand. Five PCR-HRM protocols were used to detect point mutations in five different segments of the beta-globin gene, and one protocol to detect the 3.4 kb beta-globin deletion. We sought to characterize the mutations in carriers and to enable prenatal diagnosis in 126 couples at risk of having a fetus with beta-thalassemia disease. The protocols identified 18 common mutations causing beta-thalassemia, including the rare codon 132 (A-T) mutation. Each mutation showed a specific HRM pattern and all results were in concordance with those from direct DNA sequencing or gap-PCR methods. In cases of beta-thalassemia disease resulting from homozygosity for a mutation or compound heterozygosity for two mutations on the same amplified segment, the HRM patterns were different to those of a single mutation and were specific for each combination. HRM analysis is a simple and useful method for mutation identification in beta-thalassemia carriers and prenatal diagnosis of beta-thalassemia in northern Thailand.

  10. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.

    PubMed Central

    Mutero, A; Pralavorio, M; Bride, J M; Fournier, D

    1994-01-01

    Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures. Images PMID:8016090

  11. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  12. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  13. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  14. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressivemore » visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.« less

  15. Analysis of Clinical Isolates of Helicobacter pylori in Pakistan Reveals High Degrees of Pathogenicity and High Frequencies of Antibiotic Resistance

    PubMed Central

    Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark

    2014-01-01

    Background Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. Methods The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. Results A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3′ region of cagA throughout the tree. Conclusions We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. PMID:24827414

  16. Analysis of clinical isolates of Helicobacter pylori in Pakistan reveals high degrees of pathogenicity and high frequencies of antibiotic resistance.

    PubMed

    Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark

    2014-10-01

    Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3' region of cagA throughout the tree. We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. © 2014 John Wiley & Sons Ltd.

  17. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  18. The SHOX region and its mutations.

    PubMed

    Capone, L; Iughetti, L; Sabatini, S; Bacciaglia, A; Forabosco, A

    2010-06-01

    The short stature homeobox-containing (SHOX) gene lies in the pseudoautosomal region 1 (PAR1) that comprises 2.6 Mb of the short-arm tips of both the X and Y chromosomes. It is known that its heterozygous mutations cause Leri-Weill dyschondrosteosis (LWD) (OMIM #127300), while its homozygous mutations cause a severe form of dwarfism known as Langer mesomelic dysplasia (LMD) (OMIM #249700). The analysis of 238 LWD patients between 1998 and 2007 by multiple authors shows a prevalence of deletions (46.4%) compared to point mutations (21.2%). On the whole, deletions and point mutations account for about 67% of LWD patients. SHOX is located within a 1000 kb desert region without genes. The comparative genomic analysis of this region between genomes of different vertebrates has led to the identification of evolutionarily conserved non-coding DNA elements (CNE). Further functional studies have shown that one of these CNE downstream of the SHOX gene is necessary for the expression of SHOX; this is considered to be typical "enhancer" activity. Including the enhancer, the overall mutation of the SHOX region in LWD patients does not hold in 100% of cases. Various authors have demonstrated the existence of other CNE both downstream and upstream of SHOX regions. The resulting conclusion is that it is necessary to reanalyze all LWD/LMD patients without SHOX mutations for the presence of mutations in the 5'- and 3'-flanking SHOX regions.

  19. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    PubMed

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. Rapid detection of pathological mutations and deletions of the haemoglobin beta gene (HBB) by High Resolution Melting (HRM) analysis and Gene Ratio Analysis Copy Enumeration PCR (GRACE-PCR).

    PubMed

    Turner, Andrew; Sasse, Jurgen; Varadi, Aniko

    2016-10-19

    Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.

  1. Identification of Point Mutations in Clinical Staphylococcus aureus Strains That Produce Small-Colony Variants Auxotrophic for Menadione

    PubMed Central

    Dean, Melissa A.; Olsen, Randall J.; Long, S. Wesley; Rosato, Adriana E.

    2014-01-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice. PMID:24452687

  2. Laboratory practice guidelines for detecting and reporting JAK2 and MPL mutations in myeloproliferative neoplasms: a report of the Association for Molecular Pathology.

    PubMed

    Gong, Jerald Z; Cook, James R; Greiner, Timothy C; Hedvat, Cyrus; Hill, Charles E; Lim, Megan S; Longtine, Janina A; Sabath, Daniel; Wang, Y Lynn

    2013-11-01

    Recurrent mutations in JAK2 and MPL genes are genetic hallmarks of BCR-ABL1-negative myeloproliferative neoplasms. Detection of JAK2 and MPL mutations has been incorporated into routine diagnostic algorithms for these diseases. This Special Article summarizes results from a nationwide laboratory survey of JAK2 and MPL mutation analysis. Based on the current practice pattern and the literature, this Special Article provides recommendations and guidelines for laboratory practice for detection of mutations in the JAK2 and MPL genes, including clinical manifestations for prompting the mutation analysis, current and recommended methodologies for testing the mutations, and standardization for reporting the test results. This Special Article also points to future directions for genomic testing in BCR-ABL1-negative myeloproliferative neoplasms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    PubMed Central

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-01-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions. PMID:25199907

  4. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    NASA Astrophysics Data System (ADS)

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  5. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye.

    PubMed

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-09

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  6. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome.

    PubMed

    Crotti, Lia; Lewandowska, Marzena A; Schwartz, Peter J; Insolia, Roberto; Pedrazzini, Matteo; Bussani, Erica; Dagradi, Federica; George, Alfred L; Pagani, Franco

    2009-02-01

    Genetic screening of long QT syndrome (LQTS) fails to identify disease-causing mutations in about 30% of patients. So far, molecular screening has focused mainly on coding sequence mutations or on substitutions at canonical splice sites. The purpose of this study was to explore the possibility that intronic variants not at canonical splice sites might affect splicing regulatory elements, lead to aberrant transcripts, and cause LQTS. Molecular screening was performed through DHPLC and sequence analysis. The role of the intronic mutation identified was assessed with a hybrid minigene splicing assay. A three-generation LQTS family was investigated. Molecular screening failed to identify an obvious disease-causing mutation in the coding sequences of the major LQTS genes but revealed an intronic A-to-G substitution in KCNH2 (IVS9-28A/G) cosegregating with the clinical phenotype in family members. In vitro analysis proved that the mutation disrupts the acceptor splice site definition by affecting the branch point (BP) sequence and promoting intron retention. We further demonstrated a tight functional relationship between the BP and the polypyrimidine tract, whose weakness is responsible for the pathological effect of the IVS9-28A/G mutation. We identified a novel BP mutation in KCNH2 that disrupts the intron 9 acceptor splice site definition and causes LQT2. The present finding demonstrates that intronic mutations affecting pre-mRNA processing may contribute to the failure of traditional molecular screening in identifying disease-causing mutations in LQTS subjects and offers a rationale strategy for the reduction of genotype-negative cases.

  7. Analysis of mutational spectra by denaturant capillary electrophoresis

    PubMed Central

    Ekstrøm, Per O.; Khrapko, Konstantin; Li-Sucholeiki, Xiao-Cheng; Hunter, Ian W.; Thilly, William G.

    2009-01-01

    Numbers and kinds of point mutant within DNA from cells, tissues and human population may be discovered for nearly any 75–250bp DNA sequence. High fidelity DNA amplification incorporating a thermally stable DNA “clamp” is followed by separation by denaturing capillary electrophoresis (DCE). DCE allows for peak collection and verification sequencing. DCE in a mode of cycling temperature, e.g.+/− 5°C, CyDCE, permits high resolution of mutant sequences using computer defined analytes without preliminary optimization experiments. DNA sequencers have been modified to permit higher throughput CyDCE and a massively parallel,~25,000 capillary system, has been designed for pangenomic scans in large human populations. DCE has been used to define quantitative point mutational spectra for study a wide variety of genetic phenomena: errors of DNA polymerases, mutations induced in human cells by chemicals and irradiation, testing of human gene-common disease associations and the discovery of origins of point mutations in human development and carcinogenesis. PMID:18600220

  8. Gene Amplification and Point Mutations in Pyrimidine Metabolic Genes in 5-Fluorouracil Resistant Leishmania infantum

    PubMed Central

    Ritt, Jean-François; Raymond, Frédéric; Leprohon, Philippe; Légaré, Danielle; Corbeil, Jacques; Ouellette, Marc

    2013-01-01

    Background The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines. Methodology/Principal Findings Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import. Conclusion/Significance This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania. PMID:24278495

  9. The impact of p53 protein core domain structural alteration on ovarian cancer survival.

    PubMed

    Rose, Stephen L; Robertson, Andrew D; Goodheart, Michael J; Smith, Brian J; DeYoung, Barry R; Buller, Richard E

    2003-09-15

    Although survival with a p53 missense mutation is highly variable, p53-null mutation is an independent adverse prognostic factor for advanced stage ovarian cancer. By evaluating ovarian cancer survival based upon a structure function analysis of the p53 protein, we tested the hypothesis that not all missense mutations are equivalent. The p53 gene was sequenced from 267 consecutive ovarian cancers. The effect of individual missense mutations on p53 structure was analyzed using the International Agency for Research on Cancer p53 Mutational Database, which specifies the effects of p53 mutations on p53 core domain structure. Mutations in the p53 core domain were classified as either explained or not explained in structural or functional terms by their predicted effects on protein folding, protein-DNA contacts, or mutation in highly conserved residues. Null mutations were classified by their mechanism of origin. Mutations were sequenced from 125 tumors. Effects of 62 of the 82 missense mutations (76%) could be explained by alterations in the p53 protein. Twenty-three (28%) of the explained mutations occurred in highly conserved regions of the p53 core protein. Twenty-two nonsense point mutations and 21 frameshift null mutations were sequenced. Survival was independent of missense mutation type and mechanism of null mutation. The hypothesis that not all missense mutations are equivalent is, therefore, rejected. Furthermore, p53 core domain structural alteration secondary to missense point mutation is not functionally equivalent to a p53-null mutation. The poor prognosis associated with p53-null mutation is independent of the mutation mechanism.

  10. GALT protein database, a bioinformatics resource for the management and analysis of structural features of a galactosemia-related protein and its mutants.

    PubMed

    d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna

    2009-06-01

    We describe the GALT-Prot database and its related web-based application that have been developed to collect information about the structural and functional effects of mutations on the human enzyme galactose-1-phosphate uridyltransferase (GALT) involved in the genetic disease named galactosemia type I. Besides a list of missense mutations at gene and protein sequence levels, GALT-Prot reports the analysis results of mutant GALT structures. In addition to the structural information about the wild-type enzyme, the database also includes structures of over 100 single point mutants simulated by means of a computational procedure, and the analysis to each mutant was made with several bioinformatics programs in order to investigate the effect of the mutations. The web-based interface allows querying of the database, and several links are also provided in order to guarantee a high integration with other resources already present on the web. Moreover, the architecture of the database and the web application is flexible and can be easily adapted to store data related to other proteins with point mutations. GALT-Prot is freely available at http://bioinformatica.isa.cnr.it/GALT/.

  11. Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection.

    PubMed

    Vipperla, Bhavaniprasad; Dass, J Febin Prabhu; Jayanthi, S

    2014-01-01

    Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.

  12. A new mitochondrial point mutation in the transfer RNA(Lys) gene associated with progressive external ophthalmoplegia with impaired respiratory regulation.

    PubMed

    Wolf, Joachim; Obermaier-Kusser, Bert; Jacobs, Martina; Milles, Cornelia; Mörl, Mario; von Pein, Harald D; Grau, Armin J; Bauer, Matthias F

    2012-05-15

    We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    PubMed

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  14. Results of the First Italian External Quality Assurance Scheme for somatic EGFR mutation testing in non-small-cell lung cancer.

    PubMed

    Normanno, Nicola; Pinto, Carmine; Taddei, Gianluigi; Gambacorta, Marcello; Castiglione, Francesca; Barberis, Massimo; Clemente, Claudio; Marchetti, Antonio

    2013-06-01

    The Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytology organized an external quality assessment (EQA) scheme for EGFR mutation testing in non-small-cell lung cancer. Ten specimens, including three small biopsies with known epidermal growth factor receptor (EGFR) mutation status, were validated in three referral laboratories and provided to 47 participating centers. The participants were requested to perform mutational analysis, using their usual method, and to submit results within a 4-week time frame. According to a predefined scoring system, two points were assigned to correct genotype and zero points to false-negative or false-positive results. The threshold to pass the EQA was set at higher than 18 of 20 points. Two rounds were preplanned. All participating centers submitted the results within the time frame. Polymerase chain reaction (PCR)/sequencing was the main methodology used (n = 37 laboratories), although a few centers did use pyrosequencing (n = 8) or real-time PCR (n = 2). A significant number of analytical errors were observed (n = 20), with a high frequency of false-positive results (n = 16). The lower scores were obtained for the small biopsies. Fourteen of 47 centers (30%) that did not pass the first round, having a score less than or equal to 18 points, used PCR/sequencing, whereas 10 of 10 laboratories, using pyrosequencing or real-time PCR, passed the first round. Eight laboratories passed the second round. Overall, 41of 47 centers (87%) passed the EQA. The results of the EQA for EGFR testing in non-small-cell lung cancer suggest that good quality EGFR mutational analysis is performed in Italian laboratories, although differences between testing methods were observed, especially for small biopsies.

  15. Characterization of phospholipase C gamma enzymes with gain-of-function mutations.

    PubMed

    Everett, Katy L; Bunney, Tom D; Yoon, Youngdae; Rodrigues-Lima, Fernando; Harris, Richard; Driscoll, Paul C; Abe, Koichiro; Fuchs, Helmut; de Angelis, Martin Hrabé; Yu, Philipp; Cho, Wohnwa; Katan, Matilda

    2009-08-21

    Phospholipase C gamma isozymes (PLC gamma 1 and PLC gamma 2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLC gamma 2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLC gamma 1 and PLC gamma 2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLC gamma 2 without increasing Rac binding. Importantly, the activation of the ALI14-PLC gamma 2 and corresponding PLC gamma 1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.

  16. The correlations between alteration of p16 gene and clinicopathological factors and prognosis in squamous cell carcinomas of the buccal mucosa.

    PubMed

    Dong, Yuying; Wang, Jie; Dong, Fusheng; Wang, Xu; Zhang, Yinghuai

    2012-07-01

    To evaluate relationships between the alteration of p16 gene and the clinical status and prognosis of the patients with squamous cell carcinoma of the buccal mucosa. Thirty buccal cancers were included in the analysis. Deletion analysis was performed by PCR. Point mutation analysis was used by PCR-SSCP and direct sequencing. Methylation-specific PCR methods were adopted for the evaluation of p16 methylation. The correlation between alteration of p16 gene and clinicopathological factors buccal cancer was evaluated by Fisher's exact test. Kaplan-Meier and Cox regression were used to investigate the relationship between p16 alteration and survival time. The frequency of p16 alteration was 63.3% in buccal carcinomas. P16 deletion was associated significantly with tumor size (P = 0.01). P16 point mutation was associated significantly with differentiation (P = 0.006). P16 methylation was associated significantly with nodes metastasis (P = 0.027). The overall survival rate of 30 buccal carcinomas was 53.3%. The Log-rank test (P = 0.021) and univariate Cox regression analysis (P = 0.030) revealed that p16 methylation was significantly associated with the overall survival rate. Multivariate analysis showed that p16 deletion, p16 mutation, and p16 methylation were not statistically significant. The alterations of p16 gene may play a major role in malignancy and development and metastases of buccal carcinoma and may be an excellent marker of aggressive clinical behavior. P16 methylation has a prognostic value in buccal carcinoma but not an independent prognosis factor. P16 point mutation and p16 deletion have not prognostic significance in buccal carcinoma. © 2012 John Wiley & Sons A/S.

  17. Mutations in the Norrie disease gene.

    PubMed

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Mutation analysis of Australasian Gaucher disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.V.; Carey, W.F.; Morris, C.P.

    1995-09-25

    We have previously reported phenotype and genotype analyses in 28 Australasian Gaucher patients who were screened for several of the common Gaucher mutations: N370S, L444P, 84GG, and R463C. Horowitz and Zimran have reported that the complex alleles recNciI and recTL, which contain several point mutations including L444P, are relatively common, especially in non-Jewish Gaucher patients. Zimran and Horowitz have also stated that these recombinant alleles could easily be missed by laboratories testing only for the common Gaucher point mutations. Failure to correctly identify these mutations would influence any attempt to correlate genotype with phenotype. We have therefore retested our Gauchermore » patients for recNciI (L444P, A456P, and V46OV) and recTL (D409H, L444P, A456P, and V46OV) by PCR amplification, followed by hybridization with allele-specific oligonucleotides. 4 refs.« less

  19. Heparanase mRNA expression and point mutation in hepatocellular carcinoma

    PubMed Central

    Chen, Xiao-Peng; Liu, Yin-Bib; Rui, Jing; Peng, Shu-You; Peng, Cheng-Hong; Zhou, Zi-Yan; Shi, Liang-Hui; Shen, Hong-Wei; Xu, Bin

    2004-01-01

    AIM: To explore the expression of heparanase mRNA and point mutation in hepatocellular carcinoma (HCC). METHODS: Reverse transcription polymerase chain reaction was used to measure the expression of heparanase mRNA in the primary tumor tissues and surrounding liver tissues of 33 HCC patients. T-A cloning and sequencing were used to detect whether there was any mutation in the amplified PCR products. RESULTS: The expression of heparanase mRNA was positive in 16 primary tumor tissues of HCC, and the positive rate was 48.5%, which was significantly higher than that in the surrounding liver parenchyma (P < 0.01). The positive rate for heparanase gene in high-tendency to metastatic recurrence group (71.4%, 10/14) was obviously higher than that in low-tendency to metastatic recurrence group (31.6%, 6/19) (P = 0.023). The positive rate for heparanase gene in patients with metastatic recurrence during postoperative follow-up (78.6%, 11/14) was also significantly higher than that in those without metastatic recurrence (21.4%, 3/14) (P = 0.003). Sequence analysis of the HPA PCR products was made in 7 patients, and 2-point mutations were found in 4 patients, one of which was sense mutation, neither base insertion nor deletion was detected. The mutation rate was 57.1% (4/7). CONCLUSION: The expression rate of heparanase mRNA increases in HCC, and HPA mRNA may be one of the reliable markers for the metastatic activity gained by the liver tumor cells and could be used clinically in predicting metastatic recurrence of HCC. Point mutation may be one of the causes for enhanced heparanase mRNA expression. PMID:15334672

  20. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Long-term follow-up of chronic pancreatitis patients with K-ras mutation in the pancreatic juice.

    PubMed

    Kamisawa, Terumi; Takuma, Kensuke; Tabata, Taku; Egawa, Naoto; Yamaguchi, Toshikazu

    2011-01-01

    Pancreatic cancer is known to occur during the course of chronic pancreatitis in some patients. This study aimed to identify a high risk group for developing pancreatic cancer associated with chronic pancreatitis, particularly the presence of K-ras mutations in the pancreatic juice. K-ras mutation was analyzed by enriched polymerase chain reaction-enzyme linked mini-sequence assay in endoscopically-collected pancreatic juice of 21 patients with chronic pancreatitis between 1995 and 2000. All of them were followed-up for 6.0 +/- 3.8 (mean +/- SD) years (range, 2.1-14.2 years). K-ras point mutation was observed in the pancreatic juice of 11 patients with chronic pancreatitis (2+, n=2; 1+, n=6; +/-, n=3). Of these, 2 chronic pancreatitis patients with 2+K-ras point mutation developed pancreatic cancer 4.5 and 10.8 years, respectively, after the examination. Two chronic pancreatitis patients with K-ras mutation developed pancreatic cancer 4.5 and 10.8 years later. Semiquantitative analysis of K-ras mutation in endoscopically-collected pancreatic juice appears to be a useful tool for identifying chronic pancreatitis patients at high risk for developing pancreatic cancer.

  2. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects.

    PubMed

    Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J

    2010-10-15

    Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.

  3. Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.

    PubMed

    Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin

    2018-06-01

    The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.

  4. A de novo mutation in the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Williams, Emma L; Kemper, Markus J; Rumsby, Gill

    2006-09-01

    Primary hyperoxaluria type 1 is caused by mutations in the alanine-glyoxylate aminotransferase (AGXT) gene. In cases in which no mutation was identified, linkage analysis can be used to confirm or exclude the diagnosis in other siblings. We present a family in which a sibling of the index case predicted to have primary hyperoxaluria type 1 by means of linkage analysis failed to show hyperoxaluria during the following 7 years, putting the diagnosis into question. Whole-gene sequence analysis identified 2 causative mutations in the index case, of which only 1, c.646A (Gly216Arg), was inherited. The other sequence change, c.33_34insC, was a de novo mutation occurring on the paternal allele. This particular mutation is a relatively common cause of primary hyperoxaluria type 1. It occurs in a run of 8 cytosines and therefore potentially is susceptible to polymerase slippage. This case illustrates 2 important points. First, biochemical confirmation of a genetic diagnosis should always be made in siblings diagnosed by using genetic tests. Second, de novo mutations should be considered as a potential, albeit rare, cause of primary hyperoxaluria type 1.

  5. Epidermal growth factor receptor mutations in adenocarcinoma in situ and minimally invasive adenocarcinoma detected using mutation-specific monoclonal antibodies.

    PubMed

    Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains.

    PubMed

    Hashemi, Seirana; Nowzari Dalini, Abbas; Jalali, Adrin; Banaei-Moghaddam, Ali Mohammad; Razaghi-Moghadam, Zahra

    2017-08-16

    Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .

  7. Long range dynamic effects of point-mutations trap a response regulator in an active conformation

    PubMed Central

    Bobay, Benjamin G.; Thompson, Richele J.; Hoch, James A.; Cavanagh, John

    2010-01-01

    When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site. PMID:20828564

  8. [Analysis of the parental origin of MECP2 mutations in patients with Rett syndrome].

    PubMed

    Zhang, Jing-jing; Bao, Xin-hua; Cao, Guang-na; Jiang, Sheng-ling; Zhu, Xing-wang; Lu, Hong-mei; Jia, Li-fang; Pan, Hong; Wu, Xi-ru

    2010-04-01

    To identify the parental origin of methyl-CpG-binding protein 2 (MECP2) gene mutations in Chinese patients with Rett syndrome. Single nucleotide polymorphisms (SNPs) in intron 3 of the MECP2 gene were analyzed by PCR and sequencing in 115 patients with Rett syndrome. Then sequencing of the SNP region was performed for the fathers of the patients who had at least one SNP, to determine which allele was from the father. Then allele-specific PCR was performed and the products were sequenced to see whether the allele from father or mother harbored the mutation. Seventy-six of the 115 patients had at least one SNP. Three hot SNPs were found in these patients. They were: IVS3+22C >G, IVS3+266C >T and IVS3+683C>T. Among the 76 cases, 73 had a paternal origin of MECP2 mutations, and the other 3 had a maternal origin. There were multiple types of MECP2 mutation of the paternal origin, including 4 frame shift, 2 deletion and 67 point (56C >T, 6C >G, 2A >G, 2G >T and 1A >T) mutations. The mutation types of the 3 patients with maternal origin included 2 frame shift and 1 point (C >T) mutation. In Chinese RTT patients, the MECP2 mutations are mostly of paternal origin.

  9. [MPLW515L point mutation in patients with myeloproliferative disease].

    PubMed

    Xia, Jun; Xu, Wei; Zhang, Su-Jiang; Fan, Lei; Qiao, Chun; Li, Jian-Yong

    2008-12-01

    In order to investigate the frequency of MPLW515L and JAK2V617F point mutations of the patients with myeloproliferative disease (MPD) in Nanjing area, MPLW515L and JAK2V617F point mutations were simultaneously detected by alleles specific polymerase chain reaction (AS-PCR) and sequencing in 190 MPD patients. The results showed that MPLW515L point mutation was detected in 1 out of 102 essential thrombocythemia (ET) patients (1.0%) and was not detected in 32 polycythemia vera (PV) patients, 13 idiopathic myelofibrosis (IMF) patients, 43 chronic myelogenous leukemia (CML) patients. JAK2V617F point mutation was detected in 20 out of 32 PV patients (62.5%), 43 out of 102 ET patients (42.2%), 5 out of 13 IMF patients (38.5%), and was not detected in 43 CML patients. It is concluded that MPLW515L point mutation exists in ET patient, but is not found in PV, IMF and CML. JAK2V617F point mutation exists in PV, ET and IMF, but not in CML.

  10. Mutational analysis of the myelin protein zero (MPZ) gene associated with Charcot-Marie-Tooth neuropathy type 1B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roa, B.B.; Warner, L.E.; Lupski, J.R.

    1994-09-01

    The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry themore » most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.« less

  11. KRAS mutation testing in metastatic colorectal cancer

    PubMed Central

    Tan, Cong; Du, Xiang

    2012-01-01

    The KRAS oncogene is mutated in approximately 35%-45% of colorectal cancers, and KRAS mutational status testing has been highlighted in recent years. The most frequent mutations in this gene, point substitutions in codons 12 and 13, were validated as negative predictors of response to anti-epidermal growth factor receptor antibodies. Therefore, determining the KRAS mutational status of tumor samples has become an essential tool for managing patients with colorectal cancers. Currently, a variety of detection methods have been established to analyze the mutation status in the key regions of the KRAS gene; however, several challenges remain related to standardized and uniform testing, including the selection of tumor samples, tumor sample processing and optimal testing methods. Moreover, new testing strategies, in combination with the mutation analysis of BRAF, PIK3CA and loss of PTEN proposed by many researchers and pathologists, should be promoted. In addition, we recommend that microsatellite instability, a prognostic factor, be added to the abovementioned concomitant analysis. This review provides an overview of KRAS biology and the recent advances in KRAS mutation testing. This review also addresses other aspects of status testing for determining the appropriate treatment and offers insight into the potential drawbacks of mutational testing. PMID:23066310

  12. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers.

    PubMed

    Hu, Hai; Li, Hong; Jiao, Feng; Han, Ting; Zhuo, Meng; Cui, Jiujie; Li, Yixue; Wang, Liwei

    2017-10-03

    Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  13. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    PubMed

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  14. p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma.

    PubMed

    Ribeiro, U; Finkelstein, S D; Safatle-Ribeiro, A V; Landreneau, R J; Clarke, M R; Bakker, A; Swalsky, P A; Gooding, W E; Posner, M C

    1998-07-01

    The ability to predict biologic behavior and treatment responsiveness would be a valuable asset in the multimodality approach to esophageal carcinoma. The authors examined whether alterations of the p53 gene correlate with clinicopathologic parameters, response to preoperative chemotherapy/radiotherapy, and outcome in patients with esophageal carcinoma. METHODS. Histopathologic/genetic analysis of p53 was performed on formalin fixed, paraffin embedded tissues. Tissue sections were stained immunohistochemically for p53 protein followed by topographic genotyping comprised of polymerase chain reaction amplification and direct sequencing of p53 exons 5-8. All patients received induction chemotherapy (5-fluorouracil, cisplatin, and alpha-interferon) and concurrent external beam radiotherapy (4500 centigrays) followed by resection. p53 analysis performed on 42 tumors from patients with potentially resectable esophageal carcinoma revealed 25 of the 42 tumors (59.5%) to be p53 immunopositive; however, only 17 of the 42 tumors (40.5%) were proven to contain p53 point mutational damage in exons 8 (n=5), 5 (n=5), 7 (n=4), and 6 (n=3). Eight cases were weakly immunopositive and had no genotype mutation suggesting hyperexpression of normal wild-type p53. Genotyping also identified two immunonegative cases with deletion-type mutations (exons 5 and 6). Tissue samples collected before and after chemotherapy/radiotherapy exhibited fidelity in p53 mutational genotype in all cases. The presence of a p53 point mutation positively correlated with pTNM stage (P=0.003) and residual disease in the resected specimen (P=0.01). Moreover, survival of patients with p53 mutations was significantly lower than that of patients without mutations (overall survival of 21.6 months vs. 40 months; P=0.0038; and disease free survival of 14.1 months vs. 38 months; P=0.0004). Histopathologic/genetic analysis is a better determinant of p53 mutational damage than immunohistochemistry alone and can be used as a prognostic marker for esophageal carcinoma. p53 genotyping may define a subset of patients who respond to chemotherapy/radiotherapy and may predict who potentially benefits from multimodality therapy.

  15. De novo point mutations in patients diagnosed with ataxic cerebral palsy

    PubMed Central

    Parolin Schnekenberg, Ricardo; Perkins, Emma M.; Miller, Jack W.; Davies, Wayne I. L.; D’Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A.; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O’Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis

    2015-01-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. PMID:25981959

  16. Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations

    PubMed Central

    Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498

  17. Dinitroanilines Bind α-Tubulin to Disrupt Microtubules

    PubMed Central

    Morrissette, Naomi S.; Mitra, Arpita; Sept, David; Sibley, L. David

    2004-01-01

    Protozoan parasites are remarkably sensitive to dinitroanilines such as oryzalin, which disrupt plant but not animal microtubules. To explore the basis of dinitroaniline action, we isolated 49 independent resistant Toxoplasma gondii lines after chemical mutagenesis. All 23 of the lines that we examined harbored single point mutations in α-tubulin. These point mutations were sufficient to confer resistance when transfected into wild-type parasites. Several mutations were in the M or N loops, which coordinate protofilament interactions in the microtubule, but most of the mutations were in the core of α-tubulin. Docking studies predict that oryzalin binds with an average affinity of 23 nM to a site located beneath the N loop of Toxoplasma α-tubulin. This binding site included residues that were mutated in several resistant lines. Moreover, parallel analysis of Bos taurus α-tubulin indicated that oryzalin did not interact with this site and had a significantly decreased, nonspecific affinity for vertebrate α-tubulin. We propose that the dinitroanilines act through a novel mechanism, by disrupting M-N loop contacts. These compounds also represent the first class of drugs that act on α-tubulin function. PMID:14742718

  18. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, themore » mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.« less

  19. Analysis of mutations in oral poliovirus vaccine by hybridization with generic oligonucleotide microchips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proudnikov, D.; Kirillov, E.; Chumakov, K.

    2000-01-01

    This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less

  20. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    PubMed

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  1. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaithinathan, R.; Berson, E.L.; Dryja, T.P.

    Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 ofmore » 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.« less

  2. Development of a PCR/LDR/capillary electrophoresis assay with potential for the detection of a beta-thalassemia fetal mutation in maternal plasma.

    PubMed

    Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li

    2010-08-01

    Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.

  3. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    PubMed

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  4. p53 inactivation in chewing tobacco-induced oral cancers and leukoplakias from India.

    PubMed

    Saranath, D; Tandle, A T; Teni, T R; Dedhia, P M; Borges, A M; Parikh, D; Sanghavi, V; Mehta, A R

    1999-05-01

    The inactivation of p53 tumour suppressor gene vis-á-vis point mutation, overexpression and degradation due to Human Papilloma virus (HPV) 16/18 infection, was examined in chewing tobacco-associated oral cancers and oral leukoplakias from India. The analysis of mutations was assessed by polymerase chain reaction (PCR) with single strand conformation polymorphism (PCR-SSCP) of exons 5-9 on DNA from 83 oral cancer cases, and the mutations confirmed by direct nucleotide sequencing of the PCR products. p53 protein expression was evaluated by immunohistochemical analysis on paraffin-embedded sections of 62 representative oral cancer biopsies and 22 leukoplakias, using p53-specific monoclonal antibody DO-7. The presence of HPV16/18 was detected in the 83 oral cancer cases by PCR analysis using HPV L1 consensus sequences, followed by Southern hybridization with type-specific oligonucleotide probes. Forty-six per cent (38/83) of oral cancer tumours showed p53 alterations, with 17% (14/83) showing point mutations, 37% (23/62) with overexpression and 25% (21/83) with presence of HPV16 wherein the E6 HPV16 protein degrades p53. HPV18 was not detected in any of the samples. Ninety-two per cent concordance was observed between missense point mutations and overexpression of p53 protein. A significant correlation was not observed between p53 alterations in oral cancer and clinico-pathological profile of the patients. Twenty-seven per cent (6/22) of oral leukoplakias showed p53 overexpression. The overall p53 alterations in oral cancer tissues and oral lesions are comparable to data from the oral cancers reported in the Western countries with smoking and alcohol-associated oral cancers, and suggest a critical role for p53 gene in a significant proportion of oral cancers from India. The overexpression of p53 protein in leukoplakias may serve as a valuable biomarker for identifying individuals at high risk of transformation to malignant phenotype.

  5. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: Impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biery, B.J.; Stein, D.E.; Goodman, S.I.

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in themore » general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.« less

  6. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.

    PubMed

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J

    2012-01-01

    PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  7. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I

    PubMed Central

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.

    2012-01-01

    Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625

  8. Investigation of FANCA mutations in Greek patients.

    PubMed

    Selenti, Nikoletta; Sofocleous, Christalena; Kattamis, Antonis; Kolialexi, Aggeliki; Kitsiou, Sophia; Fryssira, Elena; Polychronopoulou, Sophia; Kanavakis, Emmanouel; Mavrou, Ariadni

    2013-08-01

    Fanconi anemia (FA) is a rare genetic disease characterized by considerable heterogeneity. Fifteen subtypes are currently recognised and deletions of the Fanconi anemia complementation group A (FANCA) gene account for more than 65% of FA cases. We report on the results from a cohort of 166 patients referred to the Department of Medical Genetics of Athens University for genetic investigation after the clinical suspicion of FA. For clastogen-induced chromosome damage, cultures were set up with the addition of mitomycin C (MMC) and diepoxybutane (DEB), respectively. Following a positive cytogenetic result, molecular analysis was performed to allow identification of causative mutations in the FANCA gene. A total of 13/166 patients were diagnosed with FA and 8/13 belonged to the FA-A subtype. A novel point mutation was identified in exon 26 of FANCA gene. In our study 62% of FA patients were classified in the FA-A subtype and a point mutation in exon 26 was noted for the first time.

  9. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies.

    PubMed

    Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O; Decker, Christian; Preising, Markus N; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Charbel Issa, Peter; Holz, Frank G; Baig, Shahid M; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J

    2013-01-01

    Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover "hidden mutations" such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5' exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5'-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivisto, U.M.; Viikari, J.S.; Kontula, K.

    Two deletions of the low-density lipoprotein (LDL) receptor gene were previously shown to account for about two thirds of all mutations causing familial hypercholesterolemia (FH) in Finland. We screened the DNA samples from a cohort representing the remaining 30% of Finnish heterozygous FH patients by amplifying all the 18 exons of the receptor gene by PCR and searching for DNA variations with the SSCP technique. Ten novel mutations were identified, comprising two nonsense and seven missense mutations as well as one frameshift mutation caused by a 13-bp deletion. A single nucleotide change, substituting adenine for guanidine at position 2533 andmore » resulting in an amino acid change of glycine to aspartic acid at codon 823, was found in DNA samples from 14 unrelated FH probands. This mutation (FH-Turku) affects the sequence encoding the putative basolateral sorting signal of the LDL receptor protein; however, the exact functional consequences of this mutation are yet to be examined. The FH-Turku gene and another point mutation (Leu380{r_arrow}His or FH-Pori) together account for {approximately}8% of the FH-causing genes in Finland and are particularly common among FH patients from the southwestern part of the country (combined, 30%). Primer-introduced restriction analysis was applied for convenient assay of the FH-Turku and FH-Pori point mutations. In conclusion, this paper demonstrates the unique genetic background of FH in Finland and describes a commonly occurring FH gene with a missense mutation closest to the C terminus thus far reported. 32 refs., 5 figs., 2 tabs.« less

  11. Relationship of body mass index with BRAF (V600E) mutation in papillary thyroid cancer.

    PubMed

    Shi, Rong-Liang; Qu, Ning; Liao, Tian; Wei, Wen-Jun; Lu, Zhong-Wu; Ma, Ben; Wang, Yu-Long; Ji, Qing-Hai

    2016-06-01

    Current evidences suggest an influence of overweight body mass index (BMI) on the carcinogenesis in malignancies. However, the role of BMI is unclear in papillary thyroid cancer (PTC). The aim of the present study is to investigate the relationship between BMI and BRAF (V600E) mutation status in PTC. BRAF (V600E) mutation in 108 patients with PTC was analyzed by Sanger sequencing. The cutoff point of BMI was identified by X-tile for predicting mutation by overweight. Odds ratios (OR) and 95 % confidence interval (CI) of BRAF (V600E) mutation according to BMI and clinicopathologic variables were calculated using logistic regression models. Fifty-one patients were positive for BRAF (V600E) mutation. A positive relationship existed between BRAF (V600E) mutation and BMI (p = 0.039). A 24.3 kg/m(2) was identified as cutoff point for differentiating greater than 52.0 % observed probability of mutation for BRAF (V600E) in entire cohort, which was similar to the midpoint between the upper limit of normal BMI and overweight defined by WHO (≥24 kg/m(2)). Multivariate analysis confirmed the association between BRAF (V600E) mutation with overweight BMI range (OR 7.645, 95 % CI 1.275-45.831, p = 0.026). This study suggests an influence of overweight BMI on the status of BRAF (V600E) in patients with PTC, whereas the underlying mechanism need to be further investigated.

  12. An N-terminal glycine to cysteine mutation in the collagen COL1A1 gene produces moderately severe osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, W.; Scott, L.; Cohn, D.

    Osteogenesis imperfecta (OI) is usually due to mutations in the type I procollagen genes COL1A1 and COL1A2. Point mutations close to the N-terminus are generally milder than those near the C-terminus of the molecule (the gradient hypothesis of collagen mutations). We describe a patient with moderately severe OI due to a mutation in the N-terminal portion of the triple helical domain of the {alpha}1(I) chain. Electrophoretic analysis of collagen isolated from fibroblast cultures suggested the abnormal presence of a cysteine in the N-terminal portion of the {alpha}1(I) chain. Five overlapping DNA fragments amplified from fibroblast RNA were screened for mutationsmore » using single strand conformational polymorphism (SSCP) and heteroduplex analyses. Direct DNA sequence analysis of the single positive fragment demonstrated a G to T transversion, corresponding to a glycine to cysteine substitution at position 226 of the triple helical domain of the {alpha}1(I) chain. The mutation was confirmed by restriction enzyme analysis of amplified genomic DNA. The mutation was not present in fibroblasts from either phenotypically normal parent. Combining this mutation with other reported mutations, glycine to cysteine substitutions at positions 205, 211, 223, and 226 produce a moderately severe phenotype whereas flanking mutations at positions 175 and 382 produce a mild phenotype. This data supports a regional rather than a gradient model of the relationship between the nature and location of type I collagen mutations and OI phenotype.« less

  13. Parkin dosage mutations have greater pathogenicity in familial PD than simple sequence mutations

    PubMed Central

    Pankratz, N; Kissell, D K.; Pauciulo, M W.; Halter, C A.; Rudolph, A; Pfeiffer, R F.; Marder, K S.; Foroud, T; Nichols, W C.

    2009-01-01

    Objective: Mutations in both alleles of parkin have been shown to result in Parkinson disease (PD). However, it is unclear whether haploinsufficiency (presence of a mutation in only 1 of the 2 parkin alleles) increases the risk for PD. Methods: We performed comprehensive dosage and sequence analysis of all 12 exons of parkin in a sample of 520 independent patients with familial PD and 263 controls. We evaluated whether presence of a single parkin mutation, either a sequence (point mutation or small insertion/deletion) or dosage (whole exon deletion or duplication) mutation, was found at increased frequency in cases as compared with controls. We then compared the clinical characteristics of cases with 0, 1, or 2 parkin mutations. Results: We identified 55 independent patients with PD with at least 1 parkin mutation and 9 controls with a single sequence mutation. Cases and controls had a similar frequency of single sequence mutations (3.1% vs 3.4%, p = 0.83); however, the cases had a significantly higher rate of dosage mutations (2.6% vs 0%, p = 0.009). Cases with a single dosage mutation were more likely to have an earlier age at onset (50% with onset at ≤45 years) compared with those with no parkin mutations (10%, p = 0.00002); this was not true for cases with only a single sequence mutation (25% with onset at ≤45 years, p = 0.06). Conclusions: Parkin haploinsufficiency, specifically for a dosage mutation rather than a point mutation or small insertion/deletion, is a risk factor for familial PD and may be associated with earlier age at onset. GLOSSARY ADL = Activities of Daily Living; GDS = Geriatric Depression Scale; MLPA = multiplex ligation-dependent probe amplification; MMSE = Mini-Mental State Examination; PD = Parkinson disease; UPDRS = Unified Parkinson’s Disease Rating Scale. PMID:19636047

  14. PD-L1 expression according to the EGFR status in primary lung adenocarcinoma.

    PubMed

    Takada, Kazuki; Toyokawa, Gouji; Tagawa, Tetsuzo; Kohashi, Kenichi; Shimokawa, Mototsugu; Akamine, Takaki; Takamori, Shinkichi; Hirai, Fumihiko; Shoji, Fumihiro; Okamoto, Tatsuro; Oda, Yoshinao; Maehara, Yoshihiko

    2018-02-01

    It was reported that programmed cell death-ligand 1 (PD-L1) expression is associated with smoking and wild-type epidermal growth factor receptor (EGFR) in lung adenocarcinoma. However, the association between PD-L1 expression and EGFR mutation site in EGFR mutation-positive lung adenocarcinoma is unclear. We retrospectively examined the relationship between PD-L1 expression and EGFR status in 441 surgically resected primary lung adenocarcinomas. Membrane PD-L1 expression on tumor cells was evaluated by immunohistochemical analysis using a PD-L1 antibody (clone SP142) and defined by tumor proportion scores (TPSs) of 0%, 1-4%, 5-49%, and ≥50%, respectively. Two hundred and eighteen (49.4%) patients had wild-type EGFR, and 223 (50.6%) had mutant EGFR-98 (44.0%) with exon 19 deletion, 116 (52.0%) with exon 21 L858R point mutation, and nine (4.0%) with another EGFR mutation. Overall, Fisher's exact test showed that PD-L1 positivity was associated with wild-type EGFR, and there was only one case with PD-L1 TPS ≥50% among the cases with mutant EGFR. The analysis of cases with mutant EGFR indicated no significant association between EGFR mutation site and PD-L1 expression. However, the prevalence of PD-L1 TPS 5-49% was higher among patients with EGFR exon 19 deletion than with EGFR exon 21 L858R point mutation. PD-L1 expression was significantly associated with wild-type EGFR, and PD-L1 TPS ≥50% seldom overlaps with presence of driver oncogene EGFR. There was no significant difference in PD-L1 expression among the EGFR mutation sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases.

    PubMed

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-11-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC 3 (NM_003786.3:c.1783-1G>A), KLHDC 1 (NM_172193.1:c.568-2A>G), HOOK 1 (NM_015888.4:c.1662-1G>A), SMAD 9 (NM_001127217.2:c.1004-1C>T), and DNAH 9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC 3, HOOK 1. In ABCC 3 and HOOK 1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK 1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4-6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis.

  16. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  17. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ

    PubMed Central

    Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats

    2015-01-01

    In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ. PMID:26240388

  18. Molecular analysis and genetic mapping of the rhodopsin gene in families with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunge, S.; Wedemann, H.; Samanns, C.

    1993-07-01

    Eighty-eight patients/families with autosomal dominant retinitis pigmentosa (RP) were screened for rhodopsin mutations. Direct sequencing revealed 13 different mutations in a total of 14 (i.e., 16%) unrelated patients. Five of these mutations (T4K, Q28H, R135G, F220C, and C222R) have not been reported so far. In addition, multipoint linkage analysis was performed on two large families with autosomal dominant RP due to rhodopsin mutations by using five DNA probes from 3q21-q24. No tight linkage was found between the rhodopsin locus (RHO) and D3S47 ([theta][sub max] = 0.08). By six-point analysis, RHO was localized in the region between D3S21 and D3S47, withmore » a maximum lod score of 13.447 directly at D3S20. 13 refs., 1 fig., 2 tabs.« less

  19. Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies

    PubMed Central

    Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O.; Decker, Christian; Preising, Markus N.; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Issa, Peter Charbel; Holz, Frank G.; Baig, Shahid M.; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y.; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S.; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J.

    2013-01-01

    Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. PMID:24265693

  20. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    PubMed Central

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  1. Andermann syndrome can be a phenocopy of hereditary motor and sensory neuropathy--report of a discordant sibship with a compound heterozygous mutation of the KCC3 gene.

    PubMed

    Rudnik-Schöneborn, S; Hehr, U; von Kalle, T; Bornemann, A; Winkler, J; Zerres, K

    2009-06-01

    Andermann syndrome is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum (ACC), progressive motor-sensory neuropathy, mental retardation and facial features. We report on two siblings with the clinical picture of a demyelinating hereditary motor and sensory neuropathy (HMSN), where only the presence of ACC in the younger brother pointed to the diagnosis of Andermann syndrome. Mutation analysis of the KCC3 (SLC12A6) gene showed a compound heterozygous mutation; a maternal missense mutation c.1616G>A (p.G539D) and a paternal splice mutation c.1118+1G>A in both siblings. We hypothesize that mutations of the KCC3 gene may result in non-syndromic childhood onset HMSN.

  2. Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis

    PubMed

    Jalili, Mahdi; Yaghmaie, Marjan; Ahmadvand, Mohammad; Alimoghaddam, Kamran; Mousavi, Seyed Asadollah; Vaezi, Mohammad; Ghavamzadeh, Ardeshir

    2018-02-26

    The RUNX1 (AML1) gene is a relatively infrequent mutational target in cases of acute myeloid leukemia (AML). Previous work indicated that RUNX1 mutations can have pathological and prognostic implications. To evaluate prognostic value, we conducted a meta-analysis of 4 previous published works with data for survival according to RUNX1 mutation status. Pooled hazard ratios for overall survival and disease-free survival were 1.55 (95% confidence interval (CI) = 1.11–2.15; p-value = 0.01) and 1.76 (95% CI = 1.24–2.52; p-value = 0.002), respectively, for cases positive for RUNX1 mutations. This evidence supports clinical implications of RUNX1 mutations in the development and progression of AML cases and points to the possibility of a distinct category within the newer WHO classification. Though it must be kept in mind that the present work was based on data extracted from observational studies, the findings suggest that the RUNX1 status can contribute to risk-stratification and decision-making in management of AML. Creative Commons Attribution License

  3. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    PubMed

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  4. Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas.

    PubMed

    Hadfield, K D; Smith, M J; Urquhart, J E; Wallace, A J; Bowers, N L; King, A T; Rutherford, S A; Trump, D; Newman, W G; Evans, D G

    2010-11-25

    Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1-negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1-positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context.

  5. Deletion Mutagenesis Downstream of the 5′ Long Terminal Repeat of Human Immunodeficiency Virus Type 1 Is Compensated for by Point Mutations in both the U5 Region and gag Gene

    PubMed Central

    Liang, Chen; Rong, Liwei; Russell, Rodney S.; Wainberg, Mark A.

    2000-01-01

    We have studied the role of an RNA region at nucleotides (nt) +200 to +233, just downstream of the 5′ long terminal repeat, in encapsidation of human immunodeficiency virus type 1 genomic RNA. Three deletion mutations, namely, BH-D0, BH-D1, and BH-D2, were generated to eliminate sequences at positions nt +200 to +219, +200 to +226, and +200 to +233. The result in each case was decreased levels of packaging of viral RNA into the mutated viruses, with the BH-D2 virus being the most severely affected. Consistently, all three deletions resulted in impaired viral infectiousness and the BH-D2 mutation showed the most dramatic impact in this regard. Further analysis revealed additional defects in Gag precursor processing and in the extension efficiency of the tRNA3Lys primer in reverse transcription reactions performed with these mutated viruses. To shed further light on the function of these deleted sequences in viral replication, the mutated viruses were cultured in MT-2 cells over prolonged periods to enable them to reacquire wild-type replication kinetics. Sequencing of the reverted viruses revealed point mutations in both the noncoding region and the gag gene. In the case of the BH-D0 revertant, two mutations were observed at positions G112A in the U5 region, termed M1, and T24I in the nucleocapsid protein, termed MNC, respectively. Either of these two mutations was able to confer wild-type replication capacity on BH-D0. In the case of BH-D1, each of the M1 mutations, a mutation termed M2, i.e., C227T, just downstream of the primer binding site, a mutation termed MP2 (T12I) in the p2 protein, and the MNC mutation were observed. A combination of either M1 and M2 or MP2 and MNC was able to rescue BH-D1. In the case of the BH-D2 deletion-containing viruses, three point mutations, i.e., M1, MP2, and MNC, were observed and the presence of all three was required to restore viral replication to wild-type levels. PMID:10864634

  6. [Molecular and structural-biological analysis of Nicotiana plumbaginifolia mutants for identification of the site of beta-tubulins interaction with dinitroanilines and phosphorotioamidates].

    PubMed

    Emets, A I; Baiard, U V; Nyporko, A Iu; Swire-Clark, G A; Blium, Ia B

    2009-01-01

    The identification of point mutation locations on beta-tubulin molecules of amiprophosmethyl- and trifluralin-resistant Nicotiana plumbaginifolia lines have described in the work. It was shown that in the first case this mutation is connected with the substitution ofserine residue on proline in position 248; in the second case--with the substitution of phenilalanine on serine in position 317 of beta-tubulin amino acid sequence. Three-dimensional models of beta-tubulin molecule from Chlamydomonas with well-known location of mutations conferring dinitroaniline- and phosphorotioamidate resistance (substitution of lysine residue to methionine on position 350), and beta-tubulin from Nicotiana plumbaginifolia have been reconstructed. On the basis of analysis of site of interaction with dinitroanilines and phosphorotioamides on Chlamydomonas beta-tubulin molecule it was concluded that the revealed mutations on Nicotiana plumbaginifolia beta-tubulin affect amino acid residues participating in formation of this site.

  7. The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation

    NASA Astrophysics Data System (ADS)

    Sicinski, Piotr; Geng, Yan; Ryder-Cook, Allan S.; Barnard, Eric A.; Darlison, Mark G.; Barnard, Pene J.

    1989-06-01

    The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned, and the sequence has been used in the polymerase chain reaction to amplify normal and mdx dystrophin transcripts in the area of the mdx mutation. Sequence analysis of the amplification products showed that the mdx mouse has a single base substitution within an exon, which causes premature termination of the polypeptide chain.

  8. Dysfibrinogenemia in childhood: two cases of congenital dysfibrinogens.

    PubMed

    Kotlín, Roman; Blažek, Bohumír; Suttnar, Jiří; Malý, Martin; Kvasnička, Jan; Dyr, Jan E

    2010-10-01

    A 2-year-old asymptomatic boy and his relatives were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level (family A). Eight-year-old and 1-year-old asymptomatic brothers were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level and prolonged thrombin time (family B). To identify whether genetic mutations were responsible for these dysfibrinogens, DNA extracted from the blood was analyzed. Fibrin polymerization and fibrinolysis were measured by a turbidimetric method at 450 nm. DNA analysis was performed by the Sanger method. Mass spectroscopy was performed on a Biflex IV mass spectrometer. DNA sequencing showed the heterozygous point mutation Aα Arg16His in the fibrinogen of family A and the heterozygous point mutation Aα Arg16Cys in the fibrinogen of family B. Kinetics of fibrinopeptide release, fibrinolysis, and fibrin polymerization were impaired in the carriers of the mutations in both families. Mass spectroscopy showed the presence of mutant fibrinogen chains in circulation. Scanning electron microscopy revealed thicker fibrin fibers, differing significantly from the normal control in both cases. Two cases of asymptomatic dysfibrinogenemias, found by routine coagulation testing, were genetically identified as new cases of fibrinogen variants Aα Arg16His and Aα Arg16Cys.

  9. De novo point mutations in patients diagnosed with ataxic cerebral palsy.

    PubMed

    Parolin Schnekenberg, Ricardo; Perkins, Emma M; Miller, Jack W; Davies, Wayne I L; D'Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O'Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis; Jackson, Mandy; Tucker, Stephen J; Németh, Andrea H

    2015-07-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  10. Biochemical analysis of respiratory function in cybrid cell lines harbouring mitochondrial DNA mutations

    PubMed Central

    2004-01-01

    We analysed key biochemical features that reflect the balance between glycolysis and glucose oxidation in cybrids (cytoplasmic hybrids) harbouring a representative sample of mitochondrial DNA point mutations and deletions. The cybrids analysed had the same 143B cell nuclear background and were isogenic for the mitochondrial background. The 143B cell line and its ρ0 counterpart were used as controls. All cells analysed were in a dynamic state, and cell number, time of plating, culture medium, extracellular volume and time of harvest and assay were strictly controlled. Intra- and extra-cellular lactate and pyruvate levels were measured in homoplasmic wild-type and mutant cells, and correlated with rates of ATP synthesis and O2 consumption. In all mutant cell lines, except those with the T8993C mutation in the ATPase 6 gene, glycolysis was increased even under conditions of low glucose, as demonstrated by increased levels of extracellular lactate and pyruvate. Extracellular lactate levels were strictly and inversely correlated with rates of ATP synthesis and O2 consumption. These results show increased glycolysis and defective oxidative phosphorylation, irrespective of the type or site of the point mutation or deletion in the mitochondrial genome. The different biochemical consequences of the T8993C mutation suggest a uniquely different pathogenic mechanism for this mutation. However, the distinct clinical features associated with some of these mutations still remain to be elucidated. PMID:15324306

  11. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    PubMed

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, M.C.; Nogueira, C.P.; Bartels, C.F.

    1989-02-01

    A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for allmore » 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of {sup 32}P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. The authors conclude that the Asp-70 {yields} Gly mutation accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool.« less

  13. Clinical and laboratory survey of 65 Chinese patients with Leigh syndrome.

    PubMed

    Yang, Yan-ling; Sun, Fang; Zhang, Yao; Qian, Ning; Yuan, Yun; Wang, Zhao-xia; Qi, Yu; Xiao, Jiang-xi; Wang, Xiao-ying; Qi, Zhao-yue; Zhang, Yue-hua; Jiang, Yu-wu; Bao, Xin-hua; Qin, Jiong; Wu, Xi-ru

    2006-03-05

    Leigh syndrome is an inherited neurodegenerative disease that emerges in infancy and childhood and presents with a clinically heterogeneous variety of neuromuscular and non-neuromuscular disorders. It can result from the inheritance of mutations in either nuclear or mitochondrial DNA. In the current study, we performed a retrospective study in 65 patients in order to investigate the clinical and genetic characteristics of Leigh syndrome in Chinese patients. Sixty-five unrelated cases (35 men and 30 women) who were hospitalized in the past 12 years were reviewed. Diagnosis was based on both the clinical presentation and the characteristic neuropathologic findings of bilateral symmetric necrotizing lesions in the basal ganglia and brain stem as detected using cranial computed tomography (CT) scan or magnetic resonance imaging (MRI). The differential diagnosis of organic acidurias and fatty acid beta-oxidation defects were performed. Specific point mutations and deletions in mitochondrial DNA (T8993G, T8993C, T9176C, A8344G, A3243G) were screened by PCR-restriction analysis and Southern blot. The SURF1 gene was sequenced. Skeletal muscle biopsies were performed in 17 (26.2%) of the patients. The diagnosis was confirmed by autopsy in 6 (9.2%) patients. The patients had various forms of metabolic encephalomyopathy. Fifty-nine (90.8%) of the patients had the typical neuroradiological features of Leigh syndrome, including symmetrical necrotizing lesions scattered within the basal ganglia, thalamus and brain stem. Twenty (30.8%) patients were confirmed by genetic, biochemical analysis and autopsy. Specific point mutations in mitochondrial DNA were found in 5 cases (7.7%). Of these, the A8344G mutation was detected in 2 patients. The T8993G, T8993C, and A3243G point mutations were identified in 3 other patients, respectively. SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) families by DNA sequencing. A G604C mutation was identified in 6 (9.2%) patients. The genotypes of 52 patients remained unknown. Leigh syndrome presents as a diverse array of clinical features and can result from specific mutations in nuclear or mitochondrial DNA. In this study, SURF1 mutations associated with cytochrome c oxidase deficiency were identified in 8 (12.3%) out of 65 patients with Leigh syndrome. It indicates that SURF1 mutations might be a common cause of Leigh syndrome in China. The etiology of Leigh syndrome in Chinese patients represents a persistent challenge to clinicians.

  14. Optimizing high-resolution melting analysis for the detection of mutations of GPR30/GPER-1 in breast cancer.

    PubMed

    Aihara, Masamune; Yamamoto, Shigeru; Nishioka, Hiroko; Inoue, Yutaro; Hamano, Kimikazu; Oka, Masaaki; Mizukami, Yoichi

    2012-06-15

    G protein-coupled receptor 30/G protein estrogen receptor-1 (GPR30/GPER-1) is a novel membrane receptor for estrogen whose mRNA is expressed at high levels in estrogen-dependent cells such as breast cancer cell lines. However, mutations in GRP30 related to diseases remain unreported. To detect unknown mutations in the GPR30 open reading frame (ORF) quickly, the experimental conditions for high-resolution melting (HRM) analysis were examined for PCR primers, Taq polymerases, saturation DNA binding dyes, Mg(2+) concentration, and normalized temperatures. Nine known SNPs and 13 artificial point mutations within the GPR30 ORF, as well as single nucleotide variants in DNA extracted from subjects with breast cancers were tested under the optimal experimental conditions. The combination of Expand High Fidelity(PLUS) and SYTO9 in the presence of 2.0 mM MgCl(2) produced the best separation in melting curves of mutations in all regions of the GPR30 ORF. Under these experimental conditions, the mutations were clearly detected in both heterozygotes and homozygotes. HRM analysis of GPR30 using genomic DNA from subjects with breast cancers showed a novel single nucleotide variant, 111C>T in GPR30 and 4 known SNPs. The experimental conditions determined in this study for HRM analysis are useful for high throughput assays to detect unknown mutations within the GPR30 ORF. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa.

    PubMed

    García-García, Gema; Aller, Elena; Jaijo, Teresa; Aparisi, Maria J; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M

    2014-01-01

    The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.

  16. A comparative analysis of whole genome sequencing of esophageal adenocarcinoma pre- and post-chemotherapy

    PubMed Central

    Noorani, Ayesha; Lynch, Andy G.; Achilleos, Achilleas; Eldridge, Matthew; Bower, Lawrence; Weaver, Jamie M.J.; Crawte, Jason; Ong, Chin-Ann; Shannon, Nicholas; MacRae, Shona; Grehan, Nicola; Nutzinger, Barbara; O'Donovan, Maria; Hardwick, Richard; Tavaré, Simon; Fitzgerald, Rebecca C.

    2017-01-01

    The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer. PMID:28465312

  17. Proteins evolve on the edge of supramolecular self-assembly.

    PubMed

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D

    2017-08-10

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  18. Proteins evolve on the edge of supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  19. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Audrézet, Marie-Pierre; Rousseau, Annick; Hourmant, Maryvonne; Renaudineau, Eric; Charasse, Christophe; Morin, Marie-Pascale; Moal, Marie-Christine; Dantal, Jacques; Wehbe, Bassem; Perrichot, Régine; Frouget, Thierry; Vigneau, Cécile; Potier, Jérôme; Jousset, Philippe; Guillodo, Marie-Paule; Siohan, Pascale; Terki, Nazim; Sawadogo, Théophile; Legrand, Didier; Menoyo-Calonge, Victorio; Benarbia, Seddik; Besnier, Dominique; Longuet, Hélène; Férec, Claude; Le Meur, Yannick

    2016-03-01

    The course of autosomal dominant polycystic kidney disease (ADPKD) varies among individuals, with some reaching ESRD before 40 years of age and others never requiring RRT. In this study, we developed a prognostic model to predict renal outcomes in patients with ADPKD on the basis of genetic and clinical data. We conducted a cross-sectional study of 1341 patients from the Genkyst cohort and evaluated the influence of clinical and genetic factors on renal survival. Multivariate survival analysis identified four variables that were significantly associated with age at ESRD onset, and a scoring system from 0 to 9 was developed as follows: being male: 1 point; hypertension before 35 years of age: 2 points; first urologic event before 35 years of age: 2 points; PKD2 mutation: 0 points; nontruncating PKD1 mutation: 2 points; and truncating PKD1 mutation: 4 points. Three risk categories were subsequently defined as low risk (0-3 points), intermediate risk (4-6 points), and high risk (7-9 points) of progression to ESRD, with corresponding median ages for ESRD onset of 70.6, 56.9, and 49 years, respectively. Whereas a score ≤3 eliminates evolution to ESRD before 60 years of age with a negative predictive value of 81.4%, a score >6 forecasts ESRD onset before 60 years of age with a positive predictive value of 90.9%. This new prognostic score accurately predicts renal outcomes in patients with ADPKD and may enable the personalization of therapeutic management of ADPKD. Copyright © 2016 by the American Society of Nephrology.

  20. Identification and characterization of a novel XK splice site mutation in a patient with McLeod syndrome.

    PubMed

    Arnaud, Lionel; Salachas, François; Lucien, Nicole; Maisonobe, Thierry; Le Pennec, Pierre-Yves; Babinet, Jérôme; Cartron, Jean-Pierre

    2009-03-01

    McLeod syndrome is a rare X-linked neuroacanthocytosis syndrome with hematologic, muscular, and neurologic manifestations. McLeod syndrome is caused by mutations in the XK gene whose product is expressed at the red blood cell (RBC) surface but whose function is currently unknown. A variety of XK mutations has been reported but no clear phenotype-genotype correlation has been found, especially for the point mutations affecting splicing sites. A man suspected of neuroacanthocytosis was evaluated by neurologic examination, electromyography, muscle biopsy, muscle computed tomography, and cerebral magnetic resonance imaging. The McLeod RBC phenotype was disclosed by blood smear and immunohematology analyses and then confirmed at the biochemical level by Western blot analysis. The responsible XK mutation was characterized at the mRNA level by reverse transcription-polymerase chain reaction (PCR), identified by genomic DNA sequencing, and verified by allele-specific PCR. A novel XK splice site mutation (IVS1-1G>A) has been identified in a McLeod patient who has developed hematologic, neuromuscular, and neurologic symptoms. This is the first reported example of a XK point mutation affecting the 3' acceptor splice site of Intron 1, and it was demonstrated that this mutation indeed induces aberrant splicing of XK RNA and lack of XK protein at the RBC membrane. The detailed characterization at the molecular biology level of this novel XK splice site mutation associated with the clinical description of the patient contributes to a better understanding of the phenotype-genotype correlation in the McLeod syndrome.

  1. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome

    PubMed Central

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655

  2. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome.

    PubMed

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change.

  3. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection.

    PubMed

    Singh, Om P; Dykes, Cherry L; Lather, Manila; Agrawal, Om P; Adak, Tridibes

    2011-03-14

    Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.

  4. An increased duplication of ZRS region that caused more than one supernumerary digits preaxial polydactyly in a large Chinese family.

    PubMed

    Wang, Bin; Diao, Yutao; Liu, Qiji; An, Hongqiang; Ma, Ruiping; Jiang, Guosheng; Lai, Nannan; Li, Ziwei; Zhu, Xiaoxiao; Zhao, Lin; Guo, Qiang; Zhang, Zhen; Sun, Rong; Li, Xia

    2016-12-06

    Preaxial polydactyly (PPD) is inherited in an autosomal dominant fashion and characterized by the presence of one or more supernumerary digits on the thumb side. It had been identified that point mutation or genomic duplications of the long-range limb-specific cis-regulator - zone of polarizing activity regulatory sequence (ZRS) cause PPD or other limb deformities such as syndactyly type IV (SD4) and Triphalangeal thumb-polysyndactyly syndrome (TPTPS). Most previously reported cases involved with no more than one extra finger; however, the role of the point mutation or genomic duplications of ZRS in the case of more than one redundant finger polydactyly remains unclear. In this article, we reported a family case of more than one redundant finger polydactyly on the thumb side for bilateral hands with a pedigree chart of the family. Results of quantitative PCR (qPCR) and sequence analysis suggested that the relative copy number (RCN) of ZRS but not point mutation (including insertion and deletion) was involved in all affected individuals.

  5. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Relaxation Property and Stability Analysis of the Quasispecies Models

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Li; Li, Yu-Xiao; Gu, Jian-Zhong; Zhuo, Yi-Zhong

    2009-10-01

    The relaxation property of both Eigen model and Crow-Kimura model with a single peak fitness landscape is studied from phase transition point of view. We first analyze the eigenvalue spectra of the replication mutation matrices. For sufficiently long sequences, the almost crossing point between the largest and second-largest eigenvalues locates the error threshold at which critical slowing down behavior appears. We calculate the critical exponent in the limit of infinite sequence lengths and compare it with the result from numerical curve fittings at sufficiently long sequences. We find that for both models the relaxation time diverges with exponent 1 at the error (mutation) threshold point. Results obtained from both methods agree quite well. From the unlimited correlation length feature, the first order phase transition is further confirmed. Finally with linear stability theory, we show that the two model systems are stable for all ranges of mutation rate. The Eigen model is asymptotically stable in terms of mutant classes, and the Crow-Kimura model is completely stable.

  6. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  7. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.

    PubMed

    Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T

    1995-05-20

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.

  8. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    PubMed

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  9. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava

    2016-01-01

    Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712

  10. MELAS syndrome with mitochondrial tRNA(Leu(UUR)) gene mutation in a Chinese family.

    PubMed Central

    Huang, C C; Chen, R S; Chen, C M; Wang, H S; Lee, C C; Pang, C Y; Hsu, H S; Lee, H C; Wei, Y H

    1994-01-01

    The clinical features of a patient in a Chinese family with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) are reported. The study revealed that hearing and visual impairments and miscarriages may be early clinical presentations in MELAS. A heteroplasmic A to G transition in the tRNA(Leu(UUR)) gene was noted at the nucleotide pair 3243 in the mitochondrial DNA of muscle, blood, and hair follicles of the proband and his maternal relatives. Quantitative analysis of the mutated mitochondrial DNA revealed variable proportions in different tissues and subjects of maternal lineage in the family. Muscle tissue contained a higher proportion of the mutant mitochondria than other tissues examined. The function of the reproductive system of the proband seems to be impaired. In one clinically healthy sibling, the 3243rd point mutation was found in sperm mitochondrial DNA, although sperm motility was not affected. It seems that biochemical defects in mitochondrial respiration and oxidative phosphorylation are tissue specific expressions of the 3243rd point mutation in the mitochondrial DNA of the affected target tissues. Images PMID:8201329

  11. Phenotypic and genotypic analysis of clarithromycin-resistant Helicobacter pylori from Bogotá D.C., Colombia.

    PubMed

    Trespalacios, Alba A; Otero, William; Caminos, Jorge E; Mercado, Marcela M; Avila, Jenny; Rosero, Liliana E; Arévalo, Azucena; Poutou-Piñales, Raúl A; Graham, David Y

    2013-08-01

    Resistance of Helicobacter pylori to clarithromycin is the most common cause of treatment failure in patients with H. pylori infections. This study describes the MICs and the presence of 23S rRNA mutations of H. pylori isolates from Bogotá, D.C., Colombia. H. pylori were isolated from gastric biopsies from patients with functional dyspepsia. Clarithromycin susceptibility was investigated by agar dilution and strains were considered resistant if the MIC was ≥ 1 μg/ml. DNA sequences of the 23S rRNA gene of strains resistant and sensitive to clarithromycin were determined to identify specific point mutations. Clarithromycin resistance was present in 13.6% of patients by agar dilution. The A2143G, A2142G and A2142C mutations were found in 90.5, 7.1, and 2.4% of H. pylori strains with resistance genotype.The resistant phenotype was associated with 23S rRNA resistance genotype in 85.7% of isolates. The point mutations in 23S rRNA were well correlated with MICs values for clarithromycin.

  12. Functional Studies and In Silico Analyses to Evaluate Non-Coding Variants in Inherited Cardiomyopathies.

    PubMed

    Frisso, Giulia; Detta, Nicola; Coppola, Pamela; Mazzaccara, Cristina; Pricolo, Maria Rosaria; D'Onofrio, Antonio; Limongelli, Giuseppe; Calabrò, Raffaele; Salvatore, Francesco

    2016-11-10

    Point mutations are the most common cause of inherited diseases. Bioinformatics tools can help to predict the pathogenicity of mutations found during genetic screening, but they may work less well in determining the effect of point mutations in non-coding regions. In silico analysis of intronic variants can reveal their impact on the splicing process, but the consequence of a given substitution is generally not predictable. The aim of this study was to functionally test five intronic variants ( MYBPC3 -c.506-2A>C, MYBPC3 -c.906-7G>T, MYBPC3 -c.2308+3G>C, SCN5A -c.393-5C>A, and ACTC1 -c.617-7T>C) found in five patients affected by inherited cardiomyopathies in the attempt to verify their pathogenic role. Analysis of the MYBPC3 -c.506-2A>C mutation in mRNA from the peripheral blood of one of the patients affected by hypertrophic cardiac myopathy revealed the loss of the canonical splice site and the use of an alternative splicing site, which caused the loss of the first seven nucleotides of exon 5 ( MYBPC3 -G169AfsX14). In the other four patients, we generated minigene constructs and transfected them in HEK-293 cells. This minigene approach showed that MYBPC3 -c.2308+3G>C and SCN5A -c.393-5C>A altered pre-mRNA processing, thus resulting in the skipping of one exon. No alterations were found in either MYBPC3 -c.906-7G>T or ACTC1 -c.617-7T>C. In conclusion, functional in vitro analysis of the effects of potential splicing mutations can confirm or otherwise the putative pathogenicity of non-coding mutations, and thus help to guide the patient's clinical management and improve genetic counseling in affected families.

  13. Drug Resistance Missense Mutations in Cancer Are Subject to Evolutionary Constraints

    PubMed Central

    Friedman, Ran

    2013-01-01

    Several tumour types are sensitive to deactivation of just one or very few genes that are constantly active in the cancer cells, a phenomenon that is termed ‘oncogene addiction’. Drugs that target the products of those oncogenes can yield a temporary relief, and even complete remission. Unfortunately, many patients receiving oncogene-targeted therapies relapse on treatment. This often happens due to somatic mutations in the oncogene (‘resistance mutations’). ‘Compound mutations’, which in the context of cancer drug resistance are defined as two or more mutations of the drug target in the same clone may lead to enhanced resistance against the most selective inhibitors. Here, it is shown that the vast majority of the resistance mutations occurring in cancer patients treated with tyrosin kinase inhibitors aimed at three different proteins follow an evolutionary pathway. Using bioinformatic analysis tools, it is found that the drug-resistance mutations in the tyrosine kinase domains of Abl1, ALK and exons 20 and 21 of EGFR favour transformations to residues that can be identified in similar positions in evolutionary related proteins. The results demonstrate that evolutionary pressure shapes the mutational landscape in the case of drug-resistance somatic mutations. The constraints on the mutational landscape suggest that it may be possible to counter single drug-resistance point mutations. The observation of relatively many resistance mutations in Abl1, but not in the other genes, is explained by the fact that mutations in Abl1 tend to be biochemically conservative, whereas mutations in EGFR and ALK tend to be radical. Analysis of Abl1 compound mutations suggests that such mutations are more prevalent than hitherto reported and may be more difficult to counter. This supports the notion that such mutations may provide an escape route for targeted cancer drug resistance. PMID:24376513

  14. A novel COLD-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas.

    PubMed

    Pang, Brendan; Durso, Mary B; Hamilton, Ronald L; Nikiforova, Marina N

    2013-03-01

    Point mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in many gliomas. The detection of IDH1 mutations becomes challenging on suboptimal glioma biopsies when a limited number of tumor cells is available for analysis. Coamplification at lower denaturing-polymerase chain reaction (COLD-PCR) is a PCR technique that deliberately lowers the denaturing cycle temperature to selectively favor amplification of mutant alleles, allowing for the sensitive detection of low-abundance mutations. We developed a novel COLD-PCR assay on the LightCycler platform (Roche, Applied Science, Indianapolis, IN), using post-PCR fluorescent melting curve analysis (FMCA) for the detection of mutant IDH1 with a detection limit of 1%. Thirty-five WHO grade I to IV gliomas and 9 non-neoplastic brain and spinal cord biopsies were analyzed with this technique and the results were compared with the conventional real-time PCR and the Sanger sequencing analysis. COLD-PCR/FMCA was able to detect the most common IDH1 R132H mutation and rare mutation types including R132H, R132C, R132L, R132S, and R132G mutations. Twenty-five glioma cases were positive for IDH1 mutations by COLD-PCR/FMCA, and 23 gliomas were positive by the conventional real-time PCR and Sanger sequencing. A pilocytic astrocytoma (PA I) and a glioblastoma multiforme (GBM IV) showed low-abundance IDH1 mutations detected by COLD-PCR/FMCA. The remaining 10 glioma and 9 non-neoplastic samples were negative by all the 3 methods. In summary, we report a novel COLD-PCR/FMCA method that provides rapid and sensitive detection of IDH1 mutations in formalin-fixed paraffin-embedded tissue and can be used in the clinical setting to assess the small brain biopsies.

  15. Alexander Disease: A Novel Mutation in GFAP Leading to Epilepsia Partialis Continua.

    PubMed

    Bonthius, Daniel J; Karacay, Bahri

    2016-06-01

    Alexander disease is a genetically induced leukodystrophy, due to dominant mutations in the glial fibrillary acidic protein (GFAP ) gene, causing dysfunction of astrocytes. We have identified a novel GFAP mutation, associated with a novel phenotype for Alexander disease. A boy with global developmental delay and hypertonia was found to have a leukodystrophy. Genetic analysis revealed a heterozygous point mutation in exon 6 of the GFAP gene. The guanine-to-adenine change causes substitution of the normal glutamic acid codon (GAG) with a mutant lysine codon (AAG) at position 312 (E312 K mutation). At the age of 4 years, the child developed epilepsia partialis continua, consisting of unabating motor seizures involving the unilateral perioral muscles. Epilepsia partialis continua has not previously been reported in association with Alexander disease. Whether and how the E312 K mutation produces pathologic changes and clinical signs that are unique from other Alexander disease-inducing mutations in GFAP remain to be determined. © The Author(s) 2015.

  16. [Leigh syndrome resulting from a de novo mitochondrial DNA mutation (T8993G)].

    PubMed

    Playán, A; Solano-Palacios, A; González de la Rosa, J B; Merino-Arribas, J M; Andreu, A L; López-Pérez, M; Montoya, J

    Several degenerative neurological diseases are caused by mutations in the mitochondrial gene coding for subunit 6 of the ATPase. Thus, NARP (neurogenic weakness, ataxia, and retinitis pigmentosa) and Leigh syndromes are associated to a T8993G mutation when the percentage of mutant mitochondrial DNA is low (60 90%) or high (>90%), respectively. Leigh syndrome is also caused by a second mutation in the same position T8993C. The patient, a boy that died at 6 months, had generalized hypotonia, psychomotor delay, hepatomegaly, choreic movements and hyporreflexia. MRI showed hypodensities in the basal ganglia and brain stem as well as hyperlactacidemia. Molecular genetic analysis of the mitochondrial DNA showed that the patient had the T8993G mutation in a percentage higher than 95%. No mutated DNA was detected in blood of the proband s mother, maternal aunt and grandmother. The point mutation T8993G may occur de novo, at high levels, causing neurodegenerative diseases.

  17. The BAG3 gene variants in Polish patients with dilated cardiomyopathy: four novel mutations and a genotype-phenotype correlation.

    PubMed

    Franaszczyk, Maria; Bilinska, Zofia T; Sobieszczańska-Małek, Małgorzata; Michalak, Ewa; Sleszycka, Justyna; Sioma, Agnieszka; Małek, Łukasz A; Kaczmarska, Dorota; Walczak, Ewa; Włodarski, Paweł; Hutnik, Łukasz; Milanowska, Blanka; Dzielinska, Zofia; Religa, Grzegorz; Grzybowski, Jacek; Zieliński, Tomasz; Ploski, Rafal

    2014-07-09

    BAG3 gene mutations have been recently implicated as a novel cause of dilated cardiomyopathy (DCM). Our aim was to evaluate the prevalence of BAG3 mutations in Polish patients with DCM and to search for genotype-phenotype correlations. We studied 90 unrelated probands by direct sequencing of BAG3 exons and splice sites. Large deletions/insertions were screened for by quantitative real time polymerase chain reaction (qPCR). We found 5 different mutations in 6 probands and a total of 21 mutations among their relatives: the known p.Glu455Lys mutation (2 families), 4 novel mutations: p.Gln353ArgfsX10 (c.1055delC), p.Gly379AlafsX45 (c.1135delG), p.Tyr451X (c.1353C>A) and a large deletion of 17,990 bp removing BAG3 exons 3-4. Analysis of mutation positive relatives of the probands from this study pooled with those previously reported showed higher DCM prevalence among those with missense vs. truncating mutations (OR = 8.33, P = 0.0058) as well as a difference in age at disease onset between the former and the latter in Kaplan-Meier survival analysis (P = 0.006). Clinical data from our study suggested that in BAG3 mutation carriers acute onset DCM with hemodynamic compromise may be triggered by infection. BAG3 point mutations and large deletions are relatively frequent cause of DCM. Delayed DCM onset associated with truncating vs. non-truncating mutations may be important for genetic counseling.

  18. Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.

    2013-01-01

    Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788

  19. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice.

    PubMed

    Oji, Asami; Noda, Taichi; Fujihara, Yoshitaka; Miyata, Haruhiko; Kim, Yeon Joo; Muto, Masanaga; Nozawa, Kaori; Matsumura, Takafumi; Isotani, Ayako; Ikawa, Masahito

    2016-08-17

    Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs. Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole organism.

  20. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.

    PubMed

    Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H

    2005-12-01

    Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

  1. MELAS syndrome in a patient with a point mutation in MTTS1.

    PubMed

    Lindberg, C; Moslemi, A-R; Oldfors, A

    2008-02-01

    BACKGROUND, OBJECTIVE AND METHODS: We describe a female patient with a mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome. As a child, she developed epilepsy and stroke-like episodes giving cognitive impairment and ataxia but no hearing impairment. At the age of 44 years, she suffered a cerebral sinus thrombosis which was warfarin treated. One month later, she developed an episode of severe acidosis associated with encephalopathy and myelopathy. She was found to harbour a 7512T>C mutation in the mitochondrial encoded tRNA(Ser(UCN)) gene (MTTS1). The mutation load was 91% in muscle and 24% in blood. Enzyme histochemical analysis of the muscle tissue showed numerous cytochrome c oxidase (COX)-negative fibres. Restriction fragment length polymorphism (RFLP) analysis of single muscle fibres showed significantly higher level (median 97%, range: 94-99%) of the mutation in the COX-negative fibres compared with COX-positive fibres (median 36%, range: 12-91%), demonstrating the pathogenic effect of the mutation. Different levels of heteroplasmy (range 34-61%) were detected in hair shafts analysed by RFLP. This case adds to the spectrum of clinical presentations, i.e. sinus thrombosis, in patients having MTTS1 mutations.

  2. Sequence analysis of the drug‑resistant rpoB gene in the Mycobacterium tuberculosis L‑form among patients with pneumoconiosis complicated by tuberculosis.

    PubMed

    Lu, Jun; Jiang, Shan; Ye, Song; Deng, Yun; Ma, Shuai; Li, Chao-Pin

    2014-04-01

    The aim of the present study was to investigate the mutational characteristics of the drug‑resistant Mycobacterium tuberculosis L‑form of the rpoB gene isolated from patients with pneumoconiosis complicated by tuberculosis, in order to reduce the occurrence of the drug resistance of patients and gain a more complete information on the resistance of the Mycobacterium tuberculosis L‑form. A total of 42 clinically isolated strains of Mycobacterium tuberculosis L‑form were collected, including 31 drug‑resistant strains. The genomic DNA was extracted, then the target genes were amplified by polymerase chain reaction and the hot mutational regions of the rpoB gene were analyzed by direct sequencing. The results revealed that no rpoB gene mutation was present in 11 rifampicin (RFP)‑sensitive strains, while conformational changes were identified in 31 RFP‑resistant strains. The mutation rate was 93.55% (29/31) in the resistant strains, and was frequently concentrated in codons 531 (51.61%; 16/31) and 526 (32.26%; 10/31), mainly occurring by case substitutions, including 27 unit point mutations and two two‑point mutations. The novel mutation identified in codon 516 had not been previously reported. The substitution of highly‑conserved amino acids encoded by the rpoB gene resulted in the molecular mechanism responsible for RFP resistance in the Mycobacterium tuberculosis L‑form. This also demonstrated that the rpoB gene is diversiform.

  3. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification

    PubMed Central

    Bunyan, D J; Eccles, D M; Sillibourne, J; Wilkins, E; Thomas, N Simon; Shea-Simonds, J; Duncan, P J; Curtis, C E; Robinson, D O; Harvey, J F; Cross, N C P

    2004-01-01

    Multiplex ligation-dependent probe amplification (MLPA) is a recently described method for detecting gross deletions or duplications of DNA sequences, aberrations which are commonly overlooked by standard diagnostic analysis. To determine the incidence of copy number variants in cancer predisposition genes from families in the Wessex region, we have analysed the hMLH1 and hMSH2 genes in patients with hereditary nonpolyposis colorectal cancer (HNPCC), BRCA1 and BRCA2 in families with hereditary breast/ovarian cancer (BRCA) and APC in patients with familial adenomatous polyposis coli (FAP). Hereditary nonpolyposis colorectal cancer (n=162) and FAP (n=74) probands were fully screened for small mutations, and cases for which no causative abnormality were found (HNPCC, n=122; FAP, n=24) were screened by MLPA. Complete or partial gene deletions were identified in seven cases for hMSH2 (5.7% of mutation-negative HNPCC; 4.3% of all HNPCC), no cases for hMLH1 and six cases for APC (25% of mutation negative FAP; 8% of all FAP). For BRCA1 and BRCA2, a partial mutation screen was performed and 136 mutation-negative cases were selected for MLPA. Five deletions and one duplication were found for BRCA1 (4.4% of mutation-negative BRCA cases) and one deletion for BRCA2 (0.7% of mutation-negative BRCA cases). Cost analysis indicates it is marginally more cost effective to perform MLPA prior to point mutation screening, but the main advantage gained by prescreening is a greatly reduced reporting time for the patients who are positive. These data demonstrate that dosage analysis is an essential component of genetic screening for cancer predisposition genes. PMID:15475941

  4. PURA syndrome: clinical delineation and genotype-phenotype study in 32 individuals with review of published literature

    PubMed Central

    Reijnders, Margot R F; Janowski, Robert; Alvi, Mohsan; Self, Jay E; van Essen, Ton J; Vreeburg, Maaike; Rouhl, Rob P W; Stevens, Servi J C; Stegmann, Alexander P A; Schieving, Jolanda; Pfundt, Rolph; van Dijk, Katinke; Smeets, Eric; Stumpel, Connie T R M; Bok, Levinus A; Cobben, Jan Maarten; Engelen, Marc; Mansour, Sahar; Whiteford, Margo; Chandler, Kate E; Douzgou, Sofia; Cooper, Nicola S; Tan, Ene-Choo; Foo, Roger; Lai, Angeline H M; Rankin, Julia; Green, Andrew; Lönnqvist, Tuula; Isohanni, Pirjo; Williams, Shelley; Ruhoy, Ilene; Carvalho, Karen S; Dowling, James J; Lev, Dorit L; Sterbova, Katalin; Lassuthova, Petra; Neupauerová, Jana; Waugh, Jeff L; Keros, Sotirios; Clayton-Smith, Jill; Smithson, Sarah F; Brunner, Han G; van Hoeckel, Ceciel; Anderson, Mel; Clowes, Virginia E; Siu, Victoria Mok; DDD study, The; Selber, Paulo; Leventer, Richard J; Nellaker, Christoffer; Niessing, Dierk; Hunt, David; Baralle, Diana

    2018-01-01

    Background De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. Objectives To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. Methods Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. Results We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. Conclusion We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity. PMID:29097605

  5. [A study on the relationship between point mutation in pre-core region G1896A of hepatitis B virus and safety of breast feeding].

    PubMed

    Lu, Yin-ping; Cao, Wei; Hong, Mei; Zhu, Jian-fang; Liu, Zhao; Yang, Dong-liang

    2008-10-01

    To investigate the relationship between pre-core G1896A point mutation of hepatitis B virus (HBV) and safety of breast feeding. Serum and breast milk samples were collected from 62 pregnant women of HBV DNA positive/HBeAg negative. PCR-solid phase hybridization was used to detect the point mutation in pre-core region G1896A of HBV from pregnant women, and HBV DNA loads in sera and breast milk were determined by fluorescence quantitative PCR (FQ-PCR). The prevalence of point mutation was 61.3% (38/62) in 62 pregnant women with HBsAg positive/HBeAg negative. The positive rate of HBV DNA in breast milk of group with point mutation (28.9%) was similar to that of group without mutation (29.2%, chi2=0.0003, P>0.05). However, The positive rate of HBV DNA in breast milk of group with high HBV loads (56.0%) was significantly higher than that of group with low HBV loads (10.8%, chi2=14.79, P<0.01). The point mutation in pre-core region G1896A of HBV dose not affect the positive rate of HBV DNA in breast milk and higher HBV DNA loads in serum of pregnant women might increase the risk of mother-infant transmission.

  6. Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy

    NASA Astrophysics Data System (ADS)

    Kühnemund, Malte; Wei, Qingshan; Darai, Evangelia; Wang, Yingjie; Hernández-Neuta, Iván; Yang, Zhao; Tseng, Derek; Ahlford, Annika; Mathot, Lucy; Sjöblom, Tobias; Ozcan, Aydogan; Nilsson, Mats

    2017-01-01

    Molecular diagnostics is typically outsourced to well-equipped centralized laboratories, often far from the patient. We developed molecular assays and portable optical imaging designs that permit on-site diagnostics with a cost-effective mobile-phone-based multimodal microscope. We demonstrate that targeted next-generation DNA sequencing reactions and in situ point mutation detection assays in preserved tumour samples can be imaged and analysed using mobile phone microscopy, achieving a new milestone for tele-medicine technologies.

  7. Optimization of the Divergent method for genotyping single nucleotide variations using SYBR Green-based single-tube real-time PCR.

    PubMed

    Gentilini, Fabio; Turba, Maria E

    2014-01-01

    A novel technique, called Divergent, for single-tube real-time PCR genotyping of point mutations without the use of fluorescently labeled probes has recently been reported. This novel PCR technique utilizes a set of four primers and a particular denaturation temperature for simultaneously amplifying two different amplicons which extend in opposite directions from the point mutation. The two amplicons can readily be detected using the melt curve analysis downstream to a closed-tube real-time PCR. In the present study, some critical aspects of the original method were specifically addressed to further implement the technique for genotyping the DNM1 c.G767T mutation responsible for exercise-induced collapse in Labrador retriever dogs. The improved Divergent assay was easily set up using a standard two-step real-time PCR protocol. The melting temperature difference between the mutated and the wild-type amplicons was approximately 5°C which could be promptly detected by all the thermal cyclers. The upgraded assay yielded accurate results with 157pg of genomic DNA per reaction. This optimized technique represents a flexible and inexpensive alternative to the minor grove binder fluorescently labeled method and to high resolution melt analysis for high-throughput, robust and cheap genotyping of single nucleotide variations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A new Gsdma3 mutation affecting anagen phase of first hair cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shigekazu; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540; Tamura, Masaru

    2007-08-10

    Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showedmore » hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells.« less

  9. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase.

    PubMed Central

    McGuire, M C; Nogueira, C P; Bartels, C F; Lightstone, H; Hajra, A; Van der Spek, A F; Lockridge, O; La Du, B N

    1989-01-01

    A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. A polymorphic site near the C terminus of the coded region was detected, but neither allele at this locus segregated consistently with the atypical trait. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for all 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of 32P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. We conclude that the Asp-70----Gly mutation (acidic to neutral amino acid substitution) accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool. Images PMID:2915989

  10. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles.

    PubMed

    Ercan, Meltem; Ozalp, Veli C; Tuna, Bilge G

    2017-11-15

    The development of simple, reliable, and rapid approaches for molecular detection of common mutations is important for prevention and early diagnosis of genetic diseases, including Thalessemia. Oligonucleotide-gated mesoporous nanoparticles-based analysis is a new platform for mutation detection that has the advantages of sensitivity, rapidity, accuracy, and convenience. A specific mutation in β-thalassemia, one of the most prevalent inherited diseases in several countries, was used as model disease in this study. An assay for detection of IVS110 point mutation (A > G reversion) was developed by designing probe-gated mesoporous silica nanoparticles (MCM-41) loaded with reporter fluorescein molecules. The silica nanoparticles were characterized by AFM, TEM and BET analysis for having 180 nm diameter and 2.83 nm pore size regular hexagonal shape. Amine group functionalized nanoparticles were analysed with FTIR technique. Mutated and normal sequence probe oligonucleotides)about 12.7 nmol per mg nanoparticles) were used to entrap reporter fluorescein molecules inside the pores and hybridization with single stranded DNA targets amplified by PCR gave different fluorescent signals for mutated targets. Samples from IVS110 mutated and normal patients resulted in statistically significant differences when the assay procedure were applied. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells.

    USGS Publications Warehouse

    Hussein, Islam T.M.; Ma, Eric J.; Meixell, Brandt W.; Hill, Nichola J.; Lindberg, Mark S.; Albrecht , Randy A.; Bahl, Justin; Runstadler, Jonathan A.

    2016-01-01

    H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~ 12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context.

  12. A pilot study of mitochondrial DNA point mutation A3243G in a sample of Croatian patients having type 2 diabetes mellitus associated with maternal inheritance.

    PubMed

    Martin-Kleiner, I; Pape-Medvidović, E; Pavlić-Renar, I; Metelko, Z; Kusec, R; Gabrilovac, J; Boranić, M

    2004-12-01

    In this work, patients having type 2 diabetes mellitus and diabetic mothers were tested for the presence of mitochondrial DNA point mutation A3243G. This mutation is associated with the MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), diabetes and deafness. Twenty-two diabetic persons were screened. DNA was isolated from peripheral blood lymphocytes and from swabs of oral mucosa. The mitochondrial DNA point mutation A3243G was detected using PCR-RFLP test. The mutation was detected in oral mucosal DNA of two patients (but not from lymphocyte DNA). One patient was a man with hearing and visual impairments and proteinuria; the other was a woman having proteinuria but no hearing impairment. The mutation was not detectable in oral mucosal DNA from the control persons: 20 diabetic patients having diabetic fathers and 22 healthy, nondiabetic volunteers. The incidence of mitochondrial DNA point mutation A3243G in this study of Croatian diabetic patients is in line with data in the literature.

  13. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-17

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.

  14. Two novel mutations in NOTCH3 gene causes cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy in two Chinese families.

    PubMed

    Zhu, Yuyou; Wang, Juan; Wu, Yuanbo; Wang, Guoping; Hu, Bai

    2015-01-01

    To investigate the genetic pathogenic causes of cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy (CADASIL) in two Chinese families, to provide the molecular basis for genetic counseling and antenatal diagnosis. The genetic mutation of gene NOTCH3 of propositus and family members was analyzed in these two CADASIL families by polymerase chain reaction and DNA sequencing technology directly. At the same time, the NOTCH3 gene mutation point of 100 healthy collators was detected, to explicit the pathogenic mutation by function prediction with Polyphen-2 and SIFT. Both propositus of the two families and patients with symptom were all accorded with the clinical features of CADASIL. It was shown by DNA sequencing that the 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] in gene NOTCH3 of propositus, 2 patients (II3, III7), and a presymptomatic patient (IV1) in Family I all had heterozygosity missense mutation; and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in gene NOTCH3 of the propositus, a patient (IV3) and two presymptomatic patients (IV5, 6) in Family II all had heterozygosity missense mutation; and no mutations were detected in the 100 healthy collators. It was indicated by analyzing the function prediction that the mutation of [c. 3043 T > A (p.Cys1015Ser)] and [c.316T > G, p. (Cys106Gly)] may both influence encoding protein in NOTCH3. By analysis of the conservatism of mutation point in each species, these two basic groups were highly conserved. The heterozygosity missense mutation of 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in NOTCH3 gene are the new pathogenic mutations of CADASIL, and enriches the mutation spectrum of NOTCH3 gene.

  15. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    PubMed

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  16. Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations.

    PubMed

    Scimone, Concetta; Bramanti, Placido; Alafaci, Concetta; Granata, Francesca; Piva, Francesco; Rinaldi, Carmela; Donato, Luigi; Greco, Federica; Sidoti, Antonina; D'Angelo, Rosalia

    2017-02-01

    Cerebral cavernous malformations (CCMs) are lesions affecting brain microvessels. The pathogenesis is not clearly understood. Conventional classification criterion is based on genetics, and thus, familial and sporadic forms can be distinguished; however, classification of sporadic cases with multiple lesions still remains uncertain. To date, three CCM causative genes have been identified: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. In our previous mutation screening, performed in a cohort of 95 Italian patients, with both sporadic and familial cases, we identified several mutations in CCM genes. This study represents further molecular screening in a cohort of 19 Italian patients enrolled by us in the few last years and classified into familial, sporadic and sporadic with multiple lesions cases. Direct sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis were performed to detect point mutations and large genomic rearrangements, respectively. Effects of detected mutations and single-nucleotide polymorphisms (SNPs) were evaluated by an in silico approach and by western blot analysis. A novel nonsense mutation in CCM1 and a novel missense mutation in CCM2 were detected; moreover, several CCM2 gene polymorphisms in sporadic CCM patients were reported. We believe that these data enrich the mutation spectrum of CCM genes, which is useful for genetic counselling to identify both familial and sporadic CCM cases, as early as possible.

  17. Impact of point mutation P29S in RAC1 on tumorigenesis.

    PubMed

    Rajendran, Vidya; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj

    2016-11-01

    A point mutation (P29S) in the RAS-related C3 botulinum toxin substrate 1 (RAC1) was considered to be a trigger for melanoma, a form of skin cancer with highest mortality rate. In this study, we have investigated the pathogenic role of P29S based on the conformational behavior of RAC1 protein toward guanosine triphosphate (GTP). Molecular interaction, molecular dynamics trajectory analysis (RMSD, RMSF, Rg, SASA, DSSP, and PCA), and shape analysis of binding pocket were performed to analyze the interaction energy and the dynamic behavior of native and mutant RAC1 at the atomic level. Due to this mutation, the RAC1 switch I region acquired more flexibility and, to compensate it, the switch II region becomes rigid in their conformational space, as a result of which the interaction energy of the protein for GTP increased. The overall results strongly implied that the changes in atomic conformation of the switch I and II regions in mutant RAC1 protein were a significant reason for its malignant transformation and tumorigenesis. We raised the opportunity for researchers to design possible therapeutic molecule by considering our findings.

  18. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophinmore » lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.« less

  19. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa

    PubMed Central

    García-García, Gema; Jaijo, Teresa; Aparisi, Maria J.; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M.

    2014-01-01

    Purpose The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. Methods The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. Results We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Conclusions Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures. PMID:25352746

  20. [Myofibroma/myofibromatosis: a clinicopathologic analysis of 9 cases].

    PubMed

    Fu, Y; Guan, W Y; Wu, H Y; Wu, H Y; Fan, Z W; Ye, Q; Meng, F Q

    2018-01-08

    Objective: To investigate the clinical and histological features, diagnosis and differential diagnosis of myofibroma/myofibromatosis. Methods: The clinical data and pathology features of nine cases of myofibroma/myofibromatosis were collected from August 2011 to November 2016 in Affiliated Drum Tower Hospital, Nanjing University Medical School and Children's Hospital of Nanjing Medical University. Immunohistochemistry(IHC), PDGFRB molecular analysis and ETV6-NTRK3 gene fusion were performed and relevant literature reviewed. Results: There were 7 males and 2 females, with age ranging from 3 days to 18 years (mean 5 years). The tumors were located in head and neck (eight cases) and trunk (one case). Clinically, the tumors presented as freely movable nodules. Microscopically, they appeared biphasic with alternating light- and dark-staining areas. The light-staining area consisted mainly of plump myoid spindle cells with eosinophilic cytoplasm arranged in nodules, short fascicles, or whorls.The dark-staining area was composed of round or polygonal cells with slightly hyperchromatic nuclei or small spindle cells arranged around a distinct hemangiopericytoma-like vascular pattern. IHC showed the tumor cells in the light-staining area were strongly positive for vimentin and SMA, while cells in dark-staining area were strongly positive for vimentin, and weakly for SMA. Tumor cells were negative for desmin, S-100 protein, h-Caldesmon, CD34 and STAT6. Analysis of PDGFRB mutations was performed in seven cases. Two cases showed 12 exon point mutation c. 1681 c>T(p.R561C), one case showed 14 exon point mutation c. 1998C>G (p.N666K). ETV6-NTRK3 gene fusion was not detected by fluorescence in situ hybridization in four patients under three years old. All cases were followed for 6 to 68 months, with two recurrences. Conclusions: Myofibroma/myofibromatosis is an uncommon benign myofibroblastic tumor of infancy and childhood. The tumor can appear biphasic, and may show PDGFRB point mutation which is of potential diagnostic value.

  1. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiort, O.; Huang, Q.; Sinnecker, G.H.G.

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis andmore » direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.« less

  2. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing.

    PubMed

    Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C

    2018-06-01

    High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.

  3. Nras and Kras mutation in Japanese lung cancer patients: Genotyping analysis using LightCycler.

    PubMed

    Sasaki, Hidefumi; Okuda, Katsuhiro; Kawano, Osamu; Endo, Katsuhiko; Yukiue, Haruhiro; Yokoyama, Tomoki; Yano, Motoki; Fujii, Yoshitaka

    2007-09-01

    Activating mutations of Ras gene families have been found in a variety of human malignancies, including lung cancer, suggesting their dominant role in tumorigenesis. Many studies have showed that the Kras gene is activated by point mutations in approximately 15-20% of non-small cell lung cancers (NSCLCs), however, there are only a few reports on Nras mutations in NSCLC. We have genotyped Nras mutation status (n=195) and Kras mutation status (n=190) in surgically treated lung adenocarcinoma cases. The presence or absence of Nras and Kras mutations was analyzed by real-time quantitative polymerase chain reaction (PCR) with mutation-specific sensor and anchor probes. EGFR mutation status at kinase domain has already been reported. Nras mutation was found in 1 of 195 patients. This mutation was a G-to-T transversion, involving the substitution of the normal glycine (GGT) with cystein (TGT) and thought to be a somatic mutation. The patient was male and a smoker. Kras mutant patients (11.1%; 21/190) had a significantly worse prognosis than wild-type patients (p=0.0013). Eighty-two EGFR mutations at kinase domain had exclusively Nras or Kras mutations. Although Nras gene mutation might be one of the mechanisms of oncogenesis of lung adenocarcinoma, this was a very rare event. Further studies are needed to confirm the mechanisms of Nras mutations for the sensitivity of molecular target therapy for lung cancer.

  4. Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate

    PubMed Central

    Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou

    2017-01-01

    Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259

  5. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    PubMed Central

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rund, D.; Cohen, T.; Filon, D.

    {beta}-Thalassemia is a hereditary disease caused by any of 90 different point mutations in the {beta}-globin gene. Specific populations generally carry a small number of mutations, the most common of which are those that are widely distributed regionally. The present study constitutes an extensive molecular characterization of this disease in a small, highly inbred ethnic group with a high incidence of {beta}-thalassemia-the Jews of Kurdistan. An unusual mutational diversity was observed. In 42 sibships 13 different mutations were identified, of which 3 are newly discovered. Four of the mutations are unique to Kurdish Jews and have not been discovered inmore » any other population. A fifth was found outside Kurdish Jews only in an Iranian from Khuzistan, a region bordering Kurdistan. Two-thirds of the mutant chromosomes carry the mutations unique to Kurdish Jews. The authors traced the origin of the mutations to specific geographic regions within Kurdistan. This information, supported by haplotype analysis, suggests that thalassemia in central Kurdistan (northern Iraq) has evolved primarily from multiple mutational events. They conclude that several evolutionary mechanisms contributed to the evolution of {beta}-thalassemia in this small ethnic isolate.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boustany, R.M.; Qian, W.H.; Suzuki, K.

    The authors describe four new mutations in the [beta]-galactosidase gene. These are the first mutations causing infantile and juvenile GM[sub 1]-gangliosidosis to be described in American patients. Cell lines from two patients with juvenile and from six patients with infantile GM[sub 1]-gangliosidosis were analyzed. Northern blot analysis showed the acid [beta]-galactosidase message to be of normal size and quantity in two juvenile and four infantile cases and of normal size but reduced quantity in two infantile cases. The mutations are distinct from the Japanese mutations. All are point mutations leading to amino acid substitutions: Lys[sup 577] [yields] Arg, Arg[sup 590]more » [yields] His, and Glu[sup 632] [yields] Gly. The fourth mutation, Arg[sup 208] [yields] Cys, accounts for 10 of 16 possible alleles. Two infantile cases from Puerto Rico of Spanish ancestry are homozygous for this mutation, suggesting that this allele may have come to South America and North America via Puerto Rico. That these mutations cause clinical disease was confirmed by marked reduction in catalytic activity of the mutant proteins in the Cos-1 cell expression system. 12 refs., 5 figs., 2 tabs.« less

  8. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases

    PubMed Central

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-01-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC3 (NM_003786.3:c.1783-1G>A), KLHDC1 (NM_172193.1:c.568-2A>G), HOOK1 (NM_015888.4:c.1662-1G>A), SMAD9 (NM_001127217.2:c.1004-1C>T), and DNAH9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC3, HOOK1. In ABCC3 and HOOK1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4–6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis. PMID:24498620

  9. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) formore » Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.« less

  10. Analysis of the genes encoding neuroligins NLGN3 and NLGN4 in Bulgarian patients with autism.

    PubMed

    Avdjieva-Tzavella, D M; Todorov, T P; Todorova, A P; Kirov, A V; Hadjidekova, S P; Rukova, B B; Litvinenko, I O; Hristova-Naydenova, D N; Tincheva, R S; Toncheva, D I

    2012-01-01

    Many studies have supported a genetic aetiology for autism. Neuroligins are postsynaptically located cell-adhesion molecules. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have been implicated in pathogenesis of autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 20 individuals affected with autism. We identified one patient with a point mutation in NLGN4 gene that substituted a Met for Thr 787 - c.2360C > T, p.(Thr787Met) and three patients with identical polymorphisms in the same gene: c.933C > T, p.(Thr311Thr) in combination with c.[1777C > T+1779C > G, p.(Leu593Leu)]. All patients tested for NLGN3 mutations were negative. These results indicate that mutations in these genes are responsible for at most a small fraction of autism cases.

  11. Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy

    PubMed Central

    Kühnemund, Malte; Wei, Qingshan; Darai, Evangelia; Wang, Yingjie; Hernández-Neuta, Iván; Yang, Zhao; Tseng, Derek; Ahlford, Annika; Mathot, Lucy; Sjöblom, Tobias; Ozcan, Aydogan; Nilsson, Mats

    2017-01-01

    Molecular diagnostics is typically outsourced to well-equipped centralized laboratories, often far from the patient. We developed molecular assays and portable optical imaging designs that permit on-site diagnostics with a cost-effective mobile-phone-based multimodal microscope. We demonstrate that targeted next-generation DNA sequencing reactions and in situ point mutation detection assays in preserved tumour samples can be imaged and analysed using mobile phone microscopy, achieving a new milestone for tele-medicine technologies. PMID:28094784

  12. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  13. Analysis of the mutations induced by conazole fungicides in vivo.

    PubMed

    Ross, Jeffrey A; Leavitt, Sharon A

    2010-05-01

    The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue transgenic mutation assay when administered in feed at tumorigenic doses, whereas the non-tumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet was conducted to gain additional insight into the mode of action by which tumorigenic conazoles induce mutations. Relative dinucleotide mutabilities (RDMs) were calculated for each possible dinucleotide in each treatment group and then examined by multivariate statistical analysis techniques. Unsupervised hierarchical clustering analysis of RDM values segregated two independent control groups together, along with the non-tumorigen myclobutanil. The two tumorigenic conazoles clustered together in a distinct grouping. Partitioning around mediods of RDM values into two clusters also groups the triadimefon and propiconazole together in one cluster and the two control groups and myclobutanil together in a second cluster. Principal component analysis of these results identifies two components that account for 88.3% of the variability in the points. Taken together, these results are consistent with the hypothesis that propiconazole- and triadimefon-induced mutations do not represent clonal expansion of background mutations and support the hypothesis that they arise from the accumulation of reactive electrophilic metabolic intermediates within the liver in vivo.

  14. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  15. Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects

    PubMed Central

    Ware, Stephanie M.; Peng, Jianlan; Zhu, Lirong; Fernbach, Susan; Colicos, Suzanne; Casey, Brett; Towbin, Jeffrey; Belmont, John W.

    2004-01-01

    Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy and have also been identified in patients with isolated congenital heart disease (CHD). To determine the relative contribution of ZIC3 mutations to both heterotaxy and isolated CHD, we screened the coding region of ZIC3 in 194 unrelated patients, including 61 patients with classic heterotaxy, 93 patients with heart defects characteristic of heterotaxy, and 11 patients with situs inversus totalis. Five novel ZIC3 mutations in three classic heterotaxy kindreds and two sporadic CHD cases were identified. None of these alleles was found in 97 ethnically matched control samples. On the basis of these analyses, we conclude that the phenotypic spectrum of ZIC3 mutations should be expanded to include affected females and CHD not typical for heterotaxy. This screening of a cohort of patients with sporadic heterotaxy indicates that ZIC3 mutations account for ∼1% of affected individuals. Missense and nonsense mutations were found in the highly conserved zinc finger–binding domain and in the N-terminal protein domain. Functional analysis of all currently known ZIC3 point mutations indicates that mutations in the putative zinc finger DNA binding domain and in the N-terminal domain result in loss of reporter gene transactivation. It is surprising that transfection studies demonstrate aberrant cytoplasmic localization resulting from mutations between amino acids 253–323 of the ZIC3 protein, indicating that the pathogenesis of a subset of ZIC3 mutations results at least in part from failure of appropriate nuclear localization. These results further expand the phenotypic and genotypic spectrum of ZIC3 mutations and provide initial mechanistic insight into their functional consequences. PMID:14681828

  16. PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.

    The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called themore » protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.« less

  17. p53 mutation and expression in lymphoma.

    PubMed Central

    Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.

    1995-01-01

    Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045

  18. The value of mutational profiling of the cytocentrifugation supernatant fluid from fine-needle aspiration of pancreatic solid mass lesions.

    PubMed

    Deftereos, Georgios; Finkelstein, Sydney D; Jackson, Sara A; Ellsworth, Eric M G; Krishnamurti, Uma; Liu, Yulin; Silverman, Jan F; Binkert, Candy R; Ujevich, Beth A; Mohanty, Alok

    2014-04-01

    Fine-needle aspiration (FNA) of pancreatic solid masses can be significantly impacted by sampling variation. Molecular analysis of tumor DNA can be an aid for more definitive diagnosis. The aim of this study was to evaluate how molecular analysis of the cell-free cytocentrifugation supernatant DNA can help reduce sampling variability and increase diagnostic yield. Twenty-three FNA smears from pancreatic solid masses were performed. Remaining aspirates were rinsed for preparation of cytocentrifuged slides or cell blocks. DNA was extracted from supernatant fluid and assessed for DNA quantity spectrophotometrically and for amplifiability by quantitative PCR (qPCR). Supernatants with adequate DNA were analyzed for mutations using PCR/capillary electrophoresis for a broad panel of markers (KRAS point mutation by sequencing, microsatellite fragment analysis for loss of heterozygosity (LOH) of 16 markers at 1p, 3p, 5q, 9p, 10q, 17p, 17q, 21q, and 22q). In selected cases, microdissection of stained cytology smears and/or cytocentrifugation cellular slides were analyzed and compared. In all, 5/23 samples cytologically confirmed as adenocarcinoma showed detectable mutations both in the microdissected slide-based cytology cells and in the cytocentrifugation supernatant. While most mutations detected were present in both microdissected slides and supernatant fluid specimens, the latter showed additional mutations supporting greater sensitivity for detecting relevant DNA damage. Clonality for individual marker mutations was higher in the supernatant fluid than in microdissected cells. Cytocentrifugation supernatant fluid contains levels of amplifiable DNA suitable for mutation detection and characterization. The finding of additional detectable mutations at higher clonality indicates that supernatant fluid may be enriched with tumor DNA. Molecular analysis of the supernatant fluid could serve as an adjunct method to reduce sampling variability and increase diagnostic yield, especially in cases with a high clinical suspicion for malignancy and limited number of atypical cells in the smears.

  19. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics.

    PubMed

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-03-18

    Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.

  20. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics

    PubMed Central

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-01-01

    Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype–phenotype analyses. Setting All analyses were performed in a large German laboratory specialised in genetic diagnostics. Results 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. Conclusions On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype–phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position. PMID:23512835

  1. Prevalence of c-KIT Mutations in Gonadoblastoma and Dysgerminomas of Patients with Disorders of Sex Development (DSD) and Ovarian Dysgerminomas

    PubMed Central

    Hersmus, Remko; Stoop, Hans; van de Geijn, Gert Jan; Eini, Ronak; Biermann, Katharina; Oosterhuis, J. Wolter; DHooge, Catharina; Schneider, Dominik T.; Meijssen, Isabelle C.; Dinjens, Winand N. M.; Dubbink, Hendrikus Jan; Drop, Stenvert L. S.; Looijenga, Leendert H. J.

    2012-01-01

    Activating c-KIT mutations (exons 11 and 17) are found in 10–40% of testicular seminomas, the majority being missense point mutations (codon 816). Malignant ovarian dysgerminomas represent ∼3% of all ovarian cancers in Western countries, resembling testicular seminomas, regarding chromosomal aberrations and c-KIT mutations. DSD patients with specific Y-sequences have an increased risk for Type II Germ Cell Tumor/Cancer, with gonadoblastoma as precursor progressing to dysgerminoma. Here we present analysis of c-KIT exon 8, 9, 11, 13 and 17, and PDGFRA exon 12, 14 and 18 by conventional sequencing together with mutational analysis of c-KIT codon 816 by a sensitive and specific LightCycler melting curve analysis, confirmed by sequencing. The results are combined with data on TSPY and OCT3/4 expression in a series of 16 DSD patients presenting with gonadoblastoma and dysgerminoma and 15 patients presenting pure ovarian dysgerminomas without DSD. c-KIT codon 816 mutations were detected in five out of the total of 31 cases (all found in pure ovarian dysgerminomas). A synonymous SNP (rs 5578615) was detected in two patients, one DSD patient (with bilateral disease) and one patient with dysgerminoma. Next to these, three codon N822K mutations were detected in the group of 15 pure ovarian dysgerminomas. In total activating c-KIT mutations were found in 53% of ovarian dysgerminomas without DSD. In the group of 16 DSD cases a N505I and D820E mutation was found in a single tumor of a patient with gonadoblastoma and dysgerminoma. No PDGFRA mutations were found. Positive OCT3/4 staining was present in all gonadoblastomas and dysgerminomas investigated, TSPY expression was only seen in the gonadoblastoma/dysgerminoma lesions of the 16 DSD patients. This data supports the existence of two distinct but parallel pathways in the development of dysgerminoma, in which mutational status of c-KIT might parallel the presence of TSPY. PMID:22937135

  2. Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Heyer, Christina M; Sundsbak, Jamie L; Abebe, Kaleab Z; Chapman, Arlene B; Torres, Vicente E; Grantham, Jared J; Bae, Kyongtae T; Schrier, Robert W; Perrone, Ronald D; Braun, William E; Steinman, Theodore I; Mrug, Michal; Yu, Alan S L; Brosnahan, Godela; Hopp, Katharina; Irazabal, Maria V; Bennett, William M; Flessner, Michael F; Moore, Charity G; Landsittel, Douglas; Harris, Peter C

    2016-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) often results in ESRD but with a highly variable course. Mutations to PKD1 or PKD2 cause ADPKD; both loci have high levels of allelic heterogeneity. We evaluated genotype-phenotype correlations in 1119 patients (945 families) from the HALT Progression of PKD Study and the Consortium of Radiologic Imaging Study of PKD Study. The population was defined as: 77.7% PKD1, 14.7% PKD2, and 7.6% with no mutation detected (NMD). Phenotypic end points were sex, eGFR, height-adjusted total kidney volume (htTKV), and liver cyst volume. Analysis of the eGFR and htTKV measures showed that the PKD1 group had more severe disease than the PKD2 group, whereas the NMD group had a PKD2-like phenotype. In both the PKD1 and PKD2 populations, men had more severe renal disease, but women had larger liver cyst volumes. Compared with nontruncating PKD1 mutations, truncating PKD1 mutations associated with lower eGFR, but the mutation groups were not differentiated by htTKV. PKD1 nontruncating mutations were evaluated for conservation and chemical change and subdivided into strong (mutation strength group 2 [MSG2]) and weak (MSG3) mutation groups. Analysis of eGFR and htTKV measures showed that patients with MSG3 but not MSG2 mutations had significantly milder disease than patients with truncating cases (MSG1), an association especially evident in extreme decile populations. Overall, we have quantified the contribution of genic and PKD1 allelic effects and sex to the ADPKD phenotype. Intrafamilial correlation analysis showed that other factors shared by families influence htTKV, with these additional genetic/environmental factors significantly affecting the ADPKD phenotype. Copyright © 2016 by the American Society of Nephrology.

  3. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling.

    PubMed

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes.

  4. Two novel mutations in the POU1F1 gene generate null alleles through different mechanisms leading to combined pituitary hormone deficiency.

    PubMed

    Turton, J P; Strom, M; Langham, S; Dattani, M T; Le Tissier, P

    2012-03-01

      Mutations in the POU1F1 gene severely affect the development and function of the anterior pituitary gland and lead to combined pituitary hormone deficiency (CPHD).   The clinical and genetic analysis of a patient presenting with CPHD and functional characterization of identified mutations.   We describe a male patient with extreme short stature, learning difficulties, anterior pituitary hypoplasia, secondary hypothyroidism and undetectable prolactin, growth hormone (GH) and insulin-like growth factor 1 (IGF1), with normal random cortisol.   The POU1F1 coding region was amplified by PCR and sequenced; the functional consequence of the mutations was analysed by cell transfection and in vitro assays.   Genetic analysis revealed compound heterozygosity for two novel putative loss of function mutations in POU1F1: a transition at position +3 of intron 1 [IVS1+3nt(A>G)] and a point mutation in exon 6 resulting in a substitution of arginine by tryptophan (R265W). Functional analysis revealed that IVS1+3nt(A>G) results in a reduction in the correctly spliced POU1F1 mRNA, which could be corrected by mutations of the +4, +5 and +6 nucleotides. Analysis of POU1F1(R265W) revealed complete loss of function resulting from severely reduced protein stability.   Combined pituitary hormone deficiency in this patient is caused by loss of POU1F1 function by two novel mechanisms, namely aberrant splicing (IVS1+3nt (A>G) and protein instability (R265W). Identification of the genetic basis of CPHD enabled the cessation of hydrocortisone therapy without the need for further assessment for evolving endocrinopathy. © 2012 Blackwell Publishing Ltd.

  5. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature.

    PubMed

    Takemura, Kazuhiro; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro; Kitao, Akio

    2017-07-28

    The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight "zeppelin-shaped" dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.

  6. Prevalence of HIV-1 Subtypes and Drug Resistance-Associated Mutations in HIV-1-Positive Treatment-Naive Pregnant Women in Pointe Noire, Republic of the Congo (Kento-Mwana Project).

    PubMed

    Bruzzone, Bianca; Saladini, Francesco; Sticchi, Laura; Mayinda Mboungou, Franc A; Barresi, Renata; Caligiuri, Patrizia; Calzi, Anna; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio; Bisio, Francesca

    2015-08-01

    The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission.

  7. A universal method for the mutational analysis of K-ras and p53 gene in non-small-cell lung cancer using formalin-fixed paraffin-embedded tissue.

    PubMed

    Sarkar, F H; Valdivieso, M; Borders, J; Yao, K L; Raval, M M; Madan, S K; Sreepathi, P; Shimoyama, R; Steiger, Z; Visscher, D W

    1995-12-01

    The p53 tumor suppressor gene has been found to be altered in almost all human solid tumors, whereas K-ras gene mutations have been observed in a limited number of human cancers (adenocarcinoma of colon, pancreas, and lung). Studies of mutational inactivation for both genes in the same patient's sample on non-small-cell lung cancer have been limited. In an effort to perform such an analysis, we developed and compared methods (for the mutational detection of p53 and K-ras gene) that represent a modified and universal protocol, in terms of DNA extraction, polymerase chain reaction (PCR) amplification, and nonradioisotopic PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, which is readily applicable to either formalin-fixed, paraffin-embedded tissues or frozen tumor specimens. We applied this method to the evaluation of p53 (exons 5-8) and K-ras (codon 12 and 13) gene mutations in 55 cases of non-small-cell lung cancer. The mutational status in the p53 gene was evaluated by radioisotopic PCR-SSCP and compared with PCR-SSCP utilizing our standardized nonradioisotopic detection system using a single 6-microns tissue section. The mutational patterns observed by PCR-SSCP were subsequently confirmed by PCR-DNA sequencing. The mutational status in the K-ras gene was similarly evaluated by PCR-SSCP, and the specific mutation was confirmed by Southern slot-blot hybridization using 32P-labeled sequence-specific oligonucleotide probes for codons 12 and 13. Mutational changes in K-ras (codon 12) were found in 10 of 55 (18%) of non-small-cell lung cancers. Whereas adenocarcinoma showed K-ras mutation in 33% of the cases at codon 12, only one mutation was found at codon 13. As expected, squamous cell carcinoma samples (25 cases) did not show K-ras mutations. Mutations at exons 5-8 of the p53 gene were documented in 19 of 55 (34.5%) cases. Ten of the 19 mutations were single nucleotide point mutations, leading to amino acid substitution. Six showed insertional mutation, and three showed deletion mutations. Only three samples showed mutations of both K-ras and p53 genes. We conclude that although K-ras and p53 gene mutations are frequent in non-small-cell lung cancer, mutations of both genes in the same patient's samples are not common. We also conclude that this universal nonradioisotopic method is superior to other similar methods and is readily applicable to the rapid screening of large numbers of formalin-fixed, paraffin-embedded or frozen samples for the mutational analysis of multiple genes.

  8. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.

    PubMed

    Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro

    2009-03-01

    Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38 degrees C.

  9. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, T.; Tatsumi-Miyajima, J.; Sato, M.

    1991-06-15

    To assess the contribution to mutagenesis by human DNA repair defects, a UV-treated shuttle vector plasmid, pZ189, was passed through fibroblasts derived from Japanese xeroderma pigmentosum (XP) patients in two different DNA repair complementation groups (A and F). Patients with XP have clinical and cellular UV hypersensitivity, increased frequency of skin cancer, and defects in DNA repair. The XP DNA repair defects represented by complementation groups A (XP-A) and F (XP-F) are more common in Japan than in Europe or the United States. In comparison to results with DNA repair-proficient human cells (W138-VA13), UV-treated pZ189 passed through the XP-A (XP2OS(SV))more » or XP-F (XP2YO(SV)) cells showed fewer surviving plasmids (XP-A less than XP-F) and a higher frequency of mutated plasmids (XP-A greater than XP-F). Base sequence analysis of more than 200 mutated plasmids showed the major type of base substitution mutation to be the G:C----A:T transition with all three cell lines. The XP-A and XP-F cells revealed a higher frequency of G:C----A:T transitions and a lower frequency of transversions among plasmids with single or tandem mutations and a lower frequency of plasmids with multiple point mutations compared to the normal line. The spectrum of mutations in pZ189 with the XP-A cells was similar to that with the XP-F cells. Seventy-six to 91% of the single base substitution mutations occurred at G:C base pairs in which the 5{prime}-neighboring base of the cytosine was thymine or cytosine. These studies indicate that the DNA repair defects in Japanese XP patients in complementation groups A and F result in different frequencies of plasmid survival and mutagenesis but in similar types of mutagenic abnormalities despite marked differences in clinical features.« less

  10. [Linkage analysis of a family with familial hypertriglyceridemia].

    PubMed

    Tang, Xin; Lin, Ying; Liu, Bing; Ma, Shi; Yang, Yang; Yang, Zheng-lin

    2009-10-01

    To perform linkage analysis and mutation screening in a Chinese family with familial hpertriglyceridemia (FHTG). Thirty-two family members including 12 hypertriglyceridemia patients participated in the study. Genotyping and haplotype analysis for 22 subjects were performed using short tandem repeat (STR) microsatellite polymorphism markers on 16 candidate genes and/or loci related to lipid metabolism. Two of the sixteen known candidate genes, APOA2 and USF1 were screened for mutation by direct DNA sequencing. No linkage was found between the candidate genes/loci of APOA5, LIPI, RP1, APOC2, ABC1, LMF1, APOA1-APOC3-APOA4, LPL, APOB, CETP, LCAT, LDLR, APOE and the phenotype in this family. The two-point Lod scores (theta =0) were all less than-1.0 for all the markers tested. Linkage analysis suggested linkage to chromosome 1q23.3-24.2 between the disease phenotype and STR marker D1S194 with a two-point maximum Lod score of 2.44 at theta =0. Fine mapping indicated that the disease gene was localized to a 5.87 cM interval between D1S104 and D1S196. No disease-causing mutation was detected in the APOA2 and USF1 genes. The above mentioned candidate genes were excluded as the disease causing genes for this family. The results implied that there might be a novel gene/locus for FHTG on chromosome 1q23.3-1q24.2.

  11. Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING

    PubMed Central

    Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven

    2003-01-01

    TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384

  12. Point mutations which should not be overlooked in Hb H disease.

    PubMed

    Farashi, Samaneh; Bayat, Nooshin; Vakili, Shadi; Faramarzi Garous, Negin; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita

    2016-01-01

    Hb H disease is an alpha-thalassemia (α-thal) syndrome characterized by chronic hemolytic anemia that occurs when three of total four α-globin genes lost their function due to completely deletions or different kind of mutations. We here described 66 patients who have been diagnosed for Hb H disease during the last five years in our center. The genotypes involving point mutations present more severe phenotype than deletional forms that make them of primary important to health management. Hb H subjects carry different α-globin genotypes including deletional and non-deletional mutations showing heterogenous clinical manifestations. The Hb H patients presenting a wide range of phenotype carried different deletional, non-deletional mutations or compound heterozygosity of them. We emphasize the importance of some point mutations responsible for more severe form of Hb H disease in Iranian population and the necessity for consideration of prenatal diagnosis (PND) in high-risk couples.

  13. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing.

    PubMed

    Ağladıoğlu, Sebahat Yılmaz; Aycan, Zehra; Çetinkaya, Semra; Baş, Veysel Nijat; Önder, Aşan; Peltek Kendirci, Havva Nur; Doğan, Haldun; Ceylaner, Serdar

    2016-04-01

    Maturity-onset diabetes of the youth (MODY), is a genetically and clinically heterogeneous group of diseasesand is often misdiagnosed as type 1 or type 2 diabetes. The aim of this study is to investigate both novel and proven mutations of 11 MODY genes in Turkish children by using targeted next generation sequencing. A panel of 11 MODY genes were screened in 43 children with MODY diagnosed by clinical criterias. Studies of index cases was done with MISEQ-ILLUMINA, and family screenings and confirmation studies of mutations was done by Sanger sequencing. We identified 28 (65%) point mutations among 43 patients. Eighteen patients have GCK mutations, four have HNF1A, one has HNF4A, one has HNF1B, two have NEUROD1, one has PDX1 gene variations and one patient has both HNF1A and HNF4A heterozygote mutations. This is the first study including molecular studies of 11 MODY genes in Turkish children. GCK is the most frequent type of MODY in our study population. Very high frequency of novel mutations (42%) in our study population, supports that in heterogenous disorders like MODY sequence analysis provides rapid, cost effective and accurate genetic diagnosis.

  14. Effect of the R119G mutation on human P5CR structure and its interactions with NAD: Insights derived from molecular dynamics simulation and free energy analysis.

    PubMed

    Sang, Peng; Xie, Yue-Hui; Li, Lin-Hua; Ye, Yu-Jia; Hu, Wei; Wang, Jing; Wan, Wen; Li, Rui; Li, Long-Jun; Ma, Lin-Ling; Li, Zhi; Liu, Shu-Qun; Meng, Zhao-Hui

    2017-04-01

    Pyrroline-5-carboxylate reductase (P5CR), an enzyme with conserved housekeeping roles, is involved in the etiology of cutis laxa. While previous work has shown that the R119G point mutation in the P5CR protein is involved, the structural mechanism behind the pathology remains to be elucidated. In order to probe the role of the R119G mutation in cutis laxa, we performed molecular dynamics (MD) simulations, essential dynamics (ED) analysis, and Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on wild type (WT) and mutant P5CR-NAD complex. These MD simulations and ED analyses suggest that the R119G mutation decreases the flexibility of P5CR, specifically in the substrate binding pocket, which could decrease the kinetics of the cofactor entrance and egress. Furthermore, the MM-PBSA calculations suggest the R119G mutant has a lower cofactor binding affinity for NAD than WT. Our study provides insight into the possible role of the R119G mutation during interactions between P5CR and NAD, thus bettering our understanding of how the mutation promotes cutis laxa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  16. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  17. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  18. Different EGFR gene mutations in two patients with synchronous multiple lung cancers: A case report

    PubMed Central

    Sakai, Hiroki; Kimura, Hiroyuki; Tsuda, Masataka; Wakiyama, Yoichi; Miyazawa, Tomoyuki; Marushima, Hideki; Kojima, Koji; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Haruhiko

    2017-01-01

    Routine clinical and pathological evaluations to determine the relationship between different lesions are often not completely conclusive. Interestingly, detailed genetic analysis of tumor samples may provide important additional information and identify second primary lung cancers. In the present study, we report cases of two synchronous lung adenocarcinomas composed of two distinct pathological subtypes with different EGFR gene mutations: a homozygous deletion in exon 19 of the papillary adenocarcinoma subtype and a point mutation of L858R in exon 21 of the tubular adenocarcinoma. The present report highlights the clinical importance of molecular cancer biomarkers to guide management decisions in cases involving multiple lung tumors. PMID:29090842

  19. Mutation profile of KRAS and BRAF genes in patients with colorectal cancer: association with morphological and prognostic criteria.

    PubMed

    Samara, M; Kapatou, K; Ioannou, M; Kostopoulou, Ε; Papamichali, R; Papandreou, C; Athanasiadis, A; Koukoulis, G

    2015-12-14

    KRAS and BRAF mutations are well-recognized molecular alterations during colorectal carcinogenesis, but there is little agreement on their effect on tumor characteristics. Therefore, we aimed to evaluate the distribution of the most common KRAS and BRAF mutations in Greek patients with colorectal cancer and their possible associations with clinical histopathological parameters. In this study, 322 and 188 colorectal carcinomas were used for the mutation analysis of KRAS (exon 2) and BRAF (exon 15) genes, respectively. The mutational status of both genes was evaluated by polymerase chain reaction and sequencing analysis. Although the overall frequency of KRAS mutations (36.6%) seemed to be similar to those reported for other populations, the rate of point mutations at codon 13 was significantly lower (12%) in Greek patients with colorectal cancer and associated with male gender (P < 0.05). Tumors with G>T codon 12 transversions and G>C transitions showed more frequent lymph node metastasis (P < 0.05, P < 0.005, respectively). The rate of KRAS mutations gradually decreased with increasing histological grade (P < 0.05), as opposed to BRAF mutations, which were strongly associated with poorly differentiated tumors (P < 0.005). Additionally, we found that the histological features of preexisting adenoma were associated with the absence of BRAF mutations, in contrast to KRAS (P < 0.05). Our data suggested that there seems to be a correlation between morphological criteria and discrete genetic pathways in colorectal carcinogenesis. Moreover, ethnic or geographic factors may have an impact on genetic background of colorectal carcinomas, and specific types of KRAS mutations may influence the metastatic potential of colorectal tumors.

  20. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations.

    PubMed

    Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar

    2014-08-01

    Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.

  1. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype.

    PubMed

    Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul

    2016-01-01

    To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  2. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas.

    PubMed

    Murua Escobar, Hugo; Günther, Kathrin; Richter, Andreas; Soller, Jan T; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2004-01-01

    Point mutations within ras proto-oncogenes, particularly within the mutational hot-spot codons 12, 13 and 61, are frequently detected in human malignancies and in different types of experimentally-induced tumours in animals. So far little is known about ras mutations in naturally occurring canine fibrosarcomas or K-ras mutations in canine melanomas. To elucidate whether ras mutations exist in these naturally occurring tumours in dogs, in the present study we screened 13 canine fibrosarcomas, 2 feline fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot-spots, making this the first study to investigate a large number of canine fibrosarcomas. None of the samples showed a K- or N-ras hot spot mutation. Thus, our data strongly suggest that ras mutations at the hot-spot loci are very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine tumours investigated.

  3. Open-label, multicentre safety study of vemurafenib in 3219 patients with BRAFV600 mutation-positive metastatic melanoma: 2-year follow-up data and long-term responders' analysis.

    PubMed

    Blank, Christian U; Larkin, James; Arance, Ana M; Hauschild, Axel; Queirolo, Paola; Del Vecchio, Michele; Ascierto, Paolo A; Krajsova, Ivana; Schachter, Jacob; Neyns, Bart; Garbe, Claus; Chiarion Sileni, Vanna; Mandalà, Mario; Gogas, Helen; Espinosa, Enrique; Hospers, Geke A P; Miller, Wilson H; Robson, Susan; Makrutzki, Martina; Antic, Vladan; Brown, Michael P

    2017-07-01

    The orally available BRAF kinase inhibitor vemurafenib is an effective and tolerable treatment option for patients with metastatic melanoma harbouring BRAF V600 mutations. We assessed the safety of vemurafenib in a large population of patients with few alternative treatment options; we report updated 2-year safety. This was an open-label, multicentre study of vemurafenib (960 mg bid) in patients with previously treated or untreated BRAF mutation-positive metastatic melanoma (cobas ® 4800 BRAF V600 Mutation Test). The primary end-point was safety; efficacy end-points were secondary. An exploratory analysis was performed to assess safety outcomes in patients with long duration of response (DOR) (≥12 or ≥24 months). After a median follow-up of 32.2 months (95% CI, 31.1-33.2 months), 3079/3219 patients (96%) had discontinued treatment. Adverse events (AEs) were largely consistent with previous reports; the most common all-grade treatment-related AEs were arthralgia (37%), alopecia (25%) and hyperkeratosis (23%); the most common grade 3/4 treatment-related AEs were squamous cell carcinoma of the skin (8%) and keratoacanthoma (8%). In the exploratory analysis, patients with DOR ≥12 months (n = 287) or ≥24 months (n = 133) were more likely to experience grade 3/4 AEs than the overall population. No new specific safety signals were observed with longer vemurafenib exposure. After 2 years' follow-up, safety was maintained in this large group of patients with BRAF V600 mutation-positive metastatic melanoma who are more representative of routine clinical practice than typical clinical trial populations. These data suggest that long-term vemurafenib treatment is effective and tolerable without the development of new safety signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21.

    PubMed

    Preudhomme, C; Warot-Loze, D; Roumier, C; Grardel-Duflos, N; Garand, R; Lai, J L; Dastugue, N; Macintyre, E; Denis, C; Bauters, F; Kerckaert, J P; Cosson, A; Fenaux, P

    2000-10-15

    The AML1 gene, situated in 21q22, is often rearranged in acute leukemias through t(8;21) translocation, t(12;21) translocation, or less often t(3;21) translocation. Recently, point mutations in the Runt domain of the AML1 gene have also been reported in leukemia patients. Observations for mutations of the Runt domain of the AML1 gene in bone marrow cells were made in 300 patients, including 131 with acute myeloid leukemia (AML), 94 with myelodysplastic syndrome (MDS), 28 with blast crisis chronic myeloid leukemia (CML), 3 with atypical CML, 41 with acute lymphoblastic leukemia (ALL), and 3 with essential thrombocythemia (ET). Forty-one of the patients had chromosome 21 abnormalities, including t(8;21) in 6 of the patients with AML, t(12;21) in 8 patients with ALL, acquired trisomy 21 in 17 patients, tetrasomy 21 in 7 patients, and constitutional trisomy 21 (Down syndrome) in 3 patients. A point mutation was found in 14 cases (4.7%), including 9 (22%) of the 41 patients with AML of the Mo type (MoAML) (none of them had detectable chromosome 21 rearrangement) and 5 (38%) of the 13 myeloid malignancies with acquired trisomy 21 (1 M1AML, 2 M2AML, 1 ET, and 1 atypical CML). In at least 8 of 9 mutated cases of MoAML, both AML alleles were mutated: 3 patients had different stop codon mutations of the 2 AML1 alleles, and 5 patients had the same missense or stop codon mutation in both AML1 alleles, which resulted in at least 3 of the patients having duplication of the mutated allele and deletion of the normal residual allele, as shown by FISH analysis and by comparing microsatellite analyses of several chromosome 21 markers on diagnosis and remission samples. In the remaining mutated cases, with acquired trisomy 21, a missense mutation of AML1, which involved 2 of the 3 copies of the AML1 gene, was found. Four of the 7 mutated cases could be reanalyzed in complete remission, and no AML1 mutation was found, showing that mutations were acquired in the leukemic clone. In conclusion, these findings confirm the possibility of mutations of the Runt domain of the AML1 gene in leukemias, mainly in MoAML and in myeloid malignancies with acquired trisomy 21. AML1 mutations, in MoAML, involved both alleles and probably lead to nonfunctional AML1 protein. As AML1 protein regulates the expression of the myeloperoxidase gene, the relationship between AML1 mutations and Mo phenotype in AML will have to be further explored. (Blood. 2000;96:2862-2869)

  5. Improved survival with vemurafenib in melanoma with BRAF V600E mutation.

    PubMed

    Chapman, Paul B; Hauschild, Axel; Robert, Caroline; Haanen, John B; Ascierto, Paolo; Larkin, James; Dummer, Reinhard; Garbe, Claus; Testori, Alessandro; Maio, Michele; Hogg, David; Lorigan, Paul; Lebbe, Celeste; Jouary, Thomas; Schadendorf, Dirk; Ribas, Antoni; O'Day, Steven J; Sosman, Jeffrey A; Kirkwood, John M; Eggermont, Alexander M M; Dreno, Brigitte; Nolop, Keith; Li, Jiang; Nelson, Betty; Hou, Jeannie; Lee, Richard J; Flaherty, Keith T; McArthur, Grant A

    2011-06-30

    Phase 1 and 2 clinical trials of the BRAF kinase inhibitor vemurafenib (PLX4032) have shown response rates of more than 50% in patients with metastatic melanoma with the BRAF V600E mutation. We conducted a phase 3 randomized clinical trial comparing vemurafenib with dacarbazine in 675 patients with previously untreated, metastatic melanoma with the BRAF V600E mutation. Patients were randomly assigned to receive either vemurafenib (960 mg orally twice daily) or dacarbazine (1000 mg per square meter of body-surface area intravenously every 3 weeks). Coprimary end points were rates of overall and progression-free survival. Secondary end points included the response rate, response duration, and safety. A final analysis was planned after 196 deaths and an interim analysis after 98 deaths. At 6 months, overall survival was 84% (95% confidence interval [CI], 78 to 89) in the vemurafenib group and 64% (95% CI, 56 to 73) in the dacarbazine group. In the interim analysis for overall survival and final analysis for progression-free survival, vemurafenib was associated with a relative reduction of 63% in the risk of death and of 74% in the risk of either death or disease progression, as compared with dacarbazine (P<0.001 for both comparisons). After review of the interim analysis by an independent data and safety monitoring board, crossover from dacarbazine to vemurafenib was recommended. Response rates were 48% for vemurafenib and 5% for dacarbazine. Common adverse events associated with vemurafenib were arthralgia, rash, fatigue, alopecia, keratoacanthoma or squamous-cell carcinoma, photosensitivity, nausea, and diarrhea; 38% of patients required dose modification because of toxic effects. Vemurafenib produced improved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF V600E mutation. (Funded by Hoffmann-La Roche; BRIM-3 ClinicalTrials.gov number, NCT01006980.).

  6. Effect of mutation at the interface of Trp-repressor dimeric protein: a steered molecular dynamics simulation.

    PubMed

    Miño, German; Baez, Mauricio; Gutierrez, Gonzalo

    2013-09-01

    The strength of key interfacial contacts that stabilize protein-protein interactions have been studied by computer simulation. Experimentally, changes in the interface are evaluated by generating specific mutations at one or more points of the protein structure. Here, such an evaluation is performed by means of steered molecular dynamics and use of a dimeric model of tryptophan repressor and in-silico mutants as a test case. Analysis of four particular cases shows that, in principle, it is possible to distinguish between wild-type and mutant forms by examination of the total energy and force-extension profiles. In particular, detailed atomic level structural analysis indicates that specific mutations at the interface of the dimeric model (positions 19 and 39) alter interactions that appear in the wild-type form of tryptophan repressor, reducing the energy and force required to separate both subunits.

  7. Congenital disorder of glycosylation Ic due to a de novo deletion and an hALG-6 mutation.

    PubMed

    Eklund, Erik A; Sun, Liangwu; Yang, Samuel P; Pasion, Romela M; Thorland, Erik C; Freeze, Hudson H

    2006-01-20

    We describe a new cause of congenital disorder of glycosylation-Ic (CDG-Ic) in a young girl with a rather mild CDG phenotype. Her cells accumulated lipid-linked oligosaccharides lacking three glucose residues, and sequencing of the ALG6 gene showed what initially appeared to be a homozygous novel point mutation (338G>A). However, haplotype analysis showed that the patient does not carry any paternal DNA markers extending 33kb in the telomeric direction from the ALG6 region, and microsatellite analysis extended the abnormal region to at least 2.5Mb. We used high-resolution karyotyping to confirm a deletion (10-12Mb) [del(1)(p31.2p32.3)] and found no structural abnormalities in the father, suggesting a de novo event. Our findings extend the causes of CDG to larger DNA deletions and identify the first Japanese CDG-Ic mutation.

  8. Scanning the Effects of Ethyl Methanesulfonate on the Whole Genome of Lotus japonicus Using Second-Generation Sequencing Analysis

    PubMed Central

    Mohd-Yusoff, Nur Fatihah; Ruperao, Pradeep; Tomoyoshi, Nurain Emylia; Edwards, David; Gresshoff, Peter M.; Biswas, Bandana; Batley, Jacqueline

    2015-01-01

    Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm. PMID:25660167

  9. Identification of TCT, a novel knockdown resistance allele mutation and analysis of resistance detection methods in the voltage-gated Na⁺ channel of Culex pipiens pallens from Shandong Province, China.

    PubMed

    Liu, Hong-Mei; Cheng, Peng; Huang, Xiaodan; Dai, Yu-Hua; Wang, Hai-Fang; Liu, Li-Juan; Zhao, Yu-Qiang; Wang, Huai-Wei; Gong, Mao-Qing

    2013-02-01

    The present study aimed to investigate deltamethrin resistance in Culex pipiens pallens (C. pipiens pallens) mosquitoes and its correlation with knockdown resistance (kdr) mutations. In addition, mosquito‑resistance testing methods were analyzed. Using specific primers in polymerase chain reaction (PCR) and allele-specific (AS)-PCR, kdr gene sequences isolated from wild C. pipiens pallens mosquitoes were sequenced. Linear regression analysis was used to determine the correlation between the mutations and deltamethrin resistance. A kdr allelic gene was cloned and sequenced. Analysis of the DNA sequences revealed the presence of two point mutations at the L1014 residue in the IIS6 transmembrane segment of the voltage‑gated sodium channel (VGSC): L1014F, TTA→TTT, replacing a leucine (L) with a phenylalanine (F); L1014S, TTA→TCA, replacing leucine (L) with serine (S). Two alternative kdr-like mutations, L1014F and L1014S, were identified to be positively correlated with the deltamethrin-resistant phenotype. In addition a novel mutation, TCT, was identified in the VGSC of C. pipiens pallens. PCR and AS-PCR yielded consistent results with respect to mosquito resistance. However, the detection rate of PCR was higher than that of AS-PCR. Further studies are required to determine the specific resistance mechanism. PCR and AS-PCR demonstrated suitability for mosquito resistance field tests, however, the former method may be superior to the latter.

  10. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.

    PubMed

    Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C

    2015-09-01

    Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. A Novel Point Mutation at Position 156 of Reverse Transcriptase from Feline Immunodeficiency Virus Confers Resistance to the Combination of (−)-β-2′,3′-Dideoxy-3′-Thiacytidine and 3′-Azido-3′-Deoxythymidine

    PubMed Central

    Smith, Robert A.; Remington, Kathryn M.; Preston, Bradley D.; Schinazi, Raymond F.; North, Thomas W.

    1998-01-01

    Mutants of feline immunodeficiency virus (FIV) resistant to (−)-β-2′,3′-dideoxy-3′-thiacytidine (3TC) were selected by culturing virus in the presence of increasing stepwise concentrations of 3TC. Two plaque-purified variants were isolated from the original mutant population, and both of these mutants were resistant to 3TC. Surprisingly, these mutants were also phenotypically resistant to 3′-azido-3′-deoxythymidine (AZT) and to the combination of 3TC and AZT. Purified reverse transcriptase (RT) from one of these plaque-purified mutants was resistant to the 5′-triphosphates of 3TC and AZT. DNA sequence analysis of the RT-encoding region of the pol gene amplified from the plaque-purified mutants revealed a Pro-to-Ser mutation at position 156 of RT. A site-directed mutant of FIV engineered to contain this Pro-156-Ser mutation was resistant to 3TC, AZT, and the combination of 3TC and AZT, confirming the role of the Pro-156-Ser mutation in the resistance of FIV to these two nucleoside analogs. This represents the first report of a lentiviral mutant resistant to the combination of AZT and 3TC due to a single, unique point mutation. PMID:9499094

  12. Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer.

    PubMed

    Roperch, Jean-Pierre; Grandchamp, Bernard; Desgrandchamps, François; Mongiat-Artus, Pierre; Ravery, Vincent; Ouzaid, Idir; Roupret, Morgan; Phe, Véronique; Ciofu, Calin; Tubach, Florence; Cussenot, Olivier; Incitti, Roberto

    2016-09-01

    Non-muscle-invasive bladder cancer (NMIBC) is a high incidence form of bladder cancer (BCa), where genetic and epigenetic alterations occur frequently. We assessed the performance of associating a FGFR3 mutation assay and a DNA methylation analysis to improve bladder cancer detection and to predict disease recurrence of NMIBC patients. We used allele specific PCR to determine the FGFR3 mutation status for R248C, S249C, G372C, and Y375C. We preselected 18 candidate genes reported in the literature as being hypermethylated in cancer and measured their methylation levels by quantitative multiplex-methylation specific PCR. We selected HS3ST2, SLIT2 and SEPTIN9 as the most discriminative between control and NMIBC patients and we assayed these markers on urine DNA from a diagnostic study consisting of 167 NMIBC and 105 controls and a follow-up study consisting of 158 NMIBC at diagnosis time's and 425 at follow-up time. ROC analysis was performed to evaluate the diagnostic accuracy of each assay alone and in combination. For Diagnosis: Using a logistic regression analysis with a model consisting of the 3 markers' methylation values, FGFR3 status, age and known smoker status at the diagnosis time we obtained sensitivity/specificity of 97.6 %/84.8 % and an optimism-corrected AUC of 0.96. With an estimated BCa prevalence of 12.1 % in a hematuria cohort, this corresponds to a negative predictive value (NPV) of 99.6 %. For Follow-up: Using a logistic regression with FGFR3 mutation and the CMI at two time points (beginning of the follow-up and current time point), we got sensitivity/specificity/NPV of 90.3 %/65.1 %/97.0 % and a corrected AUC of 0.84. We also tested a thresholding algorithm with FGFR3 mutation and the two time points as described above, obtaining sensitivity/specificity/NPV values of, respectively, 94.5 %/75.9 %/98.5 % and an AUC of 0.82. We showed that combined analysis of FGFR3 mutation and DNA methylation markers on urine can be a useful strategy in diagnosis, surveillance and for risk stratification of patients with NMIBC. These results provide the basis for a highly accurate noninvasive test for population screening and allowing to decrease the frequency of cystoscopy, an important feature for both patient quality of life improvement and care cost reduction.

  13. Introduction of a point mutation into the mouse genome by homologous recombination in embryonic stem cells using a replacement type vector with a selectable marker.

    PubMed

    Rubinstein, M; Japón, M A; Low, M J

    1993-06-11

    The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes.

  14. Introduction of a point mutation into the mouse genome by homologous recombination in embryonic stem cells using a replacement type vector with a selectable marker.

    PubMed Central

    Rubinstein, M; Japón, M A; Low, M J

    1993-01-01

    The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes. Images PMID:8392702

  15. Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort.

    PubMed

    Rosty, Christophe; Clendenning, Mark; Walsh, Michael D; Eriksen, Stine V; Southey, Melissa C; Winship, Ingrid M; Macrae, Finlay A; Boussioutas, Alex; Poplawski, Nicola K; Parry, Susan; Arnold, Julie; Young, Joanne P; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Newcomb, Polly A; Potter, John D; DeRycke, Melissa; Lindor, Noralane M; Thibodeau, Stephen N; Baron, John A; Win, Aung Ko; Hopper, John L; Jenkins, Mark A; Buchanan, Daniel D

    2016-02-19

    Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression. This cohort study included 88 individuals affected with a PMS2-deficient CRC from the Colon Cancer Family Registry Cohort. Germline PMS2 mutation analysis (long-range PCR and multiplex ligation-dependent probe amplification) was followed by MLH1 mutation testing (Sanger sequencing and multiplex ligation-dependent probe amplification). Of the 66 individuals with complete mutation screening, we identified a pathogenic PMS2 mutation in 49 (74%), a pathogenic MLH1 mutation in 8 (12%) and a MLH1 variant of uncertain clinical significance predicted to be damaging by in silico analysis in 3 (4%); 6 (9%) carried variants likely to have no clinical significance. Missense point mutations accounted for most alterations (83%; 9/11) in MLH1. The MLH1 c.113A> G p.Asn38Ser mutation was found in 2 related individuals. One individual who carried the MLH1 intronic mutation c.677+3A>G p.Gln197Argfs*8 leading to the skipping of exon 8, developed 2 tumours, both of which retained MLH1 expression. A substantial proportion of CRCs with solitary loss of PMS2 expression are associated with a deleterious MLH1 germline mutation supporting the screening for MLH1 in individuals with tumours of this immunophenotype, when no PMS2 mutation has been identified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort

    PubMed Central

    Rosty, Christophe; Clendenning, Mark; Walsh, Michael D; Eriksen, Stine V; Southey, Melissa C; Winship, Ingrid M; Macrae, Finlay A; Boussioutas, Alex; Parry, Susan; Arnold, Julie; Young, Joanne P; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Newcomb, Polly A; Potter, John D; DeRycke, Melissa; Lindor, Noralane M; Thibodeau, Stephen N; Baron, John A; Win, Aung Ko; Hopper, John L; Jenkins, Mark A; Buchanan, Daniel D

    2016-01-01

    Objectives Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression. Design This cohort study included 88 individuals affected with a PMS2-deficient CRC from the Colon Cancer Family Registry Cohort. Germline PMS2 mutation analysis (long-range PCR and multiplex ligation-dependent probe amplification) was followed by MLH1 mutation testing (Sanger sequencing and multiplex ligation-dependent probe amplification). Results Of the 66 individuals with complete mutation screening, we identified a pathogenic PMS2 mutation in 49 (74%), a pathogenic MLH1 mutation in 8 (12%) and a MLH1 variant of uncertain clinical significance predicted to be damaging by in silico analysis in 3 (4%); 6 (9%) carried variants likely to have no clinical significance. Missense point mutations accounted for most alterations (83%; 9/11) in MLH1. The MLH1 c.113A> G p.Asn38Ser mutation was found in 2 related individuals. One individual who carried the MLH1 intronic mutation c.677+3A>G p.Gln197Argfs*8 leading to the skipping of exon 8, developed 2 tumours, both of which retained MLH1 expression. Conclusions A substantial proportion of CRCs with solitary loss of PMS2 expression are associated with a deleterious MLH1 germline mutation supporting the screening for MLH1 in individuals with tumours of this immunophenotype, when no PMS2 mutation has been identified. PMID:26895986

  17. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, H.G.; Nelen, M.; Ropers, H.H.

    1993-10-22

    Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated completemore » MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.« less

  18. Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus.

    PubMed

    Demarco, Ignacio A; Voss, Ty C; Booker, Cynthia F; Day, Richard N

    2006-11-01

    The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.

  19. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene.

    PubMed

    Tsubahara, Mayuko; Hayashi, Yoshitaka; Niijima, Shin-ichi; Yamamoto, Michiyo; Kamijo, Takashi; Murata, Yoshiharu; Haruna, Hidenori; Okumura, Akihisa; Shimizu, Toshiaki

    2012-03-01

      Mutations in the GH1 gene have been identified in patients with isolated growth hormone deficiency (IGHD). Mutations causing aberrant splicing of exon 3 of GH1 that have been identified in IGHD are inherited in an autosomal dominant manner, whereas other mutations in GH1 that have been identified in IGHD are inherited in an autosomal recessive manner.   Two siblings born from nonconsanguineous healthy parents exhibited IGHD. To elucidate the cause, GH1 in all family members was analysed.   Two novel mutations in GH1, a point mutation in intron 3 and a 16-bp deletion in exon 3, were identified by sequence analyses. The intronic mutation was present in both siblings and was predicted to cause aberrant splicing. The deletion was present in one of the siblings as well as the mother with normal stature and was predicted to cause rapid degradation of mRNA through nonsense-mediated mRNA decay. The point mutation was not identified in the parents' peripheral blood DNA; however, it was detected in the DNA extracted from the father's sperms. As a trace of the mutant allele was detected in the peripheral blood of the father using PCR-RFLP, the mutation is likely to have occurred de novo at an early developmental stage before differentiation of somatic cells and germline cells.   This is the first report of mosaicism for a mutation in GH1 in a family with IGHD. It is clear that the intronic mutation plays a dominant role in the pathogenesis of IGHD in this family, as one of the siblings who had only the point mutation was affected. On the other hand, the other sibling was a compound heterozygote for the point mutation and the 16-bp deletion and it may be arguable whether IGHD in this patient should be regarded as autosomal dominant or recessive. © 2012 Blackwell Publishing Ltd.

  20. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases

    PubMed Central

    Ullah, Inayat; Kabir, Firoz; Iqbal, Muhammad; Gottsch, Clare Brooks S.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. Methods Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon–intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. Results The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10−6) that affected individuals inherited the causal mutation from a common ancestor. Conclusions Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families. PMID:27440997

  1. Integrative analysis of RUNX1 downstream pathways and target genes

    PubMed Central

    Michaud, Joëlle; Simpson, Ken M; Escher, Robert; Buchet-Poyau, Karine; Beissbarth, Tim; Carmichael, Catherine; Ritchie, Matthew E; Schütz, Frédéric; Cannon, Ping; Liu, Marjorie; Shen, Xiaofeng; Ito, Yoshiaki; Raskind, Wendy H; Horwitz, Marshall S; Osato, Motomi; Turner, David R; Speed, Terence P; Kavallaris, Maria; Smyth, Gordon K; Scott, Hamish S

    2008-01-01

    Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications. PMID:18671852

  2. Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae.

    PubMed

    Kaniak-Golik, Aneta; Kuberska, Renata; Dzierzbicki, Piotr; Sledziewska-Gojska, Ewa

    2017-01-01

    Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria.

  3. Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae

    PubMed Central

    Dzierzbicki, Piotr

    2017-01-01

    Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria. PMID:28678842

  4. Multi-omics Based Identification of Specific Biochemical Changes Associated With PfKelch13-Mutant Artemisinin-Resistant Plasmodium falciparum.

    PubMed

    Siddiqui, Ghizal; Srivastava, Anubhav; Russell, Adrian S; Creek, Darren J

    2017-05-01

    The emergence of artemisinin resistance in the malaria parasite Plasmodium falciparum poses a major threat to the control and elimination of malaria. Certain point mutations in the propeller domain of PfKelch13 are associated with resistance, but PfKelch13 mutations do not always result in clinical resistance. The underlying mechanisms associated with artemisinin resistance are poorly understood, and the impact of PfKelch13 mutations on cellular biochemistry is not defined. This study aimed to identify global biochemical differences between PfKelch13-mutant artemisinin-resistant and -sensitive strains of P. falciparum by combining liquid chromatography-mass spectrometry (LC-MS)-based proteomics, peptidomics, and metabolomics. Proteomics analysis found both PfKelch13 mutations examined to be specifically associated with decreased abundance of PfKelch13 protein. Metabolomics analysis demonstrated accumulation of glutathione and its precursor, gamma-glutamylcysteine, and significant depletion of 1 other putative metabolite in resistant strains. Peptidomics analysis revealed lower abundance of several endogenous peptides derived from hemoglobin (HBα and HBβ) in the artemisinin-resistant strains. PfKelch13 mutations associated with artemisinin resistance lead to decreased abundance of PfKelch13 protein, decreased hemoglobin digestion, and enhanced glutathione production. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. [Molecular analysis of glucose-6-dehydrogenase deficiency in Spain].

    PubMed

    Vives Corrons, J L; Zarza, R; Aymerich, J M; Boixadera, J; Carrera, A; Colomer, D; Corbella, M; Castro, M; Crespo, J M; Del Arco, A; Erkiaga, S; Font, L; González, I; Juncá, J; Lausin, A; Manrubia, E; Martín Núñez, G; Murga, M J; Oliva, E; Pérez de Mendiguren, B; Pujades, M A; Remacha, A; Rovira, A; Villegas, A

    1997-10-01

    G6PD deficiency is the most frequent enzymopathy-producing genetic polymorphism in humans. Up to now, over 400 putative variants of G6PD have been distinguished on the basis of biochemical characterization of the deficient enzyme. Analysis of the G6PD gene has made possible a precise classification of the G6PD molecular variants by identification of about 80 different point mutations causing much of the phenotypic heterogeneity. In the Spanish population, the analysis of G6PD has led to the identification of 15 different point mutations that underlay the phenotypic heterogeneity of G6PD previously reported by biochemical analysis. The purpose of the study has been to identify the genetic mutation responsible of the G6PD deficiency and to improve the knowledge of its genetic homogeneity. From 50 Spanish males with G6PD deficiency 34 came from out consultation and 16 from the Spanish Study Group on Red Cell Pathology (GEHBTA-Eritropatología) The methods employed included screening of prevalent mutations by ER-PCR, SSCP-PCR, genetic segmentation and biochemical characterization of the deficient enzyme. In 31 cases the mutations were characteristic of the four most frequent polymorphic variants found in Spain (G6PD A-376G/202A, G6PD Mediterranean 563T G6PD Union 1360T and G6PD Seattle 344C). Since these mutations either create or abolish a specific site recognized by a restriction endonuclease (RE), they can be rapidly detected by RE digestion of a PCR-amplified product (PCR-RE). In patients where none of these mutations were present (17 cases), the G6PD gene was subjected to PCR single-strand conformation polymorphism (PCR-SSCP) analysis combined with direct PCR-sequencing. By using this procedure, 9 new mutations have been identified, five of them have been also found in other geographical areas and were associated with favism (G6PD A-376G/968C, G6PD Santamaria 376G/542T, G6PD Aures 143C and G6PD Chatham 1003A) or chronic haemolytic anaemia (G6PD Tomah 1153C). The other four mutations are unique and not reported so far: Three of them are associated with favism (G6PD Málaga 542T, G6PD Murcia 209G and G6PD Valladolid 406T) and one with chronic haemolytic anaemia (G6PD Madrid 1155G). The remaining eight cases are under study. The present study confirms the marked genetic heterogeneity of G6PD deficiency in Spain and demonstrate that the PCR-RE analysis is an easy tool for rapid diagnosis of the molecular defect in subjects with the common forms of G6PD deficiency. Furthermore the fact that G6PD A-376G/202A is the most common variant within Spanish population and the finding of G6PD Aures 43C and G6PD Santamaría 76G/542T, who are polymorphic in Algeria is consistent with a significant gene flow from Africa to Europe through Spain.

  6. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells.

    PubMed

    Hussein, Islam T M; Ma, Eric J; Hill, Nichola J; Meixell, Brandt W; Lindberg, Mark; Albrecht, Randy A; Bahl, Justin; Runstadler, Jonathan A

    2016-07-01

    H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. FGFR2 Point Mutations in 466 Endometrioid Endometrial Tumors: Relationship with MSI, KRAS, PIK3CA, CTNNB1 Mutations and Clinicopathological Features

    PubMed Central

    Powell, Matthew A.; Wellens, Candice L.; Gao, Feng; Mutch, David G.; Goodfellow, Paul J.; Pollock, Pamela M.

    2012-01-01

    Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35–7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09–3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05–0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies. PMID:22383975

  8. Variations in the detection of ZAP-70 in chronic lymphocytic leukemia: Comparison with IgV(H) mutation analysis.

    PubMed

    Sheikholeslami, M R; Jilani, I; Keating, M; Uyeji, J; Chen, K; Kantarjian, H; O'Brien, S; Giles, F; Albitar, M

    2006-07-15

    Lack of immunoglobulin heavy chain genes (IgV(H)) mutation in patients with chronic lymphocytic leukemia (CLL) is associated with rapid disease progression and shorter survival. The zeta-chain (T-cell receptor) associated protein kinase 70 kDa (ZAP-70) has been reported to be a surrogate marker for IgV(H) mutation status, and its expression in leukemic cells correlates with unmutated IgV(H). However, ZAP-70 detection by flow cytometry varies significantly dependant on the antibodies used, the method of performing the assay, and the condition of the cells in the specimen. The clinical value of ZAP-70 testing when samples are shipped under poorly controlled conditions is not known. Furthermore, testing in a research environment may differ from testing in a routine clinical laboratory. We validated an assay for ZAP-70 by comparing results with clinical outcome and the mutation status of the IgV(H). Using stored samples, we show significant correlation between ZAP-70 expression and clinical outcome as well as IgV(H) mutation at a cut-off point of 15%. While positive samples (>15% positivity) remain positive when kept in the laboratory environment for 48 h after initial testing, results obtained from samples from CLL patients tested after shipping at room temperature for routine testing showed no correlation with IgV(H) mutation status when 15% cut-off was used. In these samples, cut-point of 10% correlated with the IgV(H) mutation (P = 0.0001). This data suggests that although ZAP-70 positivity correlates with IgV(H) mutation status and survival, variations in sample handling and preparation may influence results. We show that IgV(H) mutation results, unlike ZAP-70 remain correlated with CD38 expression and beta-2 microglobulin in shipped samples, and ZAP-70 testing should not be used as the sole criterion for stratifying patients for therapy. (c) 2006 International Society for Analytical Cytology.

  9. Determining mutations in G6PC and SLC37A4 genes in a sample of Brazilian patients with glycogen storage disease types Ia and Ib.

    PubMed

    Carlin, Marcelo Paschoalete; Scherrer, Daniel Zanetti; De Tommaso, Adriana Maria Alves; Bertuzzo, Carmen Silvia; Steiner, Carlos Eduardo

    2013-12-01

    Glycogen storage disease (GSD) comprises a group of autosomal recessive disorders characterized by deficiency of the enzymes that regulate the synthesis or degradation of glycogen. Types Ia and Ib are the most prevalent; while the former is caused by deficiency of glucose-6-phosphatase (G6Pase), the latter is associated with impaired glucose-6-phosphate transporter, where the catalytic unit of G6Pase is located. Over 85 mutations have been reported since the cloning of G6PC and SLC37A4 genes. In this study, twelve unrelated patients with clinical symptoms suggestive of GSDIa and Ib were investigated by using genetic sequencing of G6PC and SLC37A4 genes, being three confirmed as having GSD Ia, and two with GSD Ib. In seven of these patients no mutations were detected in any of the genes. Five changes were detected in G6PC, including three known point mutations (p.G68R, p.R83C and p.Q347X) and two neutral mutations (c.432G > A and c.1176T > C). Four changes were found in SLC37A4: a known point mutation (p.G149E), a novel frameshift insertion (c.1338_1339insT), and two neutral mutations (c.1287G > A and c.1076-28C > T). The frequency of mutations in our population was similar to that observed in the literature, in which the mutation p.R83C is also the most frequent one. Analysis of both genes should be considered in the investigation of this condition. An alternative explanation to the negative results in this molecular study is the possibility of a misdiagnosis. Even with a careful evaluation based on laboratory and clinical findings, overlap with other types of GSD is possible, and further molecular studies should be indicated.

  10. Molecular characterization of the breakpoints of a 12-kb deletion in the NF1 gene in a family showing germ-line mosaicism.

    PubMed Central

    Lázaro, C; Gaona, A; Lynch, M; Kruyer, H; Ravella, A; Estivill, X

    1995-01-01

    Neurofibromatosis type 1 (NF1) is caused by deletions, insertions, translocations, and point mutations in the NF1 gene, which spans 350 kb on the long arm of human chromosome 17. Although several point mutations have been described, large molecular abnormalities have rarely been characterized in detail. We describe here the molecular breakpoints of a 12-kb deletion of the NF1 gene, which is responsible for the NF1 phenotype in a kindred with two children affected because of germline mosaicism in the unaffected father, who has the mutation in 10% of his spermatozoa. The mutation spans introns 31-39, removing 12,021 nt and inserting 30 bp, of which 19 bp are a direct repetition of a sequence located in intron 31, just 4 bp before the 5' breakpoint. The 5' and 3' breakpoints contain the sequence TATTTTA, which could be involved in the generation of the deletion. The most plausible explanation for the mechanism involved in the generation of this 12-kb deletion is homologous/nonhomologous recombination. Since sperm of the father does not contain the corresponding insertion of the 12-kb deleted sequence, this deletion could have occurred within the NF1 chromosome through loop formation. RNA from lymphocytes of one of the NF1 patients showed similar levels of the mutated and normal transcripts, suggesting that the NF1-mRNA from mutations causing frame shifts of the reading frame or stop codons in this gene is not degraded during its processing. The mutation was not detected in fresh lymphocytes from the unaffected father by PCR analysis, supporting the case for true germ-line mosaicism. Images Figure 1 Figure 3 PMID:7485153

  11. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder.

    PubMed Central

    Nagata, H; Worobec, A S; Oh, C K; Chowdhury, B A; Tannenbaum, S; Suzuki, Y; Metcalfe, D D

    1995-01-01

    Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479840

  12. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder.

    PubMed

    Nagata, H; Worobec, A S; Oh, C K; Chowdhury, B A; Tannenbaum, S; Suzuki, Y; Metcalfe, D D

    1995-11-07

    Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies.

  13. rpoB gene mutations among Mycobacterium tuberculosis isolates from extrapulmonary sites.

    PubMed

    Khosravi, Azar Dokht; Meghdadi, Hossein; Ghadiri, Ata A; Alami, Ameneh; Sina, Amir Hossein; Mirsaeidi, Mehdi

    2018-03-01

    The aim of this study was to analyze mutations occurring in the rpoB gene of Mycobacterium tuberculosis (MTB) isolates from clinical samples of extrapulmonary tuberculosis (EPTB). Seventy formalin-fixed, paraffin-embedded samples and fresh tissue samples from confirmed EPTB cases were analyzed. Nested PCR based on the rpoB gene was performed on the extracted DNAs, combined with cloning and subsequent sequencing. Sixty-seven (95.7%) samples were positive for nester PCR. Sequence analysis of the 81 bp region of the rpoB gene demonstrated mutations in 41 (61.2%) of 67 sequenced samples. Several point mutations including deletion mutations at codons 510, 512, 513 and 515, with 45% and 51% of the mutations in codons 512 and 513 respectively were seen, along with 26% replacement mutations at codons 509, 513, 514, 518, 520, 524 and 531. The most common alteration was Gln → His, at codon 513, presented in 30 (75.6%) isolates. This study demonstrated sequence alterations in codon 513 of the 81 bp region of the rpoB gene as the most common mutation occurred in 75.6% of molecularly confirmed rifampin-resistant strains. In addition, simultaneous mutation at codons 512 and 513 was demonstrated in 34.3% of the isolates. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  14. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Qing-lin; Xu, Jia; Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related genemore » with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.« less

  15. Using peripheral blood circulating DNAs to detect CpG global methylation status and genetic mutations in patients with myelodysplastic syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iriyama, Chisako; Tomita, Akihiro, E-mail: atomita@med.nagoya-u.ac.jp; Hoshino, Hideaki

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. Black-Right-Pointing-Pointer Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. Black-Right-Pointing-Pointer Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. Black-Right-Pointing-Pointer Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspirationmore » is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3-9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic/epigenetic analyses using PB circulating DNA can be a safer and painless alternative to using BM cells.« less

  16. Novel mutations responsible for α-thalassemia in Iranian families.

    PubMed

    Bayat, Nooshin; Farashi, Samaneh; Hafezi-Nejad, Nima; Faramarzi, Negin; Ashki, Mehri; Vakili, Shadi; Imanian, Hashem; Khosravi, Mohsen; Azar-Keivan, Azita; Najmabadi, Hossein

    2013-01-01

    α-Thalassemia (α-thal) is usually caused by deletions on the α-globin gene cluster and the role of point mutations is less well investigated. In the present study, a total of 1048 individuals with hypochromic microcytic anemia, who did not present the most common α-thal deletions, were referred for α-globin gene DNA sequencing. The nucleotide changes were studied and a total of five new mutations was identified, of which three were located on the α2 gene [codon7 (Lys→Stop), codon 34 (Leu→Pro) and codon 83 (Leu→Arg)] and two on the α1 gene [IVS-I-116 (A>G) and codon 44 (+C)]. These novel mutations not only explain new findings by molecular analysis of the α-globin gene but also have clinical importance due to their changes in α-globin production in means of decreased hemoglobin (Hb) related values. Moreover, considerations of its role in combination with other mutations, and the possibility of causing Hb H (β4) are yet to be studied.

  17. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive networkmore » of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.« less

  18. Computational design of thermostabilizing point mutations for G protein-coupled receptors

    PubMed Central

    Popov, Petr; Peng, Yao; Shen, Ling; Stevens, Raymond C; Cherezov, Vadim; Liu, Zhi-Jie

    2018-01-01

    Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. PMID:29927385

  19. Lifetime exercise intolerance with lactic acidosis as key manifestation of novel compound heterozygous ACAD9 mutations causing complex I deficiency.

    PubMed

    Schrank, Bertold; Schoser, Benedikt; Klopstock, Thomas; Schneiderat, Peter; Horvath, Rita; Abicht, Angela; Holinski-Feder, Elke; Augustis, Sarunas

    2017-05-01

    We report a 36-year-old female having lifetime exercise intolerance and lactic acidosis with nausea associated with novel compound heterozygous Acyl-CoA dehydrogenase 9 gene (ACAD9) mutations (p.Ala390Thr and p.Arg518Cys). ACAD9 is an assembly factor for the mitochondrial respiratory chain complex I. ACAD9 mutations are recognized as frequent causes of complex I deficiency. Our patient presented with exercise intolerance, rapid fatigue, and nausea since early childhood. Mild physical workload provoked the occurrence of nausea and vomiting repeatedly. Her neurological examination, laboratory findings and muscle biopsy demonstrated no abnormalities. A bicycle spiroergometry provoked significant lactic acidosis during and following exercise pointing towards a mitochondrial disorder. Subsequently, the analysis of respiratory chain enzyme activities in muscle revealed severe isolated complex I deficiency. Candidate gene sequencing revealed two novel heterozygous ACAD9 mutations. This patient report expands the mutational and phenotypic spectrum of diseases associated with mutations in ACAD9. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. LGI1 microdeletion in autosomal dominant lateral temporal epilepsy

    PubMed Central

    Fanciulli, M.; Santulli, L.; Errichiello, L.; Barozzi, C.; Tomasi, L.; Rigon, L.; Cubeddu, T.; de Falco, A.; Rampazzo, A.; Michelucci, R.; Uzzau, S.; Striano, S.; de Falco, F.A.; Striano, P.

    2012-01-01

    Objectives: To characterize clinically and genetically a family with autosomal dominant lateral temporal epilepsy (ADLTE) negative to LGI1 exon sequencing test. Methods: All participants were personally interviewed and underwent neurologic examination. Most affected subjects underwent EEG and neuroradiologic examinations (CT/MRI). Available family members were genotyped with the HumanOmni1-Quad v1.0 single nucleotide polymorphism (SNP) array beadchip and copy number variations (CNVs) were analyzed in each subject. LGI1 gene dosage was performed by real-time quantitative PCR (qPCR). Results: The family had 8 affected members (2 deceased) over 3 generations. All of them showed GTC seizures, with focal onset in 6 and unknown onset in 2. Four patients had focal seizures with auditory features. EEG showed only minor sharp abnormalities in 3 patients and MRI was unremarkable in all the patients examined. Three family members presented major depression and anxiety symptoms. Routine LGI1 exon sequencing revealed no point mutation. High-density SNP array CNV analysis identified a genomic microdeletion about 81 kb in size encompassing the first 4 exons of LGI1 in all available affected members and in 2 nonaffected carriers, which was confirmed by qPCR analysis. Conclusions: This is the first microdeletion affecting LGI1 identified in ADLTE. Families with ADLTE in which no point mutations are revealed by direct exon sequencing should be screened for possible genomic deletion mutations by CNV analysis or other appropriate methods. Overall, CNV analysis of multiplex families may be useful for identifying microdeletions in novel disease genes. PMID:22496201

  1. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome

    PubMed Central

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948

  2. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    PubMed

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  3. A PLK4 mutation causing azoospermia in a man with Sertoli cell-only syndrome.

    PubMed

    Miyamoto, T; Bando, Y; Koh, E; Tsujimura, A; Miyagawa, Y; Iijima, M; Namiki, M; Shiina, M; Ogata, K; Matsumoto, N; Sengoku, K

    2016-01-01

    About 15% of couples wishing to have children are infertile; approximately half these cases involve a male factor. Polo-like kinase 4 (PLK-4) is a member of the polo protein family and a key regulator of centriole duplication. Male mice with a point mutation in the Plk4 gene show azoospermia associated with germ cell loss. Mutational analysis of 81 patients with azoospermia and Sertoli cell-only syndrome (SCOS) identified one man with a heterozygous 13-bp deletion in the Ser/Thr kinase domain of PLK4. Division of centrioles occurred in wild-type PLK4-transfected cells, but was hampered in PLK-4-mutant transfectants, which also showed abnormal nuclei. Thus, this PLK4 mutation might be a cause of human SCOS and nonobstructive azoospermia. © 2015 American Society of Andrology and European Academy of Andrology.

  4. Calmodulin point mutations affect Drosophila development and behavior.

    PubMed

    Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K

    1997-12-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.

  5. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  6. Genetic analysis of an Escherichia coli syndrome.

    PubMed

    Lennette, E T; Apirion, D

    1971-12-01

    A mutant strain of Escherichia coli that fails to recover from prolonged (72 hr) starvation also fails to grow at 43 C. Extracts of this mutant strain show an increased ribonuclease II activity as compared to extracts of the parental strain, and stable ribonucleic acid is degraded to a larger extent in this strain during starvation. Ts(+) transductants and revertants were tested for all the above-mentioned phenotypes. All the Ts(+) transductants and revertants tested behaved like the Ts(+) parental strain, which suggests that all the observed phenotypes are caused by a single sts (starvation-temperature sensitivity) mutation. The reversion rate from sts(-) to sts(+) is rather low but is within the range of reversion rates for other single-site mutations. Three-point transduction crosses located this sts mutation between the ilv and rbs genes. The properties of sts(+)/sts(-) merozygotes suggested that the Ts(-) phenotype of this mutation is recessive.

  7. Somatic diversification of chicken immunoglobulin light chains by point mutations.

    PubMed

    Parvari, R; Ziv, E; Lantner, F; Heller, D; Schechter, I

    1990-04-01

    The light-chain locus of chicken has 1 functional V lambda 1 gene, 1 J gene, and 25 pseudo-V lambda-genes (where V = variable and J = joining). A major problem is which somatic mechanisms expand this extremely limited germ-line information to generate many different antibodies. Weill's group [Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. (1987) Cell 48, 379-388] has shown that the pseudo-V lambda-genes diversify the rearranged V lambda 1 by gene conversion. Here we demonstrate that chicken light chains are further diversified by somatic point mutations and by V lambda 1-J flexible joining. Somatic point mutations were identified in the J and 3' noncoding DNA of rearranged light-chain genes of chicken. These regions were analyzed because point mutations in V lambda 1 are obscured by gene conversion; the J and 3' noncoding DNA are presented in one copy per haploid genome and are not subject to gene conversion. In rodents point mutations occur as frequently in the V-J coding regions as in the adjacent flanking DNA. Therefore, we conclude that somatic point mutations diversify the V lambda 1 of chicken. The frequency (0-1%) and distribution of the mutations (decreasing in number with increased distance from the V lambda 1 segment) in chicken were as observed in rodents. Sequence variability at the V lambda 1-J junctions could be attributed to imprecise joining of the V lambda 1 and J genes. The modification by gene conversion of rearranged V lambda 1 genes in the bursa was similar in chicken aged 3 months (9.5%) or 3 weeks (9.1%)--i.e., gene conversion that generates the preimmune repertoire in the bursa seems to level off around 3 weeks of age. This preimmune repertoire can be further diversified by somatic point mutations that presumably lead to the formation of antibodies with increased affinity. A segment with structural features of a matrix association region [(A + T)-rich and four topoisomerase II binding sites] was identified in the middle of the J-C lambda intron (where C = constant).

  8. Analysis of the recE locus of Escherichia coli K-12 by use of polyclonal antibodies to exonuclease VIII.

    PubMed Central

    Luisi-DeLuca, C; Clark, A J; Kolodner, R D

    1988-01-01

    Exonuclease VIII (exoVIII) of Escherichia coli has been purified from a strain carrying a plasmid-encoded recE gene by using a new procedure. This procedure yielded 30 times more protein per gram of cells, and the protein had a twofold higher specific activity than the enzyme purified by the previously published procedure (J. W. Joseph and R. Kolodner, J. Biol. Chem. 258:10411-10417, 1983). The sequence of the 12 N-terminal amino acids was also obtained and found to correspond to one of the open reading frames predicted from the nucleic acid sequence of the recE region of Rac (C. Chu, A. Templin, and A. J. Clark, manuscript in preparation). Polyclonal antibodies directed against purified exoVIII were also prepared. Cell-free extracts prepared from strains containing a wide range of chromosomal- or plasmid-encoded point, insertion, and deletion mutations which result in expression of exoVIII were examined by Western blot (immunoblot) analysis. This analysis showed that two point sbcA mutations (sbcA5 and sbcA23) and the sbc insertion mutations led to the synthesis of the 140-kilodalton (kDa) polypeptide of wild-type exoVIII. Plasmid-encoded partial deletion mutations of recE reduced the size of the cross-reacting protein(s) in direct proportion to the size of the deletion, even though exonuclease activity was still present. The analysis suggests that 39 kDa of the 140-kDa exoVIII subunit is all that is essential for exonuclease activity. One of the truncated but functional exonucleases (the pRAC3 exonuclease) has been purified and confirmed to be a 41-kDa polypeptide. The first 18 amino acids from the N terminus of the 41-kDa pRAC3 exonuclease were sequenced and fond to correspond to one of the translational start signals predicted from the nucleotide sequence of radC (Chu et al., in preparation). Images PMID:3056915

  9. Do HIV-1 non-B subtypes differentially impact resistance mutations and clinical disease progression in treated populations? Evidence from a systematic review

    PubMed Central

    Bhargava, Madhavi; Cajas, Jorge Martinez; Wainberg, Mark A; Klein, Marina B; Pai, Nitika Pant

    2014-01-01

    There are 31 million adults living with HIV-1 non-B subtypes globally, and about 10 million are on antiretroviral therapy (ART). Global evidence to guide clinical practice on ART response in HIV-1 non-B subtypes remains limited. We systematically searched 11 databases for the period 1996 to 2013 for evidence. Outcomes documented included time to development of AIDS and/or death, resistance mutations, opportunistic infections, and changes in CD4 cell counts and viral load. A lack of consistent reporting of all clinical end points precluded a meta-analysis. In sum, genetic diversity that precipitated differences in disease progression in ART-naïve populations was minimized in ART-experienced populations, although variability in resistance mutations persisted across non-B subtypes. To improve the quality of patient care in global settings, recording HIV genotypes at baseline and at virologic failure with targeted non-B subtype-based point-of-care resistance assays and timely phasing out of resistance-inducing ART regimens is recommended. PMID:24998532

  10. A Mutation in PGM2 Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Kong, In Iok; Yun, Eun Ju; Zheng, Jia-Qi; Kweon, Dae-Hyuk; Jin, Yong-Su

    2018-05-15

    The probiotic yeast Saccharomyces boulardii has been extensively studied for the prevention and treatment of diarrheal diseases, and it is now commercially available in some countries. S. boulardii displays notable phenotypic characteristics, such as a high optimal growth temperature, high tolerance against acidic conditions, and the inability to form ascospores, which differentiate S. boulardii from Saccharomyces cerevisiae The majority of prior studies stated that S. boulardii exhibits sluggish or halted galactose utilization. Nonetheless, the molecular mechanisms underlying inefficient galactose uptake have yet to be elucidated. When the galactose utilization of a widely used S. boulardii strain, ATCC MYA-796, was examined under various culture conditions, the S. boulardii strain could consume galactose, but at a much lower rate than that of S. cerevisiae While all GAL genes were present in the S. boulardii genome, according to analysis of genomic sequencing data in a previous study, a point mutation (G1278A) in PGM2 , which codes for phosphoglucomutase, was identified in the genome of the S. boulardii strain. As the point mutation resulted in the truncation of the Pgm2 protein, which is known to play a pivotal role in galactose utilization, we hypothesized that the truncated Pgm2 might be associated with inefficient galactose metabolism. Indeed, complementation of S. cerevisiae PGM2 in S. boulardii restored galactose utilization. After reverting the point mutation to a full-length PGM2 in S. boulardii by Cas9-based genome editing, the growth rates of wild-type (with a truncated PGM2 gene) and mutant (with a full-length PGM2 ) strains with glucose or galactose as the carbon source were examined. As expected, the mutant (with a full-length PGM2 ) was able to ferment galactose faster than the wild-type strain. Interestingly, the mutant showed a lower growth rate than that of the wild-type strain on glucose at 37°C. Also, the wild-type strain was enriched in the mixed culture of wild-type and mutant strains on glucose at 37°C, suggesting that the truncated PGM2 might offer better growth on glucose at a higher temperature in return for inefficient galactose utilization. Our results suggest that the point mutation in PGM2 might be involved in multiple phenotypes with different effects. IMPORTANCE Saccharomyces boulardii is a probiotic yeast strain capable of preventing and treating diarrheal diseases. However, the genetics and metabolism of this yeast are largely unexplored. In particular, molecular mechanisms underlying the inefficient galactose metabolism of S. boulardii remain unknown. Our study reports that a point mutation in PGM2 , which codes for phosphoglucomutase, is responsible for inferior galactose utilization by S. boulardii After correction of the mutated PGM2 via genome editing, the resulting strain was able to use galactose faster than a parental strain. While the PGM2 mutation made the yeast use galactose slowly, investigation of the genomic sequencing data of other S. boulardii strains revealed that the PGM2 mutation is evolutionarily conserved. Interestingly, the PGM2 mutation was beneficial for growth at a higher temperature on glucose. We speculate that the PGM2 mutation was enriched due to selection of S. boulardii in the natural habitat (sugar-rich fruits in tropical areas). Copyright © 2018 American Society for Microbiology.

  11. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling

    PubMed Central

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes. PMID:28575107

  12. Sensitive and reliable detection of Kit point mutation Asp 816 to Val in pathological material

    PubMed Central

    Kähler, Christian; Didlaukat, Sabine; Feller, Alfred C; Merz, Hartmut

    2007-01-01

    Background Human mastocytosis is a heterogenous disorder which is linked to a gain-of-function mutation in the kinase domain of the receptor tyrosine kinase Kit. This D816V mutation leads to constitutive activation and phosphorylation of Kit with proliferative disorders of mast cells in the peripheral blood, skin, and spleen. Most PCR applications used so far are labour-intensive and are not adopted to daily routine in pathological laboratories. The method has to be robust and working on such different materials like archival formalin-fixed, paraffin-embedded tissue (FFPE) and blood samples. Such a method is introduced in this publication. Methods The Kit point mutation Asp 816 to Val is heterozygous which means a problem in detection by PCR because the wild-type allele is also amplified and the number of cells which bear the point mutation is in most of the cases low. Most PCR protocols use probes to block the wild-type allele during amplification with more or less satisfying result. This is why point-mutated forward primers were designed and tested for efficiency in amplification of the mutated allele. Results One primer combination (A) fits the most for the introduced PCR assay. It was able just to amplify the mutated allele with high specificity from different patient's materials (FFPE or blood) of varying quality and quantity. Moreover, the sensitivity for this assay was convincing because 10 ng of DNA which bears the point mutation could be detected in a total volume of 200 ng of DNA. Conclusion The PCR assay is able to deal with different materials (blood and FFPE) this means quality and quantity of DNA and can be used for high-througput screening because of its robustness. Moreover, the method is easy-to-use, not labour-intensive, and easy to realise in a standard laboratory. PMID:17900365

  13. Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India.

    PubMed

    Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B

    2016-03-01

    There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.

  14. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2017-11-29

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Analysis of genetic mutations in the 7a7b open reading frame of coronavirus of cheetahs (Acinonyx jubatus).

    PubMed

    Kennedy, Melissa A; Moore, Emily; Wilkes, Rebecca P; Citino, Scott B; Kania, Stephen A

    2006-04-01

    To analyze the 7a7b genes of the feline coronavirus (FCoV) of cheetahs, which are believed to play a role in virulence of this virus. Biologic samples collected during a 4-year period from 5 cheetahs at the same institution and at 1 time point from 4 cheetahs at different institutions. Samples were first screened for FCoV via a reverse transcription-PCR procedure involving primers that encompassed the 3'-untranslated region. Samples that yielded positive assay results were analyzed by use of primers that targeted the 7a7b open reading frames. The nucleotide sequences of the 7a7b amplification products were determined and analyzed. In most isolates, substantial deletional mutations in the 7a gene were detected that would result in aberrant or no expression of the 7a product because of altered reading frames. Although the 7b gene was also found to contain mutations, these were primarily point mutations resulting in minor amino acid changes. The coronavirus associated with 1 cheetah with feline infectious peritonitis had intact 7a and 7b genes. The data suggest that mutations arise readily in the 7a region and may remain stable in FCoV of cheetahs. In contrast, an intact 7b gene may be necessary for in vivo virus infection and replication. Persistent infection with FCoV in a cheetah population results in continued virus circulation and may lead to a quasispecies of virus variants.

  16. De novo mutations in histone modifying genes in congenital heart disease

    PubMed Central

    Zaidi, Samir; Choi, Murim; Wakimoto, Hiroko; Ma, Lijiang; Jiang, Jianming; Overton, John D.; Romano-Adesman, Angela; Bjornson, Robert D.; Breitbart, Roger E.; Brown, Kerry K.; Carriero, Nicholas J.; Cheung, Yee Him; Deanfield, John; DePalma, Steve; Fakhro, Khalid A.; Glessner, Joseph; Hakonarson, Hakon; Italia, Michael; Kaltman, Jonathan R.; Kaski, Juan; Kim, Richard; Kline, Jennie K.; Lee, Teresa; Leipzig, Jeremy; Lopez, Alexander; Mane, Shrikant M.; Mitchell, Laura E.; Newburger, Jane W.; Parfenov, Michael; Pe'er, Itsik; Porter, George; Roberts, Amy; Sachidanandam, Ravi; Sanders, Stephan J.; Seiden, Howard S.; State, Mathew W.; Subramanian, Sailakshmi; Tikhonova, Irina R.; Wang, Wei; Warburton, Dorothy; White, Peter S.; Williams, Ismee A.; Zhao, Hongyu; Seidman, Jonathan G.; Brueckner, Martina; Chung, Wendy K.; Gelb, Bruce D.; Goldmuntz, Elizabeth; Seidman, Christine E.; Lifton, Richard P.

    2013-01-01

    Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births1. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. By analysis of exome sequencing of parent-offspring trios, we compared the incidence of de novo mutations in 362 severe CHD cases and 264 controls. CHD cases showed a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging mutations. Similar odds ratios were seen across major classes of severe CHD. We found a marked excess of de novo mutations in genes involved in production, removal or reading of H3K4 methylation (H3K4me), or ubiquitination of H2BK120, which is required for H3K4 methylation2–4. There were also two de novo mutations in SMAD2; SMAD2 signaling in the embryonic left-right organizer induces demethylation of H3K27me5. H3K4me and H3K27me mark `poised' promoters and enhancers that regulate expression of key developmental genes6. These findings implicate de novo point mutations in several hundred genes that collectively contribute to ~10% of severe CHD. PMID:23665959

  17. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  18. Single-tube tetradecaplex panel of highly polymorphic microsatellite markers < 1 Mb from F8 for simplified preimplantation genetic diagnosis of hemophilia A.

    PubMed

    Zhao, M; Chen, M; Tan, A S C; Cheah, F S H; Mathew, J; Wong, P C; Chong, S S

    2017-07-01

    Essentials Preimplantation genetic diagnosis (PGD) of severe hemophilia A relies on linkage analysis. Simultaneous multi-marker screening can simplify selection of informative markers in a couple. We developed a single-tube tetradecaplex panel of polymorphic markers for hemophilia A PGD use. Informative markers can be used for linkage analysis alone or combined with mutation detection. Background It is currently not possible to perform single-cell preimplantation genetic diagnosis (PGD) to directly detect the common inversion mutations of the factor VIII (F8) gene responsible for severe hemophilia A (HEMA). As such, PGD for such inversion carriers relies on indirect analysis of linked polymorphic markers. Objectives To simplify linkage-based PGD of HEMA, we aimed to develop a panel of highly polymorphic microsatellite markers located near the F8 gene that could be simultaneously genotyped in a multiplex-PCR reaction. Methods We assessed the polymorphism of various microsatellite markers located ≤ 1 Mb from F8 in 177 female subjects. Highly polymorphic markers were selected for co-amplification with the AMELX/Y indel dimorphism in a single-tube reaction. Results Thirteen microsatellite markers located within 0.6 Mb of F8 were successfully co-amplified with AMELX/Y in a single-tube reaction. Observed heterozygosities of component markers ranged from 0.43 to 0.84, and ∼70-80% of individuals were heterozygous for ≥ 5 markers. The tetradecaplex panel successfully identified fully informative markers in a couple interested in PGD for HEMA because of an intragenic F8 point mutation, with haplotype phasing established through a carrier daughter. In-vitro fertilization (IVF)-PGD involved single-tube co-amplification of fully informative markers with AMELX/Y and the mutation-containing F8 amplicon, followed by microsatellite analysis and amplicon mutation-site minisequencing analysis. Conclusions The single-tube multiplex-PCR format of this highly polymorphic microsatellite marker panel simplifies identification and selection of informative markers for linkage-based PGD of HEMA. Informative markers can also be easily co-amplified with mutation-containing F8 amplicons for combined mutation detection and linkage analysis. © 2017 International Society on Thrombosis and Haemostasis.

  19. Peptide Nucleic Acid Array for Detection of Point Mutations in Hepatitis B Virus Associated with Antiviral Resistance ▿ †

    PubMed Central

    Jang, Hyunjung; Kim, Jihyun; Choi, Jae-jin; Son, Yeojin; Park, Heekyung

    2010-01-01

    The detection of antiviral-resistant hepatitis B virus (HBV) mutations is important for monitoring the response to treatment and for effective treatment decisions. We have developed an array using peptide nucleic acid (PNA) probes to detect point mutations in HBV associated with antiviral resistance. PNA probes were designed to detect mutations associated with resistance to lamivudine, adefovir, and entecavir. The PNA array assay was sensitive enough to detect 102 copies/ml. The PNA array assay was able to detect mutants present in more than 5% of the virus population when the total HBV DNA concentration was greater than 104 copies/ml. We analyzed a total of 68 clinical samples by this assay and validated its usefulness by comparing results to those of the sequencing method. The PNA array correctly identified viral mutants and has high concordance (98.3%) with direct sequencing in detecting antiviral-resistant mutations. Our results showed that the PNA array is a rapid, sensitive, and easily applicable assay for the detection of antiviral-resistant mutation in HBV. Thus, the PNA array is a useful and powerful diagnostic tool for the detection of point mutations or polymorphisms. PMID:20573874

  20. A shower of second hit events as the cause of multifocal renal cell carcinoma in tuberous sclerosis complex

    PubMed Central

    Tyburczy, Magdalena E.; Jozwiak, Sergiusz; Malinowska, Izabela A.; Chekaluk, Yvonne; Pugh, Trevor J.; Wu, Chin-Lee; Nussbaum, Robert L.; Seepo, Sara; Dzik, Tomasz; Kotulska, Katarzyna; Kwiatkowski, David J.

    2015-01-01

    Tuberous sclerosis complex (TSC) is a genetic disorder characterized by seizures and tumor formation in multiple organs, mainly in the brain, skin, kidney, lung and heart. Renal cell carcinoma (RCC) occurs in ∼3% of TSC patients, and typically develops at age <50. Here we describe genetic findings in two TSC patients with multiple renal tumors, each of whom had the germline mutation TSC2 p.R905Q. The first (female) TSC patient had a left followed by a right nephrectomy at ages 24 and 27. Both kidneys showed multifocal TSC-associated papillary RCC (PRCC). Targeted, next-generation sequencing (NGS) analysis of TSC2 in five tumors (four from the left kidney, one from the right) showed loss of heterozygosity in one tumor, and four different TSC2 point mutations (p.E1351*, p.R1032*, p.R1713H, c.4178_4179delCT) in the other four samples. Only one of the 11 other tumors available from this patient had one of the TSC2 second hit mutations identified. Whole-exome analysis of the five tumors identified a very small number of additional mutated genes, with an average of 3.4 nonsilent coding, somatic mutations per tumor, none of which were seen in >1 tumor. The second (male) TSC patient had bilateral partial nephrectomies (both at age 36), with similar findings of multifocal PRCC. NGS analysis of TSC2 in two of these tumors identified a second hit mutation c.2355+1G>T in one sample that was not seen in other tumors. In conclusion, we report the first detailed genetic analysis of RCCs in TSC patients. Molecular studies indicate that tumors developed independently due to various second hit events, suggesting that these patients experienced a ‘shower’ of second hit mutations in TSC2 during kidney development leading to this severe phenotype. PMID:25432535

  1. Biochemical and molecular analysis of an X-linked case of Leigh syndrome associated with thiamin-responsive pyruvate dehydrogenase deficiency.

    PubMed

    Naito, E; Ito, M; Yokota, I; Saijo, T; Matsuda, J; Osaka, H; Kimura, S; Kuroda, Y

    1997-08-01

    We report molecular analysis of thiamin-responsive pyruvate dehydrogenase complex (PDHC) deficiency in a patient with an X-linked form of Leigh syndrome. PDHC activity in cultured lymphoblastoid cells of this patient and his asymptomatic mother were normal in the presence of a high thiamin pyrophosphate (TPP) concentration (0.4 mmol/L). However, in the presence of a low concentration (1 x 10(-4) mmol/L) of TPP, the activity was significantly decreased, indicating that PDHC deficiency in this patient was due to decreased affinity of PDHC for TPP. The patient's older brother also was diagnosed as PDHC deficiency with Leigh syndrome, suggesting that PDHC deficiency in these two brothers was not a de novo mutation. Sequencing of the X-linked PDHC E1 alpha subunit revealed a C-->G point mutation at nucleotide 787, resulting in a substitution of glycine for arginine 263. Restriction enzyme analysis of the E1 alpha gene revealed that the mother was a heterozygote, indicating that thiamin-responsive PDHC deficiency associated with Leigh syndrome due to this mutation is transmitted by X-linked inheritance.

  2. [A Case of Hereditary Medullary Thyroid Cancer (MEN2A/FMTC) Diagnosed at the Time of Recurrence].

    PubMed

    Enomoto, Keisuke; Shimizu, Kotaro; Hirose, Masayuki; Miyabe, Haruka; Morizane, Natsue; Takenaka, Yukinori; Shimazu, Kohki; Fushimi, Hiroaki; Uno, Atsuhiko

    2015-03-01

    We report a 42-year-old man with hereditary medullary thyroid cancer (multiple endocrine neoplasia, MEN2A/familial medullary thyroid carcinoma, FMTC), which was diagnosed at the time of tumor recurrence. He had a past history of a left thyroidectomy with neck dissection 7 years previously. A RET gene analysis revealed a point mutation (codon 618), and we diagnosed him as having hereditary medullary thyroid cancer. We resected the recurrent tumor in the right thyroid lobe together with performing a right lateral and central neck dissection. A RET gene analysis should be performed for patients with medullary thyroid cancer. When a RET gene mutation is present, a total thyroidectomy must be performed for the medullary thyroid cancer.

  3. Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro intestinal stromal tumor: determination of frequency, distribution pattern and identification of novel mutations in Indian patients.

    PubMed

    Ahmad, Firoz; Lad, Purnima; Bhatia, Simi; Das, Bibhu Ranjan

    2015-01-01

    KIT and PDGFRA gene mutations are the major genetic alterations seen in gastrointestinal stromal tumors (GISTs) and are being used clinically for predicting response to imatinib therapy. In the current study, we set out to explore the frequency and distribution pattern of c-KIT (exons 9, 11 and 13) and PDGFRA (exons 12 and 18) by direct sequencing in a series of 70 Indian GIST cases. Overall, 27 (38.5 %) and 4 (5.7 %) of the cases had c-KIT and PDGFRA mutations, respectively. Majority of KIT mutations involved exon 11 (85.7 %), followed by exon 9 (14.3 %), while none showed exon 13 mutation. Most exon 9 mutations showed Ala503-Tyr504 duplication, while one had novel point mutation at codon 476 (S476G). In contrast to exon 9 mutations, most exon 11 mutations were in-frame deletions (79 %, 19/24), predominantly at codons 550-560, while remaining exon 11 mutant cases were point mutations at codons 559, 560, 568, 573 and 575. Interestingly, P573T, Q556_V560delinsH, Q575H and Q575_P577 were novel variations observed in exon 11. The PDGFRA mutations were seen mostly in exon 18, which showed point mutation at codon 842 (D842V), while exon 12 showed a novel indel variation (V561_H570delinsT). No significant correlation between c-KIT/PDGFRA mutations and clinicopathological data was observed. In conclusion, this study highlights the frequency and distribution pattern of c-KIT/PDGFRA mutation in Indian cohort. The current study identified novel variations that added new insights into the genetic heterogeneity of GIST patients. Furthermore, this is the first study to report the presence of PDGFRA mutation from Indian subcontinent.

  4. Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations

    PubMed Central

    Weinkam, Patrick; Sali, Andrej

    2014-01-01

    Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820

  5. SSR allelic variation in almond (Prunus dulcis Mill.).

    PubMed

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  6. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    PubMed

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  7. Neoplasia of the ampulla of Vater. Ki-ras and p53 mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Zamboni, G.; Oda, T.; Mukai, K.; Bonetti, F.; Martignoni, G.; Iacono, C.; Serio, G.; Hirohashi, S.

    1993-01-01

    Eleven tumors of the ampulla of Vater (5 stage IV and 2 stage II adenocarcinomas, 1 stage II papillary carcinoma, 1 neuroendocrine carcinoma, and 2 adenomas, one with foci of carcinoma) were examined for Ki-ras and p53 gene mutations by single-strand conformation polymorphism analysis and direct sequencing of polymerase chain reaction-amplified DNA fragments. Ki-ras mutations were found in one adenocarcinoma and in the adenoma with foci of carcinoma, both involving mainly the intraduodenal bile duct component of the ampulla. Seven cases showed p53 gene mutations: four advanced-stage adenocarcinomas, the papillary carcinoma, the neuroendocrine carcinoma, and the adenoma with foci of carcinoma. Nuclear accumulation of p53 protein was immunohistochemically detected in the morphologically high-grade areas of the five cancers harboring a p53 gene missense point mutation. The adenomas, the two frame shift-mutated cancers, and the adenomatous and low-grade cancer areas of mutated carcinomas were immunohistochemically negative. Our data suggest that in ampullary neoplasia 1) p53 mutations are common abnormalities associated with the transformation of adenomas and low-grade cancers into morphologically high-grade carcinomas, and 2) Ki-ras mutations are relatively less frequent and might be restricted to tumors originating from the bile duct component of the ampulla. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8475992

  8. Molecular Characteristics of Rifampin- and Isoniazid-Resistant Mycobacterium tuberculosis Strains Isolated in Vietnam

    PubMed Central

    Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa

    2012-01-01

    Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp “hot-spot” region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests. PMID:22170905

  9. Molecular characteristics of rifampin- and isoniazid-resistant mycobacterium tuberculosis strains isolated in Vietnam.

    PubMed

    Minh, Nghiem Ngoc; Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa

    2012-03-01

    Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp "hot-spot" region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests.

  10. Selective gene amplification to detect the T790M mutation in plasma from patients with advanced non-small cell lung cancer (NSCLC) who have developed epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance.

    PubMed

    Nishikawa, Shingo; Kimura, Hideharu; Koba, Hayato; Yoneda, Taro; Watanabe, Satoshi; Sakai, Tamami; Hara, Johsuke; Sone, Takashi; Kasahara, Kazuo; Nakao, Shinji

    2018-03-01

    The epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, tissues for the genotyping of the EGFR T790M mutation can be difficult to obtain in a clinical setting. The aims of this study were to evaluate a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients using the PointMan™ EGFR DNA enrichment kit, which is a novel method for the selective amplification of specific genotype sequences. Blood samples were collected from NSCLC patients who had activating EGFR mutations and who were resistant to EGFR-TKI treatment. Using cell-free DNA (cfDNA) from plasma, EGFR T790M mutations were amplified using the PointMan™ enrichment kit, and all the reaction products were confirmed using direct sequencing. The concentrations of plasma DNA were then determined using quantitative real-time PCR. Nineteen patients were enrolled, and 12 patients (63.2%) were found to contain EGFR T790M mutations in their cfDNA, as detected by the kit. T790M mutations were detected in tumor tissues in 12 cases, and 11 of these cases (91.7%) also exhibited the T790M mutation in cfDNA samples. The concentrations of cfDNA were similar between patients with the T790M mutation and those without the mutation. The PointMan™ kit provides a useful method for determining the EGFR T790M mutation status in cfDNA.

  11. Role of the mismatch repair gene, Msh6, in suppressing genome instability and radiation-induced mutations

    PubMed Central

    Barrera-Oro, Julio; Liu, Tzu-Yang; Gorden, Erin; Kucherlapati, Raju; Shao, Changshun; Tischfield, Jay A

    2008-01-01

    Mismatch repair (MMR) is critical for preserving genomic integrity. Failure of this system can accelerate somatic mutation and increase the risk of developing cancer. MSH6, in complex with MSH2, is the MMR protein that mediates DNA repair through the recognition of 1- and 2-bp mismatches. To evaluate the effects of MSH6 deficiency on genomic stability we compared the frequency of in vivo loss of heterozygosity (LOH) between MSH6-proficient and deficient, 129S2 x C57BL/6 F1 hybrid mice that were heterozygous for our reporter gene Aprt. We recovered mutant cells that had functionally lost APRT protein activity and categorized the spectrum of mutations responsible for the LOH events. We also measured the mutant frequency at the X-linked gene, Hprt, as a second reporter for point mutation. In Msh6−/−Aprt+/− mice, mutation frequency at Aprt was elevated in both T cells and fibroblasts by 2.5-fold and 5.7-fold, respectively, over Msh6+/+Aprt+/− littermate controls. While a modest increase in mitotic recombination (MR) was observed in MSH6-deficient fibroblasts compared to wild type controls, point mutation was the predominant mechanism leading to APRT deficiency in both cell types. Base substitution, consisting of multiple types of transitions, accounted for all of the point mutations identified within the Aprt coding region. We also assessed the role of MSH6 in preventing mutations caused by a common environmental mutagen, ionizing radiation (IR). In Msh6−/−Aprt+/− mice, 4 Gy of X-irradiation induced a significant increase in point mutations at both Aprt and Hprt in T cells, but not in fibroblasts. These findings indicate that MutSα reduces spontaneous and IR-induced mutation in a cell-type dependant manner. PMID:18538799

  12. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1.

    PubMed

    Li, Sisi; Xi, Quansheng; Zhang, Xiaoyu; Yu, Dong; Li, Lin; Jiang, Zhenyang; Chen, Qiuyun; Wang, Qing K; Traboulsi, Elias I

    2018-06-01

    We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.

  13. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression.

    PubMed

    Kawada, Hitoshi; Higa, Yukiko; Futami, Kyoko; Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H N; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K; Appawu, Maxwell; Ohta, Nobuo; Suzuki, Takashi; Minakawa, Noboru

    2016-06-01

    Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries.

  14. Continuous and discontinuous phase transitions in the evolution of a polygenic trait under stabilizing selective pressure

    NASA Astrophysics Data System (ADS)

    Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro

    2017-06-01

    The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).

  15. Survival of Patients with Cystic Fibrosis Depending on Mutation Type and Nutritional Status.

    PubMed

    Szwed, A; John, A; Goździk-Spychalska, J; Czaiński, W; Czerniak, W; Ratajczak, J; Batura-Gabryel, H

    2018-01-01

    The purpose of the study was to evaluate the influence of nutrition and of the severity of mutation type on survival rate in cystic fibrosis (CF) patients. Data were longitudinally collected from 60 hospitalized adult CF patients, aged 18-50. The variables consisted of body mass index (BMI) ratio, Cole's BMI cut-off points, severity of mutation type, and survival rate of CF patients. We found that the mean BMI was strongly associated with the severity of mutation type and was significantly lower in patients with severe mutations of grade I and II. The mutation type significantly affected the patients' survival rate; survival was greater in patients with mild and undefined mutation types. The BMI and Cole's cut-off points also had a significant influence on survival rate. CF patients, who suffered from malnutrition and emaciation, had a shorter survival rate than those with proper nutritional status. In conclusion, the study findings confirmed a significant effect of nutritional status and of mutation type on survival rate of CF patients.

  16. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy.

    PubMed

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo; Xu, Ge-Zhi

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. We identified two novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype-phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling.

  17. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    PubMed Central

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  18. Effect of mutation mechanisms on variant composition and distribution in Caenorhabditis elegans

    PubMed Central

    Wang, Jiou

    2017-01-01

    Genetic diversity is maintained by continuing generation and removal of variants. While examining over 800,000 DNA variants in wild isolates of Caenorhabditis elegans, we made a discovery that the proportions of variant types are not constant across the C. elegans genome. The variant proportion is defined as the fraction of a specific variant type (e.g. single nucleotide polymorphism (SNP) or indel) within a broader set of variants (e.g. all variants or all non-SNPs). The proportions of most variant types show a correlation with the recombination rate. These correlations can be explained as a result of a concerted action of two mutation mechanisms, which we named Morgan and Sanger mechanisms. The two proposed mechanisms act according to the distinct components of the recombination rate, specifically the genetic and physical distance. Regression analysis was used to explore the characteristics and contributions of the two mutation mechanisms. According to our model, ~20–40% of all mutations in C. elegans wild populations are derived from programmed meiotic double strand breaks, which precede chromosomal crossovers and thus may be the point of origin for the Morgan mechanism. A substantial part of the known correlation between the recombination rate and variant distribution appears to be caused by the mutations generated by the Morgan mechanism. Mathematically integrating the mutation model with background selection model gives a more complete depiction of how the variant landscape is shaped in C. elegans. Similar analysis should be possible in other species by examining the correlation between the recombination rate and variant landscape within the context of our mutation model. PMID:28135268

  19. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis.

    PubMed

    Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara

    2009-10-01

    In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.

  20. Familial hypofibrinogenaemia associated with heterozygous substitution of a conserved arginine residue; Bbeta255 Arg-->His (Fibrinogen Merivale).

    PubMed

    Maghzal, Ghassan J; Brennan, Stephen O; Fellowes, Andrew P; Spearing, Ruth; George, Peter M

    2003-02-21

    Sequencing of all three fibrinogen genes from an individual with hypofibrinogenaemia led to the identification of two new point mutations in the Bbeta gene. Family studies showed the mutations Bbeta255 Arg-->His (Fibrinogen Merivale) and Bbeta148 Lys-->Asn (Fibrinogen Merivale II) were on different alleles and that only the Bbeta255 Arg-->His mutation segregated with hypofibrinogenaemia. Three simple heterozygotes for this mutation had mean fibrinogen concentrations of 1.4 mg/ml, while heterozygotes for the Bbeta148 Lys-->Asn mutation had normal fibrinogen concentrations. ESI MS analysis of endoproteinase Asp-N digests of Bbeta chains showed that the Bbeta255 Arg-->His substitution was not expressed in plasma, confirming it as the cause of the hypofibrinogenaemia. The Bbeta148 Lys-->Asn chains, on the other hand, were equally expressed with wild-type Bbeta chains in simple heterozygotes. Genotype analysis failed to detect either substitution in 182 healthy controls. Arg(255) is located in the first strand of the five-stranded sheet that forms the main feature of the betaD domain and appears to form an essential H bond with Gly(414). Both the Arg and Gly are absolutely conserved, not only in all known Bbeta chains, but also in all homologous alphaE and gamma chains and in all fibrinogen-related proteins. Protein instability from loss of this contact could easily explain the association of this mutation with hypofibrinogenaemia.

  1. AB036. Analysis of human mitochondrial genome mutations of Vietnamese patients tentatively diagnosed with encephalomyopathy

    PubMed Central

    Nghia, Phan Tuan; Thai, Trinh Hong; Hue, Truong Thi; Van Minh, Nguyen; Khanh, Phung Bao; Hiep, Tran Duc; Anh, Tran Kieu; Loan, Nguyen Thi Hong; Van, Nguyen Thi Hong; Anh, Pham Van; Hung, Cao Vu; Anh, Le Ngoc

    2015-01-01

    Human mitochondrial genome consists of 16,569 bp, and replicates independently from the nuclear genome. Mutations in mitochondrial genome are usually causative factors of various metabolic disorders, especially those of encephalomyopathy. DNA analysis is the most reliable method for detection of mitochondrial genome mutations, and accordingly an excellent diagnostic tool for mitochondrial mutation-related diseases. In this study, 19 different mitochondrial genome mutations including A3243G, A3251G, T3271C and T3291C (MELAS); A8344G, T8356C and G8363A (MERRF); G3460A, G11778A and T14484C (LHON); T8993G/C and T9176G (Leigh); A1555G (deafness) and A4225G, G4298A, T10010C, T14727C, T14728C, T14709C (encephalomyopathy in general) were analyzed using PCR-RFLP in combination with DNA sequencing. In addition, a real-time PCR method using locked nucleic acid (LNA) Taqman probe was set up for heteroplasmy determination. Screening of 283 tentatively diagnosed encephalomyopathy patients revealed 7 cases of A3243G, 1 case of G11778A, 1 case of A1555G, 1 case of A4225G, 1 case G4298A, and 1 case of 6 bp (ACTCCT/CTCCTA) deletion. Using the LNA Taqman probe real-time PCR, the heteroplasmy of some point mutations was determined and the results support a potential relationship between heteroplasmy level and severity of the disease.

  2. New insights into genotype-phenotype correlations for the doublecortin-related lissencephaly spectrum.

    PubMed

    Bahi-Buisson, Nadia; Souville, Isabelle; Fourniol, Franck J; Toussaint, Aurelie; Moores, Carolyn A; Houdusse, Anne; Lemaitre, Jean Yves; Poirier, Karine; Khalaf-Nazzal, Reham; Hully, Marie; Leger, Pierre Louis; Elie, Caroline; Boddaert, Nathalie; Beldjord, Cherif; Chelly, Jamel; Francis, Fiona

    2013-01-01

    X-linked isolated lissencephaly sequence and subcortical band heterotopia are allelic human disorders associated with mutations of doublecortin (DCX), giving both familial and sporadic forms. DCX encodes a microtubule-associated protein involved in neuronal migration during brain development. Structural data show that mutations can fall either in surface residues, likely to impair partner interactions, or in buried residues, likely to impair protein stability. Despite the progress in understanding the molecular basis of these disorders, the prognosis value of the location and impact of individual DCX mutations has largely remained unclear. To clarify this point, we investigated a cohort of 180 patients who were referred with the agyria-pachygyria subcortical band heterotopia spectrum. DCX mutations were identified in 136 individuals. Analysis of the parents' DNA revealed the de novo occurrence of DCX mutations in 76 cases [62 of 70 females screened (88.5%) and 14 of 60 males screened (23%)], whereas in the remaining cases, mutations were inherited from asymptomatic (n = 14) or symptomatic mothers (n = 11). This represents 100% of families screened. Female patients with DCX mutation demonstrated three degrees of clinical-radiological severity: a severe form with a thick band (n = 54), a milder form (n = 24) with either an anterior thin or an intermediate thickness band and asymptomatic carrier females (n = 14) with normal magnetic resonance imaging results. A higher proportion of nonsense and frameshift mutations were identified in patients with de novo mutations. An analysis of predicted effects of missense mutations showed that those destabilizing the structure of the protein were often associated with more severe phenotypes. We identified several severe- and mild-effect mutations affecting surface residues and observed that the substituted amino acid is also critical in determining severity. Recurrent mutations representing 34.5% of all DCX mutations often lead to similar phenotypes, for example, either severe in sporadic subcortical band heterotopia owing to Arg186 mutations or milder in familial cases owing to Arg196 mutations. Taken as a whole, these observations demonstrate that DCX-related disorders are clinically heterogeneous, with severe sporadic and milder familial subcortical band heterotopia, each associated with specific DCX mutations. There is a clear influence of the individual mutated residue and the substituted amino acid in determining phenotype severity.

  3. Usefulness of rapid urease test samples for molecular analysis of clarithromycin resistance in Helicobacter pylori.

    PubMed

    Baroni, María R; Bucci, Pamela; Giani, Rita N; Giusti, Antonela; Tedeschi, Fabian A; Salvatierra, Emiliano; Barbaglia, Yanina; Jimenez, Félix; Zalazar, Fabian E

    2018-03-27

    Helicobacter pylori is a gastric pathogen that is widely recognized as a causative agent of gastric disease. Its eradication is variable, mainly due to increased resistance to clarithromycin. Our objective was: to evaluate (i) if the biopsy specimen used for the rapid urease test is a useful sample to detect resistance to clarithromycin by PCR-RFLP and (ii) the distribution of A2142G and A2143G point mutations in the 23S rRNA gene, in relation to virulence factors in our region. Gastric specimens were collected from adult dyspeptic patients (n=141) and H. pylori was investigated by the rapid urease test, histopathological analysis and PCR for the hsp60 gene. Clarithromycin resistance was detected by PCR-RFLP in 62 H. pylori (+) paired biopsy specimens submitted to molecular analysis and the rapid urease test. H. pylori virulence factors were analyzed by multiplex PCR using specific primers for the cagA, vacA and babA2 genes. Thirteen out of 62 strains (20.9%) were resistant to clarithromycin: 6/13 (46.2%) harbored the A2143G mutation whereas 7/13 (53.8%) carried the A2142G point mutation. vacA m1s1 was the most frequent genotype among the resistant strains. In conclusion, the biopsy specimens used for the rapid urease test were suitable samples for clarithromycin resistance detection in patients infected with H. pylori, which became especially useful in cases where the number or size of the biopsies is limited. In addition, this is the first report of a molecular analysis for clarithromycin resistance performed directly from gastric biopsies in our region. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterationsmore » in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may contribute to the pathogenesis of AD.« less

  5. Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100.

    PubMed Central

    Polski, J M; Kimzey, S; Percival, R W; Grosso, L E

    1998-01-01

    AIM: To provide a more efficient method for isolating DNA from peripheral blood for use in diagnostic DNA mutation analysis. METHODS: The use of blood impregnated filter paper and Chelex-100 in DNA isolation was evaluated and compared with standard DNA isolation techniques. RESULTS: In polymerase chain reaction (PCR) based assays of five point mutations, identical results were obtained with DNA isolated routinely from peripheral blood and isolated using the filter paper and Chelex-100 method. CONCLUSION: In the clinical setting, this method provides a useful alternative to conventional DNA isolation. It is easily implemented and inexpensive, and provides sufficient, stable DNA for multiple assays. The potential for specimen contamination is reduced because most of the steps are performed in a single microcentrifuge tube. In addition, this method provides for easy storage and transport of samples from the point of acquisition. PMID:9893748

  6. Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100.

    PubMed

    Polski, J M; Kimzey, S; Percival, R W; Grosso, L E

    1998-08-01

    To provide a more efficient method for isolating DNA from peripheral blood for use in diagnostic DNA mutation analysis. The use of blood impregnated filter paper and Chelex-100 in DNA isolation was evaluated and compared with standard DNA isolation techniques. In polymerase chain reaction (PCR) based assays of five point mutations, identical results were obtained with DNA isolated routinely from peripheral blood and isolated using the filter paper and Chelex-100 method. In the clinical setting, this method provides a useful alternative to conventional DNA isolation. It is easily implemented and inexpensive, and provides sufficient, stable DNA for multiple assays. The potential for specimen contamination is reduced because most of the steps are performed in a single microcentrifuge tube. In addition, this method provides for easy storage and transport of samples from the point of acquisition.

  7. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints

    PubMed Central

    Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert

    2017-01-01

    Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665

  8. High prevalence of the point mutation in exon 6 of the xeroderma pigmentosum group A-complementing (XPAC) gene in xeroderma pigmentosum group A patients in Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishigori, Chikako; Imamura, Sadao; Yagi, Takashi

    1993-11-01

    Xeroderma pigmentosum (XP) patients in Tunisia who belong to the genetic complementation group A (XPA) have milder skin symptoms than do Japanese XPA patients. Such difference in the clinical features might be caused by the difference in the site of mutation in the XP A-complementing (XPAC) gene. The purpose of this study is to identify the genetic alterations in the XPAC gene in the Tunisian XPA patients and to investigate the relationship between the clinical symptoms and the genetic alterations. Three sites of mutation in the XPAC gene have been identified in the Japanese XPA patients, and about 85% ofmore » them have a G [yields] C point mutation at the splicing acceptor site of intron 3. The authors found that six (86%) of seven Tunisian XPA patients had a nonsense mutation in codon 228 in exon 6, because of a CGA [yields] TGA point mutation, which can be detected by the HphI RFLP. This type of mutation is the same as those found in two Japanese XPA patients with mild clinical RFLP. Milder skin symptoms in the XPA patients in Tunisia than in those in Japan, despite mostly sunny weather and the unsatisfactory sun protection in Tunisia, should be due to the difference in the mutation site. 11 refs., 2 figs., 2 tabs.« less

  9. Erythrocytosis and Pulmonary Hypertension in a Mouse Model of Human HIF2A Gain of Function Mutation*

    PubMed Central

    Tan, Qiulin; Kerestes, Heddy; Percy, Melanie J.; Pietrofesa, Ralph; Chen, Li; Khurana, Tejvir S.; Christofidou-Solomidou, Melpo; Lappin, Terence R. J.; Lee, Frank S.

    2013-01-01

    The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation. PMID:23640890

  10. SHOX haploinsufficiency and Leri-Weill dyschondrosteosis: prevalence and growth failure in relation to mutation, sex, and degree of wrist deformity.

    PubMed

    Binder, Gerhard; Renz, Alexandra; Martinez, Alicia; Keselman, Ana; Hesse, Volker; Riedl, Stefan W; Häusler, Gabriele; Fricke-Otto, Susanne; Frisch, Herwig; Heinrich, Juan Jorge; Ranke, Michael B

    2004-09-01

    SHOX mutations causing haploinsufficiency were reported in Leri-Weill dyschondrosteosis (LWD), which is characterized by mesomelic short stature and Madelung deformity of the wrists. The aim of this study was to determine the prevalence of SHOX mutations in LWD and to investigate the degree of growth failure in relation to mutation, sex, age of menarche, and wrist deformity. We studied 20 families with 24 affected children (18 females) and nine affected parents (seven females). All patients presented with bilateral Madelung deformity and shortening of the limbs. Height, sitting height, parental height, birth length, age of menarche, and presence of minor abnormalities were recorded. The degree of Madelung deformity was estimated by analysis of left hand radiographs. Microsatellite typing of the SHOX locus was used for detection of SHOX deletions and PCR direct sequencing for the detection of SHOX point mutations. In 14 of 20 families (70%), SHOX mutations were detected, with seven deletions (four de novo) and seven point mutations (one de novo). The latter included five missense mutations of the SHOX homeodomain, one nonsense mutation (E102X) truncating the whole homeodomain, and one point mutation (X293R) causing a C-terminal elongation of SHOX. Median age of the affected children was 13.4 yr (range, 6.1-18.3), mean height sd score (SDS) (sd in parentheses) was -2.85 (1.04), and mean sitting height/height ratio SDS was +3.06 (1.09). Mean birth length SDS was -0.59 (1.26). Growth failure occurred before school age. Height change during a median follow-up of 7.4 yr (range, 2.3-11.3) was insignificant with a mean change in height SDS of -0.10 (0.52). Mean height SDS of affected parents was -2.70 (0.85) vs. -0.91 (1.10) in unaffected parents. Height loss due to LWD was estimated calculating delta height defined by actual height SDS minus target height SDS of the unaffected parent(s). In the children, mean delta height SDS was -2.16 (1.06), the loss being greater in girls at -2.30 (1.02) than in boys at -1.72 (1.09) (P = 0.32). In patients with SHOX deletions, it was -2.14 (1.15) vs. -1.67 (0.73) for the SHOX point mutation group (P = 0.38). Mean delta height SDS was -2.26 (0.68) for the girls with early menarche (<12 yr) vs. -2.08 (0.91) for the other postmenarcheal girls (P = 0.72). Height loss in patients with radiologically severe wrist deformities in comparison with those having milder radiological signs was -2.81 (1.01) vs. -1.70 (1.04) (P = 0.03). GH treatment in five children during a median duration of 3.4 yr (range, 1.5-9.8 yr) with a median dosage of 0.23 mg/kg.wk (range, 0.14-0.25) resulted in a mean height SDS gain of +0.82 (0.34). In conclusion, SHOX defects were the main cause of LWD. Growth failure occurred during the first years of life with a mean height loss of 2.16 SDS whereas pubertal growth may only be mildly or not affected. Children with a severe degree of wrist deformity were significantly shorter than those with mild deformities. No statistically significant effects of type of mutation, age of menarche, or sex on height were observed. The effect of GH therapy varied between individuals and needs to be examined in controlled studies.

  11. K-ras mutations and HLA-DR expression in large bowel adenomas.

    PubMed Central

    Norheim Andersen, S.; Breivik, J.; Løvig, T.; Meling, G. I.; Gaudernack, G.; Clausen, O. P.; Schjölberg, A.; Fausa, O.; Langmark, F.; Lund, E.; Rognum, T. O.

    1996-01-01

    A total of 72 sporadic colorectal adenomas in 56 patients were studied for the presence of point mutations in codons 12 and 13 of the K-ras gene and for HLA-DR antigen expression related to clinicopathological variables. Forty K-ras mutations in 39 adenomas were found (54%): 31 (77%) in codon 12 and nine (23%) in codon 13. There was a strong relationship between the incidence of K-ras mutations and adenoma type, degree of dysplasia and sex. The highest frequency of K-ras mutations was seen in large adenomas of the villous type with high-grade dysplasia. Fourteen out of 15 adenomas obtained from 14 women above 65 years of age carried mutations. HLA-DR positivity was found in 38% of the adenomas, large tumours and those with high-grade dysplasia having the strongest staining. Coexpression of K-ras mutations and HLA-DR was found significantly more frequently in large and highly dysplastic adenomas, although two-way analysis of variance showing size and grade of dysplasia to be the most important variable. None of the adenomas with low-grade dysplasia showed both K-ras mutation and HLA-DR positivity (P = 0.004). K-ras mutation is recognised as an early event in colorectal carcinogenesis. The mutation might give rise to peptides that may be presented on the tumour cell surface by class II molecules, and thereby induce immune responses against neoplastic cells. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8679466

  12. Rapid evolution of cis-regulatory sequences via local point mutations

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Wray, G. A.

    2001-01-01

    Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.

  13. CHARGE syndrome: a recurrent hotspot of mutations in CHD7 IVS25 analyzed by bioinformatic tools and minigene assays.

    PubMed

    Legendre, Marine; Rodriguez-Ballesteros, Montserrat; Rossi, Massimiliano; Abadie, Véronique; Amiel, Jeanne; Revencu, Nicole; Blanchet, Patricia; Brioude, Frédéric; Delrue, Marie-Ange; Doubaj, Yassamine; Sefiani, Abdelaziz; Francannet, Christine; Holder-Espinasse, Muriel; Jouk, Pierre-Simon; Julia, Sophie; Melki, Judith; Mur, Sébastien; Naudion, Sophie; Fabre-Teste, Jennifer; Busa, Tiffany; Stamm, Stephen; Lyonnet, Stanislas; Attie-Bitach, Tania; Kitzis, Alain; Gilbert-Dussardier, Brigitte; Bilan, Frédéric

    2018-02-01

    CHARGE syndrome is a rare genetic disorder mainly due to de novo and private truncating mutations of CHD7 gene. Here we report an intriguing hot spot of intronic mutations (c.5405-7G > A, c.5405-13G > A, c.5405-17G > A and c.5405-18C > A) located in CHD7 IVS25. Combining computational in silico analysis, experimental branch-point determination and in vitro minigene assays, our study explains this mutation hot spot by a particular genomic context, including the weakness of the IVS25 natural acceptor-site and an unconventional lariat sequence localized outside the common 40 bp upstream the acceptor splice site. For each of the mutations reported here, bioinformatic tools indicated a newly created 3' splice site, of which the existence was confirmed using pSpliceExpress, an easy-to-use and reliable splicing reporter tool. Our study emphasizes the idea that combining these two complementary approaches could increase the efficiency of routine molecular diagnosis.

  14. [Point mutations of genes encoding proteins involvedin RNA splicing in patients with myelodysplastic syndromes].

    PubMed

    Barańska, Marta; Czerwińska-Rybak, Joanna; Gil, Lidia; Komarnicki, Mieczysław

    2015-01-01

    The myelodysplastic syndromes (MDS) constitute heterogeneous group of clonal disorders, characterized by ineffective hematopoiesis, peripheral cytopenia and increased risk of acute myeloid leukemia development. Molecular mechanisms behind MDS have not been fully explained, however recent studies based on new technologies confirmed that epigenetic abnormalities and somatic mutation in the spliceasome machinery are crucial in pathogenesis of these diseases. Abnormal mRNA splicing (excision of intronic sequences from mRNA) has been found in over half of all MDS patients and resulted in accumulation of cytogenetical and molecular changes. The biological impact of splicing factor genes mutations has been evaluated only in a limited extend and current studies concentrate on analysis of MDS transcriptome. Molecular characteristic of classical and alternative splicing is presented in the paper, according to current knowledge. We review the most prominent findings from recent years concerning mutation in the spliceasome machinery with respect to MDS phenotype and disease prognosis. Perspectives in applying of novel diagnostic and therapeutic possibilities for myelodysplasia, based on spliceosome mutations identification are also presented. © 2015 MEDPRESS.

  15. Glutaric aciduria type I in the Arab and Jewish communities in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anikster, Y.; Shaag, A.; Elpeleg, O.N.

    Mutation analysis was performed in eight families (16 patients) with glutaric aciduria type I (GA-I), which were all the families diagnosed in Israel in the years 1987 - 1994. Six families were of Moslem origin and two were non-Ashkenazi Jews. The entire coding region of the cDNA of the glutaryl-CoA dehydrogenase gene was sequenced in one patient of each family. Seven new mutations were identified in 15 of 16 mutated alleles, including six point mutations: T4161 (4 alleles), G39OR (1 allele), and S305L, A293T, L283P, and G101R (2 alleles each). In addition, a 1-bp deletion at position 1173 was identifiedmore » in two alleles. These findings do not provide a molecular basis for the clinical variability in GA-1 families. The occurrence of multiple novel mutations in a small geographic area may be explained by their recent onset in isolated communities with a high consanguinity rate. 22 refs., 3 figs., 3 tabs.« less

  16. Analysis of galactosemia-linked mutations of GALT enzyme using a computational biology approach.

    PubMed

    Facchiano, A; Marabotti, A

    2010-02-01

    We describe the prediction of the structural and functional effects of mutations on the enzyme galactose-1-phosphate uridyltransferase related to the genetic disease galactosemia, using a fully computational approach. One hundred and seven single-point mutants were simulated starting from the structural model of the enzyme obtained by homology modeling methods. Several bioinformatics programs were then applied to each resulting mutant protein to analyze the effect of the mutations. The mutations have a direct effect on the active site, or on the dimer assembly and stability, or on the monomer stability. We describe how mutations may exert their effect at a molecular level by altering H-bonds, salt bridges, secondary structure or surface features. The alteration of protein stability, at level of monomer and/or dimer, is the main effect observed. We found an agreement between our results and the functional experimental data available in literature for some mutants. The data and analyses for all the mutants are fully available in the web-accessible database hosted at http://bioinformatica.isa.cnr.it/GALT.

  17. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma

    PubMed Central

    Goyal, Lipika; Saha, Supriya K.; Liu, Leah Y.; Siravegna, Giulia; Leshchiner, Ignaty; Ahronian, Leanne G.; Lennerz, Jochen K.; Vu, Phuong; Deshpande, Vikram; Kambadakone, Avinash; Mussolin, Benedetta; Reyes, Stephanie; Henderson, Laura; Sun, Jiaoyuan Elisabeth; Van Seventer, Emily E.; Gurski, Joseph M.; Baltschukat, Sabrina; Schacher-Engstler, Barbara; Barys, Louise; Stamm, Christelle; Furet, Pascal; Ryan, David P.; Stone, James R.; Iafrate, A. John; Getz, Gad; Porta, Diana Graus; Tiedt, Ralph; Bardelli, Alberto; Juric, Dejan; Corcoran, Ryan B.; Bardeesy, Nabeel; Zhu, Andrew X.

    2017-01-01

    Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intra-lesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation lead to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide development of future therapeutic strategies. PMID:28034880

  18. Novel alpha-galactosidase A mutation in a female with recurrent strokes.

    PubMed

    Tuttolomondo, Antonino; Duro, Giovanni; Miceli, Salvatore; Di Raimondo, Domenico; Pecoraro, Rosaria; Serio, Antonia; Albeggiani, Giuseppe; Nuzzo, Domenico; Iemolo, Francesco; Pizzo, Federica; Sciarrino, Serafina; Licata, Giuseppe; Pinto, Antonio

    2012-11-01

    Anderson-Fabry disease (AFD) is an X-linked inborn error of glycosphingolipid catabolism resulting from the deficient activity of the lysosomal exoglycohydrolase, a-galactosidase A. The complete genomic and cDNA sequences of the human alpha-galactosidase A gene have been determined and to date, several disease-causing alpha-galactosidase A mutations have been identified, including missense mutations, small deletions/insertions, splice mutations, and large gene rearrangements We report a case of a 56-year-old woman with recurrent cryptogenic strokes. Ophthalmological examination revealed whorled opacities of the cornea (cornea verticillata) and dilated tortuous conjunctival vessels. She did not show other typical signs of Fabry disease such as acroparesthesias and angiokeratoma. The patient's alpha-galactosidase A activity was 4.13 nmol/mL/h in whole blood. Alpha-galactosidase A gene sequence analysis revealed a heterozygous single nucleotide point mutation at nucleotide c.550T>A in exon 4 in this woman, leading to the p.Tyr184Asn amino acid substitution. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Engineering diverse changes in beta-turn propensities in the N-terminal beta-hairpin of ubiquitin reveals significant effects on stability and kinetics but a robust folding transition state.

    PubMed

    Simpson, Emma R; Meldrum, Jill K; Searle, Mark S

    2006-04-04

    Using the N-terminal 17-residue beta-hairpin of ubiquitin as a "host" for mutational studies, we have investigated the influence of the beta-turn sequence on protein stability and folding kinetics by replacing the native G-bulged turn (TLTGK) with more flexible analogues (TG3K and TG5K) and a series of four-residue type I' beta-turn sequences, commonly found in beta-hairpins. Although a statistical analysis of type I' turns demonstrates residue preferences at specific sites, the frequency of occurrence appears to only broadly correlate with experimentally determined protein stabilities. The subsequent engineering of context-dependent non-native tertiary contacts involving turn residues is shown to produce large changes in stability. Relatively few point mutations have been described that probe secondary structure formation in ubiquitin in a manner that is independent of tertiary contacts. To this end, we have used the more rigorous rate-equilibrium free energy relationship (Leffler analysis), rather than the two-point phi value analysis, to show for a family of engineered beta-turn mutants that stability (range of approximately 20 kJ/mol) and folding kinetics (190-fold variation in refolding rate) are linearly correlated (alpha(f) = 0.74 +/- 0.08). The data are consistent with a transition state that is robust with regard to a wide range of statistically favored and disfavored beta-turn mutations and implicate a loosely assembled beta-hairpin as a key template in transition state stabilization with the beta-turn playing a central role.

  20. Genetic Diversity of the Hepatitis B Virus Strains in Cuba: Absence of West-African Genotypes despite the Transatlantic Slave Trade

    PubMed Central

    Rodríguez Lay, Licel A.; Corredor, Marité B.; Villalba, Maria C.; Frómeta, Susel S.; Wong, Meilin S.; Valdes, Lidunka; Samada, Marcia; Sausy, Aurélie; Hübschen, Judith M.; Muller, Claude P.

    2015-01-01

    Cuba is an HBsAg low-prevalence country with a high coverage of anti-hepatitis B vaccine. Its population is essentially the result of the population mix of Spanish descendants and former African slaves. Information about genetic characteristics of hepatitis B virus (HBV) strains circulating in the country is scarce. The HBV genotypes/subgenotypes, serotypes, mixed infections, and S gene mutations of 172 Cuban HBsAg and HBV-DNA positive patients were determined by direct sequencing and phylogenetic analysis. Phylogenetic analysis of HBV S gene sequences showed a predominance of genotype A (92.4%), subgenotype A2 (84.9%) and A1 (7.6%). Genotype D (7.0%) and subgenotype C1 (0.6%) were also detected but typical (sub)genotypes of contemporary West-Africa (E, A3) were conspicuously absent. All genotype A, D, and C strains exhibited sequence characteristics of the adw2, ayw2, and adrq serotypes, respectively. Thirty-three (19.1%) patients showed single, double, or multiple point mutations inside the Major Hydrophilic domain associated with vaccine escape; eighteen (10.5%) patients had mutations in the T-cell epitope (amino acids 28-51), and there were another 111 point mutations downstream of the S gene. One patient had an HBV A1/A2 mixed infection. This first genetic study of Cuban HBV viruses revealed only strains that were interspersed with strains from particularly Europe, America, and Asia. The absence of genotype E supports previous hypotheses about an only recent introduction of this genotype into the general population in Africa. The presence of well-known vaccine escape (3.5%) and viral resistance mutants (2.9%) warrants strain surveillance to guide vaccination and treatment strategies. PMID:25978398

  1. NLR mutations suppressing immune hybrid incompatibility and their effects on disease resistance.

    PubMed

    Atanasov, Kostadin Evgeniev; Liu, Changxin; Erban, Alexander; Kopka, Joachim; Parker, Jane E; Alcázar, Rubén

    2018-05-23

    Genetic divergence between populations can lead to reproductive isolation. Hybrid incompatibilities (HI) represent intermediate points along a continuum towards speciation. In plants, genetic variation in disease resistance (R) genes underlies several cases of HI. The progeny of a cross between Arabidopsis (Arabidopsis thaliana) accessions Landsberg (Ler, Poland) and Kashmir-2 (Kas-2, central Asia) exhibits immune-related HI. This incompatibility is due to a genetic interaction between a cluster of eight TNL (TOLL/INTERLEUKIN1 RECEPTOR- NUCLEOTIDE BINDING - LEUCINE RICH REPEAT) RPP1 (RECOGNITION OF PERONOSPORA PARASITICA 1)- like genes (R1- R8) from Ler and central Asian alleles of a Strubbelig-family receptor-like kinase (SRF3) from Kas-2. In characterizing mutants altered in Ler/Kas-2 HI, we mapped multiple mutations to the RPP1-like Ler locus. Analysis of these suppressor of Ler/Kas-2 incompatibility (sulki) mutants reveals complex, additive and epistatic interactions underlying RPP1-like Ler locus activity. The effects of these mutations were measured on basal defense, global gene expression, primary metabolism, and disease resistance to a local Hyaloperonospora arabidopsidis isolate (Hpa Gw) collected from Gorzów (Gw), where the Landsberg accession originated. Gene expression sectors and metabolic hallmarks identified for HI are both dependent and independent of RPP1-like Ler members. We establish that mutations suppressing immune-related Ler/Kas-2 HI do not compromise resistance to Hpa Gw. QTL mapping analysis of Hpa Gw resistance point to RPP7 as the causal locus. This work provides insight into the complex genetic architecture of the RPP1-like Ler locus and immune-related HI in Arabidopsis and into the contributions of RPP1-like genes to HI and defense. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  2. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus

    PubMed Central

    Leedham, S J; Preston, S L; McDonald, S A C; Elia, G; Bhandari, P; Poller, D; Harrison, R; Novelli, M R; Jankowski, J A; Wright, N A

    2008-01-01

    Objectives: Current models of clonal expansion in human Barrett’s oesophagus are based upon heterogenous, flow-purified biopsy analysis taken at multiple segment levels. Detection of identical mutation fingerprints from these biopsy samples led to the proposal that a mutated clone with a selective advantage can clonally expand to fill an entire Barrett’s segment at the expense of competing clones (selective sweep to fixation model). We aimed to assess clonality at a much higher resolution by microdissecting and genetically analysing individual crypts. The histogenesis of Barrett’s metaplasia and neo-squamous islands has never been demonstrated. We investigated the oesophageal gland squamous ducts as the source of both epithelial sub-types. Methods: Individual crypts across Barrett’s biopsy and oesophagectomy blocks were dissected. Determination of tumour suppressor gene loss of heterozygosity patterns, p16 and p53 point mutations were carried out on a crypt-by-crypt basis. Cases of contiguous neo-squamous islands and columnar metaplasia with oesophageal squamous ducts were identified. Tissues were isolated by laser capture microdissection and genetically analysed. Results: Individual crypt dissection revealed mutation patterns that were masked in whole biopsy analysis. Dissection across oesophagectomy specimens demonstrated marked clonal heterogeneity, with multiple independent clones present. We identified a p16 point mutation arising in the squamous epithelium of the oesophageal gland duct, which was also present in a contiguous metaplastic crypt, whereas neo-squamous islands arising from squamous ducts were wild-type with respect to surrounding Barrett’s dysplasia. Conclusions: By studying clonality at the crypt level we demonstrate that Barrett’s heterogeneity arises from multiple independent clones, in contrast to the selective sweep to fixation model of clonal expansion previously described. We suggest that the squamous gland ducts situated throughout the oesophagus are the source of a progenitor cell that may be susceptible to gene mutation resulting in conversion to Barrett’s metaplastic epithelium. Additionally, these data suggest that wild-type ducts may be the source of neo-squamous islands. PMID:18305067

  3. A single-point mutation in the extreme heat- and pressure-resistant sso7d protein from sulfolobus solfataricus leads to a major rearrangement of the hydrophobic core.

    PubMed

    Consonni, R; Santomo, L; Fusi, P; Tortora, P; Zetta, L

    1999-09-28

    Sso7d is a basic 7-kDa DNA-binding protein from Sulfolobus solfataricus, also endowed with ribonuclease activity. The protein consists of a double-stranded antiparallel beta-sheet, onto which an orthogonal triple-stranded antiparallel beta-sheet is packed, and of a small helical stretch at the C-terminus. Furthermore, the two beta-sheets enclose an aromatic cluster displaying a fishbone geometry. We previously cloned the Sso7d-encoding gene, expressed it in Escherichia coli, and produced several single-point mutants, either of residues located in the hydrophobic core or of Trp23, which is exposed to the solvent and plays a major role in DNA binding. The mutation F31A was dramatically destabilizing, with a loss in thermo- and piezostabilities by at least 27 K and 10 kbar, respectively. Here, we report the solution structure of the F31A mutant, which was determined by NMR spectroscopy using 744 distance constraints obtained from analysis of multidimensional spectra in conjunction with simulated annealing protocols. The most remarkable finding is the change in orientation of the Trp23 side chain, which in the wild type is completely exposed to the solvent, whereas in the mutant is largely buried in the aromatic cluster. This prevents the formation of a cavity in the hydrophobic core of the mutant, which would arise in the absence of structural rearrangements. We found additional changes produced by the mutation, notably a strong distortion in the beta-sheets with loss in several hydrogen bonds, increased flexibility of some stretches of the backbone, and some local strains. On one hand, these features may justify the dramatic destabilization provoked by the mutation; on the other hand, they highlight the crucial role of the hydrophobic core in protein stability. To the best of our knowledge, no similar rearrangement has been so far described as a result of a single-point mutation.

  4. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    PubMed

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  5. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces.

    PubMed

    Venselaar, Hanka; Te Beek, Tim A H; Kuipers, Remko K P; Hekkelman, Maarten L; Vriend, Gert

    2010-11-08

    Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of new medicines and diagnostic tools. In this article we describe HOPE, a fully automatic program that analyzes the structural and functional effects of point mutations. HOPE collects information from a wide range of information sources including calculations on the 3D coordinates of the protein by using WHAT IF Web services, sequence annotations from the UniProt database, and predictions by DAS services. Homology models are built with YASARA. Data is stored in a database and used in a decision scheme to identify the effects of a mutation on the protein's 3D structure and function. HOPE builds a report with text, figures, and animations that is easy to use and understandable for (bio)medical researchers. We tested HOPE by comparing its output to the results of manually performed projects. In all straightforward cases HOPE performed similar to a trained bioinformatician. The use of 3D structures helps optimize the results in terms of reliability and details. HOPE's results are easy to understand and are presented in a way that is attractive for researchers without an extensive bioinformatics background.

  6. Quartz crystal microbalance detection of DNA single-base mutation based on monobase-coded cadmium tellurium nanoprobe.

    PubMed

    Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo

    2011-01-01

    A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry

  7. Human Splicing Finder: an online bioinformatics tool to predict splicing signals.

    PubMed

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-05-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

  8. Human Splicing Finder: an online bioinformatics tool to predict splicing signals

    PubMed Central

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-01-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-β Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5′ and 3′ splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project. PMID:19339519

  9. Investigation of the Mitochondrial ATPase 6/8 and tRNA(Lys) Genes Mutations in Autism.

    PubMed

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNA(Lys) genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions.

  10. Investigation of the Mitochondrial ATPase 6/8 and tRNALys Genes Mutations in Autism

    PubMed Central

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Objective: Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNALys genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. Materials and Methods: In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. Results: In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. Conclusion: MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions. PMID:23508290

  11. Identification of FVIII gene mutations in patients with hemophilia A using new combinatorial sequencing by hybridization

    PubMed Central

    Chetta, M.; Drmanac, A.; Santacroce, R.; Grandone, E.; Surrey, S.; Fortina, P.; Margaglione, M.

    2008-01-01

    BACKGROUND: Standard methods of mutation detection are time consuming in Hemophilia A (HA) rendering their application unavailable in some analysis such as prenatal diagnosis. OBJECTIVES: To evaluate the feasibility of combinatorial sequencing-by-hybridization (cSBH) as an alternative and reliable tool for mutation detection in FVIII gene. PATIENTS/METHODS: We have applied a new method of cSBH that uses two different colors for detection of multiple point mutations in the FVIII gene. The 26 exons encompassing the HA gene were analyzed in 7 newly diagnosed Italian patients and in 19 previously characterized individuals with FVIII deficiency. RESULTS: Data show that, when solution-phase TAMRA and QUASAR labeled 5-mer oligonucleotide sets mixed with unlabeled target PCR templates are co-hybridized in the presence of DNA ligase to universal 6-mer oligonucleotide probe-based arrays, a number of mutations can be successfully detected. The technique was reliable also in identifying a mutant FVIII allele in an obligate heterozygote. A novel missense mutation (Leu1843Thr) in exon 16 and three novel neutral polymorphisms are presented with an updated protocol for 2-color cSBH. CONCLUSIONS: cSBH is a reliable tool for mutation detection in FVIII gene and may represent a complementary method for the genetic screening of HA patients. PMID:20300295

  12. A novel point mutation in CD18 causing the expression of dysfunctional CD11/CD18 leucocyte integrins in a patient with leucocyte adhesion deficiency (LAD)

    PubMed Central

    Mathew, E C; Shaw, J M; Bonilla, F A; Law, S K A; Wright, D A

    2000-01-01

    Leucocyte adhesion deficiency type 1 (LAD-1) is characterized by the incapacity of leucocytes to carry out their adhesion functions via their CD11/CD18 antigens, which are also referred to as the leucocyte integrins. The patients generally suffer from poor wound healing and recurrent bacterial and fungal infections. In severe cases, the infections are often systemic and life-threatening. A LAD patient (AW) of moderate phenotype has been identified but, unlike most other cases, the level of CD11/CD18 antigens on her leucocytes are uncharacteristically high for a LAD patient. Molecular analysis revealed that she is a compound heterozygote for CD18 mutations. She has inherited a D231H mutation from her father and a G284S mutation from her mother. By transfection studies, it was established that the G284S mutation does not support CD11/CD18 antigen expression on the cell surface. In contrast, the D231H mutation does not affect CD18 forming integrin heterodimers with the CD11 antigens on the cell surface. However, the expressed integrins with the D231H mutation are not adhesive to ligands. PMID:10886250

  13. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    PubMed

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  14. Exact Identification of a Quantum Change Point

    NASA Astrophysics Data System (ADS)

    Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Ramon

    2017-10-01

    The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty—naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.

  15. Exact Identification of a Quantum Change Point.

    PubMed

    Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Ramon

    2017-10-06

    The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty-naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.

  16. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    PubMed

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  17. A Systematic Survey of an Intragenic Epistatic Landscape

    PubMed Central

    Bank, Claudia; Hietpas, Ryan T.; Jensen, Jeffrey D.; Bolon, Daniel N.A.

    2015-01-01

    Mutations are the source of evolutionary variation. The interactions of multiple mutations can have important effects on fitness and evolutionary trajectories. We have recently described the distribution of fitness effects of all single mutations for a nine-amino-acid region of yeast Hsp90 (Hsp82) implicated in substrate binding. Here, we report and discuss the distribution of intragenic epistatic effects within this region in seven Hsp90 point mutant backgrounds of neutral to slightly deleterious effect, resulting in an analysis of more than 1,000 double mutants. We find negative epistasis between substitutions to be common, and positive epistasis to be rare—resulting in a pattern that indicates a drastic change in the distribution of fitness effects one step away from the wild type. This can be well explained by a concave relationship between phenotype and genotype (i.e., a concave shape of the local fitness landscape), suggesting mutational robustness intrinsic to the local sequence space. Structural analyses indicate that, in this region, epistatic effects are most pronounced when a solvent-inaccessible position is involved in the interaction. In contrast, all 18 observations of positive epistasis involved at least one mutation at a solvent-exposed position. By combining the analysis of evolutionary and biophysical properties of an epistatic landscape, these results contribute to a more detailed understanding of the complexity of protein evolution. PMID:25371431

  18. Aggregation Pathways of Native-Like Ubiquitin Promoted by Single-Point Mutation, Metal Ion Concentration, and Dielectric Constant of the Medium.

    PubMed

    Fermani, Simona; Calvaresi, Matteo; Mangini, Vincenzo; Falini, Giuseppe; Bottoni, Andrea; Natile, Giovanni; Arnesano, Fabio

    2018-03-15

    Ubiquitin-positive protein aggregates are biomarkers of neurodegeneration, but the molecular mechanism responsible for their formation and accumulation is still unclear. Possible aggregation pathways of human ubiquitin (hUb) promoted by both intrinsic and extrinsic factors, are here investigated. By a computational analysis, two different hUb dimers are indicated as possible precursors of amyloid-like structures, but their formation is disfavored by an electrostatic repulsion involving Glu16 and other carboxylate residues present at the dimer interface. Experimental data on the E16V mutant of hUb shows that this single-point mutation, although not affecting the overall protein conformation, promotes protein aggregation. It is sufficient to shift the same mutation by only two residues (E18V) to regain the behavior of wild-type hUb. The neutralization of Glu16 negative charge by a metal ion and a decrease of the dielectric constant of the medium by addition of trifluoroethanol (TFE), also promote hUb aggregation. The outcomes of this research have important implications for the prediction of physiological parameters that favor aggregate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ten Novel Mutations in Chinese Patients with Megalencephalic Leukoencephalopathy with Subcortical Cysts and a Long-Term Follow-Up Research

    PubMed Central

    Cao, Binbin; Yan, Huifang; Guo, Mangmang; Xie, Han; Wu, Ye; Gu, Qiang; Xiao, Jiangxi; Shang, Jing; Yang, Yanling; Xiong, Hui; Niu, Zhengping; Wu, Xiru; Jiang, Yuwu; Wang, Jingmin

    2016-01-01

    Objective Megalencephalic leukoencephalopathy with subcortical cysts (MLC, OMIM 604004) is a rare neurological deterioration disease. We aimed to clarify clinical and genetic features of Chinese MLC patients. Methods Clinical information and peripheral venous blood of 20 patients and their families were collected, Sanger-sequencing and Multiple Ligation-dependent Probe Amplification were performed to make genetic analysis. Splicing-site mutation was confirmed with RT-PCR. UPD was detected by haplotype analysis. Follow-up study was performed through telephone for 27 patients. Results Out of 20 patients, macrocephaly, classic MRI features, motor development delay and cognitive impairment were detected in 20(100%), 20(100%), 17(85%) and 4(20%) patients, respectively. 20(100%) were clinically diagnosed with MLC. 19(95%) were genetically diagnosed with 10 novel mutations in MLC1, MLC1 and GlialCAM mutations were identified in 15 and 4 patients, respectively. Deletion mutation from exon4 to exon9 and a homozygous point mutation due to maternal UPD of chromosome22 in MLC1 were found firstly. c.598-2A>C in MLC1 leads to the skip of exon8. c.772-1G>C in MLC1 accounting for 15.5%(9/58) alleles in Chinese patients might be a founder or a hot-spot mutation. Out of 27 patients in the follow-up study, head circumference was ranged from 56cm to 61cm in patients older than 5yeas old, with a median of 57cm. Motor development delay and cognitive impairment were detected in 22(81.5%) and 5(18.5%) patients, respectively. Motor and cognitive deterioration was found in 5 (18.5%) and 2 patients (7.4%), respectively. Improvements and MRI recovery were first found in Chinese patients. Rate of seizures (45.5%), transient motor retrogress (45.5%) and unconsciousness (13.6%) after head trauma was much higher than that after fever (18.2%, 9.1%, 0%, respectively). Significance It’s a clinical and genetic analysis and a follow-up study for largest sample of Chinese MLC patients, identifying 10 novel mutations, expanding mutation spectrums and discovering clinical features of Chinese MLC patients. PMID:27322623

  20. Multiplex KRASG12/G13 mutation testing of unamplified cell-free DNA from the plasma of patients with advanced cancers using droplet digital polymerase chain reaction.

    PubMed

    Janku, F; Huang, H J; Fujii, T; Shelton, D N; Madwani, K; Fu, S; Tsimberidou, A M; Piha-Paul, S A; Wheler, J J; Zinner, R G; Naing, A; Hong, D S; Karp, D D; Cabrilo, G; Kopetz, E S; Subbiah, V; Luthra, R; Kee, B K; Eng, C; Morris, V K; Karlin-Neumann, G A; Meric-Bernstam, F

    2017-03-01

    Cell-free DNA (cfDNA) from plasma offers easily obtainable material for KRAS mutation analysis. Novel, multiplex, and accurate diagnostic systems using small amounts of DNA are needed to further the use of plasma cfDNA testing in personalized therapy. Samples of 16 ng of unamplified plasma cfDNA from 121 patients with diverse progressing advanced cancers were tested with a KRASG12/G13 multiplex assay to detect the seven most common mutations in the hotspot of exon 2 using droplet digital polymerase chain reaction (ddPCR). The results were retrospectively compared to mutation analysis of archival primary or metastatic tumor tissue obtained at different points of clinical care. Eighty-eight patients (73%) had KRASG12/G13 mutations in archival tumor specimens collected on average 18.5 months before plasma analysis, and 78 patients (64%) had KRASG12/G13 mutations in plasma cfDNA samples. The two methods had initial overall agreement in 103 (85%) patients (kappa, 0.66; ddPCR sensitivity, 84%; ddPCR specificity, 88%). Of the 18 discordant cases, 12 (67%) were resolved by increasing the amount of cfDNA, using mutation-specific probes, or re-testing the tumor tissue, yielding overall agreement in 115 patients (95%; kappa 0.87; ddPCR sensitivity, 96%; ddPCR specificity, 94%). The presence of ≥ 6.2% of KRASG12/G13 cfDNA in the wild-type background was associated with shorter survival (P = 0.001). Multiplex detection of KRASG12/G13 mutations in a small amount of unamplified plasma cfDNA using ddPCR has good sensitivity and specificity and good concordance with conventional clinical mutation testing of archival specimens. A higher percentage of mutant KRASG12/G13 in cfDNA corresponded with shorter survival. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed

    von Schnakenburg, C; Rumsby, G

    1997-06-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.

  2. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed Central

    von Schnakenburg, C; Rumsby, G

    1997-01-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270

  3. Mutation of the C/EBP binding sites in the Rous sarcoma virus long terminal repeat and gag enhancers.

    PubMed Central

    Ryden, T A; de Mars, M; Beemon, K

    1993-01-01

    Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280

  4. Spontaneous mutation during the sexual cycle of Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watters, M.K.; Stadler, D.R.

    The DNA sequences of 42 spontaneous mutations of the mtr gene in Neurospora crassa have been determined. The mutants were selected among sexual spores to represent mutations arising in the sexual cycle. Three sexual-cycle-specific mutational classes are described: hotspot mutants, spontaneous repeat-induced point mutation (RIPs) and mutations occurring during a mutagenic phase of the sexual cycle. Together, these three sexual-cycle-specific mutational classes account for 50% of the mutations in the sexual-cycle mutational spectrum. One third of all mutations occurred at one of two mutational hotspots that predominantly produced tandem duplications of varying lengths with short repeats at their end-points. Neithermore » of the two hotspots are present in the vegetative spectrum, suggesting that sexual-cycle-specific mutational pathways are responsible for their presence in the spectrum. One mutant was observed that appeared to have been RIPed precociously. The usual prerequisite for RIP, a duplication of the affected region, was not present in the parent stocks and was not detected in this mutant. Finally, there is a phase early in the premeiotic sexual cycle that is overrepresented in the generation of mutations. This {open_quotes}peak{close_quotes} appears to represent a phase during which the mutation rate rises significantly. This phase produces a disproportionally high fraction of frame shift mutations. In divisions subsequent to this, the mutation rate appears to be constant. 26 refs., 6 figs., 2 tabs.« less

  5. Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia

    PubMed Central

    Mkulama, Mtawa AP; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano

    2008-01-01

    Background In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. Methods A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Results Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. Conclusion This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll. PMID:18495008

  6. Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia.

    PubMed

    Mkulama, Mtawa A P; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano

    2008-05-21

    In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll.

  7. Whole-exome sequencing for mutation detection in pediatric disorders of insulin secretion: Maturity onset diabetes of the young and congenital hyperinsulinism.

    PubMed

    Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L

    2018-06-01

    To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Rapid polymerase chain reaction screening of Helicobacter pylori chromosomal point mutations.

    PubMed

    Ge, Z; Taylor, D E

    1997-09-01

    Microdiversity (within individual genes) in the genomes of different Helicobacter pylori strains has been demonstrated to be more frequent than that seen in other prokaryotes. Point mutations in some genes, such as the vacA and 23S ribosomal RNA genes could result in the alteration of pathogenicity or antibiotic susceptibility of individual H. pylori strains. Development of a simple, rapid, and reliable screening method would be useful in the molecular characterization of genetic variation among different H. pylori strains. The copP gene from H. pylori UA802 was used as a model for developing a mutation screening method. Four point mutations were introduced into the copP gene by in vitro site-directed mutagenesis and were verified by DNA sequencing. The mutated copP gene replaced the wild-type locus by natural transformation and homologous recombination. The site-specific mutants were screened by polymerase chain reaction (PCR) using 3'-end mismatched primers. The origins of the PCR fragments were demonstrated by Southern hybridization with the copP-derived DNA probe. Three of these four mutations were characterized by PCR with the specific primers that contained the 3'-terminal nucleotide complementary only to the mutated nucleotide on both plasmid and chromosomal DNA templates. One mutation was able to be identified with the foregoing primer containing an additional wild-type nucleotide at its 3'-end. Point mutant screening with these specific primers offers 100% sensitivity in the aforementioned conditions. To achieve optimal screening, the concentration of magnesium and the annealing temperature have to be adjusted. The procedure reported in this study is a simple, economical, rapid, and efficient approach in the identification of site-specific mutations on both plasmids and chromosomal DNA. Although the method was developed by using a specified H. pylori gene, it can be extended easily to other genes of interest in H. pylori or other organisms.

  9. [The genotype analysis of glucose-6-phosphate dehydrogenase deficiency in Yunnan province].

    PubMed

    Yang, Z; Chu, J; Ban, G; Huang, X; Xu, S; Li, M

    2001-08-01

    To identify glucose-6-phosphate dehydrogenase (G6PD) gene mutations in 23 patients with G6PD deficiency and to gain further understanding of the molecular and genetic background of G6PD gene in Yunnan province, China. The mutations located in exons 2-12 and in parts of introns of G6PD gene were analyzed by amplification refractory mutation system(ARMS), natural and mis-match primer PCR/restrict enzyme, polymerase chain reaction-single strand conformation polymorphism(PCR-SSCP ) analysis and automatic DNA sequencing. Among these 23 samples, 5 different point mutations in G6PD gene were identified, and they constituted 5 genotypes. There were 7 Han and 3 Dai patients with G487A mutation, 7 cases with both intron 11 T93C and C1311T mutations, 4 cases with intron 5 636 or 637 T-->del mutation, 1 case with G871A mutation, and 1 case with G487A/T93C/C1311T mutation. Two haplotypes, 93C/1311T and 93C/1311T/487A were identified in Yunnan. A strong association was observed between C1311T and the Nla III restriction site produced by intron 11 T93C. The findings of the investigators on IVS-5 636 or 637T-->del in Chinese, on G871A in mainland of China, and on G487A in the Han people of Yunnan have not been reported previously. G6PD deficiency is very heterogenous in Yunnan; G487A is one of the common mutations in that province and may be of different origins. Possibly IVS-11 T93C mutation is of non-African origin. IVS-11 T93C and C1311T might jointly result in G6PD deficiency. The above data on G6PD gene mutation types could be useful for clinical diagnosis, prevention of G6PD deficiency, and researches in the origin and migration of minorities in Yunnan or other regions.

  10. Biochemical and genetic analysis of Leigh syndrome patients in Korea.

    PubMed

    Chae, Jong-Hee; Lee, Jin Sook; Kim, Ki Joong; Hwang, Yong Seung; Hirano, Michio

    2008-06-01

    Sixteen Korean patients with Leigh syndrome were identified at the Seoul National University Children's Hospital in 2001-2006. Biochemical or molecular defects were identified in 14 patients (87.5%). Thirteen patients had respiratory chain enzyme defects; 9 had complex I deficiency, and 4 had combined defects of complex I+III+IV. Based on the biochemical defects, targeted genetic studies in 4 patients with complex I deficiency revealed two heteroplasmic mitochondrial DNA mutations in ND genes. One patient had the mitochondrial DNA T8993G point mutation. No mitochondrial DNA defects were identified in 11 (68.7%) of our LS patients, who probably have mutations in nuclear DNA. Although a limited study based in a single tertiary medical center, our findings suggest that isolated complex I deficiency may be the most common cause of Leigh syndrome in Korea.

  11. Point mutations in the tumor suppressor Smad4/DPC4 enhance its phosphorylation by GSK3 and reversibly inactivate TGF-β signaling

    PubMed Central

    Demagny, Hadrien; De Robertis, Edward M

    2016-01-01

    The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-β pathway and is frequently mutated or deleted in prostate, colorectal, and pancreatic carcinomas. We recently discovered that Smad4 activity and stability are regulated by the FGF/EGF and Wnt signaling pathways through a series of MAPK and GSK3 phosphorylation sites located in its linker region. In the present study, we report that loss-of-function associated with 2 point mutations commonly found in colorectal and pancreatic cancers results from enhanced Smad4 phosphorylation by GSK3, generating a phosphodegron that leads to subsequent β-TrCP–mediated polyubiquitination and proteasomal degradation. Using chemical GSK3 inhibitors, we show that Smad4 point mutant proteins can be stabilized and TGF-β signaling restored in cancer cells harboring such mutations. PMID:27308538

  12. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  13. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo; Che, Xibing

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This studymore » mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.« less

  14. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    PubMed Central

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  15. Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients.

    PubMed

    Del Bo, Roberto; Bordoni, Andreina; Martinelli Boneschi, Filippo; Crimi, Marco; Sciacco, Monica; Bresolin, Nereo; Scarlato, Guglielmo; Comi, Giacomo Pietri

    2002-10-15

    The progressive accumulation of mitochondrial DNA (mtDNA) alterations, ranging from single mutations to large-scale deletions, in both the normal ageing process and pathological conditions is a relevant phenomenon in terms of frequency and heteroplasmic degree. Recently, two point mutations (A189G and T408A) within the Displacement loop (D-loop) region, the control region for mtDNA replication, were shown to occur in skeletal muscles from aged individuals. We evaluated the presence and the heteroplasmy levels of these two mutations in muscle biopsies from 91 unrelated individuals of different ages (21 healthy subjects and 70 patients affected by mitochondrial encephalomyopathies). Overall, both mutations significantly accumulate with age. However, a different relationship was discovered among the different subgroups of patients: a higher number of A189G positive subjects younger than 53 years was detected in the subgroup of multiple-deleted patients; furthermore, a trend towards an increased risk for the mutations was evidenced among patients carrying multiple deletions when compared to healthy controls. These findings support the idea that a common biological mechanism determines the accumulation of somatic point mutations in the D-loop region, both in healthy subjects and in mitochondrial myopathy patients. At the same time, it appears that disorders caused by mutations of nuclear genes controlling mtDNA replication (the "mtDNA multiple deletions" syndromes) present a temporal advantage to mutate in the D-loop region. This observation may be relevant to the definition of the molecular pathogenesis of these latter syndromes. Copyright 2002 Elsevier Science B.V.

  16. Destabilization of the metal site as a hub for the pathogenic mechanism of five ALS-linked mutants of copper, zinc superoxide dismutase.

    PubMed

    Mera-Adasme, Raúl; Erdmann, Hannes; Bereźniak, Tomasz; Ochsenfeld, Christian

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, with no effective pharmacological treatment. Its pathogenesis is unknown, although a subset of the cases is linked to genetic mutations. A significant fraction of the mutations occur in one protein, copper, zinc superoxide dismutase (SOD1). The toxic function of mutant SOD1 has not been elucidated, but damage to the metal site of the protein is believed to play a major role. In this work, we study the electrostatic loop of SOD1, which we had previously proposed to work as a "solvent seal" isolating the metal site from water molecules. Out of the five contact points identified between the electrostatic loop and its dock in the rest of the protein, three points were found to be affected by ALS-linked mutations, with a total of five mutations identified. The effect of the five mutations was studied using methods of computational chemistry. We found that four of the mutations destabilize the proposed solvent seal, while the fifth mutation directly affects the metal-site stability. In the two contact points unaffected by ALS-linked mutations, the side chains of the residues were not found to play a stabilizing role. Our results show that the docking of the electrostatic loop to the rest of SOD1 plays a role in ALS pathogenesis, in support of that structure acting as a solvent barrier for the metal site. The results provide a unified pathogenic mechanism for five different ALS-linked mutations of SOD1.

  17. Congenital heart defect causing mutation in Nkx2.5 displays in vivo functional deficit.

    PubMed

    Zakariyah, Abeer F; Rajgara, Rashida F; Veinot, John P; Skerjanc, Ilona S; Burgon, Patrick G

    2017-04-01

    The Nkx2.5 gene encodes a transcription factor that plays a critical role in heart development. In humans, heterozygous mutations in NKX2.5 result in congenital heart defects (CHDs). However, the molecular mechanisms by which these mutations cause the disease remain unknown. NKX2.5-R142C is a mutation that was reported to be associated with atrial septal defect (ASD) and atrioventricular (AV) block in 13-patients from one family. The R142C mutation is located within both the DNA-binding domain and the nuclear localization sequence of NKX2.5 protein. The pathogenesis of CHDs in humans with R142C point mutation is not well understood. To examine the functional deficit associated with this mutation in vivo, we generated and characterized a knock-in mouse that harbours the human mutation R142C. Systematic structural and functional examination of the embryonic, newborn, and adult mice revealed that the homozygous embryos Nkx2.5 R141C/R141C are developmentally arrested around E10.5 with delayed heart morphogenesis and downregulation of Nkx2.5 target genes, Anf, Mlc2v, Actc1 and Cx40. Histological examination of Nkx2.5 R141C/+ newborn hearts showed that 36% displayed ASD, with at least 80% 0f adult heterozygotes displaying a septal defect. Moreover, heterozygous Nkx2.5 R141C/+ newborn mice have downregulation of ion channel genes with 11/12 adult mice manifesting a prolonged PR interval that is indicative of 1st degree AV block. Collectively, the present study demonstrates that mice with the R141C point mutation in the Nkx2.5 allele phenocopies humans with the NKX2.5 R142C point mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  19. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: A worldwide ring trial study on quantitative cytological molecular reference specimens.

    PubMed

    Malapelle, Umberto; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; Rosell, Rafael; Savic, Spasenija; Bihl, Michel; Bubendorf, Lukas; Salto-Tellez, Manuel; de Biase, Dario; Tallini, Giovanni; Hwang, David H; Sholl, Lynette M; Luthra, Rajyalakshmi; Weynand, Birgit; Vander Borght, Sara; Missiaglia, Edoardo; Bongiovanni, Massimo; Stieber, Daniel; Vielh, Philippe; Schmitt, Fernando; Rappa, Alessandra; Barberis, Massimo; Pepe, Francesco; Pisapia, Pasquale; Serra, Nicola; Vigliar, Elena; Bellevicine, Claudio; Fassan, Matteo; Rugge, Massimo; de Andrea, Carlos E; Lozano, Maria D; Basolo, Fulvio; Fontanini, Gabriella; Nikiforov, Yuri E; Kamel-Reid, Suzanne; da Cunha Santos, Gilda; Nikiforova, Marina N; Roy-Chowdhuri, Sinchita; Troncone, Giancarlo

    2017-08-01

    Molecular testing of cytological lung cancer specimens includes, beyond epidermal growth factor receptor (EGFR), emerging predictive/prognostic genomic biomarkers such as Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral [v-ras] oncogene homolog (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA). Next-generation sequencing (NGS) and other multigene mutational assays are suitable for cytological specimens, including smears. However, the current literature reflects single-institution studies rather than multicenter experiences. Quantitative cytological molecular reference slides were produced with cell lines designed to harbor concurrent mutations in the EGFR, KRAS, NRAS, BRAF, and PIK3CA genes at various allelic ratios, including low allele frequencies (AFs; 1%). This interlaboratory ring trial study included 14 institutions across the world that performed multigene mutational assays, from tissue extraction to data analysis, on these reference slides, with each laboratory using its own mutation analysis platform and methodology. All laboratories using NGS (n = 11) successfully detected the study's set of mutations with minimal variations in the means and standard errors of variant fractions at dilution points of 10% (P = .171) and 5% (P = .063) despite the use of different sequencing platforms (Illumina, Ion Torrent/Proton, and Roche). However, when mutations at a low AF of 1% were analyzed, the concordance of the NGS results was low, and this reflected the use of different thresholds for variant calling among the institutions. In contrast, laboratories using matrix-assisted laser desorption/ionization-time of flight (n = 2) showed lower concordance in terms of mutation detection and mutant AF quantification. Quantitative molecular reference slides are a useful tool for monitoring the performance of different multigene mutational assays, and this could lead to better standardization of molecular cytopathology procedures. Cancer Cytopathol 2017;125:615-26. © 2017 American Cancer Society. © 2017 American Cancer Society.

  20. A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family.

    PubMed

    Nimri, Revital; Lebenthal, Yael; Lazar, Liora; Chevrier, Lucie; Phillip, Moshe; Bar, Meytal; Hernandez-Mora, Eva; de Roux, Nicolas; Gat-Yablonski, Galia

    2011-03-01

    The G protein-coupled receptor 54 (GPR54), the kisspeptin receptor, is essential for stimulation of GnRH secretion and induction of puberty. Recently loss-of-function mutations of the GPR54 have been implicated as a cause of isolated idiopathic hypogonadotropic hypogonadism (IHH). The objective of the study was to identify the genetic cause of IHH in a consanguineous pedigree and to characterize the phenotypic features from infancy through early adulthood. In six patients with normosmic IHH belonging to two families of Israeli Muslim-Arab origin highly related to one another, DNA was analyzed for mutations in the GnRHR and GPR54 genes, with functional analysis of the mutation found. The five males underwent comprehensive endocrine evaluation and were under longitudinal follow-up; the one female presented in early adulthood. A new homozygous mutation (c.T815C) in GPR54 leading to a phenylalanine substitution by serine (p.F272S) was detected in all patients. Functional analysis showed an almost complete inhibition of kisspeptin-induced GPR54 signaling and a dramatic decrease of the mutated receptor expression at the cell surface. The males exhibited the same clinical features from infancy to adulthood, characterized by cryptorchidism, a relatively short penis, and no spontaneous pubertal development. The female patient presented at 18 yr with impuberism and primary amenorrhea. Repeated stimulation tests demonstrated complete gonadotropin deficiency throughout follow-up. A novel loss-of-function mutation (p.F272S) in the GPR54 gene is associated with familial normosmic IHH. Underdeveloped external genitalia and impuberism point to the major role of GPR54 in the activation of the gonadotropic axis from intrauterine life to adulthood.

  1. Genetic screening for von Hippel-Lindau gene mutations in non-syndromic pheochromocytoma: low prevalence and false-positives or misdiagnosis indicate a need for caution.

    PubMed

    Eisenhofer, G; Vocke, C D; Elkahloun, A; Huynh, T-T; Prodanov, T; Lenders, J W M; Timmers, H J; Benhammou, J N; Linehan, W M; Pacak, K

    2012-05-01

    Genetic testing of tumor susceptibility genes is now recommended in most patients with pheochromocytoma or paraganglioma (PPGL), even in the absence of a syndromic presentation. Once a mutation is diagnosed there is rarely follow-up validation to assess the possibility of misdiagnosis. This study prospectively examined the prevalence of von Hippel-Lindau (VHL) gene mutations among 182 patients with non-syndromic PPGLs. Follow-up in positive cases included comparisons of biochemical and tumor gene expression data in 64 established VHL patients, with confirmatory genetic testing in cases with an atypical presentation. VHL mutations were detected by certified laboratory testing in 3 of the 182 patients with non-syndromic PPGLs. Two of the 3 had an unusual presentation of diffuse peritoneal metastases and substantial increases in plasma metanephrine, the metabolite of epinephrine. Tumor gene expression profiles in these 2 patients also differed markedly from those associated with established VHL syndrome. One patient was diagnosed with a partial deletion by Southern blot analysis and the other with a splice site mutation. Quantitative polymerase chain reaction, multiplex ligation-dependent probe amplification, and comparative genomic hybridization failed to confirm the partial deletion indicated by certified laboratory testing. Analysis of tumor DNA in the other patient with a splice site alteration indicated no loss of heterozygosity or second hit point mutation. In conclusion, VHL germline mutations represent a minor cause of non-syndromic PPGLs and misdiagnoses can occur. Caution should therefore be exercised in interpreting positive genetic test results as the cause of disease in patients with non-syndromic PPGLs. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Diagnostic screening identifies a wide range of mutations involving the SHOX gene, including a common 47.5 kb deletion 160 kb downstream with a variable phenotypic effect.

    PubMed

    Bunyan, David J; Baker, Kevin R; Harvey, John F; Thomas, N Simon

    2013-06-01

    Léri-Weill dyschondrosteosis (LWD) results from heterozygous mutations of the SHOX gene, with homozygosity or compound heterozygosity resulting in the more severe form, Langer mesomelic dysplasia (LMD). These mutations typically take the form of whole or partial gene deletions, point mutations within the coding sequence, or large (>100 kb) 3' deletions of downstream regulatory elements. We have analyzed the coding sequence of the SHOX gene and its downstream regulatory regions in a cohort of 377 individuals referred with symptoms of LWD, LMD or short stature. A causative mutation was identified in 68% of the probands with LWD or LMD (91/134). In addition, a 47.5 kb deletion was found 160 kb downstream of the SHOX gene in 17 of the 377 patients (12% of the LWD referrals, 4.5% of all referrals). In 14 of these 17 patients, this was the only potentially causative abnormality detected (13 had symptoms consistent with LWD and one had short stature only), but the other three 47.5 kb deletions were found in patients with an additional causative SHOX mutation (with symptoms of LWD rather than LMD). Parental samples were available on 14/17 of these families, and analysis of these showed a more variable phenotype ranging from apparently unaffected to LWD. Breakpoint sequence analysis has shown that the 47.5 kb deletion is identical in all 17 patients, most likely due to an ancient founder mutation rather than recurrence. This deletion was not seen in 471 normal controls (P<0.0001), providing further evidence for a phenotypic effect, albeit one with variable penetration. Copyright © 2013 Wiley Periodicals, Inc.

  3. Two novel mutations in seven Czech and Slovak kindreds with familial neurohypophyseal diabetes insipidus-benefit of genetic testing.

    PubMed

    Hrčková, Gabriela; Jankó, Viktor; Kytnarová, Jitka; Čižmárová, Michaela; Tesařová, Markéta; Košťálová, Ľudmila; Virgová, Daniela; Dallos, Tomáš; Hána, Václav; Lebl, Jan; Zeman, Jiří; Kovács, László

    2016-09-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is a rare hereditary disorder with unknown prevalence characterized by arginine-vasopressin hormone (AVP) deficiency resulting in polyuria and polydipsia from early childhood. We report the clinical manifestation and genetic test results in seven unrelated kindreds of Czech or Slovak origin with FNDI phenotype. The age of the sign outset ranged from 2 to 17 years with remarkable interfamilial and intrafamilial variability. Inconclusive result of the fluid deprivation test in three children aged 7 and 17 years old might cause misdiagnosis; however, the AVP gene analysis confirmed the FNDI. The seven families segregated together five different mutations, two of them were novel (c.164C > A, c.298G > C). In addition, DNA analysis proved mutation carrier status in one asymptomatic 1-year-old infant. The present study together with previously published data identified 38 individuals with FNDI in the studied population of 16 million which predicts a disease prevalence of 1:450,000 for the Central European region. The paper underscores that diagnostic water deprivation test may be inconclusive in polyuric children with partial diabetes insipidus and points to the clinical importance and feasibility of molecular genetic testing for AVP gene mutations in the proband and her/his first degree relatives. • At least 70 different mutations were reported to date in about 100 families with neurohypophyseal diabetes insipidus (FNDI), and new mutations appear sporadically. What is New: • Two novel mutations of the AVP gene are reported • The importance of molecular testing in children with polyuria and inconclusive water deprivation test is emphasized.

  4. Predominance of a 6 bp deletion in exon 2 of the LDL receptor gene in Africans with familial hypercholesterolaemia

    PubMed Central

    Thiart, R.; Scholtz, C.; Vergotine, J.; Hoogendijk, C.; de Villiers, J N. P; Nissen, H.; Brusgaard, K.; Gaffney, D.; Hoffs, M.; Vermaak, W; Kotze, M.

    2000-01-01

    In South Africa, the high prevalence of familial hypercholesterolaemia (FH) among Afrikaners, Jews, and Indians as a result of founder genes is in striking contrast to its reported virtual absence in the black population in general. In this study, the molecular basis of primary hypercholesterolaemia was studied in 16 Africans diagnosed with FH. DNA analysis using three screening methods resulted in the identification of seven different mutations in the coding region of the low density lipoprotein (LDLR) gene in 10 of the patients analysed. These included a 6 bp deletion (GCGATG) accounting for 28% of defective alleles, and six point mutations (D151H, R232W, R385Q, E387K, P678L, and R793Q) detected in single families. The Sotho patient with missense mutation R232W was also heterozygous for a de novo splicing defect 313+1G→A. Several silent mutations/polymorphisms were detected in the LDLR and apolipoprotein B genes, including a base change (g→t) at nucleotide position −175 in the FP2 LDLR regulatory element. This promoter variant was detected at a significantly higher (p<0.05) frequency in FH patients compared to controls and occurred in cis with mutation E387K in one family. Analysis of four intragenic LDLR gene polymorphisms showed that the same chromosomal background was identified at this locus in the four FH patients with the 6 bp deletion. Detection of the 6 bp deletion in Xhosa, Pedi, and Tswana FH patients suggests that it is an ancient mutation predating tribal separation approximately 3000 years ago.


Keywords: apolipoprotein B; hypercholesterolaemia; low density lipoprotein receptor; mutation PMID:10882754

  5. Myosin 6 is required for iris development and normal function of the outer retina.

    PubMed

    Samuels, Ivy S; Bell, Brent A; Sturgill-Short, Gwen; Ebke, Lindsey A; Rayborn, Mary; Shi, Lanying; Nishina, Patsy M; Peachey, Neal S

    2013-11-01

    To determine the molecular basis and the pathologic consequences of a chemically induced mutation in the translational vision research models 89 (tvrm89) mouse model with ERG defects. Mice from a G3 N-ethyl-N-nitrosourea mutagenesis program were screened for behavioral abnormalities and defects in retinal function by ERGs. The chromosomal position for the recessive tvrm89 mutation was determined in a genome-wide linkage analysis. The critical region was refined, and candidate genes were screened by direct sequencing. The tvrm89 phenotype was characterized by circling behavior, in vivo ocular imaging, detailed ERG-based studies of the retina and RPE, and histological analysis of these structures. The tvrm89 mutation was localized to a region on chromosome 9 containing Myo6. Sequencing identified a T→C point mutation in the codon for amino acid 480 in Myo6 that converts a leucine to a proline. This mutation does not confer a loss of protein expression levels; however, mice homozygous for the Myo6(tvrm89) mutation display an abnormal iris shape and attenuation of both strobe-flash ERGs and direct-current ERGs by 4 age weeks, neither of which is associated with photoreceptor loss. The tvrm89 phenotype mimics that reported for Myosin6-null mice, suggesting that the mutation confers a loss of myosin 6 protein function. The observation that homozygous Myo6(tvrm89) mice display reduced ERG a-wave and b-wave components, as well as components of the ERG attributed to RPE function, indicates that myosin 6 is necessary for the generation of proper responses of the outer retina to light.

  6. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.

    PubMed

    Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan

    2016-12-23

    With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types.

  7. Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection

    NASA Astrophysics Data System (ADS)

    Su, Qiang; Zhou, Xiaoming

    2008-12-01

    Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

  8. X-linked Charcot-Marie-Tooth disease predominates in a cohort of multiethnic Malaysian patients.

    PubMed

    Shahrizaila, Nortina; Samulong, Sarimah; Tey, Shelisa; Suan, Liaw Chiew; Meng, Lao Kah; Goh, Khean Jin; Ahmad-Annuar, Azlina

    2014-02-01

    Data regarding Charcot-Marie-Tooth disease is lacking in Southeast Asian populations. We investigated the frequency of the common genetic mutations in a multiethnic Malaysian cohort. Patients with features of Charcot-Marie-Tooth disease or hereditary liability to pressure palsies were investigated for PMP22 duplication, deletion, and point mutations and GJB1, MPZ, and MFN2 point mutations. Over a period of 3 years, we identified 25 index patients. A genetic diagnosis was reached in 60%. The most common were point mutations in GJB1, accounting for X-linked Charcot-Marie-Tooth disease (24% of the total patient population), followed by PMP22 duplication causing Charcot-Marie-Tooth disease type 1A (20%). We also discovered 2 novel GJB1 mutations, c.521C>T (Proline174Leucine) and c.220G>A (Valine74Methionine). X-linked Charcot-Marie-Tooth disease was found to predominate in our patient cohort. We also found a better phenotype/genotype correlation when applying a more recently recommended genetic approach to Charcot-Marie-Tooth disease. Copyright © 2013 Wiley Periodicals, Inc.

  9. Mapping mitochondrial heteroplasmy in a Leydig tumor by laser capture micro-dissection and cycling temperature capillary electrophoresis.

    PubMed

    Refinetti, Paulo; Arstad, Christian; Thilly, William G; Morgenthaler, Stephan; Ekstrøm, Per Olaf

    2017-01-01

    The growth of tumor cells is accompanied by mutations in nuclear and mitochondrial genomes creating marked genetic heterogeneity. Tumors also contain non-tumor cells of various origins. An observed somatic mitochondrial mutation would have occurred in a founding cell and spread through cell division. Micro-anatomical dissection of a tumor coupled with assays for mitochondrial point mutations permits new insights into this growth process. More generally, the ability to detect and trace, at a histological level, somatic mitochondrial mutations in human tissues and tumors, makes these mutations into markers for lineage tracing. A tumor was first sampled by a large punch biopsy and scanned for any significant degree of heteroplasmy in a set of sequences containing known mutational hotspots of the mitochondrial genome. A heteroplasmic tumor was sliced at a 12 μm thickness and placed on membranes. Laser capture micro-dissection was used to take 25000 μm 2 subsamples or spots. After DNA amplification, cycling temperature capillary electrophoresis (CTCE) was used on the laser captured samples to quantify mitochondrial mutant fractions. Of six testicular tumors studied, one, a Leydig tumor, was discovered to carry a detectable degree of heteroplasmy for two separate point mutations: a C → T mutation at bp 64 and a T → C mutation found at bp 152. From this tumor, 381 spots were sampled with laser capture micro-dissection. The ordered distribution of spots exhibited a wide range of fractions of the mutant sequences from 0 to 100% mutant copies. The two mutations co-distributed in the growing tumor indicating they were present on the same genome copies in the founding cell. Laser capture microdissection of sliced tumor samples coupled with CTCE-based point mutation assays provides an effective and practical means to obtain maps of mitochondrial mutational heteroplasmy within human tumors.

  10. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    PubMed Central

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P < 0.05). APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P < 0.05). Real-time PCR confirmed increases in CYP11B2 and its transcriptional regulator, NR4A2. Conclusions: KCNJ5 mutations are prevalent in APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  11. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6.

    PubMed

    Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

  12. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    PubMed Central

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries. PMID:27304430

  13. Novel MSH2 splice-site mutation in a young patient with Lynch syndrome

    PubMed Central

    Liccardo, Raffaella; De Rosa, Marina; Izzo, Paola; Duraturo, Francesca

    2018-01-01

    Lynch Syndrome (LS) is associated with germline mutations in one of the mismatch repair (MMR) genes, including MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), MSH6, PMS1 homolog 2, mismatch repair system component (PMS2), MLH3 and MSH3. The mutations identified in MMR genes are point mutations or large rearrangements. The point mutations are certainly pathogenetic whether they determine formation of truncated protein. The mutations that arise in splice sites are classified as ‘likely pathogenic’ variants. In the present study, a novel splicing mutation was identified, (named c.212-1g>a), in the MSH2 gene. This novel mutation in the consensus splice site of MSH2 exon 2 leads to the loss of the canonical splice site, without skipping in-frame of exon 2; also with the formation of 2 aberrant transcripts, due to the activation of novel splice sites in exon 2. This mutation was identified in a young patient who developed colon cancer at the age of 26 years and their belongs to family that met the ‘Revised Amsterdam Criteria’. The present study provided insight into the molecular mechanism determining the pathogenicity of this novel MSH2 mutation and it reaffirms the importance of genetic testing in LS. PMID:29568967

  14. The Ptch1DL mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome associated skeletal defects

    PubMed Central

    Feng, Weiguo; Choi, Irene; Clouthier, David E.; Niswander, Lee; Williams, Trevor

    2013-01-01

    Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. Using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1DL gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis. PMID:23897749

  15. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811 + 1.6kbA {yields} G, produces a new exon: High frequency in spanish cystic fibrosis chromosomes and association with severe phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillon, M.; Casals, T.; Gimenez, J.

    1995-03-01

    mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis (CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6bA{yields}G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA{r_arrow}G-mRNA was 5-10-fold less abundant than {triangle}F508 mRNA. Mutations 1811+1.6kbA{yields}G was found in 21 Spanish and 1 German CF chromosome(s), making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype {triangle}F508/1811+1.6kbA{yields}G have only 1%-3% of normal CFTRmore » mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients. 30 refs., 3 figs., 2 tabs.« less

  16. A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Bahnsen, U; Oosting, P; Swaab, D F; Nahke, P; Richter, D; Schmale, H

    1992-01-01

    Familial neurohypophyseal diabetes insipidus in humans is a rare disease transmitted as an autosomal dominant trait. Affected individuals have very low or undetectable levels of circulating vasopressin and suffer from polydipsia and polyuria. An obvious candidate gene for the disease is the vasopressin-neurophysin (AVP-NP) precursor gene on human chromosome 20. The 2 kb gene with three exons encodes a composite precursor protein consisting of the neuropeptide vasopressin and two associated proteins, neurophysin and a glycopeptide. Cloning and nucleotide sequence analysis of both alleles of the AVP-NP gene present in a Dutch ADNDI family reveals a point mutation in one allele of the affected family members. Comparison of the nucleotide sequences shows a G----T transversion within the neurophysin-encoding exon B. This missense mutation converts a highly conserved glycine (Gly17 of neurophysin) to a valine residue. RFLP analysis of six related family members indicates cosegregation of the mutant allele with the DI phenotype. The mutation is not present in 96 chromosomes of an unrelated control group. These data suggest that a single amino acid exchange within a highly conserved domain of the human vasopressin-associated neurophysin is the primary cause of one form of ADNDI. Images PMID:1740104

  17. Investigating the effect of mutation on the thermo stability of GB1 protein

    NASA Astrophysics Data System (ADS)

    Sawitri, K. N.; Sumaryada, T.; Ambarsari, L.; Wahyudi, S. T.

    2018-04-01

    The thermo stability of wild-type and mutants of the B1 domain of Protein G (GB1 protein) have been studied using molecular dynamics simulation and free energy perturbation simulation. This research is aimed to examine what residue or what interaction that has a major role in the thermo stability of GB1 protein thermo stability by using the point mutation method. Based on the analysis, the unfolding of wild-type protein occurred in 500 K simulation at 704 ps. The mutations were chosen based on the changes in some analysis parameters and the calculated net solvation free energy change. It was found that a simple replacement of a positively charged residue in the β-sheet (K4S) decreases the stability of GB1 protein (unfolding at 452 ps), while the replacement of a negatively charged residue in the α-helix (E27G) increases the stability (unfolding at 846 ps). It was also found that the K4A mutation will break the α-helix and all β-sheet into the coil and turn. All those results suggest that the non-bonded interaction has the major role in the thermo stability of GB1 protein with the β-sheets were identified as the most important structure in the thermo stability of GB1 protein..

  18. Mutation and deletion analysis of GFRα-1, encoding the co-receptor for the GDNF/RET complex, in human brain tumours

    PubMed Central

    Gimm, O; Gössling, A; Marsh, D J; Dahia, P L M; Mulligan, L M; Deimling, A von; Eng, C

    1999-01-01

    Glial cell line-derived neurotrophic factor (GDNF) plays a key role in the control of vertebrate neuron survival and differentiation in both the central and peripheral nervous systems. GDNF preferentially binds to GFRα-1 which then interacts with the receptor tyrosine kinase RET. We investigated a panel of 36 independent cases of mainly advanced sporadic brain tumours for the presence of mutations in GDNF and GFRα-1. No mutations were found in the coding region of GDNF. We identified six previously described GFRα-1 polymorphisms, two of which lead to an amino acid change. In 15 of 36 brain tumours, all polymorphic variants appeared to be homozygous. Of these 15 tumours, one also had a rare, apparently homozygous, sequence variant at codon 361. Because of the rarity of the combination of homozygous sequence variants, analysis for hemizygous deletion was pursued in the 15 samples and loss of heterozygosity was found in 11 tumours. Our data suggest that intragenic point mutations of GDNF or GFRα-1 are not a common aetiologic event in brain tumours. However, either deletion of GFRα-1 and/or nearby genes may contribute to the pathogenesis of these tumours. © 1999 Cancer Research Campaign PMID:10408842

  19. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed Central

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-01-01

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies. PMID:10189712

  20. Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy

    PubMed Central

    Landsverk, Megan L.; Ruzzo, Elizabeth K.; Mefford, Heather C.; Buysse, Karen; Buchan, Jillian G.; Eichler, Evan E.; Petty, Elizabeth M.; Peterson, Esther A.; Knutzen, Dana M.; Barnett, Karen; Farlow, Martin R.; Caress, Judy; Parry, Gareth J.; Quan, Dianna; Gardner, Kathy L.; Hong, Ming; Simmons, Zachary; Bird, Thomas D.; Chance, Phillip F.; Hannibal, Mark C.

    2009-01-01

    Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA. PMID:19139049

  1. Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy.

    PubMed

    Landsverk, Megan L; Ruzzo, Elizabeth K; Mefford, Heather C; Buysse, Karen; Buchan, Jillian G; Eichler, Evan E; Petty, Elizabeth M; Peterson, Esther A; Knutzen, Dana M; Barnett, Karen; Farlow, Martin R; Caress, Judy; Parry, Gareth J; Quan, Dianna; Gardner, Kathy L; Hong, Ming; Simmons, Zachary; Bird, Thomas D; Chance, Phillip F; Hannibal, Mark C

    2009-04-01

    Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA.

  2. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-03-07

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies.

  3. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.

    PubMed

    Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S

    2017-06-01

    DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG . The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.

  4. Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-derived Human Neurons

    PubMed Central

    Ren, Yong; Jiang, Houbo; Hu, Zhixing; Fan, Kevin; Wang, Jun; Janoschka, Stephen; Wang, Xiaomin; Ge, Shaoyu; Feng, Jian

    2015-01-01

    Parkinson’s disease (PD) is characterized by the degeneration of nigral dopaminergic (DA) neurons and non-DA neurons in many parts of the brain. Mutations of parkin, an E3 ubiquitin ligase that strongly binds to microtubules, are the most frequent cause of recessively inherited Parkinson’s disease. The lack of robust PD phenotype in parkin knockout mice suggests a unique vulnerability of human neurons to parkin mutations. Here, we show that the complexity of neuronal processes as measured by total neurite length, number of terminals, number of branch points and Sholl analysis, was greatly reduced in induced pluripotent stem cell (iPSC)-derived TH+ or TH− neurons from PD patients with parkin mutations. Consistent with these, microtubule stability was significantly decreased by parkin mutations in iPSC-derived neurons. Overexpression of parkin, but not its PD-linked mutant nor GFP, restored the complexity of neuronal processes and the stability of microtubules. Consistent with these, the microtubule-depolymerizing agent colchicine mimicked the effect of parkin mutations by decreasing neurite length and complexity in control neurons while the microtubule-stabilizing drug taxol mimicked the effect of parkin overexpression by enhancing the morphology of parkin-deficient neurons. The results suggest that parkin maintains the morphological complexity of human neurons by stabilizing microtubules. PMID:25332110

  5. Mutation spectrum of hepatocellular carcinoma from eastern-European patients betrays the impact of a complex exposome.

    PubMed

    Tanase, Anna-Maria; Marchio, Agnès; Dumitrascu, Traian; Dima, Simona; Herlea, Vlad; Oprisan, Gabriela; Dejean, Anne; Popescu, Irinel; Pineau, Pascal

    2015-05-01

    Genomic analysis of hepatocellular carcinoma (HCC) has been shown to provide clues about local risk factors. In the last decades, the mortality from malignant liver tumors increased sharply in Romania, where both hepatitis viruses and environmental pollutants are known to be highly prevalent. To date, HCC from this country has not been subject to molecular characterization. We analyzed a series of 48 consecutive HCC cases. Point mutations were searched in 9 nuclear genes and the mitochondrial D-loop. Oxidative stress response was monitored through measurement of gene expression (NRF2, KEAP1, SRXN1, and CES1) by qRT-PCR. An atypical mutation spectrum was observed, as more than 40% of DNA changes were oxidative stress-associated T>C or T>G lesions (T>S). These mutations affected primarily genes encoding for β-catenin and NRF2 (P<0.0001). Besides, tumors from patients born in Greater Bucharest carried TP53 mutations more frequently than others (45 vs 10%, P=0.02). Finally, a R249S mutation of TP53, well-known hallmark of aflatoxin B1 exposure, was found. Our findings indicate, therefore, that distinct mutagenic processes affect Romanian patients with HCC. Further analyses are now warranted in order to identify causal lifestyle or environmental factors.

  6. Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.

    PubMed

    Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.

  7. Ligase Detection Reaction for the Analysis of Point Mutations using Free Solution Conjugate Electrophoresis in a Polymer Microfluidic Device

    PubMed Central

    Sinville, Rondedrick; Coyne, Jennifer; Meagher, Robert J.; Cheng, Yu-Wei; Barany, Francis; Barron, Annelise; Soper, Steven A.

    2010-01-01

    We have developed a new method for the analysis of low abundant point mutations in genomic DNA using a combination of an allele-specific ligase detection reaction (LDR) with free-solution conjugate electrophoresis (FSCE) to generate and analyze the genetic products. FSCE eliminates the need for a polymer sieving matrix by conjugating chemically synthesized polyamide “drag-tags” onto the LDR primers. The additional drag of the charge-neutral drag-tag breaks the linear scaling of the charge-to-friction ratio of DNA and enables size-based separations of DNA in free solution using electrophoresis with no sieving matrix. We successfully demonstrate the conjugation of polyamide drag-tags onto a set of four LDR primers designed to probe the K-ras oncogene for mutations highly associated with colorectal cancer, the simultaneous generation of fluorescently-labeled LDR/drag-tagged (LDR-dt) products in a multiplexed, single-tube format with mutant:wild-type ratios as low as 1:100, respectively, and the single-base, high-resolution separation of all four LDR-dt products. Separations were conducted in free solution with no polymer network using both a commercial capillary array electrophoresis (CAE) system and a poly(methylmethacrylate), PMMA, microchip replicated via hot-embossing with only a Tris-based running buffer containing additives to suppress the electroosmotic flow (EOF). Typical analysis times for LDR-dt conjugates were 11 min using the CAE system and as low as 85 s for the PMMA microchips. With resolution comparable to traditional gel-based CAE, FSCE along with microchip electrophoresis decreased the separation time by more than a factor of 40. PMID:19053073

  8. Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene

    PubMed Central

    Pauli, Silke; Söker, Torben; Klopp, Norman; Illig, Thomas; Engel, Wolfgang

    2007-01-01

    Purpose The study demonstrates the functional candidate gene analysis in a cataract family of German descent. Methods We screened a German family, clinically documented to have congenital cataracts, for mutation in the candidate genes CRYG (A to D) and CRYBB2 through polymerase chain reaction analyses and sequencing. Results Congenital cataract was first observed in a daughter of healthy parents. Her two children (a boy and a girl) also suffer from congenital cataracts and have been operated within the first weeks of birth. Morphologically, the cataract is characterized as nuclear with an additional ring-shaped cortical opacity. Molecular analysis revealed no causative mutation in any of the CRYG genes. However, sequencing of the exons of the CRYBB2 gene identified a sequence variation in exon 5 (383 A>T) with a substitution of Asp to Val at position 128. All three affected family members revealed this change but it was not observed in any of the unaffected persons of the family. The putative mutation creates a restriction site for the enzyme TaiI. This mutation was checked for in controls of randomly selected DNA samples from ophthalmologically normal individuals from the population-based KORA S4 study (n=96) and no mutation was observed. Moreover, the Asp at position 128 is within a stretch of 12 amino acids, which are highly conserved throughout the animal kingdom. For the mutant protein, the isoelectric point is raised from pH 6.50 to 6.75. Additionally, the random coil structure of the protein between the amino acids 126-139 is interrupted by a short extended strand structure. In addition, this region becomes hydrophobic (from neutral to +1) and the electrostatic potential in the region surrounding the exchanged amino acid alters from a mainly negative potential to an enlarged positive potential. Conclusions The D128V mutation segregates only in affected family members and is not seen in representative controls. It represents the first mutation outside exon 6 of the human CRYBB2 gene. PMID:17653036

  9. Enumeration and targeted analysis of KRAS, BRAF and PIK3CA mutations in CTCs captured by a label-free platform: Comparison to ctDNA and tissue in metastatic colorectal cancer.

    PubMed

    Kidess-Sigal, Evelyn; Liu, Haiyan E; Triboulet, Melanie M; Che, James; Ramani, Vishnu C; Visser, Brendan C; Poultsides, George A; Longacre, Teri A; Marziali, Andre; Vysotskaia, Valentina; Wiggin, Matthew; Heirich, Kyra; Hanft, Violet; Keilholz, Ulrich; Tinhofer, Ingeborg; Norton, Jeffrey A; Lee, Mark; Sollier-Christen, Elodie; Jeffrey, Stefanie S

    2016-12-20

    Treatment of advanced colorectal cancer (CRC) requires multimodal therapeutic approaches and need for monitoring tumor plasticity. Liquid biopsy biomarkers, including CTCs and ctDNA, hold promise for evaluating treatment response in real-time and guiding therapeutic modifications. From 15 patients with advanced CRC undergoing liver metastasectomy with curative intent, we collected 41 blood samples at different time points before and after surgery for CTC isolation and quantification using label-free Vortex technology. For mutational profiling, KRAS, BRAF, and PIK3CA hotspot mutations were analyzed in CTCs and ctDNA from 23 samples, nine matched liver metastases and three primary tumor samples. Mutational patterns were compared. 80% of patient blood samples were positive for CTCs, using a healthy baseline value as threshold (0.4 CTCs/mL), and 81.4% of captured cells were EpCAM+ CTCs. At least one mutation was detected in 78% of our blood samples. Among 23 matched CTC and ctDNA samples, we found a concordance of 78.2% for KRAS, 73.9% for BRAF and 91.3% for PIK3CA mutations. In several cases, CTCs exhibited a mutation that was not detected in ctDNA, and vice versa. Complementary assessment of both CTCs and ctDNA appears advantageous to assess dynamic tumor profiles.

  10. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    PubMed Central

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  11. An exon 4 mutation identified in the majority of South African familial hypercholesterolaemics.

    PubMed Central

    Kotze, M J; Warnich, L; Langenhoven, E; du Plessis, L; Retief, A E

    1990-01-01

    The prevalence of familial hypercholesterolaemia (FH) is significantly higher in the Afrikaans speaking population (Afrikaners) of South Africa than reported in most other populations. A founder gene effect has been proposed to explain the high FH frequency, implying that the same low density lipoprotein (LDL) receptor gene defect is present in the majority of affected Afrikaners. By using DNA amplification and sequence determination, we have detected a point mutation in DNA from two Afrikaner FH homozygotes. A cytosine to guanine base substitution at nucleotide position 681 of the LDL receptor cDNA results in an amino acid change from aspartic acid to glutamic acid at residue 206 in the cysteine rich ligand binding domain of the LDL receptor. Since three previously mapped transport deficient alleles of the LDL receptor were also traced to cysteine rich repeats of the protein, these results suggest that the mutation is responsible for the receptor defective mutation predominantly found in Afrikaner FH homozygotes. The mutation gives rise to an additional DdeI restriction site in DNA of affected subjects and segregation of the mutation with the disease was confirmed in five large Afrikaner FH families. We predict that 65% of affected South African Afrikaners carry this particular base substitution. Amplification of genomic DNA, using the polymerase chain reaction method, and restriction enzyme analysis now permit accurate diagnosis of the mutation in subjects with FH. Images PMID:2352257

  12. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors.

    PubMed

    Capper, David; Weissert, Susanne; Balss, Jörg; Habel, Antje; Meyer, Jochen; Jäger, Diana; Ackermann, Ulrike; Tessmer, Claudia; Korshunov, Andrey; Zentgraf, Hanswalter; Hartmann, Christian; von Deimling, Andreas

    2010-01-01

    Heterozygous point mutations of isocitrate dehydrogenase (IDH)1 codon 132 are frequent in grade II and III gliomas. Recently, we reported an antibody specific for the IDH1R132H mutation. Here we investigate the capability of this antibody to differentiate wild type and mutated IDH1 protein in central nervous system (CNS) tumors by Western blot and immunohistochemistry. Results of protein analysis are correlated to sequencing data. In Western blot, anti-IDH1R132H mouse monoclonal antibody mIDH1R132H detected a specific band only in mutated tumors. Immunohistochemistry of 345 primary brain tumors demonstrated a strong cytoplasmic and weaker nuclear staining in 122 cases. Correlation with direct sequencing of 186 cases resulted in consensus of 177 cases. Genetic retesting of cases with conflicting findings resulted in a match of 186/186 cases, with all discrepancies resolving in favor of immunohistochemistry. Intriguing is the ability of mIDH1R132H to detect single infiltrating tumor cells. The very high frequency and the distribution of this mutation among specific brain tumor entities allow the highly sensitive and specific discrimination of various tumors by immunohistochemistry, such as anaplastic astrocytoma from primary glioblastoma or diffuse astrocytoma World Health Organization (WHO) grade II from pilocytic astrocytoma or ependymoma. Noteworthy is the discrimination of the infiltrating edge of tumors with IDH1 mutation from reactive gliosis.

  13. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  14. Presence of novel compound BCR-ABL mutations in late chronic and advanced phase imatinib sensitive CML patients indicates their possible role in CML progression.

    PubMed

    Akram, Afia Muhammad; Iqbal, Zafar; Akhtar, Tanveer; Khalid, Ahmed Mukhtar; Sabar, Muhammad Farooq; Qazi, Mahmood Hussain; Aziz, Zeba; Sajid, Nadia; Aleem, Aamer; Rasool, Mahmood; Asif, Muhammad; Aloraibi, Saleh; Aljamaan, Khaled; Iqbal, Mudassar

    2017-04-03

    BCR-ABL kinase domain (K D ) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-K D mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-K D . Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-K D mutation screening in late chronic phase CML patients for improved clinical management of disease.

  15. ctDNA Determination of EGFR Mutation Status in European and Japanese Patients with Advanced NSCLC: The ASSESS Study.

    PubMed

    Reck, Martin; Hagiwara, Koichi; Han, Baohui; Tjulandin, Sergei; Grohé, Christian; Yokoi, Takashi; Morabito, Alessandro; Novello, Silvia; Arriola, Edurne; Molinier, Olivier; McCormack, Rose; Ratcliffe, Marianne; Normanno, Nicola

    2016-10-01

    To offer patients with EGFR mutation-positive advanced NSCLC appropriate EGFR tyrosine kinase inhibitor treatment, mutation testing of tumor samples is required. However, tissue/cytologic samples are not always available or evaluable. The large, noninterventional diagnostic ASSESS study (NCT01785888) evaluated the utility of circulating free tumor-derived DNA (ctDNA) from plasma for EGFR mutation testing. ASSESS was conducted in 56 centers (in Europe and Japan). Eligible patients (with newly diagnosed locally advanced/metastatic treatment-naive advanced NSCLC) provided diagnostic tissue/cytologic and plasma samples. DNA extracted from tissue/cytologic samples was subjected to EGFR mutation testing using local practices; designated laboratories performed DNA extraction/mutation testing of blood samples. The primary end point was level of concordance of EGFR mutation status between matched tissue/cytologic and plasma samples. Of 1311 patients enrolled, 1288 were eligible. Concordance of mutation status in 1162 matched samples was 89% (sensitivity 46%, specificity 97%, positive predictive value 78%, and negative predictive value 90%). A group of 25 patients with apparent false-positive plasma results was overrepresented for cytologic samples, use of less sensitive tissue testing methodologies, and smoking habits associated with high EGFR mutation frequency, indicative of false-negative tumor results. In cases in which plasma and tumor samples were tested with identical highly sensitive methods, positive predictive value/sensitivity were generally improved. These real-world data suggest that ctDNA is a feasible sample for EGFR mutation analysis. It is important to conduct mutation testing of both tumor and plasma samples in specialized laboratories, using robust/sensitive methods to ensure that patients receive appropriate treatments that target the molecular features of their disease. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    PubMed

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  17. Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia.

    PubMed

    Gallego-Villar, Lorena; Pérez-Cerdá, Celia; Pérez, Belén; Abia, David; Ugarte, Magdalena; Richard, Eva; Desviat, Lourdes R

    2013-09-01

    Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. PA is caused by mutations in either the PCCA or PCCB genes encoding the α- and β-subunits of the PCC enzyme which are assembled as an α6β6 dodecamer. In this study we have investigated the molecular basis of the defect in ten fibroblast samples from PA patients. Using homology modeling with the recently solved crystal structure of the PCC holoenzyme and a eukaryotic expression system we have analyzed the structural and functional effect of novel point mutations, also revealing a novel splice defect by minigene analysis. In addition, we have investigated the contribution of oxidative stress to cellular damage measuring reactive oxygen species (ROS) levels and apoptosis parameters in patient fibroblasts, as recent studies point to a secondary mitochondrial dysfunction as pathophysiological mechanism in this disorder. The results show an increase in intracellular ROS content compared to controls, correlating with the activation of the JNK and p38 signaling pathways. Highest ROS levels were present in cells harboring functionally null mutations, including one severe missense mutation. This work provides molecular insight into the pathogenicity of PA variants and indicates that oxidative stress may be a major contributing factor to the cellular damage, supporting the proposal of antioxidant strategies as novel supplementary therapy in this rare disease.

  18. UPF1 silenced cellular model systems for screening of read-through agents active on β039 thalassemia point mutation.

    PubMed

    Salvatori, Francesca; Pappadà, Mariangela; Breveglieri, Giulia; D'Aversa, Elisabetta; Finotti, Alessia; Lampronti, Ilaria; Gambari, Roberto; Borgatti, Monica

    2018-05-15

    Nonsense mutations promote premature translational termination, introducing stop codons within the coding region of mRNAs and causing inherited diseases, including thalassemia. For instance, in β 0 39 thalassemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, ribosomal read-through molecules, such as aminoglycoside antibiotics, have been tested on mRNAs carrying premature stop codons. These findings have introduced new hopes for the development of a pharmacological approach to the β 0 39 thalassemia therapy. While several strategies, designed to enhance translational read-through, have been reported to inhibit NMD efficiency concomitantly, experimental tools for systematic analysis of mammalian NMD inhibition by translational read-through are lacking. We developed a human cellular model of the β 0 39 thalassemia mutation with UPF-1 suppressed and showing a partial NMD suppression. This novel cellular model could be used for the screening of molecules exhibiting preferential read-through activity allowing a great rescue of the mutated transcripts.

  19. Cytotoxic chemotherapy and the evolution of cellular and viral resistance to antiretroviral therapy in HIV- infected individuals with lymphoma.

    PubMed

    McFaul, Katie; Liptrott, Neill; Cox, Alison; Martin, Phillip; Egan, Deirdre; Owen, Andrew; Kelly, Sarah; Karolia, Zeenat; Shaw, Kate; Bower, Mark; Boffito, Marta

    2016-09-01

    The use of combination antiretroviral therapy (cART) and cytotoxic chemotherapy for HIV-associated lymphoma runs the risks of inducing HIV drug resistance. This study examined two possible mechanisms: altered expression of membrane drug transporter protein (MTP) and acquisition of mutations in pro-viral DNA. Expression levels of MTP and pro-viral DNA resistance mutation analysis were performed on peripheral blood mononuclear cells (PBMC) before, during, and after chemotherapy. Twenty nine patients completed the three time point estimations. There were no significant variations before, during, and after chemotherapy in the expression of four MTPs: ABCB1, ABCC1, ABCC2, and SLCO3A1 (OATP3A1). Pro-viral DNA sequencing revealed that only one patient developed a new nucleos/tide reverse transcriptase inhibitor-associated mutation (184V) during the course of the study, giving a mutation rate of 0.0027 per person per year. In conclusion, concomitant administration of cytotoxic chemotherapy and cART does not induce expression of MTP. Furthermore, no significant changes in viral resistance were observed pre- and post-chemotherapy, suggesting mutagenic cytotoxic chemotherapy seems not to induce mutations in HIV pro-viral DNA.

  20. SIMPLE estimate of the free energy change due to aliphatic mutations: superior predictions based on first principles.

    PubMed

    Bueno, Marta; Camacho, Carlos J; Sancho, Javier

    2007-09-01

    The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.

  1. L1014F-kdr Mutation in Indian Anopheles subpictus (Diptera: Culicidae) Arising From Two Alternative Transversions in the Voltage-Gated Sodium Channel and a Single PIRA-PCR for Their Detection.

    PubMed

    Singh, O P; Dykes, C L; Sharma, G; Das, M K

    2015-01-01

    Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Point mutation of Arg440 to his in cytochrome P450c17 causes severe 17{alpha}-hydroxylase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fardella, C.E.; Hum, D.W.; Miller, W.L.

    Genetic disorders in the gene encoding P450c17 cause 17{alpha}-hydroxylase deficiency. The consequent defects in the synthesis of cortisol and sex steroids cause sexual infantilism and a female phenotype in both genetic sexes as well as mineralorcorticoid excess and hypertension. A 15-yr-old patient from Germany was seen for absent pubertal development and mild hypertension with hypokalemia, high concentrations of 17-deoxysteroids, and hypergonadotropic hypogonadism. Analysis of her P450c17 gene by polymerase chain reaction amplification and direct sequencing showed mutation of codon 440 from CGC (Arg) to CAC (His). Expression of a vector encoding this mutated form of P450c17 in transfected nonsteroidogenic COS-1more » cells showed that the mutant P450c17 protein was produced, but it lacked both 17{alpha}-hydroxylase and 17,20-lyase activities. To date, 15 different P450c17 mutations have been described in 23 patients with 17{alpha}-hydroxylase deficiency, indicating that mutations in this gene are due to random events. 36 refs., 3 figs., 2 tabs.« less

  3. MutAIT: an online genetic toxicology data portal and analysis tools.

    PubMed

    Avancini, Daniele; Menzies, Georgina E; Morgan, Claire; Wills, John; Johnson, George E; White, Paul A; Lewis, Paul D

    2016-05-01

    Assessment of genetic toxicity and/or carcinogenic activity is an essential element of chemical screening programs employed to protect human health. Dose-response and gene mutation data are frequently analysed by industry, academia and governmental agencies for regulatory evaluations and decision making. Over the years, a number of efforts at different institutions have led to the creation and curation of databases to house genetic toxicology data, largely, with the aim of providing public access to facilitate research and regulatory assessments. This article provides a brief introduction to a new genetic toxicology portal called Mutation Analysis Informatics Tools (MutAIT) (www.mutait.org) that provides easy access to two of the largest genetic toxicology databases, the Mammalian Gene Mutation Database (MGMD) and TransgenicDB. TransgenicDB is a comprehensive collection of transgenic rodent mutation data initially compiled and collated by Health Canada. The updated MGMD contains approximately 50 000 individual mutation spectral records from the published literature. The portal not only gives access to an enormous quantity of genetic toxicology data, but also provides statistical tools for dose-response analysis and calculation of benchmark dose. Two important R packages for dose-response analysis are provided as web-distributed applications with user-friendly graphical interfaces. The 'drsmooth' package performs dose-response shape analysis and determines various points of departure (PoD) metrics and the 'PROAST' package provides algorithms for dose-response modelling. The MutAIT statistical tools, which are currently being enhanced, provide users with an efficient and comprehensive platform to conduct quantitative dose-response analyses and determine PoD values that can then be used to calculate human exposure limits or margins of exposure. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Comparative lesion sequencing provides insights into tumor evolution.

    PubMed

    Jones, Siân; Chen, Wei-Dong; Parmigiani, Giovanni; Diehl, Frank; Beerenwinkel, Niko; Antal, Tibor; Traulsen, Arne; Nowak, Martin A; Siegel, Christopher; Velculescu, Victor E; Kinzler, Kenneth W; Vogelstein, Bert; Willis, Joseph; Markowitz, Sanford D

    2008-03-18

    We show that the times separating the birth of benign, invasive, and metastatic tumor cells can be determined by analysis of the mutations they have in common. When combined with prior clinical observations, these analyses suggest the following general conclusions about colorectal tumorigenesis: (i) It takes approximately 17 years for a large benign tumor to evolve into an advanced cancer but <2 years for cells within that cancer to acquire the ability to metastasize; (ii) it requires few, if any, selective events to transform a highly invasive cancer cell into one with the capacity to metastasize; (iii) the process of cell culture ex vivo does not introduce new clonal mutations into colorectal tumor cell populations; and (iv) the rates at which point mutations develop in advanced cancers are similar to those of normal cells. These results have important implications for understanding human tumor pathogenesis, particularly those associated with metastasis.

  5. Small-Cell Carcinomas of the Bladder and Lung Are Characterized by a Convergent but Distinct Pathogenesis.

    PubMed

    Chang, Matthew T; Penson, Alexander; Desai, Neil B; Socci, Nicholas D; Shen, Ronglai; Seshan, Venkatraman E; Kundra, Ritika; Abeshouse, Adam; Viale, Agnes; Cha, Eugene K; Hao, Xueli; Reuter, Victor E; Rudin, Charles M; Bochner, Bernard H; Rosenberg, Jonathan E; Bajorin, Dean F; Schultz, Nikolaus; Berger, Michael F; Iyer, Gopa; Solit, David B; Al-Ahmadie, Hikmat A; Taylor, Barry S

    2018-04-15

    Purpose: Small-cell carcinoma of the bladder (SCCB) is a rare and aggressive neuroendocrine tumor with a dismal prognosis and limited treatment options. As SCCB is histologically indistinguishable from small-cell lung cancer, a shared pathogenesis and cell of origin has been proposed. The aim of this study is to determine whether SCCBs arise from a preexisting urothelial carcinoma or share a molecular pathogenesis in common with small-cell lung cancer. Experimental Design: We performed an integrative analysis of 61 SCCB tumors to identify histology- and organ-specific similarities and differences. Results: SCCB has a high somatic mutational burden driven predominantly by an APOBEC-mediated mutational process. TP53, RB1 , and TERT promoter mutations were present in nearly all samples. Although these events appeared to arise early in all affected tumors and likely reflect an evolutionary branch point that may have driven small-cell lineage differentiation, they were unlikely the founding transforming event, as they were often preceded by diverse and less common driver mutations, many of which are common in bladder urothelial cancers, but not small-cell lung tumors. Most patient tumors (72%) also underwent genome doubling (GD). Although arising at different chronologic points in the evolution of the disease, GD was often preceded by biallelic mutations in TP53 with retention of two intact copies. Conclusions: Our findings indicate that small-cell cancers of the bladder and lung have a convergent but distinct pathogenesis, with SCCBs arising from a cell of origin shared with urothelial bladder cancer. Clin Cancer Res; 24(8); 1965-73. ©2017 AACR See related commentary by Oser and Jänne, p. 1775 . ©2017 American Association for Cancer Research.

  6. Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis

    PubMed Central

    Sue, David; Gee, Jay E.; Elrod, Mindy G.; Hoffmaster, Alex R.; Randall, Linnell B.; Chirakul, Sunisa; Tuanyok, Apichai; Schweizer, Herbert P.; Weigel, Linda M.

    2017-01-01

    ABSTRACT Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A β-lactamase and was previously implicated in resistance to β-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei. Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis. PMID:28396541

  7. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    PubMed Central

    2010-01-01

    Background Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. Results A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. Conclusions This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. PMID:20846421

  8. Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fon, E.A.; Sarrazin, J.; Rouleau, G.A.

    Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119more » patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.« less

  9. Fabry disease presenting as apical left ventricular hypertrophy in a patient carrying the missense mutation R118C.

    PubMed

    Caetano, Francisca; Botelho, Ana; Mota, Paula; Silva, Joana; Leitão Marques, António

    2014-03-01

    Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by abnormalities of the GLA gene, which encodes the enzyme α-galactosidase A. A deficiency of this enzyme leads to the lysosomal accumulation of glycosphingolipids, which may cause left ventricular hypertrophy that is typically concentric and symmetric. We present the case of a 60-year-old woman with symptoms of dyspnea, atypical chest pain and palpitations, in whom a transthoracic echocardiogram revealed an apical variant of hypertrophic cardiomyopathy. Analysis of specific sarcomeric genetic mutations was negative. The patient underwent a screening protocol for Anderson-Fabry disease, using a dried blood spot test, which was standard at our institution for patients with left ventricular hypertrophy. The enzymatic activity assay revealed reduced α-galactosidase A enzymatic activity. Molecular analysis identified a missense point mutation in the GLA gene (p.R118C). This case report shows that Anderson-Fabry disease may cause an apical form of left ventricular hypertrophy. The diagnosis was only achieved because of systematic screening, which highlights the importance of screening for Anderson-Fabry disease in patients with unexplained left ventricular hypertrophy, including those presenting with more unusual patterns, such as apical variants of left ventricular hypertrophy. This case also supports the idea that the missense mutation R118C is indeed a true pathogenic mutation of Anderson-Fabry disease. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  10. Quinolone Resistance Determinants of Clinical Salmonella Enteritidis in Thailand.

    PubMed

    Utrarachkij, Fuangfa; Nakajima, Chie; Changkwanyeun, Ruchirada; Siripanichgon, Kanokrat; Kongsoi, Siriporn; Pornruangwong, Srirat; Changkaew, Kanjana; Tsunoda, Risa; Tamura, Yutaka; Suthienkul, Orasa; Suzuki, Yasuhiko

    2017-10-01

    Salmonella Enteritidis has emerged as a global concern regarding quinolone resistance and invasive potential. Although quinolone-resistant S. Enteritidis has been observed with high frequency in Thailand, information on the mechanism of resistance acquisition is limited. To elucidate the mechanism, a total of 158 clinical isolates of nalidixic acid (NAL)-resistant S. Enteritidis were collected throughout Thailand, and the quinolone resistance determinants were investigated in the context of resistance levels to NAL, norfloxacin (NOR), and ciprofloxacin (CIP). The analysis of point mutations in type II topoisomerase genes and the detection of plasmid-mediated quinolone resistance genes showed that all but two harbored a gyrA mutation, the qnrS1 gene, or both. The most commonly affected codon in mutant gyrA was 87, followed by 83. Double codon mutation in gyrA was found in an isolate with high-level resistance to NAL, NOR, and CIP. A new mutation causing serine to isoleucine substitution at codon 83 was identified in eight isolates. In addition to eighteen qnrS1-carrying isolates showing nontypical quinolone resistance, one carrying both the qnrS1 gene and a gyrA mutation also showed a high level of resistance. Genotyping by multilocus variable number of tandem repeat analysis suggested a possible clonal expansion of NAL-resistant strains nationwide. Our data suggested that NAL-resistant isolates with single quinolone resistance determinant may potentially become fluoroquinolone resistant by acquiring secondary determinants. Restricted therapeutic and farming usage of quinolones is strongly recommended to prevent the emergence of fluoroquinolone-resistant isolates.

  11. Linkage to D3S47 (C17) in one large autosomal dominant retinitis pigmentosa family and exclusion in another: confirmation of genetic heterogeneity.

    PubMed Central

    Lester, D H; Inglehearn, C F; Bashir, R; Ackford, H; Esakowitz, L; Jay, M; Bird, A C; Wright, A F; Papiha, S S; Bhattacharya, S S

    1990-01-01

    Recently Dryja and his co-workers observed a mutation in the 23d codon of the rhodopsin gene in a proportion of autosomal dominant retinitis pigmentosa (ADRP) patients. Linkage analysis with a rhodopsin-linked probe C17 (D3S47) was carried out in two large British ADRP families, one with diffuse-type (D-type) RP and the other with regional-type (R-type) RP. Significantly positive lod scores (lod score maximum [Zmax] = +5.58 at recombination fraction [theta] = .0) were obtained between C17 and our D-type ADRP family showing complete penetrance. Sequence and oligonucleotide analysis has, however, shown that no point mutation at the 23d codon exists in affected individuals in our complete-penetrance pedigree, indicating that another rhodopsin mutation is probably responsible for ADRP in this family. Significantly negative lod scores (Z less than -2 at theta = .045) were, however, obtained between C17 and our R-type family which showed incomplete penetrance. Previous results presented by this laboratory also showed no linkage between C17 and another large British R-type ADRP family with incomplete penetrance. This confirms genetic heterogeneity. Some types of ADRP are being caused by different mutations in the rhodopsin locus (3q21-24) or another tightly linked gene in this region, while other types of ADRP are the result of mutations elsewhere in the genome. Images Figure 2 Figure 3 Figure 4 PMID:2393026

  12. Structure-based analysis of five novel disease-causing mutations in 21-hydroxylase-deficient patients.

    PubMed

    Minutolo, Carolina; Nadra, Alejandro D; Fernández, Cecilia; Taboas, Melisa; Buzzalino, Noemí; Casali, Bárbara; Belli, Susana; Charreau, Eduardo H; Alba, Liliana; Dain, Liliana

    2011-01-11

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism, and accounts for 90-95% of CAH cases. The affected enzyme, P450C21, is encoded by the CYP21A2 gene, located together with a 98% nucleotide sequence identity CYP21A1P pseudogene, on chromosome 6p21.3. Even though most patients carry CYP21A1P-derived mutations, an increasing number of novel and rare mutations in disease causing alleles were found in the last years. In the present work, we describe five CYP21A2 novel mutations, p.R132C, p.149C, p.M283V, p.E431K and a frameshift g.2511_2512delGG, in four non-classical and one salt wasting patients from Argentina. All novel point mutations are located in CYP21 protein residues that are conserved throughout mammalian species, and none of them were found in control individuals. The putative pathogenic mechanisms of the novel variants were analyzed in silico. A three-dimensional CYP21 structure was generated by homology modeling and the protein design algorithm FoldX was used to calculate changes in stability of CYP21A2 protein. Our analysis revealed changes in protein stability or in the surface charge of the mutant enzymes, which could be related to the clinical manifestation found in patients.

  13. Structure-Based Analysis of Five Novel Disease-Causing Mutations in 21-Hydroxylase-Deficient Patients

    PubMed Central

    Fernández, Cecilia; Taboas, Melisa; Buzzalino, Noemí; Casali, Bárbara; Belli, Susana; Charreau, Eduardo H.; Alba, Liliana; Dain, Liliana

    2011-01-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism, and accounts for 90–95% of CAH cases. The affected enzyme, P450C21, is encoded by the CYP21A2 gene, located together with a 98% nucleotide sequence identity CYP21A1P pseudogene, on chromosome 6p21.3. Even though most patients carry CYP21A1P-derived mutations, an increasing number of novel and rare mutations in disease causing alleles were found in the last years. In the present work, we describe five CYP21A2 novel mutations, p.R132C, p.149C, p.M283V, p.E431K and a frameshift g.2511_2512delGG, in four non-classical and one salt wasting patients from Argentina. All novel point mutations are located in CYP21 protein residues that are conserved throughout mammalian species, and none of them were found in control individuals. The putative pathogenic mechanisms of the novel variants were analyzed in silico. A three-dimensional CYP21 structure was generated by homology modeling and the protein design algorithm FoldX was used to calculate changes in stability of CYP21A2 protein. Our analysis revealed changes in protein stability or in the surface charge of the mutant enzymes, which could be related to the clinical manifestation found in patients. PMID:21264314

  14. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  15. Molecular diagnosis of α-thalassemia in a multiethnic population.

    PubMed

    Gilad, Oded; Shemer, Orna Steinberg; Dgany, Orly; Krasnov, Tanya; Nevo, Michal; Noy-Lotan, Sharon; Rabinowicz, Ron; Amitai, Nofar; Ben-Dor, Shifra; Yaniv, Isaac; Yacobovich, Joanne; Tamary, Hannah

    2017-06-01

    α-Thalassemia, one of the most common genetic diseases, is caused by deletions or point mutations affecting one to four α-globin genes. Molecular diagnosis is important to prevent the most severe forms of the disease. However, the diagnosis of α-thalassemia is complex due to a high variability of the genetic defects involved, with over 250 described mutations. We summarize herein the findings of genetic analyses of DNA samples referred to our laboratory for the molecular diagnosis of α-thalassemia, along with a detailed clinical description. We utilized a diagnostic algorithm including Gap-PCR, to detect known deletions, followed by sequencing of the α-globin gene, to identify known and novel point mutations, and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of rare or novel deletions. α-Thalassemia was diagnosed in 662 of 975 samples referred to our laboratory. Most commonly found were deletions (75.3%, including two novel deletions previously described by us); point mutations comprised 25.4% of the cases, including five novel mutations. Our population included mostly Jews (of Ashkenazi and Sephardic origin) and Muslim Arabs, who presented with a higher rate of point mutations and hemoglobin H disease. Overall, we detected 53 different genotype combinations causing a spectrum of clinical phenotypes, from asymptomatic to severe anemia. Our work constitutes the largest group of patients with α-thalassemia originating in the Mediterranean whose clinical characteristics and molecular basis have been determined. We suggest a diagnostic algorithm that leads to an accurate molecular diagnosis in multiethnic populations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Trends in drug resistance mutations in antiretroviral-naïve intravenous drug users of Rio de Janeiro.

    PubMed

    Maia Teixeira, Sylvia Lopes; Bastos, Francisco Inácio; Hacker, Mariana A; Guimarães, Monick Lindenmeyer; Morgado, Mariza Gonçalves

    2006-06-01

    DNA sequencing of a pol gene fragment from drug-naive injecting drug users samples obtained at two time points of the Brazilian AIDS epidemic (Pre-HAART era: 1994 to early 1997, n = 27; post-HAART era: 1999-2001, n = 38) was undertaken to assess HIV-1 antiretroviral drug resistance mutations and subtyping profiles. Genotypic analysis revealed the presence of PR primary L90M, D30N, M46I, and V82A mutations in 7.9% of the post-HAART group, and a high frequency of secondary mutations (84.2%). Nucleoside RT-associated mutations were observed in 13.2%. In the pre-HAART group, a higher frequency of RT mutations was observed (22.2%) and no PR primary mutations were found, in agreement with the introduction of protease inhibitors (PIs) in therapy during the same period. The identification of 7.9% of drug-naive injecting drug users already bearing RT/PR primary resistance mutations in the post-HAART era group constitutes a major concern in terms of dissemination of drug resistant viruses. The resistance mutations profile of the individuals may reflect the context of antiretroviral treatment in Brazil at the sample collection periods (1994-1997 and 1999-2001). In spite of the differences observed in the drug resistance profiles, similar frequencies of subtype B (63.0 vs. 73.7%), F (22.2 vs. 10.5%), and recombinant B/F (14.8 vs. 15.8%) viruses were found, respectively, in the pre- and post-HAART groups.

  17. Cataracts and Microphthalmia Caused by a Gja8 Mutation in Extracellular Loop 2

    PubMed Central

    Cheng, Catherine; White, Thomas W.; Gong, Xiaohua

    2012-01-01

    The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8R205G point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens. The level of phosphorylated Cx46 proteins is decreased in Gja8R205G/R205G mutant lenses. Genetic analysis reveals that the Cx50-R205G mutation needs the presence of wild-type Cx46 to disrupt lens peripheral fibers and epithelial cells. Electrophysiological data in Xenopus oocytes reveal that Cx50-R205G mutant proteins block channel function of gap junctions composed of wild-type Cx50, but only affect the gating of wild-type Cx46 channels. Both genetic and electrophysiological results suggest that Cx50-R205G mutant proteins alone are unable to form functional channels. These findings imply that the Gja8R205G mutation differentially impairs the functions of Cx50 and Cx46 to cause cataracts, small lenses and microphthalmia. The Gja8R205G mutation occurs at the same conserved residue as the human GJA8R198W mutation. This work provides molecular insights to understand the cataract and microphthalmia/microcornea phenotype caused by Gja8 mutations in mice and humans. PMID:23300808

  18. Prevalence of ESR1 E380Q mutation in tumor tissue and plasma from Japanese breast cancer patients.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Sueta, Aiko; Tomiguchi, Mai; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-11-22

    ESR1 mutations have attracted attention as a potentially important marker and treatment target in endocrine therapy-resistant breast cancer patients. The E380Q mutation, which is one of the ESR1 mutations, is associated with estradiol (E2) hypersensitivity, increased DNA binding to the estrogen response element, and E2-independent constitutive trans-activation activity, but its frequency in ESR1 mutations remains unknown. The present study aimed to investigate the E380Q mutation in comparison with the other representative ESR1 mutations. We screened a total of 62 patients (66 tumor tissues and 69 plasma cell-free DNA (cfDNA)) to detect ESR1 mutations (E380Q, Y537S, Y537N, Y537C, and D538G) using droplet-digital polymerase chain reaction. Plasma was collected at more than two points of the clinical course, in whom changes of ESR1 mutations under treatment were investigated. We detected ESR1 mutations in 21% (12/57) of MBCs. The E380Q ESR1 mutation was found in 16% (2/12) and the other ESR1 LBD mutations were five (41.6%) of Y537S, and four each (33.3%) of D538G, Y537N, and Y537C, in 12 ESR1 mutant breast cancer patients. Five tumors had multiple ESR1 mutations: three had double ESR1 mutations; Y537S/E380Q, Y37S/Y537C, and Y537S/D538G, and two had triple ESR1 mutations; Y537S/Y537N/D538G. In plasma cfDNA analysis, the E380Q mutation was not detected, but increases in other ESR1 mutations were detected in 46.2% (6/13) of MBC patients under treatment. We have shown that there are distinct populations of ESR1 mutations in metastatic tissue and plasma. Each ESR1 mutation may have different clinical significance, and it will be necessary to investigate them all.

  19. Genetic epidemiology of Charcot-Marie-Tooth disease.

    PubMed

    Braathen, G J

    2012-01-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. The frequency of different CMT genotypes has been estimated in clinic populations, but prevalence data from the general population is lacking. Point mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth disease type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2. The CMT phenotype caused by mutation in the myelin protein zero (MPZ) gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P(0) ) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. X-linked Charcot-Marie Tooth disease (CMTX) is caused by mutations in the connexin32 (cx32) gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions. Estimate prevalence of CMT. Estimate frequency of Peripheral Myelin Protein 22 (PMP22) duplication and point mutations, insertions and deletions in Cx32, Early growth response 2 (EGR2), MFN2, MPZ, PMP22 and Small integral membrane protein of lysosome/late endosome (SIMPLE) genes. Description of novel mutations in Cx32, MFN2 and MPZ. Description of de novo mutations in MFN2. Our population based genetic epidemiological survey included persons with CMT residing in eastern Akershus County, Norway. The participants were interviewed and examined by one geneticist/neurologist, and classified clinically, neurophysiologically and genetically. Two-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included in the MFN2 study. We screened for point mutations in the MFN2 gene. We describe four novel mutations, two in the connexin32 gene and two in the MPZ gene. A total of 245 affected from 116 CMT families from the general population of eastern Akershus county were included in the genetic epidemiological survey. In the general population 1 per 1214 persons (95% CI 1062-1366) has CMT. Charcot-Marie-Tooth disease type 1 (CMT1), CMT2 and intermediate CMT were found in 48.2%, 49.4% and 2.4% of the families, respectively. A mutation in the investigated genes was found in 27.2% of the CMT families and in 28.6% of the affected. The prevalence of the PMP22 duplication and mutations in the Cx32, MPZ and MFN2 genes was found in 13.6%, 6.2%, 1.2%, 6.2% of the families, and in 19.6%, 4.8%, 1.1%, 3.2% of the affected, respectively. None of the families had point mutations, insertions or deletions in the EGR2, PMP22 or SIMPLE genes. Four known and three novel mitofusin 2 (MFN2) point mutations in 8 unrelated Norwegian CMT families were identified. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families having point mutations in MFN2. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal hereditary motor neuronopathy (dHMN) in one family. A point mutation in the MFN2 gene was found in 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families. Two novel missense mutations in the MPZ gene were identified. Family 1 had a c.368G>A (Gly123Asp) transition while family 2 and 3 had a c.103G>A (Asp35Asn) transition. The affected in family 1 had early onset and severe symptoms compatible with Dejerine-Sottas syndrome (DSS), while affected in family 2 and 3 had late onset, milder symptoms and axonal neuropathy compatible with CMT2. Two novel connexin32 mutations that cause early onset X-linked CMT were identified. Family 1 had a deletion c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247 while family 2 had a c.536G>A (Cys179Tyr) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade and the nerve conduction velocities were in the intermediate range. Charcot-Marie-Tooth disease is the most common inherited neuropathy. At present 47 hereditary neuropathy genes are known, and an examination of all known genes would probably only identify mutations in approximately 50% of those with CMT. Thus, it is likely that at least 30-50 CMT genes are yet to be identified. The identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2. The phenotypic variation caused by different missense mutations in the MPZ gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and DSS, while milder changes cause the phenotypes CMT1 and CMT2. The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode. Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system with an estimated prevalence of 1 in 1214. CMT1 and CMT2 are equally frequent in the general population. The prevalence of PMP22 duplication and of mutations in Cx32, MPZ and MFN2 is 19.6%, 4.8%, 1.1% and 3.2%, respectively. The ratio of probable de novo mutations in CMT families was estimated to be 22.7%. Genotype- phenotype correlations for seven novel mutations in the genes Cx32 (2), MFN2 (3) and MPZ (2) are described. Two novel phenotypes were ascribed to the MFN2 gene, however further studies are needed to confirm that MFN2 mutations can cause CMT1 and dHMN. © 2012 John Wiley & Sons A/S.

  20. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects.

    PubMed

    Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique

    2005-06-01

    Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.

  1. Efficient Mutagenesis Independent of Ligation (EMILI).

    PubMed

    Füzik, Tibor; Ulbrich, Pavel; Ruml, Tomáš

    2014-11-01

    Site-directed mutagenesis is one of the most widely used techniques in life sciences. Here we describe an improved and simplified method for introducing mutations at desired sites. It consists of an inverse PCR using a plasmid template and two partially complementary primers. The synthesis step is followed by annealing of the PCR product's sticky ends, which are generated by exonuclease digestion. This method is fast, extremely efficient and cost-effective. It can be used to introduce large insertions and deletions, but also for multiple point mutations in a single step. To show the principle and to prove the efficiency of the method, we present a series of basic mutations (insertions, deletions, point mutations) on pUC19 plasmid DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: further delineation of the skin phenotype in a prospective epidemiological study of 792 school children

    PubMed Central

    Brown, SJ; Relton, CL; Liao, H; Zhao, Y; Sandilands, A; McLean, WHI; Cordell, HJ; Reynolds, NJ

    2009-01-01

    Background Null mutations within the filaggrin gene (FLG) cause ichthyosis vulgaris and are associated with atopic eczema. However, the dermatological features of filaggrin haploinsufficiency have not been clearly defined. Objectives This study investigated the genotype–phenotype association between detailed skin phenotype and FLG genotype data in a population-based cohort of children. Methods Children (n= 792) aged 7–9 years were examined by a dermatologist. Features of ichthyosis vulgaris, atopic eczema and xerosis were recorded and eczema severity graded using the Three Item Severity score. Each child was genotyped for the six most prevalent FLG null mutations (R501X, 2282del4, R2447X, S3247X, 3702delG, 3673delC). Fisher’s exact test was used to compare genotype frequencies in phenotype groups; logistic regression analysis was used to estimate odds ratios and penetrance of the FLG null genotype and a permutation test performed to investigate eczema severity in different genotype groups. Results Ten children in this cohort had ichthyosis vulgaris, of whom five had mild–moderate eczema. The penetrance of FLG null mutations with respect to flexural eczema was 55·6% in individuals with two mutations, 16·3% in individuals with one mutation and 14·2% in wild-type individuals. Summating skin features known to be associated with FLG null mutations (ichthyosis, keratosis pilaris, palmar hyperlinearity and flexural eczema) showed a penetrance of 100% in children with two FLG mutations, 87·8% in children with one FLG mutation and 46·5% in wild-type individuals (P< 0·0001, Fisher exact test). FLG null mutations were associated with more severe eczema (P= 0·0042) but the mean difference was only 1–2 points in severity score. Three distinct patterns of palmar hyperlinearity were observed and these are reported for the first time. Conclusions Filaggrin haploinsufficiency appears to be highly penetrant when all relevant skin features are included in the analysis. FLG null mutations are associated with more severe eczema, but the effect size is small in a population setting. PMID:19681860

  3. Plasmodium falciparum Genetic Diversity in Continental Equatorial Guinea before and after Introduction of Artemisinin-Based Combination Therapy

    PubMed Central

    Guerra, Mónica; Neres, Rita; Salgueiro, Patrícia; Mendes, Cristina; Ndong-Mabale, Nicolas; Berzosa, Pedro; de Sousa, Bruno

    2016-01-01

    ABSTRACT Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa. PMID:27795385

  4. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6

    PubMed Central

    Evans, Ben A.; Smith, Olivia L.; Pickerill, Ethan S.; York, Mary K.; Buenconsejo, Kristen J.P.; Chambers, Antonio E.

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest. PMID:29892505

  5. The mouse lymphoma assay detects recombination, deletion, and aneuploidy.

    PubMed

    Wang, Jianyong; Sawyer, Jeffrey R; Chen, Ling; Chen, Tao; Honma, Masamitsu; Mei, Nan; Moore, Martha M

    2009-05-01

    The mouse lymphoma assay (MLA) uses the thymidine kinase (Tk) gene of the L5178Y/Tk(+/-)-3.7.2C mouse lymphoma cell line as a reporter gene to evaluate the mutagenicity of chemical and physical agents. The MLA is recommended by both the United States Food and Drug Administration and the United States Environmental Protection Agency as the preferred in vitro mammalian cell mutation assay for genetic toxicology screening because it detects a wide range of genetic alterations, including both point mutations and chromosomal mutations. However, the specific types of chromosomal mutations that can be detected by the MLA need further clarification. For this purpose, three chemicals, including two clastogens and an aneugen (3'-azido-3'-deoxythymidine, mitomycin C, and taxol), were used to induce Tk mutants. Loss of heterozygosity (LOH) analysis was used to select mutants that could be informative as to whether they resulted from deletion, mitotic recombination, or aneuploidy. A combination of additional methods, G-banding analysis, chromosome painting, and a real-time PCR method to detect the copy number (CN) of the Tk gene was then used to provide a detailed analysis. LOH involving at least 25% of chromosome 11, a normal karyotype, and a Tk CN of 2 would indicate that the mutant resulted from recombination, whereas LOH combined with a karyotypically visible deletion of chromosome 11 and a Tk CN of 1 would indicate a deletion. Aneuploidy was confirmed using G-banding combined with chromosome painting analysis for mutants showing LOH at every microsatellite marker on chromosome 11. From this analysis, it is clear that mouse lymphoma Tk mutants can result from recombination, deletion, and aneuploidy.

  6. Lymphocyte signaling: beyond knockouts.

    PubMed

    Saveliev, Alexander; Tybulewicz, Victor L J

    2009-04-01

    The analysis of lymphocyte signaling was greatly enhanced by the advent of gene targeting, which allows the selective inactivation of a single gene. Although this gene 'knockout' approach is often informative, in many cases, the phenotype resulting from gene ablation might not provide a complete picture of the function of the corresponding protein. If a protein has multiple functions within a single or several signaling pathways, or stabilizes other proteins in a complex, the phenotypic consequences of a gene knockout may manifest as a combination of several different perturbations. In these cases, gene targeting to 'knock in' subtle point mutations might provide more accurate insight into protein function. However, to be informative, such mutations must be carefully based on structural and biophysical data.

  7. IFITM5 mutations and osteogenesis imperfecta.

    PubMed

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  8. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    PubMed Central

    2012-01-01

    Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome), including approximately 330 non-synonymous changes (7.4% of all codons). The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively), and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck]) codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently contributed to the exponential decline in mortality rates over time, as seen in all major human influenza strains. These findings may be relevant to the development of strategies for managing influenza pandemics and strain evolution. PMID:23062055

  9. Nucleotide variability in the 5-enolpyruvylshikimate-3-phosphate synthase gene from Eleusine indica (L.) Gaertn.

    PubMed

    Chong, J L; Wickneswari, R; Ismail, B S; Salmijah, S

    2008-02-01

    This study reports the results of the partial DNA sequence analysis of the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant (R) and glyphosate-susceptible (S) biotypes of Eleusine indica (L.) Gaertn from Peninsular Malaysia. Sequencing results revealed point mutation at nucleotide position 875 in the R biotypes of Bidor, Chaah and Temerloh. In the Chaah R population, substitution of cytosine (C) to adenine (A) resulted in the change of threonine (Thr106) to proline (Pro106) and from C to thymidine (T) in the Bidor R population, leading to serine (Ser106) from Pro106. As for the Temerloh R, C was substituted by T resulting in the change of Pro106 to Ser106. A new mutation previously undetected in the Temerloh R was revealed with C being substituted with A, resulting in the change of Pro106 to Thr106 indicating multiple founding events rather than to the spread of a single resistant allele. There was no point mutation recorded at nucleotide position 875 previously demonstrated to play a pivotal role in conferring glyphosate resistance to E. indica for the Lenggeng, Kuala Selangor, Melaka R populations. Thus, there may be another resistance mechanism yet undiscovered in the resistant Lenggeng, Kuala Selangor and Melaka populations.

  10. MASA syndrome is caused by mutations in the neural cell adhesion gene, L1CAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, C.E.; Wang, Y.; Schroer, R.J.

    1994-09-01

    The MASA syndrome is a recessive X-linked disorder characterized by Mental retardation, Adducted thumbs, Shuffling gait and Aphasia. Recently we found that MASA in one family was likely caused by a point mutation in exon 6 of the L1CAM gene. This gene has also been shown to be involved in X-linked hydrocephalus (HSAS). We have screened 60 patients with either sporadic HSAS or MASA as well as two additional families with MASA. For the screening, we initially utilized 3 cDNA probes for the L1CAM gene. In one of the MASA families, K8310, two affected males were found to have anmore » altered BglII band. The band was present in their carrier mother but not in their normal brothers. This band was detected by the entire cDNA probe as well as the cDNA probe for 3{prime} end of the gene. Analysis of the L1CAM sequence indicated the altered BglII site is distal to the exon 28 but proximal to the punative poly A signal site. It is hypothesized that this point mutation alters the stability of the L1CAM mRNA. This is being tested using cell lines established from the two affected males.« less

  11. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.

    PubMed

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.

  12. Computer-guided design, synthesis, and biological evaluation of quinoxalinebisarylureas as FLT3 inhibitors.

    PubMed

    Göring, Stefan; Bensinger, Dennis; Naumann, Eva C; Schmidt, Boris

    2015-03-01

    Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in ∼30 % of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Point mutations in the tyrosine kinase domain (TKD) are observed as primary mutations or are acquired as secondary mutations in FLT3 with internal tandem duplications (ITDs) after treatment with tyrosine kinase inhibitors (TKIs). Although dozens of potent inhibitors against FLT3 ITD have been reported, activating TKD point mutations, especially at residues F691 and D835, remain the leading cause for therapy resistance, highlighting the consistent need for new potent inhibitors. Herein we report the identification and characterization of novel quinoxaline-based FLT3 inhibitors. We used the pharmacophore features of diverse known inhibitors as a starting point for a new optimization algorithm for type II TKIs, starting from an in silico library pharmacophore search and induced-fit docking in the known FLT3 structure. This led to the design of a set of diverse quinoxalinebisarylureas, which were profiled in an FLT3 kinase activity assay. The most promising compounds were further evaluated in a zebrafish embryo phenotype assay. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex*

    PubMed Central

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf

    2015-01-01

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086

  14. The Role of MC1R in Speciation & Phylogeny

    ERIC Educational Resources Information Center

    Offner, Susan

    2013-01-01

    A point mutation in the MC1R gene, a G-protein-coupled receptor, has been found that could have led to the formation of two subspecies of Solomon Island flycatcher from a single ancestral population. I discuss the many roles that G-protein-coupled receptors play in vertebrate physiology and how one particular point mutation can have enormous…

  15. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  16. Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7

    PubMed Central

    Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095

  17. Role and Mechanism of Structural Variation in Progression of Breast Cancer

    DTIC Science & Technology

    2013-09-01

    mutations that occurred throughout tumor evolution, we identified 9 early nonsynonymous point mutations that occurred in cancer genes . Only five of...identified, are mutations in the TP53 gene suggesting its role as a driver mutation   5   • Our data also suggests that in the case of this one patient...generated by breakage-fusion- bridge cycles that promote repeated rounds of mutation within a chromosome arm, or from progressive amplification of genes that

  18. Novel mutations of CYP3A4 in Chinese.

    PubMed

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic groups and its effect on the metabolic activity of CYP3A4 remain to be further evaluated.

  19. The Frequency of EGFR Mutation in Lung Adenocarcinoma and the Efficacy of Tyrosine Kinase Inhibitor Therapy in a Hungarian Cohort of Patients.

    PubMed

    Sárosi, Veronika; Balikó, Zoltán; Smuk, Gábor; László, Terézia; Szabó, Mariann; Ruzsics, István; Mezősi, Emese

    2016-10-01

    In the last decades new therapeutic drugs have been developed for the treatment of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) significantly increase the progression free survival (PFS) of patients with NSCLC carrying epidermal growth factor receptor (EGFR) mutations. This type of lung cancer occurs mainly among non-smoking women and Asian origin. However, the new ESMO guideline recommends EGFR mutation analysis in every patient with NSCLC, because in patients with activating EGFR mutation, TKIs should be considered as first line therapy. In our recent work, we analyzed data of patients with EGFR-mutant adenocarcinoma from January 2009. The number of patients investigated was 446, among them 44 cases were positive for EGFR mutation. The ratio of positive cases was 9.86 % that is lower than the average mutation rate in Europe and much lower than that found in Asia. The exon 19 deletion was detected in 61.4 % of the patients, while L858R point mutation in exon 21 was observed in 34.1 % of them. In one subject, both exon 19 and 21 mutations were present simultaneously. A rare mutation located in exon 21 was found in another patient. TKI therapy was conducted in 38 patients. The disease control rate by TKI therapy was 85.7 %; primary resistance was documented in five subjects. Non-smoking patients with EGFR mutant adenocarcinoma had the highest benefit from TKI treatment. Our data support the recommendation that EGFR mutation status should be defined in all cases of locally advanced or metastatic lung adenocarcinoma.

  20. PDH E1β deficiency with novel mutations in two patients with Leigh syndrome.

    PubMed

    Quintana, E; Mayr, J A; García Silva, M T; Font, A; Tortoledo, M A; Moliner, S; Ozaez, L; Lluch, M; Cabello, A; Ricoy, J R; Koch, J; Ribes, A; Sperl, W; Briones, P

    2009-12-01

    Most cases of pyruvate dehydrogenase complex (PDHc) deficiency are attributable to mutations in the PDHA1 gene which encodes the E(1)α subunit, with few cases of mutations in the genes for E(3), E3BP (E(3) binding protein), E(2) and E(1)-phosphatase being reported. Only seven patients with deficiency of the E(1)β subunit have been described, with mutations in the PDHB gene in six of them. Clinically they presented with a non-specific encephalomyopathy. We report two patients with new mutations in PDHB and Leigh syndrome. Patient 1 was a boy with neonatal onset of hyperlactataemia, corpus callosum hypoplasia and a convulsive encephalopathy. After neurological deterioration, he died at age 5 months. Autopsy revealed the characteristic features of Leigh syndrome. Patient 2, also a boy, presented a milder clinical course. First symptoms were noticed at age 16 months with muscular hypotonia, lactic acidosis and recurrent episodes of somnolence and transient tetraparesis. MRI revealed bilateral signal hyperintensities in the globus pallidus, midbrain and crura cerebri. PDHc and E(1) activities were deficient in fibroblasts in patient 1; in patient 2 PDHc deficiency was found in skeletal muscle. Mutations in PDHA1 were excluded. Sequencing of PDHB revealed a homozygous point mutation (c.302T>C), causing a predicted amino acid change (p.M101T) in patient 1. Patient 2 is compound heterozygote for mutations c.301A>G (p.M101V) and c.313G>A (p.R105Q). All three mutations appear to destabilize the E(1) enzyme with a decrease of both E(1)α and E(1)β subunits in immunoblot analysis. To our knowledge, these patients with novel PDHB mutations are the first reported with Leigh syndrome.

  1. Rapid detection of common Chinese glucose-6-phosphate dehydrogenase (G6PD) mutations by denaturing gradient gel electrophoresis (DGGE).

    PubMed

    Lam, V M; Huang, W; Lam, S T; Yeung, C Y; Johnson, P H

    1996-03-01

    We describe here the use of denaturing gradient gel electrophoresis (DGGE) to detect the most common Chinese glucose-6-phosphate dehydrogenase (G6PD) variants, which are the single point mutations: G-->T at nt 1376, G-->A at 1388 both in exon 12 and A-->G at nt 95 in exon 02. In each case, the mutant allele resolves well from the normal allele(s). The distinct heteroduplex bands are characteristic of a particular genotype suggesting that this feature is very useful for identifying all heterozygous carriers for this and other X-linked diseases. When the analysis is extended to other exons, DGGE scans the gene and coupled with direct sequencing, it leads to the identification of new G6PD variation(s). With this approach, we identified a mutation in exon 9 which had not been reported in Hong Kong. Since DGGE can rapidly screen many unknown samples in one gel, this approach could be used to diagnose these G6PD mutations and to identify the at-risk for counselling.

  2. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  3. Multiple mechanisms of MYCN dysregulation in Wilms tumour

    PubMed Central

    Williams, Richard D.; Chagtai, Tasnim; Alcaide-German, Marisa; Apps, John; Wegert, Jenny; Popov, Sergey; Vujanic, Gordan; van Tinteren, Harm; van den Heuvel-Eibrink, Marry M.; Kool, Marcel; de Kraker, Jan; Gisselsson, David; Graf, Norbert; Gessler, Manfred; Pritchard-Jones, Kathy

    2015-01-01

    Genomic gain of the proto-oncogene transcription factor gene MYCN is associated with poor prognosis in several childhood cancers. Here we present a comprehensive copy number analysis of MYCN in Wilms tumour (WT), demonstrating that gain of this gene is associated with anaplasia and with poorer relapse-free and overall survival, independent of histology. Using whole exome and gene-specific sequencing, together with methylation and expression profiling, we show that MYCN is targeted by other mechanisms, including a recurrent somatic mutation, P44L, and specific DNA hypomethylation events associated with MYCN overexpression in tumours with high risk histologies. We describe parallel evolution of genomic copy number gain and point mutation of MYCN in the contralateral tumours of a remarkable bilateral case in which independent contralateral mutations of TP53 also evolve over time. We report a second bilateral case in which MYCN gain is a germline aberration. Our results suggest a significant role for MYCN dysregulation in the molecular biology of Wilms tumour. We conclude that MYCN gain is prognostically significant, and suggest that the novel P44L somatic variant is likely to be an activating mutation. PMID:25749049

  4. News from the protein mutability landscape.

    PubMed

    Hecht, Maximilian; Bromberg, Yana; Rost, Burkhard

    2013-11-01

    Some mutations of protein residues matter more than others, and these are often conserved evolutionarily. The explosion of deep sequencing and genotyping increasingly requires the distinction between effect and neutral variants. The simplest approach predicts all mutations of conserved residues to have an effect; however, this works poorly, at best. Many computational tools that are optimized to predict the impact of point mutations provide more detail. Here, we expand the perspective from the view of single variants to the level of sketching the entire mutability landscape. This landscape is defined by the impact of substituting every residue at each position in a protein by each of the 19 non-native amino acids. We review some of the powerful conclusions about protein function, stability and their robustness to mutation that can be drawn from such an analysis. Large-scale experimental and computational mutagenesis experiments are increasingly furthering our understanding of protein function and of the genotype-phenotype associations. We also discuss how these can be used to improve predictions of protein function and pathogenicity of missense variants. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Mutation detection using automated fluorescence-based sequencing.

    PubMed

    Montgomery, Kate T; Iartchouck, Oleg; Li, Li; Perera, Anoja; Yassin, Yosuf; Tamburino, Alex; Loomis, Stephanie; Kucherlapati, Raju

    2008-04-01

    The development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles). Sequencing alone cannot discriminate between true homozygosity and apparent homozygosity due to the loss of one allele due to a large deletion. In this unit, strategies are presented for using PCR amplification and automated fluorescence-based sequencing to identify sequence variation. The size of the project and laboratory preference and experience will dictate how the data is managed and which software tools are used for analysis. A high-throughput protocol is given that has been used to search for mutations in over 200 different genes at the Harvard Medical School - Partners Center for Genetics and Genomics (HPCGG, http://www.hpcgg.org/). Copyright 2008 by John Wiley & Sons, Inc.

  6. Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy

    PubMed Central

    Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra

    2012-01-01

    The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793

  7. The detection of large deletions or duplications in genomic DNA.

    PubMed

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  8. A Fluorescence Quenching Assay Based on Molecular Beacon Formation through a Ligase Detection Reaction for Facile and Rapid Detection of Point Mutations.

    PubMed

    Sawamura, Kensuke; Hashimoto, Masahiko

    2017-01-01

    A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).

  9. RNA2DMut: a web tool for the design and analysis of RNA structure mutations.

    PubMed

    Moss, Walter N

    2018-03-01

    With the widespread application of high-throughput sequencing, novel RNA sequences are being discovered at an astonishing rate. The analysis of function, however, lags behind. In both the cis - and trans -regulatory functions of RNA, secondary structure (2D base-pairing) plays essential regulatory roles. In order to test RNA function, it is essential to be able to design and analyze mutations that can affect structure. This was the motivation for the creation of the RNA2DMut web tool. With RNA2DMut, users can enter in RNA sequences to analyze, constrain mutations to specific residues, or limit changes to purines/pyrimidines. The sequence is analyzed at each base to determine the effect of every possible point mutation on 2D structure. The metrics used in RNA2DMut rely on the calculation of the Boltzmann structure ensemble and do not require a robust 2D model of RNA structure for designing mutations. This tool can facilitate a wide array of uses involving RNA: for example, in designing and evaluating mutants for biological assays, interrogating RNA-protein interactions, identifying key regions to alter in SELEX experiments, and improving RNA folding and crystallization properties for structural biology. Additional tools are available to help users introduce other mutations (e.g., indels and substitutions) and evaluate their effects on RNA structure. Example calculations are shown for five RNAs that require 2D structure for their function: the MALAT1 mascRNA, an influenza virus splicing regulatory motif, the EBER2 viral noncoding RNA, the Xist lncRNA repA region, and human Y RNA 5. RNA2DMut can be accessed at https://rna2dmut.bb.iastate.edu/. © 2018 Moss; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. A molecular mechanism of azoxystrobin resistance in Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxystrobin-resistant strains in packing- or store-house isolates.

    PubMed

    Zhang, Zhifang; Zhu, Zengrong; Ma, Zhonghua; Li, Hongye

    2009-05-31

    Sixty-five isolates of Pencillium digitatum (Pers.:Fr) Sacc., a causative agent of green mold of postharvest citrus, were collected from various locations in Zhejiang province in 2000, 2005 and 2006, and assayed for their sensitivity to the quinone outside inhibitor (QoI) fungicide azoxystrobin. The results showed that azoxystrobin is highly effective against P. digitatum, in vitro, and that the effective concentrations resulting in reduction of conidial germination and mycelial growth by 50% (EC(50)) averaged 0.0426 microg/ml and 0.0250 microg/ml, respectively. Twenty-eight azoxystrobin-resistant mutants were obtained by UV mutagenesis and subsequent selection on medium amended with azoxystrobin (12 microg/ml) and salicylhydroxamic acid. All obtained mutants were highly resistant to azoxystrobin and their resistance was genetically stable. Analysis of the cytochrome b gene structure of P. digitatum (Pdcyt b) showed the absence of type I intron in the first hot spot region of mutation. These results indicate that P. digitatum is likely to evolve high levels of resistance to azoxystrobin after its application. Analysis of partial sequences of Pdcyt b from both the azoxystrobin-sensitive parental isolate and the 28 azoxystrobin-resistant mutants revealed that a point mutation, which leads to the substitution at code 143 of alanine for glycine (G143A), is responsible for the observed azoxystrobin resistance in the laboratory mutants. Based on this point mutation, two allele-specific PCR primers were designed and optimized for allele-specific PCR detection of azoxystrobin-resistant isolates of P. digitatum.

  11. Morphometric analysis and neuroanatomical mapping of the zebrafish brain.

    PubMed

    Gupta, Tripti; Marquart, Gregory D; Horstick, Eric J; Tabor, Kathryn M; Pajevic, Sinisa; Burgess, Harold A

    2018-06-21

    Large-scale genomic studies have recently identified genetic variants causative for major neurodevelopmental disorders, such as intellectual disability and autism. However, determining how underlying developmental processes are affected by these mutations remains a significant challenge in the field. Zebrafish is an established model system in developmental neurogenetics that may be useful in uncovering the mechanisms of these mutations. Here we describe the use of voxel-intensity, deformation field, and volume-based morphometric techniques for the systematic and unbiased analysis of gene knock-down and environmental exposure-induced phenotypes in zebrafish. We first present a computational method for brain segmentation based on transgene expression patterns to create a comprehensive neuroanatomical map. This map allowed us to disclose statistically significant changes in brain microstructure and composition in neurodevelopmental models. We demonstrate the effectiveness of morphometric techniques in measuring changes in the relative size of neuroanatomical subdivisions in atoh7 morphant larvae and in identifying phenotypes in larvae treated with valproic acid, a chemical demonstrated to increase the risk of autism in humans. These tools enable rigorous evaluation of the effects of gene mutations and environmental exposures on neural development, providing an entry point for cellular and molecular analysis of basic developmental processes as well as neurodevelopmental and neurodegenerative disorders. Published by Elsevier Inc.

  12. Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis

    PubMed Central

    Henriksson-Peltola, Petri; Sehlén, Wilhelmina; Haggård-Ljungquist, Elisabeth

    2007-01-01

    Bacteriophages P2, P2 Hy dis and WΦ are very similar but heteroimmune Escherichia coli phages. The structural genes show over 96% identity, but the repressors show between 43 and 63% identities. Furthermore, the operators, which contain two directly repeated sequences, vary in sequence, length, location relative to the promoter and spacing between the direct repeats. We have compared the in vivo effects of the wild type and mutated operators on gene expression with the complexes formed between the repressors and their wild type or mutated operators using electrophoretic mobility shift assay (EMSA), and real-time kinetics of the protein–DNA interactions using surface plasmon resonance (SPR) analysis. Using EMSA, the repressors formed different protein–DNA complexes, and only WΦ was significantly affected by point mutations. However, SPR analysis showed a reduced association rate constant and an increased dissociation rate constant for P2 and WΦ operator mutants. The association rate constants of P2 Hy dis was too fast to be determined. The P2 Hy dis dissociation response curves were shown to be triphasic, while both P2 and WΦ C were biphasic. Thus, the kinetics of complex formation and the nature of the complexes formed differ extensively between these very closely related phages. PMID:17412705

  13. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans.

    PubMed

    Zhuang, P L; Yu, L X; Tao, Y; Zhou, Y; Zhi, Q H; Lin, H C

    2016-04-11

    Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (K m ). However, the catalytic rate constant (k cat ) and catalytic efficiency (k cat /K m ) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the k cat and k cat /K m values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity.

  14. Cryo-EM of the pathogenic VCP variant R155P reveals long-range conformational changes in the D2 ATPase ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountassif, Driss; Fabre, Lucien; Zaid, Younes

    Single amino acid mutations in valosin containing protein (VCP/p97), a highly conserved member of the ATPases associated with diverse cellular activities (AAA) family of ATPases has been linked to a severe degenerative disease affecting brain, muscle and bone tissue. Previous studies have demonstrated the role of VCP mutations in altering the ATPase activity of the D2 ring; however the structural consequences of these mutations remain unclear. In this study, we report the three-dimensional (3D) map of the pathogenic VCP variant, R155P, as revealed by single-particle Cryo-Electron Microscopy (EM) analysis at 14 Å resolution. We show that the N-terminal R155P mutation inducesmore » a large structural reorganisation of the D2 ATPase ring. Results from docking studies using crystal structure data of available wild-type VCP in the EM density maps indicate that the major difference is localized at the interface between two protomers within the D2 ring. Consistent with a conformational change, the VCP R155P variant shifted the isoelectric point of the protein and reduced its interaction with its well-characterized cofactor, nuclear protein localization-4 (Npl4). Together, our results demonstrate that a single amino acid substitution in the N-terminal domain can relay long-range conformational changes to the distal D2 ATPase ring. Our results provide the first structural clues of how VCP mutations may influence the activity and function of the D2 ATPase ring. - Highlights: • p97{sub R155P} and p97{sub A232E} decrease the ability of p97 to bind to its co-factor Npl4. • p97{sub R155P} has a different isoelectric point than that of p97{sub R95G}, p97{sub A232E} and p97{sub WT}. • Mutation R155P changes principally the conformation of the D2 ring. • Mutation R155P modifies the interface between two protomers within the D2 ring.« less

  15. Identification of short stature caused by SHOX defects and therapeutic effect of recombinant human growth hormone.

    PubMed

    Binder, G; Schwarze, C P; Ranke, M B

    2000-01-01

    Point mutations or complete deletions of SHOX, the short-stature homeobox-containing gene on the pseudoautosomal region of the sex chromosomes (Xp22 and Yp11.3), were recently reported in one family with idiopathic short stature and in several families with Leri-Weill syndrome (dyschondrosteosis). The missing SHOX is also thought to attribute to the growth failure in Turner syndrome. For testing the frequency of defects of SHOX in unexplained growth failure and recombinant human GH (rhGH) as a possible growth-promoting agent, we selected 68 children with idiopathic short stature. These probands had heights below -2.0 SD score for age, normal target heights, no significant bone age retardations, no endocrine abnormalities, no skeletal diseases, and no other organic diseases. No mutations were detected by single-strand conformational polymorphism analysis of the PCR-amplified SHOX. The analysis of three microsatellite DNA markers of the pseudoautosomal region, including one located on the 5' untranslated region of SHOX-exon 1, identified a 15-yr-old girl who carried a mutation in the form of a complete SHOX deletion. This girl who had a normal karyotype presented with mild mesomelic shortening of the forearms and lower legs. We treated two children with short stature on the basis of a SHOX point mutation (C674T) with rhGH at a dose of 1.0 IU/kg body weight-week in accordance with the regimen used in Turner syndrome. During the first 12 months of treatment, these two children (5.9- and 8.4-yr-old) showed an excellent growth spurt with a growth rate of 9.5 and 9.4 cm/yr, respectively. Growth of the lower extremities was weaker than in the trunk and arms. Our data suggest that short stature due to SHOX deletions is not a rare entity. Growth-promoting therapy with rhGH was effective with regard to height gain, but a tendency to disproportionate growth was apparent. In cases of unexplained growth failure, especially if associated with any mild skeletal disproportions, genetic analysis of SHOX should be considered.

  16. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea.

    PubMed

    Triques, Karine; Sturbois, Bénédicte; Gallais, Stéphane; Dalmais, Marion; Chauvin, Stéphanie; Clepet, Christian; Aubourg, Sébastien; Rameau, Catherine; Caboche, Michel; Bendahmane, Abdelhafid

    2007-09-01

    Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.

  18. Molecular characterization and expression study of a histidine auxotrophic mutant (his1-) of Nicotiana plumbaginifolia.

    PubMed

    El Malki, F; Jacobs, M

    2001-01-01

    The histidine auxotroph mutant his 1(-) isolated from Nicotiana plumbaginifolia haploid protoplasts was first characterized to be deficient for the enzyme histidinol phosphate aminotransferase that is responsible for one of the last steps of histidine biosynthesis. Expression of the mutated gene at the RNA level was assessed by northern analysis of various tissues. Transcriptional activity was unimpaired by the mutation and, in contrast, a higher level of expression was obtained when compared to the wild-type. The cDNA sequence encoding the mutated gene was isolated by RT-PCR and compared to the wild-type gene. A single point mutation corresponding to the substitution of a G nucleotide by A was identified at position 1212 starting from the translation site. The alignment of the deduced amino acid sequences from the mutated and wild-type gene showed that this mutation resulted in the substitution of an Arg by a His residue at position 381. This Arg residue is a conserved amino acid for histidinol phosphate aminotransferase of many species. These results indicate that the identified mutation results in an altered histidinol phosphate aminotransferase enzyme that is unable to convert the substrate imidazole acetol phosphate to histidinol phosphate and thereby leads to the blockage of histidine biosynthesis. Possible consequences of this blockage on the expression of other amino acid biosynthesis genes were evaluated by analysing the expression of the dhdps gene encoding dihydrodipicolinate synthase, the first key enzyme of the lysine pathway.

  19. Efficient Knock-in of a Point Mutation in Porcine Fibroblasts Using the CRISPR/Cas9-GMNN Fusion Gene.

    PubMed

    Gerlach, Max; Kraft, Theresia; Brenner, Bernhard; Petersen, Björn; Niemann, Heiner; Montag, Judith

    2018-06-13

    During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7 -gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene ( GMNN ). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9- GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9- GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.

  20. High frequency of AML1/RUNX1 point mutations in radiation-associated myelodysplastic syndrome around Semipalatinsk nuclear test site.

    PubMed

    Zharlyganova, Dinara; Harada, Hironori; Harada, Yuka; Shinkarev, Sergey; Zhumadilov, Zhaxybay; Zhunusova, Aigul; Tchaizhunusova, Naylya J; Apsalikov, Kazbek N; Kemaikin, Vadim; Zhumadilov, Kassym; Kawano, Noriyuki; Kimura, Akiro; Hoshi, Masaharu

    2008-09-01

    It is known that bone marrow is a sensitive organ to ionizing radiation, and many patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) have been diagnosed in radiation-treated cases and atomic bomb survivors in Hiroshima and Nagasaki. The AML1/RUNX1 gene has been known to be frequently mutated in MDS/AML patients among atomic bomb survivors and radiation therapy-related MDS/AML patients. In this study, we investigated the AML1 mutations in radiation-exposed patients with MDS/AML among the residents near the Semipalatinsk Nuclear Test Site (SNTS), where the risk of solid cancers and leukemias was increased due to the radiation effects. AML1 mutations were identified in 7 (39%) of 18 radiation-exposed MDS/AML patients. In contrast, no AML1 mutation was found in 13 unexposed MDS/AML cases. The frequency of AML1 mutations in radiation-exposed patients with MDS/AML was significantly higher compared with unexposed patients (p < 0.05).We also found a significant correlation between individual estimated doses and AML1 mutations (p < 0.05). Considering these results, AML1 point mutations might be a useful biomarker that differentiates radio-induced MDS/AML from spontaneous MDS/AML.

  1. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia.

    PubMed

    Horga, Alejandro; Pitceathly, Robert D S; Blake, Julian C; Woodward, Catherine E; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E; Plant, Gordon T; Houlden, Henry; Sweeney, Mary G; Hanna, Michael G; Reilly, Mary M

    2014-12-01

    Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P<0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P=0.002; odds ratio 8.43, 95% confidence interval 2.24-31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  2. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia

    PubMed Central

    Pitceathly, Robert D. S.; Blake, Julian C.; Woodward, Catherine E.; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E.; Plant, Gordon T.; Houlden, Henry; Sweeney, Mary G.; Hanna, Michael G.; Reilly, Mary M.

    2014-01-01

    Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P < 0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P = 0.002; odds ratio 8.43, 95% confidence interval 2.24–31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. PMID:25281868

  3. A single mutation in Securin induces chromosomal instability and enhances cell invasion.

    PubMed

    Mora-Santos, Mar; Castilla, Carolina; Herrero-Ruiz, Joaquín; Giráldez, Servando; Limón-Mortés, M Cristina; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2013-01-01

    Pituitary tumour transforming gene (pttg1) encodes Securin, a protein involved in the inhibition of sister chromatid separation binding to Separase until the onset of anaphase. Separase is a cysteine-protease that degrades cohesin to segregate the sister chromatids to opposite poles of the cell. The amount of Securin is strongly regulated because it should allow Separase activation when it is degraded by the anaphase promoting complex/cyclosome, should arrest the cell cycle after DNA damage, when it is degraded through SKP1-CUL1-βTrCP ubiquitin ligase, and its overexpression induces tumour formation and correlates with metastasis in multiple tumours. Securin is a phosphoprotein that contains 32 potentially phosphorylatable residues. We mutated and analysed most of them, and found a single mutant, hSecT60A, that showed enhanced oncogenic properties. Our fluorescence activated cell sorting analysis, fluorescence in situ hybridisation assays, tumour cell migration and invasion experiments and gene expression by microarrays analysis clearly involved hSecT60A in chromosomal instability and cell invasion. These results show, for the first time, that a single mutation in pttg1 is sufficient to trigger the oncogenic properties of Securin. The finding of this point mutation in patients might be used as an effective strategy for early detection of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Mutation scanning in a single and a stacked genetically modified (GM) event by real-time PCR and high resolution melting (HRM) analysis.

    PubMed

    Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G; Brandes, Christian

    2014-10-31

    Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017×MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found.

  5. Identification of six novel mutations in Iranian patients with maple syrup urine disease and their in silico analysis.

    PubMed

    Abiri, Maryam; Karamzadeh, Razieh; Karimipoor, Morteza; Ghadami, Shirin; Alaei, Mohammad Reza; Bagheri, Samira Dabagh; Bagherian, Hamideh; Setoodeh, Aria; Noori-Daloii, Mohammad Reza; Sirous Zeinali

    2016-04-01

    Maple syrup urine disease (MSUD) is a rare inborn error of branched-chain amino acid metabolism. The disease prevalence is higher in populations with elevated rate of consanguineous marriages such as Iran. Different types of disease causing mutations have been previously reported in BCKDHA, BCKDHB, DBT and DLD genes known to be responsible for MSUD phenotype. In this study, two sets of multiplex polymorphic STR (Short Tandem Repeat) markers linked to the above genes were used to aid in homozygosity mapping in order to find probable pathogenic change(s) in the studied families. The families who showed homozygote haplotype for the BCKDHA gene were subsequently sequenced. Our findings showed that exons 2, 4 and 6 contain most of the mutations which are novel. The changes include two single nucleotide deletion (i.e. c. 143delT and c.702delT), one gross deletion covering the whole exon four c.(375+1_376-1)_(8849+1_885-1), two splice site changes (c.1167+1G>T, c. 288+1G>A), and one point mutation (c.731G>A). Computational approaches were used to analyze these two novel mutations in terms of their impact on protein structure. Computational structural modeling indicated that these mutations might affect structural stability and multimeric assembly of branched-chain α-keto acid dehydrogenase complex (BCKDC). Copyright © 2016. Published by Elsevier B.V.

  6. Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII.

    PubMed

    Khan, Faez Iqbal; Shahbaaz, Mohd; Bisetty, Krishna; Waheed, Abdul; Sly, William S; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-15

    The lysosomal storage disorders are a group of 50 unique inherited diseases characterized by unseemly lipid storage in lysosomes. These malfunctions arise due to genetic mutations that result in deficiency or reduced activities of the lysosomal enzymes, which are responsible for catabolism of biological macromolecules. Sly syndrome or mucopolysaccharidosis type VII is a lysosomal storage disorder associated with the deficiency of β-glucuronidase (EC 3.2.1.31) that catalyzes the hydrolysis of β-D-glucuronic acid residues from the non-reducing terminal of glycosaminoglycan. The effects of the disease causing mutations on the framework of the sequences and structure of β-glucuronidase (GUSBp) were analyzed utilizing a variety of bioinformatic tools. These analyses showed that 211 mutations may result in alteration of the biological activity of GUSBp, including previously experimentally validated mutations. Finally, we refined 90 disease causing mutations, which presumably cause a significant impact on the structure, function, and stability of GUSBp. Stability analyses showed that mutations p.Phe208Pro, p.Phe539Gly, p.Leu622Gly, p.Ile499Gly and p.Ile586Gly caused the highest impact on GUSBp stability and function because of destabilization of the protein structure. Furthermore, structures of wild type and mutant GUSBp were subjected to molecular dynamics simulation to examine the relative structural behaviors in the explicit conditions of water. In a broader view, the use of in silico approaches provided a useful understanding of the effect of single point mutations on the structure-function relationship of GUSBp. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related human papillary thyroid carcinoma after the Chernobyl accident.

    PubMed

    Arndt, Annette; Steinestel, Konrad; Rump, Alexis; Sroya, Manveer; Bogdanova, Tetiana; Kovgan, Leonila; Port, Matthias; Abend, Michael; Eder, Stefan

    2018-04-06

    Childhood radiation exposure has been associated with increased papillary thyroid carcinoma (PTC) risk. The role of anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related PTC remains unclear, but STRN-ALK fusions have recently been detected in PTCs from radiation exposed persons after Chernobyl using targeted next-generation sequencing and RNA-seq. We investigated ALK and RET gene rearrangements as well as known driver point mutations in PTC tumours from 77 radiation-exposed patients (mean age at surgery 22.4 years) and PTC tumours from 19 non-exposed individuals after the Chernobyl accident. ALK rearrangements were detected by fluorescence in situ hybridisation (FISH) and confirmed with immunohistochemistry (IHC); point mutations in the BRAF and RAS genes were detected by DNA pyrosequencing. Among the 77 tumours from exposed persons, we identified 7 ALK rearrangements and none in the unexposed group. When combining ALK and RET rearrangements, we found 24 in the exposed (31.2%) compared to two (10.5%) in the unexposed group. Odds ratios increased significantly in a dose-dependent manner up to 6.2 (95%CI: 1.1, 34.7; p = 0.039) at Iodine-131 thyroid doses >500 mGy. In total, 27 cases carried point mutations of BRAF or RAS genes, yet logistic regression analysis failed to identify significant dose association. To our knowledge we are the first to describe ALK rearrangements in post-Chernobyl PTC samples using routine methods such as FISH and IHC. Our findings further support the hypothesis that gene rearrangements, but not oncogenic driver mutations, are associated with ionizing radiation-related tumour risk. IHC may represent an effective method for ALK-screening in PTCs with known radiation aetiology, which is of clinical value since oncogenic ALK activation might represent a valuable target for small molecule inhibitors. © 2018 The Authors The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.

  8. Computational Modelling of Dapsone Interaction With Dihydropteroate Synthase in Mycobacterium leprae; Insights Into Molecular Basis of Dapsone Resistance in Leprosy.

    PubMed

    Chaitanya V, Sundeep; Das, Madhusmita; Bhat, Pritesh; Ebenezer, Mannam

    2015-10-01

    The molecular basis for determination of resistance to anti-leprosy drugs is the presence of point mutations within the genes of Mycobacterium leprae (M. leprae) that encode active drug targets. The downstream structural and functional implications of these point mutations on drug targets were scarcely studied. In this study, we utilized computational tools to develop native and mutant protein models for 5 point mutations at codon positions 53 and 55 in 6-hydroxymethyl-7, 8-dihydropteroate synthase (DHPS) of M. leprae, an active target for dapsone encoded by folp1 gene, that confer resistance to dapsone. Molecular docking was performed to identify variations in dapsone interaction with mutant DHPS in terms of hydrogen bonding, hydrophobic interactions, and energy changes. Schrodinger Suite 2014-3 was used to build homology models and in performing molecular docking. An increase in volume of the binding cavities of mutant structures was noted when compared to native form indicating a weakening in interaction (60.7 Å(3) in native vs. 233.6 Å(3) in Thr53Ala, 659.9 Å(3) in Thr53Ile, 400 Å(3) for Thr53Val, 385 Å(3) for Pro55Arg, and 210 Å(3) for Pro55Leu). This was also reflected by changes in hydrogen bonds and decrease in hydrophobic interactions in the mutant models. The total binding energy (ΔG) decreased significantly in mutant forms when compared to the native form (-51.92 Kcal/mol for native vs. -35.64, -35.24, -46.47, -47.69, and -41.36 Kcal/mol for mutations Thr53Ala, Thr53Ile, Thr53Val, Pro55Arg, and Pro55Leu, respectively. In brief, this analysis provided structural and mechanistic insights to the degree of dapsone resistance contributed by each of these DHPS mutants in leprosy. © 2015 Wiley Periodicals, Inc.

  9. Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells.

    PubMed

    He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua

    2017-09-27

    Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.

  10. Identification of a splicing enhancer in MLH1 using COMPARE a new assay for determination of relative RNA splicing efficiencies

    PubMed Central

    Xu, Dong-Qing; Mattox, William

    2006-01-01

    Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within proteincoding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in disease, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict if a given mutation will have effects on splicing based on sequence alone. Here we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary nonpolyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659 indicating that their primary effect is on splicing. Surprisingly the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion. PMID:16357104

  11. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    PubMed

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  12. An interferometric imaging biosensor using weighted spectrum analysis to confirm DNA monolayer films with attogram sensitivity.

    PubMed

    Fu, Rongxin; Li, Qi; Wang, Ruliang; Xue, Ning; Lin, Xue; Su, Ya; Jiang, Kai; Jin, Xiangyu; Lin, Rongzan; Gan, Wupeng; Lu, Ying; Huang, Guoliang

    2018-05-01

    Interferometric imaging biosensors are powerful and convenient tools for confirming the existence of DNA monolayer films on silicon microarray platforms. However, their accuracy and sensitivity need further improvement because DNA molecules contribute to an inconspicuous interferometric signal both in thickness and size. Such weaknesses result in poor performance of these biosensors for low DNA content analyses and point mutation tests. In this paper, an interferometric imaging biosensor with weighted spectrum analysis is presented to confirm DNA monolayer films. The interferometric signal of DNA molecules can be extracted and then quantitative detection results for DNA microarrays can be reconstructed. With the proposed strategy, the relative error of thickness detection was reduced from 88.94% to merely 4.15%. The mass sensitivity per unit area of the proposed biosensor reached 20 attograms (ag). Therefore, the sample consumption per unit area of the target DNA content was only 62.5 zeptomoles (zm), with the volume of 0.25 picolitres (pL). Compared with the fluorescence resonance energy transfer (FRET), the measurement veracity of the interferometric imaging biosensor with weighted spectrum analysis is free to the changes in spotting concentration and DNA length. The detection range was more than 1µm. Moreover, single nucleotide mismatch could be pointed out combined with specific DNA ligation. A mutation experiment for lung cancer detection proved the high selectivity and accurate analysis capability of the presented biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mutational analysis in a patient with a variant form of Gaucher disease caused by SAP-2 deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafi, M.A.; Gala, G. de; Xunling Zhang

    1993-01-01

    It is now clear that the lysosomal hydrolysis of sphingolipids requires both lysosomal enzymes and so-called sphingolipid activator proteins (SAPs). One gene, called prosaposin, codes for a precursor protein that is proteolytically cut into four putative SAPs. These four SAPs, of about 80 amino acids, share some structural features but differ somewhat in their specificity. Domain 3 of prosaposin mRNA contains the coding region for SAP-2, an activator of glucocerebrosidase. While most patients with Gaucher disease store glucosylceramide due to defects in glucocerebrosidase, a few patients store this lipid in the presence of normal enzyme levels. In this paper themore » authors describe the identification of a point mutation in domain 3 of a patient who died with this variant form of Gaucher disease. Polymerase chain reaction amplification was performed in the small amount of genomic DNA available using primers generated from the intronic sequence surrounding domain 3. The patient was found to have a T-to-G substitution at position 1144 (counting from the A of ATG initiation codon) in half of the M13 recombinant clones. This changes the codon for cysteine[sub 382] to glycine. His father and unaffected brother also had this mutation, but his mother did not. She was found to have half of the normal amount of mRNA for prosaposin in her cultured skin fibroblasts. Therefore, this child inherited a point mutation in domain 3 from his father and a deficiency of all four SAPs coded for by prosaposin from his mother. 29 refs., 3 figs., 1 tab.« less

  14. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. http://zhanglab.ccmb.med.umich.edu/STRUM/ CONTACT: qiang@suda.edu.cn and zhng@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/STRUM/ Contact: qiang@suda.edu.cn and zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318206

  16. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    PubMed

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.

  17. [Genetic counseling and instruction of marriage for deaf young people: study of 115 cases].

    PubMed

    Han, Bing; Dai, Pu; Wang, Guo-Jian; Yuan, Yong-Yi; Li, Qi; Zhang, Xin; Kang, Dong-Yang; Han, Dong-Yi

    2009-03-17

    To invesigate the molecular pathogenesis of deafness among the youth by means of genetic testing so as to provide pre-marriage genetic counseling and instruction for the deaf youth. 217 deaf young people, 126 males and 91 females, aged 18.9 (16 - 26), from Yunnan and Guizhou provinces, underwent history taking, auditory testing, and collection of peripheral blood samples. Genomic DNA and mitochondrial DNA were extracted to undergo sequence analysis of the entire gene GJB2, common point mutation of SLC26A4 gene, and mutation of mtDNA A1555G. Genetic prediction and marriage instruction were provided to each subject based on these results. Twenty-three of the 117 persons (10.5%), 13 males and 10 females, were mtDNA A1555G mutation carriers and they were instructed that they, their maternal relatives, and the offspring of the female carriers, should they be born, should strictly avoid the administration of amino glycoside antibiotics. Twenty eight of the 115 persons (12.9%), were confirmed to carry homozygous or compound GJB2 mutations, 5 individuals (2.3%) carried heterozygous GJB2 mutation, 19 (8.8%) carried homozygous or compound SLC26A4 mutations, and one (0.5%) carried heterozygous SLC26A4 mutation. The suggestion for them was to avoid getting married with deaf partners caused by the same deaf gene or with individuals carrying mutations in the same deaf gene. Meanwhile, suggestions such as avoiding aggressive exercises and head injury were provided to the deaf young people with SLC26A4 mutations. Genetic testing can provide more accurate and useful genetic counseling and instruction to deaf young people for their partner selection and eugenics.

  18. Comprehensive mutational profiling of core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric

    2016-01-01

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  19. Mucopolysaccharidosis IVA: Identification of a common missense mutation I113F in the N-Acetylgalactosamine-6-sulfate sulfatase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, Shunji; Fukuda, Seiji; Rezvi, Maruf

    1995-09-01

    Mucopolysaccharidosis IVA is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The recent isolation and characterization of cDNA and genomic sequences encoding GALNS has facilitated identification of the molecular lesions that cause MPS IVA. We identified a common missense mutation among Caucasian MPS IVA patients. The mutation was originally detected by SSCP, and successive sequencing revealed an A{yields}T transversion at nt 393. This substitution altered the isoleucine at position 113 to phenylalanine (I113F) in the 622 amino acid GALNS protein and was associated with a severe phenotype in a homozygote. Compound heterogzygotes with onemore » I113F-allele mutation have a wide range of clinical phenotypes. Transfection experiments in GALNS-deficient fibroblasts revealed that the mutation drastically reduces the enzyme activity of GALNS. Allele-specific oligonucleotide or SSCP analysis indicated that this mutation accounted for 22.5% (9/40) of unrelated MPS IVA chromosomes from 23 Caucasian patients, including 6 consanguineous cases. Of interest, the I1e 113{yields}Phe substitution occurred in only Caucasian MPS IVA patients and in none of the GALNS alleles of 20 Japanese patients. These findings identify a frequent missense mutation among MPS IVA patients of Caucasian ancestry that results in severe MPS IVA when homoallelic, and will facilitate molecular diagnosis of most such patients and identification of heterozygous carriers. In addition to this common mutation, 10 different point mutations and 2 small deletions were detected, suggesting allelic heterogeneity in GALNS gene. 32 refs., 2 figs., 3 tabs.« less

  20. Mutational profiles of Brenner tumors show distinctive features uncoupling urothelial carcinomas and ovarian carcinoma with transitional cell histology.

    PubMed

    Pfarr, Nicole; Darb-Esfahani, Silvia; Leichsenring, Jonas; Taube, Eliane; Boxberg, Melanie; Braicu, Ioana; Jesinghaus, Moritz; Penzel, Roland; Endris, Volker; Noske, Aurelia; Weichert, Wilko; Schirmacher, Peter; Denkert, Carsten; Stenzinger, Albrecht

    2017-10-01

    Brenner tumors (BT) are rare ovarian tumors encompassing benign, borderline, and malignant variants. While the histopathology of BTs and their clinical course is well described, little is known about the underlying genetic defects. We employed targeted next generation sequencing to analyze the mutational landscape in a cohort of 23 BT cases (17 benign, 2 borderline, and 4 malignant) and 3 ovarian carcinomas with transitional cell histology (TCC). Copy number variations (CNV) were validated by fluorescence in-situ hybridization (FISH) and quantitative PCR-based copy number assays. Additionally, we analyzed the TERT promotor region by conventional Sanger sequencing. We identified 25 different point mutations in 23 of the analyzed genes in BTs and 10 mutations in 8 genes in TCCs. About 57% percent of mutations occurred in genes involved in cell cycle control, DNA repair, and epigenetic regulation processes. All TCC cases harbored TP53 mutations whereas all BTs were negative and none of the mutations observed in BTs were present in TCCs. CNV analysis revealed recurrent MDM2 amplifications in 3 out of 4 of the malignant BT cases with one case harboring a concomitant amplification of CCND1. No mutations were observed in the TERT promoter region in BTs and TCCs, which is mutated in about 50%-75% of urothelial carcinoma and in 16% of ovarian clear-cell carcinomas. In conclusion, our study highlights distinct genetic features of BTs, and detection of the triplet phenotype MDM2 amplification/TP53 wt/TERT wt may aid diagnosis of malignant BT in difficult cases. Moreover, selected genetic lesions may be clinically exploitable in a metastatic setting. © 2017 Wiley Periodicals, Inc.

  1. The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations.

    PubMed

    Gritsun, T S; Desai, A; Gould, E A

    2001-07-01

    An infectious clone (pGGVs) of the tick-borne encephalitis complex virus Vasilchenko (Vs) was constructed previously. Virus recovered from pGGVs produced slightly smaller plaques than the Vs parental virus. Sequence analysis demonstrated five nucleotide differences between the original Vs virus and pGGVs; four of these mutations resulted in amino acid substitutions, while the fifth mutation was located in the 3' untranslated region (3'UTR). Two mutations were located in conserved regions and three mutations were located in variable regions of the virus genome. Reverse substitutions from the conserved regions of the genome, R(496)-->H in the envelope (E) gene and C(10884)-->T in the 3'UTR, were introduced both separately and together into the infectious clone and their biological effect on virus phenotype was evaluated. The engineered viruses with R(496) in the E protein produced plaques of smaller size than viruses with H(496) at this position. This mutation also affected the growth and neuroinvasiveness of the virus. In contrast, the consequence of a T(10884)-->C substitution within the 3'UTR was noticeable only in cytotoxicity and neuroinvasiveness tests. However, all virus mutants engineered by modification of the infectious clone, including one with two wild-type mutations, H(496) and T(10884), showed reduced neuroinvasiveness in comparison with the Vs parental virus. Therefore, although the H(496)-->R and T(10884)-->C substitutions clearly reduce virus virulence, the other mutations within the variable regions of the capsid (I(45)-->F) and the NS5 (T(2688)-->A and M(3385)-->I) genes also contribute to the process of attenuation. In terms of developing flavivirus vaccines, the impact of accumulating apparently minor mutations should be assessed in detail.

  2. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease.

    PubMed

    Ancliff, P J; Gale, R E; Liesner, R; Hann, I M; Linch, D C

    2001-11-01

    Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.

  3. A newly detected mutation of the RET protooncogene in exon 8 as a cause of multiple endocrine neoplasia type 2A.

    PubMed

    Bethanis, Sotirios; Koutsodontis, George; Palouka, Theodosia; Avgoustis, Christos; Yannoukakos, Drakoulis; Bei, Thalia; Papadopoulos, Savas; Linos, Dimitrios; Tsagarakis, Stylianos

    2007-01-01

    Multiple endocrine neoplasia type 2A (MEN2A) is a syndrome of familial neoplasias characterized by medullary thyroid carcinoma (MTC), pheochromocytoma and hyperplasia of the parathyroid glands. RET protooncogene mutations are responsible for MEN 2A. Mutations in exons 10 or 11 have been identified in more than 96% of patients with MEN 2A. We herein report for the first time a patient with MEN 2A harboring a mutation (Gly(533)Cys) in exon 8. A 66-year old male patient was referred to our department for bilateral adrenal nodules. The patient's family history was remarkable in that his mother had pheochromocytoma. Biochemical evaluation and findings of the magnetic resonance imaging of the adrenals were compatible with the diagnosis of bilateral pheochromocytomas. The patient underwent laparoscopic bilateral adrenalectomy and histological examination confirmed the preoperative diagnosis of pheochromocytoma. Absence of phenotypic characteristics of VHL or NF1 and elevated calcitonin levels both basal and post pentagastrin stimulation, raised the possibility of MEN 2A syndrome. Total thyroidectomy was performed and histological examination showed the presence of MTC. Direct sequencing of exon 8 from the patient's genomic DNA revealed the mutation c.1,597G-->T (Gly533Cys). Although this missense point mutation has been associated with familial MTC (FMTC), to the best of our knowledge mutations in exon 8 have not previously been identified in patients with MEN 2A. In conclusion, in patients with clinical suspicion of MEN 2A syndrome, analysis of RET exon 8 should be considered when the routine evaluation of MEN 2A-associated mutations is negative. Furthermore, patients with FMTC and exon 8 mutations should also be screened for pheochromocytoma.

  4. Widespread Distribution of a Newly Found Point Mutation in Voltage-Gated Sodium Channel in Pyrethroid-Resistant Aedes aegypti Populations in Vietnam

    PubMed Central

    Kawada, Hitoshi; Higa, Yukiko; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Thi Yen, Nguyen; Loan, Luu Lee; Sánchez, Rodrigo A. P.; Takagi, Masahiro

    2009-01-01

    Background Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observed in several mosquito species, point mutations in the para gene have not been fully characterized in Ae. aegypti populations in Vietnam. The aim of this study was to determine the types and frequencies of mutations in the para gene in Ae. aegypti collected from used tires in Vietnam. Methods and Findings Several point mutations were examined that cause insensitivity of the voltage-gated sodium channel in the insect nervous system due to the replacement of the amino acids L1014F, the most commonly found point mutation in several mosquitoes; I1011M (or V) and V1016G (or I), which have been reported to be associated to knockdown resistance in Ae. aegypti located in segment 6, domain II; and a recently found amino acid replacement in F1269 in Ae. aegypti, located in segment 6, domain III. Among 756 larvae from 70 locations, no I1011M or I1011V nor L1014F mutations were found, and only two heterozygous V1016G mosquitoes were detected. However, F1269C mutations on domain III were distributed widely and with high frequency in 269 individuals among 757 larvae (53 collection sites among 70 locations surveyed). F1269C frequencies were low in the middle to north part of Vietnam but were high in the areas neighboring big cities and in the south of Vietnam, with the exception of the southern mountainous areas located at an elevation of 500–1000 m. Conclusions The overall percentage of homozygous F1269C seems to remain low (7.4%) in the present situation. However, extensive and uncontrolled frequent use of photostable pyrethroids might be a strong selection pressure for this mutation to cause serious problems in the control of dengue fever in Vietnam. PMID:19806205

  5. Genomic Characterization of Non–Small-Cell Lung Cancer in African Americans by Targeted Massively Parallel Sequencing

    PubMed Central

    Araujo, Luiz H.; Timmers, Cynthia; Bell, Erica Hlavin; Shilo, Konstantin; Lammers, Philip E.; Zhao, Weiqiang; Natarajan, Thanemozhi G.; Miller, Clinton J.; Zhang, Jianying; Yilmaz, Ayse S.; Liu, Tom; Coombes, Kevin; Amann, Joseph; Carbone, David P.

    2015-01-01

    Purpose Technologic advances have enabled the comprehensive analysis of genetic perturbations in non–small-cell lung cancer (NSCLC); however, African Americans have often been underrepresented in these studies. This ethnic group has higher lung cancer incidence and mortality rates, and some studies have suggested a lower incidence of epidermal growth factor receptor mutations. Herein, we report the most in-depth molecular profile of NSCLC in African Americans to date. Methods A custom panel was designed to cover the coding regions of 81 NSCLC-related genes and 40 ancestry-informative markers. Clinical samples were sequenced on a massively parallel sequencing instrument, and anaplastic lymphoma kinase translocation was evaluated by fluorescent in situ hybridization. Results The study cohort included 99 patients (61% males, 94% smokers) comprising 31 squamous and 68 nonsquamous cell carcinomas. We detected 227 nonsilent variants in the coding sequence, including 24 samples with nonoverlapping, classic driver alterations. The frequency of driver mutations was not significantly different from that of whites, and no association was found between genetic ancestry and the presence of somatic mutations. Copy number alteration analysis disclosed distinguishable amplifications in the 3q chromosome arm in squamous cell carcinomas and pointed toward a handful of targetable alterations. We also found frequent SMARCA4 mutations and protein loss, mostly in driver-negative tumors. Conclusion Our data suggest that African American ancestry may not be significantly different from European/white background for the presence of somatic driver mutations in NSCLC. Furthermore, we demonstrated that using a comprehensive genotyping approach could identify numerous targetable alterations, with potential impact on therapeutic decisions. PMID:25918285

  6. A Computational Approach From Gene to Structure Analysis of the Human ABCA4 Transporter Involved in Genetic Retinal Diseases.

    PubMed

    Trezza, Alfonso; Bernini, Andrea; Langella, Andrea; Ascher, David B; Pires, Douglas E V; Sodi, Andrea; Passerini, Ilaria; Pelo, Elisabetta; Rizzo, Stanislao; Niccolai, Neri; Spiga, Ottavia

    2017-10-01

    The aim of this article is to report the investigation of the structural features of ABCA4, a protein associated with a genetic retinal disease. A new database collecting knowledge of ABCA4 structure may facilitate predictions about the possible functional consequences of gene mutations observed in clinical practice. In order to correlate structural and functional effects of the observed mutations, the structure of mouse P-glycoprotein was used as a template for homology modeling. The obtained structural information and genetic data are the basis of our relational database (ABCA4Database). Sequence variability among all ABCA4-deposited entries was calculated and reported as Shannon entropy score at the residue level. The three-dimensional model of ABCA4 structure was used to locate the spatial distribution of the observed variable regions. Our predictions from structural in silico tools were able to accurately link the functional effects of mutations to phenotype. The development of the ABCA4Database gathers all the available genetic and structural information, yielding a global view of the molecular basis of some retinal diseases. ABCA4 modeled structure provides a molecular basis on which to analyze protein sequence mutations related to genetic retinal disease in order to predict the risk of retinal disease across all possible ABCA4 mutations. Additionally, our ABCA4 predicted structure is a good starting point for the creation of a new data analysis model, appropriate for precision medicine, in order to develop a deeper knowledge network of the disease and to improve the management of patients.

  7. Structural analysis of chromosomal rearrangements associated with the developmental mutations Ph, W19H, and Rw on mouse chromosome 5.

    PubMed Central

    Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M

    1994-01-01

    We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773

  8. Studies on congenital hereditary cataract and microphthalmia of the miniature schnauzer dog.

    PubMed

    Shastry, B S; Reddy, V N

    1994-09-30

    Hereditary cataract in dogs occurs as an autosomal recessive trait. The opacity is primarily in the lens nucleus and posterior cortex. The affected animals also have other ocular abnormalities such as microphthalmia. To understand the genetic basis of this disorder, we have analyzed leukocyte DNA from affected and normal dogs for possible mutations in the homeobox containing gene and myotonic dystrophy locus. The results show that there are no signs of microdeletion, insertion, point mutation and rearrangements in these loci. Although these observations cannot completely rule out the possibility of point mutations, they suggest that the above loci are unlikely to be associated with the disease.

  9. Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts

    PubMed Central

    Graves, J. Anthony; Rothermund, Kristi; Wang, Tao; Qian, Wei; Van Houten, Bennett; Prochownik, Edward V.

    2010-01-01

    Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state. PMID:21060841

  10. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.

    PubMed

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf

    2015-08-14

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology.

    PubMed

    Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R

    2007-09-01

    To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.

  12. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamino, K.; Anderson, L.; O'dahl, S.

    1992-11-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in amore » Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.« less

  13. Screening for germline mutations of MLH1, MSH2, MSH6 and PMS2 genes in Slovenian colorectal cancer patients: implications for a population specific detection strategy of Lynch syndrome.

    PubMed

    Berginc, Gasper; Bracko, Matej; Ravnik-Glavac, Metka; Glavac, Damjan

    2009-01-01

    Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.

  14. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Prevalence of EGFR mutations in newly diagnosed locally advanced or metastatic non-small cell lung cancer Spanish patients and its association with histological subtypes and clinical features: The Spanish REASON study.

    PubMed

    Esteban, E; Majem, M; Martinez Aguillo, M; Martinez Banaclocha, N; Dómine, M; Gómez Aldaravi, L; Juan, O; Cajal, R; Gonzalez Arenas, M C; Provencio, M

    2015-06-01

    The aim of the REASON study is to determine the frequency of EGFR mutation in advanced non-small cell lung cancer (aNSCLC) patients in Spain (all histologies), and to better understand the clinical factors (gender, smoking habits and histological subtypes) that may be associated with EGFR mutations, in an unselected sample of aNSCLC patients. All newly diagnosed aNSCLC patients from 40 selected centers in Spain were prospectively included for a 6-month period. Patient characteristics were obtained from clinical records. Mutation testing was performed on available tumor samples. Exploratory analyses were performed to characterize the clinico-pathological factors associated with presence of EGFR mutations. From March 2010 to March 2011, 1113 patients were included in the study, of which 1009 patients provided sample for EGFR mutation analysis (90.7%). Mutation analysis was not feasible in 146/1113 patients (13.1%) due to either sample unavailability (79/1113; 7.1%) or sample inadequacy (67/1113; 6.0%). Twenty-five out of 1113 patients (2.3%) were excluded due to unavailable information. Most patients (99.5%) were Caucasian, 74.5% were male, and predominantly were current (38.1%) or former smokers (44.0%). Median age was 66 years (range 25-90) and 70.7% of patients had non-squamous histology (57.8% adenocarcinoma, 1.8% bronchoalveolar, 11.1% large-cell carcinoma). Exon 19 deletions and the exon 21 L858R point mutation were analyzed in 942/1009 (93.4%) samples. Mutation rate was 11.6% (82.6% exon 19 dels and 17.4% L858R). To be never smoker (38.1%), female (25.4%), with bronchioloalveolar carcinoma (22.2%) or adenocarcinoma (15.4%) histology was associated with a higher prevalence of EGFR mutations. Exons 18, 20 and 21 (excluding L858R) were analyzed in 505/942 samples, and EGFR mutations were found in 22/505 samples (4.4%). The estimated prevalence of sensitizing EGFR mutations (exon 19 del, exon 21 L858R) in an unselected samples of newly diagnosed aNSCLC patients in Spain (all histologies) is consistent with previous published data in Caucasian patients. When a sample is available, EGFR mutation testing is feasible in over 90% of cases, and may therefore be suitable for routine clinical practice. CLINICALTRIALS. NCT01081496. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Lymphocyte signaling : beyond knockouts

    PubMed Central

    Saveliev, Alexander; Tybulewicz, Victor L. J.

    2016-01-01

    The analysis of lymphocyte signaling was greatly enhanced by the advent of gene targeting, which allows the selective inactivation of a single gene. Whereas this gene ‘knockout’ approach is often informative, in many cases the phenotype resulting from gene ablation might not provide a complete picture of the function of the corresponding protein. If a protein has multiple functions within a single or several signaling pathways, or stabilizes other proteins in a complex, the phenotypic consequences of a gene knockout may manifest as a combination of several different perturbations. In these cases, gene targeting to ‘knockin’ subtle point mutations might provide more accurate insight into protein function. However, to be informative, such mutations must be carefully designed based on structural and biophysical data. PMID:19295633

  17. Discovery of Genomic Breakpoints Affecting Breast Cancer Progression and Prognosis

    DTIC Science & Technology

    2010-10-01

    mutations compared to those detected by the 5Kbp method alone. Fosmid diTag method also reveals much higher proportion of gene fusions and truncations...observed highly similar structural mutational spectra affecting different sets of genes , pointing to similar histories of genomic instability against... mutations have been identified in non-BRCA1/2 multiethnic breast cancer cases (45,46), no truncating mutation of the RAP80 gene in breast cancer has

  18. Simplified Paper Format for Detecting HIV Drug Resistance in Clinical Specimens by Oligonucleotide Ligation

    PubMed Central

    Panpradist, Nuttada; Beck, Ingrid A.; Chung, Michael H.; Kiarie, James N.; Frenkel, Lisa M.; Lutz, Barry R.

    2016-01-01

    Human immunodeficiency virus (HIV) is a chronic infection that can be managed by antiretroviral treatment (ART). However, periods of suboptimal viral suppression during lifelong ART can select for HIV drug resistant (DR) variants. Transmission of drug resistant virus can lessen or abrogate ART efficacy. Therefore, testing of individuals for drug resistance prior to initiation of treatment is recommended to ensure effective ART. Sensitive and inexpensive HIV genotyping methods are needed in low-resource settings where most HIV infections occur. The oligonucleotide ligation assay (OLA) is a sensitive point mutation assay for detection of drug resistance mutations in HIV pol. The current OLA involves four main steps from sample to analysis: (1) lysis and/or nucleic acid extraction, (2) amplification of HIV RNA or DNA, (3) ligation of oligonucleotide probes designed to detect single nucleotide mutations that confer HIV drug resistance, and (4) analysis via oligonucleotide surface capture, denaturation, and detection (CDD). The relative complexity of these steps has limited its adoption in resource-limited laboratories. Here we describe a simplification of the 2.5-hour plate-format CDD to a 45-minute paper-format CDD that eliminates the need for a plate reader. Analysis of mutations at four HIV-1 DR codons (K103N, Y181C, M184V, and G190A) in 26 blood specimens showed a strong correlation of the ratios of mutant signal to total signal between the paper CDD and the plate CDD. The assay described makes the OLA easier to perform in low resource laboratories. PMID:26751207

  19. A variant c-KIT mutation, D816H, fundamental to the sequential development of an ovarian mixed germ cell tumor and systemic mastocytosis with chronic myelomonocytic leukemia.

    PubMed

    Mitchell, Sarah G; Bunting, Silvia T; Saxe, Debra; Olson, Thomas; Keller, Frank G

    2017-04-01

    An activating point mutation of the c-KIT tyrosine kinase receptor gene, D816H, has been described in germ cell tumors (GCTs). We report an adolescent diagnosed with an ovarian mixed GCT and systemic mastocytosis with chronic myelomonocytic leukemia (SM-CMML). The teratoma and dysgerminoma differed by copy number aberrations via single nucleotide polymorphism (SNP) microarray, but were inclusive of the same c-KIT D816H point mutation (c.2446G>C) also identified in blood and bone marrow mast cells. These findings indicate not only a clonal origin of the GCT and hematologic malignancy, but also suggest a rare KIT mutation may be playing a fundamental role in malignancy development. © 2016 Wiley Periodicals, Inc.

  20. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hui-Yong; Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn; Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism ofmore » steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.« less

Top