DEEP ATTRACTOR NETWORK FOR SINGLE-MICROPHONE SPEAKER SEPARATION.
Chen, Zhuo; Luo, Yi; Mesgarani, Nima
2017-03-01
Despite the overwhelming success of deep learning in various speech processing tasks, the problem of separating simultaneous speakers in a mixture remains challenging. Two major difficulties in such systems are the arbitrary source permutation and unknown number of sources in the mixture. We propose a novel deep learning framework for single channel speech separation by creating attractor points in high dimensional embedding space of the acoustic signals which pull together the time-frequency bins corresponding to each source. Attractor points in this study are created by finding the centroids of the sources in the embedding space, which are subsequently used to determine the similarity of each bin in the mixture to each source. The network is then trained to minimize the reconstruction error of each source by optimizing the embeddings. The proposed model is different from prior works in that it implements an end-to-end training, and it does not depend on the number of sources in the mixture. Two strategies are explored in the test time, K-means and fixed attractor points, where the latter requires no post-processing and can be implemented in real-time. We evaluated our system on Wall Street Journal dataset and show 5.49% improvement over the previous state-of-the-art methods.
A highly embedded protostar in SFO 18: IRAS 05417+0907
NASA Astrophysics Data System (ADS)
Saha, Piyali; Gopinathan, Maheswar; Puravankara, Manoj; Sharma, Neha; Soam, Archana
2018-04-01
Bright-rimmed clouds, located at the periphery of relatively evolved HIT regions, are considered to be the sites of star formation possibly triggered by the implosion caused due to the ionizing radiation from nearby massive stars. SFO 18 is one such region showing a bright-rim on the side facing the 0-type star, A Ori. A point source, IRAS 05417+0907, is detected towards the high density region of the cloud. A molecular outflow has been found to be associated with the source. The outflow is directed towards a Herbig-Haro object, HH 175. From the Spitzer and WISE observations, we show evidence of a physical connection between the molecular outflow, IRAS 05417+0907 and the HH object. The spectral energy distribution constructed using multi-wavelength data shows that the point source is most likely a highly embedded protostar.
Chandra ACIS Sub-pixel Resolution
NASA Astrophysics Data System (ADS)
Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.
2011-05-01
We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy
Algorithm for astronomical, point source, signal to noise ratio calculations
NASA Technical Reports Server (NTRS)
Jayroe, R. R.; Schroeder, D. J.
1984-01-01
An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.
Huang, Yingxiang; Lee, Junghye; Wang, Shuang; Sun, Jimeng; Liu, Hongfang; Jiang, Xiaoqian
2018-05-16
Data sharing has been a big challenge in biomedical informatics because of privacy concerns. Contextual embedding models have demonstrated a very strong representative capability to describe medical concepts (and their context), and they have shown promise as an alternative way to support deep-learning applications without the need to disclose original data. However, contextual embedding models acquired from individual hospitals cannot be directly combined because their embedding spaces are different, and naive pooling renders combined embeddings useless. The aim of this study was to present a novel approach to address these issues and to promote sharing representation without sharing data. Without sacrificing privacy, we also aimed to build a global model from representations learned from local private data and synchronize information from multiple sources. We propose a methodology that harmonizes different local contextual embeddings into a global model. We used Word2Vec to generate contextual embeddings from each source and Procrustes to fuse different vector models into one common space by using a list of corresponding pairs as anchor points. We performed prediction analysis with harmonized embeddings. We used sequential medical events extracted from the Medical Information Mart for Intensive Care III database to evaluate the proposed methodology in predicting the next likely diagnosis of a new patient using either structured data or unstructured data. Under different experimental scenarios, we confirmed that the global model built from harmonized local models achieves a more accurate prediction than local models and global models built from naive pooling. Such aggregation of local models using our unique harmonization can serve as the proxy for a global model, combining information from a wide range of institutions and information sources. It allows information unique to a certain hospital to become available to other sites, increasing the fluidity of information flow in health care. ©Yingxiang Huang, Junghye Lee, Shuang Wang, Jimeng Sun, Hongfang Liu, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 16.05.2018.
Parametric embedding for class visualization.
Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B
2007-09-01
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
2014-09-01
These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources, photovoltaic (PV) arrays...renewable energy source [1]. These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources...26, May 2011. [6] H. G. Xu, J. P. He, Y. Qin, and Y. H. Li, “Energy management and control strategy for DC micro-grid in data center,” China
Sader, Kasim; Reedy, Michael; Popp, David; Lucaveche, Carmen; Trinick, John
2007-07-01
Thin sections of biological tissue embedded in plastic and cut with an ultramicrotome do not generally display useful details smaller than approximately 50 A in the electron microscope. However, there is evidence that before sectioning the embedded tissue can be substantially better preserved, which suggests that cutting is when major damage and loss of resolution occurs. We show here a striking example of such damage in embedded insect flight muscle fibres. X-ray diffraction of the embedded muscle gave patterns extending to 13A, whereas sections cut from the same block showed only approximately 50 A resolution. A possible source of this damage is the substantial compression that was imposed on sections during cutting. An oscillating knife ultramicrotome eliminates the compression and it seemed possible that sections cut with such a knife would show substantially improved preservation. We used the oscillating knife to cut sections from the embedded muscle and from embedded catalase crystals. Preservation with and without oscillation was assessed in Fourier transforms of micrographs. Sections cut with the knife oscillating did not show improved preservation over those cut without. Thus compression during cutting does not appear to be the major source of damage in plastic sections, and leaves unexplained the 50 A versus 13A discrepancy between block and section preservation. The results nevertheless suggest that improvements in ultramicrotomy will be important for bringing thin-sectioning and tomography of plastic-embedded cells and tissues to the point where macromolecule shapes can be resolved.
Entanglement of heavy quark impurities and generalized gravitational entropy
NASA Astrophysics Data System (ADS)
Kumar, S. Prem; Silvani, Dorian
2018-01-01
We calculate the contribution from non-conformal heavy quark sources to the entanglement entropy (EE) of a spherical region in N=4 SUSY Yang-Mills theory. We apply the generalized gravitational entropy method to non-conformal probe D-brane embeddings in AdS5×S5, dual to pointlike impurities exhibiting flows between quarks in large-rank tensor representations and the fundamental representation. For the D5-brane embedding which describes the screening of fundamental quarks in the UV to the antisymmetric tensor representation in the IR, the EE excess decreases non-monotonically towards its IR asymptotic value, tracking the qualitative behaviour of the one-point function of static fields sourced by the impurity. We also examine two classes of D3-brane embeddings, one which connects a symmetric representation source in the UV to fundamental quarks in the IR, and a second category which yields the symmetric representation source on the Coulomb branch. The EE excess for the former increases from the UV to the IR, whilst decreasing and becoming negative for the latter. In all cases, the probe free energy on hyperbolic space with β = 2 π increases monotonically towards the IR, supporting its interpretation as a relative entropy. We identify universal corrections, depending logarithmically on the VEV, for the symmetric representation on the Coulomb branch.
Laser fusion neutron source employing compression with short pulse lasers
Sefcik, Joseph A; Wilks, Scott C
2013-11-05
A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.
Change in the Embedding Dimension as an Indicator of an Approaching Transition
Neuman, Yair; Marwan, Norbert; Cohen, Yohai
2014-01-01
Predicting a transition point in behavioral data should take into account the complexity of the signal being influenced by contextual factors. In this paper, we propose to analyze changes in the embedding dimension as contextual information indicating a proceeding transitive point, called OPtimal Embedding tRANsition Detection (OPERAND). Three texts were processed and translated to time-series of emotional polarity. It was found that changes in the embedding dimension proceeded transition points in the data. These preliminary results encourage further research into changes in the embedding dimension as generic markers of an approaching transition point. PMID:24979691
Towards Guided Underwater Survey Using Light Visual Odometry
NASA Astrophysics Data System (ADS)
Nawaf, M. M.; Drap, P.; Royer, J. P.; Merad, D.; Saccone, M.
2017-02-01
A light distributed visual odometry method adapted to embedded hardware platform is proposed. The aim is to guide underwater surveys in real time. We rely on image stream captured using portable stereo rig attached to the embedded system. Taken images are analyzed on the fly to assess image quality in terms of sharpness and lightness, so that immediate actions can be taken accordingly. Images are then transferred over the network to another processing unit to compute the odometry. Relying on a standard ego-motion estimation approach, we speed up points matching between image quadruplets using a low level points matching scheme relying on fast Harris operator and template matching that is invariant to illumination changes. We benefit from having the light source attached to the hardware platform to estimate a priori rough depth belief following light divergence over distance low. The rough depth is used to limit points correspondence search zone as it linearly depends on disparity. A stochastic relative bundle adjustment is applied to minimize re-projection errors. The evaluation of the proposed method demonstrates the gain in terms of computation time w.r.t. other approaches that use more sophisticated feature descriptors. The built system opens promising areas for further development and integration of embedded computer vision techniques.
NASA Astrophysics Data System (ADS)
Pinter, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Zahorecz, S.; Tóth, L. V.
2018-05-01
Investigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.
Measurement of Radiation Protection Factors for Contaminated Vehicles
1999-03-01
sources, developed by the Aberdeen Test Center in the USA. Point sources of 6°Co are embedded in a blanket (on a 0.5 m grid) and draped over a vehicle...constructing a similar facility. Thus, a different approach is desired. This is achieved through the arrangement depicted in Figure 1. A rubber tube is draped ...Figure 1: Experimental set-up. A rubber tube was draped over the Grizzly at one foot intervals along the side ofthe Grizzly. Two motors (one shown at
Yu, W; Seo, W; Tan, T; Jung, B; Ziaie, B
2016-08-01
This paper reports a low-cost solution to the early detection of urinary nitrite, a common surrogate for urinary tract infection (UTI). We present a facile method to fabricate a disposable and flexible colorimetric [1] nitrite sensor and its urine-activated power source [2] on a hydrophobic (wax) paper through laser-assisted patterning and lamination. Such device, integrated with interface circuitry and a Bluetooth low energy (BLE) module can be embedded onto a diaper, and transmit semi-quantitative UTI monitoring information in a point-of-care and autonomous fashion. The proposed nitrite sensing platform achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L.
Atmospheric Characteristics of Cool Season Intermittent Precipitation Near Portland, Oregon
NASA Astrophysics Data System (ADS)
Cunningham, Jeffrey Glenn
Pacific Northwest cool season precipitation is often described as mostly stratiform (i.e. steady and continuous). While most regional precipitation is stratiform in terms of area and duration, embedded convective cells within stratiform precipitation occur frequently enough to warrant study. Embedded cells locally increase rain rate, total precipitation, and streamflow discharge and hence raise the risk of flooding, landslides, and debris flows. Analysis of vertically pointing radar data near Portland, Oregon for three cool seasons (2005 to 2008) indicates that fallstreaks in the snow layer, locally enhanced precipitation regions a few kilometers in size indicated in radar reflectivity data above the 0° C altitude, are nearly ubiquitous on days with significant rainfall accumulation and large areas of precipitation. The observed fallstreaks in snow enhance rainfall immediately below the snow fallstreak. Compared to stratiform periods, embedded convective periods include higher Doppler vertical velocity values and higher variability in velocities especially in the snow layer. The combination of these findings points to generating cells within the snow layer and the seeder-feeder mechanism as important sources of surface precipitation variability for periods of embedded convective cells within stratiform precipitation. The primary goal of this study was to determine the sources of instability typically associated with convective cells embedded within stratiform precipitation for Pacific Northwest cool season storms. Storm periods occurring over six cool seasons (2002 to 2008, totaling 1923 hours) of operational radar data (KRTX) and 166 upper air soundings (KSLE) are analyzed. A new method was employed to objectively determine the degree of precipitation intermittency in sequences of radar scans. The resulting continuum of intermittency values was grouped into four categories: mostly convective precipitation, mostly stratiform precipitation, embedded convective cells within stratiform precipitation, and other. Atmospheric soundings during periods with embedded convective cells within stratiform precipitation are more likely to have convective available potential energy (CAPE) than soundings during periods of mostly stratiform precipitation. Specifically, most unstable parcel CAPE (MUCAPE) > 0 J kg-1 occurs 2.8 more frequently during embedded periods than for mostly stratiform periods. Over 90% of embedded periods have MUCAPE > 0 J kg-1 or at least two 500 meter layers of potential instability. In contrast to the near surface based instability most commonly associated with the mostly convective precipitation, embedded convection is elevated. The median most unstable parcel height of origin for embedded convective periods is 2.5 km compared to 0.5 km for mostly convective periods. Although this present research did not deal directly with orographic precipitation enhancement, it does address synoptic and mesoscale precipitation processes that frequently occur near terrain in the Pacific Northwest. The exclusion of the seeder-feeder mechanism as a mode of cellularity for orographic precipitation in recent work is inconsistent with the observations presented here and inconsistent with much of the pre-2000 literature, which show the seeder-feeder mechanism directly modulating surface rain rate with or without terrain present. Numerical models, whether operational or idealized, need to represent the seeder-feeder process in order to accurately simulate precipitation variability at small spatial scales (less than < 5-10 km) and temporal scales (< 3 hours) within the warm sector of Pacific Northwest extratropical cyclones.
Optical fiber sensors embedded in flexible polymer foils
NASA Astrophysics Data System (ADS)
van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter
2010-04-01
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
GPU surface extraction using the closest point embedding
NASA Astrophysics Data System (ADS)
Kim, Mark; Hansen, Charles
2015-01-01
Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes
Adapting Word Embeddings from Multiple Domains to Symptom Recognition from Psychiatric Notes
Zhang, Yaoyun; Li, Hee-Jin; Wang, Jingqi; Cohen, Trevor; Roberts, Kirk; Xu, Hua
2018-01-01
Mental health is increasingly recognized an important topic in healthcare. Information concerning psychiatric symptoms is critical for the timely diagnosis of mental disorders, as well as for the personalization of interventions. However, the diversity and sparsity of psychiatric symptoms make it challenging for conventional natural language processing techniques to automatically extract such information from clinical text. To address this problem, this study takes the initiative to use and adapt word embeddings from four source domains – intensive care, biomedical literature, Wikipedia and Psychiatric Forum – to recognize symptoms in the target domain of psychiatry. We investigated four different approaches including 1) only using word embeddings of the source domain, 2) directly combining data of the source and target to generate word embeddings, 3) assigning different weights to word embeddings, and 4) retraining the word embedding model of the source domain using a corpus of the target domain. To the best of our knowledge, this is the first work of adapting multiple word embeddings of external domains to improve psychiatric symptom recognition in clinical text. Experimental results showed that the last two approaches outperformed the baseline methods, indicating the effectiveness of our new strategies to leverage embeddings from other domains. PMID:29888086
On the nature of the deeply embedded protostar OMC-2 FIR 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furlan, E.; Megeath, S. T.; Fischer, W. J.
We use mid-infrared to submillimeter data from the Spitzer, Herschel, and Atacama Pathfinder Experiment telescopes to study the bright submillimeter source OMC-2 FIR 4. We find a point source at 8, 24, and 70 μm, and a compact, but extended source at 160, 350, and 870 μm. The peak of the emission from 8 to 70 μm, attributed to the protostar associated with FIR 4, is displaced relative to the peak of the extended emission; the latter represents the large molecular core the protostar is embedded within. We determine that the protostar has a bolometric luminosity of 37 L {submore » ☉}, although including more extended emission surrounding the point source raises this value to 86 L {sub ☉}. Radiative transfer models of the protostellar system fit the observed spectral energy distribution well and yield a total luminosity of most likely less than 100 L {sub ☉}. Our models suggest that the bolometric luminosity of the protostar could be as low as 12-14 L {sub ☉}, while the luminosity of the colder (∼20 K) extended core could be around 100 L {sub ☉}, with a mass of about 27 M {sub ☉}. Our derived luminosities for the protostar OMC-2 FIR 4 are in direct contradiction with previous claims of a total luminosity of 1000 L {sub ☉}. Furthermore, we find evidence from far-infrared molecular spectra and 3.6 cm emission that FIR 4 drives an outflow. The final stellar mass the protostar will ultimately achieve is uncertain due to its association with the large reservoir of mass found in the cold core.« less
NASA Astrophysics Data System (ADS)
Liu, Lantian; Li, Zhifang; Li, Hui
2018-01-01
The study of interaction of laser with tumor-embedded gastric tissue is of great theoretical and practical significance for the laser diagnosis and treatment of gastric cancer in medicine. A finite element (FE)-based simulation model has been developed incorporating light propagation and heat transfer in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. In this study, FE model is composed of three parts of 1) homogeneous background soft tissues submerged in water, 2) tumor tissue inclusion, and 3) different wavelengths of short pulsed laser source (450nm, 550nm, 632nm and 800nm). The laser point source is placed right under the tissues submerged in water. This laser source light propagation through the multi-layer tissues using the diffusion equation and bioheat transfer in tissues is simulated using bioheat equation for temperature change. The simulation results show that the penetration depth and light energy distribution mainly depend on the optical parameters of the different wavelengths of the tissue. In the process of biological heat transfer, the temperature of the tissue decreases exponentially with the depth and the deep tissues are almost unaffected. The results are helpful to optimize the laser source in a photoacoustic imaging system and provide some significance for the further study of the early diagnosis of gastric cancer.
Photon absorption potential coefficient as a tool for materials engineering
NASA Astrophysics Data System (ADS)
Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole
2016-09-01
Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and the material is able to absorb more than that the photon source could provide, at this point. These resulting effects might be of immense materials engineering applications.
The effect of barriers on wave propagation phenomena: With application for aircraft noise shielding
NASA Technical Reports Server (NTRS)
Mgana, C. V. M.; Chang, I. D.
1982-01-01
The frequency spectrum was divided into high and low frequency regimes and two separate methods were developed and applied to account for physical factors associated with flight conditions. For long wave propagation, the acoustic filed due to a point source near a solid obstacle was treated in terms of an inner region which where the fluid motion is essentially incompressible, and an outer region which is a linear acoustic field generated by hydrodynamic disturbances in the inner region. This method was applied to a case of a finite slotted plate modelled to represent a wing extended flap for both stationary and moving media. Ray acoustics, the Kirchhoff integral formulation, and the stationary phase approximation were combined to study short wave length propagation in many limiting cases as well as in the case of a semi-infinite plate in a uniform flow velocity with a point source above the plate and embedded in a different flow velocity to simulate an engine exhaust jet stream surrounding the source.
NASA Astrophysics Data System (ADS)
Sabra, K.
2006-12-01
The random nature of noise and scattered fields tends to suggest limited utility. Indeed, seismic or acoustic fields from random sources or scatterers are often considered to be incoherent, but there is some coherence between two sensors that receive signals from the same individual source or scatterer. An estimate of the Green's function (or impulse response) between two points can be obtained from the cross-correlation of random wavefields recorded at these two points. Recent theoretical and experimental studies in ultrasonics, underwater acoustics, structural monitoring and seismology have investigated this technique in various environments and frequency ranges. These results provide a means for passive imaging using only the random wavefields, without the use of active sources. The coherent wavefronts emerge from a correlation process that accumulates contributions over time from random sources whose propagation paths pass through both receivers. Results will be presented from experiments using ambient noise cross-correlations for the following applications: 1) passive surface waves tomography from ocean microseisms and 2) structural health monitoring of marine and airborne structures embedded in turbulent flow.
Electrically-detected magnetic resonance in semiconductor nanostructures inserted in microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, Nikolay; Danilovskii, Eduard; Gets, Dmitrii
2013-12-04
We present the first findings of the new electrically-detected electron spin resonance technique (EDESR), which reveal the point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without application of an external cavity, as well as a high frequency source and recorder, and with measuring the only response of the magnetoresistance caused by the microcavities embedded in the Si-QW plane.
Comparison of sand-based water filters for point-of-use arsenic removal in China.
Smith, Kate; Li, Zhenyu; Chen, Bohan; Liang, Honggang; Zhang, Xinyi; Xu, Ruifei; Li, Zhilin; Dai, Huanfang; Wei, Caijie; Liu, Shuming
2017-02-01
Contamination of groundwater wells by arsenic is a major problem in China. This study compared arsenic removal efficiency of five sand-based point-of-use filters with the aim of selecting the most effective filter for use in a village in Shanxi province, where the main groundwater source had arsenic concentration >200 μg/L. A biosand filter, two arsenic biosand filters, a SONO-style filter and a version of the biosand filter with nails embedded in the sand were tested. The biosand filter with embedded nails was the most consistent and effective under the study conditions, likely due to increased contact time between water and nails and sustained corrosion. Effluent arsenic was below China's standard of 50 μg/L for more than six months after construction. The removal rate averaged 92% and was never below 86%. In comparison, arsenic removal for the nail-free biosand filter was never higher than 53% and declined with time. The arsenic biosand filter, in which nails sit in a diffuser basin above the sand, performed better but effluent arsenic almost always exceeded the standard. This highlights the positive impact on arsenic removal of embedding nails within the top layer of biosand filter sand and the promise of this low-cost filtration method for rural areas affected by arsenic contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wave-front singularities for two-dimensional anisotropic elastic waves.
NASA Technical Reports Server (NTRS)
Payton, R. G.
1972-01-01
Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.
A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems
Brunelli, Davide
2016-01-01
Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm3. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018
A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems.
Brunelli, Davide
2016-03-04
Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm³. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions.
Fermat's least-time principle and the embedded transparent lens
NASA Astrophysics Data System (ADS)
Kantowski, R.; Chen, B.; Dai, X.
2013-10-01
We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.
Parandekar, Priya V; Hratchian, Hrant P; Raghavachari, Krishnan
2008-10-14
Hybrid QM:QM (quantum mechanics:quantum mechanics) and QM:MM (quantum mechanics:molecular mechanics) methods are widely used to calculate the electronic structure of large systems where a full quantum mechanical treatment at a desired high level of theory is computationally prohibitive. The ONIOM (our own N-layer integrated molecular orbital molecular mechanics) approximation is one of the more popular hybrid methods, where the total molecular system is divided into multiple layers, each treated at a different level of theory. In a previous publication, we developed a novel QM:QM electronic embedding scheme within the ONIOM framework, where the model system is embedded in the external Mulliken point charges of the surrounding low-level region to account for the polarization of the model system wave function. Therein, we derived and implemented a rigorous expression for the embedding energy as well as analytic gradients that depend on the derivatives of the external Mulliken point charges. In this work, we demonstrate the applicability of our QM:QM method with point charge embedding and assess its accuracy. We study two challenging systems--zinc metalloenzymes and silicon oxide cages--and demonstrate that electronic embedding shows significant improvement over mechanical embedding. We also develop a modified technique for the energy and analytic gradients using a generalized asymmetric Mulliken embedding method involving an unequal splitting of the Mulliken overlap populations to offer improvement in situations where the Mulliken charges may be deficient.
Incremental isometric embedding of high-dimensional data using connected neighborhood graphs.
Zhao, Dongfang; Yang, Li
2009-01-01
Most nonlinear data embedding methods use bottom-up approaches for capturing the underlying structure of data distributed on a manifold in high dimensional space. These methods often share the first step which defines neighbor points of every data point by building a connected neighborhood graph so that all data points can be embedded to a single coordinate system. These methods are required to work incrementally for dimensionality reduction in many applications. Because input data stream may be under-sampled or skewed from time to time, building connected neighborhood graph is crucial to the success of incremental data embedding using these methods. This paper presents algorithms for updating $k$-edge-connected and $k$-connected neighborhood graphs after a new data point is added or an old data point is deleted. It further utilizes a simple algorithm for updating all-pair shortest distances on the neighborhood graph. Together with incremental classical multidimensional scaling using iterative subspace approximation, this paper devises an incremental version of Isomap with enhancements to deal with under-sampled or unevenly distributed data. Experiments on both synthetic and real-world data sets show that the algorithm is efficient and maintains low dimensional configurations of high dimensional data under various data distributions.
ERIC Educational Resources Information Center
Rodriguez-Sanchez, M. C.; Torrado-Carvajal, Angel; Vaquero, Joaquin; Borromeo, Susana; Hernandez-Tamames, Juan A.
2016-01-01
This paper presents a case study analyzing the advantages and disadvantages of using project-based learning (PBL) combined with collaborative learning (CL) and industry best practices, integrated with information communication technologies, open-source software, and open-source hardware tools, in a specialized microcontroller and embedded systems…
SCUBA and HIRES Results for Protostellar Cores in the MON OB1 Dark Cloud
NASA Astrophysics Data System (ADS)
Wolf-Chase, G.; Moriarty-Schieven, G.; Fich, M.; Barsony, M.
1999-05-01
We have used HIRES-processing of IRAS data and point-source modelling techniques (Hurt & Barsony 1996; O'Linger 1997; Barsony et al. 1998), together with submillimeter continuum imaging using the Submillimeter Common-User Bolometer Array (SCUBA) on the 15-meter James Clerk Maxwell Telescope (JCMT), to search CS cores in the Mon OB1 dark cloud (Wolf-Chase, Walker, & Lada 1995; Wolf-Chase & Walker 1995) for deeply embedded sources. These observations, as well as follow-up millimeter photometry at the National Radio Astronomy Observatory (NRAO) 12-meter telescope on Kitt Peak, have lead to the identification of two Class 0 protostellar candidates, which were previously unresolved from two brighter IRAS point sources (IRAS 06382+0939 & IRAS 06381+1039) in this cloud. Until now, only one Class 0 object had been confirmed in Mon OB1; the driving source of the highly-collimated outflow NGC 2264 G (Ward-Thompson, Eiroa, & Casali 1995; Margulis et al. 1990; Lada & Fich 1996), which lies well outside the extended CS cores. One of the new Class 0 candidates may be an intermediate-mass source associated with an H_2O maser, and the other object is a low-mass source which may be associated with a near-infrared jet, and possibly with a molecular outflow. We report accurate positions for the new Class 0 candidates, based on the SCUBA images, and present new SEDs for these sources, as well as for the brighter IRAS point sources. A portion of this work was performed while GWC held a President's Fellowship from the University of California. MB and GWC gratefully acknowledge financial support from MB's NSF CAREER Grant, AST97-9753229.
NASA Astrophysics Data System (ADS)
Ofek, Eran O.; Zackay, Barak
2018-04-01
Detection of templates (e.g., sources) embedded in low-number count Poisson noise is a common problem in astrophysics. Examples include source detection in X-ray images, γ-rays, UV, neutrinos, and search for clusters of galaxies and stellar streams. However, the solutions in the X-ray-related literature are sub-optimal in some cases by considerable factors. Using the lemma of Neyman–Pearson, we derive the optimal statistics for template detection in the presence of Poisson noise. We demonstrate that, for known template shape (e.g., point sources), this method provides higher completeness, for a fixed false-alarm probability value, compared with filtering the image with the point-spread function (PSF). In turn, we find that filtering by the PSF is better than filtering the image using the Mexican-hat wavelet (used by wavdetect). For some background levels, our method improves the sensitivity of source detection by more than a factor of two over the popular Mexican-hat wavelet filtering. This filtering technique can also be used for fast PSF photometry and flare detection; it is efficient and straightforward to implement. We provide an implementation in MATLAB. The development of a complete code that works on real data, including the complexities of background subtraction and PSF variations, is deferred for future publication.
Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space
NASA Astrophysics Data System (ADS)
Yuan, Zonghao; Boström, Anders; Cai, Yuanqiang
2017-01-01
A closed-form semi-analytical solution for the vibrations due to a moving point load in a tunnel embedded in a half-space is given in this paper. The tunnel is modelled as an elastic hollow cylinder and the ground surrounding the tunnel as a linear viscoelastic material. The total wave field in the half-space with a cylindrical hole is represented by outgoing cylindrical waves and down-going plane waves. To apply the boundary conditions on the ground surface and at the tunnel-soil interface, the transformation properties between the plane and cylindrical wave functions are employed. The proposed solution can predict the ground vibration from an underground railway tunnel of circular cross-section with a reasonable computational effort and can serve as a benchmark solution for other computational methods. Numerical results for the ground vibrations on the free surface due to a moving constant load and a moving harmonic load applied at the tunnel invert are presented for different load velocities and excitation frequencies. It is found that Rayleigh waves play an important role in the ground vibrations from a shallow tunnel.
Power impact of loop buffer schemes for biomedical wireless sensor nodes.
Artes, Antonio; Ayala, Jose L; Catthoor, Francky
2012-11-06
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.
Trail pheromones: an integrative view of their role in social insect colony organization.
Czaczkes, Tomer J; Grüter, Christoph; Ratnieks, Francis L W
2015-01-07
Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.
Electrically-detected ESR in silicon nanostructures inserted in microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, Nikolay; Danilovskii, Eduard; Gets, Dmitrii
2014-02-21
We present the first findings of the new electrically-detected electron spin resonance technique (EDESR), which reveal the point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ- barriers. This technique allows the ESR identification without application of an external cavity, as well as a high frequency source and recorder, and with measuring the only response of the magnetoresistance, with internal GHz Josephson emission within frameworks of the normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane.
The ATLASGAL survey: a catalog of dust condensations in the Galactic plane
NASA Astrophysics Data System (ADS)
Csengeri, T.; Urquhart, J. S.; Schuller, F.; Motte, F.; Bontemps, S.; Wyrowski, F.; Menten, K. M.; Bronfman, L.; Beuther, H.; Henning, Th.; Testi, L.; Zavagno, A.; Walmsley, M.
2014-05-01
Context. The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites that can potentially host precursors to high-mass stars. Aims: The ATLASGAL survey covers 420 sq. degree of the Galactic plane, between -80° < ℓ < +60° at 870 μm. Here we identify the population of embedded sources throughout the inner Galaxy. With this catalog we first investigate the general statistical properties of dust condensations in terms of their observed parameters, such as flux density and angular size. Then using mid-infrared surveys we aim to investigate their star formation activity and the Galactic distribution of star-forming and quiescent clumps. Our ultimate goal is to determine the statistical properties of quiescent and star-forming clumps within the Galaxy and to constrain the star formation processes. Methods: We optimized the source extraction method, referred to as MRE-GCL, for the ATLASGAL maps in order to generate a catalog of compact sources. This technique is based on multiscale filtering to remove extended emission from clouds to better determine the parameters corresponding to the embedded compact sources. In a second step we extracted the sources by fitting 2D Gaussians with the Gaussclumps algorithm. Results: We have identified in total 10861 compact submillimeter sources with fluxes above 5σ. Completeness tests show that this catalog is 97% complete above 5σ and >99% complete above 7σ. Correlating this sample of clumps with mid-infrared point source catalogs (MSX at 21.3 μm and WISE at 22 μm), we have determined a lower limit of 33% that is associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ~75% of all clumps with fluxes over 5 Jy/beam being associated with star formation. Examining the source counts as a function of Galactic longitude, we are able to identify the most prominent star-forming regions in the Galaxy. Conclusions: We present here the compact source catalog of the full ATLASGAL survey and investigate their characteristic properties. From the fraction of the likely massive quiescent clumps (~25%), we estimate a formation time scale of ~ 7.5 ± 2.5 × 104 yr for the deeply embedded phase before the emergence of luminous young stellar objects. Such a short duration for the formation of high-mass stars in massive clumps clearly proves that the earliest phases have to be dynamic with supersonic motions. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A75
Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.
Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191
Finite Element modelling of deformation induced by interacting volcanic sources
NASA Astrophysics Data System (ADS)
Pascal, Karen; Neuberg, Jürgen; Rivalta, Eleonora
2010-05-01
The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system comprises more than one source, the assumption of homogeneity in the half-space is violated and several sources are combined, their respective deformation field being summed. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying their relative position. Furthermore we considered the impact of topography, loading, and magma compressibility. To quantify the discrepancies and compare the various models, we calculated the difference between analytical and numerical maximum horizontal or vertical surface displacements.We will demonstrate that for certain conditions combining analytical sources can cause an error of up to 20%. References: McTigue, D. F. (1987), Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox, J. Geophys. Res. 92, 12931-12940. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull Earthquake Res Inst, Univ Tokyo 36, 99-134. Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America 82(2), 1018-1040.
Java Source Code Analysis for API Migration to Embedded Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Victor; McCoy, James A.; Guerrero, Jonathan
Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered bymore » APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.« less
The Unified Floating Point Vector Coprocessor for Reconfigurable Hardware
NASA Astrophysics Data System (ADS)
Kathiara, Jainik
There has been an increased interest recently in using embedded cores on FPGAs. Many of the applications that make use of these cores have floating point operations. Due to the complexity and expense of floating point hardware, these algorithms are usually converted to fixed point operations or implemented using floating-point emulation in software. As the technology advances, more and more homogeneous computational resources and fixed function embedded blocks are added to FPGAs and hence implementation of floating point hardware becomes a feasible option. In this research we have implemented a high performance, autonomous floating point vector Coprocessor (FPVC) that works independently within an embedded processor system. We have presented a unified approach to vector and scalar computation, using a single register file for both scalar operands and vector elements. The Hybrid vector/SIMD computational model of FPVC results in greater overall performance for most applications along with improved peak performance compared to other approaches. By parameterizing vector length and the number of vector lanes, we can design an application specific FPVC and take optimal advantage of the FPGA fabric. For this research we have also initiated designing a software library for various computational kernels, each of which adapts FPVC's configuration and provide maximal performance. The kernels implemented are from the area of linear algebra and include matrix multiplication and QR and Cholesky decomposition. We have demonstrated the operation of FPVC on a Xilinx Virtex 5 using the embedded PowerPC.
Hiding Techniques for Dynamic Encryption Text based on Corner Point
NASA Astrophysics Data System (ADS)
Abdullatif, Firas A.; Abdullatif, Alaa A.; al-Saffar, Amna
2018-05-01
Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
Incompatible Land Uses and the Topology of Cumulative Risk
NASA Astrophysics Data System (ADS)
Lejano, Raul P.; Smith, C. Scott
2006-02-01
The extensive literature on environmental justice has, by now, well defined the essential ingredients of cumulative risk, namely, incompatible land uses and vulnerability. Most problematic is the case when risk is produced by a large aggregation of small sources of air toxics. In this article, we test these notions in an area of Southern California, Southeast Los Angeles (SELA), which has come to be known as Asthmatown. Developing a rapid risk mapping protocol, we scan the neighborhood for small potential sources of air toxics and find, literally, hundreds of small point sources within a 2-mile radius, interspersed with residences. We also map the estimated cancer risks and noncancer hazard indices across the landscape. We find that, indeed, such large aggregations of even small, nondominant sources of air toxics can produce markedly elevated levels of risk. In this study, the risk profiles show additional cancer risks of up to 800 in a million and noncancer hazard indices of up to 200 in SELA due to the agglomeration of small point sources. This is significant (for example, estimates of the average regional point-source-related cancer risk range from 125 to 200 in a million). Most importantly, if we were to talk about the risk contour as if they were geological structures, we would observe not only a handful of distinct peaks, but a general “mountain range” running all throughout the study area, which underscores the ubiquity of risk in SELA. Just as cumulative risk has deeply embedded itself into the fabric of the place, so, too, must intervention seek to embed strategies into the institutions and practices of SELA. This has implications for advocacy, as seen in a recently initiated participatory action research project aimed at building health research capacities into the community in keeping with an ethic of care.
Zaylaa, Amira; Charara, Jamal; Girault, Jean-Marc
2015-08-01
The analysis of biomedical signals demonstrating complexity through recurrence plots is challenging. Quantification of recurrences is often biased by sojourn points that hide dynamic transitions. To overcome this problem, time series have previously been embedded at high dimensions. However, no one has quantified the elimination of sojourn points and rate of detection, nor the enhancement of transition detection has been investigated. This paper reports our on-going efforts to improve the detection of dynamic transitions from logistic maps and fetal hearts by reducing sojourn points. Three signal-based recurrence plots were developed, i.e. embedded with specific settings, derivative-based and m-time pattern. Determinism, cross-determinism and percentage of reduced sojourn points were computed to detect transitions. For logistic maps, an increase of 50% and 34.3% in sensitivity of detection over alternatives was achieved by m-time pattern and embedded recurrence plots with specific settings, respectively, and with a 100% specificity. For fetal heart rates, embedded recurrence plots with specific settings provided the best performance, followed by derivative-based recurrence plot, then unembedded recurrence plot using the determinism parameter. The relative errors between healthy and distressed fetuses were 153%, 95% and 91%. More than 50% of sojourn points were eliminated, allowing better detection of heart transitions triggered by gaseous exchange factors. This could be significant in improving the diagnosis of fetal state. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suri, Veenu; Meyer, Michael; Greenbaum, Alexandra Z.; Bell, Cameron; Beichman, Charles; Gordon, Karl D.; Greene, Thomas P.; Hodapp, K.; Horner, Scott; Johnstone, Doug; Leisenring, Jarron; Manara, Carlos; Mann, Rita; Misselt, K.; Raileanu, Roberta; Rieke, Marcia; Roellig, Thomas
2018-01-01
We describe observations of the embedded young cluster associated with the HII region NGC 2024 planned as part of the guaranteed time observing program for the James Webb Space Telescope with the NIRCam (Near Infrared Camera) instrument. Our goal is to obtain a census of the cluster down to 2 Jupiter masses, viewed through 10-20 magnitudes of extinction, using multi-band filter photometry, both broadband filters and intermediate band filters that are expected to be sensitive to temperature and surface gravity. The cluster contains several bright point sources as well as extended emission due to reflected light, thermal emission from warm dust, as well as nebular line emission. We first developed techniques to better understand which point sources would saturate in our target fields when viewed through several JWST NIRCam filters. Using images of the field with the WISE satellite in filters W1 and W2, as well as 2MASS (J and H) bands, we devised an algorithm that takes the K-band magnitudes of point sources in the field, and the known saturation limits of several NIRCam filters to estimate the impact of the extended emission on survey sensitivity. We provide an overview of our anticipated results, detecting the low mass end of the IMF as well as planetary mass objects likely liberated through dynamical interactions.
Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database
NASA Astrophysics Data System (ADS)
Carney, M. T.; Yıldız, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.; Jørgensen, J. K.
2016-02-01
Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims: We aim to separate the truly embedded YSOs from more evolved sources. Methods: Maps of HCO+J = 4-3 and C18O J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results: Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions: Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the embedded phase.
Automated Testcase Generation for Numerical Support Functions in Embedded Systems
NASA Technical Reports Server (NTRS)
Schumann, Johann; Schnieder, Stefan-Alexander
2014-01-01
We present a tool for the automatic generation of test stimuli for small numerical support functions, e.g., code for trigonometric functions, quaternions, filters, or table lookup. Our tool is based on KLEE to produce a set of test stimuli for full path coverage. We use a method of iterative deepening over abstractions to deal with floating-point values. During actual testing the stimuli exercise the code against a reference implementation. We illustrate our approach with results of experiments with low-level trigonometric functions, interpolation routines, and mathematical support functions from an open source UAS autopilot.
Power Impact of Loop Buffer Schemes for Biomedical Wireless Sensor Nodes
Artes, Antonio; Ayala, Jose L.; Catthoor, Francky
2012-01-01
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application. PMID:23202202
Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V
2002-08-20
The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.
NASA Astrophysics Data System (ADS)
Kim, Jaeheon; Kim, Hyun-Goo; Kim, Sang Joon; Zhang, Bo
2017-12-01
We present the results of mapping observations and stability analyses toward the filamentary dark cloud GF 6. We investigate the internal structures of a typical filamentary dark cloud GF 6 to know whether the filamentary dark cloud will form stars. We perform radio observations with both 12CO (J=1-0) and 13CO (J=1-0) emission lines to examine the mass distribution and its evolutionary status. The 13CO gas column density map shows eight subclumps in the GF 6 region with sizes on a sub-pc scale. The resulting local thermodynamic equilibrium masses of all the subclumps are too low to form stars against the turbulent dissipation. We also investigate the properties of embedded infrared point sources to know whether they are newly formed stars. The infrared properties also indicate that these point sources are not related to star forming activities associated with GF 6. Both radio and infrared properties indicate that the filamentary dark cloud GF 6 is too light to contract gravitationally and will eventually be dissipated away.
ON THE 2012 OCTOBER 23 CIRCULAR RIBBON FLARE: EMISSION FEATURES AND MAGNETIC TOPOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kai; Guo, Yang; Ding, M. D., E-mail: guoyang@nju.edu.cn, E-mail: dmd@nju.edu.cn
2015-06-20
Circular ribbon flares are usually related to spine-fan type magnetic topology containing null points. In this paper, we investigate an X-class circular ribbon flare on 2012 October 23, using the multiwavelength data from the Solar Dynamics Observatory, Hinode, and RHESSI. In Ca ii H emission, the flare showed three ribbons with two highly elongated ones inside and outside a quasi-circular one, respectively. A hot channel was displayed in the extreme-ultraviolet emissions that infers the existence of a magnetic flux rope. Two hard X-ray (HXR) sources in the 12–25 keV energy band were located at the footpoints of this hot channel. Using amore » nonlinear force-free magnetic field extrapolation, we identify three topological structures: (1) a three-dimensional null point, (2) a flux rope below the fan of the null point, and (3) a large-scale quasi-separatrix layer (QSL) induced by the quadrupolar-like magnetic field of the active region. We find that the null point is embedded within the large-scale QSL. In our case, all three identified topological structures must be considered to explain all the emission features associated with the observed flare. Besides, the HXR sources are regarded as the consequence of the reconnection within or near the border of the flux rope.« less
Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo
NASA Astrophysics Data System (ADS)
Lin, Ching-Wei; Bachilo, Sergei M.; Vu, Michael; Beckingham, Kathleen M.; Bruce Weisman, R.
2016-05-01
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions. Electronic supplementary information (ESI) available: Details concerning instrumental design, experimental procedures, related experiments, and triangulation computations, plus a video showing operation of the scanner. See DOI: 10.1039/c6nr01376g
Graph embedding and extensions: a general framework for dimensionality reduction.
Yan, Shuicheng; Xu, Dong; Zhang, Benyu; Zhang, Hong-Jiang; Yang, Qiang; Lin, Stephen
2007-01-01
Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.
Low-Rank Discriminant Embedding for Multiview Learning.
Li, Jingjing; Wu, Yue; Zhao, Jidong; Lu, Ke
2017-11-01
This paper focuses on the specific problem of multiview learning where samples have the same feature set but different probability distributions, e.g., different viewpoints or different modalities. Since samples lying in different distributions cannot be compared directly, this paper aims to learn a latent subspace shared by multiple views assuming that the input views are generated from this latent subspace. Previous approaches usually learn the common subspace by either maximizing the empirical likelihood, or preserving the geometric structure. However, considering the complementarity between the two objectives, this paper proposes a novel approach, named low-rank discriminant embedding (LRDE), for multiview learning by taking full advantage of both sides. By further considering the duality between data points and features of multiview scene, i.e., data points can be grouped based on their distribution on features, while features can be grouped based on their distribution on the data points, LRDE not only deploys low-rank constraints on both sample level and feature level to dig out the shared factors across different views, but also preserves geometric information in both the ambient sample space and the embedding feature space by designing a novel graph structure under the framework of graph embedding. Finally, LRDE jointly optimizes low-rank representation and graph embedding in a unified framework. Comprehensive experiments in both multiview manner and pairwise manner demonstrate that LRDE performs much better than previous approaches proposed in recent literatures.
Mineral content changes in bone associated with damage induced by the electron beam.
Bloebaum, Roy D; Holmes, Jennifer L; Skedros, John G
2005-01-01
Energy-dispersive x-ray (EDX) spectroscopy and backscattered electron (BSE) imaging are finding increased use for determining mineral content in microscopic regions of bone. Electron beam bombardment, however, can damage the tissue, leading to erroneous interpretations of mineral content. We performed elemental (EDX) and mineral content (BSE) analyses on bone tissue in order to quantify observable deleterious effects in the context of (1) prolonged scanning time, (2) scan versus point (spot) mode, (3) low versus high magnification, and (4) embedding in poly-methylmethacrylate (PMMA). Undemineralized cortical bone specimens from adult human femora were examined in three groups: 200x embedded, 200x unembedded, and 1000x embedded. Coupled BSE/EDX analyses were conducted five consecutive times, with no location analyzed more than five times. Variation in the relative proportions of calcium (Ca), phosphorous (P), and carbon (C) were measured using EDX spectroscopy, and mineral content variations were inferred from changes in mean gray levels ("atomic number contrast") in BSE images captured at 20 keV. In point mode at 200x, the embedded specimens exhibited a significant increase in Ca by the second measurement (7.2%, p < 0.05); in scan mode, a small and statistically nonsignificant increase (1.0%) was seen by the second measurement. Changes in P were similar, although the increases were less. The apparent increases in Ca and P likely result from decreases in C: -3.2% (p < 0.05) in point mode and -0.3% in scan mode by the second measurement. Analysis of unembedded specimens showed similar results. In contrast to embedded specimens at 200x, 1000x data showed significantly larger variations in the proportions of Ca, P, and C by the second or third measurement in scan and point mode. At both magnifications, BSE image gray level values increased (suggesting increased mineral content) by the second measurement, with increases up to 23% in point mode. These results show that mineral content measurements can be reliable when using coupled BSE/EDX analyses in PMMA-embedded bone if lower magnifications are used in scan mode and if prolonged exposure to the electron beam is avoided. When point mode is used to analyze minute regions, adjustments in accelerating voltages and probe current may be required to minimize damage.
The application of polyethylene glycol (PEG) to electron microscopy
1980-01-01
The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine- coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis. PMID:7400222
The application of polyethylene glycol (PEG) to electron microscopy.
Wolosewick, J J
1980-08-01
The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine-coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis.
First Optical observation of a microquasar at sub-milliarsec scale: SS 433 resolved by VLTI/GRAVITY
NASA Astrophysics Data System (ADS)
Petrucci, P.; Waisberg, I.; Lebouquin, J.; Dexter, J.; Dubus, G.; Perraut, K.; Kervella, P.; Gravity Collaboration
2017-10-01
We present the first Optical observation at sub-milliarcsec (mas) scale of the famous microquasar SS 433 obtained with the GRAVITY instrument on the VLTI interferometer. This observation reveals the SS 433 inner regions with unprecedent details: The K-band continuum emitting region is dominated by a marginally resolved point source (< 1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The significant visibility drop across the jet lines present in the K-band spectrum, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by < 0.5 mas from the continuum source and resolved in the direction of propagation, with a size of ˜2 mas. Jet emission so close to the central binary system implies that line locking, if relevant to explain the 0.26c jet velocity, operates on elements heavier than hydrogen. Concerning The Brγ line, it is better resolved than the continuum and the S-shape phase signal present across the line suggests an East-West oriented geometry alike the jet direction and supporting a (polar) disk wind origin. This observation show the potentiality of Optical interferometry to constrain the inner regions of high energy sources like microquasars.
High Sensitivity, High Angular Resolution Far-infrared Photometry from the KAO
NASA Technical Reports Server (NTRS)
Lester, D.; Harvey, P. M.; Wilking, B. A.; Joy, M.
1984-01-01
Most of the luminosity of embedded sources is reemitted in the far-infrared continuum. Measurements in the far-infrared are essential to understand the energetics of the interstellar medium, and of star formation regions in particular. Measurements from the KAO, are made in diffraction limited beams that sample a spatial scale considerably smaller than that given by IRAS. The KAO instrument technology has matured to the point that the single scan limiting flux of IRAS at 100 micro can be reached in a diffraction limited beam in a single typical KAO observing leg. The far-infrared photometer system and selections of recent observations are presented.
Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
1995-01-01
Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.
An Incremental Life-cycle Assurance Strategy for Critical System Certification
2014-11-04
for Safe Aircraft Operation Embedded software systems introduce a new class of problems not addressed by traditional system modeling & analysis...Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects control behavior...do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of
Integrated Environment for Development and Assurance
2015-01-26
Jan 26, 2015 © 2015 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems introduce a new class of...eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects...Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of
Optical architecture design for detection of absorbers embedded in visceral fat.
Francis, Robert; Florence, James; MacFarlane, Duncan
2014-05-01
Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector.
Optical architecture design for detection of absorbers embedded in visceral fat
Francis, Robert; Florence, James; MacFarlane, Duncan
2014-01-01
Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector. PMID:24877008
Assessing frequency-dependent site polarisabilities in linear response polarisable embedding
NASA Astrophysics Data System (ADS)
Nørby, Morten S.; Vahtras, Olav; Norman, Patrick; Kongsted, Jacob
2017-01-01
In this paper, we discuss the impact of using a frequency-dependent embedding potential in quantum chemical embedding calculations of response properties. We show that the introduction of a frequency-dependent embedding potential leads to further model complications upon solving the central equations defining specific molecular properties. On the other hand, we also show from a numerical point of view that the consequences of using such a frequency-dependent embedding potential is almost negligible. Thus, for the kind of systems and processes studied in this paper the general recommendation is to use frequency-independent embedding potentials since this leads to less complicated model issues. However, larger effects are expected if the absorption bands of the environment are closer to that of the region treated using quantum mechanics.
The Curvature-Augmented Closest Point method with vesicle inextensibility application
Vogl, Christopher J.
2017-06-06
Here, the Closest Point method, initially developed by Ruuth and Merriman, allows for the numerical solution of surface partial differential equations without the need for a parameterization of the surface itself. Surface quantities are embedded into the surrounding domain by assigning each value at a given spatial location to the corresponding value at the closest point on the surface. This embedding allows for surface derivatives to be replaced by their Cartesian counterparts (e.g. ∇ s=∇). This equivalence is only valid on the surface, and thus, interpolation is used to enforce what is known as the side condition away from themore » surface. To improve upon the method, this work derives an operator embedding that incorporates curvature information, making it valid in a neighborhood of the surface. With this, direct enforcement of the side condition is no longer needed. Comparisons in R 2 and R 3 show that the resulting Curvature-Augmented Closest Point method has better accuracy and requires less memory, through increased matrix sparsity, than the Closest Point method, while maintaining similar matrix condition numbers. To demonstrate the utility of the method in a physical application, simulations of inextensible, bi-lipid vesicles evolving toward equilibrium shapes are also included.« less
A Scalable Nonuniform Pointer Analysis for Embedded Program
NASA Technical Reports Server (NTRS)
Venet, Arnaud
2004-01-01
In this paper we present a scalable pointer analysis for embedded applications that is able to distinguish between instances of recursively defined data structures and elements of arrays. The main contribution consists of an efficient yet precise algorithm that can handle multithreaded programs. We first perform an inexpensive flow-sensitive analysis of each function in the program that generates semantic equations describing the effect of the function on the memory graph. These equations bear numerical constraints that describe nonuniform points-to relationships. We then iteratively solve these equations in order to obtain an abstract storage graph that describes the shape of data structures at every point of the program for all possible thread interleavings. We bring experimental evidence that this approach is tractable and precise for real-size embedded applications.
NASA Astrophysics Data System (ADS)
Marshall, Kenneth L.; Adlesberger, Kathleen; Kolodzie, Benjamin; Myhre, Graham; Griffin, DeVon W.
2005-08-01
By design, point-diffraction interferometers are much less sensitive to environmental disturbances than dual-path interferometers, but, until very recently, have not been capable of phase shifting. The liquid crystal point-diffraction interferometer (LCPDI) utilizes a dye-doped, liquid crystal (LC) electro-optical device that functions as both the point-diffraction source and the phase-shifting element, yielding a phase-shifting diagnostic device that is significantly more compact and robust while using fewer optical elements than conventional dual-path interferometers. These attributes make the LCPDI of special interest for diagnostic applications in the scientific, commercial, military, and industrial sectors, where vibration insensitivity, power requirements, size, weight, and cost are critical issues. Until very recently, LCPDI devices have used a plastic microsphere embedded in the LC fluid layer as the point-diffraction source. The process for fabricating microsphere-based LCPDI devices is low-yield, labor-intensive, and very "hands-on" great care and skill are required to produce devices with adequate interference fringe contrast for diagnostic measurements. With the goal of evolving the LCPDI beyond the level of a laboratory prototype in mind, we have developed "second-generation" LCPDI devices in which the reference-diffracting elements are an integral part of the substrates by depositing a suitable optical material (vapor-deposited thin films or photoresist) directly onto the substrate surface. These "structured" substrates eliminate many of the assembly difficulties and performance limitations of current LCPDI devices as well as open the possibility of mass-producing LCPDI devices at low cost by the same processes used to manufacture commercial LC displays.
Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges
NASA Astrophysics Data System (ADS)
Lacina, David; Neel, Christopher; Dattelbaum, Dana
2018-05-01
The shock response of poly[methyl methacrylate] (PMMA) acquired from two providers, Spartech and Rohm & Haas, has been measured to investigate the shock response variations related to material pedigree. These measurements have also been used to examine the effects of viscoelasticity on Spartech PMMA. Measurements of the Hugoniot curves, release wave speeds, and index of refraction have been acquired up to previously unexplored stresses, ˜10.7 GPa, for Spartech PMMA. In-situ, time-resolved particle velocity wave profiles, as a function of time and depth, were obtained using twelve separate electromagnetic gauge elements embedded at different depths in the PMMA. A comparison of the new data to the shock response data for Rohm and Haas PMMA, used as a "standard" material in shock compression studies, shows that there are no significant differences in shock response for the two materials. From the index of refraction measurements, the apparent particle velocity correction for a PMMA window exhibits an interesting oscillation, increasing at up = 0.3 km/s after decreasing up to that point. The results are generalized into guidelines for sourcing PMMA for use in shock studies.
Bader, Markus
2018-01-01
This paper presents three acceptability experiments investigating German verb-final clauses in order to explore possible sources of sentence complexity during human parsing. The point of departure was De Vries et al.'s (2011) generalization that sentences with three or more crossed or nested dependencies are too complex for being processed by the human parsing mechanism without difficulties. This generalization is partially based on findings from Bach et al. (1986) concerning the acceptability of complex verb clusters in German and Dutch. The first experiment tests this generalization by comparing two sentence types: (i) sentences with three nested dependencies within a single clause that contains three verbs in a complex verb cluster; (ii) sentences with four nested dependencies distributed across two embedded clauses, one center-embedded within the other, each containing a two-verb cluster. The results show that sentences with four nested dependencies are judged as acceptable as control sentences with only two nested dependencies, whereas sentences with three nested dependencies are judged as only marginally acceptable. This argues against De Vries et al.'s (2011) claim that the human parser can process no more than two nested dependencies. The results are used to refine the Verb-Cluster Complexity Hypothesis of Bader and Schmid (2009a). The second and the third experiment investigate sentences with four nested dependencies in more detail in order to explore alternative sources of sentence complexity: the number of predicted heads to be held in working memory (storage cost in terms of the Dependency Locality Theory [DLT], Gibson, 2000) and the length of the involved dependencies (integration cost in terms of the DLT). Experiment 2 investigates sentences for which storage cost and integration cost make conflicting predictions. The results show that storage cost outweighs integration cost. Experiment 3 shows that increasing integration cost in sentences with two degrees of center embedding leads to decreased acceptability. Taken together, the results argue in favor of a multifactorial account of the limitations on center embedding in natural languages. PMID:29410633
Bader, Markus
2017-01-01
This paper presents three acceptability experiments investigating German verb-final clauses in order to explore possible sources of sentence complexity during human parsing. The point of departure was De Vries et al.'s (2011) generalization that sentences with three or more crossed or nested dependencies are too complex for being processed by the human parsing mechanism without difficulties. This generalization is partially based on findings from Bach et al. (1986) concerning the acceptability of complex verb clusters in German and Dutch. The first experiment tests this generalization by comparing two sentence types: (i) sentences with three nested dependencies within a single clause that contains three verbs in a complex verb cluster; (ii) sentences with four nested dependencies distributed across two embedded clauses, one center-embedded within the other, each containing a two-verb cluster. The results show that sentences with four nested dependencies are judged as acceptable as control sentences with only two nested dependencies, whereas sentences with three nested dependencies are judged as only marginally acceptable. This argues against De Vries et al.'s (2011) claim that the human parser can process no more than two nested dependencies. The results are used to refine the Verb-Cluster Complexity Hypothesis of Bader and Schmid (2009a). The second and the third experiment investigate sentences with four nested dependencies in more detail in order to explore alternative sources of sentence complexity: the number of predicted heads to be held in working memory (storage cost in terms of the Dependency Locality Theory [DLT], Gibson, 2000) and the length of the involved dependencies (integration cost in terms of the DLT). Experiment 2 investigates sentences for which storage cost and integration cost make conflicting predictions. The results show that storage cost outweighs integration cost. Experiment 3 shows that increasing integration cost in sentences with two degrees of center embedding leads to decreased acceptability. Taken together, the results argue in favor of a multifactorial account of the limitations on center embedding in natural languages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogl, Christopher J.
Here, the Closest Point method, initially developed by Ruuth and Merriman, allows for the numerical solution of surface partial differential equations without the need for a parameterization of the surface itself. Surface quantities are embedded into the surrounding domain by assigning each value at a given spatial location to the corresponding value at the closest point on the surface. This embedding allows for surface derivatives to be replaced by their Cartesian counterparts (e.g. ∇ s=∇). This equivalence is only valid on the surface, and thus, interpolation is used to enforce what is known as the side condition away from themore » surface. To improve upon the method, this work derives an operator embedding that incorporates curvature information, making it valid in a neighborhood of the surface. With this, direct enforcement of the side condition is no longer needed. Comparisons in R 2 and R 3 show that the resulting Curvature-Augmented Closest Point method has better accuracy and requires less memory, through increased matrix sparsity, than the Closest Point method, while maintaining similar matrix condition numbers. To demonstrate the utility of the method in a physical application, simulations of inextensible, bi-lipid vesicles evolving toward equilibrium shapes are also included.« less
Audio steganography by amplitude or phase modification
NASA Astrophysics Data System (ADS)
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
Constraints on observing brightness asymmetries in protoplanetary disks at solar system scale
NASA Astrophysics Data System (ADS)
Brunngräber, Robert; Wolf, Sebastian
2018-04-01
We have quantified the potential capabilities of detecting local brightness asymmetries in circumstellar disks with the Very Large Telescope Interferometer (VLTI) in the mid-infrared wavelength range. The study is motivated by the need to evaluate theoretical models of planet formation by direct observations of protoplanets at early evolutionary stages, when they are still embedded in their host disk. Up to now, only a few embedded candidate protoplanets have been detected with semi-major axes of 20-50 au. Due to the small angular separation from their central star, only long-baseline interferometry provides the angular resolving power to detect disk asymmetries associated to protoplanets at solar system scales in nearby star-forming regions. In particular, infrared observations are crucial to observe scattered stellar radiation and thermal re-emission in the vicinity of embedded companions directly. For this purpose we performed radiative transfer simulations to calculate the thermal re-emission and scattered stellar flux from a protoplanetary disk hosting an embedded companion. Based on that, visibilities and closure phases are calculated to simulate observations with the future beam combiner MATISSE, operating at the L, M and N bands at the VLTI. We find that the flux ratio of the embedded source to the central star can be as low as 0.5 to 0.6% for a detection at a feasible significance level due to the heated dust in the vicinity of the embedded source. Furthermore, we find that the likelihood for detection is highest for sources at intermediate distances r ≈ 2-5 au and disk masses not higher than ≈10-4 M⊙.
Flexible embedding of networks
NASA Astrophysics Data System (ADS)
Fernandez-Gracia, Juan; Buckee, Caroline; Onnela, Jukka-Pekka
We introduce a model for embedding one network into another, focusing on the case where network A is much bigger than network B. Nodes from network A are assigned to the nodes in network B using an algorithm where we control the extent of localization of node placement in network B using a single parameter. Starting from an unassigned node in network A, called the source node, we first map this node to a randomly chosen node in network B, called the target node. We then assign the neighbors of the source node to the neighborhood of the target node using a random walk based approach. To assign each neighbor of the source node to one of the nodes in network B, we perform a random walk starting from the target node with stopping probability α. We repeat this process until all nodes in network A have been mapped to the nodes of network B. The simplicity of the model allows us to calculate key quantities of interest in closed form. By varying the parameter α, we are able to produce embeddings from very local (α = 1) to very global (α --> 0). We show how our calculations fit the simulated results, and we apply the model to study how social networks are embedded in geography and how the neurons of C. Elegans are embedded in the surrounding volume.
Stabilizing embedology: Geometry-preserving delay-coordinate maps
NASA Astrophysics Data System (ADS)
Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.
2018-02-01
Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.
Stabilizing embedology: Geometry-preserving delay-coordinate maps.
Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B; Rozell, Christopher J
2018-02-01
Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, Myra E., E-mail: myraf@ucsc.edu; Kuspa, Zeka E.; Welch, Alacia
Lead poisoning is preventing the recovery of the critically endangered California condor (Gymnogyps californianus) and lead isotope analyses have demonstrated that ingestion of spent lead ammunition is the principal source of lead poisoning in condors. Over an 8 month period in 2009, three lead-poisoned condors were independently presented with birdshot embedded in their tissues, evidencing they had been shot. No information connecting these illegal shooting events existed and the timing of the shooting(s) was unknown. Using lead concentration and stable lead isotope analyses of feathers, blood, and recovered birdshot, we observed that: i) lead isotope ratios of embedded shot frommore » all three birds were measurably indistinguishable from each other, suggesting a common source; ii) lead exposure histories re-constructed from feather analysis suggested that the shooting(s) occurred within the same timeframe; and iii) two of the three condors were lead poisoned from a lead source isotopically indistinguishable from the embedded birdshot, implicating ingestion of this type of birdshot as the source of poisoning. One of the condors was subsequently lead poisoned the following year from ingestion of a lead buckshot (blood lead 556 µg/dL), illustrating that ingested shot possess a substantially greater lead poisoning risk compared to embedded shot retained in tissue (blood lead ∼20 µg/dL). To our knowledge, this is the first study to use lead isotopes as a tool to retrospectively link wildlife shooting events. - Highlights: • We conducted a case-based analysis of illegal shootings of California condors. • Blood and feather Pb isotopes were used to reconstruct the illegal shooting events. • Embedded birdshot from the three condors had the same Pb isotope ratios. • Feather and blood Pb isotopes indicated that the condors were shot in a common event. • Ingested shot causes substantially greater lead exposure compared to embedded shot.« less
Direct electronic probing of biological complexes formation
NASA Astrophysics Data System (ADS)
Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa
2014-10-01
Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gratia, Pierre; Hu, Wayne; Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637
Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in amore » broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.« less
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2012-01-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2011-12-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
A Single-Phase Embedded Z-Source DC-AC Inverter
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
Integrated Design and Implementation of Embedded Control Systems with Scilab
Ma, Longhua; Xia, Feng; Peng, Zhe
2008-01-01
Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost. PMID:27873827
Integrated Design and Implementation of Embedded Control Systems with Scilab.
Ma, Longhua; Xia, Feng; Peng, Zhe
2008-09-05
Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.
NASA Astrophysics Data System (ADS)
Chrysochoidis, N. A.; Gutiérrez, E.
2015-02-01
It has been claimed that embedding piezoceramic devices as structural diagnostic systems in advanced composite structures may introduce mechanical impedance mismatches that favor the formation of intralaminar defects. This and other factors, such as cost and their high strain sensitivity, have motivated the use of thin-film piezopolymer sensors. In this paper, we examine the performance of sandwich composite panels fitted with embedded piezopolymer sensors. Our experiments examine both how such thin-film sensors perform within a structure and how the inclusion of sensor films affects structural performance. Strain-controlled tests on sandwich panels subjected to three-point bending under wide-ranging static and dynamic strains lead us to conclude that embedding thin piezopolymer films has no marked reduction on the tensile strength for a wide range of strain loading paths and magnitudes, and that the resilience of the embedded sensor is itself satisfactory, even up to the point of structural failure. Comparing baseline data obtained from standard surface-mounted sensors and foil gauges, we note that whereas it is possible to match experimental and theoretical strain sensitivities, key properties—especially the pronounced orthotropic electromechanical factor of such films—must be duly considered before an effective calibration can take place.
Integrated Force and Distance Sensing using Elastomer-Embedded Commodity Proximity Sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Radhen; Cox, Rebecca E.; Correll, Nikolaus
We describe a combined proximity, contact and force (PCF) sensor based on a commodity infrared distance sensor embedded in a transparent elastomer with applications in robotic manipulation. Prior to contact, the sensor works as a distance sensor (0{6 cm), whereas after contact the material doubles as a spring, with force proportional to the compression of the elastomer (0{5 N). We describe its principle of operation and design parameters, including polymer thickness, mixing ratio, and emitter current, and show that the sensor response has an in ection point at contact that is independent of an object's surface properties, making it amore » robust detector for contact events. We then demonstrate how arrays of sensors, custom made for a standard Baxter gripper as well as embedded in the nger of the Kinova hand, can be used to (1) improve gripper alignment during grasping, (2) determine contact points with objects, (3) obtain simple 3D models using both proximity and touch, and (4) register point clouds from touch and RGB-D data.« less
NASA Astrophysics Data System (ADS)
Burinskii, Alexander
2016-01-01
It is known that gravitational and electromagnetic fields of an electron are described by the ultra-extreme Kerr-Newman (KN) black hole solution with extremely high spin/mass ratio. This solution is singular and has a topological defect, the Kerr singular ring, which may be regularized by introducing the solitonic source based on the Higgs mechanism of symmetry breaking. The source represents a domain wall bubble interpolating between the flat region inside the bubble and external KN solution. It was shown recently that the source represents a supersymmetric bag model, and its structure is unambiguously determined by Bogomolnyi equations. The Dirac equation is embedded inside the bag consistently with twistor structure of the Kerr geometry, and acquires the mass from the Yukawa coupling with Higgs field. The KN bag turns out to be flexible, and for parameters of an electron, it takes the form of very thin disk with a circular string placed along sharp boundary of the disk. Excitation of this string by a traveling wave creates a circulating singular pole, indicating that the bag-like source of KN solution unifies the dressed and point-like electron in a single bag-string-quark system.
2017-03-20
computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
A minimization method on the basis of embedding the feasible set and the epigraph
NASA Astrophysics Data System (ADS)
Zabotin, I. Ya; Shulgina, O. N.; Yarullin, R. S.
2016-11-01
We propose a conditional minimization method of the convex nonsmooth function which belongs to the class of cutting-plane methods. During constructing iteration points a feasible set and an epigraph of the objective function are approximated by the polyhedral sets. In this connection, auxiliary problems of constructing iteration points are linear programming problems. In optimization process there is some opportunity of updating sets which approximate the epigraph. These updates are performed by periodically dropping of cutting planes which form embedding sets. Convergence of the proposed method is proved, some realizations of the method are discussed.
Sensor Authentication: Embedded Processor Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, John
2012-09-25
Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking
An embedded controller for a 7-degree of freedom prosthetic arm.
Tenore, Francesco; Armiger, Robert S; Vogelstein, R Jacob; Wenstrand, Douglas S; Harshbarger, Stuart D; Englehart, Kevin
2008-01-01
We present results from an embedded real-time hardware system capable of decoding surface myoelectric signals (sMES) to control a seven degree of freedom upper limb prosthesis. This is one of the first hardware implementations of sMES decoding algorithms and the most advanced controller to-date. We compare decoding results from the device to simulation results from a real-time PC-based operating system. Performance of both systems is shown to be similar, with decoding accuracy greater than 90% for the floating point software simulation and 80% for fixed point hardware and software implementations.
Distributed proximity sensor system having embedded light emitters and detectors
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1990-01-01
A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.
Fostering E-Mail Security Awareness: The West Point Carronade
ERIC Educational Resources Information Center
Ferguson, Aaron J.
2005-01-01
The United States Military Academy (USMA) at West Point had a problem with some cadets clicking on suspicious attachments and embedded links, significantly affecting network performance and resource availability. West Point information technology leadership needed a way to increase e-mail security awareness in hopes of maintaining a strong…
Photometric and spectroscopic study of low mass embedded star clusters in reflection nebulae
NASA Astrophysics Data System (ADS)
Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.
2005-02-01
An analysis of the candidate embedded stellar systems in the reflection nebulae vdBH-RN 26, vdBH-RN} 38, vdBH-RN} 53a, GGD 20, ESO 95-RN 18 and NGC 6595 is presented. Optical spectroscopic data from CASLEO (Argentina) in conjunction with near infrared photometry from the 2MASS Point Source Catalogue were employed. The analysis is based on source surface density, colour-colour and colour-magnitude diagrams together with theoretical pre-main sequence isochrones. We take into account the field population affecting the analysis by carrying out a statistical subtraction. The fundamental parameters for the stellar systems were derived. The resulting ages are in the range 1-4 Myr and the objects are dominated by pre-main sequence stars. The observed masses locked in the clusters are less than 25 M⊙. The studied systems have no stars of spectral types earlier than B, indicating that star clusters do not necessarily evolve through an HII region phase. The relatively small locked mass combined with the fact that they are not numerous in catalogues suggests that these low mass clusters are not important donors of stars to the field populations. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.
Quantifying the errors due to the superposition of analytical deformation sources
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Pascal, K.
2012-04-01
The displacement field due to magma movement in the subsurface is often modelled using a Mogi point source or a dislocation Okada source embedded in a homogeneous elastic half-space. When the magmatic system cannot be modelled by a single source it is often represented by several sources, their respective deformation fields are superimposed. However, in such a case the assumption of homogeneity in the half-space is violated and the interaction between sources in an elastic medium is neglected. In this investigation we have quantified the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying the pressure or dislocation of the sources and their relative position. We also investigated three numerical methods to model a dike as a dislocation tensile source or as a pressurized tabular crack. We found that the discrepancies between simple superposition of the displacement field and a fully interacting numerical solution depend mostly on the source types and on their spacing. The errors induced when neglecting the source interaction are expected to vary greatly with the physical and geometrical parameters of the model. We demonstrated that for certain scenarios these discrepancies can be neglected (<5%) when the sources are separated by at least 4 radii for two combined Mogi sources and by at least 3 radii for juxtaposed Mogi and Okada sources
Ultrasound modulation of bioluminescence generated inside a turbid medium
NASA Astrophysics Data System (ADS)
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
Sustaining librarian vitality: embedded librarianship model for health sciences libraries.
Wu, Lin; Mi, Misa
2013-01-01
With biomedical information widely accessible from anywhere at any time, health sciences libraries have become less centralized, and they are challenged to stay relevant and vital to the mission and strategic goals of their home institution. One solution is to embed librarians at strategic points in health professions' education, research, and patient care. This article discusses a proposed five-level model of embedded librarianship within the context of health sciences libraries and describes different roles, knowledge, and skills desirable for health sciences librarians working as embedded librarians.
A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission
NASA Astrophysics Data System (ADS)
Chen, Xi
The Cosmic Microwave Background (CMB) radiation is the remnant heat from the Big Bang. It serves as a primary tool to understand the global properties, content and evolution of the universe. Since 2001, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) satellite has been napping the full sky anisotropy with unprecedented accuracy, precision and reliability. The CMB angular power spectrum calculated from the WMAP full sky maps not only enables accurate testing of cosmological models, but also places significant constraints on model parameters. The CMB signal in the WMAP sky maps is contaminated by microwave emission from the Milky Way and from extragalactic sources. Therefore, in order to use the maps reliably for cosmological studies, the foreground signals must be well understood and removed from the maps. This thesis focuses on the separation of two foreground contaminants from the WMAP maps: extragalactic point sources and zodiacal light emission. Extragalactic point sources constitute the most important foreground on small angular scales. Various methods have been applied to the WMAP single frequency maps to extract sources. However, due to the limited angular resolution of WMAP, it is possible to confuse positive CMB excursions with point sources or miss sources that are embedded in negative CMB fluctuations. We present a novel CMB-free source finding technique that utilizes the spectrum difference of point sources and CMB to form internal linear combinations of multifrequency maps to suppress the CMB and better reveal sources. When applied to the WMAP 41, 64 and 94 GHz maps, this technique has not only enabled detection of sources that are previously cataloged by independent methods, but also allowed disclosure of new sources. Without the noise contribution from the CMB, this method responds rapidly with the integration time. The number of detections varies as 0( t 0.72 in the two-band search and 0( t 0.70 in the three-band search from one year to five years, separately, in comparison to t 0.40 from the WMAP catalogs. Our source catalogs are a good supplement to the existing WMAP source catalogs, and the method itself is proven to be both complementary to and competitive with all the current source finding techniques in WMAP maps. Scattered light and thermal emission from the interplanetary dust (IPD) within our Solar System are major contributors to the diffuse sky brightness at most infrared wavelengths. For wavelengths longer than 3.5 mm, the thermal emission of the IPD dominates over scattering, and the emission is often referred to as the Zodiacal Light Emission (ZLE). To set a limit of ZLE contribution to the WMAP data, we have performed a simultaneous fit of the yearly WMAP time-ordered data to the time variation of ZLE predicted by the DIRBE IPD model (Kelsallet al. 1998) evaluated at 240 mm, plus [cursive l] = 1 - 4 CMB components. It is found that although this fitting procedure can successfully recover the CMB dipole to a 0.5% accuracy, it is not sensitive enough to determine the ZLE signal nor the other multipole moments very accurately.
Experimental study of optical fibers influence on composite
NASA Astrophysics Data System (ADS)
Liu, Rong-Mei; Liang, Da-Kai
2010-03-01
Bending strength and elasticity modulus of composite, with and without embedded optical fibers, were experimentally studied. Two kinds of laminates, which were denoted as group 1 and group 2, were fabricated from an orthogonal woven glass/epoxy prepreg. Since the normal stress value becomes the biggest at the surface of a beam, the optical fibers were embedded at the outmost layer and were all along the loading direction. Four types of materials, using each kind of laminated prepreg respectively, were manufactured. The embedded optical fibers for the 4 material types were 0, 10, 30 and 50 respectively. Three-point bending tests were carried out on the produced specimens to study the influence of embedded optical fiber on host composite. The experimental results indicated that the materials in group 2 were more sensitive to the embedded optical fibers.
Evaluating Quality of Aged Archival Formalin-Fixed Paraffin-Embedded Samples for RNA-Sequencing
Archival formalin-fixed paraffin-embedded (FFPE) samples offer a vast, untapped source of genomic data for biomarker discovery. However, the quality of FFPE samples is often highly variable, and conventional methods to assess RNA quality for RNA-sequencing (RNA-seq) are not infor...
Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models
NASA Astrophysics Data System (ADS)
Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.
2017-12-01
While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).
Hardy Star Survives Supernova Blast
2014-03-20
This composite image contains data from Chandra (purple) that provides evidence for the survival of a companion star from the blast of a supernova explosion. Chandra's X-rays reveal a point-like source in the supernova remnant at the location of a massive star. The data suggest that mass is being pulled away from the massive star towards a neutron star or a black hole companion. If confirmed, this would be only the third binary system containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. This supernova remnant is found embedded in clouds of ionized hydrogen, which are shown in optical light (yellow and cyan) from the MCELS survey, along with additional optical data from the DSS (white).
2016-10-10
This composite image contains data from Chandra (purple) that provides evidence for the survival of a companion star from the blast of a supernova explosion. Chandra's X-rays reveal a point-like source in the supernova remnant at the location of a massive star. The data suggest that mass is being pulled away from the massive star towards a neutron star or a black hole companion. If confirmed, this would be only the third binary system containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. This supernova remnant is found embedded in clouds of ionized hydrogen, which are shown in optical light (yellow and cyan) from the MCELS survey, along with additional optical data from the DSS (white).
NASA Astrophysics Data System (ADS)
Voloshynovskiy, Sviatoslav V.; Koval, Oleksiy; Deguillaume, Frederic; Pun, Thierry
2004-06-01
In this paper we address visual communications via printing channels from an information-theoretic point of view as communications with side information. The solution to this problem addresses important aspects of multimedia data processing, security and management, since printed documents are still the most common form of visual information representation. Two practical approaches to side information communications for printed documents are analyzed in the paper. The first approach represents a layered joint source-channel coding for printed documents. This approach is based on a self-embedding concept where information is first encoded assuming a Wyner-Ziv set-up and then embedded into the original data using a Gel'fand-Pinsker construction and taking into account properties of printing channels. The second approach is based on Wyner-Ziv and Berger-Flynn-Gray set-ups and assumes two separated communications channels where an appropriate distributed coding should be elaborated. The first printing channel is considered to be a direct visual channel for images ("analog" channel with degradations). The second "digital channel" with constrained capacity is considered to be an appropriate auxiliary channel. We demonstrate both theoretically and practically how one can benefit from this sort of "distributed paper communications".
Broadband light sources based on InAs/InGaAs metamorphic quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seravalli, L.; Trevisi, G.; Frigeri, P.
We propose a design for a semiconductor structure emitting broadband light in the infrared, based on InAs quantum dots (QDs) embedded into a metamorphic step-graded In{sub x}Ga{sub 1−x}As buffer. We developed a model to calculate the metamorphic QD energy levels based on the realistic QD parameters and on the strain-dependent material properties; we validated the results of simulations by comparison with the experimental values. On this basis, we designed a p-i-n heterostructure with a graded index profile toward the realization of an electrically pumped guided wave device. This has been done by adding layers where QDs are embedded in In{submore » x}Al{sub y}Ga{sub 1−x−y}As layers, to obtain a symmetric structure from a band profile point of view. To assess the room temperature electro-luminescence emission spectrum under realistic electrical injection conditions, we performed device-level simulations based on a coupled drift-diffusion and QD rate equation model. On the basis of the device simulation results, we conclude that the present proposal is a viable option to realize broadband light-emitting devices.« less
A new method to unveil embedded stellar clusters
NASA Astrophysics Data System (ADS)
Lombardi, Marco; Lada, Charles J.; Alves, João
2017-11-01
In this paper we present a novel method to identify and characterize stellar clusters deeply embedded in a dark molecular cloud. The method is based on measuring stellar surface density in wide-field infrared images using star counting techniques. It takes advantage of the differing H-band luminosity functions (HLFs) of field stars and young stellar populations and is able to statistically associate each star in an image as a member of either the background stellar population or a young stellar population projected on or near the cloud. Moreover, the technique corrects for the effects of differential extinction toward each individual star. We have tested this method against simulations as well as observations. In particular, we have applied the method to 2MASS point sources observed in the Orion A and B complexes, and the results obtained compare very well with those obtained from deep Spitzer and Chandra observations where presence of infrared excess or X-ray emission directly determines membership status for every star. Additionally, our method also identifies unobscured clusters and a low resolution version of the Orion stellar surface density map shows clearly the relatively unobscured and diffuse OB 1a and 1b sub-groups and provides useful insights on their spatial distribution.
Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryainov, V V
2015-01-31
The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less
Iuchi, Tohru; Gogami, Atsushi
2009-12-01
We have developed a user-friendly hybrid surface temperature sensor. The uncertainties of temperature readings associated with this sensor and a thermocouple embedded in a silicon wafer are compared. The expanded uncertainties (k=2) of the hybrid temperature sensor and the embedded thermocouple are 2.11 and 2.37 K, respectively, in the temperature range between 600 and 1000 K. In the present paper, the uncertainty evaluation and the sources of uncertainty are described.
Embedding Mission Command in Army Culture
2013-03-01
analysis of Army culture using ideas and concepts presented by Edgar H . Schein . 15. SUBJECT TERMS Army Leadership, Trust, Empowerment, Operational...The focal point of this study is an analysis of Army culture using ideas and concepts presented by Edgar H . Schein . Embedding...is an analysis of Army culture using ideas and concepts presented by Edgar H . Schein . Auftragstaktik and Mission Command Doctrine Mission command
Image Capture and Display Based on Embedded Linux
NASA Astrophysics Data System (ADS)
Weigong, Zhang; Suran, Di; Yongxiang, Zhang; Liming, Li
For the requirement of building a highly reliable communication system, SpaceWire was selected in the integrated electronic system. There was a need to test the performance of SpaceWire. As part of the testing work, the goal of this paper is to transmit image data from CMOS camera through SpaceWire and display real-time images on the graphical user interface with Qt in the embedded development platform of Linux & ARM. A point-to-point mode of transmission was chosen; the running result showed the two communication ends basically reach a consensus picture in succession. It suggests that the SpaceWire can transmit the data reliably.
Design and FPGA implementation for MAC layer of Ethernet PON
NASA Astrophysics Data System (ADS)
Zhu, Zengxi; Lin, Rujian; Chen, Jian; Ye, Jiajun; Chen, Xinqiao
2004-04-01
Ethernet passive optical network (EPON), which represents the convergence of low-cost, high-bandwidth and supporting multiple services, appears to be one of the best candidates for the next-generation access network. The work of standardizing EPON as a solution for access network is still underway in the IEEE802.3ah Ethernet in the first mile (EFM) task force. The final release is expected in 2004. Up to now, there has been no standard application specific integrated circuit (ASIC) chip available which fulfills the functions of media access control (MAC) layer of EPON. The MAC layer in EPON system has many functions, such as point-to-point emulation (P2PE), Ethernet MAC functionality, multi-point control protocol (MPCP), network operation, administration and maintenance (OAM) and link security. To implement those functions mentioned above, an embedded real-time operating system (RTOS) and a flexible programmable logic device (PLD) with an embedded processor are used. The software and hardware functions in MAC layer are realized through programming embedded microprocessor and field programmable gate array(FPGA). Finally, some experimental results are given in this paper. The method stated here can provide a valuable reference for developing EPON MAC layer ASIC.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.
NASA Astrophysics Data System (ADS)
Tamura, Yoshinobu; Yamada, Shigeru
OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.
Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2014-01-01
Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding. PMID:24886825
Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods
NASA Astrophysics Data System (ADS)
Lai, Bo-Lun; Sheu, Rong-Jiun
2017-09-01
Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.
Structurally Caused Freezing Point Depression of Biological Tissues
Bloch, Rene; Walters, D. H.; Kuhn, Werner
1963-01-01
When investigating the freezing behaviour (by thermal analysis) of the glycerol-extracted adductor muscle of Mytilus edulis it was observed that the temperature of ice formation in the muscular tissue was up to 1.5°C lower than the freezing point of the embedding liquid, a 0.25 N KCl solution with pH = 4.9 with which the tissue had been equilibrated prior to the freezing experiment. A smaller freezing point depression was observed if the pH values of the embedding 0.25 N KCl solution were above or below pH = 4.9. Reasoning from results obtained previously in analogous experiments with artificial gels, the anomalous freezing depression is explained by the impossibility of growing at the normal freezing temperature regular macroscopic crystals inside the gel, due to the presence of the gel network. The freezing temperature is here determined by the size of the microprisms penetrating the meshes of the network at the lowered freezing temperature. This process leads finally to an ice block of more or less regular structure in which the filaments are embedded. Prerequisite for this hindrance of ideal ice growth is a sufficient tensile strength of the filamental network. The existence of structurally caused freezing point depression in biological tissue is likely to invalidate many conclusions reported in the literature, in which hypertonicity was deduced from cryoscopic data. PMID:13971682
Aryal, P; Molloy, J
2012-06-01
To show the effect of gold backing on dose rates for the USC #9 radioactive eye plaque. An I125 source (IsoAid model IAI-125A) and gold backing was modeled using MCNP5 Monte Carlo code. A single iodine seed was simulated with and without gold backing. Dose rates were calculated in two orthogonal planes. Dose calculation points were structured in two orthogonal planes that bisect the center of the source. A 2×2 cm matrix of spherical points of radius 0.2 mm was created in a water phantom of 10 cm radius. 0.2 billion particle histories were tracked. Dose differences with and without the gold backing were analyzed using Matlab. The gold backing produced a 3% increase in the dose rate near the source surface (<1mm) relative to that without the backing. This was presumably caused by fluorescent photons from the gold. At distances between 1 and 2 cm, the gold backing reduced the dose rate by up to 12%, which we attribute to a lack of scatter resulting from the attenuation from the gold. Dose differences were most pronounced in the radial direction near the source center but off axis. The dose decreased by 25%, 65% and 81% at 1, 2, and 3 mm off axis at a distance of 1 mm from the source surface. These effects were less pronounced in the perpendicular dimension near the source tip, where maximum dose decreases of 2% were noted. I 125 sources embedded directly into gold troughs display dose differences of 2 - 90%, relative to doses without the gold backing. This is relevant for certain types of plaques used in treatment of ocular melanoma. Large dose reductions can be observed and may have implications for scleral dose reduction. © 2012 American Association of Physicists in Medicine.
Development of an embedded Fabry Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS)
NASA Technical Reports Server (NTRS)
Carman, Gregory P.; Lesko, John J.; Case, Scott W.; Fogg, Brian; Claus, Richard O.
1992-01-01
We investigate the feasibility of utilizing a Fabry-Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS) for the evaluation of the internal strain state of a material system. We briefly describe the manufacturing process for this sensor and point out some potential problem areas. Results of an embedded FP-FOSRS in an epoxy matrix with external resistance strain gauges applied for comparative purposes are presented. We show that the internal and external strain measurements are in close agreement. This work lays the foundation for embedding this sensor in actual composite laminas.
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OTKP Team
2010-01-01
The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.
NASA Astrophysics Data System (ADS)
Figura, Charles C.; Urquhart, James S.; Morgan, Lawrence
2015-01-01
We have conducted a detailed multi-wavelength investigation of a variety of massive star forming regions in order to characterise the impact of the interactions between the substructure of the dense protostellar clumps and their local environment, including feedback from the embedded proto-cluster.A selection of 70 MYSOs and HII regions identified by the RMS survey have been followed up with observations of the ammonia (1,1) and (2,2) inversion transitions made with the KFPA on the GBT. These maps have been combined with archival CO data to investigate the thermal and kinematic structure of the extended envelopes down to the dense clumps. We complement this larger-scale picture with high resolution near- and mid-infrared images to probe the properties of the embedded objects themselves.We present an overview of several sources from this sample that illustrate some of the the interactions that we observe. We find that high molecular column densities and kinetic temperatures are coincident with embedded sources and with shocks and outflows as exhibited in gas kinematics.
ROSAT X-ray sources embedded in the rho Ophiuchi cloud core
NASA Astrophysics Data System (ADS)
Casanova, Sophie; Montmerle, Thierry; Feigelson, Eric D.; Andre, Philippe
1995-02-01
We present a deep ROSAT Position Sensitive Proportional Counter (PSPC) image of the central region of the rho Oph star-forming region. The selected area, about 35 x 35 arcmins in size, is rich with dense molecular cores and young stellar objects (YSOs). Fifty-five reliable X-ray sources are detected (and up to 50 more candidates may be present) above approximately 1 keV,, doubling the number of Einstein sources in this area. These sources are cross-identified with an updated list of 88 YSOs associated with the rho Oph cloud core. A third of the reliable X-ray sources do not have optical counterparts on photographic plates. Most can be cross-identified wth Class II and Class III infrared (IR) sources, which are embedded T Tauri stars, but three reliable X-ray sources and up to seven candidate sources are tentatively identified with Class I protostars. Eighteen reliable, and up to 20 candidate, X-ray sources are probably new cloud members. The overall detection rate of the bona fide cloud population is very high (73% for the Class II and Class III objects). The spatial distribution of the X-ray sources closely follows that of the moleclar gas. The visual extinctions Av estimated from near-IR data) of the ROSAT sources can be as high as 50 or more, confirming that most are embedded in the cloud core and are presumably very young. Using bolometric luminosities Lbol estimated from J-magnitudes a tight correlation between Lx and Lbol is found, similar to that seen for older T Tauri stars in the Cha I cloud: Lx approximately 10-4 Lbol. A general relation Lxproportional to LbolLj seems to apply to all T Tauri-like YSOs. The near equality of the extintion in the IR J band and in the keV X-ray rage implies that this relation is valid for the detected fluxes as well as for the dereddened fluxes. The X-ray luminosity function of the embedded sourced in rho Oph spans a range of Lx approximately 1028.5 to approximately equal to or greater than 1031.5 ergs/s and is statistically indistinguishable from that of X-ray-detected visile T Tauri stars. We estimate a total X-ray luminosity Lx, Oph approximately equal to or greater than 6 x 10 32 ergs/s from approximately equal to 200 X-ray sources in the cloud core, down to Lbol approximately 0.1 solar luminosity or Mstar approximately 0.3 solar mass. We discuss several consequences of in situ irradiation of molecular clouds by X-rays from embedded YSOs. These X-rays must partially ionize the inner regions of circumstellar disk coronae, possibly playing an important role in coupling magnetic ionize the fields and wind or bipolar outflows. Photon-stimulated deportion of large molecules by YSO X-rays may be partly responsible for the bright 12 micrometer halos seen in some molecular clouds.
Nanoscale cross-point diode array accessing embedded high density PCM
NASA Astrophysics Data System (ADS)
Wang, Heng; Liu, Yan; Liu, Bo; Gao, Dan; Xu, Zhen; Zhan, Yipeng; Song, Zhitang; Feng, Songlin
2017-08-01
The main bottlenecks in the development of current embedded phase change memory (PCM) technology are the current density and data storage density. In this paper, we present a PCM with 4F2 cross-point diode selector and blade-type bottom electrode contact (BEC). A blade TiN BEC with a cross-sectional area of 630 nm2 (10 nm × 63 nm) reduces the reset current down to about 750 μA. The optimized diode array could supply this 750 μA reset current at about 1.7 V and low off-current 1 × 10-4 μA at about -5.05 V. The on-off ratio of this device is 7.5 × 106. The proposed nanoscale PCM device simultaneously exhibits an operation voltage as low as 3 V and a high density drive current with an ultra small cell size of 4F2 (108 nm × 108 nm). Over 106 cycling endurance properties guarantee that it can work effectively on the embedded memory.
Registration methods for nonblind watermark detection in digital cinema applications
NASA Astrophysics Data System (ADS)
Nguyen, Philippe; Balter, Raphaele; Montfort, Nicolas; Baudry, Severine
2003-06-01
Digital watermarking may be used to enforce copyright protection of digital cinema, by embedding in each projected movie an unique identifier (fingerprint). By identifying the source of illegal copies, watermarking will thus incite movie theatre managers to enforce copyright protection, in particular by preventing people from coming in with a handy cam. We propose here a non-blind watermark method to improve the watermark detection on very impaired sequences. We first present a study on the picture impairments caused by the projection on a screen, then acquisition with a handy cam. We show that images undergo geometric deformations, which are fully described by a projective geometry model. The sequence also undergoes spatial and temporal luminance variation. Based on this study and on the impairments models which follow, we propose a method to match the retrieved sequence to the original one. First, temporal registration is performed by comparing the average luminance variation on both sequences. To compensate for geometric transformations, we used paired points from both sequences, obtained by applying a feature points detector. The matching of the feature points then enables to retrieve the geometric transform parameters. Tests show that the watermark retrieval on rectified sequences is greatly improved.
NASA Technical Reports Server (NTRS)
Lada, C. J.; Thronson, H. A., Jr.; Smith, H. A.; Schwartz, P. R.; Glaccum, W.
1984-01-01
The results of infrared photometry from 2 to 160 microns of AFGL and CO(12) observations of its associated molecular cloud and high velocity molecular outflow are presented and discussed. The observed solar luminosity is 6.7 x 10(4) at a distance of 2 kpc. The spectrum of AFGL 2591 is interpreted in the context of a model in which a single embedded object is the dominant source of the infrared luminosity. This object is determined to be surrounded by a compact, optically thick dust shell with a temperature in excess of several hundred degrees kelvin. The extinction to this source is estimated to be between 26 and 50 visual magnitudes. The absolute position of the infrared sources at 10 microns was determined to an accuracy of + or in. This indicates for the first time that the IR source and H2O source are not coincident. The CO(12) observations show the high-velocity molecular flow near AFGL 2591 to be extended, bipolar and roughly centered on the infrared emission. The observations suggest that the red-shifted flow component extends beyond the boundary of the ambient cloud within which AFGL 2591 is embedded. The CO(12) observations also show that AFGL 2591 is embedded in a molecular cloud with an LSR velocity of -5 km/s.
NASA Astrophysics Data System (ADS)
Giri, P. B. S. W.; Srilestari, A.; Abdurrohim, K.; Yunus, F.
2017-08-01
Chronic Obstructive Pulmonary Disease (COPD) is now the fourth leading cause of death in the world. As COPD medications are associated with high mortality levels, continuous research into the improvement of treatment modalities is being conducted. This study aimed to identify the effects of acupoint-catgut embedment combined with medical treatment on the Body mass index, airflow Obstruction, Dyspnea and Exercise capacity (BODE) index scores of COPD patients. A single-blind randomized controlled trial was conducted on 48 patients; participants were allocated into either the acupoint-catgut embedment with medication group (case group) or the sham acupuncture with medication group (control group). Acupoint-catgut embedment was conducted at the BL13 Feishu, BL43 Gaohuangshu, BL20 Pishu, BL23 Shenshu, and ST40 Fenglong points two times at an interval of 15 days. The BODE index, a primary outcome indicator, was assessed on Day 1 and Day 30. The results showed statistically and clinically significant differences between the two groups—in fact, BODE index scores were reduced by 1.83 points in the case group (p = 0.000). Ultimately, BODE index scores were lower in the intervention group than in the control group, thus indicating a statistically significant and clinically important improvement of COPD-related symptoms. According to these results, acupoint-catgut embedment combined with medical treatment is concluded to be more effective than medical treatment alone in reducing BODE index scores.
D-Move: A Mobile Communication Based Delphi for Digital Natives to Support Embedded Research
ERIC Educational Resources Information Center
Petrovic, Otto
2017-01-01
Digital Natives are raised with computers and the Internet, which are a familiar part of their daily life. To gain insights into their attitude and behavior, methods and media for empirical research face new challenges like gamification, context oriented embedded research, integration of multiple data sources, and the increased importance of…
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat
2017-01-01
For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.
Holographic Chern-Simons defects
Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; ...
2016-06-28
Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of themore » defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Kuang; Libisch, Florian; Carter, Emily A., E-mail: eac@princeton.edu
We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to ourmore » previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors.« less
SpecOp: Optimal Extraction Software for Integral Field Unit Spectrographs
NASA Astrophysics Data System (ADS)
McCarron, Adam; Ciardullo, Robin; Eracleous, Michael
2018-01-01
The Hobby-Eberly Telescope’s new low resolution integral field spectrographs, LRS2-B and LRS2-R, each cover a 12”x6” area on the sky with 280 fibers and generate spectra with resolutions between R=1100 and R=1900. To extract 1-D spectra from the instrument’s 3D data cubes, a program is needed that is flexible enough to work for a wide variety of targets, including continuum point sources, emission line sources, and compact sources embedded in complex backgrounds. We therefore introduce SpecOp, a user-friendly python program for optimally extracting spectra from integral-field unit spectrographs. As input, SpecOp takes a sky-subtracted data cube consisting of images at each wavelength increment set by the instrument’s spectral resolution, and an error file for each count measurement. All of these files are generated by the current LRS2 reduction pipeline. The program then collapses the cube in the image plane using the optimal extraction algorithm detailed by Keith Horne (1986). The various user-selected options include the fraction of the total signal enclosed in a contour-defined region, the wavelength range to analyze, and the precision of the spatial profile calculation. SpecOp can output the weighted counts and errors at each wavelength in various table formats using python’s astropy package. We outline the algorithm used for extraction and explain how the software can be used to easily obtain high-quality 1-D spectra. We demonstrate the utility of the program by applying it to spectra of a variety of quasars and AGNs. In some of these targets, we extract the spectrum of a nuclear point source that is superposed on a spatially extended galaxy.
NASA Technical Reports Server (NTRS)
Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy M.; Braito, Valantina; Reeves, James
2012-01-01
We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (G = 1.3) and an He-like Fe Ka line with equivalent width 1.5 keV, consistent with previous observations. The Fe Ka line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is 6 × 1040 erg s-1 if the emission is isotropic and the source is associated with the Superantennae.
Cohen, Michael X
2017-09-27
The number of simultaneously recorded electrodes in neuroscience is steadily increasing, providing new opportunities for understanding brain function, but also new challenges for appropriately dealing with the increase in dimensionality. Multivariate source separation analysis methods have been particularly effective at improving signal-to-noise ratio while reducing the dimensionality of the data and are widely used for cleaning, classifying and source-localizing multichannel neural time series data. Most source separation methods produce a spatial component (that is, a weighted combination of channels to produce one time series); here, this is extended to apply source separation to a time series, with the idea of obtaining a weighted combination of successive time points, such that the weights are optimized to satisfy some criteria. This is achieved via a two-stage source separation procedure, in which an optimal spatial filter is first constructed and then its optimal temporal basis function is computed. This second stage is achieved with a time-delay-embedding matrix, in which additional rows of a matrix are created from time-delayed versions of existing rows. The optimal spatial and temporal weights can be obtained by solving a generalized eigendecomposition of covariance matrices. The method is demonstrated in simulated data and in an empirical electroencephalogram study on theta-band activity during response conflict. Spatiotemporal source separation has several advantages, including defining empirical filters without the need to apply sinusoidal narrowband filters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Application of dynamic topic models to toxicogenomics data.
Lee, Mikyung; Liu, Zhichao; Huang, Ruili; Tong, Weida
2016-10-06
All biological processes are inherently dynamic. Biological systems evolve transiently or sustainably according to sequential time points after perturbation by environment insults, drugs and chemicals. Investigating the temporal behavior of molecular events has been an important subject to understand the underlying mechanisms governing the biological system in response to, such as, drug treatment. The intrinsic complexity of time series data requires appropriate computational algorithms for data interpretation. In this study, we propose, for the first time, the application of dynamic topic models (DTM) for analyzing time-series gene expression data. A large time-series toxicogenomics dataset was studied. It contains over 3144 microarrays of gene expression data corresponding to rat livers treated with 131 compounds (most are drugs) at two doses (control and high dose) in a repeated schedule containing four separate time points (4-, 8-, 15- and 29-day). We analyzed, with DTM, the topics (consisting of a set of genes) and their biological interpretations over these four time points. We identified hidden patterns embedded in this time-series gene expression profiles. From the topic distribution for compound-time condition, a number of drugs were successfully clustered by their shared mode-of-action such as PPARɑ agonists and COX inhibitors. The biological meaning underlying each topic was interpreted using diverse sources of information such as functional analysis of the pathways and therapeutic uses of the drugs. Additionally, we found that sample clusters produced by DTM are much more coherent in terms of functional categories when compared to traditional clustering algorithms. We demonstrated that DTM, a text mining technique, can be a powerful computational approach for clustering time-series gene expression profiles with the probabilistic representation of their dynamic features along sequential time frames. The method offers an alternative way for uncovering hidden patterns embedded in time series gene expression profiles to gain enhanced understanding of dynamic behavior of gene regulation in the biological system.
Low-complexity object detection with deep convolutional neural network for embedded systems
NASA Astrophysics Data System (ADS)
Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong
2017-09-01
We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.
Unveiling Deeply Embedded Sources by Near-Infrared Polarimetric Imaging
NASA Astrophysics Data System (ADS)
Yao, Yongqiang; Ishii, Miki; Nagata, Tetsuya; Nakaya, Hidehiko; Sato, Shuji
2000-10-01
Near-infrared polarimetric images are presented for six molecular outflow sources: IRAS 20050+2720, IRAS 20126+4104, IRAS 20188+3928, S233, AFGL 5180, and AFGL 6366S. All the regions are found to exhibit reflection nebulae and to be associated with massive and clustered star formation. By inspecting polarimetric patterns in the nebulae, we have identified six deeply embedded sources (DESs) which illuminate circumstellar nebulosity but are not detectable in wavelengths shorter than 2 μm. While the DES in IRAS 20050 coincides with an infrared source in a previous, longer wavelength observation and the one in IRAS 20126 with a hot molecular core, the nature of the other newly discovered DESs is not known. From the compilation of the observations of DESs over a large wavelength range, we suspect that the DESs possess characteristics similar to hot molecular cores and are likely to be in the pre-ultracompact H II region phase of massive star formation.
Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue
NASA Astrophysics Data System (ADS)
Trujillo, Blaine; Zagrai, Andrei
2016-04-01
Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.
Origin of the pulse-like signature of shallow long-period volcano seismicity
Chouet, Bernard A.; Dawson, Phillip B.
2016-01-01
Short-duration, pulse-like long-period (LP) events are a characteristic type of seismicity accompanying eruptive activity at Mount Etna in Italy in 2004 and 2008 and at Turrialba Volcano in Costa Rica and Ubinas Volcano in Peru in 2009. We use the discrete wave number method to compute the free surface response in the near field of a rectangular tensile crack embedded in a homogeneous elastic half space and to gain insights into the origin of the LP pulses. Two source models are considered, including (1) a vertical fluid-driven crack and (2) a unilateral tensile rupture growing at a fixed sub-Rayleigh velocity with constant opening on a vertical crack. We apply cross correlation to the synthetics and data to demonstrate that a fluid-driven crack provides a natural explanation for these data with realistic source sizes and fluid properties. Our modeling points to shallow sources (<1 km depth), whose signatures are representative of the Rayleigh pulse sampled at epicentral distances >∼1 km. While a slow-rupture failure provides another potential model for these events, the synthetics and resulting fits to the data are not optimal in this model compared to a fluid-driven source. We infer that pulse-like LP signatures are parts of the continuum of responses produced by shallow fluid-driven sources in volcanoes.
Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model.
Bi, Size; Liang, Xiao; Huang, Ting-Lei
2016-01-01
Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.
The nature of the embedded population in the Rho Ophiuchi dark cloud - Mid-infrared observations
NASA Technical Reports Server (NTRS)
Lada, C. J.; Wilking, B. A.
1984-01-01
In combination with previous IR and optical data, the present 10-20 micron observations of previously identified members of the embedded population of the Rho Ophiuchi dark cloud allow determinations to be made of the broadband energy distributions for 32 of the 44 sources. The majority of the sources are found to emit the bulk of their luminosity in the 1-20 micron range, and to be surrounded by dust shells. Because they are, in light of these characteristics, probably premain-sequence in nature, relatively accurate bolometric luminosities for these objects can be obtained through integration of their energy distributions. It is found that 44 percent of the sources are less luminous than the sun, and are among the lowest luminosity premain-sequence/protostellar objects observed to date.
Fundamental Theory of Crystal Decomposition
1991-05-01
rather than combine them as is often the case in a computation based on the density functional method.4 In the Case of a cluster embedded in a...classical lattice, special care needs to be taken to ensure that mathematical consistency is achieved between the cluster and the embedding lattice. This has...localizing potential or KKLP. Simulation of a large crystallite or an infinite lattice containing a point defect represented by a cluster and a
Optical detection of gold nanoparticles in a prostate-shaped porcine phantom.
Grabtchak, Serge; Tonkopi, Elena; Whelan, William M
2013-07-01
Gold nanoparticles can be used as molecular contrast agents binding specifically to cancer sites and thus delineating tumor regions. Imaging gold nanoparticles deeply embedded in tissues with optical techniques possesses significant challenges due to multiple scattering of optical photons that blur the obtained images. Both diagnostic and therapeutic applications can benefit from a minimally invasive technique that can identify, localize, and quantify the payloads of gold nanoparticles deeply embedded in biological tissues. An optical radiance technique is applied to map localized inclusions of gold nanorods in 650- to 900-nm spectral range in a porcine phantom that mimics prostate geometry. Optical radiance defines a variation in the angular density of photons impinging on a selected point in the tissue from various directions. The inclusions are formed by immersing a capillary filled with gold nanorods in the phantom at increasing distances from the detecting fiber. The technique allows the isolation of the spectroscopic signatures of the inclusions from the background and identification of inclusion locations in the angular domain. Detection of ∼4×1010 gold nanoparticles or 0.04 mg Au/mL (detector-inclusion separation 10 mm, source-detector separation 15 mm) in the porcine tissue is demonstrated. The encouraging results indicate a promising potential of radiance spectroscopy in early prostate cancer diagnostics with gold nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...
2016-04-04
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
NASA Astrophysics Data System (ADS)
Lee, Jasper C.; Ma, Kevin C.; Liu, Brent J.
2008-03-01
A Data Grid for medical images has been developed at the Image Processing and Informatics Laboratory, USC to provide distribution and fault-tolerant storage of medical imaging studies across Internet2 and public domain. Although back-up policies and grid certificates guarantee privacy and authenticity of grid-access-points, there still lacks a method to guarantee the sensitive DICOM images have not been altered or corrupted during transmission across a public domain. This paper takes steps toward achieving full image transfer security within the Data Grid by utilizing DICOM image authentication and a HIPAA-compliant auditing system. The 3-D lossless digital signature embedding procedure involves a private 64 byte signature that is embedded into each original DICOM image volume, whereby on the receiving end the signature can to be extracted and verified following the DICOM transmission. This digital signature method has also been developed at the IPILab. The HIPAA-Compliant Auditing System (H-CAS) is required to monitor embedding and verification events, and allows monitoring of other grid activity as well. The H-CAS system federates the logs of transmission and authentication events at each grid-access-point and stores it into a HIPAA-compliant database. The auditing toolkit is installed at the local grid-access-point and utilizes Syslog [1], a client-server standard for log messaging over an IP network, to send messages to the H-CAS centralized database. By integrating digital image signatures and centralized logging capabilities, DICOM image integrity within the Medical Imaging and Informatics Data Grid can be monitored and guaranteed without loss to any image quality.
Tam, Shiu-Wing
1997-01-01
An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.
Tam, Shiu-Wing
1998-01-01
An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.
Guidelines for reporting embedded recruitment trials.
Madurasinghe, Vichithranie W
2016-01-14
Recruitment to clinical trials is difficult with many trials failing to recruit to target and within time. Embedding trials of recruitment interventions within host trials may provide a successful way to improve this. There are no guidelines for reporting such embedded methodology trials. As part of the Medical Research Council funded Systematic Techniques for Assisting Recruitment to Trials (MRC START) programme designed to test interventions to improve recruitment to trials, we developed guidelines for reporting embedded trials. We followed a three-phase guideline development process: (1) pre-meeting literature review to generate items for the reporting guidelines; (2) face-to-face consensus meetings to draft the reporting guidelines; and (3) post-meeting feedback review, and pilot testing, followed by finalisation of the reporting guidelines. We developed a reporting checklist based on the Consolidated Standards for Reporting Trials (CONSORT) statement 2010. Embedded trials evaluating recruitment interventions should follow the CONSORT statement 2010 and report all items listed as essential. We used a number of examples to illustrate key issues that arise in embedded trials and how best to report them, including (a) how to deal with description of the host trial; (b) the importance of describing items that may differ in the host and embedded trials (such as the setting and the eligible population); and (c) the importance of identifying clearly the point at which the recruitment interventions were embedded in the host trial. Implementation of these guidelines will improve the quality of reports of embedded recruitment trials while advancing the science, design and conduct of embedded trials as a whole.
High resolution far-infrared observations of the evolved H II region M16
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBreen, B.; Fazio, G.G.; Jaffe, D.T.
1982-03-01
M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emissionmore » has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.« less
Extracting similar terms from multiple EMR-based semantic embeddings to support chart reviews.
Cheng Ye, M S; Fabbri, Daniel
2018-05-21
Word embeddings project semantically similar terms into nearby points in a vector space. When trained on clinical text, these embeddings can be leveraged to improve keyword search and text highlighting. In this paper, we present methods to refine the selection process of similar terms from multiple EMR-based word embeddings, and evaluate their performance quantitatively and qualitatively across multiple chart review tasks. Word embeddings were trained on each clinical note type in an EMR. These embeddings were then combined, weighted, and truncated to select a refined set of similar terms to be used in keyword search and text highlighting. To evaluate their quality, we measured the similar terms' information retrieval (IR) performance using precision-at-K (P@5, P@10). Additionally a user study evaluated users' search term preferences, while a timing study measured the time to answer a question from a clinical chart. The refined terms outperformed the baseline method's information retrieval performance (e.g., increasing the average P@5 from 0.48 to 0.60). Additionally, the refined terms were preferred by most users, and reduced the average time to answer a question. Clinical information can be more quickly retrieved and synthesized when using semantically similar term from multiple embeddings. Copyright © 2018. Published by Elsevier Inc.
A device to measure the effects of strong magnetic fields on the image resolution of PET scanners
NASA Astrophysics Data System (ADS)
Burdette, D.; Albani, D.; Chesi, E.; Clinthorne, N. H.; Cochran, E.; Honscheid, K.; Huh, S. S.; Kagan, H.; Knopp, M.; Lacasta, C.; Mikuz, M.; Schmalbrock, P.; Studen, A.; Weilhammer, P.
2009-10-01
Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as Ga68 and Tc94m, which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In order to confirm this effect experimentally, we developed a high resolution PET instrument based on silicon pad detectors that can operate in a 7 T magnetic field. In this paper, we describe the instrument and present initial results of a study of the effects of magnetic fields up to 7 T on PET image resolution for Na22 and Ga68 point sources.
PDEs on moving surfaces via the closest point method and a modified grid based particle method
NASA Astrophysics Data System (ADS)
Petras, A.; Ruuth, S. J.
2016-05-01
Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method (Ruuth and Merriman (2008) [20]) is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose solving PDEs on moving surfaces using a combination of the CPM and a modification of the grid based particle method (Leung and Zhao (2009) [12]). The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. Our modification of the GBPM introduces a reconstruction step into the original method to ensure that all the grid points within a computational tube surrounding the surface are active. We present a number of examples to illustrate the numerical convergence properties of our combined method. Experiments for advection-diffusion equations that are strongly coupled to the velocity of the surface are also presented.
Snow, M E; Crippen, G M
1991-08-01
The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.
Ehdaie, Beeta; Rento, Chloe T.; Son, Veronica; Turner, Sydney S.; Samie, Amidou; Dillingham, Rebecca A.
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet’s performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings. PMID:28095435
Ehdaie, Beeta; Rento, Chloe T; Son, Veronica; Turner, Sydney S; Samie, Amidou; Dillingham, Rebecca A; Smith, James A
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings.
Exterior building details of Building B, east façade: embedded wood ...
Exterior building details of Building B, east façade: embedded wood beams and interrupted dentil course cornice resulting from the removal of the third floor tuberculosis ward, yard level paneled Dutch door, second level two a typical six-light wood casement windows over a single-panel wood door with four light exits to fire escape; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
New Herbig-Haro objects in the L1617 and L1646 dark clouds
NASA Astrophysics Data System (ADS)
Wang, H.; Stecklum, B.; Henning, Th.
2005-07-01
Optical imaging towards L1617 and L1646 revealed three new Herbig-Haro (HH) objects, HH 182, 439, and 866. Spectroscopic observations of HH 182 A and 439 A confirmed their HH object nature. Molecular hydrogen v = 1-0 S(1) narrow band imaging revealed three H2 emission features in the HH 182 region which coincide with the optical emission. Based on the position angles of the different parts of the HH 111 flow and that of HH 182, HH 182 may be the outermost southeastern part of the giant HH 111 flow. One deeply embedded star is revealed in our near-infrared imaging of the HH 439 region. HH 439 A and the associated bow shock are probably driven by the newly detected embedded star. HH 439 B-D are probably driven by the Herbig AeBe star candidate GSC 04794-00827 (IRAS 06045-0554). The embedded source IRAS 06046-0603 is identified to be the exciting source of HH 866.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X., E-mail: iu.xiangming@nims.go.jp; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044; Kumano, H.
2014-07-28
We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-typemore » two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.« less
Kawabe, Atsushi; Shibuya, Koichi; Takeda, Yoshihiro
2006-01-01
Interventional radiology procedure guidelines and a measurement manual (IVR guidelines) have been published for the maintenance of interventional equipment with an objective of avoiding serious radiation-induced skin injuries. In the IVR guidelines, the positioning of a dosimeter at the interventional reference point is determined, whereas placement of a phantom is not specified. Therefore, the phantom is placed at any convenient location between the dosimeter and image intensifier. The space around the dosimeter reduces detection of scattered radiation. In this study, dosimeters (consisting of a parallel plate ionization chamber, glass dosimeter and OSL dosimeter) were embedded in the phantom surface to detected scattered radiation accurately. As a result, when dosimeters were embedded in the phantom surface, the air kerma was increased compared with that when dosimeters were placed on the phantom. This suggested that embedded dosimeters were able to detect scattered radiation from the phantom.
Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires
NASA Astrophysics Data System (ADS)
Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming
2018-06-01
In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.
NASA Astrophysics Data System (ADS)
Vyas, Manan; Kota, V. K. B.
2012-12-01
Following the earlier studies on embedded unitary ensembles generated by random two-body interactions [EGUE(2)] with spin SU(2) and spin-isospin SU(4) symmetries, developed is a general formulation, for deriving lower order moments of the one- and two-point correlation functions in eigenvalues, that is valid for any EGUE(2) and BEGUE(2) ("B" stands for bosons) with U(Ω)⊗SU(r) embedding and with two-body interactions preserving SU(r) symmetry. Using this formulation with r = 1, we recover the results derived by Asaga et al. [Ann. Phys. (N.Y.) 297, 344 (2002)], 10.1006/aphy.2002.6248 for spinless boson systems. Going further, new results are obtained for r = 2 (this corresponds to two species boson systems) and r = 3 (this corresponds to spin 1 boson systems).
On the relationship between parallel computation and graph embedding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, A.K.
1989-01-01
The problem of efficiently simulating an algorithm designed for an n-processor parallel machine G on an m-processor parallel machine H with n > m arises when parallel algorithms designed for an ideal size machine are simulated on existing machines which are of a fixed size. The author studies this problem when every processor of H takes over the function of a number of processors in G, and he phrases the simulation problem as a graph embedding problem. New embeddings presented address relevant issues arising from the parallel computation environment. The main focus centers around embedding complete binary trees into smaller-sizedmore » binary trees, butterflies, and hypercubes. He also considers simultaneous embeddings of r source machines into a single hypercube. Constant factors play a crucial role in his embeddings since they are not only important in practice but also lead to interesting theoretical problems. All of his embeddings minimize dilation and load, which are the conventional cost measures in graph embeddings and determine the maximum amount of time required to simulate one step of G on H. His embeddings also optimize a new cost measure called ({alpha},{beta})-utilization which characterizes how evenly the processors of H are used by the processors of G. Ideally, the utilization should be balanced (i.e., every processor of H simulates at most (n/m) processors of G) and the ({alpha},{beta})-utilization measures how far off from a balanced utilization the embedding is. He presents embeddings for the situation when some processors of G have different capabilities (e.g. memory or I/O) than others and the processors with different capabilities are to be distributed uniformly among the processors of H. Placing such conditions on an embedding results in an increase in some of the cost measures.« less
X-rays from radio pulsars - The detection of PSR 1055-52
NASA Technical Reports Server (NTRS)
Cheng, A. F.; Helfand, D. J.
1983-01-01
The short-period pulsar PSR 1055-52 has been detected as a soft X-ray source in the course of an Einstein Observatory survey of radio pulsars. Its X-ray to radio luminosity ratio is about 10,000, although the X-rays are not modulated at the neutron star's rotation frequency. High spatial resolution observations suggest that a significant fraction of the emission comes from an extended region surrounding the pulsar. Several possible scenarios for the origin of both point and extended X-ray emission from isolated neutron stars are investigated: radiation from the hot stellar surface, from hot polar caps, and from an optically thick atmosphere, as well as from a circumstellar nebula emitting thermal bremsstrahlung or synchrotron radiation. It is concluded that the spatial, spectral, and temporal characteristics of this source are most consistent with a model in which relativistic particles generated by the pulsar are radiating synchrotron X-rays in the surrounding magnetic field; i.e., that PSR 1055 is embedded in a mini-Crab nebula. Observational tests of this hypothesis are suggested, and the implications of this result for pulsar evolution are briefly discussed.
Seeing the Invisible: Embedding Tests in Code That Cannot be Modified
NASA Technical Reports Server (NTRS)
O'Malley, Owen; Mansouri-Samani, Masoud; Mehlitz, Peter; Penix, John
2005-01-01
The difficulty of characterizing and observing valid software behavior during testing can be very difficult in flight systems. To address this issue, we evaluated several approaches to increasing test observability on the Shuttle Abort Flight Management (SAFM) system. To increase test observability, we added probes into the running system to evaluate the internal state and analyze test data. To minimize the impact of the instrumentation and reduce manual effort, we used Aspect-Oriented Programming (AOP) tools to instrument the source code. We developed and elicited a spectrum of properties, from generic to application specific properties, to be monitored via the instrumentation. To evaluate additional approaches, SAFM was ported to Linux, enabling the use of gcov for measuring test coverage, Valgrind for looking for memory usage errors, and libraries for finding non-normal floating point values. An in-house C++ source code scanning tool was also used to identify violations of SAFM coding standards, and other potentially problematic C++ constructs. Using these approaches with the existing test data sets, we were able to verify several important properties, confirm several problems and identify some previously unidentified issues.
MICA: Multiple interval-based curve alignment
NASA Astrophysics Data System (ADS)
Mann, Martin; Kahle, Hans-Peter; Beck, Matthias; Bender, Bela Johannes; Spiecker, Heinrich; Backofen, Rolf
2018-01-01
MICA enables the automatic synchronization of discrete data curves. To this end, characteristic points of the curves' shapes are identified. These landmarks are used within a heuristic curve registration approach to align profile pairs by mapping similar characteristics onto each other. In combination with a progressive alignment scheme, this enables the computation of multiple curve alignments. Multiple curve alignments are needed to derive meaningful representative consensus data of measured time or data series. MICA was already successfully applied to generate representative profiles of tree growth data based on intra-annual wood density profiles or cell formation data. The MICA package provides a command-line and graphical user interface. The R interface enables the direct embedding of multiple curve alignment computation into larger analyses pipelines. Source code, binaries and documentation are freely available at https://github.com/BackofenLab/MICA
Tam, S.W.
1998-06-16
An illumination source is disclosed comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.
Tam, S.W.
1997-02-25
Disclosed is an illumination source comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.
VizieR Online Data Catalog: Herschel-PACS and -SPIRE spectroscopy of 70 objects (Green+, 2016)
NASA Astrophysics Data System (ADS)
Green, J. D.; Yang, Y.-L.; Evans, N. J., II; Karska, A.; Herczeg, G.; van Dishoeck, E. F.; Lee, J.-E.; Larson, R. L.; Bouwman, J.
2016-10-01
We present the CDF (COPS-DIGIT-FOOSH) archive, with Herschel spectroscopic observations of 70 objects (protostars, young stellar objects, and FU Orionis objects) from the "Dust, Ice, and Gas in Time" (DIGIT) Key Project, FU Orionis Objects Surveyed with Herschel" Open Time Program (FOOSH OT1), and "CO in Protostars" Open Time Program (COPS OT2) Herschel programs. These have been delivered to the Herschel archive and are available. The full source list is shown in Table1. The full DIGIT spectroscopic sample consists of 63 sources: 24 Herbig Ae/Be stars (intermediate mass sources with circumstellar disks), 9 T Tauri stars (low mass young stars with circumstellar disks), and 30 protostars (young stars with significant envelope emission) observed with Photodetector Array Camera and Spectrometer (PACS) spectroscopy. DIGIT also included an additional wTTS (weak-line T Tauri star) sample that was observed photometrically and delivered separately. The wTTS sample is fully described by Cieza et al. 2013ApJ...762..100C. The full DIGIT embedded protostellar sample consisted of 30 Class 0/I targets, drawn from previous studies, focusing on protostars with high-quality Spitzer-IRS 5-40μm spectroscopy (summarized by Lahuis et al. 2006 c2d Spectroscopy Explanatory Supplement; Pasadena, CA: Spitzer Science Center), and UV, optical, infrared, and submillimeter complementary data. These objects are selected from some of the nearest and best-studied molecular clouds: Taurus (140pc; 6 targets), Ophiuchus (125pc; 7 targets), Perseus (230-250pc; 7 targets), R Corona Australis (130pc; 3 targets), Serpens (429pc; 2 targets), Chamaeleon (178pc, 1 target), and 4 additional isolated cores. PACS is a 5*5 array of 9.4''*9.4'' spatial pixels (spaxels) covering the spectral range from 50 to 210μm with λ/Δλ~1000-3000, divided into four segments, covering λ~50-75, 70-105, 100-145, and 140-210μm. The PACS spatial resolution ranges from ~9'' at the shortest wavelengths (50μm) to ~18'' at the longest (210μm), corresponding to 1000-4500AU at the distances of most sources. The nominal pointing rms of the telescope is 2''. For the DIGIT embedded protostars sample we utilized the full range of PACS (50-210μm) in two linked, pointed, chop/nod rangescans: a blue scan covering 50-75 and 100-150μm (SED B2A+short R1); and a red scan covering 70-105 and 140-210μm (SED B2B+long R1). We used 6 and 4 range repetitions respectively, for integration times of 6853 and 9088s (a total of ~16000s per target for the entire 50-210μm scan). Excluding overhead, 50% of the integration time is spent on source and 50% on sky. Thus the effective on-source integration times are 3088 and 4180s, for the blue and red scans, respectively. The total on-source integration time to achieve the entire 50-210μm scan is then 7268s. Most (21 of 33) disk sources were observed with the same procedure as the embedded objects. The other 12 sources have only partial spectral coverage: 8 Herbig Ae/Be sources (HD35187, HD203024, HD245906, HD142666, HD144432, HD141569, HD98922, and HD150193) and 4 T Tauri sources (HT Lup, RU Lup, RY Lup, and RNO90) were observed using only the blue scans (i.e., achieving a wavelength coverage only from SED B2A+short R1, 100-150μm). 9 of these 12 sources (all except HD35187, HD203024, and HD245906) were observed in a further limited wavelength range (60-72+120-134μm; referred to as "forsterite only" scans for their focus on the 69μm forsterite dust feature). The FU Orionis Objects Surveyed with Herschel (FOOSH) program consisted of 21hrs of Herschel observing time: V1057Cyg, V1331Cyg, V1515Cyg, V1735Cyg, and FUOri were observed as part of FOOSH. For the FOOSH sample we again utilized the full range of PACS (50-210μm) in two linked, pointed, chop/nod rangescans: a blue scan covering 50-75 and 100-150μm (SED B2A+short R1); and a red scan covering 70-105 and 140-210μm (SED B2B+long R1). We used 6 and 4 range repetitions respectively, for integration times of 3530 and 4620s (a total of ~8000s per target and off-positions combined, for the entire 50-210μm scan; the on-source integration time is ~3000s). The telescope sky background was subtracted using two nod positions 6' from the source. The Spectral and Photometric Imaging REceiver (SPIRE; 194-670μm)/Fourier Transform Spectrometer (FTS) data were taken in a single pointing with sparse image sampling, high spectral resolution mode, over 1hr of integration time. The spectrum is divided into two orders covering the spectral ranges 194-325μm ("SSW"; Spectrograph Short Wavelengths) and 320-690μm ("SLW"; Spectrograph Long Wavelengths), with a resolution, Δv of 1.44GHz and resolving power, λ/Δλ~300-800, increasing at shorter wavelengths. The sample of 31 COPS (CO in ProtoStars) protostars observed with SPIRE-FTS includes 25 sources from the DIGIT and 6 from the WISH (Water in Star-forming regions with Herschel, PI: E. van Dischoek; van Dishoeck et al. 2011PASP..123..138V; see also Nisini et al. 2010A&A...518L.120N; Kristensen et al. 2012A&A...542A...8K; Karska et al. 2013A&A...552A.141K; Wampfler et al. 2013A&A...552A..56W) key programs. A nearly identical sample was observed in COJ=16->15 with HIFI (PI: L. Kristensen) and is presented in L. Kristensen et al. 2016, (in preparation). This data set (COPS: SPIRE-FTS) is analyzed in a forthcoming paper (J. Green et al. 2016, in preparation). The SPIRE beamsize ranges from 17'' to 40'', equivalent to physical sizes of ~2000-10000AU at the distances of the COPS sources. The COPS SPIRE-FTS data were observed identically to the FOOSH SPIRE data, in a single pointing with sparse image sampling, high spectral resolution, in 1hr of integration time per source, with one exception: the IRS 44/46 data were observed in medium image sampling (e.g., complete spatial coverage within the inner 2 rings of spaxels), in 1.5hr, in order to better distinguish IRS44 (the comparatively brighter IR source; Green et al. 2013ApJ...770..123G, J. Green et al. 2016, in preparation) from IRS46. (2 data files).
NASA Astrophysics Data System (ADS)
Mauerhan, Jon; Smith, Nathan; Van Dyk, Schuyler D.; Morzinski, Katie M.; Close, Laird M.; Hinz, Philip M.; Males, Jared R.; Rodigas, Timothy J.
2015-07-01
NaSt1 (aka Wolf-Rayet 122) is a peculiar emission-line star embedded in an extended nebula of [N II] emission with a compact dusty core. The object was previously characterized as a Wolf-Rayet (WR) star cloaked in an opaque nebula of CNO-processed material, perhaps analogous to η Car and its Homunculus nebula, albeit with a hotter central source. To discern the morphology of the [N II] nebula we performed narrow-band imaging using the Hubble Space Telescope and Wide-field Camera 3. The images reveal that the nebula has a disc-like geometry tilted ≈12° from edge-on, composed of a bright central ellipsoid surrounded by a larger clumpy ring. Ground-based spectroscopy reveals radial velocity structure (±10 km s-1) near the outer portions of the nebula's major axis, which is likely to be the imprint of outflowing gas. Near-infrared adaptive-optics imaging with Magellan AO has resolved a compact ellipsoid of Ks-band emission aligned with the larger [N II] nebula, which we suspect is the result of scattered He I line emission (λ2.06 μm). Observations with the Chandra X-ray Observatory have revealed an X-ray point source at the core of the nebula that is heavily absorbed at energies <1 keV and has properties consistent with WR stars and colliding-wind binaries. We suggest that NaSt1 is a WR binary embedded in an equatorial outflow that formed as the result of non-conservative mass transfer. NaSt1 thus appears to be a rare and important example of a stripped-envelope WR forming through binary interaction, caught in the brief Roche lobe overflow phase.
Wagner, Robert H; Savir-Baruch, Bital; Halama, James R; Venu, Mukund; Gabriel, Medhat S; Bova, Davide
2017-09-01
Chronic constipation and gastrointestinal motility disorders constitute a large part of a gastroenterology practice and have a significant impact on a patient's quality of life and lifestyle. In most cases, medications are prescribed to alleviate symptoms without there being an objective measurement of response. Commonly used investigations of gastrointestinal transit times are currently limited to radiopaque markers or electronic capsules. Repeated use of these techniques is limited because of the radiation exposure and the significant cost of the devices. We present the proof of concept for a new device to measure gastrointestinal transit time using commonly available and inexpensive materials with only a small amount of radiotracer. Methods: We assembled gelatin capsules containing a 67 Ga-citrate-radiolabeled grain of rice embedded in paraffin for use as a point-source transit device. It was tested for stability in vitro and subsequently was given orally to 4 healthy volunteers and 10 patients with constipation or diarrhea. Imaging was performed at regular intervals until the device was excreted. Results: The device remained intact and visible as a point source in all subjects until excretion. When used along with a diary of bowel movement times and dates, the device could determine the total transit time. The device could be visualized either alone or in combination with a barium small-bowel follow-through study or a gastric emptying study. Conclusion: The use of a point-source transit device for the determination of gastrointestinal transit time is a feasible alternative to other methods. The device is inexpensive and easy to assemble, requires only a small amount of radiotracer, and remains inert throughout the gastrointestinal tract, allowing for accurate determination of gastrointestinal transit time. Further investigation of the device is required to establish optimum imaging parameters and reference values. Measurements of gastrointestinal transit time may be useful in managing patients with dysmotility and in selecting the appropriate pharmaceutical treatment. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Chen, Yuntian; Zhang, Yan; Femius Koenderink, A
2017-09-04
We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.
NASA Astrophysics Data System (ADS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Three dimensional time reversal optical tomography
NASA Astrophysics Data System (ADS)
Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.
2011-03-01
Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.
Tarafder, Solaiman; Koch, Alia; Jun, Yena; Chou, Conrad; Awadallah, Mary R; Lee, Chang H
2016-04-25
Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF's bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing cartridges during a single printing process. Spatially controlled delivery of GFs, with a prolonged release, guided formation of multi-tissue interfaces from bone marrow derived mesenchymal stem/progenitor cells (MSCs). To investigate efficacy of the micro-precise delivery system embedded in 3D printed scaffold, temporomandibular joint (TMJ) disc scaffolds were fabricated with micro-precise spatiotemporal delivery of CTGF and TGFβ3, mimicking native-like multiphase fibrocartilage. In vitro, TMJ disc scaffolds spatially embedded with CTGF/TGFβ3-μS resulted in formation of multiphase fibrocartilaginous tissues from MSCs. In vivo, TMJ disc perforation was performed in rabbits, followed by implantation of CTGF/TGFβ3-μS-embedded scaffolds. After 4 wks, CTGF/TGFβ3-μS embedded scaffolds significantly improved healing of the perforated TMJ disc as compared to the degenerated TMJ disc in the control group with scaffold embedded with empty μS. In addition, CTGF/TGFβ3-μS embedded scaffolds significantly prevented arthritic changes on TMJ condyles. In conclusion, our micro-precise spatiotemporal delivery system embedded in 3D printing may serve as an efficient tool to regenerate complex and inhomogeneous tissues.
An RBF-based reparameterization method for constrained texture mapping.
Yu, Hongchuan; Lee, Tong-Yee; Yeh, I-Cheng; Yang, Xiaosong; Li, Wenxi; Zhang, Jian J
2012-07-01
Texture mapping has long been used in computer graphics to enhance the realism of virtual scenes. However, to match the 3D model feature points with the corresponding pixels in a texture image, surface parameterization must satisfy specific positional constraints. However, despite numerous research efforts, the construction of a mathematically robust, foldover-free parameterization that is subject to positional constraints continues to be a challenge. In the present paper, this foldover problem is addressed by developing radial basis function (RBF)-based reparameterization. Given initial 2D embedding of a 3D surface, the proposed method can reparameterize 2D embedding into a foldover-free 2D mesh, satisfying a set of user-specified constraint points. In addition, this approach is mesh free. Therefore, generating smooth texture mapping results is possible without extra smoothing optimization.
NASA Astrophysics Data System (ADS)
Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.
2013-03-01
With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.
23. OUTLET PIPE EMBEDDED IN CONCRETE FOR THE HEAD GATE ...
23. OUTLET PIPE EMBEDDED IN CONCRETE FOR THE HEAD GATE SHOWN IN CO-43-A-22. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO
Herschel Key Program Heritage: a Far-Infrared Source Catalog for the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Seale, Jonathan P.; Meixner, Margaret; Sewiło, Marta; Babler, Brian; Engelbracht, Charles W.; Gordon, Karl; Hony, Sacha; Misselt, Karl; Montiel, Edward; Okumura, Koryo; Panuzzo, Pasquale; Roman-Duval, Julia; Sauvage, Marc; Boyer, Martha L.; Chen, C.-H. Rosie; Indebetouw, Remy; Matsuura, Mikako; Oliveira, Joana M.; Srinivasan, Sundar; van Loon, Jacco Th.; Whitney, Barbara; Woods, Paul M.
2014-12-01
Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMC's smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high (“probable”) and moderate (“possible”) likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.
Second ROSAT all-sky survey (2RXS) source catalogue
NASA Astrophysics Data System (ADS)
Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.
2016-04-01
Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the normalised excess variance and a maximum amplitude variability analysis. X-ray spectral fits were performed using three basic models, a power law, a thermal plasma emission model, and black-body emission. Thirty-two large extended regions with diffuse emission and embedded point sources were identified and excluded from the present analysis. Conclusions: The 2RXS catalogue provides the deepest and cleanest X-ray all-sky survey catalogue in advance of eROSITA. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A103
Hartman, Joshua D; Balaji, Ashwin; Beran, Gregory J O
2017-12-12
Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shielding tensors in molecular crystals with high accuracy and computational efficiency. Such methods typically employ electrostatic embedding to mimic the crystalline environment, and the quality of the results can be sensitive to the embedding treatment. To improve the quality of this embedding environment for fragment-based molecular crystal property calculations, we borrow ideas from the embedded ion method to incorporate self-consistently polarized Madelung field effects. The self-consistent reproduction of the Madelung potential (SCRMP) model developed here constructs an array of point charges that incorporates self-consistent lattice polarization and which reproduces the Madelung potential at all atomic sites involved in the quantum mechanical region of the system. The performance of fragment- and cluster-based 1 H, 13 C, 14 N, and 17 O chemical shift predictions using SCRMP and density functionals like PBE and PBE0 are assessed. The improved embedding model results in substantial improvements in the predicted 17 O chemical shifts and modest improvements in the 15 N ones. Finally, the performance of the model is demonstrated by examining the assignment of the two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the SCRMP-embedded NMR chemical shift predictions are on par with or more accurate than those obtained with the widely used gauge-including projector augmented wave (GIPAW) model.
Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias
2010-01-01
Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084
Development of a Web-Based Visualization Platform for Climate Research Using Google Earth
NASA Technical Reports Server (NTRS)
Sun, Xiaojuan; Shen, Suhung; Leptoukh, Gregory G.; Wang, Panxing; Di, Liping; Lu, Mingyue
2011-01-01
Recently, it has become easier to access climate data from satellites, ground measurements, and models from various data centers, However, searching. accessing, and prc(essing heterogeneous data from different sources are very tim -consuming tasks. There is lack of a comprehensive visual platform to acquire distributed and heterogeneous scientific data and to render processed images from a single accessing point for climate studies. This paper. documents the design and implementation of a Web-based visual, interoperable, and scalable platform that is able to access climatological fields from models, satellites, and ground stations from a number of data sources using Google Earth (GE) as a common graphical interface. The development is based on the TCP/IP protocol and various data sharing open sources, such as OPeNDAP, GDS, Web Processing Service (WPS), and Web Mapping Service (WMS). The visualization capability of integrating various measurements into cE extends dramatically the awareness and visibility of scientific results. Using embedded geographic information in the GE, the designed system improves our understanding of the relationships of different elements in a four dimensional domain. The system enables easy and convenient synergistic research on a virtual platform for professionals and the general public, gr$tly advancing global data sharing and scientific research collaboration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seale, Jonathan P.; Meixner, Margaret; Sewiło, Marta
Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from themore » Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMC's smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high (“probable”) and moderate (“possible”) likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.« less
Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring
NASA Technical Reports Server (NTRS)
Pollock, Julie; Oliver, Brett; Brickner, Christopher
2012-01-01
A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.
A hardware-in-the-loop simulation program for ground-based radar
NASA Astrophysics Data System (ADS)
Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna
2011-06-01
A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.
Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young
2015-08-12
Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell architecture and fabrication route toward flexible power sources with exceptional shape conformability and aesthetic versatility.
Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J. J.; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine
2017-01-01
The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex. PMID:28861024
Interface with weakly singular points always scatter
NASA Astrophysics Data System (ADS)
Li, Long; Hu, Guanghui; Yang, Jiansheng
2018-07-01
Assume that a bounded scatterer is embedded into an infinite homogeneous isotropic background medium in two dimensions. The refractive index function is supposed to be piecewise constant. If the scattering interface contains a weakly singular point, we prove that the scattered field cannot vanish identically. This implies the absence of non-scattering energies for piecewise analytic interfaces with one singular point. Local uniqueness is obtained for shape identification problems in inverse medium scattering with a single far-field pattern.
Farming strategies to feed people, facilitate essential soil services, and fuel the economy
USDA-ARS?s Scientific Manuscript database
Perennial cellulosic biomass and food crop residues are important on-farm resources, which have become potential valuable sources of income as a harvestable commodity contributing to biofuel production demands. Inputs of carbon embedded in above-ground plant biomass are a key biological energy sourc...
Multiscale Methods for Nuclear Reactor Analysis
NASA Astrophysics Data System (ADS)
Collins, Benjamin S.
The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly interface, the fuel/reflector interface, and assemblies where control rods are inserted. The embedded method also allows for multiple solution levels to be applied in a single calculation. The addition of intermediate levels to the solution improves the accuracy of the method. Both multiscale methods considered here have benefits and drawbacks, but both can provide improvements over the current PPR methodology.
Advanced DC/DC Converters Towards Higher Volumetric Efficiencies For Space Applications
NASA Technical Reports Server (NTRS)
Shaw, Harry; Shue, Jack; Liu, David; Wang, Bright; Plante, Jeanette
2005-01-01
A new emphasis on planetary exploration by NASA drives the need for small, high power DC/DC converters which are functionally modular. NASA GSFC and other government space organizations are supporting technology development in the DC/DC converter area to both meet new needs and to promote more sources of supply. New technologies which enable miniaturization such as embedded passive technologies and thermal management using high thermal conductivity materials are features of the new designs. Construction of some simple DC/DC converter core circuits using embedded components was found to be successful for increasing volumetric efficiency to 37 W/inch. The embedded passives were also able to perform satisfactorily in this application in cryogenic temperatures.
Tang, Duihai; Li, Kuo; Zhang, Wenting; Qiao, Zhen-An; Zhu, Junjiang; Zhao, Zhen
2018-03-15
A series of Co nanoparticles embedded, N-doped mesoporous carbons have been synthesized through chelate-assisted co-assembly strategy followed by thermal treatment. The preparation is based on an assembly process, with evaporation of an ethanol-water solution containing melamine formaldehyde resin (MF resin) as carbon source, nitrogen source, and chelating agent. Moreover, F127 and Co(NO 3 ) 2 are used as template and metallic precursor, respectively. The Co nanoparticles embedded, N-doped mesoporous carbon annealed at 800 °C (denoted as MFCo800) shows high electrocatalytic activity for hydrogen evolution reaction (HER) with high current density and low overpotential, which has the ability to operate in both acidic and alkaline electrolytes. Copyright © 2017. Published by Elsevier Inc.
Smart concrete slabs with embedded tubular PZT transducers for damage detection
NASA Astrophysics Data System (ADS)
Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing
2018-02-01
The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.
User interfaces for computational science: A domain specific language for OOMMF embedded in Python
NASA Astrophysics Data System (ADS)
Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans
2017-05-01
Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.
Managing a Real-Time Embedded Linux Platform with Buildroot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, J.; Martin, K.
2015-01-01
Developers of real-time embedded software often need to build the operating system, kernel, tools and supporting applications from source to work with the differences in their hardware configuration. The first attempts to introduce Linux-based real-time embedded systems into the Fermilab accelerator controls system used this approach but it was found to be time-consuming, difficult to maintain and difficult to adapt to different hardware configurations. Buildroot is an open source build system with a menu-driven configuration tool (similar to the Linux kernel build system) that automates this process. A customized Buildroot [1] system has been developed for use in the Fermilabmore » accelerator controls system that includes several hardware configuration profiles (including Intel, ARM and PowerPC) and packages for Fermilab support software. A bootable image file is produced containing the Linux kernel, shell and supporting software suite that varies from 3 to 20 megabytes large – ideal for network booting. The result is a platform that is easier to maintain and deploy in diverse hardware configurations« less
Biological Embedding: Evaluation and Analysis of an Emerging Concept for Nursing Scholarship
Nist, Marliese Dion
2016-01-01
Aim The purpose of this paper is to report the analysis of the concept of biological embedding. Background Research that incorporates a life course perspective is becoming increasingly prominent in the health sciences. Biological embedding is a central concept in life course theory and may be important for nursing theories to enhance our understanding of health states in individuals and populations. Before the concept of biological embedding can be used in nursing theory and research, an analysis of the concept is required to advance it toward full maturity. Design Concept analysis. Data Sources PubMed, CINAHL and PsycINFO were searched for publications using the term ‘biological embedding’ or ‘biological programming’ and published through 2015. Methods An evaluation of the concept was first conducted to determine the concept’s level of maturity and was followed by a concept comparison, using the methods for concept evaluation and comparison described by Morse. Results A consistent definition of biological embedding – the process by which early life experience alters biological processes to affect adult health outcomes – was found throughout the literature. The concept has been used in several theories that describe the mechanisms through which biological embedding might occur and highlight its role in the development of health trajectories. Biological embedding is a partially mature concept, requiring concept comparison with an overlapping concept – biological programming – to more clearly establish the boundaries of biological embedding. Conclusions Biological embedding has significant potential for theory development and application in multiple academic disciplines, including nursing. PMID:27682606
NASA Astrophysics Data System (ADS)
Idrisi, Kamal; Johnson, Marty E.; Toso, Alessandro; Carneal, James P.
2009-06-01
This paper is concerned with the modeling and optimization of heterogeneous (HG) blankets, which are used in this investigation to reduce the sound transmission through double panel systems. HG blankets consist of poro-elastic media with small embedded masses, which act similarly to a distributed mass-spring-damper-system. HG blankets have shown significant potential to reduce low frequency radiated sound from structures, where traditional poro-elastic materials have little effect. A mathematical model of a double panel system with an acoustic cavity and HG blanket was developed using impedance and mobility methods. The predicted responses of the source and the receiving panel due to a point force are validated with experimental measurements. The presented results indicate that proper tuning of the HG blankets can result in broadband noise reduction below 500 Hz with less than 10% added mass.
Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel
2016-02-06
The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.
Samorì, Bruno; Zuccheri, Giampaolo
2005-02-11
The nanometer scale is a special place where all sciences meet and develop a particularly strong interdisciplinarity. While biology is a source of inspiration for nanoscientists, chemistry has a central role in turning inspirations and methods from biological systems to nanotechnological use. DNA is the biological molecule by which nanoscience and nanotechnology is mostly fascinated. Nature uses DNA not only as a repository of the genetic information, but also as a controller of the expression of the genes it contains. Thus, there are codes embedded in the DNA sequence that serve to control recognition processes on the atomic scale, such as the base pairing, and others that control processes taking place on the nanoscale. From the chemical point of view, DNA is the supramolecular building block with the highest informational content. Nanoscience has therefore the opportunity of using DNA molecules to increase the level of complexity and efficiency in self-assembling and self-directing processes.
Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern
NASA Astrophysics Data System (ADS)
Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan
2017-02-01
We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.
Automated Analysis of Stateflow Models
NASA Technical Reports Server (NTRS)
Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier
2017-01-01
Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.
Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel
2016-01-01
The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well. PMID:26861345
Density matrix embedding in an antisymmetrized geminal power bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy, E-mail: tvan@mit.edu
2015-07-14
Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlationmore » energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.« less
Sensitivity vector fields in time-delay coordinate embeddings: theory and experiment.
Sloboda, A R; Epureanu, B I
2013-02-01
Identifying changes in the parameters of a dynamical system can be vital in many diagnostic and sensing applications. Sensitivity vector fields (SVFs) are one way of identifying such parametric variations by quantifying their effects on the morphology of a dynamical system's attractor. In many cases, SVFs are a more effective means of identification than commonly employed modal methods. Previously, it has only been possible to construct SVFs for a given dynamical system when a full set of state variables is available. This severely restricts SVF applicability because it may be cost prohibitive, or even impossible, to measure the entire state in high-dimensional systems. Thus, the focus of this paper is constructing SVFs with only partial knowledge of the state by using time-delay coordinate embeddings. Local models are employed in which the embedded states of a neighborhood are weighted in a way referred to as embedded point cloud averaging. Application of the presented methodology to both simulated and experimental time series demonstrates its utility and reliability.
NASA Astrophysics Data System (ADS)
Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James
2017-04-01
Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.
Helios Dynamics A Potential Future Power Source for the Greek Islands
2007-06-01
offer an apparent understanding of the capabilities of the emerging Photovoltaic Power Converter (PVPC) technology used in panels for electricity... powering method that uses fueled generators and the alternative option is photovoltaic panels with the Atira technology embedded. This analysis is... POWER SOURCE FOR THE GREEK ISLANDS ABSTRACT The use of Alternative Renewable Energy Sources is becoming an increasing possibility to
NASA Technical Reports Server (NTRS)
Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James
2012-01-01
We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.
ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianxun Yan; Daniel Sexton; Steven Moore
2006-10-24
An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory
2012-01-01
Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.
Exploring packaging strategies of nano-embedded thermoelectric generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Aniket; Muralidharan, Bhaskaran, E-mail: bm@ee.iitb.ac.in; Mahanti, Subhendra D.
2015-10-15
Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multimore » moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.« less
1987-06-01
head. The electrical connection points are embedded in silicone sealing compound. The photo elements are varnished; the mirrors are chromium-plated metal...control of barrage walls and retaining dams using reversible pendulums, the suspension points of which are located in boreholes deep under the structure in...rock layers that can very probably be considered as invariable relation points . A measuring device installed in the foundation area of a barrage wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, Brian D.; Margalit, Ben; Berger, Edo
Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernovamore » (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.« less
Hubble Space Telescope NICMOS Polarization Measurements of OMC-1
NASA Technical Reports Server (NTRS)
Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Schultz, A. S. B.
2006-01-01
We present 2 micrometer polarization measurements of positions in the BN region of the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2" resolution) on Hubble Space Telescope. Our goals are to seek the sources of heating for IRc2, 3, 4, and 7, identify possible young stellar objects (YSOs), and characterize the grain alignment in the dust clouds along the lines-of-sight to the stars. Our results are as follows: BN is approximately 29% polarized by dichroic absorption and appears to be the illuminating source for most of the nebulosity to its north and up to approximately 5" to its south. Although the stars are probably all polarized by dichroic absorption, there are a number of compact, but non-point-source, objects that could be polarized by a combination of both dichroic absorption and local scattering of star light. We identify several candidate YSOs, including an approximately edge-on bipolar YSO 8.7" east of BN, and a deeply-embedded IRc7, all of which are obviously self-luminous at mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula illuminated by a star located near radio source I, as was previously suggested. Other IRc sources are clearly reflection nebulae: IRc3 appears to be illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5 appear to be illuminated by an unseen star in the vicinity of radio source I, or by Star n or IRc2-A. Trends in the magnetic field direction are inferred from the polarization of the 26 stars that are bright enough to be seen as NICMOS point sources. Their polarization ranges from N less than or equal to 1% (all stars with this low polarization are optically visible) to greater than 40%. The most polarized star has a polarization position angle different from its neighbors by approximately 40 degrees, but in agreement with the grain alignment inferred from millimeter polarization measurements of the cold dust cloud in the southern part of OMC-1. The polarization position angle of another highly-polarized, probable star also requires a grain alignment and magnetic field orientation substantially different from the general magnetic field orientation of OMC-1.
Dismantling of Radium-226 Coal Level Gauges: Encountered Problems and How to Solve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punnachaiya, M.; Nuanjan, P.; Moombansao, K.
2006-07-01
This paper describes the techniques for dismantling of disused-sealed Radium-226 (Ra-226) coal level gauges which the source specifications and documents were not available, including problems occurred during dismantling stage and the decision making in solving all those obstacles. The 2 mCi (20 pieces), 6 mCi (20 pieces) and 6.6 mCi (30 pieces) of Ra-226 hemi-spherically-shaped with lead-filled coal level gauges were used in industrial applications for electric power generation. All sources needed to be dismantled for further conditioning as requested by the International Atomic Energy Agency (IAEA). One of the 2 mCi Ra-226 source was dismantled under the supervision ofmore » IAEA expert. Before conditioning period, each of the 6 mCi and 6.6 mCi sources were dismantled and inspected. It was found that coal level gauges had two different source types: the sealed cylindrical source (diameter 2 cm x 2 cm length) locked with spring in lead housing for 2 mCi and 6.6 mCi; while the 6 mCi was an embedded capsule inside source holder stud assembly in lead-filled housing. Dismantling Ra-226 coal level gauges comprised of 6 operational steps: confirmation of the surface dose rate on each source activity, calculation of working time within the effective occupational dose limit, cutting the weld of lead container by electrical blade, confirmation of the Ra-226 embedded capsule size using radiation scanning technique and gamma radiography, automatic sawing of the source holder stud assembly, and transferring the source to store in lead safe box. The embedded length of 6 mCi Ra-226 capsule in its diameter 2 cm x 14.7 cm length stud assembly was identified, the results from scanning technique and radiographic film revealed the embedded source length of about 2 cm, therefore all the 6 mCi sources were safely cut at 3 cm using the automatic saw. Another occurring problem was one of the 6.6 mCi spring type source stuck inside its housing because the spring was deformed and there was previously a leakage on inner source housing. Thus, during manufacturing the filled-lead for shielding passed through this small hole and fixed the deformed spring together with the source. The circular surface of inner hole was measured and slowly drilled at a diameter 2.2 cm behind shielding, till the spring and the fixed lead sheet were cut, therefore the source could be finally hammered out. The surface dose rate of coal level gauges before weld cutting was 10-15 mR/hr and the highest dose rate at the position of the weld cutter was 2.5 mR/hr. The total time for each weld cutting and automatic sawing was 2-3 minutes and 1 minute, respectively. The source was individually and safely transferred to store in lead safe box using a 1-meter length tong and a light container with 1 meter length handle. The total time for Ra-226 (70 pieces) dismantling, including the encountered problems and their troubles shooting took 4 days operation in which the total dose obtained by 18 operators were ranged from 1-38 {mu}Sv. The dismantling team safely completed the activities within the effective dose limit for occupational exposure of 20 mSv/year (80 {mu}Sv/day). (authors)« less
Content-based audio authentication using a hierarchical patchwork watermark embedding
NASA Astrophysics Data System (ADS)
Gulbis, Michael; Müller, Erika
2010-05-01
Content-based audio authentication watermarking techniques extract perceptual relevant audio features, which are robustly embedded into the audio file to protect. Manipulations of the audio file are detected on the basis of changes between the original embedded feature information and the anew extracted features during verification. The main challenges of content-based watermarking are on the one hand the identification of a suitable audio feature to distinguish between content preserving and malicious manipulations. On the other hand the development of a watermark, which is robust against content preserving modifications and able to carry the whole authentication information. The payload requirements are significantly higher compared to transaction watermarking or copyright protection. Finally, the watermark embedding should not influence the feature extraction to avoid false alarms. Current systems still lack a sufficient alignment of watermarking algorithm and feature extraction. In previous work we developed a content-based audio authentication watermarking approach. The feature is based on changes in DCT domain over time. A patchwork algorithm based watermark was used to embed multiple one bit watermarks. The embedding process uses the feature domain without inflicting distortions to the feature. The watermark payload is limited by the feature extraction, more precisely the critical bands. The payload is inverse proportional to segment duration of the audio file segmentation. Transparency behavior was analyzed in dependence of segment size and thus the watermark payload. At a segment duration of about 20 ms the transparency shows an optimum (measured in units of Objective Difference Grade). Transparency and/or robustness are fast decreased for working points beyond this area. Therefore, these working points are unsuitable to gain further payload, needed for the embedding of the whole authentication information. In this paper we present a hierarchical extension of the watermark method to overcome the limitations given by the feature extraction. The approach is a recursive application of the patchwork algorithm onto its own patches, with a modified patch selection to ensure a better signal to noise ratio for the watermark embedding. The robustness evaluation was done by compression (mp3, ogg, aac), normalization, and several attacks of the stirmark benchmark for audio suite. Compared on the base of same payload and transparency the hierarchical approach shows improved robustness.
Secure Automated Microgrid Energy System (SAMES)
2016-12-01
with embedded algorithm to share power between each other; • Wind Turbine (WT) Simulator, max 80 kW (4×20 kW), 480 V, Running Wind Generation...Temp, Rain, Wind ........................ 39 Figure 22. Point Loma, Box and Whisker Plot, Hourly Sum of Consumption ............................ 40...Figure 27. Coronado, Consumption vs Average Daily SD Temp, Rainfall, Wind ....................... 44 Figure 28. Naval Base Point Loma, One Line, Solar
Lessard, Chantale; Contandriopoulos, André-Pierre; Beaulieu, Marie-Dominique
2009-01-01
Background A considerable amount of resource allocation decisions take place daily at the point of the clinical encounter; especially in primary care, where 80 percent of health problems are managed. Ignoring economic evaluation evidence in individual clinical decision-making may have a broad impact on the efficiency of health services. To date, almost all studies on the use of economic evaluation in decision-making used a quantitative approach, and few investigated decision-making at the clinical level. An important question is whether economic evaluations affect clinical practice. The project is an intervention research study designed to understand the role of economic evaluation in the decision-making process of family physicians (FPs). The contributions of the project will be from the perspective of Pierre Bourdieu's sociological theory. Methods/design A qualitative research strategy is proposed. We will conduct an embedded multiple-case study design. Ten case studies will be performed. The FPs will be the unit of analysis. The sampling strategies will be directed towards theoretical generalization. The 10 selected cases will be intended to reflect a diversity of FPs. There will be two embedded units of analysis: FPs (micro-level of analysis) and field of family medicine (macro-level of analysis). The division of the determinants of practice/behaviour into two groups, corresponding to the macro-structural level and the micro-individual level, is the basis for Bourdieu's mode of analysis. The sources of data collection for the micro-level analysis will be 10 life history interviews with FPs, documents and observational evidence. The sources of data collection for the macro-level analysis will be documents and 9 open-ended, focused interviews with key informants from medical associations and academic institutions. The analytic induction approach to data analysis will be used. A list of codes will be generated based on both the original framework and new themes introduced by the participants. We will conduct within-case and cross-case analyses of the data. Discussion The question of the role of economic evaluation in FPs' decision-making is of great interest to scientists, health care practitioners, managers and policy-makers, as well as to consultants, industry, and society. It is believed that the proposed research approach will make an original contribution to the development of knowledge, both empirical and theoretical. PMID:19210787
Locally linear embedding: dimension reduction of massive protostellar spectra
NASA Astrophysics Data System (ADS)
Ward, J. L.; Lumsden, S. L.
2016-09-01
We present the results of the application of locally linear embedding (LLE) to reduce the dimensionality of dereddened and continuum subtracted near-infrared spectra using a combination of models and real spectra of massive protostars selected from the Red MSX Source survey data base. A brief comparison is also made with two other dimension reduction techniques; principal component analysis (PCA) and Isomap using the same set of spectra as well as a more advanced form of LLE, Hessian locally linear embedding. We find that whilst LLE certainly has its limitations, it significantly outperforms both PCA and Isomap in classification of spectra based on the presence/absence of emission lines and provides a valuable tool for classification and analysis of large spectral data sets.
Chaos control in delayed phase space constructed by the Takens embedding theory
NASA Astrophysics Data System (ADS)
Hajiloo, R.; Salarieh, H.; Alasty, A.
2018-01-01
In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.
Numerical simulation of the compressible Orszag-Tang vortex 2. Supersonic flow
NASA Technical Reports Server (NTRS)
Picone, J. M.; Dahlburg, Russell B.
1990-01-01
The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers 1.0 and 1.5 and beta 10/3 with Lundquist numbers 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.
Racial-ethnic identity in mid-adolescence: content and change as predictors of academic achievement.
Altschul, Inna; Oyserman, Daphna; Bybee, Deborah
2006-01-01
Three aspects of racial-ethnic identity (REI)-feeling connected to one's racial-ethnic group (Connectedness), being aware that others may not value the in-group (Awareness of Racism), and feeling that one's in-group is characterized by academic attainment (Embedded Achievement)-were hypothesized to promote academic achievement. Youth randomly selected from 3 low-income, urban schools (n=98 African American, n=41 Latino) reported on their REI 4 times over 2 school years. Hierarchical linear modeling shows a small increase in REI and the predicted REI-grades relationship. Youth high in both REI Connectedness and Embedded Achievement attained better grade point average (GPA) at each point in time; youth high in REI Connectedness and Awareness of Racism at the beginning of 8th grade attained better GPA through 9th grade. Effects are not moderated by race-ethnicity.
Laguerre, Laurent; Grimault, Anne; Deschamps, Marc
2007-04-01
A semianalytical solution alternative and complementary to modal technique is presented to predict and interpret the ultrasonic pulsed-bounded-beam propagation in a solid cylinder embedded in a solid matrix. The spectral response to an inside axisymmetric velocity source of longitudinal and transversal cylindrical waves is derived from Debye series expansion of the embedded cylinder generalized cylindrical reflection/transmission coefficients. So, the transient guided wave response, synthesized by inverse double Fourier-Bessel transform, is expressed as a combination of the infinite medium contribution, longitudinal, transversal, and coupled longitudinal and transversal waveguide sidewall interactions. Simulated (f, 1/lambdaz) diagrams show the influence of the number of waveguide sidewall interactions to progressively recover dispersion curves. Besides, they show the embedding material filters specific signal portions by concentrating the propagating signal in regions where phase velocity is closer to phase velocity in steel. Then, simulated time waveforms using broadband high-frequency excitation show that signal leading portions exhibit a similar periodical pattern, for both free and embedded waveguides. Debye series-based interpretation shows that double longitudinal/transversal and transversal/longitudinal conversions govern the time waveform leading portion as well as the radiation attenuation in the surrounding cement grout. Finally, a methodology is deduced to minimize the radiation attenuation for the long-range inspection of embedded cylinders.
Quantitative analysis of titanium-induced artifacts and correlated factors during micro-CT scanning.
Li, Jun Yuan; Pow, Edmond Ho Nang; Zheng, Li Wu; Ma, Li; Kwong, Dora Lai Wan; Cheung, Lim Kwong
2014-04-01
To investigate the impact of cover screw, resin embedment, and implant angulation on artifact of microcomputed tomography (micro-CT) scanning for implant. A total of twelve implants were randomly divided into 4 groups: (i) implant only; (ii) implant with cover screw; (iii) implant with resin embedment; and (iv) implants with cover screw and resin embedment. Implants angulation at 0°, 45°, and 90° were scanned by micro-CT. Images were assessed, and the ratio of artifact volume to total volume (AV/TV) was calculated. A multiple regression analysis in stepwise model was used to determine the significance of different factors. One-way ANOVA was performed to identify which combination of factors could minimize the artifact. In the regression analysis, implant angulation was identified as the best predictor for artifact among the factors (P < 0.001). Resin embedment also had significant effect on artifact volume (P = 0.028), while cover screw had not (P > 0.05). Non-embedded implants with the axis parallel to X-ray source of micro-CT produced minimal artifact. Implant angulation and resin embedment affected the artifact volume of micro-CT scanning for implant, while cover screw did not. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Oskar Jaehnig, Karl; Stassun, Keivan; Tan, Jonathan C.; Covey, Kevin R.; Da Rio, Nicola
2016-01-01
We study the nature of stellar multiplicity in young stellar systems using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC2264, NGC1333 and IC348 have been carried out, yielding H-band spectra with R=22,500 for sources with H<12 mag. Radial velocity sensitivities ~0.3 km/s can be achieved, depending on the spectral type of the star. We search the IN-SYNC radial velocity catalog to identify sources with radial velocity variations indicative of spectroscopically undetected companions, analyze their spectral properties and discuss the implications for the overall multiplicity of stellar populations in young, embedded star clusters.
X-rays from radio pulsars: the detection of PSR 1055-52
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, A.F.; Helfand, D.J.
The short-period pulsar PSR 1055-52 has been detected as a soft X-ray source in the course of an Einstein Observatory survey of radio pulsars. Its X-ray to radio luminosity ratio is approx.10/sup 4/, although the X-rays are not modulated at the neutron star's rotation frequency. We present high spatial resolution observations which suggest that a significant fraction of the emission comes from an extended region surrounding the pulsar. We investigate several possible scenarios for the origin of both point and extended X-ray emission from isolated neutron stars: radiation from the hot stellar surface, from hot polar caps, and from anmore » optically thick atmosphere, as well as from a circumstellar nebula emitting thermal bremsstrahlung or synchrotron radiation. We conclude that the spatial, spectral, and temporal characteristic of this source are most consistent with a model in which relativistic particles generated by the pulsar are radiating synchrotron X-rays in the surrounding magnetic field; i.e., that PSR 1055 is embedded in a mini-Crab nebula. Observational tests of this hypothesis are suggested, and the implications of this result for pulsar evolution are briefly discussed.« less
Plasma Source Development for LAPD
NASA Astrophysics Data System (ADS)
Pribyl, P.; Gekelman, W.; Drandell, M.; Grunspen, S.; Nakamoto, M.; McBarron, A.
2003-10-01
The Large Plasma Device (LAPD) relies on an indirectly heated Barium Oxide (BaO) cathode to generate an extremely repeatable low-noise plasma. However there are two defects of this system: one is that the cathode is subject to oxygen poisoning in the event of accidental air leaks, requiring a lengthy recoating and regeneration process. Second, the indirect radiative heating is only about 50 % efficient, leading to a series of reliability issues. Alternate plasma sources are being investigated, including two types of directly heated BaO cathode and several configurations of inductively coupled RF plasmas. Direct heating for a cathode can be achieved either by embedding heaters within the nickel substrate, or by using inductive heating techniques to drive currents within the nickel itself. In both cases, the BaO coating still serves to emit the electrons and thus generate the plasma arc. An improved system would generate the plasma without the use of a "cathode" e.g. by inductively coupling energy directly into the plasma discharge. This technique is being investigated from the point of view of whether a) the bulk of the plasma column can be made sufficiently low-noise to be of experimental value and b) sufficiently dense plasmas can be formed.
Twenty-two emission-line AGNs from the HEAO-1 X-ray survey
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Bradt, H. V. D.; Brissenden, R. J. V.; Buckley, D. A. H.; Roberts, W.; Schwartz, D. A.; Stroozas, B. A.; Tuohy, I. R.
1993-01-01
We report 22 emission-line AGN as bright, hard X-ray sources. All of them appear to be new classifications with the exception of one peculiar IRAS source which is a known quasar and has no published spectrum. This sample exhibits a rich diversity in optical spectral properties and luminosities, ranging from a powerful broad-absorption-line quasar to a weak nucleus embedded in a nearby NGC galaxy. Two cases confer X-ray luminosities in excess of 10 exp 47 erg/s. However, there is a degree of uncertainty in the X-ray identification for the AGN fainter than V about 16.5. Optically, several AGN exhibit very strong Fe II emission. One Seyfert galaxy with substantial radio flux is an exception to the common association of strong Fe II emission and radio-quiet AGN. The previously recognized IRAS quasar shows extreme velocities in the profiles of the forbidden lines; the 0 III pair is broadened to the point that the lines are blended. Several of these AGN show evidence of intrinsic obscuration, illustrating the effectiveness of hard X-ray surveys in locating AGN through high column density.
A Space-Time-Frequency Dictionary for Sparse Cortical Source Localization.
Korats, Gundars; Le Cam, Steven; Ranta, Radu; Louis-Dorr, Valerie
2016-09-01
Cortical source imaging aims at identifying activated cortical areas on the surface of the cortex from the raw electroencephalogram (EEG) data. This problem is ill posed, the number of channels being very low compared to the number of possible source positions. In some realistic physiological situations, the active areas are sparse in space and of short time durations, and the amount of spatio-temporal data to carry the inversion is then limited. In this study, we propose an original data driven space-time-frequency (STF) dictionary which takes into account simultaneously both spatial and time-frequency sparseness while preserving smoothness in the time frequency (i.e., nonstationary smooth time courses in sparse locations). Based on these assumptions, we take benefit of the matching pursuit (MP) framework for selecting the most relevant atoms in this highly redundant dictionary. We apply two recent MP algorithms, single best replacement (SBR) and source deflated matching pursuit, and we compare the results using a spatial dictionary and the proposed STF dictionary to demonstrate the improvements of our multidimensional approach. We also provide comparison using well-established inversion methods, FOCUSS and RAP-MUSIC, analyzing performances under different degrees of nonstationarity and signal to noise ratio. Our STF dictionary combined with the SBR approach provides robust performances on realistic simulations. From a computational point of view, the algorithm is embedded in the wavelet domain, ensuring high efficiency in term of computation time. The proposed approach ensures fast and accurate sparse cortical localizations on highly nonstationary and noisy data.
On precisely modelling surface deformation due to interacting magma chambers and dykes
NASA Astrophysics Data System (ADS)
Pascal, Karen; Neuberg, Jurgen; Rivalta, Eleonora
2014-01-01
Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (<5 per cent) independently of the source separation. However, if a Mogi source is placed side by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies to become significant for a source separation less than four times the radius of the magma chamber. For horizontally or vertically aligned pressurized sources, the discrepancies are up to 20 per cent, which translates into surprisingly large errors when inverting deformation data for source parameters such as depth and volume change. Beyond 8 radii however, we demonstrate that the summation of analytical sources represents adjacent magma chambers correctly.
Invariants for models of interacting populations
NASA Astrophysics Data System (ADS)
Cairó, L.; Feix, M. R.; Goedert, J.
1989-10-01
The generalised Lotka-Volterra system is studied. We use a modification of the Carleman embedding method. The position of the equilibrium point, the possibility of obtaining invariants, the asymptotic cyclic motions and the connection to the Volterra model are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey
We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null linesmore » embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission.« less
Active star formation in NGC 2264
NASA Technical Reports Server (NTRS)
Schwartz, P. R.; Thronson, H. A., Jr.; Odenwald, S. F.; Glaccum, W.; Loewenstein, R. F.; Wolf, G.
1985-01-01
The region of NGC 2264 near the cone nebula is the site of active star formation in a rotating ring seen nearly edge on as a two lobed source. Allen's infrared source (IRS 1) surrounds a B3V star still embedded in the southern lobe of the cloud. The northern lobe, IRS 2, also probably contains young stars.
Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode
NASA Technical Reports Server (NTRS)
Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul
2009-01-01
This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.
Development of EPA Protocol Information Enquiry Service System Based on Embedded ARM Linux
NASA Astrophysics Data System (ADS)
Peng, Daogang; Zhang, Hao; Weng, Jiannian; Li, Hui; Xia, Fei
Industrial Ethernet is a new technology for industrial network communications developed in recent years. In the field of industrial automation in China, EPA is the first standard accepted and published by ISO, and has been included in the fourth edition IEC61158 Fieldbus of NO.14 type. According to EPA standard, Field devices such as industrial field controller, actuator and other instruments are all able to realize communication based on the Ethernet standard. The Atmel AT91RM9200 embedded development board and open source embedded Linux are used to develop an information inquiry service system of EPA protocol based on embedded ARM Linux in this paper. The system is capable of designing an EPA Server program for EPA data acquisition procedures, the EPA information inquiry service is available for programs in local or remote host through Socket interface. The EPA client can access data and information of other EPA equipments on the EPA network when it establishes connection with the monitoring port of the server.
NASA Astrophysics Data System (ADS)
Yang, J.; Lee, H.; Sohn, H.
2012-05-01
This study presents an embedded laser ultrasonic system for pipeline monitoring under high temperature environment. Recently, laser ultrasonics is becoming popular because of their advantageous characteristics such as (a) noncontact inspection, (b) immunity against electromagnetic interference (EMI), and (c) applicability under high temperature. However, the performance of conventional laser ultrasonic techniques for pipeline monitoring has been limited because many pipelines are covered by insulating materials and target surfaces are inaccessible. To overcome the problem, this study designs an embeddable optical fibers and fixing devices that deliver laser beams from laser sources to a target pipe using embedded optical fibers. For guided wave generation, an optical fiber is furnished with a beam collimator for irradiating a laser beam onto a target structure. The corresponding response is measured based on the principle of laser interferometry. Light from a monochromatic source is colliminated and delivered to a target surface by another optical with a focusing module, and reflected light is transmitted back to the interferometer through the same fiber. The feasibility of the proposed system for embedded ultrasonic measurement has been experimentally verified using a pipe specimen under high temperature.
A Chandra X-ray Mosaic of the Onsala 2 Star-Forming Region
NASA Astrophysics Data System (ADS)
Skinner, Steve L.; Sokal, Kimberly; Guedel, Manuel
2018-01-01
Multiple lines of evidence for active high-mass star-formation in the Onsala 2 (ON2) complex in Cygnus include masers, compact HII (cHII) regions, and massive outflows. ON2 is thought to be physically associated with the young stellar cluster Berkeley 87 which contains several optically-identified OB stars and the rare oxygen-type (WO) Wolf-Rayet star WR 142. WO stars are undergoing advanced nuclear core burning as they approach the end of their lives as supernovae, and only a few are known in the Galaxy. We present results of a sensitive 70 ks Chandra ACIS-I observation of the northern half of ON2 obtained in 2016. This new observation, when combined with our previous 70 ks ACIS-I observation of the southern half in 2009, provides a complete X-ray mosaic of ON2 at arcsecond spatial resolution and reveals several hundred X-ray sources. We will summarize key results emerging from our ongoing analysis including the detection of an embedded population of young stars revealed as a tight grouping of X-ray sources surrounding the cHII region G75.77+0.34, possible diffuse X-ray emission (or unresolved faint point sources) near the cHII region G75.84+0.40, and confirmation of hard heavily-absorbed X-ray emission from WR 142 that was seen in the previous 2009 Chandra observation.
Scalar-Tensor Black Holes Embedded in an Expanding Universe
NASA Astrophysics Data System (ADS)
Tretyakova, Daria; Latosh, Boris
2018-02-01
In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.
Cepstral domain modification of audio signals for data embedding: preliminary results
NASA Astrophysics Data System (ADS)
Gopalan, Kaliappan
2004-06-01
A method of embedding data in an audio signal using cepstral domain modification is described. Based on successful embedding in the spectral points of perceptually masked regions in each frame of speech, first the technique was extended to embedding in the log spectral domain. This extension resulted at approximately 62 bits /s of embedding with less than 2 percent of bit error rate (BER) for a clean cover speech (from the TIMIT database), and about 2.5 percent for a noisy speech (from an air traffic controller database), when all frames - including silence and transition between voiced and unvoiced segments - were used. Bit error rate increased significantly when the log spectrum in the vicinity of a formant was modified. In the next procedure, embedding by altering the mean cepstral values of two ranges of indices was studied. Tests on both a noisy utterance and a clean utterance indicated barely noticeable perceptual change in speech quality when lower range of cepstral indices - corresponding to vocal tract region - was modified in accordance with data. With an embedding capacity of approximately 62 bits/s - using one bit per each frame regardless of frame energy or type of speech - initial results showed a BER of less than 1.5 percent for a payload capacity of 208 embedded bits using the clean cover speech. BER of less than 1.3 percent resulted for the noisy host with a capacity was 316 bits. When the cepstrum was modified in the region of excitation, BER increased to over 10 percent. With quantization causing no significant problem, the technique warrants further studies with different cepstral ranges and sizes. Pitch-synchronous cepstrum modification, for example, may be more robust to attacks. In addition, cepstrum modification in regions of speech that are perceptually masked - analogous to embedding in frequency masked regions - may yield imperceptible stego audio with low BER.
Searching for Compact Radio Sources Associated with UCH ii Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masqué, Josep M.; Trinidad, Miguel A.; Rodríguez-Rico, Carlos A.
Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous naturemore » for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 10{sup 4}–10{sup 5} years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.« less
NASA Astrophysics Data System (ADS)
Hilonga, A.; Kim, J. K.; Sarawade, P. B.; Kim, H. T.
2009-07-01
In this study, a reinforced silver-embedded silica matrix was designed by utilizing the interaction between the [AlO 4] - tetrahedral and the Ag + in sol-gel process using sodium silicate as a silica precursor. The Ag + mole ratio in each sample was significantly varied to examine the influence of silver concentration on the properties of the final product. Aluminium ions were added to reinforce and improve the chemical durability of silver-embedded silica. A templated sample at Al/Ag = 1 atomic ratio was also synthesized to attempt a possibility of controlling porosity of the final product. Also, a sample neither embedded with silver nor templated was synthesized and characterized to serve as reference. The material at Al/Ag = 1 was found to have a desirable properties, compared to its counterparts, before and even after calcination up to 1000 °C. The results demonstrate that materials with desirable properties can be obtained by this unprecedented method while utilizing sodium silicate, which is relatively cheap, as a silica precursor. This may significantly boost the industrial production of the silver-embedded silicas for various applications.
Dimensionality reduction of collective motion by principal manifolds
NASA Astrophysics Data System (ADS)
Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.
2015-01-01
While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.
Rackauckas, Christopher; Nie, Qing
2017-01-01
Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs.
Rackauckas, Christopher
2017-01-01
Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs. PMID:29527134
An Infrastructure for UML-Based Code Generation Tools
NASA Astrophysics Data System (ADS)
Wehrmeister, Marco A.; Freitas, Edison P.; Pereira, Carlos E.
The use of Model-Driven Engineering (MDE) techniques in the domain of distributed embedded real-time systems are gain importance in order to cope with the increasing design complexity of such systems. This paper discusses an infrastructure created to build GenERTiCA, a flexible tool that supports a MDE approach, which uses aspect-oriented concepts to handle non-functional requirements from embedded and real-time systems domain. GenERTiCA generates source code from UML models, and also performs weaving of aspects, which have been specified within the UML model. Additionally, this paper discusses the Distributed Embedded Real-Time Compact Specification (DERCS), a PIM created to support UML-based code generation tools. Some heuristics to transform UML models into DERCS, which have been implemented in GenERTiCA, are also discussed.
NASA Astrophysics Data System (ADS)
Djupvik, A. A.; André, Ph.; Bontemps, S.; Motte, F.; Olofsson, G.; Gålfalk, M.; Florén, H.-G.
2006-11-01
Aims.The aim of this paper is to characterise the star formation activity in the poorly studied embedded cluster Serpens/G3-G6, located ~45 arcmin (3 pc) to the south of the Serpens Cloud Core, and to determine the luminosity and mass functions of its population of Young Stellar Objects (YSOs). Methods: .Multi-wavelength broadband photometry was obtained to sample the near and mid-IR spectral energy distributions to separate YSOs from field stars and classify the YSO evolutionary stage. ISOCAM mapping in the two filters LW2 (5-8.5 μm) and LW3 (12-18 μm) of a 19 arcmin × 16 arcmin field was combined with JHKS data from 2MASS, KS data from Arnica/NOT, and L arcmin data from SIRCA/NOT. Continuum emission at 1.3 mm (IRAM) and 3.6 cm (VLA) was mapped to study the cloud structure and the coldest/youngest sources. Deep narrow band imaging at the 2.12 μm S(1) line of H2 from NOTCam/NOT was obtained to search for signs of bipolar outflows. Results: .We have strong evidence for a stellar population of 31 Class II sources, 5 flat-spectrum sources, 5 Class I sources, and two Class 0 sources. Our method does not sample the Class III sources. The cloud is composed of two main dense clumps aligned along a ridge over ~0.5 pc plus a starless core coinciding with absorption features seen in the ISOCAM maps. We find two S-shaped bipolar collimated flows embedded in the NE clump, and propose the two driving sources to be a Class 0 candidate (MMS3) and a double Class I (MMS2). For the Class II population we find a best age of ~2 Myr and compatibility with recent Initial Mass Functions (IMFs) by comparing the observed Class II luminosity function (LF), which is complete to 0.08 L⊙, to various model LFs with different star formation scenarios and input IMFs.
Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?
Fields, Brian D; Shapiro, Stuart L; Shelton, Jessie
2014-10-10
If the supermassive black hole Sgr A* at the center of the Milky Way grew adiabatically from an initial seed embedded in a Navarro-Frenk-White dark matter (DM) halo, then the DM profile near the hole has steepened into a spike. We calculate the dramatic enhancement to the gamma-ray flux from the Galactic center (GC) from such a spike if the 1-3 GeV excess observed in Fermi data is due to DM annihilations. We find that for the parameter values favored in recent fits, the point-source-like flux from the spike is 35 times greater than the flux from the inner 1° of the halo, far exceeding all Fermi point source detections near the GC. We consider the dependence of the spike signal on astrophysical and particle parameters and conclude that if the GC excess is due to DM, then a canonical adiabatic spike is disfavored by the data. We discuss alternative Galactic histories that predict different spike signals, including (i) the nonadiabatic growth of the black hole, possibly associated with halo and/or black hole mergers, (ii) gravitational interaction of DM with baryons in the dense core, such as heating by stars, or (iii) DM self-interactions. We emphasize that the spike signal is sensitive to a different combination of particle parameters than the halo signal and that the inclusion of a spike component to any DM signal in future analyses would provide novel information about both the history of the GC and the particle physics of DM annihilations.
2011-01-01
Background Proteomic research in the field of parathyroid tissues is limited by the very small dimension of the glands and by the low incidence of cancer lesions (1%). Formalin-fixed paraffin-embedded (FFPE) tissue specimens are a potentially valuable resource for discovering protein cancer biomarkers. In this study we have verified the applicability of a heat induced protein extraction from FFPE parathyroid adenoma tissues followed by a gel-based or gel-free proteomic approach in order to achieve protein separation and identification. Results The best results for high quality MS spectra and parameters, were obtained by using a gel-free approach, and up to 163 unique proteins were identified. Similar results were obtained by applying both SDS-out and SDS-out + TCA/Acetone techniques during the gel-free method. Western blot analysis carried out with specific antibodies suggested that the antigenicity was not always preserved, while specific immunoreactions were detected for calmodulin, B box and SPRY domain-containing protein (BSPRY), peroxiredoxin 6 (PRDX 6) and parvalbumin. Conclusions In spite of some limitations mainly due to the extensive formalin-induced covalent cross-linking, our results essentially suggest the applicability of a proteomic approach to FFPE parathyroid specimens. From our point of view, FFPE extracts might be an alternative source, especially in the validation phase of protein biomarkers when a large cohort of samples is required and the low availability of frozen tissues might be constraining. PMID:21651755
Luebker, Stephen A; Wojtkiewicz, Melinda; Koepsell, Scott A
2015-11-01
Formalin-fixed paraffin-embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC-MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in-solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre-analytical variations and analyzed with three technical replicates by LC-MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre-analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor
Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi
2016-01-01
Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time. PMID:27898002
Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.
Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi
2016-11-25
Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.
Reconnection-Driven Coronal-Hole Jets with Gravity and Solar Wind
NASA Technical Reports Server (NTRS)
Karpen, J. T.; Devore, C. R.; Antiochos, S. K.; Pariat, E.
2017-01-01
Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry,gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfven wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfven waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.
2017-01-01
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G
2017-11-03
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.
2015-10-15
We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days.more » Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.« less
Steiner, Malte; Volkheimer, David; Meyers, Nicholaus; Wehner, Tim; Wilke, Hans-Joachim; Claes, Lutz; Ignatius, Anita
2015-01-01
For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior). The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. Therefore, standardized specimens were created by selective laser sintering (SLS), mimicking size, directional behavior, and embedding variations of respective rat long bone specimens. For the latter, five different geometries were created which show shifted or tilted specimen alignments. The mechanical tests included three-point bending, four-point bending, cantilever bending, axial compression, constrained torsion, and unconstrained torsion. All three different bending tests showed the same principal behavior. They were highly dependent on the rotational direction of the maximum fracture callus expansion relative to the loading direction (creating experimental errors of more than 60%), however small angular deviations (<15°) were negligible. Differences in the experimental results between the bending tests originate in their respective location of maximal bending moment induction. Compared to four-point bending, three-point bending is easier to apply on small rat and mouse bones under realistic testing conditions and yields robust measurements, provided low variation of the callus shape among the tested specimens. Axial compressive testing was highly sensitive to embedding variations, and therefore cannot be recommended. Although it is experimentally difficult to realize, unconstrained torsion testing was found to be the most robust method, since it was independent of both rotational alignment and embedding uncertainties. Constrained torsional testing showed small errors (up to 16.8%, compared to corresponding alignment under unconstrained torsion) due to a parallel offset between the specimens’ axis of gravity and the torsional axis of rotation. PMID:25781027
Jun Liu; Fan Zhang; Huang, He Helen
2014-01-01
Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.
Electromagnetic braking revisited with a magnetic point dipole model
NASA Astrophysics Data System (ADS)
Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.
2016-04-01
A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.
Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips.
Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei
2015-05-18
This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of -0.7/0.6 °C from -30 °C to 70 °C after 1-point calibration at 30 °C.
Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips
Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei
2015-01-01
This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of −0.7/0.6 °C from −30 °C to 70 °C after 1-point calibration at 30 °C. PMID:25993518
Sunderkötter, Cord; Becker, Karsten; Kutzner, Heinz; Meyer, Thomas; Blödorn-Schlicht, Norbert; Reischl, Udo; Nenoff, Pietro; Geißdörfer, Walter; Gräser, Yvonne; Herrmann, Mathias; Kühn, Joachim; Bogdan, Christian
2018-02-01
Nucleic acid amplification techniques (NATs), such as PCR, are highly sensitive and specific methods that have become valuable supplements to culture and serology in the diagnosis of infectious disorders. However, especially when using formalin-fixed and paraffin-embedded tissue, these techniques are associated with both false-negative and false-positive results, a pitfall that is frequently misjudged. Representatives of the German Society of Hygiene and Microbiology (DGHM) and the German Society of Dermatology (DDG) therefore set out to develop a consensus - in the form of a review article - on the appropriate indications for NATs using paraffin-embedded tissue, its contraindications, and the key points to be considered in the pre- and post-analytical phase. Given that fresh, naive tissue is preferably to be used in the workup of a suspected infection, PCR analysis on paraffin sections represents an exception. The latter may be considered if an infection is suspected at a later point in time and fresh tissue has not been preserved or can no longer be obtained. Potential indications include confirmation of histologically suspected infections with Leishmania spp., Bartonella spp., Rickettsia spp., or in case of ecthyma contagiosum. Infections with, for example, mycobacteria or RNA viruses, on the other hand, are not considered useful indications for NATs using paraffin sections. In order to avoid misinterpretation of test results, it is essential that laboratory reports on NATs using paraffin-embedded tissue contain information on the indication/diagnostic circumstances, the required and chosen pre-analytical steps, the limitations of the method, and on diagnostic alternatives. © 2018 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
The Multigroup Multilevel Categorical Latent Growth Curve Models
ERIC Educational Resources Information Center
Hung, Lai-Fa
2010-01-01
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
Low Power Multi-Hop Networking Analysis in Intelligent Environments.
Etxaniz, Josu; Aranguren, Gerardo
2017-05-19
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.
Low Power Multi-Hop Networking Analysis in Intelligent Environments
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide. PMID:28534847
NASA Astrophysics Data System (ADS)
Bakhri, S.; Sumarno, E.; Himawan, R.; Akbar, T. Y.; Subekti, M.; Sunaryo, G. R.
2018-02-01
Three research reactors owned by BATAN have been more than 25 years. Aging of (Structure, System and Component) SSC which is mainly related to mechanical causes become the most important issue for the sustainability and safety operation. Acoustic Emission (AE) is one of the appropriate and recommended methods by the IAEA for inspection as well as at the same time for the monitoring of mechanical SSC related. However, the advantages of AE method in detecting the acoustic emission both for the inspection and the online monitoring require a relatively complex measurement system including hardware software system for the signal detection and analysis purposes. Therefore, aim of this work was to develop an AE system based on an embedded system which capable for doing both the online monitoring and inspection of the research reactor’s integrity structure. An embedded system was selected due to the possibility to install the equipment on the field in extreme environmental condition with capability to store, analyses, and send the required information for further maintenance and operation. The research was done by designing the embedded system based on the Field Programmable Gate Array (FPGA) platform, because of their execution speed and system reconfigurable opportunities. The AE embedded system is then tested to identify the AE source location and AE characteristic under tensile material testing. The developed system successfully acquire the AE elastic waveform and determine the parameter-based analysis such as the amplitude, peak, duration, rise time, counts and the average frequency both for the source location test and the tensile test.
NASA Astrophysics Data System (ADS)
Reggiani, M.; Christiaens, V.; Absil, O.; Mawet, D.; Huby, E.; Choquet, E.; Gomez Gonzalez, C. A.; Ruane, G.; Femenia, B.; Serabyn, E.; Matthews, K.; Barraza, M.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Habraken, S.; Jolivet, A.; Karlsson, M.; Orban de Xivry, G.; Piron, P.; Surdej, J.; Vargas Catalan, E.; Wertz, O.
2018-03-01
Context. Transition disks offer the extraordinary opportunity to look for newly born planets and to investigate the early stages of planet formation. Aim. In this context we observed the Herbig A5 star MWC 758 with the L'-band vector vortex coronagraph installed in the near-infrared camera and spectrograph NIRC2 at the Keck II telescope, with the aim of unveiling the nature of the spiral structure by constraining the presence of planetary companions in the system. Methods: Our high-contrast imaging observations show a bright (ΔL' = 7.0 ± 0.3 mag) point-like emission south of MWC 758 at a deprojected separation of 20 au (r = 0.''111 ± 0.''004) from the central star. We also recover the two spiral arms (southeast and northwest), already imaged by previous studies in polarized light, and discover a third arm to the southwest of the star. No additional companions were detected in the system down to 5 Jupiter masses beyond 0.''6 from the star. Results: We propose that the bright L'-band emission could be caused by the presence of an embedded and accreting protoplanet, although the possibility of it being an asymmetric disk feature cannot be excluded. The spiral structure is probably not related to the protoplanet candidate, unless on an inclined and eccentric orbit, and it could be due to one (or more) yet undetected planetary companions at the edge of or outside the spiral pattern. Future observations and additional simulations will be needed to shed light on the true nature of the point-like source and its link with the spiral arms. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A74
7 CFR 201.56-7 - Lily family, Liliaceae.
Code of Federal Regulations, 2014 CFR
2014-01-01
... single cylindrical cotyledon; following germination, all but the basal end remains embedded in the endosperm to absorb nutrients. (iv) Shoot system: The epicotyl elongates and carries the terminal bud above... growing point, provided other essential structures are normal. (v) Root system: A long slender primary...
7 CFR 201.56-7 - Lily family, Liliaceae.
Code of Federal Regulations, 2012 CFR
2012-01-01
... single cylindrical cotyledon; following germination, all but the basal end remains embedded in the endosperm to absorb nutrients. (iv) Shoot system: The epicotyl elongates and carries the terminal bud above... growing point, provided other essential structures are normal. (v) Root system: A long slender primary...
7 CFR 201.56-7 - Lily family, Liliaceae.
Code of Federal Regulations, 2013 CFR
2013-01-01
... single cylindrical cotyledon; following germination, all but the basal end remains embedded in the endosperm to absorb nutrients. (iv) Shoot system: The epicotyl elongates and carries the terminal bud above... growing point, provided other essential structures are normal. (v) Root system: A long slender primary...
Wavelet-based scalable L-infinity-oriented compression.
Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter
2006-09-01
Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.
A Module Language for Typing by Contracts
NASA Technical Reports Server (NTRS)
Glouche, Yann; Talpin, Jean-Pierre; LeGuernic, Paul; Gautier, Thierry
2009-01-01
Assume-guarantee reasoning is a popular and expressive paradigm for modular and compositional specification of programs. It is becoming a fundamental concept in some computer-aided design tools for embedded system design. In this paper, we elaborate foundations for contract-based embedded system design by proposing a general-purpose module language based on a Boolean algebra allowing to define contracts. In this framework, contracts are used to negotiate the correctness of assumptions made on the definition of a component at the point where it is used and provides guarantees to its environment. We illustrate this presentation with the specification of a simplified 4-stroke engine model.
Speech recognition for embedded automatic positioner for laparoscope
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin
2014-07-01
In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.
Unsupervised image matching based on manifold alignment.
Pei, Yuru; Huang, Fengchun; Shi, Fuhao; Zha, Hongbin
2012-08-01
This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.
Numerical simulation of the compressible Orszag-Tang vortex. II. Supersonic flow. Interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picone, J.M.; Dahlburg, R.B.
The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers M = 1.0 and 1.5 and beta = 10/3 with Lundquist numbers S = 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems,more » peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.« less
Kealey, Shannon
2011-01-01
This column examines the experience, over three years, of a librarian embedded in an online Epidemiology and Evidence-based Medicine course, which is a requirement for students pursuing a Master of Science in Physician Assistant Studies at Pace University. Student learning outcomes were determined, a video lecture was created, and student learning was assessed via a five-point Blackboard test during year one. For years two and three, the course instructor asked the librarian to be responsible for two weeks of course instruction and a total of 15 out of 100 possible points for the course. This gave the librarian flexibility to measure additional outcomes and gather more in-depth assessment data. The librarian then used the assessment data to target areas for improvement in the lessons and Blackboard tests. Revisions made by the librarian positively affected student achievement of learning outcomes, as measured by the assessment conducted the subsequent semester. Plans for further changes are also discussed.
A search for embedded young stellar objects in and near the IC 1396 complex
NASA Technical Reports Server (NTRS)
Schwartz, Richard D.; Wilking, Bruce A.; Giulbudagian, Armen L.
1991-01-01
The IRAS data base is used to locate young stellar object candidates in and near the IC 1396 complex located in the Cepheus OB2 association. Co-added survey data are used to identify all sources with a flux density Snu(100) greater than 10 Jy and with Snu(100) greater than Snu(60). The 15 sources located at the positions of globules and dark clouds are further analyzed using the inscan slices to assess the source profiles.
Multivariate Visualization in Social Sciences and Survey Data
2013-09-01
uses bubbles indicating Walmart store locations. The bubble size is misleading as it does not reflect the amount of stores or the size of any store...displaying survey data, the bubbles’ exact location is relevant, indicating Walmart store locations. Yau’s choropleth (Figure 2.7, right chart) displays...is able to see the embedded image. 14 Figure 2.7: Point-based bubbles (left) display the the locations of Walmart stores at some point in the stores
The Stellar Population Associated with the IRAS Source 16132-5039
NASA Astrophysics Data System (ADS)
Roman-Lopes, A.; Abraham, Z.
2004-05-01
We report the discovery of a young massive stellar cluster and infrared nebula in the direction of the CS molecular cloud associated with the IRAS point source 16132-5039. Analysis of mid-infrared images from the more accurate Midcourse Space Experiment catalog reveals that there are two independent components associated with the IRAS source. The integral of the spectral energy distribution for these components between 8.28 and 100 μm gives lower limits for the bolometric luminosity of the embedded objects of 8.7×104 and 9×103 Lsolar, which correspond to zero-age main-sequence O8 and B0.5 stars, respectively. The number of Lyman continuum photons expected from the stars that lie along the reddening line for early-type stars is about 1.7×1049 s-1, enough to produce the detected flux densities at 5 GHz. The near-infrared spectrum of the nebula increases with frequency, implying that free-free emission cannot be the main source of the extended luminosity, from which we conclude that the observed emission must be mainly dust-scattered light. A comparison of the cluster described in this paper with the young stellar cluster associated with the IRAS source 16177-5018, which is located at the same distance and in the same direction, shows that the mean visual absorption of the newly discovered cluster is about 10 mag smaller and that it contains less massive stars, suggesting that it was formed from a less massive molecular cloud. Based on observations made at the Laboratório Nacional de Astrofisica, Ministério da Ciência e Tecnologia, Brazil.
Efficiency Vermont - Embedding energy efficiency into low-income programs and services
Discover the key features, approaches, partners, funding sources, and achievements of the Efficiency Vermont program and how it has been able to reach nearly one-half of the state’s low-income population.
Koch, Tomas F; Leal, Valentina J; Ayala, Ricardo A
2016-01-01
The discussion of teaching and learning in nursing has been prolific. Whereas most of the debate tends to focus on core contents of nursing programmes, little has been discussed about the teaching in 'supporting subjects' with relevance to both nursing education and nursing practice. This article offers a perspective on sociology scholarship for applied professions by using the case of nursing programmes. Syllabus is a rich source of data, and in its representational capacity it becomes both a discursive construction and a vehicle of ideology. Accordingly, we present a Critical Discourse Analysis of syllabi of nursing schools in Chile as to identify core contents and ideologies, and implied challenges for nursing education. We argue that while the syllabus as a discourse discloses a significant cleavage, the biggest challenge is precisely to challenge the ideologies constructed by and embedded in the syllabi. Our reflection thus points to a better interdisciplinary dialogue as to enhance the actual contribution of sociology to nursing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chemical-text hybrid search engines.
Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J
2010-01-01
As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.
HIGH RESOLUTION H{alpha} IMAGES OF THE BINARY LOW-MASS PROPLYD LV 1 WITH THE MAGELLAN AO SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.-L.; Close, L. M.; Males, J. R.
2013-09-01
We utilize the new Magellan adaptive optics system (MagAO) to image the binary proplyd LV 1 in the Orion Trapezium at H{alpha}. This is among the first AO results in visible wavelengths. The H{alpha} image clearly shows the ionization fronts, the interproplyd shell, and the cometary tails. Our astrometric measurements find no significant relative motion between components over {approx}18 yr, implying that LV 1 is a low-mass system. We also analyze Large Binocular Telescope AO observations, and find a point source which may be the embedded protostar's photosphere in the continuum. Converting the H magnitudes to mass, we show thatmore » the LV 1 binary may consist of one very-low-mass star with a likely brown dwarf secondary, or even plausibly a double brown dwarf. Finally, the magnetopause of the minor proplyd is estimated to have a radius of 110 AU, consistent with the location of the bow shock seen in H{alpha}.« less
Santhi, Velayudhan Satheeja; Gupta, Ashutosh; Saranya, Somasundaram; Jebakumar, Solomon Robinson David
2014-06-01
The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae . Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.
Lotka-Volterra representation of general nonlinear systems.
Hernández-Bermejo, B; Fairén, V
1997-02-01
In this article we elaborate on the structure of the generalized Lotka-Volterra (GLV) form for nonlinear differential equations. We discuss here the algebraic properties of the GLV family, such as the invariance under quasimonomial transformations and the underlying structure of classes of equivalence. Each class possesses a unique representative under the classical quadratic Lotka-Volterra form. We show how other standard modeling forms of biological interest, such as S-systems or mass-action systems, are naturally embedded into the GLV form, which thus provides a formal framework for their comparison and for the establishment of transformation rules. We also focus on the issue of recasting of general nonlinear systems into the GLV format. We present a procedure for doing so and point at possible sources of ambiguity that could make the resulting Lotka-Volterra system dependent on the path followed. We then provide some general theorems that define the operational and algorithmic framework in which this is not the case.
Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF
NASA Astrophysics Data System (ADS)
Ellington, S. M.; Moldwin, M. B.; Liemohn, M. W.
2016-03-01
We present evidence of resonant wave-wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large-scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time-dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin-Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes.
Embeddings of the "New Massive Gravity"
NASA Astrophysics Data System (ADS)
Dalmazi, D.; Mendonça, E. L.
2016-07-01
Here we apply different types of embeddings of the equations of motion of the linearized "New Massive Gravity" in order to generate alternative and even higher-order (in derivatives) massive gravity theories in D=2+1. In the first part of the work we use the Weyl symmetry as a guiding principle for the embeddings. First we show that a Noether gauge embedding of the Weyl symmetry leads to a sixth-order model in derivatives with either a massive or a massless ghost, according to the chosen overall sign of the theory. On the other hand, if the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost-free and Weyl invariant at the linearized level around Minkowski space. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. In the second part of the work we prove to all orders in derivatives that there is no local, ghost-free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, since in the latter case we can replace the Einstein-Hilbert action by specific f(R,Box R) generalizations and still keep the theory ghost-free at the linearized level.
NASA Astrophysics Data System (ADS)
Lee, Graham C. B.; Van Hoe, Bram; Yan, Zhijun; Maskery, Oliver; Sugden, Kate; Webb, David; Van Steenberge, Geert
2012-03-01
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 μm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components.
MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles
NASA Astrophysics Data System (ADS)
Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun
2015-06-01
The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g
Leu, Jenq-Shiou; Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source-Linphone-in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation.
Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon
NASA Astrophysics Data System (ADS)
Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.
2018-06-01
Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.
Wang, Zhi-Guo; Chen, Zeng-Ping; Gong, Fan; Wu, Hai-Long; Yu, Ru-Qin
2002-05-01
The chromatographic peak located inside another peak in the time direction is called an embedded or inner peak in contradistinction with the embedding peak, which is called an outer peak. The chemical components corresponding to inner and outer peaks are called inner and outer components, respectively. This special case of co-eluting chromatograms was investigated using chemometric approaches taking GC-MS as an example. A novel method, named inner chromatogram projection (ICP), for resolution of GC-MS data with embedded chromatographic peaks is derived. Orthogonal projection resolution is first utilized to obtain the chromatographic profile of the inner component. Projection of the two-way data matrix columnwise-normalized along the time direction to the normalized profile of the inner component found is subsequently performed to find the selective m/z points, if they exist, which represent the chromatogram of the outer component by itself. With the profiles obtained, the mass spectra can easily be found by means of a least-squares procedure. The results for both simulated data and real samples demonstrate that the proposed method is capable of achieving satisfactory resolution performance not affected by the shapes of chromatograms and the relative positions of the components involved.
Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete
NASA Astrophysics Data System (ADS)
Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren
2018-03-01
Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.
Optical 3D watermark based digital image watermarking for telemedicine
NASA Astrophysics Data System (ADS)
Li, Xiao Wei; Kim, Seok Tae
2013-12-01
Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.
Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367
NASA Technical Reports Server (NTRS)
Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.
1995-01-01
We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the PSPC and the HRI observations, we detect 16 extended features, of which nine have galaxies coincided with the X-ray-measured positions (within the positional error circles). These extended sources have luminosities lying in the range (3 - 30) x 10(exp 40) ergs/s and gas masses of approximately (1 - 30) x 10(exp 9) solar mass, if the X-rays are of thermal origin. We confirm the presence of extended features in A1367 first reported by Bechtold et al. (1983). The nature of these systems remains uncertain. The luminosities are large if the emission is attributed to single galaxies, and several of the extended features have no associated galaxy counterparts. The extended features may be associated with galaxy groups, as suggested by Canizares, Fabbiano, & Trinchieri (1987), although the number required is large.
Embedded Literacy: Knowledge as Meaning
ERIC Educational Resources Information Center
Martin, J. R.
2013-01-01
This paper takes as point of departure the register variable field, and explores its application to the discourse of History and Biology in secondary school classrooms from the perspective of systemic functional linguistics. In particular it considers the functions of technicality and abstraction in these subject specific discourses, and their…
Mumtaz, Sidra; Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.
Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015
Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE
NASA Astrophysics Data System (ADS)
Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.
2007-09-01
We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.
An architecture for genomics analysis in a clinical setting using Galaxy and Docker
Digan, W; Countouris, H; Barritault, M; Baudoin, D; Laurent-Puig, P; Blons, H; Burgun, A
2017-01-01
Abstract Next-generation sequencing is used on a daily basis to perform molecular analysis to determine subtypes of disease (e.g., in cancer) and to assist in the selection of the optimal treatment. Clinical bioinformatics handles the manipulation of the data generated by the sequencer, from the generation to the analysis and interpretation. Reproducibility and traceability are crucial issues in a clinical setting. We have designed an approach based on Docker container technology and Galaxy, the popular bioinformatics analysis support open-source software. Our solution simplifies the deployment of a small-size analytical platform and simplifies the process for the clinician. From the technical point of view, the tools embedded in the platform are isolated and versioned through Docker images. Along the Galaxy platform, we also introduce the AnalysisManager, a solution that allows single-click analysis for biologists and leverages standardized bioinformatics application programming interfaces. We added a Shiny/R interactive environment to ease the visualization of the outputs. The platform relies on containers and ensures the data traceability by recording analytical actions and by associating inputs and outputs of the tools to EDAM ontology through ReGaTe. The source code is freely available on Github at https://github.com/CARPEM/GalaxyDocker. PMID:29048555
An architecture for genomics analysis in a clinical setting using Galaxy and Docker.
Digan, W; Countouris, H; Barritault, M; Baudoin, D; Laurent-Puig, P; Blons, H; Burgun, A; Rance, B
2017-11-01
Next-generation sequencing is used on a daily basis to perform molecular analysis to determine subtypes of disease (e.g., in cancer) and to assist in the selection of the optimal treatment. Clinical bioinformatics handles the manipulation of the data generated by the sequencer, from the generation to the analysis and interpretation. Reproducibility and traceability are crucial issues in a clinical setting. We have designed an approach based on Docker container technology and Galaxy, the popular bioinformatics analysis support open-source software. Our solution simplifies the deployment of a small-size analytical platform and simplifies the process for the clinician. From the technical point of view, the tools embedded in the platform are isolated and versioned through Docker images. Along the Galaxy platform, we also introduce the AnalysisManager, a solution that allows single-click analysis for biologists and leverages standardized bioinformatics application programming interfaces. We added a Shiny/R interactive environment to ease the visualization of the outputs. The platform relies on containers and ensures the data traceability by recording analytical actions and by associating inputs and outputs of the tools to EDAM ontology through ReGaTe. The source code is freely available on Github at https://github.com/CARPEM/GalaxyDocker. © The Author 2017. Published by Oxford University Press.
Photo-stimulated low electron temperature high current diamond film field emission cathode
Shurter,; Roger Philips, Devlin [Los Alamos, NM; David James, Moody [Santa Fe, NM; Nathan Andrew, Taccetti [Los Alamos, NM; Jose Martin, Russell [Santa Fe, NM; John, Steven [Los Alamos, NM
2012-07-24
An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.
[A landscape ecological approach for urban non-point source pollution control].
Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing
2005-05-01
Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.
2012-06-01
According to the Bernoulli equation for ideal flows, i.e. steady, frictionless, incompressible flows, the total head, H, at any point can be determined...centerline and using the Bernoulli equation for ideal flow with an assumption that the velocity is small, the total head equals the pressure head...the Bernoulli equation for ideal flows, i.e. steady, frictionless, incompressible flows, the total head, H, at any point can be determined by
NASA Astrophysics Data System (ADS)
Koo, Bryan Bonsuk
Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.
NASA Astrophysics Data System (ADS)
Kumar, M. S. N.
2013-10-01
The formation of the highest mass stars are thought to be dominated by instabilities resulting from gravitation and radiation. Instabilities due to gravitation are commonly demonstrated by observations of fragmentation, but those due to effects of radiation have thus far not been found. Here I report on the NACO adaptive optics and mid-infrared diffraction-limited VISIR imaging data of an extemely luminous ultra-compact HII region G333.6-0.2. Two infrared sources, one bright in the near-infrared (appearing point-like) and another in the mid-infrared (resolved with an elliptical shape) are uncovered through this data, which are located at the heart of this region. These infrared sources appear to be embedded in the waist of a bipolar-shaped nebula and UCHII region, the lobes of which are separated by a dark patch. Dense filamentary features with finger/hook morphology are found; they appear to be connected to the two bright infrared sources and the sizes of these hook features are sharply limited to <5000 AU. The observed properties of this target and a large amount of previous data obtained from the literature are compared together with the results of various numerical simulations of high-mass star formation. This comparison favours the interpretation that the finger/hook-like structures likely represent radiatively driven Rayleigh-Taylor instabilities arising in the outflow cavity of a forming high-mass binary star system.
Printable enzyme-embedded materials for methane to methanol conversion
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...
2016-06-15
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less
Printable enzyme-embedded materials for methane to methanol conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less
Hinton, Thomas J.; Jallerat, Quentin; Palchesko, Rachelle N.; Park, Joon Hyung; Grodzicki, Martin S.; Shue, Hao-Jan; Ramadan, Mohamed H.; Hudson, Andrew R.; Feinberg, Adam W.
2015-01-01
We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin. Computer-aided design models of 3D optical, computed tomography, and magnetic resonance imaging data were 3D printed at a resolution of ~200 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312
Printable enzyme-embedded materials for methane to methanol conversion
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.
2016-01-01
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270
NASA Astrophysics Data System (ADS)
Pascal, K.; Neuberg, J. W.; Rivalta, E.
2011-12-01
The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system is represented by several sources, their respective deformation fields are summed, and the assumption of homogeneity in the half-space is violated. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying the pressure or opening of the sources and their relative position. We also investigated various numerical methods to model a dike as a dislocation tensile source or as a pressurized tabular crack. In the former case, the dike opening was either defined as two boundaries displaced from a central location, or as one boundary displaced relative to the other. We finally considered two case studies based on Soufrière Hills Volcano (Montserrat, West Indies) and the Dabbahu rift segment (Afar, Ethiopia) magmatic systems. We found that the discrepancies between simple superposition of the displacement field and a fully interacting numerical solution depend mostly on the source types and on their spacing. Their magnitude may be comparable with the errors due to neglecting the topography, the inhomogeneities in crustal properties or more realistic rheologies. In the models considered, the errors induced when neglecting the source interaction can be neglected (<5%) when the sources are separated by at least 4 radii for two combined Mogi sources and by at least 3 radii for juxtaposed Mogi and Okada sources. Furthermore, this study underlines fundamental issues related to the numerical method chosen to model a dike or a magma chamber. It clearly demonstrates that, while the magma compressibility can be neglected to model the deformation due to one source or distant sources, it is necessary to take it into account in models combining close sources.
WebScope: A New Tool for Fusion Data Analysis and Visualization
NASA Astrophysics Data System (ADS)
Yang, Fei; Dang, Ningning; Xiao, Bingjia
2010-04-01
A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.
Machine Learning for Mapping Groundwater Salinity with Oil Well Log Data
NASA Astrophysics Data System (ADS)
Chang, W. H.; Shimabukuro, D.; Gillespie, J. M.; Stephens, M.
2016-12-01
An oil field may have thousands of wells with detailed petrophysical logs, and far fewer direct measurements of groundwater salinity. Can the former be used to extrapolate the latter into a detailed map of groundwater salinity? California Senate Bill 4, with its requirement to identify Underground Sources of Drinking Water, makes this a question worth answering. A well-known obstacle is that the basic petrophysical equations describe ideal scenarios ("clean wet sand") and even these equations contain many parameters that may vary with location and depth. Accounting for other common scenarios such as high-conductivity shaly sands or low-permeability diatomite (both characteristic of California's Central Valley) causes parameters to proliferate to the point where the model is underdetermined by the data. When parameters outnumber data points, however, is when machine learning methods are most advantageous. We present a method for modeling a generic oil field, where groundwater salinity and lithology are depth series parameters, and the constants in petrophysical equations are scalar parameters. The data are well log measurements (resistivity, porosity, spontaneous potential, and gamma ray) and a small number of direct groundwater salinity measurements. Embedded in the model are petrophysical equations that account for shaly sand and diatomite formations. As a proof of concept, we feed in well logs and salinity measurements from the Lost Hills Oil Field in Kern County, California, and show that with proper regularization and validation the model makes reasonable predictions of groundwater salinity despite the large number of parameters. The model is implemented using Tensorflow, which is an open-source software released by Google in November, 2015 that has been rapidly and widely adopted by machine learning researchers. The code will be made available on Github, and we encourage scrutiny and modification by machine learning researchers and hydrogeologists alike.
A qualitative study of culturally embedded factors in complementary and alternative medicine use.
Zörgő, Szilvia; Purebl, György; Zana, Ágnes
2018-01-22
Within the intercultural milieu of medical pluralism, a nexus of worldviews espousing distinct explanatory models of illness, our research aims at exploring factors leading to complementary and alternative medicine (CAM) use with special attention to their cultural context. The results are based on medical anthropological fieldwork (participant observation and in-depth interviews) spanning a period from January 2015 to May 2017 at four clinics of Traditional Chinese Medicine in Budapest, Hungary. Participant observation involved 105 patients (males N = 42); in-depth interviews were conducted with patients (N = 9) and practitioners (N = 9). The interviews were coded with Interpretative Phenomenological Analysis; all information was aggregated employing Atlas.ti software. In order to avoid the dichotomization of "push and pull factors," results obtained from the fieldwork and interviews were structured along milestones of the patient journey. These points of reference include orientation among sources of information, biomedical diagnosis, patient expectations and the physician-patient relationship, the biomedical treatment trajectory and reasons for non-adherence, philosophical congruence, and alternate routes of entry into the world of CAM. All discussed points which are a departure from the strictly western therapy, entail an underlying socio-cultural disposition and must be scrutinized in this context. The influence of one's culturally determined explanatory model is ubiquitous from the onset of the patient journey and exhibits a reciprocal relationship with subjective experience. Firsthand experience (or that of the Other) signifies the most reliable source of information in matters of illness and choice of therapy. Furthermore, the theme of (building and losing) trust is present throughout the patient journey, a determining factor in patient decision-making and dispositions toward both CAM and biomedicine.
The mid-infrared environments of 6.7 GHz methanol masers from the Methanol Multi-Beam Survey
NASA Astrophysics Data System (ADS)
Gallaway, M.; Thompson, M. A.; Lucas, P. W.; Fuller, G. A.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Breen, S. L.; Quinn, L.; Ellingsen, S. P.; Avison, A.; Ward-Thompson, D.; Cox, J.
2013-04-01
We present a study of the mid-infrared environments and association with star formation tracers of 6.7 GHz methanol masers taken from the Methanol Multi-Beam (MMB) survey. Our ultimate goal is to establish the mass of the host star and its evolutionary stage for each maser site. As a first step, the GLIMPSE survey of the Galactic plane is utilized to investigate the environment of 776 methanol masers and we find that while the majority of the masers are associated with mid-infrared counterparts, a significant fraction (17 per cent) are not associated with any detectable mid-infrared emission. A number of the maser counterparts are clearly extended with respect to the GLIMPSE point spread function and we implement an adaptive non-circular aperture photometry (ANCAP) technique to determine the fluxes of the maser counterparts. The ANCAP technique doubles the number of masers with flux information at all four wavelengths compared to the number of the corresponding counterparts obtained from the GLIMPSE Point Source Catalog. The colours of the maser counterparts are found to be very similar to the smaller study carried out by Ellingsen. The MMB masers are weakly associated with extended green objects and Red MSX Survey embedded sources (YSO and H II region classifications) with 18 and 12 per cent of masers associated with these objects, respectively. The majority of MMB masers (60 per cent) have detectable GLIMPSE infrared counterparts but have not been identified with previously recognized tracers of massive star formation; this confirms that the MMB survey has the potential to identify massive star-forming regions independent of infrared selection.
3D facial landmarks: Inter-operator variability of manual annotation
2014-01-01
Background Manual annotation of landmarks is a known source of variance, which exist in all fields of medical imaging, influencing the accuracy and interpretation of the results. However, the variability of human facial landmarks is only sparsely addressed in the current literature as opposed to e.g. the research fields of orthodontics and cephalometrics. We present a full facial 3D annotation procedure and a sparse set of manually annotated landmarks, in effort to reduce operator time and minimize the variance. Method Facial scans from 36 voluntary unrelated blood donors from the Danish Blood Donor Study was randomly chosen. Six operators twice manually annotated 73 anatomical and pseudo-landmarks, using a three-step scheme producing a dense point correspondence map. We analyzed both the intra- and inter-operator variability, using mixed-model ANOVA. We then compared four sparse sets of landmarks in order to construct a dense correspondence map of the 3D scans with a minimum point variance. Results The anatomical landmarks of the eye were associated with the lowest variance, particularly the center of the pupils. Whereas points of the jaw and eyebrows have the highest variation. We see marginal variability in regards to intra-operator and portraits. Using a sparse set of landmarks (n=14), that capture the whole face, the dense point mean variance was reduced from 1.92 to 0.54 mm. Conclusion The inter-operator variability was primarily associated with particular landmarks, where more leniently landmarks had the highest variability. The variables embedded in the portray and the reliability of a trained operator did only have marginal influence on the variability. Further, using 14 of the annotated landmarks we were able to reduced the variability and create a dense correspondences mesh to capture all facial features. PMID:25306436
Performances of a Compact, High-Power WB Source with Circular Polarization
NASA Astrophysics Data System (ADS)
Delmote, P.; Pinguet, S.; Bieth, F.
This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.
Globules and pillars in Cygnus X. II. Massive star formation in the globule IRAS 20319+3958
NASA Astrophysics Data System (ADS)
Djupvik, A. A.; Comerón, F.; Schneider, N.
2017-03-01
Globules and pillars, impressively revealed by the Spitzer and Herschel satellites, for example, are pervasive features found in regions of massive star formation. Studying their embedded stellar populations can provide an excellent laboratory to test theories of triggered star formation and the features that it may imprint on the stellar aggregates resulting from it. We studied the globule IRAS 20319+3958 in Cygnus X by means of visible and near-infrared imaging and spectroscopy, complemented with mid-infrared Spitzer/IRAC imaging, in order to obtain a census of its stellar content and the nature of its embedded sources. Our observations show that the globule contains an embedded aggregate of about 30 very young (≲1 Myr) stellar objects, for which we estimate a total mass of 90 M⊙. The most massive members are three systems containing early B-type stars. Two of them most likely produced very compact H II regions, one of them being still highly embedded and coinciding with a peak seen in emission lines characterising the photon dominated region (PDR). Two of these three systems are resolved binaries, and one of those contains a visible Herbig Be star. An approximate derivation of the mass function of the members of the aggregate gives hints of a slope at high masses shallower than the classical Salpeter slope, and a peak of the mass distribution at a mass higher than that at which the widely adopted log-normal initial mass function peaks. The emission distribution of H2 and Brγ, tracing the PDR and the ionised gas phase, respectively, suggests that molecular gas is distributed as a shell around the embedded aggregate, filled with centrally-condensed ionised gas. Both, the morphology and the low excitation of the H II region, indicate that the sources of ionisation are the B stars of the embedded aggregate, rather than the external UV field caused by the O stars of Cygnus OB2. The youth of the embedded cluster, combined with the isolation of the globule, suggests that star formation in the globule was triggered by the passage of the ionisation front. Based on observations from the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, the Nordic Optical Telescope, La Palma, and the IAC80 telescope, Tenerife.Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A37
Polyester Wax: A New Embedding Medium for the Histopathologic Study of Human Temporal Bones
Merchant, Saumil N.; Burgess, Barbara; O'Malley, Jennifer; Jones, Diane; Adams, Joe C.
2007-01-01
Background Celloidin and paraffin are the two common embedding mediums used for histopathologic study of the human temporal bone by light microscopy. Although celloidin embedding permits excellent morphologic assessment, celloidin is difficult to remove, and there are significant restrictions on success with immunostaining. Embedding in paraffin allows immunostaining to be performed, but preservation of cellular detail within the membranous labyrinth is relatively poor. Objectives/Hypothesis Polyester wax is an embedding medium that has a low melting point (37°C), is soluble in most organic solvents, is water tolerant, and sections easily. We hypothesized that embedding in polyester wax would permit good preservation of the morphology of the membranous labyrinth and, at the same time, allow the study of proteins by immunostaining. Methods Nine temporal bones from individuals aged 1 to 94 years removed 2 to 31 hours postmortem, from subjects who had no history of otologic disease, were used. The bones were fixed using 10% formalin, decal-cified using EDTA, embedded in polyester wax, and serially sectioned at a thickness of 8 to 12 μm on a rotary microtome. The block and knife were cooled with frozen CO2 (dry ice) held in a funnel above the block. Sections were placed on glass slides coated with a solution of 1% fish gelatin and 1% bovine albumin, followed by staining of selected sections with hematoxylin and eosin (H&E). Immunostaining was also performed on selected sections using antibodies to 200 kD neurofilament and Na-K-ATPase. Results Polyester wax–embedded sections demonstrated good preservation of cellular detail of the organ of Corti and other structures of the membranous labyrinth, as well as the surrounding otic capsule. The protocol described in this paper was reliable and consistently yielded sections of good quality. Immuno-staining was successful with both antibodies. Conclusion The use of polyester wax as an embedding medium for human temporal bones offers the advantage of good preservation of morphology and ease of immunostaining. We anticipate that in the future, polyester wax embedding will also permit other molecular biologic assays on temporal bone sections such as the retrieval of nucleic acids and the study of proteins using mass spectrometry–based proteomic analysis. PMID:16467713
Improving Learners' Ability to Recognize Emergence with Embedded Assessment in a Virtual Watershed
ERIC Educational Resources Information Center
Erlandson, Benjamin E.
2014-01-01
Measures of participants' water cycle knowledge and ability to recognize emergence were taken at various points throughout a 2-h experience with the Cloverdale virtual watershed socioecological simulation. Multilevel growth models were estimated for analysis of hypothesized predictive relationships between measured variables. Significant…
ERIC Educational Resources Information Center
Woolf, Michael
2018-01-01
This essay examines the interaction between the myth of the Wandering Jew, diaspora history and the notion of cosmopolitanism. This is a paradoxical synthesis that points in several directions: towards the ideals embedded in international education; towards the roots of anti-Semitism; in the direction of the notion of cosmopolitanism as a crime…
ERIC Educational Resources Information Center
Silin, Jonathan
2013-01-01
Drawing on the author's struggle to come to terms with multiple personal losses, his observations of young children in early childhood classrooms, and work with novice teachers, this essay points to the generative possibilities embedded in moments of disorienting loss. Constrained by traditional templates of mourning that did not reflect the lived…
Invariants for the generalized Lotka-Volterra equations
NASA Astrophysics Data System (ADS)
Cairó, Laurent; Feix, Marc R.; Goedert, Joao
A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.
Categorizing biomedicine images using novel image features and sparse coding representation
2013-01-01
Background Images embedded in biomedical publications carry rich information that often concisely summarize key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the potential of mining images embedded in biomedical publications for automatically understanding and retrieving such images' associated source documents. Within the broad area of biomedical image processing, categorizing biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining applications. Similar to any automatic categorization effort, discriminative image features can provide the most crucial aid in the process. Method We observe that many images embedded in biomedical publications carry versatile annotation text. Based on the locations of and the spatial relationships between these text elements in an image, we thus propose some novel image features for image categorization purpose, which quantitatively characterize the spatial positions and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation (SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly proposed image features. Results we randomly selected 990 images of the JPG format for use in our experiments where 310 images were used as training samples and the rest were used as the testing cases. We first segmented 310 sample images following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type "others". A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include conventional image features and our proposed novel features indicate different categorizing performance, and the results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine classification method and our proposed sparse representation classification method. At last, our proposed approach is compared with three peer classification method and experimental results verify our impressively improved performance. Conclusions Compared with conventional image features that do not exploit characteristics regarding text positions and distributions inside images embedded in biomedical publications, our proposed image features coupled with the SR based representation model exhibit superior performance for classifying biomedical images as demonstrated in our comparative benchmark study. PMID:24565470
RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpen, J. T.; DeVore, C. R.; Antiochos, S. K.
Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solarmore » wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.« less
ATLASGAL - towards a complete sample of massive star forming clumps
NASA Astrophysics Data System (ADS)
Urquhart, J. S.; Moore, T. J. T.; Csengeri, T.; Wyrowski, F.; Schuller, F.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Menten, K. M.; Walmsley, C. M.; Bronfman, L.; Pfalzner, S.; König, C.; Wienen, M.
2014-09-01
By matching infrared-selected, massive young stellar objects (MYSOs) and compact H II regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ˜1000 embedded young massive stars between 280° < ℓ < 350° and 10° < ℓ < 60° with | b | < 1.5°. Combined with an existing sample of radio-selected methanol masers and compact H II regions, the result is a catalogue of ˜1700 massive stars embedded within ˜1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and H II-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and H II-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources.
Beacon system based on light-emitting diode sources for runways lighting
NASA Astrophysics Data System (ADS)
Montes, Mario González; Vázquez, Daniel; Fernandez-Balbuena, Antonio A.; Bernabeu, Eusebio
2014-06-01
New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane's tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ˜1500 operating hours) and the lamp's technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED's lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.
Local parametric instability near elliptic points in vortex flows under shear deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950
The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.
Etxaniz, Josu; Aranguren, Gerardo
2017-04-30
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294
NASA Astrophysics Data System (ADS)
Bhardwaj, Rupali
2018-03-01
Reversible data hiding means embedding a secret message in a cover image in such a manner, to the point that in the midst of extraction of the secret message, the cover image and, furthermore, the secret message are recovered with no error. The goal of by far most of the reversible data hiding algorithms is to have improved the embedding rate and enhanced visual quality of stego image. An improved encrypted-domain-based reversible data hiding algorithm to embed two binary bits in each gray pixel of original cover image with minimum distortion of stego-pixels is employed in this paper. Highlights of the proposed algorithm are minimum distortion of pixel's value, elimination of underflow and overflow problem, and equivalence of stego image and cover image with a PSNR of ∞ (for Lena, Goldhill, and Barbara image). The experimental outcomes reveal that in terms of average PSNR and embedding rate, for natural images, the proposed algorithm performed better than other conventional ones.
NASA Technical Reports Server (NTRS)
Wallace, Robert
1986-01-01
A major impediment to a systematic attack on Ada software reusability is the lack of an effective taxonomy for software component functions. The scope of all possible applications of Ada software is considered too great to allow the practical development of a working taxonomy. Instead, for the purposes herein, the scope of Ada software application is limited to device and subsystem control in real-time embedded systems. A functional approach is taken in constructing the taxonomy tree for identified Ada domain. The use of modular software functions as a starting point fits well with the object oriented programming philosophy of Ada. Examples of the types of functions represented within the working taxonomy are real time kernels, interrupt service routines, synchronization and message passing, data conversion, digital filtering and signal conditioning, and device control. The constructed taxonomy is proposed as a framework from which a need analysis can be performed to reveal voids in current Ada real-time embedded programming efforts for Space Station.
Inferring Models of Bacterial Dynamics toward Point Sources
Jashnsaz, Hossein; Nguyen, Tyler; Petrache, Horia I.; Pressé, Steve
2015-01-01
Experiments have shown that bacteria can be sensitive to small variations in chemoattractant (CA) concentrations. Motivated by these findings, our focus here is on a regime rarely studied in experiments: bacteria tracking point CA sources (such as food patches or even prey). In tracking point sources, the CA detected by bacteria may show very large spatiotemporal fluctuations which vary with distance from the source. We present a general statistical model to describe how bacteria locate point sources of food on the basis of stochastic event detection, rather than CA gradient information. We show how all model parameters can be directly inferred from single cell tracking data even in the limit of high detection noise. Once parameterized, our model recapitulates bacterial behavior around point sources such as the “volcano effect”. In addition, while the search by bacteria for point sources such as prey may appear random, our model identifies key statistical signatures of a targeted search for a point source given any arbitrary source configuration. PMID:26466373
The Bargmann-Wigner equations in spherical space
NASA Astrophysics Data System (ADS)
McKeon, D. G. C.; Sherry, T. N.
2006-01-01
The Bargmann-Wigner formalism is adapted to spherical surfaces embedded in three to eleven dimensions. This is demonstrated to generate wave equations in spherical space for a variety of antisymmetric tensor fields. Some of these equations are gauge invariant for particular values of the parameters characterizing them. For spheres embedded in three, four, and five dimensions, this gauge invariance can be generalized so as to become non-Abelian. This non-Abelian gauge invariance is shown to be a property of second-order models for two index antisymmetric tensor fields in any number of dimensions. The O(3) model is quantized and the two-point function is shown to vanish at the one-loop order.
Nguyen, H T; King, L M; Knight, G
2004-01-01
Mobility has become very important for our quality of life. A loss of mobility due to an injury is usually accompanied by a loss of self-confidence. For many individuals, independent mobility is an important aspect of self-esteem. Head movement is a natural form of pointing and can be used to directly replace the joystick whilst still allowing for similar control. Through the use of embedded LINUX and artificial intelligence, a hands-free head movement wheelchair controller has been designed and implemented successfully. This system provides for severely disabled users an effective power wheelchair control method with improved posture, ease of use and attractiveness.
Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Lopatin, Craig
2001-01-01
A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.
Moranda, Arianna
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities. PMID:29270328
Paladino, Ombretta; Moranda, Arianna; Seyedsalehi, Mahdi
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.
NASA Astrophysics Data System (ADS)
Bagnardi, M.; Hooper, A. J.
2017-12-01
Inversions of geodetic observational data, such as Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) measurements, are often performed to obtain information about the source of surface displacements. Inverse problem theory has been applied to study magmatic processes, the earthquake cycle, and other phenomena that cause deformation of the Earth's interior and of its surface. Together with increasing improvements in data resolution, both spatial and temporal, new satellite missions (e.g., European Commission's Sentinel-1 satellites) are providing the unprecedented opportunity to access space-geodetic data within hours from their acquisition. To truly take advantage of these opportunities we must become able to interpret geodetic data in a rapid and robust manner. Here we present the open-source Geodetic Bayesian Inversion Software (GBIS; available for download at http://comet.nerc.ac.uk/gbis). GBIS is written in Matlab and offers a series of user-friendly and interactive pre- and post-processing tools. For example, an interactive function has been developed to estimate the characteristics of noise in InSAR data by calculating the experimental semi-variogram. The inversion software uses a Markov-chain Monte Carlo algorithm, incorporating the Metropolis-Hastings algorithm with adaptive step size, to efficiently sample the posterior probability distribution of the different source parameters. The probabilistic Bayesian approach allows the user to retrieve estimates of the optimal (best-fitting) deformation source parameters together with the associated uncertainties produced by errors in the data (and by scaling, errors in the model). The current version of GBIS (V1.0) includes fast analytical forward models for magmatic sources of different geometry (e.g., point source, finite spherical source, prolate spheroid source, penny-shaped sill-like source, and dipping-dike with uniform opening) and for dipping faults with uniform slip, embedded in a isotropic elastic half-space. However, the software architecture allows the user to easily add any other analytical or numerical forward models to calculate displacements at the surface. GBIS is delivered with a detailed user manual and three synthetic datasets for testing and practical training.
Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...
Topological transformation of fractional optical vortex beams using computer generated holograms
NASA Astrophysics Data System (ADS)
Maji, Satyajit; Brundavanam, Maruthi M.
2018-04-01
Optical vortex beams with fractional topological charges (TCs) are generated by the diffraction of a Gaussian beam using computer generated holograms embedded with mixed screw-edge dislocations. When the input Gaussian beam has a finite wave-front curvature, the generated fractional vortex beams show distinct topological transformations in comparison to the integer charge optical vortices. The topological transformations at different fractional TCs are investigated through the birth and evolution of the points of phase singularity, the azimuthal momentum transformation, occurrence of critical points in the transverse momentum and the vorticity around the singular points. This study is helpful to achieve better control in optical micro-manipulation applications.
Chen, Ke-Yu; Harniss, Mark; Patel, Shwetak; Johnson, Kurt
2014-03-01
The goal of the study was to investigate the accuracy, feasibility and acceptability of implementing an embedded assessment system in the homes of individuals aging with disabilities. We developed and studied a location tracking system, UbiTrack, which can be used for both indoor and outdoor location sensing. The system was deployed in the homes of five participants with spinal cord injuries, muscular dystrophy, multiple sclerosis and late effects of polio. We collected sensor data throughout the deployment, conducted pre and post interviews and collected weekly diaries to measure ground truth. The system was deployed successfully although there were challenges related to system installation and calibration. System accuracy ranged from 62% to 87% depending upon room configuration and number of wireless access points installed. In general, participants reported that the system was easy to use, did not require significant effort on their part and did not interfere with their daily lives. Embedded assessment has great potential as a mechanism to gather ongoing information about the health of individuals aging with disabilities; however, there are significant challenges to its implementation in real-world settings with people with disabilities that will need to be resolved before it can be practically implemented. Technology-based embedded assessment has the potential to promote health for adults with disabilities and allow for aging in place. It may also reduce the difficulty, cost and intrusiveness of health measurement. Many new commercial and non-commercial products are available to support embedded assessment; however, most products have not been well-tested in real-world environments with individuals aging with disability. Community settings and diverse population of people with disabilities pose significant challenges to the implementation of embedded assessment systems.
Unlearning of Mixed States in the Hopfield Model —Extensive Loading Case—
NASA Astrophysics Data System (ADS)
Hayashi, Kao; Hashimoto, Chinami; Kimoto, Tomoyuki; Uezu, Tatsuya
2018-05-01
We study the unlearning of mixed states in the Hopfield model for the extensive loading case. Firstly, we focus on case I, where several embedded patterns are correlated with each other, whereas the rest are uncorrelated. Secondly, we study case II, where patterns are divided into clusters in such a way that patterns in any cluster are correlated but those in two different clusters are not correlated. By using the replica method, we derive the saddle point equations for order parameters under the ansatz of replica symmetry. The same equations are also derived by self-consistent signal-to-noise analysis in case I. In both cases I and II, we find that when the correlation between patterns is large, the network loses its ability to retrieve the embedded patterns and, depending on the parameters, a confused memory, which is a mixed state and/or spin glass state, emerges. By unlearning the mixed state, the network acquires the ability to retrieve the embedded patterns again in some parameter regions. We find that to delete the mixed state and to retrieve the embedded patterns, the coefficient of unlearning should be chosen appropriately. We perform Markov chain Monte Carlo simulations and find that the simulation and theoretical results agree reasonably well, except for the spin glass solution in a parameter region due to the replica symmetry breaking. Furthermore, we find that the existence of many correlated clusters reduces the stabilities of both embedded patterns and mixed states.
Mavrogordato, Mark; Taylor, Mark; Taylor, Andrew; Browne, Martin
2011-05-01
Acoustic emission (AE) is a non-destructive technique that is capable of passively monitoring failure of a construct with excellent temporal resolution. Previous investigations using AE to monitor the integrity of a total hip replacement (THR) have used surface mounted sensors; however, the AE signal attenuates as it travels through materials and across interfaces. This study proposes that directly embedded sensors within the femoral stem of the implant will reduce signal attenuation effects and eliminate potential complications and variability associated with fixing the sensor to the sample. Data was collected during in vitro testing of implanted constructs, and information from both embedded and externally mounted AE sensors was compared and corroborated by micro-Computed Tomography (micro-CT) images taken before and after testing. The results of this study indicate that the embedded sensors gave a closer corroboration to observed damage using micro-CT and were less affected by unwanted noise sources. This has significant implications for the use of AE in assessing the state of THR constructs in vitro and it is hypothesised that directly embedded AE sensors may provide the first steps towards an in vivo, cost effective, user friendly, non-destructive system capable of continuously monitoring the condition of the implanted construct. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adu, Stephen Aboagye
Laminated carbon fiber-reinforced polymer composites (CFRPs) possess very high specific strength and stiffness and this has accounted for their wide use in structural applications, most especially in the aerospace industry, where the trade-off between weight and strength is critical. Even though they possess much larger strength ratio as compared to metals like aluminum and lithium, damage in the metals mentioned is rather localized. However, CFRPs generate complex damage zones at stress concentration, with damage progression in the form of matrix cracking, delamination and fiber fracture or fiber/matrix de-bonding. This thesis is aimed at performing; stiffness degradation analysis on composite coupons, containing embedded delamination using the Four-Point Bend Test. The Lamb wave-based approach as a structural health monitoring (SHM) technique is used for damage detection in the composite coupons. Tests were carried-out on unidirectional composite coupons, obtained from panels manufactured with pre-existing defect in the form of embedded delamination in a laminate of stacking sequence [06/904/0 6]T. Composite coupons were obtained from panels, fabricated using vacuum assisted resin transfer molding (VARTM), a liquid composite molding (LCM) process. The discontinuity in the laminate structure due to the de-bonding of the middle plies caused by the insertion of a 0.3 mm thick wax, in-between the middle four (4) ninety degree (90°) plies, is detected using lamb waves generated by surface mounted piezoelectric (PZT) actuators. From the surface mounted piezoelectric sensors, response for both undamaged (coupon with no defect) and damaged (delaminated coupon) is obtained. A numerical study of the embedded crack propagation in the composite coupon under four-point and three-point bending was carried out using FEM. Model validation was then carried out comparing the numerical results with the experimental. Here, surface-to-surface contact property was used to model the composite coupon under simply supported boundary conditions. Theoretically calculated bending stiffness's and maximum deflection were compared with that of the experimental case and the numerical. After the FEA model was properly benchmarked with test data and exact solution, data obtained from the FEM model were used for sensor placement optimization.
Glassy phase in quenched disordered crystalline membranes
NASA Astrophysics Data System (ADS)
Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.
2018-03-01
We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
Social Networks as a Source of Competitive Advantage for the Firm.
ERIC Educational Resources Information Center
Van Laere, Kristien; Heene, Aime
2003-01-01
Proposes a conceptual framework for managing relationships of small and medium-sized enterprises, based on the necessity of cooperation for survival. Describes characteristics of embedded relationship in stakeholder interactions, including trust, durability, information transfer, and collaboration. (Contains 72 references.) (SK)
Magnetized environs of a repeating radio burst
NASA Astrophysics Data System (ADS)
Metzger, Brian D.
2018-03-01
One of the astrophysical sources that gives rise to the mysterious transients known as fast radio bursts is embedded in a highly magnetized environment, such as the vicinity of an accreting massive black hole or the birth nebula of a highly magnetized neutron star.
Measurement of deformations of models in a wind tunnel
NASA Astrophysics Data System (ADS)
Charpin, F.; Armand, C.; Selvaggini, R.
Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, E.W.; Radway, J.C.; Santo Domingo, J.
The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewatermore » at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.« less
Herschel Studies of the Evolution and Environs of Young Stars in the DIGIT, WISH, and FOOSH Programs
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OT Key Project Team; WISH GT Key Project Team; FOOSH OT1 Team
2012-01-01
The Herschel Space Observatory has enabled us to probe the physical conditions of outer disks, envelopes, and outflows of young stellar objects, including embedded objects, Herbig Ae/Be disks, and T Tauri disks. We will report on results from three projects, DIGIT, WISH, and FOOSH. The DIGIT (Dust, Ice, and Gas in Time) program (PI: Neal Evans) utilizes the full spectral range of the PACS instrument to explore simultaneously the solid and gas-phase chemistry around sources in all of these stages. WISH (Water in Star Forming Regions with Herschel, PI Ewine van Dishoeck) focuses on observations of key lines with HIFI and line scans of selected spectral regions with PACS. FOOSH (FU Orionis Objects Surveyed with Herschel, PI Joel Green) studies FU Orionis objects with full range PACS and SPIRE scans. DIGIT includes examples of low luminosity protostars, while FOOSH studies the high luminosity objects during outburst states. Rotational ladders of highly excited CO and OH emission are detected in both disks and protostars. The highly excited lines are more commonly seen in the embedded phases, where there appear to be two temperature components. Intriguingly, water is frequently detected in spectra of embedded sources, but not in the disk spectra. In addition to gas features, we explore the extent of the newly detected 69 um forsterite dust feature in both T Tauri and Herbig Ae/Be stars. When analyzed along with the Spitzer-detected dust features, these provide constraints on a population of colder crystalline material. We will present some models of individual sources, as well as some broad statistics of the emission from these stages of star and planet formation.
An improved DPSM technique for modelling ultrasonic fields in cracked solids
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique
2007-04-01
In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.
On the assessment of spatial resolution of PET systems with iterative image reconstruction
NASA Astrophysics Data System (ADS)
Gong, Kuang; Cherry, Simon R.; Qi, Jinyi
2016-03-01
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
System-on-chip-centric unattended embedded sensors in homeland security and defense applications
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin; Shih, Min-Yi; Walter, Kevin; Lee, Kang; Gans, Eric; Esterkin, Vladimir
2009-05-01
System-on-chip (SoC) single-die electronic integrated circuit (IC) integration has recently been attracting a great deal of attention, due to its high modularity, universality, and relatively low fabrication cost. The SoC also has low power consumption and it is naturally suited to being a base for integration of embedded sensors. Such sensors can run unattended, and can be either commercial off-the-shelf (COTS) electronic, COTS microelectromechanical systems (MEMS), or optical-COTS or produced in house (i.e., at Physical Optics Corporation, POC). In the version with the simplest electronic packaging, they can be integrated with low-power wireless RF that can communicate with a central processing unit (CPU) integrated in-house and installed on the specific platform of interest. Such a platform can be a human body (for e-clothing), unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV), or many others. In this paper we discuss SoC-centric embedded unattended sensors in Homeland Security and military applications, including specific application scenarios (or CONOPS). In one specific example, we analyze an embedded polarization optical sensor produced in house, including generalized Lambertian light-emitting diode (LED) sources and secondary nonimaging optics (NIO).
An optical watermarking solution for color personal identification pictures
NASA Astrophysics Data System (ADS)
Tan, Yi-zhou; Liu, Hai-bo; Huang, Shui-hua; Sheng, Ben-jian; Pan, Zhong-ming
2009-11-01
This paper presents a new approach for embedding authentication information into image on printed materials based on optical projection technique. Our experimental setup consists of two parts, one is a common camera, and the other is a LCD projector, which project a pattern on personnel's body (especially on the face). The pattern, generated by a computer, act as the illumination light source with sinusoidal distribution and it is also the watermark signal. For a color image, the watermark is embedded into the blue channel. While we take pictures (256×256 and 512×512, 567×390 pixels, respectively), an invisible mark is embedded directly into magnitude coefficients of Discrete Fourier transform (DFT) at exposure moment. Both optical and digital correlation is suitable for detection of this type of watermark. The decoded watermark is a set of concentric circles or sectors in the DFT domain (middle frequencies region) which is robust to photographing, printing and scanning. The unlawful people modify or replace the original photograph, and make fake passport (drivers' license and so on). Experiments show, it is difficult to forge certificates in which a watermark was embedded by our projector-camera combination based on analogue watermark method rather than classical digital method.
Dynamics and kinetics of narrow dusty ringlets
NASA Astrophysics Data System (ADS)
Sun, K. L.; Spahn, F.; Schmidt, J.
2011-10-01
Several narrow dusty rings have been discovered in the Saturn system, such as the F ring, ringlets in the C Ring, the Cassini division, and the Encke Gap [1] [2]. The kinky and clumpy structures in the F ring are considered as the result of embedded moonlets which are dynamically dominated by shepherding moons [3]. Similar features are found in Encke ringlets which we hypothesize to be associated with embedded moonlets [4] [5]. On the other hand, these ringlets are believed to be composed of micron-sized particles [6], which are strongly perturbed by solar radiation pressure and their lifetime is restricted. Therefore mechanisms must be at work to replenish these ringlets. We develop a model for the kinetic balance of dust production, dynamical evolution, and sinks by assuming that dust is freed and annihilated by moonlets embedded in the ringlet. The dynamics of particles ejected from these putative moonlets is explored and the contribution of impact-ejecta to the ringlet is estimated [7] [8]. We found that the optical depth sustained by embedded moonlets is too low (orders of magnitude), indicating that other sources or processes should be responsible for supporting the Encke ringlet.
An Embedded Microretroreflector-Based Microfluidic Immunoassay Platform
Raja, Balakrishnan; Pascente, Carmen; Knoop, Jennifer; Shakarisaz, David; Sherlock, Tim; Kemper, Steven; Kourentzi, Katerina; Renzi, Ronald F.; Hatch, Anson V.; Olano, Juan; Peng, Bi-Hung; Ruchhoeft, Paul; Willson, Richard
2017-01-01
We present a microfluidic immunoassay platform based on the use of linear microretroreflectors embedded in a transparent polymer layer as an optical sensing surface, and micron-sized magnetic particles as light-blocking labels. Retroreflectors return light directly to its source and are highly detectable using inexpensive optics. The analyte is immuno-magnetically pre-concentrated from a sample and then captured on an antibody-modified microfluidic substrate comprised of embedded microretroreflectors, thereby blocking reflected light. Fluidic force discrimination is used to increase specificity of the assay, following which a difference imaging algorithm that can see single 3 μm magnetic particles without optical calibration is used to detect and quantify signal intensity from each sub-array of retroreflectors. We demonstrate the utility of embedded microretroreflectors as a new sensing modality through a proof-of-concept immunoassay for a small, obligate intracellular bacterial pathogen, Rickettsia conorii, the causative agent of Mediterranean Spotted Fever. The combination of large sensing area, optimized surface chemistry and microfluidic protocols, automated image capture and analysis, and high sensitivity of the difference imaging results in a sensitive immunoassay with a limit of detection of roughly 4000 R. conorii per mL. PMID:27025227
ERIC Educational Resources Information Center
Contrino, Jacline L.
2016-01-01
Demonstrating library impact on student success is critical for all academic libraries today. This article discusses how the library of a large online university serving non-traditional students evaluated how customized point-of-need learning objects (LOs) embedded in the learning management system impacted student learning. Using a comprehensive…
Bedding down the Embedding: IL Reality in a Teacher Education Program
ERIC Educational Resources Information Center
Hobbs, Helen; Aspland, Tania
2003-01-01
Queensland University of Technology (QUT) is one of Australia's largest universities, enrolling 30 000 students. Our Information Literacy Framework and Syllabus was endorsed as university policy in February 2001. QUT Library uses the Australian Information Literacy Standards as the basis and entry point for our syllabus. The university-wide…
A Semiotic Analysis of Icons on the World Wide Web.
ERIC Educational Resources Information Center
Ma, Yan
The World Wide Web allows users to interact with a graphic interface to search information in a hypermedia and multimedia environment. Graphics serve as reference points on the World Wide Web for searching and retrieving information. This study analyzed the culturally constructed syntax patterns, or codes, embedded in the icons of library…
Assessing the Decision Process towards Bring Your Own Device
ERIC Educational Resources Information Center
Koester, Richard F.
2017-01-01
Information technology continues to evolve to the point where mobile technologies--such as smart phones, tablets, and ultra-mobile computers have the embedded flexibility and power to be a ubiquitous platform to fulfill the entire user's computing needs. Mobile technology users view these platforms as adaptable enough to be the single solution for…
Point of View: How Important Is Achieving Equity in Undergraduate STEM Education to You?
ERIC Educational Resources Information Center
Mulnix, Amy B.; Vandegrift, Eleanor V. H.; Chaudhury, S. Raj
2016-01-01
This column shares reflections or thoughtful opinions on issues of broad interest to the community. In this month's issue the authors make a case for their belief that significant progress toward equity and inclusion will only be achieved when evidence-based pedagogies are deeply embedded in all classrooms.
Conquest or Reconquest? Students' Conceptions of Nation Embedded in a Historical Narrative
ERIC Educational Resources Information Center
Lopez, Cesar; Carretero, Mario; Rodriguez-Moneo, Maria
2015-01-01
This article focuses on university students' understanding of the concept of nation. First an analysis of this concept from a historiographical point of view is presented. This allows for distinguishing between different conceptions of the nation related to 3 main approaches: the romantic, the modernist, and the ethnosymbolic approaches. Based on…
Embedded Remediation: A New Paradigm
ERIC Educational Resources Information Center
Blake, Nicola
2016-01-01
Guttman Community College (GCC), a newly-established, urban community college, part of the City University of New York (CUNY), enrolls a largely traditional student body which is also predominantly minority. Students enter the college with an average high-school grade-point average of 75% (C average), and are required to enroll in three first-year…
It's Not about Me: Janet Crowther--Williamsburg Regional Library, VA
ERIC Educational Resources Information Center
Library Journal, 2004
2004-01-01
Janet Crowther was surprised to be considered a Mover & Shaker. As community partnership director for Williamsburg Regional Library (WRL), she has made a point of staying in the background so that the other stars--the librarians, the library, the community partners--can shine. "It's not about me," she says; it's about embedding the…
Resourcing Teachers to Tide the Semantic Wave to Whole School Literacy Development
ERIC Educational Resources Information Center
Humphrey, S.; Robinson, S.
2012-01-01
In this paper we report on a whole school literacy research project, Embedding Literacies in the KLA's (ELK). The starting point for this endeavour is the theory of knowledge development conceptualised within the sociology of education as the semantic wave (Maton, forthcoming). As discipline knowledge typically resides in the "high…
Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow
NASA Technical Reports Server (NTRS)
Picone, J. Michael; Dahlburg, Russell B.
1991-01-01
A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.
NASA Astrophysics Data System (ADS)
Sanyal, S.; Wuebbles, D. J.
2017-12-01
In this study, the focus is on how global changes in climate and emissions will affect the U.S. air quality, especially on fine particulate matter and ozone, projecting their future trends and quantifying key source attribution. We are conducting three primary experiments : (1) historical simulations for period 1994-2013 to establish the credibility of the system and refine process-level understanding of U.S. regional air quality; (2) projections for period 2041-2060 to quantify individual and combined impacts of global climate and emissions changes under multiple scenarios; (3) sensitivity analyses to determine future changes in pollution sources and their relative contributions from anthropogenic and natural emissions, long-range pollutant transport, and climate change effects. Here we will present the result from the first experiment with the global model CESM1.2 (with fully coupled chemistry using CAM-chem5) driven by NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis data at 0.9o x 1.25o resolution. We will present the comparison between the results from model simulation with observation data from EPA database. Since there is always a challenge in comparing gridded prediction from model data with point data from the observation databases, because the model simulations calculate the average outcome over a grid for a given set of conditions while the stochastic component (e.g. sub-grid variations) embedded in the observations are not accounted for, we are using extensive statistical measure to do the comparison. We will also determine relative contributions from multiscale (local, regional, global) processes, major source regions (Mexico, Canada, Asia, Africa) and types (natural, anthropogenic) and associated uncertainties (climate decadal oscillations/interannual variations, emissions and model structure errors).
Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G
2014-09-16
Conspectus The development of more efficient and more accurate ways to represent reactive potential energy surfaces is a requirement for extending the simulation of large systems to more complex systems, longer-time dynamical processes, and more complete statistical mechanical sampling. One way to treat large systems is by direct dynamics fragment methods. Another way is by fitting system-specific analytic potential energy functions with methods adapted to large systems. Here we consider both approaches. First we consider three fragment methods that allow a given monomer to appear in more than one fragment. The first two approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches. Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.
Obscured Active Galactic Nuclei in Luminous Infrared Galaxies
NASA Astrophysics Data System (ADS)
Shier, L. M.; Rieke, M. J.; Rieke, G. H.
1996-10-01
We examine the nature of the central power source in very luminous infrared galaxies. The infrared properties of the galaxies, including their far-infrared and 2.2 micron fluxes, CO indices, and Brackett line fluxes are compared to models of starburst stellar populations. Among seven galaxies we found two dominated by emission from young stars, two dominated by emission from an AGN, and three transition cases. Our results are consistent with evidence for active nuclei in the same galaxies at other wavelengths. Nuclear mass measurements obtained for the galaxies indicate an initial mass function biased toward high-mass stars in two galaxies. After demonstrating our methods in well-studied galaxies, we define complete samples of high luminosity and ultraluminous galaxies. We find that the space density of embedded and unembedded quasars in the local universe is similar for objects of similar luminosity. If quasars evolve from embedded sources to optically prominent objects, it appears that the lifetime of a quasar is no more than about 108 yr.
ISO Observations of Starless Bok Globules: Usually No Embedded Stars
NASA Technical Reports Server (NTRS)
Clemens, D.; Byrne, A.; Yun, J.; Kane, B.
1996-01-01
We have used ISOCAM to search the cores of a sample of small Bok globules previously classified to be mostly starless based on analysis of IRAS data. The ISO observations at 6.75microns (LW2 filter) and 14.5microns (LW3 filter) were sufficiently deep to enable detection of any low-mass hydrogen burning star or young stellar object (YSO) embedded in these globules. Of the 20 Bok globules observed by ISOCAM to date, we have reduced the data for 14. Of these, 13 show no evidence for faint red (S(sub v)(LW3) greater than S(sub v)(LW2)) stars missed by IRAS. One (CB68) does show the first mid-infrared detection of the very cool IRAS source toward this cloud, and may be a Class I or 0 YSO. We conclude, based on these new ISO observations, that Bok globules which have no IRAS sources are in general bona fide starless molecular clouds.
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee
1993-01-01
We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.
NASA Technical Reports Server (NTRS)
Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor); Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor)
1995-01-01
A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.
On-chip interference of single photons from an embedded quantum dot and an external laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O'Hara, J.
2016-06-20
In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler.more » This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.« less
A Spectroscopic Study of Young Stellar Objects in the Serpens Cloud Core and NGC 1333
NASA Astrophysics Data System (ADS)
Winston, E.; Megeath, S. T.; Wolk, S. J.; Hernandez, J.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Covey, K.; Allen, L. E.; Spitzbart, B.; Peterson, D.; Myers, P.; Fazio, G. G.
2009-06-01
We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K bands from SpeX on the IRTF and far-red spectra (6000-9000 Å) from Hectospec on the Multi-Mirror Telescope. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra we search for corroborating evidence for the pre-main-sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. The temperatures implied by the spectral types are combined with luminosities determined from the near-IR photometry to construct Hertzsprung-Russell (H-R) diagrams for the clusters. By comparing the positions of the YSOs in the H-R diagrams with the pre-main-sequence tracks of Baraffe (1998), we determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distributions of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources <3 Myr to be concentrated in the molecular cloud gas, while the older sources are spatially dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages >3 Myr show all the characteristics of YSOs in their spectra, their IR spectral energy distributions, and their X-ray emission; we find no evidence that they are contaminating background giants or foreground dwarfs. However, we find no corresponding decrease in the fraction of sources with infrared excess with isochronal age; this suggests that the older isochronal ages may not measure the true age of the >3 Myr YSOs. Thus, the nature of the apparently older sources and their implications for cluster formation remain unresolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, C. L.; Blum, R. D.; Damineli, A.
In this paper we present the results of a mid-infrared study of G49.5-0.4, or W51A, part of the massive starbirth complex W51. Combining public data from the Spitzer IRAC camera, and Gemini mid-infrared camera T-ReCS at 7.73, 9.69, 12.33, and 24.56 μ m, with a spatial resolution of ∼0.″5, we have identified the mid-infrared counterparts of eight ultracompact H ii regions, showing that two radio sources are deeply embedded in molecular clouds and another is a cloud of ionized gas. From the T-ReCS data we have unveiled the central core of the W51 region, revealing massive young stellar candidates. Wemore » modeled the spectral energy distribution of the detected sources. The results suggest that the embedded objects are sources with spectral types ranging from B3 to O5, but the majority of the fits indicate stellar objects with B1 spectral types. We also present an extinction map of IRS 2, showing that a region with lower extinction corresponds to the region where a proposed jet of gas has impacted the foreground cloud. From this map, we also derived the total extinction toward the enigmatic source IRS 2E, which amounts to ∼60 mag in the V band. We calculated the color temperature due to thermal emission of the circumstellar dust of the detected sources; the temperatures are in the interval of ∼100–150 K, which corresponds to the emission of dust located at 0.1 pc from the central source. Finally, we show a possible mid-infrared counterpart of a detected source at millimeter wavelengths that was found by Zapata et al. to be a massive young stellar object undergoing a high accretion rate.« less
Sources of information used by nurses to inform practice: An integrative review.
Spenceley, Shannon M; O'Leary, Katherine A; Chizawsky, Lesa L K; Ross, Amber J; Estabrooks, Carole A
2008-06-01
We present an integrative review of the literature about sources of information nurses use to inform practice. The demand for access to more and better information has been fueled by the evidence-based healthcare movement. Although the expectations for evidence-based practice have never been higher, the demands on care environments have never been greater. The goals of professional nursing are served by using the best available information to inform practice. To influence such activity, we must understand what sources of information nurses rely on for guidance. We examined studies of any research design published between 1985 and 2006, as well as research dissertations in the same time frame. Databases searched included the Cumulative Index of Nursing and Allied Health Literature (CINAHL), Medline, the Educational Resources Information Center, the Library and Information Science Abstracts and the Library Literature and Information Science databases. The review question: what information sources do registered nurses turn to, to support direct patient care? Analysis included an overview of study design and practice setting, and an examination of sources accessed most frequently by nurses to guide practice. We present, in ranked order, the sources nurses accessed in order to guide practice. We note the high reliance on informal, interactive sources. An unexpected finding of high reliance on journals is explored in greater detail and found to be equivocal at best. We conclude with a critical discussion of what we see as embedded assumptions and expectations about how information-seeking supports nursing practice. Expectations embedded in the scope and context of nursing practice have influenced knowledge development in the area of information-seeking to support practice. It is important that future research in this area takes into account the expectations and information needs arising in emerging roles for nurses within evolving healthcare systems.
Smith, Kate E; Shafer, Martin M; Weiss, Debora; Anderson, Henry A; Gorski, Patrick R
2017-05-01
Exposure to the neurotoxic element lead (Pb) continues to be a major human health concern, particularly for children in US urban settings, and the need for robust tools for assessment of exposure sources has never been greater. The latest generation of multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) instrumentation offers the capability of using Pb isotopic signatures as a tool for environmental source tracking in public health. We present a case where MC-ICPMS was applied to isotopically resolve Pb sources in human clinical samples. An adult male and his child residing in Milwaukee, Wisconsin, presented to care in August 2015 with elevated blood lead levels (BLLs) (>200 μg/dL for the adult and 10 μg/dL for the child). The adult subject is a gunshot victim who had multiple bullet fragments embedded in soft tissue of his thigh for approximately 10 years. This study compared the high-precision isotopic fingerprints (<1 ‰ 2σ external precision) of Pb in the adult's and child's whole blood (WB) to the following possible Pb sources: a surgically extracted bullet fragment, household paint samples and tap water, and a Pb water-distribution pipe removed from servicing a house in the same neighborhood. Pb in the bullet and adult WB were nearly isotopically indistinguishable (matching within 0.05-0.56 ‰), indicating that bullet fragments embedded in soft tissue could be the cause of both acute and chronic elevated blood Pb levels. Among other sources investigated, no single source dominated the child's exposure profile as reflected in the elevated BLL.
Reconstruction of dynamical systems from resampled point processes produced by neuron models
NASA Astrophysics Data System (ADS)
Pavlova, Olga N.; Pavlov, Alexey N.
2018-04-01
Characterization of dynamical features of chaotic oscillations from point processes is based on embedding theorems for non-uniformly sampled signals such as the sequences of interspike intervals (ISIs). This theoretical background confirms the ability of attractor reconstruction from ISIs generated by chaotically driven neuron models. The quality of such reconstruction depends on the available length of the analyzed dataset. We discuss how data resampling improves the reconstruction for short amount of data and show that this effect is observed for different types of mechanisms for spike generation.
2017-01-01
Finding relevant geospatial information is increasingly critical because of the growing volume of geospatial data available within the emerging “Big Data” era. Users are expecting that the availability of massive datasets will create more opportunities to uncover hidden information and answer more complex queries. This is especially the case with routing and navigation services where the ability to retrieve points of interest and landmarks make the routing service personalized, precise, and relevant. In this paper, we propose a new geospatial information approach that enables the retrieval of implicit information, i.e., geospatial entities that do not exist explicitly in the available source. We present an information broker that uses a rule-based spatial reasoning algorithm to detect topological relations. The information broker is embedded into a framework where annotations and mappings between OpenStreetMap data attributes and external resources, such as taxonomies, support the enrichment of queries to improve the ability of the system to retrieve information. Our method is tested with two case studies that leads to enriching the completeness of OpenStreetMap data with footway crossing points-of-interests as well as building entrances for routing and navigation purposes. It is concluded that the proposed approach can uncover implicit entities and contribute to extract required information from the existing datasets. PMID:29088125
Control and Information Systems for the National Ignition Facility
Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...
2017-03-23
Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less
Control and Information Systems for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunton, Gordon; Casey, Allan; Christensen, Marvin
Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less
Point source emission reference materials from the Emissions Inventory Improvement Program (EIIP). Provides point source guidance on planning, emissions estimation, data collection, inventory documentation and reporting, and quality assurance/quality contr
Ohminato, T.; Chouet, B.A.; Dawson, P.; Kedar, S.
1998-01-01
We use data from broadband seismometers deployed around the summit of Kilauea Volcano to quantify the mechanism associated with a transient in the flow of magma feeding the east rift eruption of the volcano. The transient is marked by rapid inflation of the Kilauea summit peaking at 22 ??rad 4.5 hours after the event onset, followed by slow deflation over a period of 3 days. Superimposed on the summit inflation is a series of sawtooth displacement pulses, each characterized by a sudden drop in amplitude lasting 5-10 s followed by an exponential recovery lasting 1-3 min. The sawtooth waveforms display almost identical shapes, suggesting a process involving the repeated activation of a fixed source. The particle motion associated with each sawtooth is almost linear, and its major swing shows compressional motion at all stations. Analyses of semblance and particle motion are consistent with a point source located 1 km beneath the northeast edge of the Halemaumau pit crater. To estimate the source mechanism, we apply a moment tensor inversion to the waveform data, assuming a point source embedded in a homogeneous half-space with compressional and shear wave velocities representative of the average medium properties at shallow depth under Kilauea. Synthetic waveforms are constructed by a superposition of impulse responses for six moment tensor components and three single force components. The origin times of individual impulses are distributed along the time axis at appropriately small, equal intervals, and their amplitudes are determined by least squares. In this inversion, the source time functions of the six tensor and three force components are determined simultaneously. We confirm the accuracy of the inversion method through a series of numerical tests. The results from the inversion show that the waveform data are well explained by a pulsating transport mechanism operating on a subhorizontal crack linking the summit reservoir to the east rift of Kilauea. The crack acts like a buffer in which a batch of fluid (magma and/or gas) accumulates over a period of 1-3 min before being rapidly injected into a larger reservoir (possibly the east rift) over a timescale of 5-10 s. The seismic moment and volume change associated with a typical batch of fluid are approximately 1014 N m and 3000 m3, respectively. Our results also point to the existence of a single force component with amplitude of 109 N, which may be explained as the drag force generated by the flow of viscous magma through a narrow constriction in the flow path. The total volume of magma associated with the 4.5-hour-long activation of the pulsating source is roughly 500,000 m3 in good agreement with the integrated volume flow rate of magma estimated near the eruptive site.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2017-12-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.
Calculating NH3-N pollution load of wei river watershed above Huaxian section using CSLD method
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2018-02-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. So it is taken as the research objective in this paper and NH3-N is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load (CSLD)method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly. The non-point source pollution load proportions of total pollution load of NH3-N decrease in the normal, rainy and wet period in turn.
NASA Astrophysics Data System (ADS)
Persson, M. V.; Harsono, D.; Tobin, J. J.; van Dishoeck, E. F.; Jørgensen, J. K.; Murillo, N.; Lai, S.-P.
2016-05-01
Context. The physical structure of deeply embedded low-mass protostars (Class 0) on scales of less than 300 AU is still poorly constrained. While molecular line observations demonstrate the presence of disks with Keplerian rotation toward a handful of sources, others show no hint of rotation. Determining the structure on small scales (a few 100 AU) is crucial for understanding the physical and chemical evolution from cores to disks. Aims: We determine the presence and characteristics of compact, disk-like structures in deeply embedded low-mass protostars. A related goal is investigating how the derived structure affects the determination of gas-phase molecular abundances on hot-core scales. Methods: Two models of the emission, a Gaussian disk intensity distribution and a parametrized power-law disk model, are fitted to subarcsecond resolution interferometric continuum observations of five Class 0 sources, including one source with a confirmed Keplerian disk. Prior to fitting the models to the de-projected real visibilities, the estimated envelope from an independent model and any companion sources are subtracted. For reference, a spherically symmetric single power-law envelope is fitted to the larger scale emission (~1000 AU) and investigated further for one of the sources on smaller scales. Results: The radii of the fitted disk-like structures range from ~90-170 AU, and the derived masses depend on the method. Using the Gaussian disk model results in masses of 54-556 × 10-3 M⊙, and using the power-law disk model gives 9-140 × 10-3 M⊙. While the disk radii agree with previous estimates the masses are different for some of the sources studied. Assuming a typical temperature distribution (r-0.5), the fractional amount of mass in the disk above 100 K varies from 7% to 30%. Conclusions: A thin disk model can approximate the emission and physical structure in the inner few 100 AU scales of the studied deeply embedded low-mass protostars and paves the way for analysis of a larger sample with ALMA. Kinematic data are needed to determine the presence of any Keplerian disk. Using previous observations of p-H218O, we estimate the relative gas phase water abundances relative to total warm H2 to be 6.2 × 10-5 (IRAS 2A), 0.33 × 10-5 (IRAS 4A-NW), 1.8 × 10-7 (IRAS 4B), and < 2 × 10-7 (IRAS 4A-SE), roughly an order of magnitude higher than previously inferred when both warm and cold H2 were used as reference. A spherically symmetric single power-law envelope model fails to simultaneously reproduce both the small- and large-scale emission. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Continuum data for the sources are available through http://dx.doi.org/10.5281/zenodo.47642 and at CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A33
Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors
Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio
2016-01-01
Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251
Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio
2016-09-22
Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.
Robust High-Capacity Audio Watermarking Based on FFT Amplitude Modification
NASA Astrophysics Data System (ADS)
Fallahpour, Mehdi; Megías, David
This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods.
Crown oxygen-doping graphene with embedded main-group metal atoms
NASA Astrophysics Data System (ADS)
Wu, Liyuan; Wang, Qian; Yang, Chuanghua; Quhe, Ruge; Guan, Pengfei; Lu, Pengfei
2018-02-01
Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene's stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.
Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.
2004-01-01
New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.
Fractal dimension of spatially extended systems
NASA Astrophysics Data System (ADS)
Torcini, A.; Politi, A.; Puccioni, G. P.; D'Alessandro, G.
1991-10-01
Properties of the invariant measure are numerically investigated in 1D chains of diffusively coupled maps. The coarse-grained fractal dimension is carefully computed in various embedding spaces, observing an extremely slow convergence towards the asymptotic value. This is in contrast with previous simulations, where the analysis of an insufficient number of points led the authors to underestimate the increase of fractal dimension with increasing the dimension of the embedding space. Orthogonal decomposition is also performed confirming that the slow convergence is intrinsically related to local nonlinear properties of the invariant measure. Finally, the Kaplan-Yorke conjecture is tested for short chains, showing that, despite the noninvertibility of the dynamical system, a good agreement is found between Lyapunov dimension and information dimension.
The fast multipole method and point dipole moment polarizable force fields.
Coles, Jonathan P; Masella, Michel
2015-01-14
We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.
The periodic very young source EC 53 reached its maximum brightness
NASA Astrophysics Data System (ADS)
Giannini, T.; Antoniucci, S.; Lorenzetti, D.; Harutyunyan, A.; Licchelli, D.; Munari, U.
2018-06-01
In the framework of our EXor monitoring program dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed the object EC53 recently signaled by Johnston et al. (ATel #11614) as a strongly embedded source showing a sub-mm luminosity burst, They also provide H- and K-band observations detecting this brightness increase also in the near-IR, in the scattered light by the nebula surrounding a compact source, invisible at those wavelengths.
Linearly polarized emission from an embedded quantum dot using nanowire morphology control.
Foster, Andrew P; Bradley, John P; Gardner, Kirsty; Krysa, Andrey B; Royall, Ben; Skolnick, Maurice S; Wilson, Luke R
2015-03-11
GaAs nanowires with elongated cross sections are formed using a catalyst-free growth technique. This is achieved by patterning elongated nanoscale openings within a silicon dioxide growth mask on a (111)B GaAs substrate. It is observed that MOVPE-grown vertical nanowires with cross section elongated in the [21̅1̅] and [1̅12] directions remain faithful to the geometry of the openings. An InGaAs quantum dot with weak radial confinement is realized within each nanowire by briefly introducing indium into the reactor during nanowire growth. Photoluminescence emission from an embedded nanowire quantum dot is strongly linearly polarized (typically >90%) with the polarization direction coincident with the axis of elongation. Linearly polarized PL emission is a result of embedding the quantum dot in an anisotropic nanowire structure that supports a single strongly confined, linearly polarized optical mode. This research provides a route to the bottom-up growth of linearly polarized single photon sources of interest for quantum information applications.
A passively tunable acoustic metamaterial lens for selective ultrasonic excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, H.; Semperlotti, F., E-mail: Fabio.Semperlotti.1@nd.edu
2014-09-07
In this paper, we present an approach to ultrasonic beam-forming and beam-steering in structures based on the concept of embedded acoustic metamaterial lenses. The lens design exploits the principle of acoustic drop-channel that enables the dynamic coupling of multiple ultrasonic waveguides at selected frequencies. In contrast with currently available technology, the embedded lens allows exploiting the host structure as a key component of the transducer system therefore enabling directional excitation by means of a single ultrasonic transducer. The design and the performance of the lens are numerically investigated by using Plane Wave Expansion and Finite Difference Time Domain techniques appliedmore » to bulk structures. Then, the design is experimentally validated on a thin aluminum plate waveguide where the lens is implemented by through-holes. The dynamic response of the embedded lens is estimated by reconstructing, via Laser Vibrometry, the velocity field induced by a single source located at the center of the lens.« less
Magnetically-driven medical robots: An analytical magnetic model for endoscopic capsules design
NASA Astrophysics Data System (ADS)
Li, Jing; Barjuei, Erfan Shojaei; Ciuti, Gastone; Hao, Yang; Zhang, Peisen; Menciassi, Arianna; Huang, Qiang; Dario, Paolo
2018-04-01
Magnetic-based approaches are highly promising to provide innovative solutions for the design of medical devices for diagnostic and therapeutic procedures, such as in the endoluminal districts. Due to the intrinsic magnetic properties (no current needed) and the high strength-to-size ratio compared with electromagnetic solutions, permanent magnets are usually embedded in medical devices. In this paper, a set of analytical formulas have been derived to model the magnetic forces and torques which are exerted by an arbitrary external magnetic field on a permanent magnetic source embedded in a medical robot. In particular, the authors modelled cylindrical permanent magnets as general solution often used and embedded in magnetically-driven medical devices. The analytical model can be applied to axially and diametrically magnetized, solid and annular cylindrical permanent magnets in the absence of the severe calculation complexity. Using a cylindrical permanent magnet as a selected solution, the model has been applied to a robotic endoscopic capsule as a pilot study in the design of magnetically-driven robots.
THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy
We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point inmore » the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.« less
Improved Cluster Method Applied to the InSAR data of the 2007 Piton de la Fournaise eruption
NASA Astrophysics Data System (ADS)
Cayol, V.; Augier, A.; Froger, J. L.; Menassian, S.
2016-12-01
Interpretation of surface displacement induced by reservoirs, whether magmatic, hydrothermal or gaseous, can be done at reduced numerical cost and with little a priori knowledge using cluster methods, where reservoirs are represented by point sources embedded in an elastic half-space. Most of the time, the solution representing the best trade-off between the data fit and the model smoothness (L-curve criterion) is chosen. This study relies on synthetic tests to improve cluster methods in several ways. Firstly, to solve problems involving steep topographies, we construct unit sources numerically. Secondly, we show that the L-curve criterion leads to several plausible solutions where the most realistic are not necessarily the best fitting. We determine that the cross-validation method, with data geographically grouped, is a more reliable way to determine the solution. Thirdly, we propose a new method, based on source ranking according to their contribution and minimization of the Akaike information criteria, to retrieve reservoirs' geometry more accurately and to better reflect information contained in the data. We show that the solution is robust in the presence of correlated noise and that reservoir complexity that can be retrieved decreases with increasing noise. We also show that it is inappropriate to use cluster methods for pressurized fractures. Finally, the method is applied to the summit deflation recorded by InSAR after the caldera collapse which occurred at Piton de la Fournaise in April 2007. Comparison with other data indicate that the deflation is probably related to poro-elastic compaction and fluid flow subsequent to the crater collapse.
Millimeter and Submillimeter Survey of the R Coronae Australis Region
NASA Astrophysics Data System (ADS)
Groppi, Christopher E.; Kulesa, Craig; Walker, Christopher; Martin, Christopher L.
2004-09-01
Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12 m telescope, and the Arizona Radio Observatory 10 m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of carbon monoxide, HCO+, and 870 μm continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01 pc over an area of 0.16 pc2, with velocity resolution finer than 1 km s-1. Mass estimates of the protostar driving the millimeter-wave emission derived from HCO+, dust continuum emission, and kinematic techniques point to a young, deeply embedded protostar of ~0.5-0.75 Msolar, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 Msolar of molecular gas with ~0.5 Lsolar of mechanical luminosity. HCO+ lines show the kinematic signature of infall motions, as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation, and outflow toward this young object.
Keresztes, Janos C; John Koshel, R; D'huys, Karlien; De Ketelaere, Bart; Audenaert, Jan; Goos, Peter; Saeys, Wouter
2016-12-26
A novel meta-heuristic approach for minimizing nonlinear constrained problems is proposed, which offers tolerance information during the search for the global optimum. The method is based on the concept of design and analysis of computer experiments combined with a novel two phase design augmentation (DACEDA), which models the entire merit space using a Gaussian process, with iteratively increased resolution around the optimum. The algorithm is introduced through a series of cases studies with increasing complexity for optimizing uniformity of a short-wave infrared (SWIR) hyperspectral imaging (HSI) illumination system (IS). The method is first demonstrated for a two-dimensional problem consisting of the positioning of analytical isotropic point sources. The method is further applied to two-dimensional (2D) and five-dimensional (5D) SWIR HSI IS versions using close- and far-field measured source models applied within the non-sequential ray-tracing software FRED, including inherent stochastic noise. The proposed method is compared to other heuristic approaches such as simplex and simulated annealing (SA). It is shown that DACEDA converges towards a minimum with 1 % improvement compared to simplex and SA, and more importantly requiring only half the number of simulations. Finally, a concurrent tolerance analysis is done within DACEDA for to the five-dimensional case such that further simulations are not required.
What if the Fast Radio Bursts 110220 and 140514 Are from the Same Source?
NASA Astrophysics Data System (ADS)
Piro, Anthony L.; Burke-Spolaor, Sarah
2017-06-01
The fast radio bursts (FRBs) 110220 and 140514 were detected at telescope pointing locations within 9 arcmin of each other over three years apart, both within the same 14.4 arcmin beam of the Parkes radio telescope. Nevertheless, they generally have not been considered to be from the same source because of a vastly different dispersion measure (DM) for the two bursts by over 380 {pc} {{cm}}-3. Here, we consider the hypothesis that these two FRBs are from the same neutron star embedded within a supernova remnant (SNR) that provides an evolving DM as the ejecta expands and becomes more diffuse. Using such a model and the observed DM change, it can be argued that the corresponding SN must have occurred within ≈ 10.2 years of FRB 110220. Furthermore, constraints can be placed on the SN ejecta mass and explosion energy, which appear to require a stripped-envelope (Type Ib/c) SN and/or a very energetic explosion. A third FRB from this location would be even more constraining, allowing the component of the DM due to the SNR to be separated from the unchanging DM components due to the host galaxy and intergalactic medium. In the future, if more FRBs are found to repeat, the sort of arguments presented here can be used to test the young neutron star progenitor hypothesis for FRBs.
Using Self-Efficacy as a Construct for Evaluating Science and Mathematics Methods Courses
NASA Astrophysics Data System (ADS)
Brand, Brenda R.; Wilkins, Jesse L. M.
2007-04-01
The focus of this study was elementary preservice teachers’ development as effective teachers of science and mathematics as influenced by their participation in elementary science and mathematics methods courses. Preservice teachers’ reports of factors that influenced their perception of their teaching abilities were analyzed according to Bandura’s (1994) 4 sources of efficacy: mastery experiences, vicarious experiences, social persuasion, and stress reduction. This investigation allowed the researchers to evaluate the courses based on these sources. The analysis indicated all 4 sources influenced preservice teachers’ teaching self-efficacy beliefs, with mastery experiences considered the most influential. Embedded within discussions of mastery experiences were references to the other sources of efficacy, which suggest an interrelationship between mastery experiences and the other sources.
Floating-to-Fixed-Point Conversion for Digital Signal Processors
NASA Astrophysics Data System (ADS)
Menard, Daniel; Chillet, Daniel; Sentieys, Olivier
2006-12-01
Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automatically the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous methodologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling operations are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are described and several experiment results are presented to underline the efficiency of this approach.
The photon pair source that survived a rocket explosion
Tang, Zhongkan; Chandrasekara, Rakhitha; Tan, Yue Chuan; Cheng, Cliff; Durak, Kadir; Ling, Alexander
2016-01-01
We report on the performance of a compact photon pair source that was recovered intact from a failed space launch. The source had been embedded in a nanosatellite and was designed to perform pathfinder experiments leading to global quantum communication networks using spacecraft. Despite the launch vehicle explosion soon after takeoff, the nanosatellite was successfully retrieved from the accident site and the source within it was found to be fully operational. We describe the assembly technique for the rugged source. Post-recovery data is compared to baseline measurements collected before the launch attempt and no degradation in brightness or polarization correlation was observed. The survival of the source through an extreme environment provides strong evidence that it is possible to engineer rugged quantum optical systems. PMID:27161541
Telling a Compelling Story: Managing Inclusion in Colleges of Further Education
ERIC Educational Resources Information Center
Wallace, Sue; Gravells, Jonathan
2010-01-01
Taking as its starting point a series of interviews with senior and middle managers in FE colleges across the country, this paper argues that the values and practices which reflect a commitment to inclusive education and training are unlikely to become effectively embedded within the organisational structures and ethos of a college simply through…
Second Sound Measurements Very Near the Lambda Point
NASA Technical Reports Server (NTRS)
Adriaans, M.; Lipa, J.
1999-01-01
The sound was generated by wire-wound heaters embedded in the end opposite the sensor in each cavity. The superfluid density was determined from second sound measurements and the critical exponent v was obtained from fits to the data. The results from the exponent were found to be very sensitive to the treatment of systematic effects in the data.
Putting History in Its Place: Grounding the Australian Curriculum--History in Local Community
ERIC Educational Resources Information Center
Harrison, Neil
2012-01-01
This position paper develops the case for a greater focus on the teaching of local histories in the Australian Curriculum: History. It takes as its starting point an Indigenous epistemology that understands knowledge to be embedded in the land. This connection between knowledge and country is used to examine recent literature on whether the…
Cognitive Style and Self-Efficacy: Predicting Student Success in Online Distance Education
ERIC Educational Resources Information Center
DeTure, Monica
2004-01-01
This study was designed to identify those learner attributes that may be used to predict student success (in terms of grade point average) in a Web-based distance education setting. Students enrolled in six Web-based, general education distance education courses at a community college were asked to complete the Group Embedded Figures Test for…
The Legacy of ERA, Privatization and the Policy Ratchet
ERIC Educational Resources Information Center
Ball, Stephen J.
2008-01-01
This article explores the ways in which the neo-liberal impetus toward the privatization of state schooling signalled in the Education Reform Act 1988 (ERA) has become embedded in the English school system. Four main points are made. First, that ERA itself was of huge strategic rather than substantive importance as far as privatization is…
The Humanities and the Art of Public Discussion. Volume 2.
ERIC Educational Resources Information Center
Federation of State Humanities Councils, Washington, DC.
The marriage of the humanities to public discussion of major current issues is an invitation to understand how various points of view are embedded in one's history, values, visions of the future, and an understanding of what is right, wrong, and necessary. The essays in this volume examine three issues: abortion, economic competition, and racial…
ERIC Educational Resources Information Center
Alden Rivers, Bethany; Nie, Ming; Armellini, Alejandro
2015-01-01
Purpose: The purpose of this paper is to report on a study aimed at understanding the different conceptions that University of Northampton teachers hold of "Changemaker", an institutional initiative to develop capacities for social innovation. Design/methodology/approach: The study took a phenomenographic approach to identify a small…
The Social Context of Adolescent Friendships: Parents, Peers, and Romantic Partners
ERIC Educational Resources Information Center
Flynn, Heather Kohler; Felmlee, Diane H.; Conger, Rand D.
2017-01-01
We argue that adolescent friendships flourish, or wither, within the "linked lives" of other salient social network ties. Based on structural equation modeling with data from two time points, we find that young people tend to be in high-quality friendships when they are tightly embedded in their social network and receive social support…
The Effectiveness of Web-Based Multimedia Applications Simulation in Teaching and Learning
ERIC Educational Resources Information Center
Ziden, Azidah Abu; Rahman, Muhammad Faizal Abdul
2013-01-01
This study focuses on the effectiveness of using multimedia virtual simulation in Islamic Studies in Malaysia. Virtual simulation methods embedded in Microsoft PowerPoint was used in this study to determine the effectiveness of these modes to motivate students on the topic of pilgrimage in the Islamic Studies subject. Pilgrimage topic has been…
Seismic source dynamics of gas-piston activity at Kı¯lauea Volcano, Hawai`i
NASA Astrophysics Data System (ADS)
Chouet, Bernard; Dawson, Phillip
2015-04-01
Since 2008, eruptive activity at the summit of Kı¯lauea Volcano, Hawai`i has been confined to the new Overlook pit crater within the Halema`uma`u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20-25 August 2011 during a gentle inflation of the Kı¯lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1-10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ˜1 km below the eastern perimeter of the Halema`uma`u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10-50 m), foam cell diameter (0.04-0.10 m), and gas-injection velocity (0.01-0.06 m s-1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema`uma`u pit crater to the subjacent dike system. The height of the magma column is estimated at ˜104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ˜23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ˜1.2-2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.
Seismic source dynamics of gas-piston activity at Kı̄lauea Volcano, Hawai‘i
Chouet, Bernard A.; Dawson, Phillip B.
2015-01-01
Since 2008, eruptive activity at the summit of Kı̄lauea Volcano, Hawai‘i has been confined to the new Overlook pit crater within the Halema‘uma‘u Crater. Among the broad range of magmatic processes observed in the new pit are recurring episodes of gas pistoning. The gas-piston activity is accompanied by seismic signals that are recorded by a broadband network deployed in the summit caldera. We use raw data recorded with this network to model the source mechanism of representative gas-piston events in a sequence that occurred on 20–25 August 2011 during a gentle inflation of the Kı̄lauea summit. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–10,000 s. Most of the seismic wavefield produced by gas-pistoning originates in a source region ∼1 km below the eastern perimeter of the Halema‘uma‘u pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks featuring an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each gas-piston event is marked by a similar rapid inflation lasting a few minutes, trailed by a slower deflation ramp extending up to 15 min, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes accompanying the growth and collapse of a layer of foam at the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the observed pressure and volume variations can be modeled with the following attributes : foam thickness (10–50 m), foam cell diameter (0.04–0.10 m), and gas-injection velocity (0.01–0.06 m s−1). Gas-piston activity occurs in a narrow pipe with diameter of 6 m connecting the Halema‘uma‘u pit crater to the subjacent dike system. The height of the magma column is estimated at ∼104 m at the start of the sequence based on the period of very long period (VLP) oscillations accompanying the onset of the gas-piston signal. Based on the change in the period of VLP oscillations and tilt evidence, the height of the magma column is inferred to have risen by up to ∼23 m by the end of the 5 day long sequence. A penny-shaped crack model of the dike geometry yields effective diameters of ∼1.2–2.9 km for the east dike and 0.7 km for the north dike. The shallower north dike segment is embedded in a relatively weak medium, compatible with expected mechanical properties in the hydrothermal environment of this dike.
A step-by-step solution for embedding user-controlled cines into educational Web pages.
Cornfeld, Daniel
2008-03-01
The objective of this article is to introduce a simple method for embedding user-controlled cines into a Web page using a simple JavaScript. Step-by-step instructions are included and the source code is made available. This technique allows the creation of portable Web pages that allow the user to scroll through cases as if seated at a PACS workstation. A simple JavaScript allows scrollable image stacks to be included on Web pages. With this technique, you can quickly and easily incorporate entire stacks of CT or MR images into online teaching files. This technique has the potential for use in case presentations, online didactics, teaching archives, and resident testing.
Enhancement of pumped current in quantum dots
NASA Astrophysics Data System (ADS)
Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro
A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.
Effects of mechanical strain on optical properties of ZnO nanowire
NASA Astrophysics Data System (ADS)
Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana
2018-02-01
The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.
Near infrared observations of S 155. Evidence of induced star formation?
NASA Astrophysics Data System (ADS)
Hunt, L. K.; Lisi, F.; Felli, M.; Tofani, G.
In order to investigate the possible existence of embedded objects of recent formation in the area of the Cepheus B - Sh2-155 interface, the authors have observed the region of the compact radio continuum source with the new near infrared camera ARNICA and the TIRGO telescope.
Student Perceptions of Their Doctoral Programs: Case Study
ERIC Educational Resources Information Center
Moffett, David W.
2015-01-01
The Investigator studied three Doctor of Philosophy program concentrations for a two year period, 2013-2015. The intent of the confidential study was to determine factors affecting program participants' perceptions most. A mixed methods embedded study was applied, with the quantitative portion representing the secondary data source and the…
Zhang, Li; Qian, Liqiang; Ding, Chuntao; Zhou, Weida; Li, Fanzhang
2015-09-01
The family of discriminant neighborhood embedding (DNE) methods is typical graph-based methods for dimension reduction, and has been successfully applied to face recognition. This paper proposes a new variant of DNE, called similarity-balanced discriminant neighborhood embedding (SBDNE) and applies it to cancer classification using gene expression data. By introducing a novel similarity function, SBDNE deals with two data points in the same class and the different classes with different ways. The homogeneous and heterogeneous neighbors are selected according to the new similarity function instead of the Euclidean distance. SBDNE constructs two adjacent graphs, or between-class adjacent graph and within-class adjacent graph, using the new similarity function. According to these two adjacent graphs, we can generate the local between-class scatter and the local within-class scatter, respectively. Thus, SBDNE can maximize the between-class scatter and simultaneously minimize the within-class scatter to find the optimal projection matrix. Experimental results on six microarray datasets show that SBDNE is a promising method for cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Update on Waveguide-Embedded Differential MMIC Amplifiers
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schleht, Erich
2010-01-01
There is an update on the subject matter of Differential InP HEMT MMIC Amplifiers Embedded in Waveguides (NPO-42857) NASA Tech Briefs, Vol. 33, No. 9 (September 2009), page 35. To recapitulate: Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The MMICs are designed integrally with, and embedded in, waveguide packages. The instant work does not mention InP HEMTs but otherwise reiterates part of the subject matter of the cited prior article, with emphasis on the following salient points: An MMIC is mounted in the electric-field plane ("E-plane") of a waveguide and includes a finline transition to each differential-amplifier stage. The differential configuration creates a virtual ground within each pair of transistor-gate fingers, eliminating the need for external radio-frequency grounding. This work concludes by describing a single-stage differential submillimeter-wave amplifier packaged in a rectangular waveguide and summarizing results of tests of this amplifier at frequencies of 220 and 305 GHz.
Vella, Joseph R.; Stillinger, Frank H.; Panagiotopoulos, Athanassios Z.; ...
2015-07-23
Here, we compare six lithium potentials by examining their ability to predict coexistence properties and liquid structure using molecular dynamics. All potentials are of the embedded-atom-method (EAM) type. The coexistence properties we focus on are the melting curve, vapor pressure, saturated liquid density, and vapor-liquid surface tension. For each property studied, the simulation results are compared to available experimental data in order to properly assess the accuracy of each potential. We find that the Cui 2NN MEAM is the most robust potential, giving adequate agreement with most of the properties examined. For example, the zero-pressure melting point of this potentialmore » is shown to be around 443 K, while experimentally is it about 454 K. This potential also gives excellent agreement with saturated liquid densities, even though no liquid properties were used in the fitting procedure. Our study allows us to conclude that the Cui 2NN MEAM should be used for further simulations of lithiums.« less
A telemetry system embedded in clothes for indoor localization and elderly health monitoring.
Charlon, Yoann; Fourty, Nicolas; Campo, Eric
2013-09-04
This paper presents a telemetry system used in a combined trilateration method for the precise indoor localization of the elderly who need health monitoring. The system is based on the association of two wireless technologies: ultrasonic and 802.15.4. The use of the 802.15.4 RF signal gives the reference starting time of the ultrasonic emission (time difference of arrival method). A time of flight measurement of the ultrasonic pulses provides the distances between the mobile node and three anchor points. These distance measurements are then used to locate the mobile node using the trilateration method with an accuracy of a few centimetres. The originality of our work lies in embedding the mobile node in clothes. The system is embedded in clothes in two ways: on a shoe in order to form a "smart" shoe and in a hat in order to form a "smart" hat. Both accessories allow movements, gait speed and distance covered to be monitored for health applications. Experiments in a test room are presented to show the effectiveness of our system.
Progressive phase trends in plates with embedded acoustic black holes.
Conlon, Stephen C; Feurtado, Philip A
2018-02-01
Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.
Hub-filament System in IRAS 05480+2545: Young Stellar Cluster and 6.7 GHz Methanol Maser
NASA Astrophysics Data System (ADS)
Dewangan, L. K.; Ojha, D. K.; Baug, T.
2017-07-01
To probe the star formation (SF) process, we present a multi-wavelength study of IRAS 05480+2545 (hereafter I05480+2545). Analysis of Herschel data reveals a massive clump (M clump ˜ 1875 {M}⊙ ; peak N(H2) ˜ 4.8 × 1022 cm-2 A V ˜ 51 mag) containing the 6.7 GHz methanol maser and I05480+2545, which is also depicted in a temperature range of 18-26 K. Several noticeable parsec-scale filaments are detected in the Herschel 250 μm image and seem to be radially directed to the massive clump. It resembles more of a “hub-filament” system. Deeply embedded young stellar objects (YSOs) have been identified using the 1-5 μm photometric data, and a significant fraction of YSOs and their clustering are spatially found toward the massive clump, revealing the intense SF activities. An infrared counterpart (IRc) of the maser is investigated in the Spitzer 3.6-4.5 μm images. The IRc does not appear as a point-like source and is most likely associated with the molecular outflow. Based on the 1.4 GHz and Hα continuum images, the ionized emission is absent toward the IRc, indicating that the massive clump harbors an early phase of a massive protostar before the onset of an ultracompact H II region. Together, the I05480+2545 is embedded in a very similar “hub-filament” system to those seen in the Rosette Molecular Cloud. The outcome of the present work indicates the role of filaments in the formation of the massive star-forming clump and cluster of YSOs, which might help channel material to the central hub configuration and the clump/core.
Visser, Sanne Siete; Hutter, Inge; Haisma, Hinke
2016-02-01
The growing rates of (childhood) obesity worldwide are a source concern for health professionals, policy-makers, and researchers. The increasing prevalence of associated diseases-such as diabetes, cardiovascular diseases, and psychological problems-shows the impact of obesity on people's health, already from a young age. In turn, these problems have obvious consequences for the health care system, including higher costs. However, the treatment of obesity has proven to be difficult, which makes prevention an important goal. In this study, we focus on food practices, one of the determinants of obesity. In recent years, it has become increasingly clear that interventions designed to encourage healthy eating of children and their families are not having the desired impact, especially among groups with a lower socioeconomic background (SEB). To understand why interventions fail to have an impact, we need to study the embedded social and cultural constructions of families. We argue that we need more than just decision-making theories to understand this cultural embeddedness, and to determine what cultural and social factors influence the decision-making process. By allowing families to explain their cultural background, their capabilities, and their opportunities, we will gain new insights into how families choose what they eat from a complex set of food choices. We have thus chosen to build a framework based on Sen's capability approach and the theory of cultural schemas. This framework, together with a holistic ethnographic research approach, can help us better understand what drives the food choices made in families. The framework is built to serve as a starting point for ethnographic research on food choice in families, and could contribute to the development of interventions that are embedded in the cultural realities of the targeted groups. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jia; Shen, Hua; Zhu, Rihong; Gao, Jinming; Sun, Yue; Wang, Jinsong; Li, Bo
2018-06-01
The precision of the measurements of aspheric and freeform surfaces remains the primary factor restrict their manufacture and application. One effective means of measuring such surfaces involves using reference or probe beams with angle modulation, such as tilted-wave-interferometer (TWI). It is necessary to improve the measurement efficiency by obtaining the optimum point source array for different pieces before TWI measurements. For purpose of forming a point source array based on the gradients of different surfaces under test, we established a mathematical model describing the relationship between the point source array and the test surface. However, the optimal point sources are irregularly distributed. In order to achieve a flexible point source array according to the gradient of test surface, a novel interference setup using fiber array is proposed in which every point source can be independently controlled on and off. Simulations and the actual measurement examples of two different surfaces are given in this paper to verify the mathematical model. Finally, we performed an experiment of testing an off-axis ellipsoidal surface that proved the validity of the proposed interference system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, John
Chisel is a new open-source hardware construction language developed at UC Berkeley that supports advanced hardware design using highly parameterized generators and layered domain-specific hardware languages. Chisel is embedded in the Scala programming language, which raises the level of hardware design abstraction by providing concepts including object orientation, functional programming, parameterized types, and type inference. From the same source, Chisel can generate a high-speed C++-based cycle-accurate software simulator, or low-level Verilog designed to pass on to standard ASIC or FPGA tools for synthesis and place and route.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk
Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.
Robust numerical electromagnetic eigenfunction expansion algorithms
NASA Astrophysics Data System (ADS)
Sainath, Kamalesh
This thesis summarizes developments in rigorous, full-wave, numerical spectral-domain (integral plane wave eigenfunction expansion [PWE]) evaluation algorithms concerning time-harmonic electromagnetic (EM) fields radiated by generally-oriented and positioned sources within planar and tilted-planar layered media exhibiting general anisotropy, thickness, layer number, and loss characteristics. The work is motivated by the need to accurately and rapidly model EM fields radiated by subsurface geophysical exploration sensors probing layered, conductive media, where complex geophysical and man-made processes can lead to micro-laminate and micro-fractured geophysical formations exhibiting, at the lower (sub-2MHz) frequencies typically employed for deep EM wave penetration through conductive geophysical media, bulk-scale anisotropic (i.e., directional) electrical conductivity characteristics. When the planar-layered approximation (layers of piecewise-constant material variation and transversely-infinite spatial extent) is locally, near the sensor region, considered valid, numerical spectral-domain algorithms are suitable due to their strong low-frequency stability characteristic, and ability to numerically predict time-harmonic EM field propagation in media with response characterized by arbitrarily lossy and (diagonalizable) dense, anisotropic tensors. If certain practical limitations are addressed, PWE can robustly model sensors with general position and orientation that probe generally numerous, anisotropic, lossy, and thick layers. The main thesis contributions, leading to a sensor and geophysical environment-robust numerical modeling algorithm, are as follows: (1) Simple, rapid estimator of the region (within the complex plane) containing poles, branch points, and branch cuts (critical points) (Chapter 2), (2) Sensor and material-adaptive azimuthal coordinate rotation, integration contour deformation, integration domain sub-region partition and sub-region-dependent integration order (Chapter 3), (3) Integration partition-extrapolation-based (Chapter 3) and Gauss-Laguerre Quadrature (GLQ)-based (Chapter 4) evaluations of the deformed, semi-infinite-length integration contour tails, (4) Robust in-situ-based (i.e., at the spectral-domain integrand level) direct/homogeneous-medium field contribution subtraction and analytical curbing of the source current spatial spectrum function's ill behavior (Chapter 5), and (5) Analytical re-casting of the direct-field expressions when the source is embedded within a NBAM, short for non-birefringent anisotropic medium (Chapter 6). The benefits of these contributions are, respectively, (1) Avoiding computationally intensive critical-point location and tracking (computation time savings), (2) Sensor and material-robust curbing of the integrand's oscillatory and slow decay behavior, as well as preventing undesirable critical-point migration within the complex plane (computation speed, precision, and instability-avoidance benefits), (3) sensor and material-robust reduction (or, for GLQ, elimination) of integral truncation error, (4) robustly stable modeling of scattered fields and/or fields radiated from current sources modeled as spatially distributed (10 to 1000-fold compute-speed acceleration also realized for distributed-source computations), and (5) numerically stable modeling of fields radiated from sources within NBAM layers. Having addressed these limitations, are PWE algorithms applicable to modeling EM waves in tilted planar-layered geometries too? This question is explored in Chapter 7 using a Transformation Optics-based approach, allowing one to model wave propagation through layered media that (in the sensor's vicinity) possess tilted planar interfaces. The technique leads to spurious wave scattering however, whose induced computation accuracy degradation requires analysis. Mathematical exhibition, and exhaustive simulation-based study and analysis of the limitations of, this novel tilted-layer modeling formulation is Chapter 7's main contribution.
Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China
NASA Astrophysics Data System (ADS)
Zhu, Lei; Liu, WanQing
2018-02-01
TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.
EXors and the stellar birthline
NASA Astrophysics Data System (ADS)
Moody, Mackenzie S. L.; Stahler, Steven W.
2017-04-01
We assess the evolutionary status of EXors. These low-mass, pre-main-sequence stars repeatedly undergo sharp luminosity increases, each a year or so in duration. We place into the HR diagram all EXors that have documented quiescent luminosities and effective temperatures, and thus determine their masses and ages. Two alternate sets of pre-main-sequence tracks are used, and yield similar results. Roughly half of EXors are embedded objects, I.e., they appear observationally as Class I or flat-spectrum infrared sources. We find that these are relatively young and are located close to the stellar birthline in the HR diagram. Optically visible EXors, on the other hand, are situated well below the birthline. They have ages of several Myr, typical of classical T Tauri stars. Judging from the limited data at hand, we find no evidence that binarity companions trigger EXor eruptions; this issue merits further investigation. We draw several general conclusions. First, repetitive luminosity outbursts do not occur in all pre-main-sequence stars, and are not in themselves a sign of extreme youth. They persist, along with other signs of activity, in a relatively small subset of these objects. Second, the very existence of embedded EXors demonstrates that at least some Class I infrared sources are not true protostars, but very young pre-main-sequence objects still enshrouded in dusty gas. Finally, we believe that the embedded pre-main-sequence phase is of observational and theoretical significance, and should be included in a more complete account of early stellar evolution.
Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K; Ray, Samit K; Shivakiran, Bhaktha B N
2016-02-05
The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.
NASA Astrophysics Data System (ADS)
Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.
2016-02-01
The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.
GARLIC, A SHIELDING PROGRAM FOR GAMMA RADIATION FROM LINE- AND CYLINDER- SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, M.
1959-06-01
GARLlC is a program for computing the gamma ray flux or dose rate at a shielded isotropic point detector, due to a line source or the line equivalent of a cylindrical source. The source strength distribution along the line must be either uniform or an arbitrary part of the positive half-cycle of a cosine function The line source can be orierted arbitrarily with respect to the main shield and the detector, except that the detector must not be located on the line source or on its extensionThe main source is a homogeneous plane slab in which scattered radiation is accountedmore » for by multiplying each point element of the line source by a point source buildup factor inside the integral over the point elements. Between the main shield and the line source additional shields can be introduced, which are either plane slabs, parallel to the main shield, or cylindrical rings, coaxial with the line source. Scattered radiation in the additional shields can only be accounted for by constant build-up factors outside the integral. GARLlC-xyz is an extended version particularly suited for the frequently met problem of shielding a room containing a large number of line sources in diHerent positions. The program computes the angles and linear dimensions of a problem for GARLIC when the positions of the detector point and the end points of the line source are given as points in an arbitrary rectangular coordinate system. As an example the isodose curves in water are presented for a monoenergetic cosine-distributed line source at several source energies and for an operating fuel element of the Swedish reactor R3, (auth)« less
Imaging of neural oscillations with embedded inferential and group prevalence statistics.
Donhauser, Peter W; Florin, Esther; Baillet, Sylvain
2018-02-01
Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience.
Imaging of neural oscillations with embedded inferential and group prevalence statistics
2018-01-01
Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience. PMID:29408902
A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor
NASA Astrophysics Data System (ADS)
Gaches, Brandt A. L.; Offner, Stella S. R.
2018-02-01
We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.
Embedded Volttron specification - benchmarking small footprint compute device for Volttron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanyal, Jibonananda; Fugate, David L.; Woodworth, Ken
An embedded system is a small footprint computing unit that typically serves a specific purpose closely associated with measurements and control of hardware devices. These units are designed for reasonable durability and operations in a wide range of operating conditions. Some embedded systems support real-time operations and can demonstrate high levels of reliability. Many have failsafe mechanisms built to handle graceful shutdown of the device in exception conditions. The available memory, processing power, and network connectivity of these devices are limited due to the nature of their specific-purpose design and intended application. Industry practice is to carefully design the softwaremore » for the available hardware capability to suit desired deployment needs. Volttron is an open source agent development and deployment platform designed to enable researchers to interact with devices and appliances without having to write drivers themselves. Hosting Volttron on small footprint embeddable devices enables its demonstration for embedded use. This report details the steps required and the experience in setting up and running Volttron applications on three small footprint devices: the Intel Next Unit of Computing (NUC), the Raspberry Pi 2, and the BeagleBone Black. In addition, the report also details preliminary investigation of the execution performance of Volttron on these devices.« less
NASA Astrophysics Data System (ADS)
Chen, Gui-zhen; Zhang, Sha-sha; Xu, Yun-xiang; Wang, Xiao-yun
2011-11-01
Nuclear Magnetic Resonance (NMR) is a diagnostic method which is non-invasive and non-ionizing irradiative to the human body. It not only suits structural, but also functional imaging. The NMR technique develops rapidly in its application in life science, which has become the hotspot in recent years. Menopausal panic disorder (MPD) is a typical psychosomatic disease during climacteric period, which may affect physical and mental health. Looking for a convenient, effective, and safe method, which is free of toxic-side effects to control the disease, is a modern medical issue. Based on reviewing the etiology and pathogenesis of MPD according to dual traditional Chinese medicine (TCM) and western medicine, further analyzed the advantages and principles for selecting acupoint prescription by tonifying kidney and benefiting marrow therapy for acupoint catgut-embedding to this disease. The application of Nuclear Magnetic Resonance Spectroscopy (NMRS) and Magnetic Resonance Imaging (MRI) technologies in mechanism research on acupoint catgut embedding for the treatment of MPD was discussed. It's pointed out that this intervention method is safe and effective to treat MPD. Breakthrough will be achieved from the research of the selection of acupoint prescription and therapeutic mechanism of acupoint catgut embedding for the treatment of menopausal panic disorder by utilizing the Functional Nuclear Magnetic Resonance Imaging (fMRI) and Metabonomics technologies.
Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants.
Mobilio, Nicola; Stefanoni, Filippo; Contiero, Paolo; Mollica, Francesco; Catapano, Santo
2013-01-01
To compare the stress in bone around zirconia and titanium implants under loading. A one-piece zirconia implant and a replica of the same implant made of commercially pure titanium were embedded in two self-curing acrylic resin blocks. To measure strain, a strain gauge was applied on the surface of the two samples. Loads of 50, 100, and 150 N, with orientations of 30, 45, and 60 degrees with respect to the implant axis were applied on the implant. Strain under all loading conditions on both samples was measured. Three-dimensional virtual replicas of both the implants were reproduced using the finite element method and inserted into a virtual acrylic resin block. All the materials were considered isotropic, linear, and elastic. The same geometry and loading conditions of the experimental setup were used to realize two new models, with the implants embedded within a virtual bone block. Very close values of strain in the two implants embedded in acrylic resin were obtained both experimentally and numerically. The stress states generated by the implants embedded in virtual bone were also very similar, even if the two implants moved differently. Moreover, the stress levels were higher on cortical bone than on trabecular bone. The stress levels in bone, generated by the two implants, appeared to be very similar. From a mechanical point of view, zirconia is a feasible substitute for titanium.
NASA Astrophysics Data System (ADS)
Chen, Gui-zhen; Zhang, Sha-sha; Xu, Yun-xiang; Wang, Xiao-yun
2012-03-01
Nuclear Magnetic Resonance (NMR) is a diagnostic method which is non-invasive and non-ionizing irradiative to the human body. It not only suits structural, but also functional imaging. The NMR technique develops rapidly in its application in life science, which has become the hotspot in recent years. Menopausal panic disorder (MPD) is a typical psychosomatic disease during climacteric period, which may affect physical and mental health. Looking for a convenient, effective, and safe method, which is free of toxic-side effects to control the disease, is a modern medical issue. Based on reviewing the etiology and pathogenesis of MPD according to dual traditional Chinese medicine (TCM) and western medicine, further analyzed the advantages and principles for selecting acupoint prescription by tonifying kidney and benefiting marrow therapy for acupoint catgut-embedding to this disease. The application of Nuclear Magnetic Resonance Spectroscopy (NMRS) and Magnetic Resonance Imaging (MRI) technologies in mechanism research on acupoint catgut embedding for the treatment of MPD was discussed. It's pointed out that this intervention method is safe and effective to treat MPD. Breakthrough will be achieved from the research of the selection of acupoint prescription and therapeutic mechanism of acupoint catgut embedding for the treatment of menopausal panic disorder by utilizing the Functional Nuclear Magnetic Resonance Imaging (fMRI) and Metabonomics technologies.
NASA Astrophysics Data System (ADS)
Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe
2018-05-01
We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.
Zheng, Xiaochun; Wan, Liling; Gao, Fei; Chen, Jianghu; Tu, Wenshao
2017-08-12
To observe the clinical effect of ear point embedding on plasma and effect site concentrations of propofol-remifentanil in elderly patients who underwent abdominal external hernia surgery at the time of consciousness and pain disappearing by target-controlled infusion (TCI) and bispectral index (BIS). Fifty patients who underwent elective abdominal hernia surgery were randomly assigned into an observation group and a control group, 25 cases in each one. In the observation group, 30 minutes before anesthesia induction, Fugugou (Extra), Gan (CO 12 ), Pizhixia (AT 4 ), and Shenmen (TF 4 ) were embedded by auricular needles until the end of surgery, 10 times of counter press each point. In the control group, the same amount of auricular tape was applied until the end of surgery at the same points without stimulation 30 minutes before anesthesia induction. Patients in the two groups were given total intravenous anesthesia, and BIS was monitored by BIS anesthesia depth monitor. Propofol was infused by TCI at a beginning concentration of 1.5μg/L and increased by 0.3μg/L every 30s until the patients lost their consciousness. After that, remifentanil was infused by TCI at a beginning concentration of 2.0μg/L and increased by 0.3μg/L every 30s until the patients had no body reaction to pain stimulation (orbital reflex). Indices were recorded, including mean arterial pressure (MAP), heart rate (HR) and the BIS values, at the time of T 0 (entering into the operation room), T 1 (losing consciousness) and T 2 (pain relief), the plasma and effect site concentrations of propofol at T 1 , the plasma and effect site concentrations of remifentanil at T 2 . After surgery we recorded the total amounts of propofol and remifentanil, surgery time and anesthesia time. At T 1 and T 2 , MAP and HR of the observation group were higher than those of the control group ( P <0.05, P <0.01). At T 1 , the plasma and effect site concentrations of propofol in the observation group were significantly lower than those in the control group ( P <0.05, P <0.01). At T 2 , the plasma and effect site concentrations of remifentanil in the observation group were significantly lower than those in the control group ( P <0.05, P <0.01). There was no significant difference in BIS values at T 1 and T 2 between the two groups (both P >0.05). There was no significant difference in operation time and anesthesia time between the two groups (both P >0.05). The total amount of remifentanil in the observation group was significantly lower than that in the control group ( P <0.01). There was no significant difference in the total amount of propofol between the two groups ( P >0.05). Ear points embedding combined with propofol-remifentanil TCI could reduce the plasma and effect site concentrations of propofol and remifentanil and the total amount of remifentanil in elderly patients with extra-abdominal hernia surgery, and had the effect of assisting sedation and analgesia.
NASA Astrophysics Data System (ADS)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; Teige, Virginia; Harley, Robert A.; Cohen, Ronald C.
2016-11-01
The majority of anthropogenic CO2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO2 Observation Network (BEACO2N) in California's Bay Area, in combination with an inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1 × 1 km2 emission inventory and 1 × 1 km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model-observing system in reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; ...
2016-11-01
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis
NASA Astrophysics Data System (ADS)
Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin
Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Réal, Florent; Ordejón, Belén; Vallet, Valérie; Flament, Jean-Pierre; Schamps, Joël
2009-11-21
New ab initio embedded-cluster calculations devoted to simulating the electronic spectroscopy of Bi(3+) impurities in Y(2)O(3) sesquioxide for substitutions in either S(6) or C(2) cationic sites have been carried out taking special care of the quality of the environment. A considerable quantitative improvement with respect to previous studies [F. Real et al. J. Chem. Phys. 125, 174709 (2006); F. Real et al. J. Chem. Phys. 127, 104705 (2007)] is brought by using environments of the impurities obtained via supercell techniques that allow the whole (pseudo) crystal to relax (WCR geometries) instead of environments obtained from local relaxation of the first coordination shell only (FSR geometries) within the embedded cluster approach, as was done previously. In particular the uniform 0.4 eV discrepancy of absorption energies found previously with FSR environments disappears completely when the new WCR environments of the impurities are employed. Moreover emission energies and hence Stokes shifts are in much better agreement with experiment. These decisive improvements are mainly due to a lowering of the local point-group symmetry (S(6)-->C(3) and C(2)-->C(1)) when relaxing the geometry of the emitting (lowest) triplet state. This symmetry lowering was not observed in FSR embedded cluster relaxations because the crystal field of the embedding frozen at the genuine pure crystal positions seems to be a more important driving force than the interactions within the cluster, thus constraining the overall symmetry of the system. Variations of the doping rate are found to have negligible influence on the spectra. In conclusion, the use of WCR environments may be crucial to render the structural distortions occurring in a doped crystal and it may help to significantly improve the embedded-cluster methodology to reach the quantitative accuracy necessary to interpret and predict luminescence properties of doped materials of this type.
40 CFR 51.35 - How can my state equalize the emission inventory effort from year to year?
Code of Federal Regulations, 2012 CFR
2012-07-01
... approach: (1) Each year, collect and report data for all Type A (large) point sources (this is required for all Type A point sources). (2) Each year, collect data for one-third of your sources that are not Type... save 3 years of data and then report all emissions from the sources that are not Type A point sources...
40 CFR 51.35 - How can my state equalize the emission inventory effort from year to year?
Code of Federal Regulations, 2010 CFR
2010-07-01
... approach: (1) Each year, collect and report data for all Type A (large) point sources (this is required for all Type A point sources). (2) Each year, collect data for one-third of your sources that are not Type... save 3 years of data and then report all emissions from the sources that are not Type A point sources...
40 CFR 51.35 - How can my state equalize the emission inventory effort from year to year?
Code of Federal Regulations, 2014 CFR
2014-07-01
... approach: (1) Each year, collect and report data for all Type A (large) point sources (this is required for all Type A point sources). (2) Each year, collect data for one-third of your sources that are not Type... save 3 years of data and then report all emissions from the sources that are not Type A point sources...
Reppel, Loïc; Schiavi, Jessica; Charif, Naceur; Leger, Léonore; Yu, Hao; Pinzano, Astrid; Henrionnet, Christel; Stoltz, Jean-François; Bensoussan, Danièle; Huselstein, Céline
2015-12-30
Due to their intrinsic properties, stem cells are promising tools for new developments in tissue engineering and particularly for cartilage tissue regeneration. Although mesenchymal stromal/stem cells from bone marrow (BM-MSC) have long been the most used stem cell source in cartilage tissue engineering, they have certain limits. Thanks to their properties such as low immunogenicity and particularly chondrogenic differentiation potential, mesenchymal stromal/stem cells from Wharton's jelly (WJ-MSC) promise to be an interesting source of MSC for cartilage tissue engineering. In this study, we propose to evaluate chondrogenic potential of WJ-MSC embedded in alginate/hyaluronic acid hydrogel over 28 days. Hydrogels were constructed by the original spraying method. Our main objective was to evaluate chondrogenic differentiation of WJ-MSC on three-dimensional scaffolds, without adding growth factors, at transcript and protein levels. We compared the results to those obtained from standard BM-MSC. After 3 days of culture, WJ-MSC seemed to be adapted to their new three-dimensional environment without any detectable damage. From day 14 and up to 28 days, the proportion of WJ-MSC CD73(+), CD90(+), CD105(+) and CD166(+) decreased significantly compared to monolayer marker expression. Moreover, WJ-MSC and BM-MSC showed different phenotype profiles. After 28 days of scaffold culture, our results showed strong upregulation of cartilage-specific transcript expression. WJ-MSC exhibited greater type II collagen synthesis than BM-MSC at both transcript and protein levels. Furthermore, our work highlighted a relevant result showing that WJ-MSC expressed Runx2 and type X collagen at lower levels than BM-MSC. Once seeded in the hydrogel scaffold, WJ-MSC and BM-MSC have different profiles of chondrogenic differentiation at both the phenotypic level and matrix synthesis. After 4 weeks, WJ-MSC, embedded in a three-dimensional environment, were able to adapt to their environment and express specific cartilage-related genes and matrix proteins. Today, WJ-MSC represent a real alternative source of stem cells for cartilage tissue engineering.
1987-09-01
real - time operating system should be efficient from the real-time point...5,8]) system naming scheme. 3.2 Protecting Objects Real-time embedded systems usually neglect protection mechanisms. However, a real - time operating system cannot...allocation mechanism should adhere to application constraints. This strong relationship between a real - time operating system and the application
ERIC Educational Resources Information Center
Zappardino, Pamela
Stephen Jay Gould points out in "The Mismeasure of Man" (1981), "Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition." The legacy of the traditional construct of intelligence and its measurement through intelligence quotient (IQ) tests has not been educational improvement. Its legacy in…
Deeply-Integrated Feature Tracking for Embedded Navigation
2009-03-01
metric would result in increased feature strength, but a decrease in repeatability. The feature spacing also helped with repeatability of strong...locations in the second frame. This relationship is a constraint of projective geometry and states that the cross product of a point with itself (when...integrated refers to the incorporation of inertial information into the image processing, rather than just
Adaptable, modular, multi-purpose space vehicle backplane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin
An adaptable, modular, multi-purpose (AMM) space vehicle backplane may accommodate boards and components for various missions. The AMM backplane may provide a common hardware interface and common board-to-board communications. Components, connectors, test points, and sensors may be embedded directly into the backplane to provide additional functionality, diagnostics, and system access. Other space vehicle sections may plug directly into the backplane.
Voge, Catherine; Hirvela, Kari; Jarzemsky, Paula
2012-01-01
To create an opportunity for students to connect with the Quality and Safety Education for Nurses competencies and demonstrate learning via knowledge transference, the authors piloted a digital media assignment. Students worked in small groups to create an unfolding patient care scenario with embedded decision points, using presentation software. The authors discuss the assignment and its outcomes.
ERIC Educational Resources Information Center
Ungruhe, Christian
2010-01-01
Independent youth migration is socially embedded in many African societies. While it is often exclusively perceived of as a process of intergenerational negotiation which leads to higher social positions after returning home, this article points out that peer influences play a major role in the process of decision-making of leaving and returning…
ERIC Educational Resources Information Center
Cano, Jamie
1999-01-01
Results of the Group Embedded Figures Test and Myers Briggs Type Indicator for 178 agricultural education freshmen showed 56% were field independent (FI); field dependent (FD) and FI students differed in choice of major; FD students were more likely to have lower grade point average; and as their style moved from dependence to independence, grade…
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.
Krause, Katharina; Klopper, Wim
2016-01-28
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
Adaptive Multi-Sensor Interrogation of Targets Embedded in Complex Environments
2010-06-09
to efficient refinement of data from distributed networked sensor systems for interpretation by both machines and humans in a low latency and...of a DP draw: Tk^HIltiU-^). Vk*& Beta{l,a), d’k ~ d" H. (19) where 5g - is a point measure concentrated at 9*k (each 9*k is termed an atom
ERIC Educational Resources Information Center
Canuteson, Ashley Dyanne
2017-01-01
The developing synergy of legislation and research throughout recent history points to the current momentum behind college and career readiness for every student. Researchers have found that embedding academic content into career education improves student learning. Integrated learning can vary in approach and style and can be adjusted to fit into…
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, Katharina; Klopper, Wim, E-mail: klopper@kit.edu
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
ERIC Educational Resources Information Center
Lombardi, Allison R.; Kowitt, Jennifer S.; Staples, Frank E.
2015-01-01
Considered a non-academic factor that is not necessarily measured by academic indicators of college and career readiness (e.g., grade point average, college admissions exams scores), critical thinking is an important aspect of 21st century learning and thus should be embedded into secondary school instruction and assessment. In this study,…
Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F
2016-07-01
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
3D indoor modeling using a hand-held embedded system with multiple laser range scanners
NASA Astrophysics Data System (ADS)
Hu, Shaoxing; Wang, Duhu; Xu, Shike
2016-10-01
Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.
NASA Astrophysics Data System (ADS)
Feyen, Luc; Caers, Jef
2006-06-01
In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.
Precise identification of Dirac-like point through a finite photonic crystal square matrix
Dong, Guoyan; Zhou, Ji; Yang, Xiulun; Meng, Xiangfeng
2016-01-01
The phenomena of the minimum transmittance spectrum or the maximum reflection spectrum located around the Dirac frequency have been observed to demonstrate the 1/L scaling law near the Dirac-like point through the finite ribbon structure. However, so far there is no effective way to identify the Dirac-like point accurately. In this work we provide an effective measurement method to identify the Dirac-like point accurately through a finite photonic crystal square matrix. Based on the Dirac-like dispersion achieved by the accidental degeneracy at the centre of the Brillouin zone of dielectric photonic crystal, both the simulated and experimental results demonstrate that the transmittance spectra through a finite photonic crystal square matrix not only provide the clear evidence for the existence of Dirac-like point but also can be used to identify the precise location of Dirac-like point by the characteristics of sharp cusps embedded in the extremum spectra surrounding the conical singularity. PMID:27857145
NASA Astrophysics Data System (ADS)
Dupas, Rémi; Tittel, Jörg; Jordan, Phil; Musolff, Andreas; Rode, Michael
2018-05-01
A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist of flow independent point source emissions (mainly from domestic and industrial origins) and flow dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source dominated areas. A load apportionment model (LAM) is used to show how point sources contribution may have been overestimated in previous studies, because of a biogeochemical process mimicking a point source signal. Almost twenty-two years (March 1995-September 2016) of monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP release. We conclude that LAMs may overestimate the contribution of P point sources, especially during the summer low-flow period, when eutrophication risk is maximal.
Identifying Sources of Bias in EFL Writing Assessment through Multiple Trait Scoring
ERIC Educational Resources Information Center
Salmani-Nodoushan, Mohammad Ali
2009-01-01
For purposes of the present study, it was hypothesized that field (in)dependence would introduce systematic variance into EFL learners' performance on composition tests. 1743 freshman, sophomore, junior, and senior students all majoring in English at different Iranian universities and colleges took the Group Embedded Figures Test (GEFT). The…
Cultural Literacy Assimilation: The Literacy Experiences of Children of Immigrants
ERIC Educational Resources Information Center
Rosen, Dana
2014-01-01
Although students' literacy practices are influenced by a variety of sources, including texts, teachers, peers, the media, and their home culture (Dyson, 1993), the process of becoming literate is truly grounded in their cultural beliefs (Ferdman, 1990). Literacy skills are embedded in cultural practice, and cultural practice is learned implicitly…
Student Perception of Competence and Attitude in Middle School Physical Education
ERIC Educational Resources Information Center
Scrabis-Fletcher, Kristin; Silverman, Stephen
2017-01-01
Motivation is a dynamic process that accounts for the interaction and filtration of information by the student and the effect that it has on student behavior. Perception of competence, an embedded motivational theory, posits that the influence of prior experience and information received from outside sources affects student behavior (Harter,…
ERIC Educational Resources Information Center
Contreras, José
2015-01-01
In this paper I describe classroom experiences with pre-service secondary mathematics teachers (PSMTs) investigating and extending patterns embedded in the Pythagorean configuration. This geometric figure is a fruitful source of mathematical tasks to help students, including PSMTs, further develop habits of mind such as visualization,…
A Model to Assess the Behavioral Impacts of Consultative Knowledge Based Systems.
ERIC Educational Resources Information Center
Mak, Brenda; Lyytinen, Kalle
1997-01-01
This research model studies the behavioral impacts of consultative knowledge based systems (KBS). A study of graduate students explored to what extent their decisions were affected by user participation in updating the knowledge base; ambiguity of decision setting; routinization of usage; and source credibility of the expertise embedded in the…
Identity Formation of American Indian Adolescents: Local, National, and Global Considerations
ERIC Educational Resources Information Center
Markstrom, Carol A.
2011-01-01
A conceptual model is presented that approaches identity formation of American Indian adolescents according to 3 levels of social contextual influence--local, national, and global--relative to types of identity, dynamics of identity, and sources of influence. Ethnic identity of American Indians is embedded within the local cultural milieu and…
The Gender Puzzle: Toddlers' Use of Articles to Access Noun Information
ERIC Educational Resources Information Center
Arias-Trejo, Natalia; Falcon, Alberto; Alva-Canto, Elda A.
2013-01-01
Grammatical gender embedded in determiners, nouns and adjectives allows indirect and more rapid processing of the referents implied in sentences. However in a language such as Spanish, this useful information cannot be reliably retrieved from a single source of information. Instead, noun gender may be extracted either from phono-morphological,…
The Rise of the Embedded Designer in the Creative Industries
ERIC Educational Resources Information Center
Fleischmann, Katja; Daniel, Ryan
2015-01-01
Work practices in the creative industries have changed significantly since the turn of the twenty-first century. The design profession in particular has been influenced by rapidly emerging digital media practices and processes. While the design sector remains a significant source of employment, in recent years, there has been considerable growth…
Punking and Bullying: Strategies in Middle School, High School, and Beyond
ERIC Educational Resources Information Center
Phillips, Debby A.
2007-01-01
Punking is a practice of verbal and physical violence, humiliation, and shaming usually done in public by males to other males. This definition is based on interviews and discussion groups with 32 adolescent boys and on media sources within which adolescent males are embedded. Discourse analysis findings reveal that punking terminology and…
Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok
2016-01-05
Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.
NASA Astrophysics Data System (ADS)
Zhang, S.; Tang, L.
2007-05-01
Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a distributed model, it is possible to view model output as it varies across the basin, so the critical areas and reaches can be found in the study area. According to the simulation results, it is found that different land uses can yield different results and fertilization in rainy season has an important impact on the non- point source pollution. The limitations of the SWAT model are also discussed and the measures of the control and prevention of non- point source pollution for Panjiakou Reservoir are presented according to the analysis of model calculation results.
Infrared Spectroscopy of Black Hole Candidates
NASA Technical Reports Server (NTRS)
Colgan, Sean W.; Cotera, A. S.; Maloney, P. R.; Hollenbach, D. J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
ISO LWS and SWS observations of the approx. solar mass black hole candidates 1E1740.7-2942 and GRS1758-258 are presented. For 1E1740.7-2942, it has been suggested that the luminosity is provided in whole or part by Bondi-Hoyle accretion from a surrounding black hole (Bally & Leventhal 1991, Nat, 353,234). Maloney et al. (1997, ApJ482, L41) have predicted that detectable far-infrared line emission from [0I] (63 microns), [CII] (158 microns), [SiII] (35 microns) and other lines will arise from black holes which are embedded in molecular clouds. No strong line emission associated with either 1E1740.7-2942 or GRS1758-258 was detected, implying either that 1) these sources are not embedded in dense molecular clouds, or 2) that their average X-ray luminosity over the past 100 years is significantly lower than its current value. The measured upper limits to the line fluxes are compared with the models of Maloney et al.to constrain the properties of the ISM in the vicinity of these X-ray sources.
CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route
Huo, Chengli; Ouyang, Jing; Yang, Huaming
2014-01-01
Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated. PMID:24419589
Salehifar, Mehdi; Moreno-Equilaz, Manuel
2016-01-01
Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Paul, K Brince; Singh, Vikrant; Vanjari, Siva Rama Krishna; Singh, Shiv Govind
2017-02-15
Ovarian cancer is the most leading cause of cancer-related death in women . The carcinoma antigen-125, which is found on the surface of many ovarian cancer cells is known to be a gold standard clinical biomarker associated with life-threatening gynecological malignancy. In this work, we demonstrate a novel biosensor platform based on multiwalled carbon nanotubes embedded zinc oxide nanowire for the ultrasensitive detection of carcinoma antigen-125. Label free detection of the carcinoma antigen-125 was accomplished by differential voltammetry technique that demonstrated excellent sensitivity (90.14µA/(U/mL)/cm 2 ) with a detection limit of 0.00113UmL -1 concentration. The fabricated immunosensor exhibits good performance with wider detection range (0.001UmL -1 -1kUmL -1 ), reproducibility, selectivity, acceptable stability, and thus is a potential cost-effective methodology for point-of-care diagnosis. The multiwalled carbon nanotubes (MWCNTs) embedded highly oriented zinc oxide (ZnO) nanowires were synthesized by simple, low cost electrospinning technique. Compared to pure ZnO nanowires, electrochemical activity of MWCNTs embedded ZnO nanowires was found to be much higher. The calcination temperature was optimized to avoid any decomposition of the CNTs and to obtain multiwalled carbon nanotubes embedded highly crystalline ZnO nanowires. The salient feature of this biosensing platform is that one step calcination process is enough to create the functional groups on MWCNT-ZnO nanowire surface that are effective for the covalent conjugation of antibody without further surface modification. To the best of our knowledge, this is the first report on MWCNT-ZnO nanowire based immunosensor explored for the detection of cancer biomarker. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermal stabilization of superconducting sigma strings and their drum vortons
NASA Astrophysics Data System (ADS)
Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine
2002-05-01
We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.
Press, M F; Hung, G; Godolphin, W; Slamon, D J
1994-05-15
HER-2/neu oncogene amplification and overexpression of breast cancer tissue has been correlated with poor prognosis in women with both node-positive and node-negative disease. However, several studies have not confirmed this association. Review of these studies reveals the presence of considerable methodological variability including differences in study size, follow-up time, techniques and reagents. The majority of papers with clinical follow-up information are immunohistochemical studies using archival, paraffin-embedded breast cancers, and a variety of HER-2/neu antibodies have been used in these studies. Very little information, however, is available about the ability of the antibodies to detect overexpression following tissue processing for paraffin-embedding. Therefore, a series of antibodies, reported in the literature or commercially available, were evaluated to assess their sensitivity and specificity as immunohistochemical reagents. Paraffin-embedded samples of 187 breast cancers, previously characterized as frozen specimens for HER-2/neu amplification by Southern blot and for overexpression by Northern blot, Western blot, and immunohistochemistry, were used. Two multitumor paraffin-embedded tissue blocks were prepared from the previously analyzed breast cancers as a panel of cases to test a series of previously studied and/or commercially available anti-HER-2/neu antibodies. Immunohistochemical staining results obtained with 7 polyclonal and 21 monoclonal antibodies in sections from paraffin-embedded blocks of these breast cancers were compared. The ability of these antibodies to detect overexpression was extremely variable, providing an important explantation for the variable overexpression rate reported in the literature.
Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan
2016-03-29
Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.
Díaz-Cano, S J; Brady, S P
1997-12-01
Several DNA extraction methods have been used for formalin-fixed, paraffin-embedded tissues, with variable results being reported regarding the suitability of DNA obtained from such sources to serve as template in polymerase chain reaction (PCR)-based genetic analyses. We present a method routinely used for archival material in our laboratory that reliably yields DNA of sufficient quality for PCR studies. This method is based on extended proteinase K digestion (250 micrograms/ml in an EDTA-free calcium-containing buffer supplemented with mussel glycogen) followed by phenol-chloroform extraction. Agarose gel electrophoresis of both digestion buffer aliquots and PCR amplification of the beta-globin gene tested the suitability of the retrieved DNA for PCR amplification.
NASA Astrophysics Data System (ADS)
Piazzoni, C.; Blomqvist, M.; Podestà, A.; Bardizza, G.; Bonati, M.; Piseri, P.; Milani, P.; Davies, C.; Hatto, P.; Ducati, C.; Sedláčková, K.; Radnóczi, G.
2008-01-01
We report the production and characterization of nanocomposite thin films consisting of a titanium nitride matrix with embedded molybdenum disulphide fullerene-like nanoparticles. This was achieved by combining a cluster source generating a pulsed supersonic beam of MoS2 clusters with an industrial cathodic arc reactive evaporation apparatus used for TiN deposition. Cluster-assembled films show the presence of MoS2 nanocages and nanostructures and the survival of such structures dispersed in the TiN matrix in the co-deposited samples. Nanotribological characterization by atomic force microscopy shows that the presence of MoS2 nanoparticles even in very low concentration modifies the behaviour of the TiN matrix.
Embedded top-coat for reducing the effect out of band radiation in EUV lithography
NASA Astrophysics Data System (ADS)
Du, Ke; Siauw, Meiliana; Valade, David; Jasieniak, Marek; Voelcker, Nico; Trefonas, Peter; Thackeray, Jim; Blakey, Idriss; Whittaker, Andrew
2017-03-01
Out of band (OOB) radiation from the EUV source has significant implications for the performance of EUVL photoresists. Here we introduce a surface-active polymer additive, capable of partitioning to the top of the resist film during casting and annealing, to protect the underlying photoresist from OOB radiation. Copolymers were prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, and rendered surface active by chain extension with a block of fluoro-monomer. Films were prepared from the EUV resist with added surface-active Embedded Barrier Layer (EBL), and characterized using measurements of contact angles and spectroscopic ellipsometry. Finally, the lithographic performance of the resist containing the EBL was evaluated using Electron Beam Lithography exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, E.; Floether, F. F.; Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE
Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using themore » on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.« less