Sample records for point source inversion

  1. Characterisation of a resolution enhancing image inversion interferometer.

    PubMed

    Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer

    2009-08-31

    Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.

  2. Double point source W-phase inversion: Real-time implementation and automated model selection

    USGS Publications Warehouse

    Nealy, Jennifer; Hayes, Gavin

    2015-01-01

    Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.

  3. Real-time monitoring and massive inversion of source parameters of very long period seismic signals: An application to Stromboli Volcano, Italy

    USGS Publications Warehouse

    Auger, E.; D'Auria, L.; Martini, M.; Chouet, B.; Dawson, P.

    2006-01-01

    We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green's functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano. Copyright 2006 by the American Geophysical Union.

  4. Rethinking moment tensor inversion methods to retrieve the source mechanisms of low-frequency seismic events

    NASA Astrophysics Data System (ADS)

    Karl, S.; Neuberg, J.

    2011-12-01

    Volcanoes exhibit a variety of seismic signals. One specific type, the so-called long-period (LP) or low-frequency event, has proven to be crucial for understanding the internal dynamics of the volcanic system. These long period (LP) seismic events have been observed at many volcanoes around the world, and are thought to be associated with resonating fluid-filled conduits or fluid movements (Chouet, 1996; Neuberg et al., 2006). While the seismic wavefield is well established, the actual trigger mechanism of these events is still poorly understood. Neuberg et al. (2006) proposed a conceptual model for the trigger of LP events at Montserrat involving the brittle failure of magma in the glass transition in response to the upwards movement of magma. In an attempt to gain a better quantitative understanding of the driving forces of LPs, inversions for the physical source mechanisms have become increasingly common. Previous studies have assumed a point source for waveform inversion. Knowing that applying a point source model to synthetic seismograms representing an extended source process does not yield the real source mechanism, it can, however, still lead to apparent moment tensor elements which then can be compared to previous results in the literature. Therefore, this study follows the proposed concepts of Neuberg et al. (2006), modelling the extended LP source as an octagonal arrangement of double couples approximating a circular ringfault bounding the circumference of the volcanic conduit. Synthetic seismograms were inverted for the physical source mechanisms of LPs using the moment tensor inversion code TDMTISO_INVC by Dreger (2003). Here, we will present the effects of changing the source parameters on the apparent moment tensor elements. First results show that, due to negative interference, the amplitude of the seismic signals of a ringfault structure is greatly reduced when compared to a single double couple source. Furthermore, best inversion results yield a solution comprised of positive isotropic and compensated linear vector dipole components. Thus, the physical source mechanisms of volcano seismic signals may be misinterpreted as opening shear or tensile cracks when wrongly assuming a point source. In order to approach the real physical sources with our models, inversions based on higher-order tensors might have to be considered in the future. An inversion technique where the point source is replaced by a so-called moment tensor density would allow inversions of volcano seismic signals for sources that can then be temporally and spatially extended.

  5. Atmospheric inverse modeling via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  6. Developing a Near Real-time System for Earthquake Slip Distribution Inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen

    2016-04-01

    Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.

  7. Minimization of model representativity errors in identification of point source emission from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar

    2017-11-01

    Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.

  8. Reducing errors in aircraft atmospheric inversion estimates of point-source emissions: the Aliso Canyon natural gas leak as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.

    2018-04-01

    Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.

  9. The Ellipticity Filter-A Proposed Solution to the Mixed Event Problem in Nuclear Seismic Discrimination

    DTIC Science & Technology

    1974-09-07

    ellipticity filter. The source waveforms are recreated by an inverse transform of those complex ampli- tudes associated with the same azimuth...terms of the three complex data points and the ellipticity. Having solved the equations for all frequency bins, the inverse transform of...Transform of those complex amplitudes associated with Source 1, yielding the signal a (t). Similarly, take the inverse Transform of all

  10. Adjoint Sensitivity Method to Determine Optimal Set of Stations for Tsunami Source Inversion

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Hossen, M. J.; Cummins, P. R.; Satake, K.

    2017-12-01

    We applied the adjoint sensitivity technique in tsunami science for the first time to determine an optimal set of stations for a tsunami source inversion. The adjoint sensitivity (AS) method has been used in numerical weather prediction to find optimal locations for adaptive observations. We implemented this technique to Green's Function based Time Reverse Imaging (GFTRI), which is recently used in tsunami source inversion in order to reconstruct the initial sea surface displacement, known as tsunami source model. This method has the same source representation as the traditional least square (LSQ) source inversion method where a tsunami source is represented by dividing the source region into a regular grid of "point" sources. For each of these, Green's function (GF) is computed using a basis function for initial sea surface displacement whose amplitude is concentrated near the grid point. We applied the AS method to the 2009 Samoa earthquake tsunami that occurred on 29 September 2009 in the southwest Pacific, near the Tonga trench. Many studies show that this earthquake is a doublet associated with both normal faulting in the outer-rise region and thrust faulting in the subduction interface. To estimate the tsunami source model for this complex event, we initially considered 11 observations consisting of 5 tide gauges and 6 DART bouys. After implementing AS method, we found the optimal set of observations consisting with 8 stations. Inversion with this optimal set provides better result in terms of waveform fitting and source model that shows both sub-events associated with normal and thrust faulting.

  11. Waveform inversion of volcano-seismic signals for an extended source

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.; Chouet, B.; Dawson, P.

    2007-01-01

    We propose a method to investigate the dimensions and oscillation characteristics of the source of volcano-seismic signals based on waveform inversion for an extended source. An extended source is realized by a set of point sources distributed on a grid surrounding the centroid of the source in accordance with the source geometry and orientation. The source-time functions for all point sources are estimated simultaneously by waveform inversion carried out in the frequency domain. We apply a smoothing constraint to suppress short-scale noisy fluctuations of source-time functions between adjacent sources. The strength of the smoothing constraint we select is that which minimizes the Akaike Bayesian Information Criterion (ABIC). We perform a series of numerical tests to investigate the capability of our method to recover the dimensions of the source and reconstruct its oscillation characteristics. First, we use synthesized waveforms radiated by a kinematic source model that mimics the radiation from an oscillating crack. Our results demonstrate almost complete recovery of the input source dimensions and source-time function of each point source, but also point to a weaker resolution of the higher modes of crack oscillation. Second, we use synthetic waveforms generated by the acoustic resonance of a fluid-filled crack, and consider two sets of waveforms dominated by the modes with wavelengths 2L/3 and 2W/3, or L and 2L/5, where W and L are the crack width and length, respectively. Results from these tests indicate that the oscillating signature of the 2L/3 and 2W/3 modes are successfully reconstructed. The oscillating signature of the L mode is also well recovered, in contrast to results obtained for a point source for which the moment tensor description is inadequate. However, the oscillating signature of the 2L/5 mode is poorly recovered owing to weaker resolution of short-scale crack wall motions. The triggering excitations of the oscillating cracks are successfully reconstructed. Copyright 2007 by the American Geophysical Union.

  12. Improved source inversion from joint measurements of translational and rotational ground motions

    NASA Astrophysics Data System (ADS)

    Donner, S.; Bernauer, M.; Reinwald, M.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Waveform inversion for seismic point (moment tensor) and kinematic sources is a standard procedure. However, especially in the local and regional distances a lack of appropriate velocity models, the sparsity of station networks, or a low signal-to-noise ratio combined with more complex waveforms hamper the successful retrieval of reliable source solutions. We assess the potential of rotational ground motion recordings to increase the resolution power and reduce non-uniquenesses for point and kinematic source solutions. Based on synthetic waveform data, we perform a Bayesian (i.e. probabilistic) inversion. Thus, we avoid the subjective selection of the most reliable solution according the lowest misfit or other constructed criterion. In addition, we obtain unbiased measures of resolution and possible trade-offs. Testing different earthquake mechanisms and scenarios, we can show that the resolution of the source solutions can be improved significantly. Especially depth dependent components show significant improvement. Next to synthetic data of station networks, we also tested sparse-network and single station cases.

  13. Source splitting via the point source method

    NASA Astrophysics Data System (ADS)

    Potthast, Roland; Fazi, Filippo M.; Nelson, Philip A.

    2010-04-01

    We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119-40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731-42). The task is to separate the sound fields uj, j = 1, ..., n of n \\in \\mathbb {N} sound sources supported in different bounded domains G1, ..., Gn in \\mathbb {R}^3 from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u1 + sdotsdotsdot + un on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions g_1, \\ldots, g_n, n\\in \\mathbb {N} , to construct uell for ell = 1, ..., n from u|Λ in the form u_{\\ell }(x) = \\int _{\\Lambda } g_{\\ell,x}(y) u(y) {\\,\\rm d}s(y), \\qquad \\ell =1,\\ldots, n. We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online.

  14. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.; Cerra, Frank

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3)more » a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow “pencil” beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source, or b) during the traversal of a point source, is a unifying concept. The “universal source strength” of air kerma rate at a meter from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.« less

  15. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners.

    PubMed

    Strom, Daniel J; Cerra, Frank

    2016-06-01

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3) a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow "pencil" beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source or b) during the traversal of a point source is a unifying concept. The "universal source strength" of air kerma rate at 1 m from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.

  16. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.

    2001-01-01

    Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius. Finally, a method is devised to obtain the size of the distributed source during the cardiac cycle.

  17. Point-source inversion techniques

    NASA Astrophysics Data System (ADS)

    Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.

    1982-11-01

    A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.

  18. Waveform inversion of oscillatory signatures in long-period events beneath volcanoes

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.; Nakano, M.

    2002-01-01

    The source mechanism of long-period (LP) events is examined using synthetic waveforms generated by the acoustic resonance of a fluid-filled crack. We perform a series of numerical tests in which the oscillatory signatures of synthetic LP waveforms are used to determine the source time functions of the six moment tensor components from waveform inversions assuming a point source. The results indicate that the moment tensor representation is valid for the odd modes of crack resonance with wavelengths 2L/n, 2W/n, n = 3, 5, 7, ..., where L and W are the crack length and width, respectively. For the even modes with wavelengths 2L/n, 2W/n, n = 2, 4, 6,..., a generalized source representation using higher-order tensors is required, although the efficiency of seismic waves radiated by the even modes is expected to be small. We apply the moment tensor inversion to the oscillatory signatures of an LP event observed at Kusatsu-Shirane Volcano, central Japan. Our results point to the resonance of a subhorizontal crack located a few hundred meters beneath the summit crater lakes. The present approach may be useful to quantify the source location, geometry, and force system of LP events, and opens the way for moment tensor inversions of tremor.

  19. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  20. Interferometric superlocalization of two incoherent optical point sources.

    PubMed

    Nair, Ranjith; Tsang, Mankei

    2016-02-22

    A novel interferometric method - SLIVER (Super Localization by Image inVERsion interferometry) - is proposed for estimating the separation of two incoherent point sources with a mean squared error that does not deteriorate as the sources are brought closer. The essential component of the interferometer is an image inversion device that inverts the field in the transverse plane about the optical axis, assumed to pass through the centroid of the sources. The performance of the device is analyzed using the Cramér-Rao bound applied to the statistics of spatially-unresolved photon counting using photon number-resolving and on-off detectors. The analysis is supported by Monte-Carlo simulations of the maximum likelihood estimator for the source separation, demonstrating the superlocalization effect for separations well below that set by the Rayleigh criterion. Simulations indicating the robustness of SLIVER to mismatch between the optical axis and the centroid are also presented. The results are valid for any imaging system with a circularly symmetric point-spread function.

  1. A framework for fast probabilistic centroid-moment-tensor determination—inversion of regional static displacement measurements

    NASA Astrophysics Data System (ADS)

    Käufl, Paul; Valentine, Andrew P.; O'Toole, Thomas B.; Trampert, Jeannot

    2014-03-01

    The determination of earthquake source parameters is an important task in seismology. For many applications, it is also valuable to understand the uncertainties associated with these determinations, and this is particularly true in the context of earthquake early warning (EEW) and hazard mitigation. In this paper, we develop a framework for probabilistic moment tensor point source inversions in near real time. Our methodology allows us to find an approximation to p(m|d), the conditional probability of source models (m) given observations (d). This is obtained by smoothly interpolating a set of random prior samples, using Mixture Density Networks (MDNs)-a class of neural networks which output the parameters of a Gaussian mixture model. By combining multiple networks as `committees', we are able to obtain a significant improvement in performance over that of a single MDN. Once a committee has been constructed, new observations can be inverted within milliseconds on a standard desktop computer. The method is therefore well suited for use in situations such as EEW, where inversions must be performed routinely and rapidly for a fixed station geometry. To demonstrate the method, we invert regional static GPS displacement data for the 2010 MW 7.2 El Mayor Cucapah earthquake in Baja California to obtain estimates of magnitude, centroid location and depth and focal mechanism. We investigate the extent to which we can constrain moment tensor point sources with static displacement observations under realistic conditions. Our inversion results agree well with published point source solutions for this event, once the uncertainty bounds of each are taken into account.

  2. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  3. Can earthquake source inversion benefit from rotational ground motion observations?

    NASA Astrophysics Data System (ADS)

    Igel, H.; Donner, S.; Reinwald, M.; Bernauer, M.; Wassermann, J. M.; Fichtner, A.

    2015-12-01

    With the prospects of instruments to observe rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve seismic inverse problems. Here, we focus on the question, whether point or finite source inversions can benefit from additional observations of rotational motions. In an attempt to be fair we compare observations from a surface seismic network with N 3-component translational sensors (classic seismometers) with those obtained with N/2 6-component sensors (with additional colocated 3-component rotational motions). Thus we keep the overall number of traces constant. Synthetic seismograms are calculated for known point- or finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as a measure how the observations constrain the seismic source properties. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing N/2 sensors) but statistically significant some source properties are almost always better resolved. We assume that this can be attributed to the fact the (in particular vertical) gradient information is contained in the additional rotational motion components. We compare these effects for strike-slip and normal-faulting type sources. Thus the answer to the question raised is a definite "yes". The challenge now is to demonstrate these effects on real data.

  4. Modeling the 16 September 2015 Chile tsunami source with the inversion of deep-ocean tsunami records by means of the r - solution method

    NASA Astrophysics Data System (ADS)

    Voronina, Tatyana; Romanenko, Alexey; Loskutov, Artem

    2017-04-01

    The key point in the state-of-the-art in the tsunami forecasting is constructing a reliable tsunami source. In this study, we present an application of the original numerical inversion technique to modeling the tsunami sources of the 16 September 2015 Chile tsunami. The problem of recovering a tsunami source from remote measurements of the incoming wave in the deep-water tsunameters is considered as an inverse problem of mathematical physics in the class of ill-posed problems. This approach is based on the least squares and the truncated singular value decomposition techniques. The tsunami wave propagation is considered within the scope of the linear shallow-water theory. As in inverse seismic problem, the numerical solutions obtained by mathematical methods become unstable due to the presence of noise in real data. A method of r-solutions makes it possible to avoid instability in the solution to the ill-posed problem under study. This method seems to be attractive from the computational point of view since the main efforts are required only once for calculating the matrix whose columns consist of computed waveforms for each harmonic as a source (an unknown tsunami source is represented as a part of a spatial harmonics series in the source area). Furthermore, analyzing the singular spectra of the matrix obtained in the course of numerical calculations one can estimate the future inversion by a certain observational system that will allow offering a more effective disposition for the tsunameters with the help of precomputations. In other words, the results obtained allow finding a way to improve the inversion by selecting the most informative set of available recording stations. The case study of the 6 February 2013 Solomon Islands tsunami highlights a critical role of arranging deep-water tsunameters for obtaining the inversion results. Implementation of the proposed methodology to the 16 September 2015 Chile tsunami has successfully produced tsunami source model. The function recovered by the method proposed can find practical applications both as an initial condition for various optimization approaches and for computer calculation of the tsunami wave propagation.

  5. Line-source simulation for shallow-seismic data. Part 2: full-waveform inversion—a synthetic 2-D case study

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Groos, L.; Forbriger, T.; Bohlen, T.

    2014-09-01

    Full-waveform inversion (FWI) of shallow-seismic surface waves is able to reconstruct lateral variations of subsurface elastic properties. Line-source simulation for point-source data is required when applying algorithms of 2-D adjoint FWI to recorded shallow-seismic field data. The equivalent line-source response for point-source data can be obtained by convolving the waveforms with √{t^{-1}} (t: traveltime), which produces a phase shift of π/4. Subsequently an amplitude correction must be applied. In this work we recommend to scale the seismograms with √{2 r v_ph} at small receiver offsets r, where vph is the phase velocity, and gradually shift to applying a √{t^{-1}} time-domain taper and scaling the waveforms with r√{2} for larger receiver offsets r. We call this the hybrid transformation which is adapted for direct body and Rayleigh waves and demonstrate its outstanding performance on a 2-D heterogeneous structure. The fit of the phases as well as the amplitudes for all shot locations and components (vertical and radial) is excellent with respect to the reference line-source data. An approach for 1-D media based on Fourier-Bessel integral transformation generates strong artefacts for waves produced by 2-D structures. The theoretical background for both approaches is presented in a companion contribution. In the current contribution we study their performance when applied to waves propagating in a significantly 2-D-heterogeneous structure. We calculate synthetic seismograms for 2-D structure for line sources as well as point sources. Line-source simulations obtained from the point-source seismograms through different approaches are then compared to the corresponding line-source reference waveforms. Although being derived by approximation the hybrid transformation performs excellently except for explicitly back-scattered waves. In reconstruction tests we further invert point-source synthetic seismograms by a 2-D FWI to subsurface structure and evaluate its ability to reproduce the original structural model in comparison to the inversion of line-source synthetic data. Even when applying no explicit correction to the point-source waveforms prior to inversion only moderate artefacts appear in the results. However, the overall performance is best in terms of model reproduction and ability to reproduce the original data in a 3-D simulation if inverted waveforms are obtained by the hybrid transformation.

  6. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.

  7. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kuze, A.; Notholt, J.; Ohyama, H.; Parker, R.; Payne, V. H.; Sussmann, R.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D.

    2015-02-01

    We use 2009-2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently used for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a-1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2-42.7 Tg a-1, as compared to 24.9-27.0 Tg a-1 in the EDGAR and EPA bottom-up inventories, and 30.0-44.5 Tg a-1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29-44% of US anthropogenic methane emissions to livestock, 22-31% to oil/gas, 20% to landfills/waste water, and 11-15% to coal with an additional 9.0-10.1 Tg a-1 source from wetlands.

  8. The source mechanisms of low frequency events in volcanoes - a comparison of synthetic and real seismic data on Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Karl, S.; Neuberg, J. W.

    2012-04-01

    Low frequency seismic signals are one class of volcano seismic earthquakes that have been observed at many volcanoes around the world, and are thought to be associated with resonating fluid-filled conduits or fluid movements. Amongst others, Neuberg et al. (2006) proposed a conceptual model for the trigger of low frequency events at Montserrat involving the brittle failure of magma in the glass transition in response to high shear stresses during the upwards movement of magma in the volcanic edifice. For this study, synthetic seismograms were generated following the proposed concept of Neuberg et al. (2006) by using an extended source modelled as an octagonal arrangement of double couples approximating a circular ringfault. For comparison, synthetic seismograms were generated using single forces only. For both scenarios, synthetic seismograms were generated using a seismic station distribution as encountered on Soufriere Hills Volcano, Montserrat. To gain a better quantitative understanding of the driving forces of low frequency events, inversions for the physical source mechanisms have become increasingly common. Therefore, we perform moment tensor inversions (Dreger, 2003) using the synthetic data as well as a chosen set of seismograms recorded on Soufriere Hills Volcano. The inversions are carried out under the (wrong) assumption to have an underlying point source rather than an extended source as the trigger mechanism of the low frequency seismic events. We will discuss differences between inversion results, and how to interpret the moment tensor components (double couple, isotropic, or CLVD), which were based on a point source, in terms of an extended source.

  9. The excitation of long period seismic waves by a source spanning a structural discontinuity

    NASA Astrophysics Data System (ADS)

    Woodhouse, J. H.

    Simple theoretical results are obtained for the excitation of seismic waves by an indigenous seismic source in the case that the source volume is intersected by a structural discontinuity. In the long wavelength approximation the seismic radiation is identical to that of a point source placed on one side of the discontinuity or of a different point source placed on the other side. The moment tensors of these two equivalent sources are related by a specific linear transformation and may differ appreciably both in magnitude and geometry. Either of these sources could be obtained by linear inversion of seismic data but the physical interpretation is more complicated than in the usual case. A source which involved no volume change would, for example, yield an isotropic component if, during inversion, it were assumed to lie on the wrong side of the discontinuity. The problem of determining the true moment tensor of the source is indeterminate unless further assumptions are made about the stress glut distribution; one way to resolve this indeterminancy is to assume proportionality between the integrated stress glut on each side of the discontinuity.

  10. Location identification for indoor instantaneous point contaminant source by probability-based inverse Computational Fluid Dynamics modeling.

    PubMed

    Liu, X; Zhai, Z

    2008-02-01

    Indoor pollutions jeopardize human health and welfare and may even cause serious morbidity and mortality under extreme conditions. To effectively control and improve indoor environment quality requires immediate interpretation of pollutant sensor readings and accurate identification of indoor pollution history and source characteristics (e.g. source location and release time). This procedure is complicated by non-uniform and dynamic contaminant indoor dispersion behaviors as well as diverse sensor network distributions. This paper introduces a probability concept based inverse modeling method that is able to identify the source location for an instantaneous point source placed in an enclosed environment with known source release time. The study presents the mathematical models that address three different sensing scenarios: sensors without concentration readings, sensors with spatial concentration readings, and sensors with temporal concentration readings. The paper demonstrates the inverse modeling method and algorithm with two case studies: air pollution in an office space and in an aircraft cabin. The predictions were successfully verified against the forward simulation settings, indicating good capability of the method in finding indoor pollutant sources. The research lays a solid ground for further study of the method for more complicated indoor contamination problems. The method developed can help track indoor contaminant source location with limited sensor outputs. This will ensure an effective and prompt execution of building control strategies and thus achieve a healthy and safe indoor environment. The method can also assist the design of optimal sensor networks.

  11. Quantifying point source emissions with atmospheric inversions and aircraft measurements: the Aliso Canyon natural gas leak as a tracer experiment

    NASA Astrophysics Data System (ADS)

    Gourdji, S.; Yadav, V.; Karion, A.; Mueller, K. L.; Kort, E. A.; Conley, S.; Ryerson, T. B.; Nehrkorn, T.

    2017-12-01

    The ability of atmospheric inverse models to detect, spatially locate and quantify emissions from large point sources in urban domains needs improvement before inversions can be used reliably as carbon monitoring tools. In this study, we use the Aliso Canyon natural gas leak from October 2015 to February 2016 (near Los Angeles, CA) as a natural tracer experiment to assess inversion quality by comparison with published estimates of leak rates calculated using a mass balance approach (Conley et al., 2016). Fourteen dedicated flights were flown in horizontal transects downwind and throughout the duration of the leak to sample CH4 mole fractions and collect meteorological information for use in the mass-balance estimates. The same CH4 observational data were then used here in geostatistical inverse models with no prior assumptions about the leak location or emission rate and flux sensitivity matrices generated using the WRF-STILT atmospheric transport model. Transport model errors were assessed by comparing WRF-STILT wind speeds, wind direction and planetary boundary layer (PBL) height to those observed on the plane; the impact of these errors in the inversions, and the optimal inversion setup for reducing their influence was also explored. WRF-STILT provides a reasonable simulation of true atmospheric conditions on most flight dates, given the complex terrain and known difficulties in simulating atmospheric transport under such conditions. Moreover, even large (>120°) errors in wind direction were found to be tolerable in terms of spatially locating the leak rate within a 5-km radius of the actual site. Errors in the WRF-STILT wind speed (>50%) and PBL height have more negative impacts on the inversions, with too high wind speeds (typically corresponding with too low PBL heights) resulting in overestimated leak rates, and vice-versa. Coarser data averaging intervals and the use of observed wind speed errors in the model-data mismatch covariance matrix are shown to help reduce the influence of transport model errors, by averaging out compensating errors and de-weighting the influence of problematic observations. This study helps to enable the integration of aircraft measurements with other tower-based data in larger inverse models that can reliably detect, locate and quantify point source emissions in urban areas.

  12. Time domain localization technique with sparsity constraint for imaging acoustic sources

    NASA Astrophysics Data System (ADS)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  13. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.

    2015-02-18

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently usedmore » for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a −1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a −1, as compared to 24.9–27.0 Tg a −1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a −1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29–44% of US anthropogenic methane emissions to livestock, 22–31% to oil/gas, 20% to landfills/waste water, and 11–15% to coal with an additional 9.0–10.1 Tg a −1 source from wetlands.« less

  14. Inverse identification of unknown finite-duration air pollutant release from a point source in urban environment

    NASA Astrophysics Data System (ADS)

    Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.

    2018-05-01

    In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.

  15. Mathematical design of a novel input/instruction device using a moving acoustic emitter

    NASA Astrophysics Data System (ADS)

    Wang, Xianchao; Guo, Yukun; Li, Jingzhi; Liu, Hongyu

    2017-10-01

    This paper is concerned with the mathematical design of a novel input/instruction device using a moving emitter. The emitter acts as a point source and can be installed on a digital pen or worn on the finger of the human being who desires to interact/communicate with the computer. The input/instruction can be recognized by identifying the moving trajectory of the emitter performed by the human being from the collected wave field data. The identification process is modelled as an inverse source problem where one intends to identify the trajectory of a moving point source. There are several salient features of our study which distinguish our result from the existing ones in the literature. First, the point source is moving in an inhomogeneous background medium, which models the human body. Second, the dynamical wave field data are collected in a limited aperture. Third, the reconstruction method is independent of the background medium, and it is totally direct without any matrix inversion. Hence, it is efficient and robust with respect to the measurement noise. Both theoretical justifications and computational experiments are presented to verify our novel findings.

  16. Regional W-Phase Source Inversion for Moderate to Large Earthquakes in China and Neighboring Areas

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Duputel, Zacharie; Yao, Zhenxing

    2017-12-01

    Earthquake source characterization has been significantly speeded up in the last decade with the development of rapid inversion techniques in seismology. Among these techniques, the W-phase source inversion method quickly provides point source parameters of large earthquakes using very long period seismic waves recorded at teleseismic distances. Although the W-phase method was initially developed to work at global scale (within 20 to 30 min after the origin time), faster results can be obtained when seismological data are available at regional distances (i.e., Δ ≤ 12°). In this study, we assess the use and reliability of regional W-phase source estimates in China and neighboring areas. Our implementation uses broadband records from the Chinese network supplemented by global seismological stations installed in the region. Using this data set and minor modifications to the W-phase algorithm, we show that reliable solutions can be retrieved automatically within 4 to 7 min after the earthquake origin time. Moreover, the method yields stable results down to Mw = 5.0 events, which is well below the size of earthquakes that are rapidly characterized using W-phase inversions at teleseismic distances.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitao, J J

    The goal of the Event Reconstruction Project is to find the location and strength of atmospheric release points, both stationary and moving. Source inversion relies on observational data as input. The methodology is sufficiently general to allow various forms of data. In this report, the authors will focus primarily on concentration measurements obtained at point monitoring locations at various times. The algorithms being investigated in the Project are the MCMC (Markov Chain Monte Carlo), SMC (Sequential Monte Carlo) Methods, classical inversion methods, and hybrids of these. They refer the reader to the report by Johannesson et al. (2004) for explanationsmore » of these methods. These methods require computing the concentrations at all monitoring locations for a given ''proposed'' source characteristic (locations and strength history). It is anticipated that the largest portion of the CPU time will take place performing this computation. MCMC and SMC will require this computation to be done at least tens of thousands of times. Therefore, an efficient means of computing forward model predictions is important to making the inversion practical. In this report they show how Green's functions and reciprocal Green's functions can significantly accelerate forward model computations. First, instead of computing a plume for each possible source strength history, they can compute plumes from unit impulse sources only. By using linear superposition, they can obtain the response for any strength history. This response is given by the forward Green's function. Second, they may use the law of reciprocity. Suppose that they require the concentration at a single monitoring point x{sub m} due to a potential (unit impulse) source that is located at x{sub s}. instead of computing a plume with source location x{sub s}, they compute a ''reciprocal plume'' whose (unit impulse) source is at the monitoring locations x{sub m}. The reciprocal plume is computed using a reversed-direction wind field. The wind field and transport coefficients must also be appropriately time-reversed. Reciprocity says that the concentration of reciprocal plume at x{sub s} is related to the desired concentration at x{sub m}. Since there are many less monitoring points than potential source locations, the number of forward model computations is drastically reduced.« less

  18. Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique

    NASA Astrophysics Data System (ADS)

    Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2014-12-01

    In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.

  19. Parametrization study of the land multiparameter VTI elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    He, W.; Plessix, R.-É.; Singh, S.

    2018-06-01

    Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.

  20. Solutions to inverse plume in a crosswind problem using a predictor - corrector method

    NASA Astrophysics Data System (ADS)

    Vanderveer, Joseph; Jaluria, Yogesh

    2013-11-01

    Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.

  1. Assimilation of concentration measurements for retrieving multiple point releases in atmosphere: A least-squares approach to inverse modelling

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Rani, Raj

    2015-10-01

    The study addresses the identification of multiple point sources, emitting the same tracer, from their limited set of merged concentration measurements. The identification, here, refers to the estimation of locations and strengths of a known number of simultaneous point releases. The source-receptor relationship is described in the framework of adjoint modelling by using an analytical Gaussian dispersion model. A least-squares minimization framework, free from an initialization of the release parameters (locations and strengths), is presented to estimate the release parameters. This utilizes the distributed source information observable from the given monitoring design and number of measurements. The technique leads to an exact retrieval of the true release parameters when measurements are noise free and exactly described by the dispersion model. The inversion algorithm is evaluated using the real data from multiple (two, three and four) releases conducted during Fusion Field Trials in September 2007 at Dugway Proving Ground, Utah. The release locations are retrieved, on average, within 25-45 m of the true sources with the distance from retrieved to true source ranging from 0 to 130 m. The release strengths are also estimated within a factor of three to the true release rates. The average deviations in retrieval of source locations are observed relatively large in two release trials in comparison to three and four release trials.

  2. Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique

    NASA Technical Reports Server (NTRS)

    Tiampo, Kristy F.

    1999-01-01

    In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.

  3. Determination of the direction to a source of antineutrinos via inverse beta decay in Double Chooz

    NASA Astrophysics Data System (ADS)

    Nikitenko, Ya.

    2016-11-01

    To determine the direction to a source of neutrinos (and antineutrinos) is an important problem for the physics of supernovae and of the Earth. The direction to a source of antineutrinos can be estimated through the reaction of inverse beta decay. We show that the reactor neutrino experiment Double Chooz has unique capabilities to study antineutrino signal from point-like sources. Contemporary experimental data on antineutrino directionality is given. A rigorous mathematical approach for neutrino direction studies has been developed. Exact expressions for the precision of the simple mean estimator of neutrinos' direction for normal and exponential distributions for a finite sample and for the limiting case of many events have been obtained.

  4. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  5. A multiwave range test for obstacle reconstructions with unknown physical properties

    NASA Astrophysics Data System (ADS)

    Potthast, Roland; Schulz, Jochen

    2007-08-01

    We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A `range test' for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533-547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhauser, Basel, 1986, pp. 93-102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Gottingen, 1999]. In particular, we propose a new version of the Kirsch-Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.

  6. Computational methods for inverse problems in geophysics: inversion of travel time observations

    USGS Publications Warehouse

    Pereyra, V.; Keller, H.B.; Lee, W.H.K.

    1980-01-01

    General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.

  7. Appraisal of an Array TEM Method in Detecting a Mined-Out Area Beneath a Conductive Layer

    NASA Astrophysics Data System (ADS)

    Li, Hai; Xue, Guo-qiang; Zhou, Nan-nan; Chen, Wei-ying

    2015-10-01

    The transient electromagnetic method has been extensively used for the detection of mined-out area in China for the past few years. In the cases that the mined-out area is overlain by a conductive layer, the detection of the target layer is difficult with a traditional loop source TEM method. In order to detect the target layer in this condition, this paper presents a newly developed array TEM method, which uses a grounded wire source. The underground current density distribution and the responses of the grounded wire source TEM configuration are modeled to demonstrate that the target layer is detectable in this condition. The 1D OCCAM inversion routine is applied to the synthetic single station data and common middle point gather. The result reveals that the electric source TEM method is capable of recovering the resistive target layer beneath the conductive overburden. By contrast, the conductive target layer cannot be recovered unless the distance between the target layer and the conductive overburden is large. Compared with inversion result of the single station data, the inversion of common middle point gather can better recover the resistivity of the target layer. Finally, a case study illustrates that the array TEM method is successfully applied in recovering a water-filled mined-out area beneath a conductive overburden.

  8. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    NASA Astrophysics Data System (ADS)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances between the different methane and acetylene sources. The results from these controlled experiments demonstrate that, when the targeted and tracer gases are not well collocated, this new approach provides a better estimate of the emission rates than the tracer release technique. As an example, the relative error between the estimated and actual emission rates is reduced from 32 % with the tracer release technique to 16 % with the combined approach in the case of a tracer located 60 m upwind of a single methane source. Further studies and more complex implementations with more advanced transport models and more advanced optimisations of their configuration will be required to generalise the applicability of the approach and strengthen its robustness.

  9. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    USGS Publications Warehouse

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  10. Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion

    NASA Astrophysics Data System (ADS)

    Hesser, T.; Farthing, M. W.; Brodie, K.

    2016-02-01

    The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.

  11. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  12. GBIS (Geodetic Bayesian Inversion Software): Rapid Inversion of InSAR and GNSS Data to Estimate Surface Deformation Source Parameters and Uncertainties

    NASA Astrophysics Data System (ADS)

    Bagnardi, M.; Hooper, A. J.

    2017-12-01

    Inversions of geodetic observational data, such as Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) measurements, are often performed to obtain information about the source of surface displacements. Inverse problem theory has been applied to study magmatic processes, the earthquake cycle, and other phenomena that cause deformation of the Earth's interior and of its surface. Together with increasing improvements in data resolution, both spatial and temporal, new satellite missions (e.g., European Commission's Sentinel-1 satellites) are providing the unprecedented opportunity to access space-geodetic data within hours from their acquisition. To truly take advantage of these opportunities we must become able to interpret geodetic data in a rapid and robust manner. Here we present the open-source Geodetic Bayesian Inversion Software (GBIS; available for download at http://comet.nerc.ac.uk/gbis). GBIS is written in Matlab and offers a series of user-friendly and interactive pre- and post-processing tools. For example, an interactive function has been developed to estimate the characteristics of noise in InSAR data by calculating the experimental semi-variogram. The inversion software uses a Markov-chain Monte Carlo algorithm, incorporating the Metropolis-Hastings algorithm with adaptive step size, to efficiently sample the posterior probability distribution of the different source parameters. The probabilistic Bayesian approach allows the user to retrieve estimates of the optimal (best-fitting) deformation source parameters together with the associated uncertainties produced by errors in the data (and by scaling, errors in the model). The current version of GBIS (V1.0) includes fast analytical forward models for magmatic sources of different geometry (e.g., point source, finite spherical source, prolate spheroid source, penny-shaped sill-like source, and dipping-dike with uniform opening) and for dipping faults with uniform slip, embedded in a isotropic elastic half-space. However, the software architecture allows the user to easily add any other analytical or numerical forward models to calculate displacements at the surface. GBIS is delivered with a detailed user manual and three synthetic datasets for testing and practical training.

  13. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.

    2001-12-01

    In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.

  14. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    NASA Astrophysics Data System (ADS)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J. P.; Devaux, J. F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P.; Prazeres, R.

    2016-12-01

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  15. Studies of acoustic emission from point and extended sources

    NASA Technical Reports Server (NTRS)

    Sachse, W.; Kim, K. Y.; Chen, C. P.

    1986-01-01

    The use of simulated and controlled acoustic emission signals forms the basis of a powerful tool for the detailed study of various deformation and wave interaction processes in materials. The results of experiments and signal analyses of acoustic emission resulting from point sources such as various types of indentation-produced cracks in brittle materials and the growth of fatigue cracks in 7075-T6 aluminum panels are discussed. Recent work dealing with the modeling and subsequent signal processing of an extended source of emission in a material is reviewed. Results of the forward problem and the inverse problem are presented with the example of a source distributed through the interior of a specimen.

  16. Visco-elastic controlled-source full waveform inversion without surface waves

    NASA Astrophysics Data System (ADS)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  17. Global carbon monoxide cycle: Modeling and data analysis

    NASA Astrophysics Data System (ADS)

    Arellano, Avelino F., Jr.

    The overarching goal of this dissertation is to develop robust, spatially and temporally resolved CO sources, using global chemical transport modeling, CO measurements from Climate Monitoring and Diagnostic Laboratory (CMDL) and Measurement of Pollution In The Troposphere (MOPITT), under the framework of Bayesian synthesis inversion. To rigorously quantify the CO sources, I conducted five sets of inverse analyses, with each set investigating specific methodological and scientific issues. The first two inverse analyses separately explored two different CO observations to estimate CO sources by region and sector. Under a range of scenarios relating to inverse methodology and data quality issues, top-down estimates using CMDL CO surface and MOPITT CO remote-sensed measurements show consistent results particularly on a significantly large fossil fuel/biofuel (FFBF) emission in East Asia than present bottom-up estimates. The robustness of this estimate is strongly supported by forward and inverse modeling studies in the region particularly from TRansport and Chemical Evolution over the Pacific (TRACE-P) campaign. The use of high-resolution measurement for the first time in CO inversion also draws attention to a methodology issue that the range of estimates from the scenarios is larger than posterior uncertainties, suggesting that estimate uncertainties may be underestimated. My analyses highlight the utility of top-down approach to provide additional constraints on present global estimates by also pointing to other discrepancies including apparent underestimation of FFBF from Africa/Latin America and biomass burning (BIOM) sources in Africa, southeast Asia and north-Latin America, indicating inconsistencies on our current understanding of fuel use and land-use patterns in these regions. Inverse analysis using MOPITT is extended to determine the extent of MOPITT information and estimate monthly regional CO sources. A major finding, which is consistent with other atmospheric observations but differ with satellite area-burned observations, is a significant overestimation in southern Africa for June/July relative to satellite-and-model-constrained BIOM emissions of CO. Sensitivity inverse analyses on observation error covariance and structure, and sequential inversion using NOAA CMDL to fully exploit available information, confirm the robustness of the estimates and further recognize the limitations of the approach, implying the need to further improve the methodology and to reconcile discrepancies.

  18. Atmospheric observations and inverse modelling for quantifying emissions of point-source synthetic greenhouse gases in East Asia

    NASA Astrophysics Data System (ADS)

    Arnold, Tim; Manning, Alistair; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Muhle, Jens; Weiss, Ray

    2017-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacements that are emitted from fugitive and mobile emission sources, these gases are mostly emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane (HCFC-22) factories (HFC-23). In this work we show that atmospheric measurements can serve as a basis to calculate emissions of these gases and to highlight emission 'hotspots'. We use measurements from one Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites at Gosan on Jeju Island in the Republic of Korea. This site measures CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over seven years between 2008 and 2015. We show that our 'top-down' emission estimates for NF3 and CF4 are significantly larger than 'bottom-up' estimates in the EDGAR emissions inventory (edgar.jrc.ec.europa.eu). For example we calculate South Korean emissions of CF4 in 2010 to be 0.29±0.04 Gg/yr, which is significantly larger than the Edgar prior emissions of 0.07 Gg/yr. Further, inversions for several separate years indicate that emission hotspots can be found without prior spatial information. At present these gases make a small contribution to global radiative forcing, however, given that the impact of these long-lived gases could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  19. Source mechanism analysis of central Aceh earthquake July 2, 2013 Mw 6.2 using moment tensor inversion with BMKG waveform data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasetyo, Retno Agung, E-mail: prasetyo.agung@bmkg.go.id; Heryandoko, Nova; Afnimar

    The source mechanism of earthquake on July 2, 2013 was investigated by using moment tensor inversion. The result also compared by the field observation. Five waveform data of BMKG’s seismic network used to estimate the mechanism of earthquake, namely ; KCSI, MLSI, LASI, TPTI and SNSI. Main shock data taken during 200 seconds and filtered by using Butterworth band pass method from 0.03 to 0.05 Hz of frequency. Moment tensor inversion method is applied based on the point source assumption. Furthermore, the Green function calculated using the extended reflectivity method which modified by Kohketsu. The inversion result showed a strike-slipmore » faulting, where the nodal plane strike/dip/rake (124/80.6/152.8) and minimum variance value 0.3285 at a depth of 6 km (centroid). It categorized as a shallow earthquake. Field observation indicated that the building orientated to the east. It can be related to the southwest of dip direction which has 152 degrees of slip. As conclusion, the Pressure (P) and Tension (T) axis described dominant compression is happen from the south which is caused by pressure of the Indo-Australian plate.« less

  20. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  1. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, Simon; Brietzke, Gilbert; Igel, Heiner; Larmat, Carene; Fichtner, Andreas; Johnson, Paul A.; Huang, Lianjie

    2010-05-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the hypocenter and other information might be inferred. In this study, the backward propagation is performed numerically using a parallel cartesian spectral element code. Initial tests using point source moment tensors serve as control for the adaptability of the used wave propagation algorithm. After that we investigated the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, rupture velocity etc.). We used synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice-rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of various assumptions made on the source (e.g., origin time, hypocenter, fault location, etc.), adjoint source weighting (e.g., correct for epicentral distance) and structure (uncertainty in the velocity model) on the results of the time reversal process. We give an overview about the quality of focussing of the different wavefield properties (i.e., displacements, strains, rotations, energies). Additionally, the potential to recover source properties of multiple point sources at the same time is discussed.

  2. Kinematic inversion of the 2008 Mw7 Iwate-Miyagi (Japan) earthquake by two independent methods: Sensitivity and resolution analysis

    NASA Astrophysics Data System (ADS)

    Gallovic, Frantisek; Cirella, Antonella; Plicka, Vladimir; Piatanesi, Alessio

    2013-04-01

    On 14 June 2008, UTC 23:43, the border of Iwate and Miyagi prefectures was hit by an Mw7 reverse-fault type crustal earthquake. The event is known to have the largest ground acceleration observed to date (~4g), which was recorded at station IWTH25. We analyze observed strong motion data with the objective to image the event rupture process and the associated uncertainties. Two different slip inversion approaches are used, the difference between the two methods being only in the parameterization of the source model. To minimize mismodeling of the propagation effects we use crustal model obtained by full waveform inversion of aftershock records in the frequency range between 0.05-0.3 Hz. In the first method, based on linear formulation, the parameters are represented by samples of slip velocity functions along the (finely discretized) fault in a time window spanning the whole rupture duration. Such a source description is very general with no prior constraint on the nucleation point, rupture velocity, shape of the velocity function. Thus the inversion could resolve very general (unexpected) features of the rupture evolution, such as multiple rupturing, rupture-propagation reversals, etc. On the other hand, due to the relatively large number of model parameters, the inversion result is highly non-unique, with possibility of obtaining a biased solution. The second method is a non-linear global inversion technique, where each point on the fault can slip only once, following a prescribed functional form of the source time function. We invert simultaneously for peak slip velocity, slip angle, rise time and rupture time by allowing a given range of variability for each kinematic model parameter. For this reason, unlike to the linear inversion approach, the rupture process needs a smaller number of parameters to be retrieved, and is more constrained with a proper control on the allowed range of parameter values. In order to test the resolution and reliability of the retrieved models, we present a thorough analysis of the performance of the two inversion approaches. In fact, depending on the inversion strategy and the intrinsic 'non-uniqueness' of the inverse problem, the final slip maps and distribution of rupture onset times are generally different, sometimes even incompatible with each other. Great emphasis is devoted to the uncertainty estimate of both techniques. Thus we do not compare only the best fitting models, but their 'compatibility' in terms of the uncertainty limits.

  3. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  4. Inverse lithography using sparse mask representations

    NASA Astrophysics Data System (ADS)

    Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan

    2015-03-01

    We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.

  5. Computation of transonic viscous-inviscid interacting flow

    NASA Technical Reports Server (NTRS)

    Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.

    1983-01-01

    Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829

  6. Imaging electrical conductivity, permeability, and/or permittivity contrasts using the Born Scattering Inversion (BSI)

    NASA Astrophysics Data System (ADS)

    Darrh, A.; Downs, C. M.; Poppeliers, C.

    2017-12-01

    Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.

  7. Broadband Ground Motion Synthesis of the 1999 Turkey Earthquakes Based On: 3-D Velocity Inversion, Finite Difference Calculations and Emprical Greens Functions

    NASA Astrophysics Data System (ADS)

    Gok, R.; Kalafat, D.; Hutchings, L.

    2003-12-01

    We analyze over 3,500 aftershocks recorded by several seismic networks during the 1999 Marmara, Turkey earthquakes. The analysis provides source parameters of the aftershocks, a three-dimensional velocity structure from tomographic inversion, an input three-dimensional velocity model for a finite difference wave propagation code (E3D, Larsen 1998), and records available for use as empirical Green's functions. Ultimately our goal is to model the 1999 earthquakes from DC to 25 Hz and study fault rupture mechanics and kinematic rupture models. We performed the simultaneous inversion for hypocenter locations and three-dimensional P- and S- wave velocity structure of Marmara Region using SIMULPS14 along with 2,500 events with more than eight P- readings and an azimuthal gap of less than 180\\deg. The resolution of calculated velocity structure is better in the eastern Marmara than the western Marmara region due to the dense ray coverage. We used the obtained velocity structure as input into the finite difference algorithm and validated the model by using M < 4 earthquakes as point sources and matching long period waveforms (f < 0.5 Hz). We also obtained Mo, fc and individual station kappa values for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquakes (M < 4.0) to obtain empirical Green's function (EGF) for the higher frequency range of ground motion synthesis (0.5 < f > 25 Hz). We additionally obtained the source scaling relation (energy-moment) of these aftershocks. We have generated several scenarios constrained by a priori knowledge of the Izmit and Duzce rupture parameters to validate our prediction capability.

  8. DEVELOPING SEASONAL AMMONIA EMISSION ESTIMATES WITH AN INVERSE MODELING TECHNIQUE

    EPA Science Inventory

    Significant uncertainty exists in magnitude and variability of ammonia (NH3) emissions, which are needed for air quality modeling of aerosols and deposition of nitrogen compounds. Approximately 85% of NH3 emissions are estimated to come from agricultural non-point sources. We sus...

  9. Inverse consistent non-rigid image registration based on robust point set matching

    PubMed Central

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number. The determinant of the Jacobian matrix of the deformation field is used to analyse the smoothness of the forward and backward transformations. The forward and backward transformations estimated by our algorithm are smooth for small deformation. For registration of lung slices and individual brain slices, large or small determinant of the Jacobian matrix of the deformation fields are observed. Conclusions Results indicate the improvement of the proposed algorithm in bi-directional image registration and the decrease of the inverse consistent errors of the forward and the reverse transformations between two images. PMID:25559889

  10. Monte Carlo Volcano Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  11. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, S.; Brietzke, G.; Igel, H.; Larmat, C.; Fichtner, A.; Johnson, P. A.; Huang, L.

    2008-12-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the source point and other information might be inferred. In this study, the backward propagation is performed numerically using a spectral element code. We investigate the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, location of asperities, rupture velocity etc.). We use synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice- rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of relaxing the ignorance to prior source information (e.g., origin time, hypocenter, fault location, etc.) on the results of the time reversal process.

  12. Identifying equivalent sound sources from aeroacoustic simulations using a numerical phased array

    NASA Astrophysics Data System (ADS)

    Pignier, Nicolas J.; O'Reilly, Ciarán J.; Boij, Susann

    2017-04-01

    An application of phased array methods to numerical data is presented, aimed at identifying equivalent flow sound sources from aeroacoustic simulations. Based on phased array data extracted from compressible flow simulations, sound source strengths are computed on a set of points in the source region using phased array techniques assuming monopole propagation. Two phased array techniques are used to compute the source strengths: an approach using a Moore-Penrose pseudo-inverse and a beamforming approach using dual linear programming (dual-LP) deconvolution. The first approach gives a model of correlated sources for the acoustic field generated from the flow expressed in a matrix of cross- and auto-power spectral values, whereas the second approach results in a model of uncorrelated sources expressed in a vector of auto-power spectral values. The accuracy of the equivalent source model is estimated by computing the acoustic spectrum at a far-field observer. The approach is tested first on an analytical case with known point sources. It is then applied to the example of the flow around a submerged air inlet. The far-field spectra obtained from the source models for two different flow conditions are in good agreement with the spectra obtained with a Ffowcs Williams-Hawkings integral, showing the accuracy of the source model from the observer's standpoint. Various configurations for the phased array and for the sources are used. The dual-LP beamforming approach shows better robustness to changes in the number of probes and sources than the pseudo-inverse approach. The good results obtained with this simulation case demonstrate the potential of the phased array approach as a modelling tool for aeroacoustic simulations.

  13. Geometrical analysis of an optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1996-12-01

    The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.

  14. Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Ohminato, T.; Chouet, B.A.; Dawson, P.; Kedar, S.

    1998-01-01

    We use data from broadband seismometers deployed around the summit of Kilauea Volcano to quantify the mechanism associated with a transient in the flow of magma feeding the east rift eruption of the volcano. The transient is marked by rapid inflation of the Kilauea summit peaking at 22 ??rad 4.5 hours after the event onset, followed by slow deflation over a period of 3 days. Superimposed on the summit inflation is a series of sawtooth displacement pulses, each characterized by a sudden drop in amplitude lasting 5-10 s followed by an exponential recovery lasting 1-3 min. The sawtooth waveforms display almost identical shapes, suggesting a process involving the repeated activation of a fixed source. The particle motion associated with each sawtooth is almost linear, and its major swing shows compressional motion at all stations. Analyses of semblance and particle motion are consistent with a point source located 1 km beneath the northeast edge of the Halemaumau pit crater. To estimate the source mechanism, we apply a moment tensor inversion to the waveform data, assuming a point source embedded in a homogeneous half-space with compressional and shear wave velocities representative of the average medium properties at shallow depth under Kilauea. Synthetic waveforms are constructed by a superposition of impulse responses for six moment tensor components and three single force components. The origin times of individual impulses are distributed along the time axis at appropriately small, equal intervals, and their amplitudes are determined by least squares. In this inversion, the source time functions of the six tensor and three force components are determined simultaneously. We confirm the accuracy of the inversion method through a series of numerical tests. The results from the inversion show that the waveform data are well explained by a pulsating transport mechanism operating on a subhorizontal crack linking the summit reservoir to the east rift of Kilauea. The crack acts like a buffer in which a batch of fluid (magma and/or gas) accumulates over a period of 1-3 min before being rapidly injected into a larger reservoir (possibly the east rift) over a timescale of 5-10 s. The seismic moment and volume change associated with a typical batch of fluid are approximately 1014 N m and 3000 m3, respectively. Our results also point to the existence of a single force component with amplitude of 109 N, which may be explained as the drag force generated by the flow of viscous magma through a narrow constriction in the flow path. The total volume of magma associated with the 4.5-hour-long activation of the pulsating source is roughly 500,000 m3 in good agreement with the integrated volume flow rate of magma estimated near the eruptive site.

  15. Conventional and reciprocal approaches to the inverse dipole localization problem for N(20)-P (20) somatosensory evoked potentials.

    PubMed

    Finke, Stefan; Gulrajani, Ramesh M; Gotman, Jean; Savard, Pierre

    2013-01-01

    The non-invasive localization of the primary sensory hand area can be achieved by solving the inverse problem of electroencephalography (EEG) for N(20)-P(20) somatosensory evoked potentials (SEPs). This study compares two different mathematical approaches for the computation of transfer matrices used to solve the EEG inverse problem. Forward transfer matrices relating dipole sources to scalp potentials are determined via conventional and reciprocal approaches using individual, realistically shaped head models. The reciprocal approach entails calculating the electric field at the dipole position when scalp electrodes are reciprocally energized with unit current-scalp potentials are obtained from the scalar product of this electric field and the dipole moment. Median nerve stimulation is performed on three healthy subjects and single-dipole inverse solutions for the N(20)-P(20) SEPs are then obtained by simplex minimization and validated against the primary sensory hand area identified on magnetic resonance images. Solutions are presented for different time points, filtering strategies, boundary-element method discretizations, and skull conductivity values. Both approaches produce similarly small position errors for the N(20)-P(20) SEP. Position error for single-dipole inverse solutions is inherently robust to inaccuracies in forward transfer matrices but dependent on the overlapping activity of other neural sources. Significantly smaller time and storage requirements are the principal advantages of the reciprocal approach. Reduced computational requirements and similar dipole position accuracy support the use of reciprocal approaches over conventional approaches for N(20)-P(20) SEP source localization.

  16. Moment tensor inversion of tremor events at Arenal Volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Davi, Rosalia; O'Brien, Gareth; Lokmer, Ivan; Bean, Christopher; Lesage, Philippe; de Barros, Louis

    2010-05-01

    Arenal is a small, andesitic stratovolcano located in north-western Costa Rica, 97 km from the capital San Josè. Arenal's explosive activity is preceded, and accompanied, by different types of seismic events such as long period events, explosions, tremor and sporadic tectonic swarms. Tremor is the most common type of event recorded at Arenal with durations of up to several hours. Both spasmodic (1-6 Hz) and harmonic (0.9-2 Hz) tremor are observed with no clear difference in the genesis of each; the former can progressively evolve into the latter and vice-versa. However, the origin of the tremor is, at present, not fully understood. In order to retrieve the source mechanism generating these types of events, a moment tensor inversion is performed. A dataset recorded on the volcano, during a seismic experiment carried out in 2005, is used for the inversion. This dataset consists of ten days of data, from which two main groups of tremor at different frequencies (group one at 0.8-1.5 Hz and group two at 1.8-2.5 Hz) have been selected. A major difficulty in any inversion of tremor is that a clear onset can rarely be determined and hence retrieving the direct arrivals from the source is impossible. Usually, these arrivals are heavily contaminated by scattered waves. On Arenal the initial part of the tremor bands can be isolated, therefore offering a good opportunity to invert tremor for the source mechanism. The Green's functions used in the inversion were calculated using 3D numerical simulations including the real topography of the volcano and the best estimation of the velocity model available for Arenal. This velocity model was retrieved from seismic refraction experiments and sounding using the SPAC method. For each day, different tremor starting bands have been selected and divided into the groups mentioned above. For each band a source location is determined by performing a grid search through a volume of 4735 possible source points located under the crater summit. From the evaluation of the misfit values, a common source location is determined. The source appears to be located in shallow position, (less than 200 meters deep) under the crater summit. The source mechanisms for each tremor bands are retrieved for each day using the inversion procedure.

  17. Point-source stochastic-method simulations of ground motions for the PEER NGA-East Project

    USGS Publications Warehouse

    Boore, David

    2015-01-01

    Ground-motions for the PEER NGA-East project were simulated using a point-source stochastic method. The simulated motions are provided for distances between of 0 and 1200 km, M from 4 to 8, and 25 ground-motion intensity measures: peak ground velocity (PGV), peak ground acceleration (PGA), and 5%-damped pseudoabsolute response spectral acceleration (PSA) for 23 periods ranging from 0.01 s to 10.0 s. Tables of motions are provided for each of six attenuation models. The attenuation-model-dependent stress parameters used in the stochastic-method simulations were derived from inversion of PSA data from eight earthquakes in eastern North America.

  18. Numerical convergence and validation of the DIMP inverse particle transport model

    DOE PAGES

    Nelson, Noel; Azmy, Yousry

    2017-09-01

    The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector re-sponses (using the adjoint transport solution) with measured responses. DIMP performs well with for-ward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to themore » correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search vol-ume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.« less

  19. Interpolating precipitation and its relation to runoff and non-point source pollution.

    PubMed

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  20. Fast in-memory elastic full-waveform inversion using consumer-grade GPUs

    NASA Astrophysics Data System (ADS)

    Sivertsen Bergslid, Tore; Birger Raknes, Espen; Arntsen, Børge

    2017-04-01

    Full-waveform inversion (FWI) is a technique to estimate subsurface properties by using the recorded waveform produced by a seismic source and applying inverse theory. This is done through an iterative optimization procedure, where each iteration requires solving the wave equation many times, then trying to minimize the difference between the modeled and the measured seismic data. Having to model many of these seismic sources per iteration means that this is a highly computationally demanding procedure, which usually involves writing a lot of data to disk. We have written code that does forward modeling and inversion entirely in memory. A typical HPC cluster has many more CPUs than GPUs. Since FWI involves modeling many seismic sources per iteration, the obvious approach is to parallelize the code on a source-by-source basis, where each core of the CPU performs one modeling, and do all modelings simultaneously. With this approach, the GPU is already at a major disadvantage in pure numbers. Fortunately, GPUs can more than make up for this hardware disadvantage by performing each modeling much faster than a CPU. Another benefit of parallelizing each individual modeling is that it lets each modeling use a lot more RAM. If one node has 128 GB of RAM and 20 CPU cores, each modeling can use only 6.4 GB RAM if one is running the node at full capacity with source-by-source parallelization on the CPU. A parallelized per-source code using GPUs can use 64 GB RAM per modeling. Whenever a modeling uses more RAM than is available and has to start using regular disk space the runtime increases dramatically, due to slow file I/O. The extremely high computational speed of the GPUs combined with the large amount of RAM available for each modeling lets us do high frequency FWI for fairly large models very quickly. For a single modeling, our GPU code outperforms the single-threaded CPU-code by a factor of about 75. Successful inversions have been run on data with frequencies up to 40 Hz for a model of 2001 by 600 grid points with 5 m grid spacing and 5000 time steps, in less than 2.5 minutes per source. In practice, using 15 nodes (30 GPUs) to model 101 sources, each iteration took approximately 9 minutes. For reference, the same inversion run with our CPU code uses two hours per iteration. This was done using only a very simple wavefield interpolation technique, saving every second timestep. Using a more sophisticated checkpointing or wavefield reconstruction method would allow us to increase this model size significantly. Our results show that ordinary gaming GPUs are a viable alternative to the expensive professional GPUs often used today, when performing large scale modeling and inversion in geophysics.

  1. Source counting in MEG neuroimaging

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Dell, John; Magee, Ralphy; Roberts, Timothy P. L.

    2009-02-01

    Magnetoencephalography (MEG) is a multi-channel, functional imaging technique. It measures the magnetic field produced by the primary electric currents inside the brain via a sensor array composed of a large number of superconducting quantum interference devices. The measurements are then used to estimate the locations, strengths, and orientations of these electric currents. This magnetic source imaging technique encompasses a great variety of signal processing and modeling techniques which include Inverse problem, MUltiple SIgnal Classification (MUSIC), Beamforming (BF), and Independent Component Analysis (ICA) method. A key problem with Inverse problem, MUSIC and ICA methods is that the number of sources must be detected a priori. Although BF method scans the source space on a point-to-point basis, the selection of peaks as sources, however, is finally made by subjective thresholding. In practice expert data analysts often select results based on physiological plausibility. This paper presents an eigenstructure approach for the source number detection in MEG neuroimaging. By sorting eigenvalues of the estimated covariance matrix of the acquired MEG data, the measured data space is partitioned into the signal and noise subspaces. The partition is implemented by utilizing information theoretic criteria. The order of the signal subspace gives an estimate of the number of sources. The approach does not refer to any model or hypothesis, hence, is an entirely data-led operation. It possesses clear physical interpretation and efficient computation procedure. The theoretical derivation of this method and the results obtained by using the real MEG data are included to demonstrates their agreement and the promise of the proposed approach.

  2. A wind tunnel study of gaseous tracer dispersion in the convective boundary layer capped by a temperature inversion

    NASA Astrophysics Data System (ADS)

    Fedorovich, E.; Thäter, J.

    Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented.

  3. Improving the geological interpretation of magnetic and gravity satellite anomalies

    NASA Technical Reports Server (NTRS)

    Hinze, William J.; Braile, Lawrence W.; Vonfrese, Ralph R. B.

    1987-01-01

    Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions were made which make quantitative analysis more accurate. These include procedures for: screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; producing accurate gridded anomaly values at constant elevations from the orbital data by three-dimensional least squares collocation; increasing the stability of equivalent point source inversion and criteria for the selection of the optimum damping parameter; enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies. In addition, these techniques were utilized to investigate regional anomaly sources of North and South America and India and to provide constraints to continental reconstruction. Since the inception of this research study, eleven papers were presented with associated published abstracts, three theses were completed, four papers were published or accepted for publication, and an additional manuscript was submitted for publication.

  4. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate fractionation from a pure marine source, indicating a link between inversion strength and moistening of the lower troposphere from the outflow of shallow convection. This approach can be applied in other settings and the results can be used to test parameterizations in climate models.

  5. A Test of Maxwell's Z Model Using Inverse Modeling

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, T.

    2003-01-01

    In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.

  6. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z; Terry, N; Hubbard, S S

    2013-02-12

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  7. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Terry, Neil C.; Hubbard, Susan S.

    2013-02-22

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  8. Approximate Global Convergence and Quasi-Reversibility for a Coefficient Inverse Problem with Backscattering Data

    DTIC Science & Technology

    2011-04-01

    L1u. Assume that geodesic lines, generated by the eikonal equation corresponding to the function c (x) are regular, i.e. any two points in R3 can be...source x0 is located far from Ω, then similarly with (107) ∆l (x, x0) ≈ 0 in Ω. The function l (x, x0) satisfies the eikonal equation [38] |∇xl (x, x0...called “inverse kinematic problem” which aims to recover the function c (x) from the eikonal equation assuming that the function l (x, x0) is known for

  9. Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns

    NASA Astrophysics Data System (ADS)

    Kopacz, Monika; Jacob, Daniel J.; Henze, Daven K.; Heald, Colette L.; Streets, David G.; Zhang, Qiang

    2009-02-01

    We apply the adjoint of an atmospheric chemical transport model (GEOS-Chem CTM) to constrain Asian sources of carbon monoxide (CO) with 2° × 2.5° spatial resolution using Measurement of Pollution in the Troposphere (MOPITT) satellite observations of CO columns in February-April 2001. Results are compared to the more common analytical method for solving the same Bayesian inverse problem and applied to the same data set. The analytical method is more exact but because of computational limitations it can only constrain emissions over coarse regions. We find that the correction factors to the a priori CO emission inventory from the adjoint inversion are generally consistent with those of the analytical inversion when averaged over the large regions of the latter. The adjoint solution reveals fine-scale variability (cities, political boundaries) that the analytical inversion cannot resolve, for example, in the Indian subcontinent or between Korea and Japan, and some of that variability is of opposite sign which points to large aggregation errors in the analytical solution. Upward correction factors to Chinese emissions from the prior inventory are largest in central and eastern China, consistent with a recent bottom-up revision of that inventory, although the revised inventory also sees the need for upward corrections in southern China where the adjoint and analytical inversions call for downward correction. Correction factors for biomass burning emissions derived from the adjoint and analytical inversions are consistent with a recent bottom-up inventory on the basis of MODIS satellite fire data.

  10. 3-D Modeling of Irregular Volcanic Sources Using Sparsity-Promoting Inversions of Geodetic Data and Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Zhai, Guang; Shirzaei, Manoochehr

    2017-12-01

    Geodetic observations of surface deformation associated with volcanic activities can be used to constrain volcanic source parameters and their kinematics. Simple analytical models, such as point and spherical sources, are widely used to model deformation data. The inherent nature of oversimplified model geometries makes them unable to explain fine details of surface deformation. Current nonparametric, geometry-free inversion approaches resolve the distributed volume change, assuming it varies smoothly in space, which may detect artificial volume change outside magmatic source regions. To obtain a physically meaningful representation of an irregular volcanic source, we devise a new sparsity-promoting modeling scheme assuming active magma bodies are well-localized melt accumulations, namely, outliers in the background crust. First, surface deformation data are inverted using a hybrid L1- and L2-norm regularization scheme to solve for sparse volume change distributions. Next, a boundary element method is implemented to solve for the displacement discontinuity distribution of the reservoir, which satisfies a uniform pressure boundary condition. The inversion approach is thoroughly validated using benchmark and synthetic tests, of which the results show that source dimension, depth, and shape can be recovered appropriately. We apply this modeling scheme to deformation observed at Kilauea summit for periods of uplift and subsidence leading to and following the 2007 Father's Day event. We find that the magmatic source geometries for these periods are statistically distinct, which may be an indicator that magma is released from isolated compartments due to large differential pressure leading to the rift intrusion.

  11. Location of acoustic radiators and inversion for energy density using radio-frequency sources and thunder recordings

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Arechiga, R. O.; Edens, H. E.; Thomas, R. J.

    2011-12-01

    We use radio frequency (VHF) pulse locations mapped with the New Mexico Tech Lightning Mapping Array (LMA) to study the distribution of thunder sources in lightning channels. A least squares inversion is used to fit channel acoustic energy radiation with broadband (0.01 to 500 Hz) acoustic recordings using microphones deployed local (< 10 km) to the lightning. We model the thunder (acoustic) source as a superposition of line segments connecting the LMA VHF pulses. An optimum branching algorithm is used to reconstruct conductive channels delineated by VHF sources, which we discretize as a superposition of finely-spaced (0.25 m) acoustic point sources. We consider total radiated thunder as a weighted superposition of acoustic waves from individual channels, each with a constant current along its length that is presumed to be proportional to acoustic energy density radiated per unit length. Merged channels are considered as a linear sum of current-carrying branches and radiate proportionally greater acoustic energy. Synthetic energy time series for a given microphone location are calculated for each independent channel. We then use a non-negative least squares inversion to solve for channel energy densities to match the energy time series determined from broadband acoustic recordings across a 4-station microphone network. Events analyzed by this method have so far included 300-1000 VHF sources, and correlations as high as 0.5 between synthetic and recorded thunder energy were obtained, despite the presence of wind noise and 10-30 m uncertainty in VHF source locations.

  12. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    PubMed

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  13. A fast marching algorithm for the factored eikonal equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less

  14. Quantification of Greenhouse Gas Emission Rates from strong Point Sources by Airborne IPDA-Lidar Measurements: Methodology and Experimental Results

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Amediek, A.; Wirth, M.; Fix, A.; Kiemle, C.; Quatrevalet, M.

    2016-12-01

    We report on a new method and on the first demonstration to quantify emission rates from strong greenhouse gas (GHG) point sources using airborne Integrated Path Differential Absorption (IPDA) Lidar measurements. In order to build trust in the self-reported emission rates by countries, verification against independent monitoring systems is a prerequisite to check the reported budget. A significant fraction of the total anthropogenic emission of CO2 and CH4 originates from localized strong point sources of large energy production sites or landfills. Both are not monitored with sufficiently accuracy by the current observation system. There is a debate whether airborne remote sensing could fill in the gap to infer those emission rates from budgeting or from Gaussian plume inversion approaches, whereby measurements of the GHG column abundance beneath the aircraft can be used to constrain inverse models. In contrast to passive sensors, the use of an active instrument like CHARM-F for such emission verification measurements is new. CHARM-F is a new airborne IPDA-Lidar devised for the German research aircraft HALO for the simultaneous measurement of the column-integrated dry-air mixing ratio of CO2 and CH4 commonly denoted as XCO2 und XCH4, respectively. It has successfully been tested in a serious of flights over Central Europe to assess its performance under various reflectivity conditions and in a strongly varying topography like the Alps. The analysis of a methane plume measured in crosswind direction of a coal mine ventilation shaft revealed an instantaneous emission rate of 9.9 ± 1.7 kt CH4 yr-1. We discuss the methodology of our point source estimation approach and give an outlook on the CoMet field experiment scheduled in 2017 for the measurement of anthropogenic and natural GHG emissions by a combination of active and passive remote sensing instruments on research aircraft.

  15. Computing the Sensitivity Kernels for 2.5-D Seismic Waveform Inversion in Heterogeneous, Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, S. A.

    2011-10-01

    2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity of the seismograms to changes in the model parameters. This paper applies two methods, called `the perturbation method' and `the matrix method', to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green's function vectors and their gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The two Green's function vectors are the responses of the displacement vector to the two directed unit vectors located at the source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green's function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic (TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen parameters) plus one angle defining the symmetry axis.

  16. Comparative interpretations of renormalization inversion technique for reconstructing unknown emissions from measured atmospheric concentrations

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory

    2017-04-01

    The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.

  17. Prediction of Strong Earthquake Ground Motion for the M=7.4 and M=7.2 1999, Turkey Earthquakes based upon Geological Structure Modeling and Local Earthquake Recordings

    NASA Astrophysics Data System (ADS)

    Gok, R.; Hutchings, L.

    2004-05-01

    We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  18. Studies of earthquakes and microearthquakes using near-field seismic and geodetic observations

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas Bartholomew

    The Centroid-Moment Tensor (CMT) method allows an optimal point-source description of an earthquake to be recovered from a set of seismic observations, and, for over 30 years, has been routinely applied to determine the location and source mechanism of teleseismically recorded earthquakes. The CMT approach is, however, entirely general: any measurements of seismic displacement fields could, in theory, be used within the CMT inversion formulation, so long as the treatment of the earthquake as a point source is valid for that data. We modify the CMT algorithm to enable a variety of near-field seismic observables to be inverted for the source parameters of an earthquake. The first two data types that we implement are provided by Global Positioning System receivers operating at sampling frequencies of 1,Hz and above. When deployed in the seismic near field, these instruments may be used as long-period-strong-motion seismometers, recording displacement time series that include the static offset. We show that both the displacement waveforms, and static displacements alone, can be used to obtain CMT solutions for moderate-magnitude earthquakes, and that performing analyses using these data may be useful for earthquake early warning. We also investigate using waveform recordings - made by conventional seismometers deployed at the surface, or by geophone arrays placed in boreholes - to determine CMT solutions, and their uncertainties, for microearthquakes induced by hydraulic fracturing. A similar waveform inversion approach could be applied in many other settings where induced seismicity and microseismicity occurs..

  19. The application of the pilot points in groundwater numerical inversion model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Teng, Yanguo; Cheng, Lirong

    2015-04-01

    Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity

  20. Automated rapid finite fault inversion for megathrust earthquakes: Application to the Maule (2010), Iquique (2014) and Illapel (2015) great earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2016-04-01

    Rapid estimation of the spatial and temporal rupture characteristics of large megathrust earthquakes by finite fault inversion is important for disaster mitigation. For example, estimates of the spatio-temporal evolution of rupture can be used to evaluate population exposure to tsunami waves and ground shaking soon after the event by providing more accurate predictions than possible with point source approximations. In addition, rapid inversion results can reveal seismic source complexity to guide additional, more detailed subsequent studies. This work develops a method to rapidly estimate the slip distribution of megathrust events while reducing subjective parameter choices by automation. The method is simple yet robust and we show that it provides excellent preliminary rupture models as soon as 30 minutes for three great earthquakes in the South-American subduction zone. This may slightly change for other regions depending on seismic station coverage but method can be applied to any subduction region. The inversion is based on W-phase data since it is rapidly and widely available and of low amplitude which avoids clipping at close stations for large events. In addition, prior knowledge of the slab geometry (e.g. SLAB 1.0) is applied and rapid W-phase point source information (time delay and centroid location) is used to constrain the fault geometry and extent. Since the linearization by multiple time window (MTW) parametrization requires regularization, objective smoothing is achieved by the discrepancy principle in two fully automated steps. First, the residuals are estimated assuming unknown noise levels, and second, seeking a subsequent solution which fits the data to noise level. The MTW scheme is applied with positivity constraints and a solution is obtained by an efficient non-negative least squares solver. Systematic application of the algorithm to the Maule (2010), Iquique (2014) and Illapel (2015) events illustrates that rapid finite fault inversion with teleseismic data is feasible and provides meaningful results. The results for the three events show excellent data fits and are consistent with other solutions showing most of the slip occurring close to the trench for the Maule an Illapel events and some deeper slip for the Iquique event. Importantly, the Illapel source model predicts tsunami waveforms of close agreement with observed waveforms. Finally, we develop a new Bayesian approach to approximate uncertainties as part of the rapid inversion scheme with positivity constraints. Uncertainties are estimated by approximating the posterior distribution as a multivariate log-normal distribution. While solving for the posterior adds some additional computational cost, we illustrate that uncertainty estimation is important for meaningful interpretation of finite fault models.

  1. Cyberinfrastructure for the Unified Study of Earth Structure and Earthquake Sources in Complex Geologic Environments

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Chen, P.; Jordan, T. H.; Olsen, K. B.; Maechling, P.; Faerman, M.

    2004-12-01

    The Southern California Earthquake Center (SCEC) is developing a Community Modeling Environment (CME) to facilitate the computational pathways of physics-based seismic hazard analysis (Maechling et al., this meeting). Major goals are to facilitate the forward modeling of seismic wavefields in complex geologic environments, including the strong ground motions that cause earthquake damage, and the inversion of observed waveform data for improved models of Earth structure and fault rupture. Here we report on a unified approach to these coupled inverse problems that is based on the ability to generate and manipulate wavefields in densely gridded 3D Earth models. A main element of this approach is a database of receiver Green tensors (RGT) for the seismic stations, which comprises all of the spatial-temporal displacement fields produced by the three orthogonal unit impulsive point forces acting at each of the station locations. Once the RGT database is established, synthetic seismograms for any earthquake can be simply calculated by extracting a small, source-centered volume of the RGT from the database and applying the reciprocity principle. The partial derivatives needed for point- and finite-source inversions can be generated in the same way. Moreover, the RGT database can be employed in full-wave tomographic inversions launched from a 3D starting model, because the sensitivity (Fréchet) kernels for travel-time and amplitude anomalies observed at seismic stations in the database can be computed by convolving the earthquake-induced displacement field with the station RGTs. We illustrate all elements of this unified analysis with an RGT database for 33 stations of the California Integrated Seismic Network in and around the Los Angeles Basin, which we computed for the 3D SCEC Community Velocity Model (SCEC CVM3.0) using a fourth-order staggered-grid finite-difference code. For a spatial grid spacing of 200 m and a time resolution of 10 ms, the calculations took ~19,000 node-hours on the Linux cluster at USC's High-Performance Computing Center. The 33-station database with a volume of ~23.5 TB was archived in the SCEC digital library at the San Diego Supercomputer Center using the Storage Resource Broker (SRB). From a laptop, anyone with access to this SRB collection can compute synthetic seismograms for an arbitrary source in the CVM in a matter of minutes. Efficient approaches have been implemented to use this RGT database in the inversions of waveforms for centroid and finite moment tensors and tomographic inversions to improve the CVM. Our experience with these large problems suggests areas where the cyberinfrastructure currently available for geoscience computation needs to be improved.

  2. anisotropic microseismic focal mechanism inversion by waveform imaging matching

    NASA Astrophysics Data System (ADS)

    Wang, L.; Chang, X.; Wang, Y.; Xue, Z.

    2016-12-01

    The focal mechanism is one of the most important parameters in source inversion, for both natural earthquakes and human-induced seismic events. It has been reported to be useful for understanding stress distribution and evaluating the fracturing effect. The conventional focal mechanism inversion method picks the first arrival waveform of P wave. This method assumes the source as a Double Couple (DC) type and the media isotropic, which is usually not the case for induced seismic focal mechanism inversion. For induced seismic events, the inappropriate source and media model in inversion processing, by introducing ambiguity or strong simulation errors, will seriously reduce the inversion effectiveness. First, the focal mechanism contains significant non-DC source type. Generally, the source contains three components: DC, isotropic (ISO) and the compensated linear vector dipole (CLVD), which makes focal mechanisms more complicated. Second, the anisotropy of media will affect travel time and waveform to generate inversion bias. The common way to describe focal mechanism inversion is based on moment tensor (MT) inversion which can be decomposed into the combination of DC, ISO and CLVD components. There are two ways to achieve MT inversion. The wave-field migration method is applied to achieve moment tensor imaging. This method can construct elements imaging of MT in 3D space without picking the first arrival, but the retrieved MT value is influenced by imaging resolution. The full waveform inversion is employed to retrieve MT. In this method, the source position and MT can be reconstructed simultaneously. However, this method needs vast numerical calculation. Moreover, the source position and MT also influence each other in the inversion process. In this paper, the waveform imaging matching (WIM) method is proposed, which combines source imaging with waveform inversion for seismic focal mechanism inversion. Our method uses the 3D tilted transverse isotropic (TTI) elastic wave equation to approximate wave propagating in anisotropic media. First, a source imaging procedure is employed to obtain the source position. Second, we refine a waveform inversion algorithm to retrieve MT. We also use a microseismic data set recorded in surface acquisition to test our method.

  3. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  4. Observer-dependent sign inversions of polarization singularities.

    PubMed

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  5. Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.

    PubMed

    Huang, Hong; Zhang, Baifa; Lu, Jun

    2014-01-01

    We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.

  6. Surface Imaging Skin Friction Instrument and Method

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Naughton, Jonathan W. (Inventor)

    1999-01-01

    A surface imaging skin friction instrument allowing 2D resolution of spatial image by a 2D Hilbert transform and 2D inverse thin-oil film solver, providing an innovation over prior art single point approaches. Incoherent, monochromatic light source can be used. The invention provides accurate, easy to use, economical measurement of larger regions of surface shear stress in a single test.

  7. Inference of relativistic electron spectra from measurements of inverse Compton radiation

    NASA Astrophysics Data System (ADS)

    Craig, I. J. D.; Brown, J. C.

    1980-07-01

    The inference of relativistic electron spectra from spectral measurement of inverse Compton radiation is discussed for the case where the background photon spectrum is a Planck function. The problem is formulated in terms of an integral transform that relates the measured spectrum to the unknown electron distribution. A general inversion formula is used to provide a quantitative assessment of the information content of the spectral data. It is shown that the observations must generally be augmented by additional information if anything other than a rudimentary two or three parameter model of the source function is to be derived. It is also pointed out that since a similar equation governs the continuum spectra emitted by a distribution of black-body radiators, the analysis is relevant to the problem of stellar population synthesis from galactic spectra.

  8. Finite-fault inversion of the Mw 5.9 2012 Emilia-Romagna earthquake (Northern Italy) using aftershocks as near-field Green's function approximations

    NASA Astrophysics Data System (ADS)

    Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic

    2017-04-01

    On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.

  9. Computing Fault Displacements from Surface Deformations

    NASA Technical Reports Server (NTRS)

    Lyzenga, Gregory; Parker, Jay; Donnellan, Andrea; Panero, Wendy

    2006-01-01

    Simplex is a computer program that calculates locations and displacements of subterranean faults from data on Earth-surface deformations. The calculation involves inversion of a forward model (given a point source representing a fault, a forward model calculates the surface deformations) for displacements, and strains caused by a fault located in isotropic, elastic half-space. The inversion involves the use of nonlinear, multiparameter estimation techniques. The input surface-deformation data can be in multiple formats, with absolute or differential positioning. The input data can be derived from multiple sources, including interferometric synthetic-aperture radar, the Global Positioning System, and strain meters. Parameters can be constrained or free. Estimates can be calculated for single or multiple faults. Estimates of parameters are accompanied by reports of their covariances and uncertainties. Simplex has been tested extensively against forward models and against other means of inverting geodetic data and seismic observations. This work

  10. Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling

    NASA Astrophysics Data System (ADS)

    Dȩbski, Wojciech

    2008-07-01

    Many aspects of earthquake source dynamics like dynamic stress drop, rupture velocity and directivity, etc. are currently inferred from the source time functions obtained by a deconvolution of the propagation and recording effects from seismograms. The question of the accuracy of obtained results remains open. In this paper we address this issue by considering two aspects of the source time function deconvolution. First, we propose a new pseudo-spectral parameterization of the sought function which explicitly takes into account the physical constraints imposed on the sought functions. Such parameterization automatically excludes non-physical solutions and so improves the stability and uniqueness of the deconvolution. Secondly, we demonstrate that the Bayesian approach to the inverse problem at hand, combined with an efficient Markov Chain Monte Carlo sampling technique, is a method which allows efficient estimation of the source time function uncertainties. The key point of the approach is the description of the solution of the inverse problem by the a posteriori probability density function constructed according to the Bayesian (probabilistic) theory. Next, the Markov Chain Monte Carlo sampling technique is used to sample this function so the statistical estimator of a posteriori errors can be easily obtained with minimal additional computational effort with respect to modern inversion (optimization) algorithms. The methodological considerations are illustrated by a case study of the mining-induced seismic event of the magnitude M L ≈3.1 that occurred at Rudna (Poland) copper mine. The seismic P-wave records were inverted for the source time functions, using the proposed algorithm and the empirical Green function technique to approximate Green functions. The obtained solutions seem to suggest some complexity of the rupture process with double pulses of energy release. However, the error analysis shows that the hypothesis of source complexity is not justified at the 95% confidence level. On the basis of the analyzed event we also show that the separation of the source inversion into two steps introduces limitations on the completeness of the a posteriori error analysis.

  11. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  12. A Clustered Extragalactic Foreground Model for the EoR

    NASA Astrophysics Data System (ADS)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2018-05-01

    We review an improved statistical model of extra-galactic point-source foregrounds first introduced in Murray et al. (2017), in the context of the Epoch of Reionization. This model extends the instrumentally-convolved foreground covariance used in inverse-covariance foreground mitigation schemes, by considering the cosmological clustering of the sources. In this short work, we show that over scales of k ~ (0.6, 40.)hMpc-1, ignoring source clustering is a valid approximation. This is in contrast to Murray et al. (2017), who found a possibility of false detection if the clustering was ignored. The dominant cause for this change is the introduction of a Galactic synchrotron component which shadows the clustering of sources.

  13. Improved resistivity imaging of groundwater solute plumes using POD-based inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.; Khan, T.

    2012-12-01

    We propose a new approach for enforcing physics-based regularization in electrical resistivity imaging (ERI) problems. The approach utilizes a basis-constrained inversion where an optimal set of basis vectors is extracted from training data by Proper Orthogonal Decomposition (POD). The key aspect of the approach is that Monte Carlo simulation of flow and transport is used to generate a training dataset, thereby intrinsically capturing the physics of the underlying flow and transport models in a non-parametric form. POD allows for these training data to be projected onto a subspace of the original domain, resulting in the extraction of a basis for the inversion that captures characteristics of the groundwater flow and transport system, while simultaneously allowing for dimensionality reduction of the original problem in the projected space We use two different synthetic transport scenarios in heterogeneous media to illustrate how the POD-based inversion compares with standard Tikhonov and coupled inversion. The first scenario had a single source zone leading to a unimodal solute plume (synthetic #1), whereas, the second scenario had two source zones that produced a bimodal plume (synthetic #2). For both coupled inversion and the POD approach, the conceptual flow and transport model used considered only a single source zone for both scenarios. Results were compared based on multiple metrics (concentration root-mean square error (RMSE), peak concentration, and total solute mass). In addition, results for POD inversion based on 3 different data densities (120, 300, and 560 data points) and varying number of selected basis images (100, 300, and 500) were compared. For synthetic #1, we found that all three methods provided qualitatively reasonable reproduction of the true plume. Quantitatively, the POD inversion performed best overall for each metric considered. Moreover, since synthetic #1 was consistent with the conceptual transport model, a small number of basis vectors (100) contained enough a priori information to constrain the inversion. Increasing the amount of data or number of selected basis images did not translate into significant improvement in imaging results. For synthetic #2, the RMSE and error in total mass were lowest for the POD inversion. However, the peak concentration was significantly overestimated by the POD approach. Regardless, the POD-based inversion was the only technique that could capture the bimodality of the plume in the reconstructed image, thus providing critical information that could be used to reconceptualize the transport problem. We also found that, in the case of synthetic #2, increasing the number of resistivity measurements and the number of selected basis vectors allowed for significant improvements in the reconstructed images.

  14. Comparison of weighting techniques for acoustic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo

    2017-12-01

    To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.

  15. Network design for quantifying urban CO2 emissions: assessing trade-offs between precision and network density

    NASA Astrophysics Data System (ADS)

    Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; Teige, Virginia; Harley, Robert A.; Cohen, Ronald C.

    2016-11-01

    The majority of anthropogenic CO2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO2 Observation Network (BEACO2N) in California's Bay Area, in combination with an inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1 × 1 km2 emission inventory and 1 × 1 km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model-observing system in reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.

  16. Network design for quantifying urban CO 2 emissions: assessing trade-offs between precision and network density

    DOE PAGES

    Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; ...

    2016-11-01

    The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less

  17. Network design for quantifying urban CO 2 emissions: assessing trade-offs between precision and network density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.

    The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less

  18. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kuze, A.; Notholt, J.; Ohyama, H.; Parker, R.; Payne, V. H.; Sussmann, R.; Sweeney, C.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D.

    2015-06-01

    We use 2009-2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a total methane source of 539 Tg a-1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2-42.7 Tg a-1, as compared to 24.9-27.0 Tg a-1 in the EDGAR and EPA bottom-up inventories, and 30.0-44.5 Tg a-1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern-central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29-44 % of US anthropogenic methane emissions to livestock, 22-31 % to oil/gas, 20 % to landfills/wastewater, and 11-15 % to coal. Wetlands contribute an additional 9.0-10.1 Tg a-1.

  19. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE PAGES

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; ...

    2015-06-30

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a totalmore » methane source of 539 Tg a −1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a -1, as compared to 24.9–27.0 Tg a -1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a -1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern–central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29–44 % of US anthropogenic methane emissions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands contribute an additional 9.0–10.1 Tg a -1.« less

  20. Methane source identification in Boston, Massachusetts using isotopic and ethane measurements

    NASA Astrophysics Data System (ADS)

    Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.

    2012-12-01

    Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.

  1. The Earthquake‐Source Inversion Validation (SIV) Project

    USGS Publications Warehouse

    Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.

  2. Approaches to highly parameterized inversion: Pilot-point theory, guidelines, and research directions

    USGS Publications Warehouse

    Doherty, John E.; Fienen, Michael N.; Hunt, Randall J.

    2011-01-01

    Pilot points have been used in geophysics and hydrogeology for at least 30 years as a means to bridge the gap between estimating a parameter value in every cell of a model and subdividing models into a small number of homogeneous zones. Pilot points serve as surrogate parameters at which values are estimated in the inverse-modeling process, and their values are interpolated onto the modeling domain in such a way that heterogeneity can be represented at a much lower computational cost than trying to estimate parameters in every cell of a model. Although the use of pilot points is increasingly common, there are few works documenting the mathematical implications of their use and even fewer sources of guidelines for their implementation in hydrogeologic modeling studies. This report describes the mathematics of pilot-point use, provides guidelines for their use in the parameter-estimation software suite (PEST), and outlines several research directions. Two key attributes for pilot-point definitions are highlighted. First, the difference between the information contained in the every-cell parameter field and the surrogate parameter field created using pilot points should be in the realm of parameters which are not informed by the observed data (the null space). Second, the interpolation scheme for projecting pilot-point values onto model cells ideally should be orthogonal. These attributes are informed by the mathematics and have important ramifications for both the guidelines and suggestions for future research.

  3. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.

    Here we present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scaledependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show largemore » differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Finally, our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.« less

  5. Gridded National Inventory of U.S. Methane Emissions

    NASA Technical Reports Server (NTRS)

    Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.; Turner, Alexander J.; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel; hide

    2016-01-01

    We present a gridded inventory of US anthropogenic methane emissions with 0.1 deg x 0.1 deg spatial resolution, monthly temporal resolution, and detailed scale dependent error characterization. The inventory is designed to be onsistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissionsand Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a widerange of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.

  6. Gridded national inventory of U.S. methane emissions

    DOE PAGES

    Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.; ...

    2016-11-16

    Here we present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scaledependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show largemore » differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Finally, our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.« less

  7. Gridded National Inventory of U.S. Methane Emissions.

    PubMed

    Maasakkers, Joannes D; Jacob, Daniel J; Sulprizio, Melissa P; Turner, Alexander J; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel; Hockstad, Leif; Bloom, Anthony A; Bowman, Kevin W; Jeong, Seongeun; Fischer, Marc L

    2016-12-06

    We present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.

  8. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    NASA Astrophysics Data System (ADS)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results provided by the approximate Hessian matrix, it is noted that the latter are better than the former for deeper parts of the model. This work was financially supported by the Brain Korea 21 project of Energy System Engineering, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0006155), by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010T100200133).

  9. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions

    NASA Astrophysics Data System (ADS)

    Krings, Thomas; Neininger, Bruno; Gerilowski, Konstantin; Krautwurst, Sven; Buchwitz, Michael; Burrows, John P.; Lindemann, Carsten; Ruhtz, Thomas; Schüttemeyer, Dirk; Bovensmann, Heinrich

    2018-02-01

    Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.

  10. Shallow conduit system at Kilauea Volcano, Hawaii, revealed by seismic signals associated with degassing bursts

    USGS Publications Warehouse

    Chouet, Bernard; Dawson, Phillip

    2011-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in March, 2008 and continuing to the present time is characterized by episodic explosive bursts of gas and ash from a vent within Halemaumau Pit Crater. These bursts are accompanied by seismic signals that are well recorded by a broadband network deployed in the summit caldera. We investigate in detail the dimensions and oscillation modes of the source of a representative burst in the 1−10 s band. An extended source is realized by a set of point sources distributed on a grid surrounding the source centroid, where the centroid position and source geometry are fixed from previous modeling of very-long-period (VLP) data in the 10–50 s band. The source time histories of all point sources are obtained simultaneously through waveform inversion carried out in the frequency domain. Short-scale noisy fluctuations of the source time histories between adjacent sources are suppressed with a smoothing constraint, whose strength is determined through a minimization of the Akaike Bayesian Information Criterion (ABIC). Waveform inversions carried out for homogeneous and heterogeneous velocity structures both image a dominant source component in the form of an east trending dike with dimensions of 2.9 × 2.9 km. The dike extends ∼2 km west and ∼0.9 km east of the VLP centroid and spans the depth range 0.2–3.1 km. The source model for a homogeneous velocity structure suggests the dike is hinged at the source centroid where it bends from a strike E 27°N with northern dip of 85° west of the centroid, to a strike E 7°N with northern dip of 80° east of the centroid. The oscillating behavior of the dike is dominated by simple harmonic modes with frequencies ∼0.2 Hz and ∼0.5 Hz, representing the fundamental mode ν11 and first degenerate mode ν12 = ν21 of the dike. Although not strongly supported by data in the 1–10 s band, a north striking dike segment is required for enhanced compatibility with the model elaborated in the 10–50 s band. This dike provides connectivity between the east trending dike and the new vent within Halemaumau Pit Crater. Waveform inversions with a dual-dike model suggest dimensions of 0.7 × 0.7 km to 2.6 × 2.6 km for this segment. Further elaboration of the complex dike system under Halemaumau does not appear to be feasible with presently available data.

  11. Design and Mechanical Stability Analysis of the Interaction Region for the Inverse Compton Scattering Gamma-Ray Source Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Khizhanok, Andrei

    Development of a compact source of high-spectral brilliance and high impulse frequency gamma rays has been in scope of Fermi National Accelerator Laboratory for quite some time. Main goal of the project is to develop a setup to support gamma rays detection test and gamma ray spectroscopy. Potential applications include but not limited to nuclear astrophysics, nuclear medicine, oncology ('gamma knife'). Present work covers multiple interconnected stages of development of the interaction region to ensure high levels of structural strength and vibrational resistance. Inverse Compton scattering is a complex phenomenon, in which charged particle transfers a part of its energy to a photon. It requires extreme precision as the interaction point is estimated to be 20 microm. The slightest deflection of the mirrors will reduce effectiveness of conversion by orders of magnitude. For acceptable conversion efficiency laser cavity also must have >1000 finesse value, which requires a trade-off between size, mechanical stability, complexity, and price of the setup. This work focuses on advantages and weak points of different designs of interaction regions as well as in-depth description of analyses performed. This includes laser cavity amplification and finesse estimates, natural frequency mapping, harmonic analysis. Structural analysis is required as interaction must occur under high vacuum conditions.

  12. An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment

    NASA Astrophysics Data System (ADS)

    Efthimiou, George C.; Kovalets, Ivan V.; Venetsanos, Alexandros; Andronopoulos, Spyros; Argyropoulos, Christos D.; Kakosimos, Konstantinos

    2017-12-01

    An improved inverse modelling method to estimate the location and the emission rate of an unknown point stationary source of passive atmospheric pollutant in a complex urban geometry is incorporated in the Computational Fluid Dynamics code ADREA-HF and presented in this paper. The key improvement in relation to the previous version of the method lies in a two-step segregated approach. At first only the source coordinates are analysed using a correlation function of measured and calculated concentrations. In the second step the source rate is identified by minimizing a quadratic cost function. The validation of the new algorithm is performed by simulating the MUST wind tunnel experiment. A grid-independent flow field solution is firstly attained by applying successive refinements of the computational mesh and the final wind flow is validated against the measurements quantitatively and qualitatively. The old and new versions of the source term estimation method are tested on a coarse and a fine mesh. The new method appeared to be more robust, giving satisfactory estimations of source location and emission rate on both grids. The performance of the old version of the method varied between failure and success and appeared to be sensitive to the selection of model error magnitude that needs to be inserted in its quadratic cost function. The performance of the method depends also on the number and the placement of sensors constituting the measurement network. Of significant interest for the practical application of the method in urban settings is the number of concentration sensors required to obtain a ;satisfactory; determination of the source. The probability of obtaining a satisfactory solution - according to specified criteria -by the new method has been assessed as function of the number of sensors that constitute the measurement network.

  13. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    NASA Astrophysics Data System (ADS)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  14. Potency backprojection

    NASA Astrophysics Data System (ADS)

    Okuwaki, R.; Kasahara, A.; Yagi, Y.

    2017-12-01

    The backprojection (BP) method has been one of the powerful tools of tracking seismic-wave sources of the large/mega earthquakes. The BP method projects waveforms onto a possible source point by stacking them with the theoretical-travel-time shifts between the source point and the stations. Following the BP method, the hybrid backprojection (HBP) method was developed to enhance depth-resolution of projected images and mitigate the dummy imaging of the depth phases, which are shortcomings of the BP method, by stacking cross-correlation functions of the observed waveforms and theoretically calculated Green's functions (GFs). The signal-intensity of the BP/HBP image at a source point is related to how much of observed waveforms was radiated from that point. Since the amplitude of the GF associated with the slip-rate increases with depth as the rigidity increases with depth, the intensity of the BP/HBP image inherently has depth dependence. To make a direct comparison of the BP/HBP image with the corresponding slip distribution inferred from a waveform inversion, and discuss the rupture properties along the fault drawn from the waveforms in high- and low-frequencies with the BP/HBP methods and the waveform inversion, respectively, it is desirable to have the variants of BP/HBP methods that directly image the potency-rate-density distribution. Here we propose new formulations of the BP/HBP methods, which image the distribution of the potency-rate density by introducing alternative normalizing factors in the conventional formulations. For the BP method, the observed waveform is normalized with the maximum amplitude of P-phase of the corresponding GF. For the HBP method, we normalize the cross-correlation function with the squared-sum of the GF. The normalized waveforms or the cross-correlation functions are then stacked for all the stations to enhance the signal to noise ratio. We will present performance-tests of the new formulations by using synthetic waveforms and the real data of the Mw 8.3 2015 Illapel Chile earthquake, and further discuss the limitations of the new BP/HBP methods proposed in this study when they are used for exploring the rupture properties of the earthquakes.

  15. LES on Plume Dispersion in the Convective Boundary Layer Capped by a Temperature Inversion

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiromasa; Tamura, Tetsuro; Abe, Satoshi

    Large-eddy simulation (LES) is applied to the problem of plume dispersion in the spatially-developing convective boundary layer (CBL) capped by a temperature inversion. In order to generate inflow turbulence with buoyant forcing, we first, simulate the neutral boundary layer flow (NBL) in the driver region using Lund's method. At the same time, the temperature profile possessing the inversion part is imposed at the entrance of the driver region and the temperature field is calculated as a passive scalar. Next, the buoyancy effect is introduced into the flow field in the main region. We evaluate the applicability of the LES model for atmospheric dispersion in the CBL flow and compare the characteristics of plume dispersion in the CBL flow with those in the neutral boundary layer. The Richardson number based on the temperature increment across the inversion obtained by the present LES model is 22.4 and the capping effect of the temperature inversion can be captured qualitatively in the upper portion of the CBL. Characteristics of flow and temperature fields in the main portion of CBL flow are similar to those of previous experiments[1],[2] and observations[3]. Concerning dispersion behavior, we also find that mean concentrations decrease immediately above the inversion height and the peak values of r.m.s concentrations are located near the inversion height at larger distances from the point source.

  16. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Albrecht, B.; Jonsson, H. H.; Khelif, D.; Feingold, G.; Minnis, P.; Ayers, K.; Chuang, P.; Donaher, S.; Rossiter, D.; Ghate, V.; Ruiz-Plancarte, J.; Sun-Mack, S.

    2011-09-01

    Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha) from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud- Atmosphere-Land Study-Regional Experiment (VOCALS-REx), combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL) and aerosol-cloud-drizzle variations in this region. On days without predominately synoptic and meso-scale influences, the BL at Point Alpha was typical of a non-drizzling stratocumulus-topped BL. Entrainment rates calculated from the near cloud-top fluxes and turbulence in the BL at Point Alpha appeared to be weaker than those in the BL over the open ocean west of Point Alpha and the BL near the coast of the northeast Pacific. The cloud liquid water path (LWP) varied between 15 g m-2 and 160 g m-2. The BL had a depth of 1140 ± 120 m, was generally well-mixed and capped by a sharp inversion without predominately synoptic and meso-scale influences. The wind direction generally switched from southerly within the BL to northerly above the inversion. On days when a synoptic system and related mesoscale costal circulations affected conditions at Point Alpha (29 October-4 November), a moist layer above the inversion moved over Point Alpha, and the total-water mixing ratio above the inversion was larger than that within the BL. The accumulation mode aerosol varied from 250 to 700 cm-3 within the BL, and CCN at 0.2 % supersaturation within the BL ranged between 150 and 550 cm-3. The main aerosol source at Point Alpha was horizontal advection within the BL from south. The average cloud droplet number concentration ranged between 80 and 400 cm-3. While the mean LWP retrieved from GOES was in good agreement with the in situ measurements, the GOES-derived cloud droplet effective radius tended to be larger than that from the aircraft in situ observations near cloud top. The aerosol and cloud LWP relationship reveals that during the typical well-mixed BL days the cloud LWP increased with the CCN concentrations. On the other hand, meteorological factors and the decoupling processes have large influences on the cloud LWP variation as well.

  17. Inverse compton light source: a compact design proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitrick, Kirsten Elizabeth

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less

  18. Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium

    NASA Astrophysics Data System (ADS)

    Chen, Xudong

    2010-07-01

    This paper proposes a version of the subspace-based optimization method to solve the inverse scattering problem with an inhomogeneous background medium where the known inhomogeneities are bounded in a finite domain. Although the background Green's function at each discrete point in the computational domain is not directly available in an inhomogeneous background scenario, the paper uses the finite element method to simultaneously obtain the Green's function at all discrete points. The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization, whereas the orthogonally complementary part is determined by solving a lower dimension optimization problem. This feature significantly speeds up the convergence of the algorithm and at the same time makes it robust against noise. Numerical simulations illustrate the efficacy of the proposed algorithm. The algorithm presented in this paper finds wide applications in nondestructive evaluation, such as through-wall imaging.

  19. Establishment and application of the estimation model for pollutant concentrfation in agriculture drain

    NASA Astrophysics Data System (ADS)

    Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji

    2018-02-01

    It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.

  20. Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study

    NASA Astrophysics Data System (ADS)

    Reinwald, Michael; Bernauer, Moritz; Igel, Heiner; Donner, Stefanie

    2016-10-01

    With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future, we engage in the question of how this type of ground motion observation can be used to solve the seismic source inverse problem. In this paper, we focus on the question of whether finite-source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 three-component translational sensors (classic seismometers) with those obtained with 22 six-component sensors (with additional three-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content to measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component inversions with a random distribution of receivers. Since our previous results are achieved with a regular spacing of the receivers, we try to answer the question of whether the results are dependent on the spatial distribution of the receivers. The results show that with the six-component subnetworks, kinematic source inversions for source properties (such as rupture velocity, rise time, and slip amplitudes) are not only equally successful (even that would be beneficial because of the substantially reduced logistics installing half the sensors) but also statistically inversions for some source properties are almost always improved. This can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is even higher for the normal fault. This indicates that the inversion benefits from the additional information provided by the horizontal rotation rates, i.e., information about the vertical displacement gradient.

  1. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back-projection approach to provide constraint on rupture velocity.

  2. Using a pseudo-dynamic source inversion approach to improve earthquake source imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.

    2014-12-01

    Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.

  3. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    NASA Astrophysics Data System (ADS)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  4. Fault gouge evolution during rupture and healing: Continual active-seismic observations across laboratory-scale fault zones

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

    2011-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

  5. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Peng; Tan, Han-Dong; Wang, Tao

    2017-06-01

    A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.

  6. Source encoding in multi-parameter full waveform inversion

    NASA Astrophysics Data System (ADS)

    Matharu, Gian; Sacchi, Mauricio D.

    2018-04-01

    Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.

  7. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  8. The point-spread function of fiber-coupled area detectors

    PubMed Central

    Holton, James M.; Nielsen, Chris; Frankel, Kenneth A.

    2012-01-01

    The point-spread function (PSF) of a fiber-optic taper-coupled CCD area detector was measured over five decades of intensity using a 20 µm X-ray beam and ∼2000-fold averaging. The ‘tails’ of the PSF clearly revealed that it is neither Gaussian nor Lorentzian, but instead resembles the solid angle subtended by a pixel at a point source of light held a small distance (∼27 µm) above the pixel plane. This converges to an inverse cube law far from the beam impact point. Further analysis revealed that the tails are dominated by the fiber-optic taper, with negligible contribution from the phosphor, suggesting that the PSF of all fiber-coupled CCD-type detectors is best described as a Moffat function. PMID:23093762

  9. Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.; Chouet, B.A.

    2003-01-01

    We investigate the source mechanism of long-period (LP) events observed at Kusatsu-Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1-3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake. ?? 2003 Elsevier Science B.V. All rights reserved.

  10. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    PubMed

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  11. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    PubMed

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  12. Quantum Theory of Three-Dimensional Superresolution Using Rotating-PSF Imagery

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Yu, Z.

    The inverse of the quantum Fisher information (QFI) matrix (and extensions thereof) provides the ultimate lower bound on the variance of any unbiased estimation of a parameter from statistical data, whether of intrinsically quantum mechanical or classical character. We calculate the QFI for Poisson-shot-noise-limited imagery using the rotating PSF that can localize and resolve point sources fully in all three dimensions. We also propose an experimental approach based on the use of computer generated hologram and projective measurements to realize the QFI-limited variance for the problem of super-resolving a closely spaced pair of point sources at a highly reduced photon cost. The paper presents a preliminary analysis of quantum-limited three-dimensional (3D) pair optical super-resolution (OSR) problem with potential applications to astronomical imaging and 3D space-debris localization.

  13. Testing earthquake source inversion methodologies

    USGS Publications Warehouse

    Page, M.; Mai, P.M.; Schorlemmer, D.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  14. Rupture processes of the 2010 Canterbury earthquake and the 2011 Christchurch earthquake inferred from InSAR, strong motion and teleseismic datasets

    NASA Astrophysics Data System (ADS)

    Yun, S.; Koketsu, K.; Aoki, Y.

    2014-12-01

    The September 4, 2010, Canterbury earthquake with a moment magnitude (Mw) of 7.1 is a crustal earthquake in the South Island, New Zealand. The February 22, 2011, Christchurch earthquake (Mw=6.3) is the biggest aftershock of the 2010 Canterbury earthquake that is located at about 50 km to the east of the mainshock. Both earthquakes occurred on previously unrecognized faults. Field observations indicate that the rupture of the 2010 Canterbury earthquake reached the surface; the surface rupture with a length of about 30 km is located about 4 km south of the epicenter. Also various data including the aftershock distribution and strong motion seismograms suggest a very complex rupture process. For these reasons it is useful to investigate the complex rupture process using multiple data with various sensitivities to the rupture process. While previously published source models are based on one or two datasets, here we infer the rupture process with three datasets, InSAR, strong-motion, and teleseismic data. We first performed point source inversions to derive the focal mechanism of the 2010 Canterbury earthquake. Based on the focal mechanism, the aftershock distribution, the surface fault traces and the SAR interferograms, we assigned several source faults. We then performed the joint inversion to determine the rupture process of the 2010 Canterbury earthquake most suitable for reproducing all the datasets. The obtained slip distribution is in good agreement with the surface fault traces. We also performed similar inversions to reveal the rupture process of the 2011 Christchurch earthquake. Our result indicates steep dip and large up-dip slip. This reveals the observed large vertical ground motion around the source region is due to the rupture process, rather than the local subsurface structure. To investigate the effects of the 3-D velocity structure on characteristic strong motion seismograms of the two earthquakes, we plan to perform the inversion taking 3-D velocity structure of this region into account.

  15. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Hayman, Peter; Williams, M.; Zalavári, László

    2017-04-01

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential's singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original prob-lem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  16. Deformation data modeling through numerical models: an efficient method for tracking magma transport

    NASA Astrophysics Data System (ADS)

    Charco, M.; Gonzalez, P. J.; Galán del Sastre, P.

    2017-12-01

    Nowadays, multivariate collected data and robust physical models at volcano observatories are becoming crucial for providing effective volcano monitoring. Nevertheless, the forecast of volcanic eruption is notoriously difficult. Wthin this frame one of the most promising methods to evaluate the volcano hazard is the use of surface ground deformation and in the last decades many developments in the field of deformation modeling has been achieved. In particular, numerical modeling allows realistic media features such as topography and crustal heterogeneities to be included, although it is still very time cosuming to solve the inverse problem for near-real time interpretations. Here, we present a method that can be efficiently used to estimate the location and evolution of magmatic sources base on real-time surface deformation data and Finite Element (FE) models. Generally, the search for the best-fitting magmatic (point) source(s) is conducted for an array of 3-D locations extending below a predefined volume region and the Green functions for all the array components have to be precomputed. We propose a FE model for the pre-computation of Green functions in a mechanically heterogeneous domain which eventually will lead to a better description of the status of the volcanic area. The number of Green functions is reduced here to the number of observational points by using their reciprocity relationship. We present and test this methodology with an optimization method base on a Genetic Algorithm. Following synthetic and sensitivity test to estimate the uncertainty of the model parameters, we apply the tool for magma tracking during 2007 Kilauea volcano intrusion and eruption. We show how data inversion with numerical models can speed up the source parameters estimations for a given volcano showing signs of unrest.

  17. A soft X-ray map of the Perseus cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Cash, W.; Malina, R. F.; Wolff, R. S.

    1976-01-01

    A 0.5-3-keV X-ray map of the Perseus cluster of galaxies is presented. The map shows a region of strong emission centered near NGC 1275 plus a highly elongated emission region which lies along the line of bright galaxies that dominates the core of the cluster. The data are compared with various models that include point and diffuse sources. One model which adequately represents the data is the superposition of a point source at NGC 1275 and an isothermal ellipsoid resulting from the bremsstrahlung emission of cluster gas. The ellipsoid has a major core radius of 20.5 arcmin and a minor core radius of 5.5 arcmin, consistent with the values obtained from galaxy counts. All acceptable models provide evidence for a compact source (less than 3 arcmin FWHM) at NGC 1275 containing about 25% of the total emission. Since the diffuse X-ray and radio components have radically different morphologies, it is unlikely that the emissions arise from a common source, as proposed in inverse-Compton models.

  18. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  19. Formal integration of controlled-source and passive seismic data: Utilization of the CD-ROM experiment

    NASA Astrophysics Data System (ADS)

    Rumpfhuber, E.; Keller, G. R.; Velasco, A. A.

    2005-12-01

    Many large-scale experiments conduct both controlled-source and passive deployments to investigate the lithospheric structure of a targeted region. Many of these studies utilize each data set independently, resulting in different images of the Earth depending on the data set investigated. In general, formal integration of these data sets, such as joint inversions, with other data has not been performed. The CD-ROM experiment, which included both 2-D controlled-source and passive recording along a profile extending from southern Wyoming to northern New Mexico serves as an excellent data set to develop a formal integration strategy between both controlled source and passive experiments. These data are ideal to develop this strategy because: 1) the analysis of refraction/wide-angle reflection data yields Vp structure, and sometimes Vs structure, of the crust and uppermost mantle; 2) analysis of the PmP phase (Moho reflection) yields estimates of the average Vp of the crust for the crust; and 3) receiver functions contain full-crustal reverberations and yield the Vp/Vs ratio, but do not constrain the absolute P and S velocity. Thus, a simple form of integration involves using the Vp/Vs ratio from receiver functions and the average Vp from refraction measurements, to solve for the average Vs of the crust. When refraction/ wide-angle reflection data and several receiver functions nearby are available, an integrated 2-D model can be derived. In receiver functions, the PS conversion gives the S-wave travel-time (ts) through the crust along the raypath traveled from the Moho to the surface. Since the receiver function crustal reverberation gives the Vp/Vs ratio, it is also possible to use the arrival time of the converted phase, PS, to solve for the travel time of the direct teleseismic P-wave through the crust along the ray path. Raytracing can yield the point where the teleseismic wave intersects the Moho. In this approach, the conversion point is essentially a pseudo-shotpoint, thus the converted arrival at the surface can be jointly modeled with refraction data using a 3-D inversion code. Employing the combined CD-ROM data sets, we will be investigating the joint inversion results of controlled source data and receiver functions.

  20. A matrix-inversion method for gamma-source mapping from gamma-count data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Burgess, Claire; Bull, Richard K

    In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less

  1. Reconciling ocean mass content change based on direct and inverse approaches by utilizing data from GRACE, altimetry and Swarm

    NASA Astrophysics Data System (ADS)

    Rietbroek, R.; Uebbing, B.; Lück, C.; Kusche, J.

    2017-12-01

    Ocean mass content (OMC) change due to the melting of the ice-sheets in Greenland and Antarctica, melting of glaciers and changes in terrestrial hydrology is a major contributor to present-day sea level rise. Since 2002, the GRACE satellite mission serves as a valuable tool for directly measuring the variations in OMC. As GRACE has almost reached the end of its lifetime, efforts are being made to utilize the Swarm mission for the recovery of low degree time-variable gravity fields to bridge a possible gap until the GRACE-FO mission and to fill up periods where GRACE data was not existent. To this end we compute Swarm monthly normal equations and spherical harmonics that are found competitive to other solutions. In addition to directly measuring the OMC, combination of GRACE gravity data with altimetry data in a global inversion approach allows to separate the total sea level change into individual mass-driven and steric contributions. However, published estimates of OMC from the direct and inverse methods differ not only depending on the time window, but also are influenced by numerous post-processing choices. Here, we will look into sources of such differences between direct and inverse approaches and evaluate the capabilities of Swarm to derive OMC. Deriving time series of OMC requires several processing steps; choosing a GRACE (and altimetry) product, data coverage, masks and filters to be applied in either spatial or spectral domain, corrections related to spatial leakage, GIA and geocenter motion. In this study, we compare and quantify the effects of the different processing choices of the direct and inverse methods. Our preliminary results point to the GIA correction as the major source of difference between the two approaches.

  2. Estimation of splitting functions from Earth's normal mode spectra using the neighbourhood algorithm

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Tkalčić, Hrvoje; Masters, Guy

    2016-01-01

    The inverse problem for Earth structure from normal mode data is strongly non-linear and can be inherently non-unique. Traditionally, the inversion is linearized by taking partial derivatives of the complex spectra with respect to the model parameters (i.e. structure coefficients), and solved in an iterative fashion. This method requires that the earthquake source model is known. However, the release of energy in large earthquakes used for the analysis of Earth's normal modes is not simple. A point source approximation is often inadequate, and a more complete account of energy release at the source is required. In addition, many earthquakes are required for the solution to be insensitive to the initial constraints and regularization. In contrast to an iterative approach, the autoregressive linear inversion technique conveniently avoids the need for earthquake source parameters, but it also requires a number of events to achieve full convergence when a single event does not excite all singlets well. To build on previous improvements, we develop a technique to estimate structure coefficients (and consequently, the splitting functions) using a derivative-free parameter search, known as neighbourhood algorithm (NA). We implement an efficient forward method derived using the autoregresssion of receiver strips, and this allows us to search over a multiplicity of structure coefficients in a relatively short time. After demonstrating feasibility of the use of NA in synthetic cases, we apply it to observations of the inner core sensitive mode 13S2. The splitting function of this mode is dominated by spherical harmonic degree 2 axisymmetric structure and is consistent with the results obtained from the autoregressive linear inversion. The sensitivity analysis of multiple events confirms the importance of the Bolivia, 1994 earthquake. When this event is used in the analysis, as little as two events are sufficient to constrain the splitting functions of 13S2 mode. Apart from not requiring the knowledge of earthquake source, the newly developed technique provides an approximate uncertainty measure of the structure coefficients and allows us to control the type of structure solved for, for example to establish if elastic structure is sufficient.

  3. SU-F-T-15: Evaluation of 192Ir, 60Co and 169Yb Sources for High Dose Rate Prostate Brachytherapy Inverse Planning Using An Interior Point Constraint Generation Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok Tsze Chung, E; Aleman, D; Safigholi, H

    Purpose: The effectiveness of using a combination of three sources, {sup 60}Co, {sup 192}Ir and {sup 169}Yb, is analyzed. Different combinations are compared against a single {sup 192}Ir source on prostate cancer cases. A novel inverse planning interior point algorithm is developed in-house to generate the treatment plans. Methods: Thirteen prostate cancer patients are separated into two groups: Group A includes eight patients with the prostate as target volume, while group B consists of four patients with a boost nodule inside the prostate that is assigned 150% of the prescription dose. The mean target volume is 35.7±9.3cc and 30.6±8.5cc formore » groups A and B, respectively. All patients are treated with each source individually, then with paired sources, and finally with all three sources. To compare the results, boost volume V150 and D90, urethra Dmax and D10, and rectum Dmax and V80 are evaluated. For fair comparison, all plans are normalized to a uniform V100=100. Results: Overall, double- and triple-source plans were better than single-source plans. The triple-source plans resulted in an average decrease of 21.7% and 1.5% in urethra Dmax and D10, respectively, and 8.0% and 0.8% in rectum Dmax and V80, respectively, for group A. For group B, boost volume V150 and D90 increased by 4.7% and 3.0%, respectively, while keeping similar dose delivered to the urethra and rectum. {sup 60}Co and {sup 192}Ir produced better plans than their counterparts in the double-source category, whereas {sup 60}Co produced more favorable results than the remaining individual sources. Conclusion: This study demonstrates the potential advantage of using a combination of two or three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. Our results show that {sup 60}Co, {sup 192}Ir and {sup 169}Yb produce the best plans when used simultaneously and can thus be an alternative to {sup 192}Ir-only in high-dose-rate prostate brachytherapy.« less

  4. Positioning actuators in efficient locations for rendering the desired sound field using inverse approach

    NASA Astrophysics Data System (ADS)

    Cho, Wan-Ho; Ih, Jeong-Guon; Toi, Takeshi

    2015-12-01

    For rendering a desired characteristics of a sound field, a proper conditioning of acoustic actuators in an array are required, but the source condition depends strongly on its position. Actuators located at inefficient positions for control would consume the input power too much or become too much sensitive to disturbing noise. These actuators can be considered redundant, which should be sorted out as far as such elimination does not damage the whole control performance significantly. It is known that the inverse approach based on the acoustical holography concept, employing the transfer matrix between sources and field points as core element, is useful for rendering the desired sound field. By investigating the information indwelling in the transfer matrix between actuators and field points, the linear independency of an actuator from the others in the array can be evaluated. To this end, the square of the right singular vector, which means the radiation contribution from the source, can be used as an indicator. Inefficient position for fulfilling the desired sound field can be determined as one having smallest indicator value among all possible actuator positions. The elimination process continues one by one, or group by group, until the remaining number of actuators meets the preset number. Control examples of exterior and interior spaces are taken for the validation. The results reveal that the present method for choosing least dependent actuators, for a given number of actuators and field condition, is quite effective in realizing the desired sound field with a noisy input condition, and in minimizing the required input power.

  5. Kinematic source inversions of teleseismic data based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.

    2014-12-01

    One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.

  6. Shared issues of wavefield inversion and illustrations in 3-D diffusive electromagnetics

    NASA Astrophysics Data System (ADS)

    Lesselier, Dominique; Lambert, Marc; Perrusson, Gaële

    2005-07-01

    Electromagnetic non-destructive evaluation of complex objects means that one has to decipher data which result from their interaction with imposed sources. This task is crucial in civil, environmental and medical engineering, to quote obvious fields, as well as for safety and reliability of industrial processes of various kinds in key energy and transportation sectors, for example. This short contribution does not attempt to review the huge variety of themes and the many applications of the science of inversion, but aims at emphasizing a number of points that seem common enough to this science to be worthwhile to be reviewed. Two illustrations and a few main references thought of good interest among the ever increasing literature are given. To cite this article: D. Lesselier et al., C. R. Physique 6 (2005).

  7. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  8. Long-wavelength Magnetic and Gravity Anomaly Correlations of Africa and Europe

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic Shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.

  9. Long-wavelength magnetic and gravity anomaly correlations on Africa and Europe

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Olivier, R.; Hinze, W. J.

    1985-01-01

    Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.

  10. Uncertainties in the 2004 Sumatra–Andaman source through nonlinear stochastic inversion of tsunami waves

    PubMed Central

    Venugopal, M.; Roy, D.; Rajendran, K.; Guillas, S.; Dias, F.

    2017-01-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra–Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems. PMID:28989311

  11. Uncertainties in the 2004 Sumatra-Andaman source through nonlinear stochastic inversion of tsunami waves.

    PubMed

    Gopinathan, D; Venugopal, M; Roy, D; Rajendran, K; Guillas, S; Dias, F

    2017-09-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra-Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems.

  12. Full Waveform Modelling for Subsurface Characterization with Converted-Wave Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Triyoso, Wahyu; Oktariena, Madaniya; Sinaga, Edycakra; Syaifuddin, Firman

    2017-04-01

    While a large number of reservoirs have been explored using P-waves seismic data, P-wave seismic survey ceases to provide adequate result in seismically and geologically challenging areas, like gas cloud, shallow drilling hazards, strong multiples, highly fractured, anisotropy. Most of these reservoir problems can be addressed using P and PS seismic data combination. Multicomponent seismic survey records both P-wave and S-wave unlike conventional survey that only records compressional P-wave. Under certain conditions, conventional energy source can be used to record P and PS data using the fact that compressional wave energy partly converts into shear waves at the reflector. Shear component can be recorded using down going P-wave and upcoming S-wave by placing a horizontal component geophone on the ocean floor. A synthetic model is created based on real data to analyze the effect of gas cloud existence to PP and PS wave reflections which has a similar characteristic to Sub-Volcanic imaging. The challenge within the multicomponent seismic is the different travel time between P-wave and S-wave, therefore the converted-wave seismic data should be processed with different approach. This research will provide a method to determine an optimum converted point known as Common Conversion Point (CCP) that can solve the Asymmetrical Conversion Point of PS data. The value of γ (Vp/Vs) is essential to estimate the right CCP that will be used in converted-wave seismic processing. This research will also continue to the advanced processing method of converted-wave seismic by applying Joint Inversion to PP&PS seismic. Joint Inversion is a simultaneous model-based inversion that estimates the P&S-wave impedance which are consistent with the PP&PS amplitude data. The result reveals a more complex structure mirrored in PS data below the gas cloud area. Through estimated γ section resulted from Joint Inversion, we receive a better imaging improvement below gas cloud area tribute to the converted-wave seismic as additional constrain.

  13. Deconvolution of squared velocity waveform as applied to the study of a noncoherent short-period radiator in the earthquake source

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Pavlov, V. M.

    1991-07-01

    We consider an inverse problem of determination of short-period (high-frequency) radiator in an extended earthquake source. This radiator is assumed to be noncoherent (i.e., random), it can be described by its power flux or brightness (which depends on time and location over the extended source). To decide about this radiator we try to use temporal intensity function (TIF) of a seismic waveform at a given receiver point. It is defined as (time-varying) mean elastic wave energy flux through unit area. We suggest estimating it empirically from the velocity seismogram by its squaring and smoothing. We refer to this function as “observed TIF”. We believe that one can represent TIF produced by an extended radiator and recorded at some receiver point in the earth as convolution of the two components: (1) “ideal” intensity function (ITIF) which would be recorded in the ideal nonscattering earth from the same radiator; and (2) intensity function which would be recorded in the real earth from unit point instant radiator (“intensity Green's function”, IGF). This representation enables us to attempt to estimate an ITIF of a large earthquake by inverse filtering or deconvolution of the observed TIF of this event, using the observed TIF of a small event (actually, fore-or aftershock) as the empirical IGF. Therefore, the effect of scattering is “stripped off”. Examples of the application of this procedure to real data are given. We also show that if one can determine far-field ITIF for enough rays, one can extract from them the information on space-time structure of the radiator (that is, of brightness function). We apply this theoretical approach to short-period P-wave records of the 1978 Miyagi-oki earthquake ( M=7.6). Spatial and temporal centroids of a short-period radiator are estimated.

  14. W-phase estimation of first-order rupture distribution for megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2014-05-01

    Estimating the rupture pattern for large earthquakes during the first hour after the origin time can be crucial for rapid impact assessment and tsunami warning. However, the estimation of coseismic slip distribution models generally involves complex methodologies that are difficult to implement rapidly. Further, while model parameter uncertainty can be crucial for meaningful estimation, they are often ignored. In this work we develop a finite fault inversion for megathrust earthquakes which rapidly generates good first order estimates and uncertainties of spatial slip distributions. The algorithm uses W-phase waveforms and a linear automated regularization approach to invert for rupture models of some recent megathrust earthquakes. The W phase is a long period (100-1000 s) wave which arrives together with the P wave. Because it is fast, has small amplitude and a long-period character, the W phase is regularly used to estimate point source moment tensors by the NEIC and PTWC, among others, within an hour of earthquake occurrence. We use W-phase waveforms processed in a manner similar to that used for such point-source solutions. The inversion makes use of 3 component W-phase records retrieved from the Global Seismic Network. The inverse problem is formulated by a multiple time window method, resulting in a linear over-parametrized problem. The over-parametrization is addressed by Tikhonov regularization and regularization parameters are chosen according to the discrepancy principle by grid search. Noise on the data is addressed by estimating the data covariance matrix from data residuals. The matrix is obtained by starting with an a priori covariance matrix and then iteratively updating the matrix based on the residual errors of consecutive inversions. Then, a covariance matrix for the parameters is computed using a Bayesian approach. The application of this approach to recent megathrust earthquakes produces models which capture the most significant features of their slip distributions. Also, reliable solutions are generally obtained with data in a 30-minute window following the origin time, suggesting that a real-time system could obtain solutions in less than one hour following the origin time.

  15. IDA Gamma-Ray Laser Annual Summary Report (1985). Investigation of the Feasibility of Developing a Laser Using Nuclear Transitions. Revised.

    DTIC Science & Technology

    1986-06-01

    beams of coherent radiation whose short wavelengths would permit greater penetration of matter than is possible with current laser sources. With that...nuclear linewidth. It is claimed that the time required for any narrowing is at least as long as the inverse of the linewidth achieved, no matter what...with the re- quired narrow line can be prepared is a different matter . The point is that the previous uncertainty principle does not forbid the

  16. The inverse of winnowing: a FORTRAN subroutine and discussion of unwinnowing discrete data

    USGS Publications Warehouse

    Bracken, Robert E.

    2004-01-01

    This report describes an unwinnowing algorithm that utilizes a discrete Fourier transform, and a resulting Fortran subroutine that winnows or unwinnows a 1-dimensional stream of discrete data; the source code is included. The unwinnowing algorithm effectively increases (by integral factors) the number of available data points while maintaining the original frequency spectrum of a data stream. This has utility when an increased data density is required together with an availability of higher order derivatives that honor the original data.

  17. Chemical Source Inversion using Assimilated Constituent Observations in an Idealized Two-dimensional System

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin

    2009-01-01

    We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.

  18. Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

  19. Outdoor air pollution in close proximity to a continuous point source

    NASA Astrophysics Data System (ADS)

    Klepeis, Neil E.; Gabel, Etienne B.; Ott, Wayne R.; Switzer, Paul

    Data are lacking on human exposure to air pollutants occurring in ground-level outdoor environments within a few meters of point sources. To better understand outdoor exposure to tobacco smoke from cigarettes or cigars, and exposure to other types of outdoor point sources, we performed more than 100 controlled outdoor monitoring experiments on a backyard residential patio in which we released pure carbon monoxide (CO) as a tracer gas for continuous time periods lasting 0.5-2 h. The CO was emitted from a single outlet at a fixed per-experiment rate of 120-400 cc min -1 (˜140-450 mg min -1). We measured CO concentrations every 15 s at up to 36 points around the source along orthogonal axes. The CO sensors were positioned at standing or sitting breathing heights of 2-5 ft (up to 1.5 ft above and below the source) and at horizontal distances of 0.25-2 m. We simultaneously measured real-time air speed, wind direction, relative humidity, and temperature at single points on the patio. The ground-level air speeds on the patio were similar to those we measured during a survey of 26 outdoor patio locations in 5 nearby towns. The CO data exhibited a well-defined proximity effect similar to the indoor proximity effect reported in the literature. Average concentrations were approximately inversely proportional to distance. Average CO levels were approximately proportional to source strength, supporting generalization of our results to different source strengths. For example, we predict a cigarette smoker would cause average fine particle levels of approximately 70-110 μg m -3 at horizontal distances of 0.25-0.5 m. We also found that average CO concentrations rose significantly as average air speed decreased. We fit a multiplicative regression model to the empirical data that predicts outdoor concentrations as a function of source emission rate, source-receptor distance, air speed and wind direction. The model described the data reasonably well, accounting for ˜50% of the log-CO variability in 5-min CO concentrations.

  20. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates

    NASA Astrophysics Data System (ADS)

    Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Burrows, J. P.; Bovensmann, H.

    2011-04-01

    MAMAP is an airborne passive remote sensing instrument designed for measuring columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument consists of two optical grating spectrometers: One in the short wave infrared band (SWIR) at 1590-1690 nm to measure CO2 and CH4 absorptions and another one in the near infrared (NIR) at 757-768 nm to measure O2 absorptions for reference purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an airplane MAMAP can effectively survey areas on regional to local scales with a ground pixel resolution of about 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h-1. The retrieval precision of the measured column relative to background is typically ≲ 1% (1σ). MAMAP can be used to close the gap between satellite data exhibiting global coverage but with a rather coarse resolution on the one hand and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007 test flights were performed over two coal-fired powerplants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr-1) and Schwarze Pumpe (11.9 Mt CO2 yr-1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions as stated by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods - the Gaussian plume model fit and the Gaussian integral method - are capable of delivering reliable estimates for strong point source emission rates, given appropriate flight patterns and detailed knowledge of wind conditions.

  1. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  2. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    NASA Astrophysics Data System (ADS)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  3. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  4. Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.

    1995-09-01

    We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.

  5. Study of the effects of neutron irradiation on silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Guibellino, P.; Panizza, G.; Hall, G.; Sotthibandhu, S.; Ziock, H. J.; Ferguson, P.; Sommer, W. F.; Edwards, M.; Cartiglia, N.; Hubbard, B.; Lesloe, J.; Pitzl, D.; O'Shaughnessy, K.; Rowe, W.; Sadoziski, H. F.-W.; Seiden, A.; Spencer, E.

    1992-05-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to Φ = 6.1 × 10 14 n/cm 2, using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of ˜ 2.0 × 10 13 n/cm 2, a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors.

  6. Sources of unbounded priority inversions in real-time systems and a comparative study of possible solutions

    NASA Technical Reports Server (NTRS)

    Davari, Sadegh; Sha, Lui

    1992-01-01

    In the design of real-time systems, tasks are often assigned priorities. Preemptive priority driven schedulers are used to schedule tasks to meet the timing requirements. Priority inversion is the term used to describe the situation when a higher priority task's execution is delayed by lower priority tasks. Priority inversion can occur when there is contention for resources among tasks of different priorities. The duration of priority inversion could be long enough to cause tasks to miss their dead lines. Priority inversion cannot be completely eliminated. However, it is important to identify sources of priority inversion and minimize the duration of priority inversion. In this paper, a comprehensive review of the problem of and solutions to unbounded priority inversion is presented.

  7. Seismic source characteristics of the intraslab 2017 Chiapas-Mexico earthquake (Mw8.2)

    NASA Astrophysics Data System (ADS)

    Jiménez, César

    2018-07-01

    Inversion of the parameters characterising the seismic source of the instraslab 2017 Chiapas Mexico earthquake (Mw 8.2) shows a simple rupture process with a unidirectional propagation and directivity towards the North-West and a duration of the rupture process around 75 s. The initial point source values of strike, dip and rake are 316°, 80° and -91° respectively. The focal mechanism indicates a normal fault type within the oceanic Cocos plate, with an almost vertical fault plane for a focal depth of 59 km. The seismic data was obtained from 51 seismic stations of the global seismic network IRIS for the epicentral distances between 30° and 90°. In the finite-fault inversion, 75 seismic signals between P and SH waves were used. The epicenter is on the southeast margin of the large slip zone which extends 75 km to the northwest, this large slip zone is located to the south of the city of Arriaga. The scalar seismic moment was estimated at 2.55 ×1021Nm , equivalent to a moment magnitude of Mw 8.2. The maximum dislocation or slip is 14.5 m. As a coseismic effect, a local tsunami was generated, recorded by several tidal gauges and offshore buoys. The deformation pattern shows a coastal uplift and subsidence.

  8. A Direction Finding Method with A 3-D Array Based on Aperture Synthesis

    NASA Astrophysics Data System (ADS)

    Li, Shiwen; Chen, Liangbing; Gao, Zhaozhao; Ma, Wenfeng

    2018-01-01

    Direction finding for electronic warfare application should provide a wider field of view as possible. But the maximum unambiguous field of view for conventional direction finding methods is a hemisphere. It cannot distinguish the direction of arrival of the signals from the back lobe of the array. In this paper, a full 3-D direction finding method based on aperture synthesis radiometry is proposed. The model of the direction finding system is illustrated, and the fundamentals are presented. The relationship between the outputs of the measurements of a 3-D array and the 3-D power distribution of the point sources can be represented by a 3-D Fourier transform, and then the 3-D power distribution of the point sources can be reconstructed by an inverse 3-D Fourier transform. And in order to display the 3-D power distribution of the point sources conveniently, the whole spherical distribution is represented by two 2-D circular distribution images, one of which is for the upper hemisphere, and the other is for the lower hemisphere. Then a numeric simulation is designed and conducted to demonstrate the feasibility of the method. The results show that the method can estimate the arbitrary direction of arrival of the signals in the 3-D space correctly.

  9. Reconstruction of Atmospheric Tracer Releases with Optimal Resolution Features: Concentration Data Assimilation

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Turbelin, Gregory; Issartel, Jean-Pierre; Kumar, Pramod; Feiz, Amir Ali

    2015-04-01

    The fast growing urbanization, industrialization and military developments increase the risk towards the human environment and ecology. This is realized in several past mortality incidents, for instance, Chernobyl nuclear explosion (Ukraine), Bhopal gas leak (India), Fukushima-Daichi radionuclide release (Japan), etc. To reduce the threat and exposure to the hazardous contaminants, a fast and preliminary identification of unknown releases is required by the responsible authorities for the emergency preparedness and air quality analysis. Often, an early detection of such contaminants is pursued by a distributed sensor network. However, identifying the origin and strength of unknown releases following the sensor reported concentrations is a challenging task. This requires an optimal strategy to integrate the measured concentrations with the predictions given by the atmospheric dispersion models. This is an inverse problem. The measured concentrations are insufficient and atmospheric dispersion models suffer from inaccuracy due to the lack of process understanding, turbulence uncertainties, etc. These lead to a loss of information in the reconstruction process and thus, affect the resolution, stability and uniqueness of the retrieved source. An additional well known issue is the numerical artifact arisen at the measurement locations due to the strong concentration gradient and dissipative nature of the concentration. Thus, assimilation techniques are desired which can lead to an optimal retrieval of the unknown releases. In general, this is facilitated within the Bayesian inference and optimization framework with a suitable choice of a priori information, regularization constraints, measurement and background error statistics. An inversion technique is introduced here for an optimal reconstruction of unknown releases using limited concentration measurements. This is based on adjoint representation of the source-receptor relationship and utilization of a weight function which exhibits a priori information about the unknown releases apparent to the monitoring network. The properties of the weight function provide an optimal data resolution and model resolution to the retrieved source estimates. The retrieved source estimates are proved theoretically to be stable against the random measurement errors and their reliability can be interpreted in terms of the distribution of the weight functions. Further, the same framework can be extended for the identification of the point type releases by utilizing the maximum of the retrieved source estimates. The inversion technique has been evaluated with the several diffusion experiments, like, Idaho low wind diffusion experiment (1974), IIT Delhi tracer experiment (1991), European Tracer Experiment (1994), Fusion Field Trials (2007), etc. In case of point release experiments, the source parameters are mostly retrieved close to the true source parameters with least error. Primarily, the proposed technique overcomes two major difficulties incurred in the source reconstruction: (i) The initialization of the source parameters as required by the optimization based techniques. The converged solution depends on their initialization. (ii) The statistical knowledge about the measurement and background errors as required by the Bayesian inference based techniques. These are hypothetically assumed in case of no prior knowledge.

  10. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  11. The Inverse-Square Law with Data Loggers

    ERIC Educational Resources Information Center

    Bates, Alan

    2013-01-01

    The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…

  12. Forensic analysis of explosions: Inverse calculation of the charge mass.

    PubMed

    van der Voort, M M; van Wees, R M M; Brouwer, S D; van der Jagt-Deutekom, M J; Verreault, J

    2015-07-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage around an explosion. In this paper, inverse models are presented based on two frequently occurring and reliable sources of information: window breakage and building damage. The models have been verified by applying them to the Enschede firework disaster and the Khobar tower attack. Furthermore, a statistical method has been developed to combine the various types of data, in order to determine an overall charge mass distribution. In relatively open environments, like for the Enschede firework disaster, the models generate realistic charge masses that are consistent with values found in forensic literature. The spread predicted by the IEA tool is however larger than presented in the literature for these specific cases. This is also realistic due to the large inherent uncertainties in a forensic analysis. The IEA-models give a reasonable first order estimate of the charge mass in a densely built urban environment, such as for the Khobar tower attack. Due to blast shielding effects which are not taken into account in the IEA tool, this is usually an under prediction. To obtain more accurate predictions, the application of Computational Fluid Dynamics (CFD) simulations is advised. The TNO IEA tool gives unique possibilities to inversely calculate the TNT equivalent charge mass based on a large variety of explosion effects and observations. The IEA tool enables forensic analysts, also those who are not experts on explosion effects, to perform an analysis with a largely reduced effort. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. CSAMT Data Processing with Source Effect and Static Corrections, Application of Occam's Inversion, and Its Application in Geothermal System

    NASA Astrophysics Data System (ADS)

    Hamdi, H.; Qausar, A. M.; Srigutomo, W.

    2016-08-01

    Controlled source audio-frequency magnetotellurics (CSAMT) is a frequency-domain electromagnetic sounding technique which uses a fixed grounded dipole as an artificial signal source. Measurement of CSAMT with finite distance between transmitter and receiver caused a complex wave. The shifted of the electric field due to the static effect caused elevated resistivity curve up or down and affects the result of measurement. The objective of this study was to obtain data that have been corrected for source and static effects as to have the same characteristic as MT data which are assumed to exhibit plane wave properties. Corrected CSAMT data were inverted to reveal subsurface resistivity model. Source effect correction method was applied to eliminate the effect of the signal source and static effect was corrected by using spatial filtering technique. Inversion method that used in this study is the Occam's 2D Inversion. The results of inversion produces smooth models with a small misfit value, it means the model can describe subsurface conditions well. Based on the result of inversion was predicted measurement area is rock that has high permeability values with rich hot fluid.

  14. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  15. Relationship between strong-motion array parameters and the accuracy of source inversion and physical waves

    USGS Publications Warehouse

    Iida, M.; Miyatake, T.; Shimazaki, K.

    1990-01-01

    We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors

  16. Practices to enable the geophysical research spectrum: from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique constraints on both the architecture of the codebase as well as the development practices that are employed. In this presentation, we will share some lessons learned and, in particular, how our prioritization of testing, documentation, and refactoring has impacted our own research and fostered collaborations.

  17. An iterative method for obtaining the optimum lightning location on a spherical surface

    NASA Technical Reports Server (NTRS)

    Chao, Gao; Qiming, MA

    1991-01-01

    A brief introduction to the basic principles of an eigen method used to obtain the optimum source location of lightning is presented. The location of the optimum source is obtained by using multiple direction finders (DF's) on a spherical surface. An improvement of this method, which takes the distance of source-DF's as a constant, is presented. It is pointed out that using a weight factor of signal strength is not the most ideal method because of the inexact inverse signal strength-distance relation and the inaccurate signal amplitude. An iterative calculation method is presented using the distance from the source to the DF as a weight factor. This improved method has higher accuracy and needs only a little more calculation time. Some computer simulations for a 4DF system are presented to show the improvement of location through use of the iterative method.

  18. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, Korbinian; Ermert, Laura; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-04-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source distribution, and thereby to contribute to a better understanding of both Earth structure and noise generation. First, we develop an inversion strategy based on a 2D finite-difference code using adjoint techniques. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: i) the capability of different misfit functionals to image wave speed anomalies and source distribution and ii) possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus (http://salvus.io). It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. By studying the effect of noise sources on correlation functions in 3D, we validate the aforementioned inversion strategy and prepare the workflow necessary for the first application of full waveform ambient noise inversion to a global dataset, for which a model for the distribution of noise sources is already available.

  19. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    NASA Astrophysics Data System (ADS)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  20. Main error factors, affecting inversion of EM data

    NASA Astrophysics Data System (ADS)

    Zuev, M. A.; Magomedov, M.; Korneev, V. A.; Goloshubin, G.; Zuev, J.; Brovman, Y.

    2013-12-01

    Inversions of EM data are complicated by a number of factors that need to be taken into account. These factors might contribute by tens of percents in data values, concealing responses from target objects, which usually contribute at the level of few percents only. We developed the exact analytical solutions of the EM wave equations that properly incorporate the contributions of the following effects: 1) A finite source size effect, where conventional dipole (zero-size) approximation brings 10-40% error compare to a real size source, needed to provide adequate signal-to-noise ratio. 2) Complex topography. A three-parametrical approach allows to keep the data misfits in 0.5% corridor while topography effect might be up to 40%. 3) Grounding shadow effect, caused by return ground currents, when Tx-line vicinity is horizontally non-uniform. By keeping survey setup within some reasonable geometrical ratios, the shadow effect comes to just one frequency-independent coefficient, which can be excluded from processing by using logarithmical derivatives. 4) Layer's wide spectral range effect. This brings to multi-layer spectral overlapping, so each frequency is affected by many layers; that requires wide spectral range processing, making the typical 'few-frequency data acquisition' non-reliable. 5) Horizontal sensitivity effect. The typical view at the target signal, reflected from a Tx-Rx mid-point is valid only for a ray approximation, reliable in a far-field zone. Unlike this, the real EM surveys usually work in near-field zone. Thus Tx-Rx mid-point does not represent the layer, so a sensitivity distribution function must be computed for each layer for the following 3D-unification process. 6) Wide range Rx-directions from mid-line Tx. Survey terrain often prevents placing Rx perpendicular to Tx-line, and even small deviations without proper corrections cause a significant inaccuracy. A radical simplification of the effect's description becomes possible after applying a special Angular Theorem. 7) Apparent conductivity spectral splitting factor. For some of the inversion approaches an averaged Earth's conductivity σA(ω) is the first step for the inversion to stratified Earth. The related spectral response from the loop-source splits such σA onto two branches: σA(ωHigh) and σA(ωLow), similar to early and late resistivities in time domain processing. 8) Calibration factor. A manufacturer-based internal calibration often leads to many percents of non-controllable systematic error at low and high frequency ends, as well as temperature changes. A special approach allows an external pre-survey calibration to achieve the required accuracy.

  1. The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Wei, S.

    2017-12-01

    The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks and the mainshock. The results support that the stress alternation after the foreshocks may have triggered the failure on the fault plane of the Mw7.1 earthquake. Therefore, the 2016 Kumamoto earthquake sequence is dominated by a series of large triggering events whose initiation is associated with the geometric barrier in the intersection of the Futagawa and Hinagu faults.

  2. SUZAKU X-RAY IMAGING OF THE EXTENDED LOBE IN THE GIANT RADIO GALAXY NGC 6251 ASSOCIATED WITH THE FERMI-LAT SOURCE 2FGL J1629.4+8236

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Y.; Kataoka, J.; Takahashi, Y.

    2012-04-10

    We report the results of a Suzaku X-ray imaging study of NGC 6251, a nearby giant radio galaxy with intermediate FR I/II radio properties. Our pointing direction was centered on the {gamma}-ray emission peak recently discovered with the Fermi Large Area Telescope (LAT) around the position of the northwest (NW) radio lobe 15 arcmin offset from the nucleus. After subtracting two 'off-source' pointings adjacent to the radio lobe and removing possible contaminants in the X-ray Imaging Spectrometer field of view, we found significant residual X-ray emission most likely diffuse in nature. The spectrum of the excess X-ray emission is wellmore » fitted by a power law with a photon index {Gamma} = 1.90 {+-} 0.15 and a 0.5-8 keV flux of 4 Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1}. We interpret this diffuse X-ray emission component as being due to inverse Compton upscattering of the cosmic microwave background photons by ultrarelativistic electrons within the lobe, with only a minor contribution from the beamed emission of the large-scale jet. Utilizing archival radio data for the source, we demonstrate by means of broadband spectral modeling that the {gamma}-ray flux of the Fermi-LAT source 2FGL J1629.4+8236 may well be accounted for by the high-energy tail of the inverse Compton continuum of the lobe. Thus, this claimed association of {gamma}-rays from the NW lobe of NGC 6251, together with the recent Fermi-LAT imaging of the extended lobes of Centaurus A, indicates that particles may be efficiently (re-)accelerated up to ultrarelativistic energies within extended radio lobes of nearby radio galaxies in general.« less

  3. Constraints on the dark matter annihilation from Fermi-LAT observation of M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhengwei; Yuan, Qiang; Huang, Xiaoyuan

    2016-12-01

    Gamma-ray is a good probe of dark matter (DM) particles in the Universe. We search for the DM annihilation signals in the direction of the Andromeda galaxy (M31) using 7.5 year Fermi-LAT pass 8 data. Similar to Pshirkov et al. (2016), we find that there is residual excess emission from the direction of M31 if only the galactic disk as traced by the far infrared emission is considered. Adding a point-like source will improve the fitting effectively, although additional slight improvements can be found if an extended component such as a uniform disk or two bubbles is added instead. Takingmore » the far infrared disk plus a point source as the background model, we search for the DM annihilation signals in the data. We find that there is strong degeneracy between the emission from the galaxy and that from 10s GeV mass DM annihilation in the main halo with quark final state. However, the required DM annihilation cross section is about 10{sup −25}–10{sup −24} cm{sup 3}s{sup −1}, orders of magnitude larger than the constraints from observations of dwarf spheroidal galaxies, indicating a non-DM origin of the emission. If DM subhalos are taken into account, the degeneracy is broken. When considering the enhancement from DM subhalos, the constraints on DM model parameters are comparable to (or slightly weaker than) those from the population of dwarf spheroidal galaxies. We also discuss the inverse Compton scattering component from DM annihilation induced electrons/positrons. For the first time we include an energy dependent template of the inverse Compton emission (i.e., a template cube) in the data analysis to take into account the effect of diffusion of charged particles. We find a significant improvement of the constraints in the high mass range of DM particles after considering the inverse Compton emission.« less

  4. Forward and inverse effects of the complete electrode model in neonatal EEG

    PubMed Central

    Lew, S.; Wolters, C. H.

    2016-01-01

    This paper investigates finite element method-based modeling in the context of neonatal electroencephalography (EEG). In particular, the focus lies on electrode boundary conditions. We compare the complete electrode model (CEM) with the point electrode model (PEM), which is the current standard in EEG. In the CEM, the voltage experienced by an electrode is modeled more realistically as the integral average of the potential distribution over its contact surface, whereas the PEM relies on a point value. Consequently, the CEM takes into account the subelectrode shunting currents, which are absent in the PEM. In this study, we aim to find out how the electrode voltage predicted by these two models differ, if standard size electrodes are attached to a head of a neonate. Additionally, we study voltages and voltage variation on electrode surfaces with two source locations: 1) next to the C6 electrode and 2) directly under the Fz electrode and the frontal fontanel. A realistic model of a neonatal head, including a skull with fontanels and sutures, is used. Based on the results, the forward simulation differences between CEM and PEM are in general small, but significant outliers can occur in the vicinity of the electrodes. The CEM can be considered as an integral part of the outer head model. The outcome of this study helps understanding volume conduction of neonatal EEG, since it enlightens the role of advanced skull and electrode modeling in forward and inverse computations. NEW & NOTEWORTHY The effect of the complete electrode model on electroencephalography forward and inverse computations is explored. A realistic neonatal head model, including a skull structure with fontanels and sutures, is used. The electrode and skull modeling differences are analyzed and compared with each other. The results suggest that the complete electrode model can be considered as an integral part of the outer head model. To achieve optimal source localization results, accurate electrode modeling might be necessary. PMID:27852731

  5. Rapid estimate of earthquake source duration: application to tsunami warning.

    NASA Astrophysics Data System (ADS)

    Reymond, Dominique; Jamelot, Anthony; Hyvernaud, Olivier

    2016-04-01

    We present a method for estimating the source duration of the fault rupture, based on the high-frequency envelop of teleseismic P-Waves, inspired from the original work of (Ni et al., 2005). The main interest of the knowledge of this seismic parameter is to detect abnormal low velocity ruptures that are the characteristic of the so called 'tsunami-earthquake' (Kanamori, 1972). The validation of the results of source duration estimated by this method are compared with two other independent methods : the estimated duration obtained by the Wphase inversion (Kanamori and Rivera, 2008, Duputel et al., 2012) and the duration calculated by the SCARDEC process that determines the source time function (M. Vallée et al., 2011). The estimated source duration is also confronted to the slowness discriminant defined by Newman and Okal, 1998), that is calculated routinely for all earthquakes detected by our tsunami warning process (named PDFM2, Preliminary Determination of Focal Mechanism, (Clément and Reymond, 2014)). Concerning the point of view of operational tsunami warning, the numerical simulations of tsunami are deeply dependent on the source estimation: better is the source estimation, better will be the tsunami forecast. The source duration is not directly injected in the numerical simulations of tsunami, because the cinematic of the source is presently totally ignored (Jamelot and Reymond, 2015). But in the case of a tsunami-earthquake that occurs in the shallower part of the subduction zone, we have to consider a source in a medium of low rigidity modulus; consequently, for a given seismic moment, the source dimensions will be decreased while the slip distribution increased, like a 'compact' source (Okal, Hébert, 2007). Inversely, a rapid 'snappy' earthquake that has a poor tsunami excitation power, will be characterized by higher rigidity modulus, and will produce weaker displacement and lesser source dimensions than 'normal' earthquake. References: CLément, J. and Reymond, D. (2014). New Tsunami Forecast Tools for the French Polynesia Tsunami Warning System. Pure Appl. Geophys, 171. DUPUTEL, Z., RIVERA, L., KANAMORI, H. and HAYES, G. (2012). Wphase source inversion for moderate to large earthquakes. Geophys. J. Intl.189, 1125-1147. Kanamori, H. (1972). Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter. 6, 246-259. Kanamori, H. and Rivera, L. (2008). Source inversion of W phase : speeding up seismic tsunami warning. Geophys. J. Intl. 175, 222-238. Newman, A. and Okal, E. (1998). Teleseismic estimates of radiated seismic energy : The E=M0 discriminant for tsunami earthquakes. J. Geophys. Res. 103, 26885-26898. Ni, S., H. Kanamori, and D. Helmberger (2005), Energy radiation from the Sumatra earthquake, Nature, 434, 582. Okal, E.A., and H. Hébert (2007), Far-field modeling of the 1946 Aleutian tsunami, Geophys. J. Intl., 169, 1229-1238. Vallée, M., J. Charléty, A.M.G. Ferreira, B. Delouis, and J. Vergoz, SCARDEC : a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body wave deconvolution, Geophys. J. Int., 184, 338-358, 2011.

  6. A time domain inverse dynamic method for the end point tracking control of a flexible manipulator

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo; Book, Wayne J.

    1991-01-01

    The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, we calculated the torque and the trajectories of all state variables for a given end point trajectory. The interpretation of this method in the frequency domain was explained in detail using the two-sided Laplace transform and the convolution integral. The open loop control of the inverse dynamic method shows an excellent result in simulation. For real applications, a practical control strategy is proposed by adding a feedback tracking control loop to the inverse dynamic feedforward control, and its good experimental performance is presented.

  7. Double-inversion mechanisms of the X⁻ + CH₃Y [X,Y = F, Cl, Br, I] SN2 reactions.

    PubMed

    Szabó, István; Czakó, Gábor

    2015-03-26

    The double-inversion and front-side attack transition states as well as the proton-abstraction channels of the X(-) + CH3Y [X,Y = F, Cl, Br, I] reactions are characterized by the explicitly correlated CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory using small-core relativistic effective core potentials and the corresponding aug-cc-pVTZ-PP bases for Br and I. In the X = F case the double-inversion classical(adiabatic) barrier heights are 28.7(25.6), 15.8(13.4), 13.2(11.0), and 8.6(6.6) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, whereas the barrier heights are in the 40-90 kcal mol(-1) range for the other 12 reactions. The abstraction channels are always above the double-inversion saddle points. For X = F, the front-side attack classical(adiabatic) barrier heights, 45.8(44.8), 31.0(30.3), 24.7(24.2), and 19.5(19.3) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, are higher than the corresponding double-inversion ones, whereas for the other systems the front-side attack saddle points are in the 35-70 kcal mol(-1) range. The double-inversion transition states have XH···CH2Y(-) structures with Cs point-group symmetry, and the front-side attack saddle points have either Cs (X = F or X = Y) or C1 symmetry with XCY angles in the 78-88° range. On the basis of the previous reaction dynamics simulations and the minimum energy path computations along the inversion coordinate of selected XH···CH2Y(-) systems, we suggest that the double inversion may be a general mechanism for SN2 reactions.

  8. Earthquake Source Inversion Blindtest: Initial Results and Further Developments

    NASA Astrophysics Data System (ADS)

    Mai, P.; Burjanek, J.; Delouis, B.; Festa, G.; Francois-Holden, C.; Monelli, D.; Uchide, T.; Zahradnik, J.

    2007-12-01

    Images of earthquake ruptures, obtained from modelling/inverting seismic and/or geodetic data exhibit a high degree in spatial complexity. This earthquake source heterogeneity controls seismic radiation, and is determined by the details of the dynamic rupture process. In turn, such rupture models are used for studying source dynamics and for ground-motion prediction. But how reliable and trustworthy are these earthquake source inversions? Rupture models for a given earthquake, obtained by different research teams, often display striking disparities (see http://www.seismo.ethz.ch/srcmod) However, well resolved, robust, and hence reliable source-rupture models are an integral part to better understand earthquake source physics and to improve seismic hazard assessment. Therefore it is timely to conduct a large-scale validation exercise for comparing the methods, parameterization and data-handling in earthquake source inversions.We recently started a blind test in which several research groups derive a kinematic rupture model from synthetic seismograms calculated for an input model unknown to the source modelers. The first results, for an input rupture model with heterogeneous slip but constant rise time and rupture velocity, reveal large differences between the input and inverted model in some cases, while a few studies achieve high correlation between the input and inferred model. Here we report on the statistical assessment of the set of inverted rupture models to quantitatively investigate their degree of (dis-)similarity. We briefly discuss the different inversion approaches, their possible strength and weaknesses, and the use of appropriate misfit criteria. Finally we present new blind-test models, with increasing source complexity and ambient noise on the synthetics. The goal is to attract a large group of source modelers to join this source-inversion blindtest in order to conduct a large-scale validation exercise to rigorously asses the performance and reliability of current inversion methods and to discuss future developments.

  9. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific coastal marine stratocumulus during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Albrecht, B.; Jonsson, H. H.; Khelif, D.; Feingold, G.; Minnis, P.; Ayers, K.; Chuang, P.; Donaher, S.; Rossiter, D.; Ghate, V.; Ruiz-Plancarte, J.; Sun-Mack, S.

    2011-05-01

    Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha) from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud-Atmosphere-Land Study-Regional Experiment (VOCALS-REx), combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL) and aerosol-cloud-drizzle variations in this region. The BL at Point Alpha was typical of a non-drizzling stratocumulus-topped BL on days without predominately synoptic and meso-scale influences. The BL had a depth of 1140 ± 120 m, was well-mixed and capped by a sharp inversion. The wind direction generally switched from southerly within the BL to northerly above the inversion. The cloud liquid water path (LWP) varied between 15 g m-2 and 160 g m-2. From 29 October to 4 November, when a synoptic system affected conditions at Point Alpha, the cloud LWP was higher than on the other days by around 40 g m-2. On 1 and 2 November, a moist layer above the inversion moved over Point Alpha. The total-water specific humidity above the inversion was larger than that within the BL during these days. Entrainment rates (average of 1.5 ± 0.6 mm s-1) calculated from the near cloud-top fluxes and turbulence (vertical velocity variance) in the BL at Point Alpha appeared to be weaker than those in the BL over the open ocean west of Point Alpha and the BL near the coast of the northeast Pacific. The accumulation mode aerosol varied from 250 to 700 cm-3 within the BL, and CCN at 0.2 % supersaturation within the BL ranged between 150 and 550 cm-3. The main aerosol source at Point Alpha was horizontal advection within the BL from south. The average cloud droplet number concentration ranged between 80 and 400 cm-3, which was consistent with the satellite-derived values. The relationship of cloud droplet number concentration and CCN at 0.2 % supersaturation from 18 flights is Nd =4.6 × CCN0.71. While the mean LWP retrieved from GOES was in good agreement with the in situ measurements, the GOES-derived cloud droplet effective radius tended to be larger than that from the aircraft {in situ} observations near cloud top. The aerosol and cloud LWP relationship reveals that during the typical well-mixed BL days the cloud LWP increased with the CCN concentrations. On the other hand, meteorological factors and the decoupling processes have large influences on the cloud LWP variation as well.

  10. Groundwater flow to a horizontal or slanted well in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Zhan, Hongbin; Zlotnik, Vitaly A.

    2002-07-01

    New semianalytical solutions for evaluation of the drawdown near horizontal and slanted wells with finite length screens in unconfined aquifers are presented. These fully three-dimensional solutions consider instantaneous drainage or delayed yield and aquifer anisotropy. As a basis, solution for the drawdown created by a point source in a uniform anisotropic unconfined aquifer is derived in Laplace domain. Using superposition, the point source solution is extended to the cases of the horizontal and slanted wells. The previous solutions for vertical wells can be described as a special case of the new solutions. Numerical Laplace inversion allows effective evaluation of the drawdown in real time. Examples illustrate the effects of well geometry and the aquifer parameters on drawdown. Results can be used to generate type curves from observations in piezometers and partially or fully penetrating observation wells. The proposed solutions and software are useful for the parameter identification, design of remediation systems, drainage, and mine dewatering.

  11. Inverse modeling to estimate local source contributions in a complex environment with nearby port, airport, highway, and industrial sources

    EPA Science Inventory

    Source apportionment is challenging in urban environments with clustered sourceemissions that have similar chemical signatures. A field and inverse modeling studywas conducted in Elizabeth, New Jersey to observe gaseous and particulate pollutionnear the Port of New York and New J...

  12. On the Impact of Granularity of Space-Based Urban CO2 Emissions in Urban Atmospheric Inversions: A Case Study for Indianapolis, IN

    NASA Technical Reports Server (NTRS)

    Oda, Tomohiro; Lauvaux, Thomas; Lu, Dengsheng; Rao, Preeti; Miles, Natasha L.; Richardson, Scott J.; Gurney, Kevin R.

    2017-01-01

    Quantifying greenhouse gas (GHG) emissions from cities is a key challenge towards effective emissions management. An inversion analysis from the INdianapolis FLUX experiment (INFLUX) project, as the first of its kind, has achieved a top-down emission estimate for a single city using CO2 data collected by the dense tower network deployed across the city. However, city-level emission data, used as a priori emissions, are also a key component in the atmospheric inversion framework. Currently, fine-grained emission inventories (EIs) able to resolve GHG city emissions at high spatial resolution, are only available for few major cities across the globe. Following the INFLUX inversion case with a global 1x1 km ODIAC fossil fuel CO2 emission dataset, we further improved the ODIAC emission field and examined its utility as a prior for the city scale inversion. We disaggregated the 1x1 km ODIAC non-point source emissions using geospatial datasets such as the global road network data and satellite-data driven surface imperviousness data to a 3030 m resolution. We assessed the impact of the improved emission field on the inversion result, relative to priors in previous studies (Hestia and ODIAC). The posterior total emission estimate (5.1 MtC/yr) remains statistically similar to the previous estimate with ODIAC (5.3 MtC/yr). However, the distribution of the flux corrections was very close to those of Hestia inversion and the model-observation mismatches were significantly reduced both in forward and inverse runs, even without hourly temporal changes in emissions. EIs reported by cities often do not have estimates of spatial extents. Thus, emission disaggregation is a required step when verifying those reported emissions using atmospheric models. Our approach offers gridded emission estimates for global cities that could serves as a prior for inversion, even without locally reported EIs in a systematic way to support city-level Measuring, Reporting and Verification (MRV) practice implementation.

  13. Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect

    NASA Astrophysics Data System (ADS)

    Ghaffarnejad, H.; Yaraie, E.; Farsam, M.

    2018-06-01

    In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1<ω <- 1/3. Our calculations are restricted to ansatz: ω = - 1 (the cosmological constant regime) and ω =- 2/3 (quintessence dark energy). To study the JT expansion of the AdS gas under the constant black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point { T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point { T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

  14. Finite-fault source inversion using adjoint methods in 3D heterogeneous media

    NASA Astrophysics Data System (ADS)

    Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia

    2018-04-01

    Accounting for lateral heterogeneities in the 3D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3D heterogeneity in source inversion involves pre-computing 3D Green's functions, which requires a number of 3D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense datasets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3D heterogeneous velocity model. The velocity model comprises a uniform background and a 3D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3D velocity model are performed for two different station configurations, a dense and a sparse network with 1 km and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect, homogeneous velocity model. We find that, for velocity uncertainties that have standard deviation and correlation length typical of available 3D crustal models, the inverted sources can be severely contaminated by spurious features even if the station density is high. When data from thousand or more receivers is used in source inversions in 3D heterogeneous media, the computational cost of the method proposed in this work is at least two orders of magnitude lower than source inversion based on pre-computed Green's functions.

  15. New Global 3D Upper to Mid-mantle Electrical Conductivity Model Based on Observatory Data with Realistic Auroral Sources

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Egbert, G. D.; Sun, J.

    2011-12-01

    Poleward of 45-50 degrees (geomagnetic) observatory data are influenced significantly by auroral ionospheric current systems, invalidating the simplifying zonal dipole source assumption traditionally used for long period (T > 2 days) geomagnetic induction studies. Previous efforts to use these data to obtain the global electrical conductivity distribution in Earth's mantle have omitted high-latitude sites (further thinning an already sparse dataset) and/or corrected the affected transfer functions using a highly simplified model of auroral source currents. Although these strategies are partly effective, there remain clear suggestions of source contamination in most recent 3D inverse solutions - specifically, bands of conductive features are found near auroral latitudes. We report on a new approach to this problem, based on adjusting both external field structure and 3D Earth conductivity to fit observatory data. As an initial step towards full joint inversion we are using a two step procedure. In the first stage, we adopt a simplified conductivity model, with a thin-sheet of variable conductance (to represent the oceans) overlying a 1D Earth, to invert observed magnetic fields for external source spatial structure. Input data for this inversion are obtained from frequency domain principal components (PC) analysis of geomagnetic observatory hourly mean values. To make this (essentially linear) inverse problem well-posed we regularize using covariances for source field structure that are consistent with well-established properties of auroral ionospheric (and magnetospheric) current systems, and basic physics of the EM fields. In the second stage, we use a 3D finite difference inversion code, with source fields estimated from the first stage, to further fit the observatory PC modes. We incorporate higher latitude data into the inversion, and maximize the amount of available information by directly inverting the magnetic field components of the PC modes, instead of transfer functions such as C-responses used previously. Recent improvements in accuracy and speed of the forward and inverse finite difference codes (a secondary field formulation and parallelization over frequencies) allow us to use finer computational grid for inversion, and thus to model finer scale features, making full use of the expanded data set. Overall, our approach presents an improvement over earlier observatory data interpretation techniques, making better use of the available data, and allowing to explore the trade-offs between complications in source structure, and heterogeneities in mantle conductivity. We will also report on progress towards applying the same approach to simultaneous source/conductivity inversion of shorter period observatory data, focusing especially on the daily variation band.

  16. Finite-fault source inversion using adjoint methods in 3-D heterogeneous media

    NASA Astrophysics Data System (ADS)

    Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia

    2018-07-01

    Accounting for lateral heterogeneities in the 3-D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1-D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3-D heterogeneity in source inversion involves pre-computing 3-D Green's functions, which requires a number of 3-D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense data sets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3-D heterogeneous velocity model. The velocity model comprises a uniform background and a 3-D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3-D velocity model are performed for two different station configurations, a dense and a sparse network with 1 and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak-slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect, homogeneous velocity model. We find that, for velocity uncertainties that have standard deviation and correlation length typical of available 3-D crustal models, the inverted sources can be severely contaminated by spurious features even if the station density is high. When data from thousand or more receivers is used in source inversions in 3-D heterogeneous media, the computational cost of the method proposed in this work is at least two orders of magnitude lower than source inversion based on pre-computed Green's functions.

  17. Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.

    2017-05-01

    Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.

  18. Source-Type Inversion of the September 03, 2017 DPRK Nuclear Test

    NASA Astrophysics Data System (ADS)

    Dreger, D. S.; Ichinose, G.; Wang, T.

    2017-12-01

    On September 3, 2017, the DPRK announced a nuclear test at their Punggye-ri site. This explosion registered a mb 6.3, and was well recorded by global and regional seismic networks. We apply the source-type inversion method (e.g. Ford et al., 2012; Nayak and Dreger, 2015), and the MDJ2 seismic velocity model (Ford et al., 2009) to invert low frequency (0.02 to 0.05 Hz) complete three-component waveforms, and first-motion polarities to map the goodness of fit in source-type space. We have used waveform data from the New China Digital Seismic Network (BJT, HIA, MDJ), Korean Seismic Network (TJN), and the Global Seismograph Network (INCN, MAJO). From this analysis, the event discriminates as an explosion. For a pure explosion model, we find a scalar seismic moment of 5.77e+16 Nm (Mw 5.1), however this model fails to fit the large Love waves registered on the transverse components. The best fitting complete solution finds a total moment of 8.90e+16 Nm (Mw 5.2) that is decomposed as 53% isotropic, 40% double-couple, and 7% CLVD, although the range of isotropic moment from the source-type analysis indicates that it could be as high as 60-80%. The isotropic moment in the source-type inversion is 4.75e16 Nm (Mw 5.05). Assuming elastic moduli from model MDJ2 the explosion cavity radius is approximately 51m, and the yield estimated using Denny and Johnson (1991) is 246kt. Approximately 8.5 minutes after the blast a second seismic event was registered, which is best characterized as a vertically closing horizontal crack, perhaps representing the partial collapse of the blast cavity, and/or a service tunnel. The total moment of the collapse is 3.34e+16 Nm (Mw 4.95). The volumetric moment of the collapse is 1.91e+16 Nm, approximately 1/3 to 1/2 of the explosive moment. German TerraSAR-X observations of deformation (Wang et al., 2017) reveal large radial outward motions consistent with expected deformation for an explosive source, but lack significant vertical motions above the shot point. Forward elastic half-space modeling of the static deformation field indicates that the combination of the explosion and collapse explains the observed deformation to first order. We will present these results as well as a two-step inversion of the explosion in an attempt to better resolve the nature of the non-isotropic radiation of the event.

  19. Pioneer 10 and 11 radio occultations by Jupiter. [atmospheric temperature structure

    NASA Technical Reports Server (NTRS)

    Kliore, A. J.; Woiceshyn, P. M.; Hubbard, W. B.

    1977-01-01

    Results on the temperature structure of the Jovian atmosphere are reviewed which were obtained by applying an integral inversion technique combined with a model for the planet's shape based on gravity data to Pioneer 10 and 11 radio-occultation data. The technique applied to obtain temperature profiles from the Pioneer data consisted of defining a center of refraction based on a computation of the radius of curvature in the plane of refraction and the normal direction to the equipotential surface at the closest approach point of a ray. Observations performed during the Pioneer 10 entry and exit and the Pioneer 11 exit are analyzed, sources of uncertainty are identified, and representative pressure-temperature profiles are presented which clearly show a temperature inversion between 10 and 100 mb. Effects of zonal winds on the reliability of radio-occultation temperature profiles are briefly discussed.

  20. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1988-01-01

    Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  1. A space-frequency multiplicative regularization for force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; De Smet, O.

    2018-05-01

    Dynamic forces reconstruction from vibration data is an ill-posed inverse problem. A standard approach to stabilize the reconstruction consists in using some prior information on the quantities to identify. This is generally done by including in the formulation of the inverse problem a regularization term as an additive or a multiplicative constraint. In the present article, a space-frequency multiplicative regularization is developed to identify mechanical forces acting on a structure. The proposed regularization strategy takes advantage of one's prior knowledge of the nature and the location of excitation sources, as well as that of their spectral contents. Furthermore, it has the merit to be free from the preliminary definition of any regularization parameter. The validity of the proposed regularization procedure is assessed numerically and experimentally. It is more particularly pointed out that properly exploiting the space-frequency characteristics of the excitation field to identify can improve the quality of the force reconstruction.

  2. PAF: A software tool to estimate free-geometry extended bodies of anomalous pressure from surface deformation data

    NASA Astrophysics Data System (ADS)

    Camacho, A. G.; Fernández, J.; Cannavò, F.

    2018-02-01

    We present a software package to carry out inversions of surface deformation data (any combination of InSAR, GPS, and terrestrial data, e.g., EDM, levelling) as produced by 3D free-geometry extended bodies with anomalous pressure changes. The anomalous structures are described as an aggregation of elementary cells (whose effects are estimated as coming from point sources) in an elastic half space. The linear inverse problem (considering some simple regularization conditions) is solved by means of an exploratory approach. This software represents the open implementation of a previously published methodology (Camacho et al., 2011). It can be freely used with large data sets (e.g. InSAR data sets) or with data coming from small control networks (e.g. GPS monitoring data), mainly in volcanic areas, to estimate the expected pressure bodies representing magmatic intrusions. Here, the software is applied to some real test cases.

  3. Localization from near-source quasi-static electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mosher, J. C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUltiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  4. Localization from near-source quasi-static electromagnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, John Compton

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. Themore » nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.« less

  5. Framework GRASP: routine library for optimize processing of aerosol remote sensing observation

    NASA Astrophysics Data System (ADS)

    Fuertes, David; Torres, Benjamin; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Aspetsberger, Michael; Federspiel, Christian

    The present the development of a Framework for the Generalized Retrieval of Aerosol and Surface Properties (GRASP) developed by Dubovik et al., (2011). The framework is a source code project that attempts to strengthen the value of the GRASP inversion algorithm by transforming it into a library that will be used later for a group of customized application modules. The functions of the independent modules include the managing of the configuration of the code execution, as well as preparation of the input and output. The framework provides a number of advantages in utilization of the code. First, it implements loading data to the core of the scientific code directly from memory without passing through intermediary files on disk. Second, the framework allows consecutive use of the inversion code without the re-initiation of the core routine when new input is received. These features are essential for optimizing performance of the data production in processing of large observation sets, such as satellite images by the GRASP. Furthermore, the framework is a very convenient tool for further development, because this open-source platform is easily extended for implementing new features. For example, it could accommodate loading of raw data directly onto the inversion code from a specific instrument not included in default settings of the software. Finally, it will be demonstrated that from the user point of view, the framework provides a flexible, powerful and informative configuration system.

  6. Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density.

    PubMed

    Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K

    2010-12-01

    Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

  7. A Space-Time-Frequency Dictionary for Sparse Cortical Source Localization.

    PubMed

    Korats, Gundars; Le Cam, Steven; Ranta, Radu; Louis-Dorr, Valerie

    2016-09-01

    Cortical source imaging aims at identifying activated cortical areas on the surface of the cortex from the raw electroencephalogram (EEG) data. This problem is ill posed, the number of channels being very low compared to the number of possible source positions. In some realistic physiological situations, the active areas are sparse in space and of short time durations, and the amount of spatio-temporal data to carry the inversion is then limited. In this study, we propose an original data driven space-time-frequency (STF) dictionary which takes into account simultaneously both spatial and time-frequency sparseness while preserving smoothness in the time frequency (i.e., nonstationary smooth time courses in sparse locations). Based on these assumptions, we take benefit of the matching pursuit (MP) framework for selecting the most relevant atoms in this highly redundant dictionary. We apply two recent MP algorithms, single best replacement (SBR) and source deflated matching pursuit, and we compare the results using a spatial dictionary and the proposed STF dictionary to demonstrate the improvements of our multidimensional approach. We also provide comparison using well-established inversion methods, FOCUSS and RAP-MUSIC, analyzing performances under different degrees of nonstationarity and signal to noise ratio. Our STF dictionary combined with the SBR approach provides robust performances on realistic simulations. From a computational point of view, the algorithm is embedded in the wavelet domain, ensuring high efficiency in term of computation time. The proposed approach ensures fast and accurate sparse cortical localizations on highly nonstationary and noisy data.

  8. Inversion symmetry breaking induced triply degenerate points in orderly arranged PtSeTe family materials

    NASA Astrophysics Data System (ADS)

    Xiao, R. C.; Cheung, C. H.; Gong, P. L.; Lu, W. J.; Si, J. G.; Sun, Y. P.

    2018-06-01

    k paths exactly with symmetry allow to find triply degenerate points (TDPs) in band structures. The paths that host the type-II Dirac points in PtSe2 family materials also have the spatial symmetry. However, due to Kramers degeneracy (the systems have both inversion symmetry and time reversal symmetry), the crossing points in them are Dirac ones. In this work, based on symmetry analysis, first-principles calculations, and method, we predict that PtSe2 family materials should undergo topological transitions if the inversion symmetry is broken, i.e. the Dirac fermions in PtSe2 family materials split into TDPs in PtSeTe family materials (PtSSe, PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from the case in high-energy physics that breaking inversion symmetry I leads to the splitting of Dirac fermion into Weyl fermions. We also address a possible method to achieve the orderly arranged in PtSeTe family materials in experiments. Our study provides a real example that Dirac points transform into TDPs, and is helpful to investigate the topological transition between Dirac fermions and TDP fermions.

  9. Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals.

    PubMed

    Liu, X; Zhai, Z

    2007-12-01

    Reduction in indoor environment quality calls for effective control and improvement measures. Accurate and prompt identification of contaminant sources ensures that they can be quickly removed and contaminated spaces isolated and cleaned. This paper discusses the use of inverse modeling to identify potential indoor pollutant sources with limited pollutant sensor data. The study reviews various inverse modeling methods for advection-dispersion problems and summarizes the methods into three major categories: forward, backward, and probability inverse modeling methods. The adjoint probability inverse modeling method is indicated as an appropriate model for indoor air pollutant tracking because it can quickly find source location, strength and release time without prior information. The paper introduces the principles of the adjoint probability method and establishes the corresponding adjoint equations for both multi-zone airflow models and computational fluid dynamics (CFD) models. The study proposes a two-stage inverse modeling approach integrating both multi-zone and CFD models, which can provide a rapid estimate of indoor pollution status and history for a whole building. Preliminary case study results indicate that the adjoint probability method is feasible for indoor pollutant inverse modeling. The proposed method can help identify contaminant source characteristics (location and release time) with limited sensor outputs. This will ensure an effective and prompt execution of building management strategies and thus achieve a healthy and safe indoor environment. The method can also help design optimal sensor networks.

  10. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  11. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    PubMed Central

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources. PMID:26958464

  12. Radial Distribution of X-Ray Point Sources Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hong, Jae Sub; van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas

    2009-11-01

    We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4° from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1fdg4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band μm images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB is not smaller than the value in the local solar neighborhood.

  13. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the timing at most stations. This means that regional waveform data can be used to help locate and establish source complexities for future events.

  14. Comparing multiple statistical methods for inverse prediction in nuclear forensics applications

    DOE PAGES

    Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela

    2017-10-29

    Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less

  15. Comparing multiple statistical methods for inverse prediction in nuclear forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela

    Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less

  16. The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method

    NASA Astrophysics Data System (ADS)

    Voronina, T. A.; Romanenko, A. A.

    2016-12-01

    Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.

  17. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography.

    PubMed

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  18. Effects of crustal layering on source parameter inversion from coseismic geodetic data

    NASA Astrophysics Data System (ADS)

    Amoruso, A.; Crescentini, L.; Fidani, C.

    2004-10-01

    We study the effect of a superficial layer overlying a half-space on the surface displacements caused by uniform slipping of a dip-slip normal rectangular fault. We compute static coseismic displacements using a 3-D analytical code for different characteristics of the layered medium, different fault geometries and different configurations of bench marks to simulate different kinds of geodetic data (GPS, Synthetic Aperture Radar, and levellings). We perform both joint and separate inversions of the three components of synthetic displacement without constraining fault parameters, apart from strike and rake, and using a non-linear global inversion technique under the assumption of homogeneous half-space. Differences between synthetic displacements computed in the presence of the superficial soft layer and in a homogeneous half-space do not show a simple regular behaviour, even if a few features can be identified. Consequently, also retrieved parameters of the homogeneous equivalent fault obtained by unconstrained inversion of surface displacements do not show a simple regular behaviour. We point out that the presence of a superficial layer may lead to misestimating several fault parameters both using joint and separate inversions of the three components of synthetic displacement and that the effects of the presence of the superficial layer can change whether all fault parameters are left free in the inversions or not. In the inversion of any kind of coseismic geodetic data, fault size and slip can be largely misestimated, but the product (fault length) × (fault width) × slip, which is proportional to the seismic moment for a given rigidity modulus, is often well determined (within a few per cent). Because inversion of coseismic geodetic data assuming a layered medium is impracticable, we suggest that only a case-to-case study involving some kind of recursive determination of fault parameters through data correction seems to give the proper approach when layering is important.

  19. New Methods For Interpretation Of Magnetic Gradient Tensor Data Using Eigenalysis And The Normalized Source Strength

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    In the future, acquisition of magnetic gradient tensor data is likely to become routine. New methods developed for analysis of magnetic gradient tensor data can also be applied to high quality conventional TMI surveys that have been processed using Fourier filtering techniques, or otherwise, to calculate magnetic vector and tensor components. This approach is, in fact, the only practical way at present to analyze vector component data, as measurements of vector components are seriously afflicted by motion noise, which is not as serious a problem for gradient components. In many circumstances, an optimal approach to extracting maximum information from magnetic surveys would be to combine analysis of measured gradient tensor data with vector components calculated from TMI measurements. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for a number of elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, horizontal line current and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalized source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetization direction for these sources (and only very weakly dependent on magnetization direction in general). In combination the NSS and its vector gradient enable estimation of the Euler structural index, thereby constraining source geometry, and determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Once source locations are determined, information of source magnetizations can be obtained by simple linear inversion of measured or calculated vector and/or tensor data. Inversions based on the vector gradient of the NSS over the Tallawang magnetite deposit in central New South Wales obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Inverted magnetizations are consistent with magnetic property measurements on drill core samples from this deposit. Similarly, inversions of calculated tensor data over the Mount Leyshold gold-mineralized porphyry system in Queensland yield good estimates of the centroid location, total magnetic moment and magnetization direction of the magnetite-bearing potassic alteration zone that are consistent with geological and petrophysical information.

  20. EEG source localization: Sensor density and head surface coverage.

    PubMed

    Song, Jasmine; Davey, Colin; Poulsen, Catherine; Luu, Phan; Turovets, Sergei; Anderson, Erik; Li, Kai; Tucker, Don

    2015-12-30

    The accuracy of EEG source localization depends on a sufficient sampling of the surface potential field, an accurate conducting volume estimation (head model), and a suitable and well-understood inverse technique. The goal of the present study is to examine the effect of sampling density and coverage on the ability to accurately localize sources, using common linear inverse weight techniques, at different depths. Several inverse methods are examined, using the popular head conductivity. Simulation studies were employed to examine the effect of spatial sampling of the potential field at the head surface, in terms of sensor density and coverage of the inferior and superior head regions. In addition, the effects of sensor density and coverage are investigated in the source localization of epileptiform EEG. Greater sensor density improves source localization accuracy. Moreover, across all sampling density and inverse methods, adding samples on the inferior surface improves the accuracy of source estimates at all depths. More accurate source localization of EEG data can be achieved with high spatial sampling of the head surface electrodes. The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Hydrocarbon Reservoir Identification in Volcanic Zone by using Magnetotelluric and Geochemistry Information

    NASA Astrophysics Data System (ADS)

    Firda, S. I.; Permadi, A. N.; Supriyanto; Suwardi, B. N.

    2018-03-01

    The resistivity of Magnetotelluric (MT) data show the resistivity mapping in the volcanic reservoir zone and the geochemistry information for confirm the reservoir and source rock formation. In this research, we used 132 data points divided with two line at exploration area. We used several steps to make the resistivity mapping. There are time series correction, crosspower correction, then inversion of Magnetotelluric (MT) data. Line-2 and line-3 show anomaly geological condition with Gabon fault. The geology structure from the resistivity mapping show the fault and the geological formation with the geological rock data mapping distribution. The geochemistry information show the maturity of source rock formation. According to core sample analysis information, we get the visual porosity for reservoir rock formation in several geological structure. Based on that, we make the geological modelling where the potential reservoir and the source rock around our interest area.

  2. Analysis of seismic sources for different mechanisms of fracture growth for microseismic monitoring applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchkov, A. A., E-mail: DuchkovAA@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk, 630090; Stefanov, Yu. P., E-mail: stefanov@ispms.tsc.ru

    2015-10-27

    We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. Inmore » particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism)« less

  3. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  4. W phase source inversion for moderate to large earthquakes (1990-2010)

    USGS Publications Warehouse

    Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo; Hayes, Gavin P.

    2012-01-01

    Rapid characterization of the earthquake source and of its effects is a growing field of interest. Until recently, it still took several hours to determine the first-order attributes of a great earthquake (e.g. Mw≥ 7.5), even in a well-instrumented region. The main limiting factors were data saturation, the interference of different phases and the time duration and spatial extent of the source rupture. To accelerate centroid moment tensor (CMT) determinations, we have developed a source inversion algorithm based on modelling of the W phase, a very long period phase (100–1000 s) arriving at the same time as the P wave. The purpose of this work is to finely tune and validate the algorithm for large-to-moderate-sized earthquakes using three components of W phase ground motion at teleseismic distances. To that end, the point source parameters of all Mw≥ 6.5 earthquakes that occurred between 1990 and 2010 (815 events) are determined using Federation of Digital Seismograph Networks, Global Seismographic Network broad-band stations and STS1 global virtual networks of the Incorporated Research Institutions for Seismology Data Management Center. For each event, a preliminary magnitude obtained from W phase amplitudes is used to estimate the initial moment rate function half duration and to define the corner frequencies of the passband filter that will be applied to the waveforms. Starting from these initial parameters, the seismic moment tensor is calculated using a preliminary location as a first approximation of the centroid. A full CMT inversion is then conducted for centroid timing and location determination. Comparisons with Harvard and Global CMT solutions highlight the robustness of W phase CMT solutions at teleseismic distances. The differences in Mw rarely exceed 0.2 and the source mechanisms are very similar to one another. Difficulties arise when a target earthquake is shortly (e.g. within 10 hr) preceded by another large earthquake, which disturbs the waveforms of the target event. To deal with such difficult situations, we remove the perturbation caused by earlier disturbing events by subtracting the corresponding synthetics from the data. The CMT parameters for the disturbed event can then be retrieved using the residual seismograms. We also explore the feasibility of obtaining source parameters of smaller earthquakes in the range 6.0 ≤Mw w= 6 or larger.

  5. The Inverse Problem in Jet Acoustics

    NASA Technical Reports Server (NTRS)

    Wooddruff, S. L.; Hussaini, M. Y.

    2001-01-01

    The inverse problem for jet acoustics, or the determination of noise sources from far-field pressure information, is proposed as a tool for understanding the generation of noise by turbulence and for the improved prediction of jet noise. An idealized version of the problem is investigated first to establish the extent to which information about the noise sources may be determined from far-field pressure data and to determine how a well-posed inverse problem may be set up. Then a version of the industry-standard MGB code is used to predict a jet noise source spectrum from experimental noise data.

  6. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica (http://rmt.earth.sinica.edu.tw). The long-term goal of this system is to provide real-time source information for rapid seismic hazard assessment during large earthquakes.

  7. Design of system calibration for effective imaging

    NASA Astrophysics Data System (ADS)

    Varaprasad Babu, G.; Rao, K. M. M.

    2006-12-01

    A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.

  8. Gravity fields of the solar system

    NASA Technical Reports Server (NTRS)

    Zendell, A.; Brown, R. D.; Vincent, S.

    1975-01-01

    The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.

  9. A statistical kinematic source inversion approach based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo

    2014-05-01

    Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.

  10. Fermi-LAT Observations of High-Energy Gamma-Ray Emission Toward the Galactic Center

    DOE PAGES

    Ajello, M.

    2016-02-26

    The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission towards the Galactic centre (GC) in high-energy γ-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1 - 100 GeV from a 15° X15° region about the direction of the GC, and implications for the interstellar emissions produced by cosmic ray (CR) particles interacting with the gas and radiation fields in the inner Galaxy and for the point sources detected. Specialised interstellar emission models (IEMs) are constructed that enable separation ofmore » the γ-ray emission from the inner ~ 1 kpc about the GC from the fore- and background emission from the Galaxy. Based on these models, the interstellar emission from CR electrons interacting with the interstellar radiation field via the inverse Compton (IC) process and CR nuclei inelastically scattering off the gas producing γ-rays via π⁰ decays from the inner ~ 1 kpc is determined. The IC contribution is found to be dominant in the region and strongly enhanced compared to previous studies. A catalog of point sources for the 15 °X 15 °region is self-consistently constructed using these IEMs: the First Fermi–LAT Inner Galaxy point source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with γ-ray point sources over the same region taken from existing catalogs, including the Third Fermi–LAT Source Catalog (3FGL). In general, the spatial density of 1FIG sources differs from those in the 3FGL, which is attributed to the different treatments of the interstellar emission and energy ranges used by the respective analyses. Three 1FIG sources are found to spatially overlap with supernova remnants (SNRs) listed in Green’s SNR catalog; these SNRs have not previously been associated with high-energy γ-ray sources. Most 3FGL sources with known multi-wavelength counterparts are also found. However, the majority of 1FIG point sources are unassociated. After subtracting the interstellar emission and point-source contributions from the data a residual is found that is a sub-dominant fraction of the total flux. But, it is brighter than the γ-ray emission associated with interstellar gas in the inner ~ 1 kpc derived for the IEMs used in this paper, and comparable to the integrated brightness of the point sources in the region for energies & 3 GeV. If spatial templates that peak toward the GC are used to model the positive residual and included in the total model for the 1515°X° region, the agreement with the data improves, but they do not account for all the residual structure. The spectrum of the positive residual modelled with these templates has a strong dependence on the choice of IEM.« less

  11. Forward and Inverse Modeling of Self-potential. A Tomography of Groundwater Flow and Comparison Between Deterministic and Stochastic Inversion Methods

    NASA Astrophysics Data System (ADS)

    Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.

    2016-12-01

    Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Douglas S.; Ford, Sean R.; Walter, William R.

    Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.

  13. Spatial patterning in PM2.5 constituents under an inversion-focused sampling design across an urban area of complex terrain

    PubMed Central

    Tunno, Brett J; Dalton, Rebecca; Michanowicz, Drew R; Shmool, Jessie L C; Kinnee, Ellen; Tripathy, Sheila; Cambal, Leah; Clougherty, Jane E

    2016-01-01

    Health effects of fine particulate matter (PM2.5) vary by chemical composition, and composition can help to identify key PM2.5 sources across urban areas. Further, this intra-urban spatial variation in concentrations and composition may vary with meteorological conditions (e.g., mixing height). Accordingly, we hypothesized that spatial sampling during atmospheric inversions would help to better identify localized source effects, and reveal more distinct spatial patterns in key constituents. We designed a 2-year monitoring campaign to capture fine-scale intra-urban variability in PM2.5 composition across Pittsburgh, PA, and compared both spatial patterns and source effects during “frequent inversion” hours vs 24-h weeklong averages. Using spatially distributed programmable monitors, and a geographic information systems (GIS)-based design, we collected PM2.5 samples across 37 sampling locations per year to capture variation in local pollution sources (e.g., proximity to industry, traffic density) and terrain (e.g., elevation). We used inductively coupled plasma mass spectrometry (ICP-MS) to determine elemental composition, and unconstrained factor analysis to identify source suites by sampling scheme and season. We examined spatial patterning in source factors using land use regression (LUR), wherein GIS-based source indicators served to corroborate factor interpretations. Under both summer sampling regimes, and for winter inversion-focused sampling, we identified six source factors, characterized by tracers associated with brake and tire wear, steel-making, soil and road dust, coal, diesel exhaust, and vehicular emissions. For winter 24-h samples, four factors suggested traffic/fuel oil, traffic emissions, coal/industry, and steel-making sources. In LURs, as hypothesized, GIS-based source terms better explained spatial variability in inversion-focused samples, including a greater contribution from roadway, steel, and coal-related sources. Factor analysis produced source-related constituent suites under both sampling designs, though factors were more distinct under inversion-focused sampling. PMID:26507005

  14. Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS.

    PubMed

    Schimpf, Paul H; Liu, Hesheng; Ramon, Ceon; Haueisen, Jens

    2005-05-01

    Functional brain imaging and source localization based on the scalp's potential field require a solution to an ill-posed inverse problem with many solutions. This makes it necessary to incorporate a priori knowledge in order to select a particular solution. A computational challenge for some subject-specific head models is that many inverse algorithms require a comprehensive sampling of the candidate source space at the desired resolution. In this study, we present an algorithm that can accurately reconstruct details of localized source activity from a sparse sampling of the candidate source space. Forward computations are minimized through an adaptive procedure that increases source resolution as the spatial extent is reduced. With this algorithm, we were able to compute inverses using only 6% to 11% of the full resolution lead-field, with a localization accuracy that was not significantly different than an exhaustive search through a fully-sampled source space. The technique is, therefore, applicable for use with anatomically-realistic, subject-specific forward models for applications with spatially concentrated source activity.

  15. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 1. Strong motions

    USGS Publications Warehouse

    Graves, R.W.; Wald, D.J.

    2001-01-01

    We develop a methodology to perform finite fault source inversions from strong motion data using Green's functions (GFs) calculated for a three-dimensional (3-D) velocity structure. The 3-D GFs are calculated numerically by inserting body forces at each of the strong motion sites and then recording the resulting strains along the target fault surface. Using reciprocity, these GFs can be recombined to represent the ground motion at each site for any (heterogeneous) slip distribution on the fault. The reciprocal formulation significantly reduces the required number of 3-D finite difference computations to at most 3NS, where NS is the number of strong motion sites used in the inversion. Using controlled numerical resolution tests, we have examined the relative importance of accurate GFs for finite fault source inversions which rely on near-source ground motions. These experiments use both 1-D and 3-D GFs in inversions for hypothetical rupture models in order (1) to analyze the ability of the 3-D methodology to resolve trade-offs between complex source phenomena and 3-D path effects, (2) to address the sensitivity of the inversion results to uncertainties in the 3-D velocity structure, and (3) to test the adequacy of the 1-D GF method when propagation effects are known to be three-dimensional. We find that given "data" from a prescribed 3-D Earth structure, the use of well-calibrated 3-D GFs in the inversion provides very good resolution of the assumed slip distribution, thus adequately separating source and 3-D propagation effects. In contrast, using a set of inexact 3-D GFs or a set of hybrid 1-D GFs allows only partial recovery of the slip distribution. These findings suggest that in regions of complex geology the use of well-calibrated 3-D GFs has the potential for increased resolution of the rupture process relative to 1-D GFs. However, realizing this full potential requires that the 3-D velocity model and associated GFs should be carefully validated against the true 3-D Earth structure before performing the inverse problem with actual data. Copyright 2001 by the American Geophysical Union.

  16. An evolutive real-time source inversion based on a linear inverse formulation

    NASA Astrophysics Data System (ADS)

    Sanchez Reyes, H. S.; Tago, J.; Cruz-Atienza, V. M.; Metivier, L.; Contreras Zazueta, M. A.; Virieux, J.

    2016-12-01

    Finite source inversion is a steppingstone to unveil earthquake rupture. It is used on ground motion predictions and its results shed light on seismic cycle for better tectonic understanding. It is not yet used for quasi-real-time analysis. Nowadays, significant progress has been made on approaches regarding earthquake imaging, thanks to new data acquisition and methodological advances. However, most of these techniques are posterior procedures once seismograms are available. Incorporating source parameters estimation into early warning systems would require to update the source build-up while recording data. In order to go toward this dynamic estimation, we developed a kinematic source inversion formulated in the time-domain, for which seismograms are linearly related to the slip distribution on the fault through convolutions with Green's functions previously estimated and stored (Perton et al., 2016). These convolutions are performed in the time-domain as we progressively increase the time window of records at each station specifically. Selected unknowns are the spatio-temporal slip-rate distribution to keep the linearity of the forward problem with respect to unknowns, as promoted by Fan and Shearer (2014). Through the spatial extension of the expected rupture zone, we progressively build-up the slip-rate when adding new data by assuming rupture causality. This formulation is based on the adjoint-state method for efficiency (Plessix, 2006). The inverse problem is non-unique and, in most cases, underdetermined. While standard regularization terms are used for stabilizing the inversion, we avoid strategies based on parameter reduction leading to an unwanted non-linear relationship between parameters and seismograms for our progressive build-up. Rise time, rupture velocity and other quantities can be extracted later on as attributs from the slip-rate inversion we perform. Satisfactory results are obtained on a synthetic example (FIgure 1) proposed by the Source Inversion Validation project (Mai et al. 2011). A real case application is currently being explored. Our specific formulation, combined with simple prior information, as well as numerical results obtained so far, yields interesting perspectives for a real-time implementation.

  17. Einstein observations of the X-ray structure of Centaurus A - Evidence for the radio-lobe energy source

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.; Feigelson, E.; Delvaille, J.; Giacconi, R.; Grindlay, J.; Schwartz, D. A.; Fabian, A. C.

    1979-01-01

    The X-ray source at the center of the radio galaxy Centaurus A has been resolved into the following components with the imaging detectors on board the Einstein X-ray Observatory: (1) a point source coincident with the infrared nucleus; (2) diffuse X-ray emission coinciding with the inner radio lobes; (3) a 4-arcmin extended region of emission about the nucleus; and (4) an X-ray jet between the nucleus and the NE inner radio lobe. The 2 x 10 to the 39th ergs/s detected from the radio lobes probably arises from inverse Compton scattering of the microwave background. The average magnetic field in the SW lobe is determined to be not less than 4 microgauss. The extended region may be due to emission by a cloud of hot gas, cosmic-ray scattering, or stellar sources. The jet provides strong evidence for the continuous resupply of energy to the lobes from the nucleus.

  18. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates on the other hand are observed routinely on a much denser grid and higher temporal resolution. Gamma dose rate measurements contain no explicit information on the observed spectrum of radionuclides and have to be interpreted carefully. Nevertheless, they provide valuable information for the inverse evaluation of the source term due to their availability (Saunier et al., 2013). We present a new inversion approach combining an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The gamma dose rates are calculated from the modelled activity concentrations. The inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008). The a priori information on the source term is a first guess. The gamma dose rate observations will be used with inverse modelling to improve this first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.

  19. New Additions to the Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment.

    PubMed

    Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S

    2014-09-01

    Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.

  20. Frequency and time domain three-dimensional inversion of electromagnetic data for a grounded-wire source

    NASA Astrophysics Data System (ADS)

    Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang; Son, Jeong-Sul

    2015-01-01

    We present frequency- and time-domain three-dimensional (3-D) inversion approaches that can be applied to transient electromagnetic (TEM) data from a grounded-wire source using a PC. In the direct time-domain approach, the forward solution and sensitivity were obtained in the frequency domain using a finite-difference technique, and the frequency response was then Fourier-transformed using a digital filter technique. In the frequency-domain approach, TEM data were Fourier-transformed using a smooth-spectrum inversion method, and the recovered frequency response was then inverted. The synthetic examples show that for the time derivative of magnetic field, frequency-domain inversion of TEM data performs almost as well as time-domain inversion, with a significant reduction in computational time. In our synthetic studies, we also compared the resolution capabilities of the ground and airborne TEM and controlled-source audio-frequency magnetotelluric (CSAMT) data resulting from a common grounded wire. An airborne TEM survey at 200-m elevation achieved a resolution for buried conductors almost comparable to that of the ground TEM method. It is also shown that the inversion of CSAMT data was able to detect a 3-D resistivity structure better than the TEM inversion, suggesting an advantage of electric-field measurements over magnetic-field-only measurements.

  1. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  2. Micro-seismic imaging using a source function independent full waveform inversion method

    NASA Astrophysics Data System (ADS)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  3. Source-space ICA for MEG source imaging.

    PubMed

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  4. Bathymetric mapping of shallow water surrounding Dongsha Island using QuickBird image

    NASA Astrophysics Data System (ADS)

    Li, Dongling; Zhang, Huaguo; Lou, Xiulin

    2018-03-01

    This article presents an experiment of water depth inversion using the band ratio method in Dongsha Island shallow water. The remote sensing data is from QuickBird satellite on April 19, 2004. The bathymetry result shows an extensive agreement with the charted depths. 129 points from the chart depth data were chosen to evaluate the accuracy of the inversion depth. The results show that when the water depth is less than 20m, the inversion depth is accord with the chart, while the water depth is more than 20m, the inversion depth is still among 15- 25m. Therefore, the remote sensing methods can only be effective with the inversion of 20m in Dongsha Island shallow water, rather than in deep water area. The total of 109 depth points less than 20m were used to evaluate the accuracy, the root mean square error is 2.2m.

  5. Inversion of Atmospheric Tracer Measurements, Localization of Sources

    NASA Astrophysics Data System (ADS)

    Issartel, J.-P.; Cabrit, B.; Hourdin, F.; Idelkadi, A.

    When abnormal concentrations of a pollutant are observed in the atmosphere, the question of its origin arises immediately. The radioactivity from Tchernobyl was de- tected in Sweden before the accident was announced. This situation emphasizes the psychological, political and medical stakes of a rapid identification of sources. In tech- nical terms, most industrial sources can be modeled as a fixed point at ground level with undetermined duration. The classical method of identification involves the cal- culation of a backtrajectory departing from the detector with an upstream integration of the wind field. We were first involved in such questions as we evaluated the ef- ficiency of the international monitoring network planned in the frame of the Com- prehensive Test Ban Treaty. We propose a new approach of backtracking based upon the use of retroplumes associated to available measurements. Firstly the retroplume is related to inverse transport processes, describing quantitatively how the air in a sam- ple originates from regions that are all the more extended and diffuse as we go back far in the past. Secondly it clarifies the sensibility of the measurement with respect to all potential sources. It is therefore calculated by adjoint equations including of course diffusive processes. Thirdly, the statistical interpretation, valid as far as sin- gle particles are concerned, should not be used to investigate the position and date of a macroscopic source. In that case, the retroplume rather induces a straightforward constraint between the intensity of the source and its position. When more than one measurements are available, including zero valued measurements, the source satisfies the same number of linear relations tightly related to the retroplumes. This system of linear relations can be handled through the simplex algorithm in order to make the above intensity-position correlation more restrictive. This method enables to manage in a quantitative manner the unavoidable ambiguity of atmospheric phenomena. When several measurements are available the ambiguity about the identification of a source is reduced significantly.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David F.

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensionalmore » electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.« less

  7. Noniterative three-dimensional grid generation using parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1985-01-01

    A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.

  8. Inverse source problems in elastodynamics

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao

    2018-04-01

    We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.

  9. Indicator microbes correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical recreational beach site.

    PubMed

    Shah, A H; Abdelzaher, A M; Phillips, M; Hernandez, R; Solo-Gabriele, H M; Kish, J; Scorzetti, G; Fell, J W; Diaz, M R; Scott, T M; Lukasik, J; Harwood, V J; McQuaig, S; Sinigalliano, C D; Gidley, M L; Wanless, D; Ager, A; Lui, J; Stewart, J R; Plano, L R W; Fleming, L E

    2011-06-01

    Research into the relationship between pathogens, faecal indicator microbes and environmental factors in beach sand has been limited, yet vital to the understanding of the microbial relationship between sand and the water column and to the improvement of criteria for better human health protection at beaches. The objectives of this study were to evaluate the presence and distribution of pathogens in various zones of beach sand (subtidal, intertidal and supratidal) and to assess their relationship with environmental parameters and indicator microbes at a non-point source subtropical marine beach. In this exploratory study in subtropical Miami (Florida, USA), beach sand samples were collected and analysed over the course of 6 days for several pathogens, microbial source tracking markers and indicator microbes. An inverse correlation between moisture content and most indicator microbes was found. Significant associations were identified between some indicator microbes and pathogens (such as nematode larvae and yeasts in the genus Candida), which are from classes of microbes that are rarely evaluated in the context of recreational beach use. Results indicate that indicator microbes may predict the presence of some of the pathogens, in particular helminthes, yeasts and the bacterial pathogen Staphylococcus aureus including methicillin-resistant forms. Indicator microbes may thus be useful for monitoring beach sand and water quality at non-point source beaches. The presence of both indicator microbes and pathogens in beach sand provides one possible explanation for human health effects reported at non-point sources beaches. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. High-frequency envelope inversion analysis of the 2003 Tokachi-Oki, JAPAN, earthquake (Mw8.0)

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2004-12-01

    The 2003 Tokachi-Oki earthquake (Mw 8.0) took place on September 26, 2003 at the plate interface between the subducting Pacific plate and the Hokkaido island, northern Japan. The focal depth is around 30km and the focal mechanism is thrust type. This earthquake caused 2 missings, more than 100 injures, 2000 collapsed houses, and so on. Slip distribution on the fault plane was already estimated by inversion analyses of low-frequency seismograms. However, source characteristics for the earthquake in frequencies higher than 1 Hz is not so far clarified. In this study, we execute an envelope inversion analysis based on the method by Nakahara et al. (1998) and clarify the spatial distribution of high-frequency seismic energy radiation on the fault plane of this earthquake. We use three-component sum of mean squared velocity seismograms multiplied by a density of earth medium, which is called envelopes here, for the envelope inversion analysis. Three frequency bands of 1-2, 2-4, and 4-8 Hz are adopted. We use envelopes in the time window from the onset of S waves to the lapse time of 128 sec. Green functions of envelopes representing the energy propagation process through a scattering medium are calculated based on the radiative transfer theory, which are characterized by parameters of scattering attenuation and intrinsic absorption. We use the values obtained for eastern Hokkaido (Hoshiba, 1993). We assume the fault plane as follows: strike=249o, dip=15o, rake=130o, length=150km, width=165km with reference to a waveform inversion analysis in low frequencies (e.g. Yagi, 2003). We divide this fault plane into 110 subfaults, each of which is a 15km x 15km square. Rupture velocity is assumed to be constant. Seismic energy is radiated from a point source as soon as the rupture front passes the center of each subfault. Time function of energy radiation is assumed as a box-car function. The amount of seismic energy from all the subfaults and site amplification factors for all the stations are estimated by the envelope inversion method. Rupture velocity and the duration time of a box-car function should be estimated by a grid search. Theoretical envelopes calculated with best-fit parameters generally fit to observed ones. The rupture velocity and duration time were estimated as 3.0 km/s and 6 sec, respectively. The high-frequency seismic energy was found to be radiated mainly from two spots on the fault plane: The first one is the deeper part beneath the initial rupture point and the second is the southern shallow part of the fault plane. Radiated energy was estimated to be 7.2 × 1016J in the 1-8Hz band. Acknowledgements: We used strong-motion seismograms recorded by the K-NET and KiK-net of NIED, JAPAN.

  11. Multi-transmitter multi-receiver null coupled systems for inductive detection and characterization of metallic objects

    NASA Astrophysics Data System (ADS)

    Smith, J. Torquil; Morrison, H. Frank; Doolittle, Lawrence R.; Tseng, Hung-Wen

    2007-03-01

    Equivalent dipole polarizabilities are a succinct way to summarize the inductive response of an isolated conductive body at distances greater than the scale of the body. Their estimation requires measurement of secondary magnetic fields due to currents induced in the body by time varying magnetic fields in at least three linearly independent (e.g., orthogonal) directions. Secondary fields due to an object are typically orders of magnitude smaller than the primary inducing fields near the primary field sources (transmitters). Receiver coils may be oriented orthogonal to primary fields from one or two transmitters, nulling their response to those fields, but simultaneously nulling to fields of additional transmitters is problematic. If transmitter coils are constructed symmetrically with respect to inversion in a point, their magnetic fields are symmetric with respect to that point. If receiver coils are operated in pairs symmetric with respect to inversion in the same point, then their differenced output is insensitive to the primary fields of any symmetrically constructed transmitters, allowing nulling to three (or more) transmitters. With a sufficient number of receivers pairs, object equivalent dipole polarizabilities can be estimated in situ from measurements at a single instrument sitting, eliminating effects of inaccurate instrument location on polarizability estimates. The method is illustrated with data from a multi-transmitter multi-receiver system with primary field nulling through differenced receiver pairs, interpreted in terms of principal equivalent dipole polarizabilities as a function of time.

  12. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  13. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  14. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Lyman, Seth; Tran, Trang

    2015-12-01

    The Uintah Basin in Utah, U.S.A. experiences high concentrations of ozone during some winters due to strong, multi-day temperature inversions that facilitate the buildup of pollution from local sources, including the oil and gas industry. Together, elevation of monitoring sites and proximity to oil and gas wells explain as much as 90% of spatial variability in surface ozone concentrations during inversion episodes (i.e., R2 = 0.90). Inversion conditions start earlier and last longer at lower elevations, at least in part because lower elevations are more insulated from winds aloft that degrade inversion conditions and dilute produced ozone. Surface air transport under inversions is dominated by light, diurnal upslope-downslope flow that limits net transport distances. Thus, different areas of the Basin are relatively isolated from each other, allowing spatial factors like elevation and proximity to sources to strongly influence ozone concentrations at individual sites.

  15. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianbing, E-mail: yijianbing8@163.com; Yang, Xuan, E-mail: xyang0520@263.net; Li, Yan-Ran, E-mail: lyran@szu.edu.cn

    2015-10-15

    Purpose: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. Methods: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered atmore » points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. Results: The performances of the authors’ method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors’ method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors’ method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors’ method ranks 24 of 39. According to the index of the maximum shear stretch, the authors’ method is also efficient to describe the discontinuous motion at the lung boundaries. Conclusions: By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors’ method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.« less

  16. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm.

    PubMed

    Yi, Jianbing; Yang, Xuan; Chen, Guoliang; Li, Yan-Ran

    2015-10-01

    Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. The performances of the authors' method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors' method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors' method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors' method ranks 24 of 39. According to the index of the maximum shear stretch, the authors' method is also efficient to describe the discontinuous motion at the lung boundaries. By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors' method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.

  17. 3-D acoustic waveform simulation and inversion at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Iezzi, A. M.; Fee, D.; Matoza, R. S.; Austin, A.; Jolly, A. D.; Kim, K.; Christenson, B. W.; Johnson, R.; Kilgour, G.; Garaebiti, E.; Kennedy, B.; Fitzgerald, R.; Key, N.

    2016-12-01

    Acoustic waveform inversion shows promise for improved eruption characterization that may inform volcano monitoring. Well-constrained inversion can provide robust estimates of volume and mass flux, increasing our ability to monitor volcanic emissions (potentially in real-time). Previous studies have made assumptions about the multipole source mechanism, which can be thought of as the combination of pressure fluctuations from a volume change, directionality, and turbulence. This infrasound source could not be well constrained up to this time due to infrasound sensors only being deployed on Earth's surface, so the assumption of no vertical dipole component has been made. In this study we deploy a high-density seismo-acoustic network, including multiple acoustic sensors along a tethered balloon around Yasur Volcano, Vanuatu. Yasur has frequent strombolian eruptions from any one of its three active vents within a 400 m diameter crater. The third dimension (vertical) of pressure sensor coverage allows us to begin to constrain the acoustic source components in a profound way, primarily the horizontal and vertical components and their previously uncharted contributions to volcano infrasound. The deployment also has a geochemical and visual component, including FLIR, FTIR, two scanning FLYSPECs, and a variety of visual imagery. Our analysis employs Finite-Difference Time-Domain (FDTD) modeling to obtain the full 3D Green's functions for each propagation path. This method, following Kim et al. (2015), takes into account realistic topographic scattering based on a digital elevation model created using structure-from-motion techniques. We then invert for the source location and source-time function, constraining the contribution of the vertical sound radiation to the source. The final outcome of this inversion is an infrasound-derived volume flux as a function of time, which we then compare to those derived independently from geochemical techniques as well as the inversion of seismic data. Kim, K., Fee, D., Yokoo, A., & Lees, J. M. (2015). Acoustic source inversion to estimate volume flux from volcanic explosions. Geophysical Research Letters, 42(13), 5243-5249

  18. Testing the seismology-based landquake monitoring system

    NASA Astrophysics Data System (ADS)

    Chao, Wei-An

    2016-04-01

    I have developed a real-time landquake monitoring system (RLMs), which monitor large-scale landquake activities in the Taiwan using real-time seismic network of Broadband Array in Taiwan for Seismology (BATS). The RLM system applies a grid-based general source inversion (GSI) technique to obtain the preliminary source location and force mechanism. A 2-D virtual source-grid on the Taiwan Island is created with an interval of 0.2° in both latitude and longitude. The depth of each grid point is fixed on the free surface topography. A database is stored on the hard disk for the synthetics, which are obtained using Green's functions computed by the propagator matrix approach for 1-D average velocity model, at all stations from each virtual source-grid due to nine elementary source components: six elementary moment tensors and three orthogonal (north, east and vertical) single-forces. Offline RLM system was carried out for events detected in previous studies. An important aspect of the RLM system is the implementation of GSI approach for different source types (e.g., full moment tensor, double couple faulting, and explosion source) by the grid search through the 2-D virtual source to automatically identify landquake event based on the improvement in waveform fitness and evaluate the best-fit solution in the monitoring area. With this approach, not only the force mechanisms but also the event occurrence time and location can be obtained simultaneously about 6-8 min after an occurrence of an event. To improve the insufficient accuracy of GSI-determined lotion, I further conduct a landquake epicenter determination (LED) method that maximizes the coherency of the high-frequency (1-3 Hz) horizontal envelope functions to determine the final source location. With good knowledge about the source location, I perform landquake force history (LFH) inversion to investigate the source dynamics (e.g., trajectory) for the relatively large-sized landquake event. With providing aforementioned source information in real-time, the government and emergency response agencies have sufficient reaction time for rapid assessment and response to landquake hazards. Since 2016, the RLM system has operated online.

  19. Probabilistic source mechanism estimation based on body-wave waveforms through shift and stack algorithm

    NASA Astrophysics Data System (ADS)

    Massin, F.; Malcolm, A. E.

    2017-12-01

    Knowing earthquake source mechanisms gives valuable information for earthquake response planning and hazard mitigation. Earthquake source mechanisms can be analyzed using long period waveform inversion (for moderate size sources with sufficient signal to noise ratio) and body-wave first motion polarity or amplitude ratio inversion (for micro-earthquakes with sufficient data coverage). A robust approach that gives both source mechanisms and their associated probabilities across all source scales would greatly simplify the determination of source mechanisms and allow for more consistent interpretations of the results. Following previous work on shift and stack approaches, we develop such a probabilistic source mechanism analysis, using waveforms, which does not require polarity picking. For a given source mechanism, the first period of the observed body-waves is selected for all stations, multiplied by their corresponding theoretical polarity and stacked together. (The first period is found from a manually picked travel time by measuring the central period where the signal power is concentrated, using the second moment of the power spectral density function.) As in other shift and stack approaches, our method is not based on the optimization of an objective function through an inversion. Instead, the power of the polarity-corrected stack is a proxy for the likelihood of the trial source mechanism, with the most powerful stack corresponding to the most likely source mechanism. Using synthetic data, we test our method for robustness to the data coverage, coverage gap, signal to noise ratio, travel-time picking errors and non-double couple component. We then present results for field data in a volcano-tectonic context. Our results are reliable when constrained by 15 body-wavelets, with gap below 150 degrees, signal to noise ratio over 1 and arrival time error below a fifth of the period (0.2T) of the body-wave. We demonstrate that the source scanning approach for source mechanism analysis has similar advantages to waveform inversion (full waveform data, no manual intervention, probabilistic approach) and similar applicability to polarity inversion (any source size, any instrument type).

  20. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013), whereas the frictional coefficient estimated from the numerical simulation was about 0.27. This discrepancy may be due to the digital elevation model, to the other forces such as pressure gradients and centrifugal acceleration included in the model. However, quantitative interpretation of this difference requires further investigation.

  1. Influence of phase inversion on the formation and stability of one-step multiple emulsions.

    PubMed

    Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J

    2009-07-21

    A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the first time, the significance of the ultralow surface tension point on multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory ,and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.

  2. Inverse Modeling of Tropospheric Methane Constrained by 13C Isotope in Methane

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.

    2001-12-01

    Understanding the budget of methane is crucial to predicting climate change and managing earth's carbon reservoirs. Methane is responsible for approximately 15% of the anthropogenic greenhouse forcing and has a large impact on the oxidative capacity of Earth's atmosphere due to its reaction with hydroxyl radical. At present, many of the sources and sinks of methane are poorly understood, due in part to the large spatial and temporal variability of the methane flux. Model calculations of methane mixing ratios using most process-based source estimates typically over-predict the inter-hemispheric gradient of atmospheric methane. Inverse models, which estimate trace gas budgets by using observations of atmospheric mixing ratios and transport models to estimate sources and sinks, have been used to incorporate features of the atmospheric observations into methane budgets. While inverse models of methane generally tend to find a decrease in northern hemisphere sources and an increase in southern hemisphere sources relative to process-based estimates,no inverse study has definitively associated the inter-hemispheric gradient difference with a specific source process or group of processes. In this presentation, observations of isotopic ratios of 13C in methane and isotopic signatures of methane source processes are used in conjunction with an inverse model of methane to further constrain the source estimates of methane. In order to investigate the advantages of incorporating 13C, the TM3 three-dimensional transport model was used. The methane and carbon dioxide measurements used are from a cooperative international effort, the Cooperative Air Sampling Network, lead by the Climate Monitoring Diagnostics Laboratory (CMDL) at the National Oceanic and Atmospheric Administration (NOAA). Experiments using model calculations based on process-based source estimates show that the inter-hemispheric gradient of δ 13CH4 is not reproduced by these source estimates, showing that the addition of observations of δ 13CH4 should provide unique insight into the methane problem.

  3. How a European network may help with estimating methane emissions on the French national scale

    NASA Astrophysics Data System (ADS)

    Pison, Isabelle; Berchet, Antoine; Saunois, Marielle; Bousquet, Philippe; Broquet, Grégoire; Conil, Sébastien; Delmotte, Marc; Ganesan, Anita; Laurent, Olivier; Martin, Damien; O'Doherty, Simon; Ramonet, Michel; Spain, T. Gerard; Vermeulen, Alex; Yver Kwok, Camille

    2018-03-01

    Methane emissions on the national scale in France in 2012 are inferred by assimilating continuous atmospheric mixing ratio measurements from nine stations of the European network ICOS located in France and surrounding countries. To assess the robustness of the fluxes deduced by our inversion system based on an objectified quantification of uncertainties, two complementary inversion set-ups are computed and analysed: (i) a regional run correcting for the spatial distribution of fluxes in France and (ii) a sectorial run correcting fluxes for activity sectors on the national scale. In addition, our results for the two set-ups are compared with fluxes produced in the framework of the inversion inter-comparison exercise of the InGOS project. The seasonal variability in fluxes is consistent between different set-ups, with maximum emissions in summer, likely due to agricultural activity. However, very high monthly posterior uncertainties (up to ≈ 65 to 74 % in the sectorial run in May and June) make it difficult to attribute maximum emissions to a specific sector. On the yearly and national scales, the two inversions range from 3835 to 4050 Gg CH4 and from 3570 to 4190 Gg CH4 for the regional and sectorial runs, respectively, consistently with the InGOS products. These estimates are 25 to 55 % higher than the total national emissions from bottom-up approaches (biogeochemical models from natural emissions, plus inventories for anthropogenic ones), consistently pointing at missing or underestimated sources in the inventories and/or in natural sources. More specifically, in the sectorial set-up, agricultural emissions are inferred as 66% larger than estimates reported to the UNFCCC. Uncertainties in the total annual national budget are 108 and 312 Gg CH4, i.e, 3 to 8 %, for the regional and sectorial runs respectively, smaller than uncertainties in available bottom-up products, proving the added value of top-down atmospheric inversions. Therefore, even though the surface network used in 2012 does not allow us to fully constrain all regions in France accurately, a regional inversion set-up makes it possible to provide estimates of French methane fluxes with an uncertainty in the total budget of less than 10 % on the yearly timescale. Additional sites deployed since 2012 would help to constrain French emissions on finer spatial and temporal scales and attributing missing emissions to specific sectors.

  4. Hammering Yucca Flat, Part One: P-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II

    2015-12-01

    Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. High-frequency seismic energy radiation from the 2003 Miyagi-Oki, JAPAN, earthquake (M7.0) as revealed from an envelope inversion analysis

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2003-12-01

    The 2003 Miyagi-Oki earthquake (M 7.0) took place on May 26, 2003 in the subducting Pacific plate beneath northeastern Japan. The focal depth is around 70km. The focal mechanism is reverse type on a fault plane dipping to the west with a high angle. There was no fatality, fortunately. However, this earthquake caused more than 100 injures, 2000 collapsed houses, and so on. To the south of this focal area by about 50km, an interplate earthquake of M7.5, the Miyagi-Ken-Oki earthquake, is expected to occur in the near future. So the relation between this earthquake and the expected Miyagi-Ken-Oki earthquake attracts public attention. Seismic-energy distribution on earthquake fault planes estimated by envelope inversion analyses can contribute to better understanding of the earthquake source process. For moderate to large earthquakes, seismic energy in frequencies higher than 1 Hz is sometimes much larger than a level expected from the omega-squared model with source parameters estimated by lower-frequency analyses. Therefore, an accurate estimation of seismic energy in such high frequencies has significant importance on estimation of dynamic source parameters such as the seismic energy or the apparent stress. In this study, we execute an envelope inversion analysis based on the method by Nakahara et al. (1998) and clarify the spatial distribution of high-frequency seismic energy radiation on the fault plane of this earthquake. We use three-component sum of mean squared velocity seismograms multiplied by a density of earth medium, which is called envelopes here, for the envelope inversion analysis. Four frequency bands of 1-2, 2-4, 4-8, and 8-16 Hz are adopted. We use envelopes in the time window from the onset of S waves to the lapse time of 51.2 sec. Green functions of envelopes representing the energy propagation process through a scattering medium are calculated based on the radiative transfer theory, which are characterized by parameters of scattering attenuation and intrinsic absorption. We use the values obtained for the northeastern Japan (Sakurai, 1995). We assume the fault plane as follows: strike=193,a, dip=69,a, rake=87,a, length=30km, width=25km with referrence to a waveform inversion analysis in low-frequencies (e.g. Yagi, 2003). We divide this fault plane into 25 subfaults, each of which is a 5km x 5km square. Rupture velocity is assumed to be constant. Seismic energy is radiated from a point source as soon as the rupture front passes the center of each subfault. Time function of energy radiation is assumed as a box-car function. The amount of seismic energy from all the subfaults and site amplification factors for all the stations are estimated by the envelope inversion method. Rupture velocity and the duration time of a box-car function should be estimated by a grid search. Theoretical envelopes calculated with best-fit parameters generally fit to observed ones. The rupture velocity and duration time were estimated as 3.8 km/s and 1.6 sec, respectively. The high-frequency seismic energy was found to be radiated mainly from two spots on the fault plane: The first one is around the initial rupture point and the second is the northern part of the fault plane. These two spots correspond to observed two peaks on envelopes. Amount of seismic energy increases with increasing frequency in the 1-16Hz band, which contradicts an expectation from the omega-squared model. Therefore, stronger radiation of higher-frequency seismic energy is a prominent character of this earthquake. Acknowledgements: We used strong-motion seismograms recorded by the K-NET and KiK-net of NIED, JAPAN.

  6. Complete Sets of Radiating and Nonradiating Parts of a Source and Their Fields with Applications in Inverse Scattering Limited-Angle Problems

    PubMed Central

    Louis, A. K.

    2006-01-01

    Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060

  7. Self-constrained inversion of potential fields

    NASA Astrophysics Data System (ADS)

    Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.

    2013-11-01

    We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.

  8. A New Simplified Source Model to Explain Strong Ground Motions from a Mega-Thrust Earthquake - Application to the 2011 Tohoku Earthquake (Mw9.0) -

    NASA Astrophysics Data System (ADS)

    Nozu, A.

    2013-12-01

    A new simplified source model is proposed to explain strong ground motions from a mega-thrust earthquake. The proposed model is simpler, and involves less model parameters, than the conventional characterized source model, which itself is a simplified expression of actual earthquake source. In the proposed model, the spacio-temporal distribution of slip within a subevent is not modeled. Instead, the source spectrum associated with the rupture of a subevent is modeled and it is assumed to follow the omega-square model. By multiplying the source spectrum with the path effect and the site amplification factor, the Fourier amplitude at a target site can be obtained. Then, combining it with Fourier phase characteristics of a smaller event, the time history of strong ground motions from the subevent can be calculated. Finally, by summing up contributions from the subevents, strong ground motions from the entire rupture can be obtained. The source model consists of six parameters for each subevent, namely, longitude, latitude, depth, rupture time, seismic moment and corner frequency of the subevent. Finite size of the subevent can be taken into account in the model, because the corner frequency of the subevent is included in the model, which is inversely proportional to the length of the subevent. Thus, the proposed model is referred to as the 'pseudo point-source model'. To examine the applicability of the model, a pseudo point-source model was developed for the 2011 Tohoku earthquake. The model comprises nine subevents, located off Miyagi Prefecture through Ibaraki Prefecture. The velocity waveforms (0.2-1 Hz), the velocity envelopes (0.2-10 Hz) and the Fourier spectra (0.2-10 Hz) at 15 sites calculated with the pseudo point-source model agree well with the observed ones, indicating the applicability of the model. Then the results were compared with the results of a super-asperity (SPGA) model of the same earthquake (Nozu, 2012, AGU), which can be considered as an example of characterized source models. Although the pseudo point-source model involves much less model parameters than the super-asperity model, the errors associated with the former model were comparable to those for the latter model for velocity waveforms and envelopes. Furthermore, the errors associated with the former model were much smaller than those for the latter model for Fourier spectra. These evidences indicate the usefulness of the pseudo point-source model. Comparison of the observed (black) and synthetic (red) Fourier spectra. The spectra are the composition of two horizontal components and smoothed with a Parzen window with a band width of 0.05 Hz.

  9. Experimental validation of a coupled neutron-photon inverse radiation transport solver

    NASA Astrophysics Data System (ADS)

    Mattingly, John; Mitchell, Dean J.; Harding, Lee T.

    2011-10-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  10. Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM data

    NASA Astrophysics Data System (ADS)

    Massoud, Usama; Kenawy, Abeer A.; Ragab, El-Said A.; Abbas, Abbas M.; El-Kosery, Heba M.

    2014-12-01

    Vertical Electrical Sounding (VES) and Transient ElectroMagnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo-Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along 3 profiles trending NE-SW with the elongation of the study area. The measuring points were arranged in a grid-like pattern with both inter-station spacing and line-line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geoelectrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water-bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

  11. Source process of a long-period event at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.; Dawson, P.B.

    2005-01-01

    We analyse a long-period (LP) event observed by a dense seismic network temporarily operated at Kilauea volcano, Hawaii, in 1996. We systematically perform spectral analyses, waveform inversions and forward modeling of the LP event to quantify its source process. Spectral analyses identify two dominant spectral frequencies at 0.6 and 1.3 Hz with associated Q values in the range 10-20. Results from waveform inversions assuming six moment-tensor and three single-force components point to the resonance of a horizontal crack located at a depth of approximately 150 m near the northeastern rim of the Halemaumau pit crater. Waveform simulations based on a fluid-filled crack model suggest that the observed frequencies and Q values can be explained by a crack filled with a hydrothermal fluid in the form of either bubbly water or steam. The shallow hydrothermal crack located directly above the magma conduit may have been heated by volcanic gases leaking from the conduit. The enhanced flux of heat raised the overall pressure of the hydrothermal fluid in the crack and induced a rapid discharge of fluid from the crack, which triggered the acoustic vibrations of the resonator generating the LP waveform. The present study provides further support to the idea that LP events originate in the resonance of a crack. ?? 2005 RAS.

  12. Bayesian Travel Time Inversion adopting Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Mauerberger, S.; Holschneider, M.

    2017-12-01

    A major application in seismology is the determination of seismic velocity models. Travel time measurements are putting an integral constraint on the velocity between source and receiver. We provide insight into travel time inversion from a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process regression is adopted to estimate a velocity model. The non-linear travel time integral is approximated by a 1st order Taylor expansion. A heuristic covariance describes correlations amongst observations and a priori model. That approach enables us to assess a proxy of the Bayesian posterior distribution at ordinary computational costs. No multi dimensional numeric integration nor excessive sampling is necessary. Instead of stacking the data, we suggest to progressively build the posterior distribution. Incorporating only a single evidence at a time accounts for the deficit of linearization. As a result, the most probable model is given by the posterior mean whereas uncertainties are described by the posterior covariance.As a proof of concept, a synthetic purely 1d model is addressed. Therefore a single source accompanied by multiple receivers is considered on top of a model comprising a discontinuity. We consider travel times of both phases - direct and reflected wave - corrupted by noise. Left and right of the interface are assumed independent where the squared exponential kernel serves as covariance.

  13. Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas

    2017-12-01

    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.

  14. Progress report on lithium-related geologic investigations in Bolivia

    USGS Publications Warehouse

    Davis, J.R.; Howard, K.A.; Rettig, S.L.; Smith, R.L.; Ericksen, G.E.; Risacher, Francois; Alarcon, Hugo; Morales, Ricardo

    1982-01-01

    The September 1, 1981, Samoa Islands Region earthquake occurred at the extreme northern end of the Tonga arc in a region where the Pacific plate may be disjointed along a hinge fault. In the last 50 years, magnitude 7 or greater earthquakes have occurred in this region on the average of once every six years, but four 7+ events have now occurred within the last six years. The mainshock was preceded about two hours earlier by a foreshock that was used as a calibration event for the Joint Epicenter Determination relocation of the mainshock and nearby seismicity occurring within a period seven months prior to and one week after the mainshock. The foreshock, better-located events of the prior seismicity, and most aftershocks are concentrated in a group near the mainshock epicenter, but several more distant aftershocks suggest that the aftershock zone may have been as large as 125 km in length and trended about S35?E. Identification of depth phases from a full suite of broadband records gives source depths of 25-3km for the mainshock and 29.5?3 km for the foreshock using a JB earth model. Source parameters were determined for the mainshock utilizing WWSSN analog and GDSN digital data. The preferred fault plane solution based on P-wave first motion data is a south by southwesterly steeply dipping normal fault, remarkably similar to the mechanism reported by Johnson and Molnar (1972) for the nearby earthquake of April 20, 196B. A waveform inversion technique described by Sipkin (1982), when applied to long-period P waveforms, gives an 'average' point source solution for a purely deviatoric moment rate tensor at a preferred source depth of 22 km. Very similar results were obtained from long-period GDSN body-wave and mantle-wave data using a centroid-moment tensor inversion technique described in Dziewonski, and others (1981). Both techniques provide solutions very close to a double couple source with a south by southwesterly shallow-dipping normal fault mechanism. To obtain the scalar mantle wave moment, GDSN vertical and transverse records 20,000 see in length were processed as described by Buland and Taggart (1981). Averaging all the data from Rayleigh and Love waves yields an estimate of 3.8 x 10^27 dyne-cm (as compared to about 1.9 x 10^27 from body-wave moment tensor inversions) or a moment magnitude (Mr) of 7.6. For the portion of the waveform analysed (50-5B sec), the body-wave inversion performed by Sipkin gives a source time function of duration approximately 28 sec with two peaks in activity. Simultaneous analysis of short-period records, and broadband ground displacements and velocities, a method described by Harvey and Choy (1982) and Choy and Boatwright (1981) revealed a complex rupture consisting of two subevents, of about the same moment, separated in time by about 25 sec, and with durations of about 25 sec each. The two peaks in activity resolved by the body-wave moment tensor inversion correspond to the first of these subevents.

  15. The X-ray structure of Centaurus A

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.

    1981-01-01

    The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.

  16. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior.

    PubMed

    Hansen, Sofie Therese; Hansen, Lars Kai

    2017-03-01

    Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging connections exist in the brain than long ranging, arguing for spatially focal sources. Additionally, recent work (Delorme et al., 2012) argues that EEG can be decomposed into components having sparse source distributions. On the temporal side both short and long term stationarity of brain activation are seen. We summarize these insights in an inverse solver, the so-called "Variational Garrote" (Kappen and Gómez, 2013). Using a Markov prior we can incorporate flexible degrees of temporal stationarity. Through spatial basis functions spatially smooth distributions are obtained. Sparsity of these are inherent to the Variational Garrote solver. We name our method the MarkoVG and demonstrate its ability to adapt to the temporal smoothness and spatial sparsity in simulated EEG data. Finally a benchmark EEG dataset is used to demonstrate MarkoVG's ability to recover non-stationary brain dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    Treesearch

    F. Deng; J.M. Chen; Y. Pan; W. Peters; R. Birdsey; K. McCullough; J. Xiao

    2013-01-01

    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an atmospheric inversion of the CO2...

  18. Real-time volcano monitoring using GNSS single-frequency receivers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Yun, Sung-Hyo; Kim, Do Hyeong; Lee, Dukkee; Lee, Young J.; Schutz, Bob E.

    2015-12-01

    We present a real-time volcano monitoring strategy that uses the Global Navigation Satellite System (GNSS), and we examine the performance of the strategy by processing simulated and real data and comparing the results with published solutions. The cost of implementing the strategy is reduced greatly by using single-frequency GNSS receivers except for one dual-frequency receiver that serves as a base receiver. Positions of the single-frequency receivers are computed relative to the base receiver on an epoch-by-epoch basis using the high-rate double-difference (DD) GNSS technique, while the position of the base station is fixed to the values obtained with a deferred-time precise point positioning technique and updated on a regular basis. Since the performance of the single-frequency high-rate DD technique depends on the conditions of the ionosphere over the monitoring area, the ionospheric total electron content is monitored using the dual-frequency data from the base receiver. The surface deformation obtained with the high-rate DD technique is eventually processed by a real-time inversion filter based on the Mogi point source model. The performance of the real-time volcano monitoring strategy is assessed through a set of tests and case studies, in which the data recorded during the 2007 eruption of Kilauea and the 2005 eruption of Augustine are processed in a simulated real-time mode. The case studies show that the displacement time series obtained with the strategy seem to agree with those obtained with deferred-time, dual-frequency approaches at the level of 10-15 mm. Differences in the estimated volume change of the Mogi source between the real-time inversion filter and previously reported works were in the range of 11 to 13% of the maximum volume changes of the cases examined.

  19. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  20. Inversion of source mechanism of 1989 Loma Prieta earthquake by three-dimensional FEM Green‧s function

    NASA Astrophysics Data System (ADS)

    Zeng, Hai-Rong; Song, Hui-Zhen

    1999-05-01

    Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversion of geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By use of the Green’s function about 3-D FEM, we invert geodetic measurements of coseismic deformation of the 1989 M S=7.1 Loma Prieta earthquake to determine its source mechanism. The result indicates that the slip on the fault plane is very heterogeneous. The maximum slip and shear stress are located about 10 km to northwest of the earthquake source; the stress drop is about more than 1 MPa.

  1. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    NASA Astrophysics Data System (ADS)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  2. An Oscillation of the Crack-like Conduit at Nevado del Ruiz Volcano, Colombia, Inferred from Multi-band Analyses of Very Long Period Seismic Events

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Kumagai, H.; Londono, J. M.; Lopez, C. M.; Castaño, L. M.; Beatriz, B.; García, L.

    2017-12-01

    Nevado del Ruiz is an active volcano in Colombia, which continues eruption activity and has been monitored by 13 broadband and 3 short-period seismic stations. In 2015-2016, a joint Japan-Colombia team installed an automatic event detection and location system based on the amplitude source location (ASL) method. Kumagai et al. (IAVCEI, 2017) indicated the existence of a magma conduit extending from the NW flank to the summit based on ASL analyses of various seismic signals including long-period (LP) and very long period (VLP) events and tremors in a 5-10 Hz frequency band. In this study, we analyzed the VLP events by waveform inversion using eight summit stations in a frequency band of 0.3-0.7 Hz. We selected 14 VLP events from May to December 2016 based on signal-to-noise ratios and simplicity of the waveforms. We assumed a homogeneous P-wave velocity of 3.5 km/s with topography in the calculation of the Green functions. We conducted frequency-domain waveform inversion assuming a tensile crack source and investigated the best location and orientation of the crack by a grid search. The inversion results pointed to a low-angle ( 30°) NW-dipping crack near the top of the conduit (approximately 1 km below the summit). The estimated source time functions displayed two or three cycles of oscillations with the seismic moment of order of 1010-1011 N m. For these 14 events, the ASLs from the 5-10 Hz frequency band were also near the top of the conduit. These results suggest the VLP and high-frequency signals are generated by an oscillation of the crack-like conduit near the summit, which may be triggered by a volume change of magma ascending in the conduit.

  3. Evaluation of the inverse dispersion modelling method for estimating ammonia multi-source emissions using low-cost long time averaging sensor

    NASA Astrophysics Data System (ADS)

    Loubet, Benjamin; Carozzi, Marco

    2015-04-01

    Tropospheric ammonia (NH3) is a key player in atmospheric chemistry and its deposition is a threat for the environment (ecosystem eutrophication, soil acidification and reduction in species biodiversity). Most of the NH3 global emissions derive from agriculture, mainly from livestock manure (storage and field application) but also from nitrogen-based fertilisers. Inverse dispersion modelling has been widely used to infer emission sources from a homogeneous source of known geometry. When the emission derives from different sources inside of the measured footprint, the emission should be treated as multi-source problem. This work aims at estimating whether multi-source inverse dispersion modelling can be used to infer NH3 emissions from different agronomic treatment, composed of small fields (typically squares of 25 m side) located near to each other, using low-cost NH3 measurements (diffusion samplers). To do that, a numerical experiment was designed with a combination of 3 x 3 square field sources (625 m2), and a set of sensors placed at the centre of each field at several heights as well as at 200 m away from the sources in each cardinal directions. The concentration at each sensor location was simulated with a forward Lagrangian Stochastic (WindTrax) and a Gaussian-like (FIDES) dispersion model. The concentrations were averaged over various integration times (3 hours to 28 days), to mimic the diffusion sampler behaviour with several sampling strategy. The sources were then inferred by inverse modelling using the averaged concentration and the same models in backward mode. The sources patterns were evaluated using a soil-vegetation-atmosphere model (SurfAtm-NH3) that incorporates the response of the NH3 emissions to surface temperature. A combination emission patterns (constant, linear decreasing, exponential decreasing and Gaussian type) and strengths were used to evaluate the uncertainty of the inversion method. Each numerical experiment covered a period of 28 days. The meteorological dataset of the fluxnet FR-Gri site (Grignon, FR) in 2008 was employed. Several sensor heights were tested, from 0.25 m to 2 m. The multi-source inverse problem was solved based on several sampling and field trial strategies: considering 1 or 2 heights over each field, considering the background concentration as known or unknown, and considering block-repetitions in the field set-up (3 repetitions). The inverse modelling approach demonstrated to be adapted for discriminating large differences in NH3 emissions from small agronomic plots using integrating sensors. The method is sensitive to sensor heights. The uncertainties and systematic biases are evaluated and discussed.

  4. Computed inverse resonance imaging for magnetic susceptibility map reconstruction.

    PubMed

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.

  5. Computed inverse MRI for magnetic susceptibility map reconstruction

    PubMed Central

    Chen, Zikuan; Calhoun, Vince

    2015-01-01

    Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372

  6. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    PubMed Central

    Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian

    2016-01-01

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations. PMID:27487878

  7. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caia

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode blockmore » per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations.« less

  8. DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Ballet, J.; Ackermann, M.

    2016-04-01

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission producedmore » in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.« less

  9. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    NASA Technical Reports Server (NTRS)

    Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Brandt, T. J.; hide

    2016-01-01

    Most of the celestial gamma rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM),which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20deg and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within approximately 4deg of the Galactic Center.

  10. Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Hamburger, Thomas; Cozic, Anne; Balkanski, Yves; Stohl, Andreas

    2017-07-01

    This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30-50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km) than previously assumed (≈ 2.2 km) in order to better match both concentration and deposition observations over Europe. The results of the present inversion were confirmed using an independent Eulerian model, for which deposition patterns were also improved when using the estimated posterior releases. Although the independent model tends to underestimate deposition in countries that are not in the main direction of the plume, it reproduces country levels of deposition very efficiently. The results were also tested for robustness against different setups of the inversion through sensitivity runs. The source term data from this study are publicly available.

  11. Forward and inverse solutions for Risley prism based on the Denavit-Hartenberg methodology

    NASA Astrophysics Data System (ADS)

    Beltran-Gonzalez, A.; Garcia-Torales, G.; Strojnik, M.; Flores, J. L.; Garcia-Luna, J. L.

    2017-08-01

    In this work forward and inverse solutions for two-element Risley prism for pointing and scanning beam systems are developed. A more efficient and faster algorithm is proposed to make an analogy of the Risley prism system compared with a robotic system with two degrees of freedom. This system of equations controls each Risley prism individually as a planar manipulator arm of two links. In order to evaluate the algorithm we implement it in a pointing system. We perform popular routines such as the linear, spiral and loops traces. Using forward and inverse solutions for two-element Risley prism it is also possible to point at coordinates specified by the user, provided they are within the pointer area of work area. Experimental results are showed as a validation of our proposal.

  12. Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askan, A.; /Carnegie Mellon U.; Akcelik, V.

    2009-04-30

    We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less

  13. Nanoseismic sources made in the laboratory: source kinematics and time history

    NASA Astrophysics Data System (ADS)

    McLaskey, G.; Glaser, S. D.

    2009-12-01

    When studying seismic signals in the field, the analysis of source mechanisms is always obscured by propagation effects such as scattering and reflections due to the inhomogeneous nature of the earth. To get around this complication, we measure seismic waves (wavelengths from 2 mm to 300 mm) in laboratory-sized specimens of extremely homogeneous isotropic materials. We are able to study the focal mechanism and time history of nanoseismic sources produced by fracture, impact, and sliding friction, roughly six orders of magnitude smaller and more rapid than typical earthquakes. Using very sensitive broadband conical piezoelectric sensors, we are able to measure surface normal displacements down to a few pm (10^-12 m) in amplitude. Thick plate specimens of homogeneous materials such as glass, steel, gypsum, and polymethylmethacrylate (PMMA) are used as propagation media in the experiments. Recorded signals are in excellent agreement with theoretically determined Green’s functions obtained from a generalized ray theory code for an infinite plate geometry. Extremely precise estimates of the source time history are made via full waveform inversion from the displacement time histories recorded by an array of at least ten sensors. Each channel is sampled at a rate of 5 MHz. The system is absolutely calibrated using the normal impact of a tiny (~1 mm) ball on the surface of the specimen. The ball impact induces a force pulse into the specimen a few ms in duration. The amplitude, duration, and shape of the force pulse were found to be well approximated by Hertzian-derived impact theory, while the total change in momentum of the ball is independently measured from its incoming and rebound velocities. Another calibration source, the sudden fracture of a thin-walled glass capillary tube laid on its side and loaded against the surface of the specimen produces a similar point force, this time with a source function very nearly a step in time with rise time of less than 500 ns. The force at which the capillary breaks is recorded using a force sensor and is used for absolute calibration. A third set of nanoseismic sources were generated from frictional sliding. In this case, the location and spatial extent of the source along the cm-scale fault is not precisely known and must be determined. These sources are much more representative of earthquakes and the determination of their focal mechanisms is the subject of ongoing research. Sources of this type have been observed on a great range of time scales with rise times ranging from 500 ns to hundreds of ms. This study tests the generality of the seismic source representation theory. The unconventional scale, geometry, and experimental arrangement facilitates the discussion of issues such as the point source approximation, the origin of uncertainty in moment tensor inversions, the applicability of magnitude calculations for non-double-couple sources, and the relationship between momentum and seismic moment.

  14. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. The Confirmation of the Inverse Square Law Using Diffraction Gratings

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2014-01-01

    Understanding the inverse square law, how for example the intensity of light or sound varies with distance, presents conceptual and mathematical challenges. Students know intuitively that intensity decreases with distance. A light source appears dimmer and sound gets fainter as the distance from the source increases. The difficulty is in…

  16. FFTDC2: a one-dimensional Fourier transform with forward and inverse data conditioning for non-complex data

    USGS Publications Warehouse

    Bracken, Robert E.

    2004-01-01

    A subroutine (FFTDC2) coded in Fortran 77 is described, which performs a Fast Fourier Transform or Discrete Fourier Transform together with necessary conditioning steps of trend removal, extension, and windowing. The source code for the entire library of required subroutines is provided with the digital release of this report. But, there is only one required entry point, the subroutine call to FFTDC2; all the other subroutines are operationally transparent to the user. Complete instructions for use of FFTDC2.F (as well as for all the other subroutines) and some practical theoretical discussions are included as comments at the beginning of the source code. This subroutine is intended to be an efficient tool for the programmer in a variety of production-level signal-processing applications.

  17. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  18. Elastic Cherenkov effects in transversely isotropic soft materials-I: Theoretical analysis, simulations and inverse method

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping

    2016-11-01

    A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.

  19. The Variability and Interpretation of Earthquake Source Mechanisms in The Geysers Geothermal Field From a Bayesian Standpoint Based on the Choice of a Noise Model

    NASA Astrophysics Data System (ADS)

    Mustać, Marija; Tkalčić, Hrvoje; Burky, Alexander L.

    2018-01-01

    Moment tensor (MT) inversion studies of events in The Geysers geothermal field mostly focused on microseismicity and found a large number of earthquakes with significant non-double-couple (non-DC) seismic radiation. Here we concentrate on the largest events in the area in recent years using a hierarchical Bayesian MT inversion. Initially, we show that the non-DC components of the MT can be reliably retrieved using regional waveform data from a small number of stations. Subsequently, we present results for a number of events and show that accounting for noise correlations can lead to retrieval of a lower isotropic (ISO) component and significantly different focal mechanisms. We compute the Bayesian evidence to compare solutions obtained with different assumptions of the noise covariance matrix. Although a diagonal covariance matrix produces a better waveform fit, inversions that account for noise correlations via an empirically estimated noise covariance matrix account for interdependences of data errors and are preferred from a Bayesian point of view. This implies that improper treatment of data noise in waveform inversions can result in fitting the noise and misinterpreting the non-DC components. Finally, one of the analyzed events is characterized as predominantly DC, while the others still have significant non-DC components, probably as a result of crack opening, which is a reasonable hypothesis for The Geysers geothermal field geological setting.

  20. Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.

    2016-12-01

    Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.

  1. Mesoscale variability of free tropospheric humidity near San Nicolas Island during FIRE

    NASA Technical Reports Server (NTRS)

    White, A. B.; Fairall, C. W.; Thomson, D. W.

    1990-01-01

    Humidity variability at the top of the marine boundary layer (MBL) and in the free troposphere was examined using a variety of measurements taken on and around San Nicolas Island (SNI) during the FIRE IFO in July, 1987. Doppler wind profiler reflectivity recorded at two minute time resolution has provided the most continuous record and detail of small scale humidity fluctuations. Rawinsonde data were available from both an island site and the research vessel Point Sur. The information extractable from these sources is somewhat limited due to the frequency of launches (3 to 4/day at SNI and 6/day on the Point Sur). Some additional data were available from instrumented aircraft although scheduling flights in the neighborhood of the island was difficult due to restrictions on the air space. Other relevant data were collected at SNI near the radar and rawinsonde launch sites. A continuous record of cloud base altitude was logged by a ceilometer. Doppler acoustic sounder (sodar) reflectivity data provided a good record of inversion height. The sodar also monitored turbulent temperature fluctuations in the MBL. A small ground station recorded hourly averages of solar irradiance and downward longwave irradiance. The analysis in progress of the various data sets for two adjacent two day periods from 11 July to 14 July is described. The earlier period was chosen because the marine inversion was unusually high and there was increased frequency of rawinsonde launches at SNI. The later period was chosen because of the significant descent with time of an elevated inversion indicated by the radar data. Throughout the four day period, but especially in the first half, the turbulent humidity structure calculated from Doppler radar reflectivity shows excellent agreement with humidity profiles evaluated from rawinsonde data.

  2. Joint Inversion of Source Location and Source Mechanism of Induced Microseismics

    NASA Astrophysics Data System (ADS)

    Liang, C.

    2014-12-01

    Seismic source mechanism is a useful property to indicate the source physics and stress and strain distribution in regional, local and micro scales. In this study we jointly invert source mechanisms and locations for microseismics induced in fluid fracturing treatment in the oil and gas industry. For the events that are big enough to see waveforms, there are quite a few techniques can be applied to invert the source mechanism including waveform inversion, first polarity inversion and many other methods and variants based on these methods. However, for events that are too small to identify in seismic traces such as the microseismics induced by the fluid fracturing in the Oil and Gas industry, a source scanning algorithms (SSA for short) with waveform stacking are usually applied. At the same time, a joint inversion of location and source mechanism are possible but at a cost of high computation budget. The algorithm is thereby called Source Location and Mechanism Scanning Algorithm, SLMSA for short. In this case, for given velocity structure, all possible combinations of source locations (X,Y and Z) and source mechanism (Strike, Dip and Rake) are used to compute travel-times and polarities of waveforms. Correcting Normal moveout times and polarities, and stacking all waveforms, the (X, Y, Z , strike, dip, rake) combination that gives the strongest stacking waveform is identified as the solution. To solve the problem of high computation problem, CPU-GPU programing is applied. Numerical datasets are used to test the algorithm. The SLMSA has also been applied to a fluid fracturing datasets and reveal several advantages against the location only method: (1) for shear sources, the source only program can hardly locate them because of the canceling out of positive and negative polarized traces, but the SLMSA method can successfully pick up those events; (2) microseismic locations alone may not be enough to indicate the directionality of micro-fractures. The statistics of source mechanisms can certainly provide more knowledges on the orientation of fractures; (3) in our practice, the joint inversion method almost always yield more events than the source only method and for those events that are also picked by the SSA method, the stacking power of SLMSA are always higher than the ones obtained in SSA.

  3. Attention Misplaced: The Role of Diagnostic Features in the Face-Inversion Effect

    ERIC Educational Resources Information Center

    Hills, Peter J.; Ross, David A.; Lewis, Michael B.

    2011-01-01

    Inversion disproportionately impairs recognition of face stimuli compared to nonface stimuli arguably due to the holistic manner in which faces are processed. A qualification is put forward in which the first point fixated on is different for upright and inverted faces and this carries some of the face-inversion effect. Three experiments explored…

  4. Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite

    NASA Astrophysics Data System (ADS)

    Yang, X.; Cleveland, M.

    2016-12-01

    We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.

  5. Towards seismic waveform inversion of long-offset Ocean-Bottom Seismic data for deep crustal imaging offshore Western Australia

    NASA Astrophysics Data System (ADS)

    Monnier, S.; Lumley, D. E.; Kamei, R.; Goncharov, A.; Shragge, J. C.

    2016-12-01

    Ocean Bottom Seismic datasets have become increasingly used in recent years to develop high-resolution, wavelength-scale P-wave velocity models of the lithosphere from waveform inversion, due to their recording of long-offset transmitted phases. New OBS surveys evolve towards novel acquisition geometries involving longer offsets (several hundreds of km), broader frequency content (1-100 Hz), while receiver sampling often remains sparse (several km). Therefore, it is critical to assess the effects of such geometries on the eventual success and resolution of waveform inversion velocity models. In this study, we investigate the feasibility of waveform inversion on the Bart 2D OBS profile acquired offshore Western Australia, to investigate regional crustal and Moho structures. The dataset features 14 broadband seismometers (0.01-100 Hz) from AuScope's national OBS fleet, offsets in excess of 280 km, and a sparse receiver sampling (18 km). We perform our analysis in four stages: (1) field data analysis, (2) 2D P-wave velocity model building, synthetic data (3) modelling, and (4) waveform inversion. Data exploration shows high-quality active-source signal down to 2Hz, and usable first arrivals to offsets greater than 100 km. The background velocity model is constructed by combining crustal and Moho information in continental reference models (e.g., AuSREM, AusMoho). These low-resolution studies suggest a crustal thickness of 20-25 km along our seismic line and constitute a starting point for synthetic modelling and inversion. We perform synthetic 2D time-domain modelling to: (1) evaluate the misfit between synthetic and field data within the usable frequency band (2-10 Hz); (2) validate our velocity model; and (3) observe the effects of sparse OBS interval on data quality. Finally, we apply 2D acoustic frequency-domain waveform inversion to the synthetic data to generate velocity model updates. The inverted model is compared to the reference model to investigate the improved crustal resolution and Moho boundary delineation that could be realized using waveform inversion, and to evaluate the effects of the acquisition parameters. The inversion strategies developed through the synthetic tests will help the subsequent inversion of sparse, long-offset OBS field data.

  6. Spectral inversion of frequency-domain IP data obtained in Haenam, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, B.; Nam, M. J.; Son, J. S.

    2017-12-01

    Spectral induced polarization (SIP) method using a range of source frequencies have been performed for not only exploring minerals resources, but also engineering or environmental application. SIP interpretation first makes inversion of individual frequency data to obtain complex resistivity structures, which will further analyzed employing Cole-Cole model to explain the frequency-dependent characteristics. However, due to the difficulty in fitting Cole-Cole model, there is a movement to interpret complex resistivity structure inverted only from a single frequency data: that is so-called "complex resistivity survey". Further, simultaneous inversion of multi-frequency SIP data, rather than making a single frequency SIP data, has been studied to improve ambiguity and artefacts of independent single frequency inversion in obtaining a complex resistivity structure, even though the dispersion characteristics of complex resistivity with respect to source frequency. Employing the simultaneous inversion method, this study makes inversion of field SIP data obtained over epithermal mineralized area, Haenam, in the southernmost tip of South Korea. The area has a polarizable structure because of extensive hydrothermal alteration, gold-silver deposits. After the inversion, we compare between inversion results considering multi-frequency data and single frequency data set to evaluate the performance of simultaneous inversion of multi-frequency SIP data.

  7. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Jacobson, B.; Murokh, A.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  8. Solving constrained inverse problems for waveform tomography with Salvus

    NASA Astrophysics Data System (ADS)

    Boehm, C.; Afanasiev, M.; van Driel, M.; Krischer, L.; May, D.; Rietmann, M.; Fichtner, A.

    2016-12-01

    Finding a good balance between flexibility and performance is often difficult within domain-specific software projects. To achieve this balance, we introduce Salvus: an open-source high-order finite element package built upon PETSc and Eigen, that focuses on large-scale full-waveform modeling and inversion. One of the key features of Salvus is its modular design, based on C++ mixins, that separates the physical equations from the numerical discretization and the mathematical optimization. In this presentation we focus on solving inverse problems with Salvus and discuss (i) dealing with inexact derivatives resulting, e.g., from lossy wavefield compression, (ii) imposing additional constraints on the model parameters, e.g., from effective medium theory, and (iii) integration with a workflow management tool. We present a feasible-point trust-region method for PDE-constrained inverse problems that can handle inexactly computed derivatives. The level of accuracy in the approximate derivatives is controlled by localized error estimates to ensure global convergence of the method. Additional constraints on the model parameters are typically cheap to compute without the need for further simulations. Hence, including them in the trust-region subproblem introduces only a small computational overhead, but ensures feasibility of the model in every iteration. We show examples with homogenization constraints derived from effective medium theory (i.e. all fine-scale updates must upscale to a physically meaningful long-wavelength model). Salvus has a built-in workflow management framework to automate the inversion with interfaces to user-defined misfit functionals and data structures. This significantly reduces the amount of manual user interaction and enhances reproducibility which we demonstrate for several applications from the laboratory to global scale.

  9. Full Waveform Inversion with Multisource Frequency Selection of Marine Streamer Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yunsong; Schuster, Gerard T.

    The theory and practice of multisource full waveform inversion of marine supergathers are described with a frequency-selection strategy. The key enabling property of frequency selection is that it eliminates the crosstalk among sources, thus overcoming the aperture mismatch of marine multisource inversion. Tests on multisource full waveform inversion of synthetic marine data and Gulf of Mexico data show speedups of 4× and 8×, respectively, compared to conventional full waveform inversion.

  10. Full Waveform Inversion with Multisource Frequency Selection of Marine Streamer Data

    DOE PAGES

    Huang, Yunsong; Schuster, Gerard T.

    2017-10-26

    The theory and practice of multisource full waveform inversion of marine supergathers are described with a frequency-selection strategy. The key enabling property of frequency selection is that it eliminates the crosstalk among sources, thus overcoming the aperture mismatch of marine multisource inversion. Tests on multisource full waveform inversion of synthetic marine data and Gulf of Mexico data show speedups of 4× and 8×, respectively, compared to conventional full waveform inversion.

  11. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOEpatents

    Kikta, Thomas J.; Mitchell, Ronald D.

    1992-01-01

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet.

  12. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOEpatents

    Kikta, T.J.; Mitchell, R.D.

    1992-11-24

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.

  13. Inverse and Forward Modeling of The 2014 Iquique Earthquake with Run-up Data

    NASA Astrophysics Data System (ADS)

    Fuentes, M.

    2015-12-01

    The April 1, 2014 Mw 8.2 Iquique earthquake excited a moderate tsunami which turned on the national alert of tsunami threat. This earthquake was located in the well-known seismic gap in northern Chile which had a high seismic potential (~ Mw 9.0) after the two main large historic events of 1868 and 1877. Nonetheless, studies of the seismic source performed with seismic data inversions suggest that the event exhibited a main patch located around 19.8° S at 40 km of depth with a seismic moment equivalent to Mw = 8.2. Thus, a large seismic deficit remains in the gap being capable to release an event of Mw = 8.8-8.9. To understand the importance of the tsunami threat in this zone, a seismic source modeling of the Iquique Earthquake is performed. A new approach based on stochastic k2 seismic sources is presented. A set of those sources is generated and for each one, a full numerical tsunami model is performed in order to obtain the run-up heights along the coastline. The results are compared with the available field run-up measurements and with the tide gauges that registered the signal. The comparison is not uniform; it penalizes more when the discrepancies are larger close to the peak run-up location. This criterion allows to identify the best seismic source from the set of scenarios that explains better the observations from a statistical point of view. By the other hand, a L2 norm minimization is used to invert the seismic source by comparing the peak nearshore tsunami amplitude (PNTA) with the run-up observations. This method searches in a space of solutions the best seismic configuration by retrieving the Green's function coefficients in order to explain the field measurements. The results obtained confirm that a concentrated down-dip patch slip adequately models the run-up data.

  14. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2016-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source location, and thereby to contribute to a better understanding of noise generation. We introduce an operator-based formulation for the computation of correlation functions and apply the continuous adjoint method that allows us to compute first and second derivatives of misfit functionals with respect to source distribution and Earth structure efficiently. Based on these developments we design an inversion scheme using a 2D finite-difference code. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: The capability of different misfit functionals to image wave speed anomalies and source distribution. Possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus, which allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface.

  15. Inversion of gravity gradient tensor data: does it provide better resolution?

    NASA Astrophysics Data System (ADS)

    Paoletti, V.; Fedi, M.; Italiano, F.; Florio, G.; Ialongo, S.

    2016-04-01

    The gravity gradient tensor (GGT) has been increasingly used in practical applications, but the advantages and the disadvantages of the analysis of GGT components versus the analysis of the vertical component of the gravity field are still debated. We analyse the performance of joint inversion of GGT components versus separate inversion of the gravity field alone, or of one tensor component. We perform our analysis by inspection of the Picard Plot, a Singular Value Decomposition tool, and analyse both synthetic data and gradiometer measurements carried out at the Vredefort structure, South Africa. We show that the main factors controlling the reliability of the inversion are algebraic ambiguity (the difference between the number of unknowns and the number of available data points) and signal-to-noise ratio. Provided that algebraic ambiguity is kept low and the noise level is small enough so that a sufficient number of SVD components can be included in the regularized solution, we find that: (i) the choice of tensor components involved in the inversion is not crucial to the overall reliability of the reconstructions; (ii) GGT inversion can yield the same resolution as inversion with a denser distribution of gravity data points, but with the advantage of using fewer measurement stations.

  16. LEAP: Looking beyond pixels with continuous-space EstimAtion of Point sources

    NASA Astrophysics Data System (ADS)

    Pan, Hanjie; Simeoni, Matthieu; Hurley, Paul; Blu, Thierry; Vetterli, Martin

    2017-12-01

    Context. Two main classes of imaging algorithms have emerged in radio interferometry: the CLEAN algorithm and its multiple variants, and compressed-sensing inspired methods. They are both discrete in nature, and estimate source locations and intensities on a regular grid. For the traditional CLEAN-based imaging pipeline, the resolution power of the tool is limited by the width of the synthesized beam, which is inversely proportional to the largest baseline. The finite rate of innovation (FRI) framework is a robust method to find the locations of point-sources in a continuum without grid imposition. The continuous formulation makes the FRI recovery performance only dependent on the number of measurements and the number of sources in the sky. FRI can theoretically find sources below the perceived tool resolution. To date, FRI had never been tested in the extreme conditions inherent to radio astronomy: weak signal / high noise, huge data sets, large numbers of sources. Aims: The aims were (i) to adapt FRI to radio astronomy, (ii) verify it can recover sources in radio astronomy conditions with more accurate positioning than CLEAN, and possibly resolve some sources that would otherwise be missed, (iii) show that sources can be found using less data than would otherwise be required to find them, and (iv) show that FRI does not lead to an augmented rate of false positives. Methods: We implemented a continuous domain sparse reconstruction algorithm in Python. The angular resolution performance of the new algorithm was assessed under simulation, and with visibility measurements from the LOFAR telescope. Existing catalogs were used to confirm the existence of sources. Results: We adapted the FRI framework to radio interferometry, and showed that it is possible to determine accurate off-grid point-source locations and their corresponding intensities. In addition, FRI-based sparse reconstruction required less integration time and smaller baselines to reach a comparable reconstruction quality compared to a conventional method. The achieved angular resolution is higher than the perceived instrument resolution, and very close sources can be reliably distinguished. The proposed approach has cubic complexity in the total number (typically around a few thousand) of uniform Fourier data of the sky image estimated from the reconstruction. It is also demonstrated that the method is robust to the presence of extended-sources, and that false-positives can be addressed by choosing an adequate model order to match the noise level.

  17. Strategies for efficient resolution analysis in full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; van Leeuwen, T.; Trampert, J.

    2016-12-01

    Full-waveform inversion is developing into a standard method in the seismological toolbox. It combines numerical wave propagation for heterogeneous media with adjoint techniques in order to improve tomographic resolution. However, resolution becomes increasingly difficult to quantify because of the enormous computational requirements. Here we present two families of methods that can be used for efficient resolution analysis in full-waveform inversion. They are based on the targeted extraction of resolution proxies from the Hessian matrix, which is too large to store and to compute explicitly. Fourier methods rest on the application of the Hessian to Earth models with harmonic oscillations. This yields the Fourier spectrum of the Hessian for few selected wave numbers, from which we can extract properties of the tomographic point-spread function for any point in space. Random probing methods use uncorrelated, random test models instead of harmonic oscillations. Auto-correlating the Hessian-model applications for sufficiently many test models also characterises the point-spread function. Both Fourier and random probing methods provide a rich collection of resolution proxies. These include position- and direction-dependent resolution lengths, and the volume of point-spread functions as indicator of amplitude recovery and inter-parameter trade-offs. The computational requirements of these methods are equivalent to approximately 7 conjugate-gradient iterations in full-waveform inversion. This is significantly less than the optimisation itself, which may require tens to hundreds of iterations to reach convergence. In addition to the theoretical foundations of the Fourier and random probing methods, we show various illustrative examples from real-data full-waveform inversion for crustal and mantle structure.

  18. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    PubMed Central

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  19. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  20. Delineation of Rupture Propagation of Large Earthquakes Using Source-Scanning Algorithm: A Control Study

    NASA Astrophysics Data System (ADS)

    Kao, H.; Shan, S.

    2004-12-01

    Determination of the rupture propagation of large earthquakes is important and of wide interest to the seismological research community. The conventional inversion method determines the distribution of slip at a grid of subfaults whose orientations are predefined. As a result, difference choices of fault geometry and dimensions often result in different solutions. In this study, we try to reconstruct the rupture history of an earthquake using the newly developed Source-Scanning Algorithm (SSA) without imposing any a priori constraints on the fault's orientation and dimension. The SSA identifies the distribution of seismic sources in two steps. First, it calculates the theoretical arrival times from all grid points inside the model space to all seismic stations by assuming an origin time. Then, the absolute amplitudes of the observed waveforms at the predicted arrival times are added to give the "brightness" of each time-space pair, and the brightest spots mark the locations of sources. The propagation of the rupture is depicted by the migration of the brightest spots throughout a prescribed time window. A series of experiments are conducted to test the resolution of the SSA inversion. Contrary to the conventional wisdom that seismometers should be placed as close as possible to the fault trace to give the best resolution in delineating rupture details, we found that the best results are obtained if the seismograms are recorded at a distance about half of the total rupture length away from the fault trace. This is especially true when the rupture duration is longer than ~10 s. A possible explanation is that the geometric spreading effects for waveforms from different segments of the rupture are about the same if the stations are sufficiently away from the fault trace, thus giving a uniform resolution to the entire rupture history.

  1. The Linearized Bregman Method for Frugal Full-waveform Inversion with Compressive Sensing and Sparsity-promoting

    NASA Astrophysics Data System (ADS)

    Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong

    2018-03-01

    Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.

  2. Real-time Inversion of Tsunami Source from GNSS Ground Deformation Observations and Tide Gauges.

    NASA Astrophysics Data System (ADS)

    Arcas, D.; Wei, Y.

    2017-12-01

    Over the last decade, the NOAA Center for Tsunami Research (NCTR) has developed an inversion technique to constrain tsunami sources based on the use of Green's functions in combination with data reported by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems. The system has consistently proven effective in providing highly accurate tsunami forecasts of wave amplitude throughout an entire basin. However, improvement is necessary in two critical areas: reduction of data latency for near-field tsunami predictions and reduction of maintenance cost of the network. Two types of sensors have been proposed as supplementary to the existing network of DART®systems: Global Navigation Satellite System (GNSS) stations and coastal tide gauges. The use GNSS stations to provide autonomous geo-spatial positioning at specific sites during an earthquake has been proposed in recent years to supplement the DART® array in tsunami source inversion. GNSS technology has the potential to provide substantial contributions in the two critical areas of DART® technology where improvement is most necessary. The present study uses GNSS ground displacement observations of the 2011 Tohoku-Oki earthquake in combination with NCTR operational database of Green's functions, to produce a rapid estimate of tsunami source based on GNSS observations alone. The solution is then compared with that obtained via DART® data inversion and the difficulties in obtaining an accurate GNSS-based solution are underlined. The study also identifies the set of conditions required for source inversion from coastal tide-gauges using the degree of nonlinearity of the signal as a primary criteria. We then proceed to identify the conditions and scenarios under which a particular gage could be used to invert a tsunami source.

  3. Function representation with circle inversion map systems

    NASA Astrophysics Data System (ADS)

    Boreland, Bryson; Kunze, Herb

    2017-01-01

    The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.

  4. A hydraulic tomography approach coupling travel time inversion with steady shape analysis based on aquifer analogue study in coarsely clastic fluvial glacial deposit

    NASA Astrophysics Data System (ADS)

    Hu, R.; Brauchler, R.; Herold, M.; Bayer, P.; Sauter, M.

    2009-04-01

    Rarely is it possible to draw a significant conclusion about the geometry and the properties of geological structures of the underground using the information which is typically obtained from boreholes, since soil exploration is only representative of the position where the soil sample is taken from. Conventional aquifer investigation methods like pumping tests can provide hydraulic properties of a larger area; however, they lead to integral information. This information is insufficient to develop groundwater models, especially contaminant transport models, which require information about the spatial distribution of the hydraulic properties of the subsurface. Hydraulic tomography is an innovative method which has the potential to spatially resolve three dimensional structures of natural aquifer bodies. The method employs hydraulic short term tests performed between two or more wells, whereby the pumped intervals (sources) and the observation points (receivers) are separated by double packer systems. In order to optimize the computationally intensive tomographic inversion of transient hydraulic data we have decided to couple two inversion approaches (a) hydraulic travel time inversion and (b) steady shape inversion. (a) Hydraulic travel time inversion is based on the solution of the travel time integral, which describes the relationship between travel time of maximum signal variation of a transient hydraulic signal and the diffusivity between source and receiver. The travel time inversion is computationally extremely effective and robust, however, it is limited to the determination of diffusivity. In order to overcome this shortcoming we use the estimated diffusivity distribution as starting model for the steady shape inversion with the goal to separate the estimated diffusivity distribution into its components, hydraulic conductivity and specific storage. (b) The steady shape inversion utilizes the fact that at steady shape conditions, drawdown varies with time but the hydraulic gradient does not. By this trick, transient data can be analyzed with the computational efficiency of a steady state model, which proceeds hundreds of times faster than transient models. Finally, a specific storage distribution can be calculated from the diffusivity and hydraulic conductivity reconstructions derived from travel time and steady shape inversion. The groundwork of this study is the aquifer-analogue study from BAYER (1999), in which six parallel profiles of a natural sedimentary body with a size of 16m x 10m x 7m were mapped in high resolution with respect to structural and hydraulic parameters. Based on these results and using geostatistical interpolation methods, MAJI (2005) designed a three dimensional hydraulic model with a resolution of 5cm x 5cm x 5cm. This hydraulic model was used to simulate a large number of short term pumping tests in a tomographical array. The high resolution parameter reconstructions gained from the inversion of simulated pumping test data demonstrate that the proposed inversion scheme allows reconstructing the individual architectural elements and their hydraulic properties with a higher resolution compared to conventional hydraulic and geological investigation methods. Bayer P (1999) Aquifer-Analog-Studium in grobklastischen braided river Ablagerungen: Sedimentäre/hydrogeologische Wandkartierung und Kalibrierung von Georadarmessungen, Diplomkartierung am Lehrstuhl für Angewandte Geologie, Universität Tübingen, 25 pp. Maji, R. (2005) Conditional Stochastic Modelling of DNAPL Migration and Dissolution in a High-resolution Aquifer Analog, Ph.D. thesis at the University of Waterloo, 187 pp.

  5. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  6. Inference of emission rates from multiple sources using Bayesian probability theory.

    PubMed

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  7. Localization of incipient tip vortex cavitation using ray based matched field inversion method

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon

    2015-10-01

    Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.

  8. Interpretation of Trace Gas Data Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1997-01-01

    This is a theoretical research project aimed at: (1) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (2) utilization of inverse methods to determine these source/sink strengths which use the NCAR/Boulder CCM2-T42 3-D model and a global 3-D Model for Atmospheric Transport and Chemistry (MATCH) which is based on analyzed observed wind fields (developed in collaboration by MIT and NCAR/Boulder), (3) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and, (4) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3-D models. Important goals include determination of regional source strengths of methane, nitrous oxide, and other climatically and chemically important biogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements and hydrohalocarbons used as alternatives to the restricted halocarbons.

  9. Toward regional corrections of long period CMT inversions using InSAR

    NASA Astrophysics Data System (ADS)

    Shakibay Senobari, N.; Funning, G.; Ferreira, A. M.

    2017-12-01

    One of InSAR's main strengths, with respect to other methods of studying earthquakes, is finding the accurate location of the best point source (or `centroid') for an earthquake. While InSAR data have great advantages for study of shallow earthquakes, the number of earthquakes for which we have InSAR data is low, compared with the number of earthquakes recorded seismically. And though improvements to SAR satellite constellations have enhanced the use of InSAR data during earthquake response, post-event data still have a latency on the order of days. On the other hand, earthquake centroid inversion methods using long period seismic data (e.g. the Global CMT method) are fast but include errors caused by inaccuracies in both the Earth velocity model and in wave propagation assumptions (e.g. Hjörleifsdóttir and Ekström, 2010; Ferreira and Woodhouse, 2006). Here we demonstrate a method that combines the strengths of both methods, calculating regional travel-time corrections for long-period waveforms using accurate centroid locations from InSAR, then applying these to other events that occur in the same region. Our method is based on the observation that synthetic seismograms produced from InSAR source models and locations match the data very well except for some phase shifts (travel time biases) between the two waveforms, likely corresponding to inaccuracies in Earth velocity models (Weston et al., 2014). Our previous work shows that adding such phase shifts to the Green's functions can improve the accuracy of long period seismic CMT inversions by reducing tradeoffs between the moment tensor components and centroid location (e.g. Shakibay Senobari et al., AGU Fall Meeting 2015). Preliminary work on several pairs of neighboring events (e.g. Landers-Hector Mine, the 2000 South Iceland earthquake sequences) shows consistent azimuthal patterns of these phase shifts for nearby events at common stations. These phase shift patterns strongly suggest that it is possible to determine regional corrections for the source regions of these events. The aim of this project is to perform a full CMT inversion using the phase shift corrections, calculated for nearby events, to observe improvement in CMT locations and solutions. We will demonstrate our method on the five M 6 events that occurred in central Italy between 1997 and 2016.

  10. Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Oth, A.; Parolai, S.; Bindi, D.; De Landro, G.; Amoroso, O.

    2017-05-01

    The accurate determination of stress drop, seismic efficiency, and how source parameters scale with earthquake size is an important issue for seismic hazard assessment of induced seismicity. We propose an improved nonparametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for attenuation and site contributions. Then, the retrieved source spectra are inverted by a nonlinear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (Mw 2-3.8) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations, more than 17.000 velocity records). We find a nonself-similar behavior, empirical source spectra that require an ωγ source model with γ > 2 to be well fit and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes and that the proportion of high-frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping faults in the fluid pressure diffusion.

  11. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  12. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  13. Solving the multi-frequency electromagnetic inverse source problem by the Fourier method

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Ma, Fuming; Guo, Yukun; Li, Jingzhi

    2018-07-01

    This work is concerned with an inverse problem of identifying the current source distribution of the time-harmonic Maxwell's equations from multi-frequency measurements. Motivated by the Fourier method for the scalar Helmholtz equation and the polarization vector decomposition, we propose a novel method for determining the source function in the full vector Maxwell's system. Rigorous mathematical justifications of the method are given and numerical examples are provided to demonstrate the feasibility and effectiveness of the method.

  14. Late Jurassic – early Cretaceous inversion of rift structures, and linkage of petroleum system elements across post-rift unconformity, U.S. Chukchi Shelf, arctic Alaska

    USGS Publications Warehouse

    Houseknecht, David W.; Connors, Christopher D.

    2015-01-01

    Oil-prone source rocks, reservoir-quality sandstone, migration pathways, and structural closure are linked intimately across the Jurassic unconformity, which reflects inversion. Thus, all these key petroleum systems elements were in place when Triassic source rocks entered the oil generation window during Cretaceous–Cenozoic stratigraphic burial.

  15. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE PAGES

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...

    2017-10-17

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  16. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  17. Vibrato in Singing Voice: The Link between Source-Filter and Sinusoidal Models

    NASA Astrophysics Data System (ADS)

    Arroabarren, Ixone; Carlosena, Alfonso

    2004-12-01

    The application of inverse filtering techniques for high-quality singing voice analysis/synthesis is discussed. In the context of source-filter models, inverse filtering provides a noninvasive method to extract the voice source, and thus to study voice quality. Although this approach is widely used in speech synthesis, this is not the case in singing voice. Several studies have proved that inverse filtering techniques fail in the case of singing voice, the reasons being unclear. In order to shed light on this problem, we will consider here an additional feature of singing voice, not present in speech: the vibrato. Vibrato has been traditionally studied by sinusoidal modeling. As an alternative, we will introduce here a novel noninteractive source filter model that incorporates the mechanisms of vibrato generation. This model will also allow the comparison of the results produced by inverse filtering techniques and by sinusoidal modeling, as they apply to singing voice and not to speech. In this way, the limitations of these conventional techniques, described in previous literature, will be explained. Both synthetic signals and singer recordings are used to validate and compare the techniques presented in the paper.

  18. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    PubMed

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  19. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM

    USGS Publications Warehouse

    Boore, D.M.

    2009-01-01

    Comparisons of ground motions from two widely used point-source and finite-source ground-motion simulation programs (SMSIM and EXSIM) show that the following simple modifications in EXSIM will produce agreement in the motions from a small earthquake at a large distance for the two programs: (1) base the scaling of high frequencies on the integral of the squared Fourier acceleration spectrum; (2) do not truncate the time series from each subfault; (3) use the inverse of the subfault corner frequency for the duration of motions from each subfault; and (4) use a filter function to boost spectral amplitudes at frequencies near and less than the subfault corner frequencies. In addition, for SMSIM an effective distance is defined that accounts for geometrical spreading and anelastic attenuation from various parts of a finite fault. With these modifications, the Fourier and response spectra from SMSIM and EXSIM are similar to one another, even close to a large earthquake (M 7), when the motions are averaged over a random distribution of hypocenters. The modifications to EXSIM remove most of the differences in the Fourier spectra from simulations using pulsing and static subfaults; they also essentially eliminate any dependence of the EXSIM simulations on the number of subfaults. Simulations with the revised programs suggest that the results of Atkinson and Boore (2006), computed using an average stress parameter of 140 bars and the original version of EXSIM, are consistent with the revised EXSIM with a stress parameter near 250 bars.

  20. Fixed-point image orthorectification algorithms for reduced computational cost

    NASA Astrophysics Data System (ADS)

    French, Joseph Clinton

    Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.

  1. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2000-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at best a minor contributor to the overall emission. Hence inverse bremsstrahlung can be safely neglected in most models invoking shock acceleration in discrete sources such as supernova remnants. However, on scales approximately > 100 pc distant from these sources, Coulomb collisional losses can deplete the cosmic ray electrons, rendering inverse bremsstrahlung, and perhaps bremsstrahlung from knock-on electrons, possibly detectable.

  2. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  3. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Murokh, A.; Piot, P.

    2017-07-01

    A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  4. Bayesian source term estimation of atmospheric releases in urban areas using LES approach.

    PubMed

    Xue, Fei; Kikumoto, Hideki; Li, Xiaofeng; Ooka, Ryozo

    2018-05-05

    The estimation of source information from limited measurements of a sensor network is a challenging inverse problem, which can be viewed as an assimilation process of the observed concentration data and the predicted concentration data. When dealing with releases in built-up areas, the predicted data are generally obtained by the Reynolds-averaged Navier-Stokes (RANS) equations, which yields building-resolving results; however, RANS-based models are outperformed by large-eddy simulation (LES) in the predictions of both airflow and dispersion. Therefore, it is important to explore the possibility of improving the estimation of the source parameters by using the LES approach. In this paper, a novel source term estimation method is proposed based on LES approach using Bayesian inference. The source-receptor relationship is obtained by solving the adjoint equations constructed using the time-averaged flow field simulated by the LES approach based on the gradient diffusion hypothesis. A wind tunnel experiment with a constant point source downwind of a single building model is used to evaluate the performance of the proposed method, which is compared with that of the existing method using a RANS model. The results show that the proposed method reduces the errors of source location and releasing strength by 77% and 28%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The choice of the source space and the Laplacian matrix in LORETA and the spatio-temporal Kalman filter EEG inverse methods.

    PubMed

    Habboush, Nawar; Hamid, Laith; Japaridze, Natia; Wiegand, Gert; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Siniatchkin, Michael

    2015-08-01

    The discretization of the brain and the definition of the Laplacian matrix influence the results of methods based on spatial and spatio-temporal smoothness, since the Laplacian operator is used to define the smoothness based on the neighborhood of each grid point. In this paper, the results of low resolution electromagnetic tomography (LORETA) and the spatiotemporal Kalman filter (STKF) are computed using, first, a greymatter source space with the standard definition of the Laplacian matrix and, second, using a whole-brain source space and a modified definition of the Laplacian matrix. Electroencephalographic (EEG) source imaging results of five inter-ictal spikes from a pre-surgical patient with epilepsy are used to validate the two aforementioned approaches. The results using the whole-brain source space and the modified definition of the Laplacian matrix were concentrated in a single source activation, stable, and concordant with the location of the focal cortical dysplasia (FCD) in the patient's brain compared with the results which use a grey-matter grid and the classical definition of the Laplacian matrix. This proof-of-concept study demonstrates a substantial improvement of source localization with both LORETA and STKF and constitutes a basis for further research in a large population of patients with epilepsy.

  6. Joint Inversion of Gravity and Gravity Tensor Data Using the Structural Index as Weighting Function Rate Decay

    NASA Astrophysics Data System (ADS)

    Ialongo, S.; Cella, F.; Fedi, M.; Florio, G.

    2011-12-01

    Most geophysical inversion problems are characterized by a number of data considerably higher than the number of the unknown parameters. This corresponds to solve highly underdetermined systems. To get a unique solution, a priori information must be therefore introduced. We here analyze the inversion of the gravity gradient tensor (GGT). Previous approaches to invert jointly or independently more gradient components are by Li (2001) proposing an algorithm using a depth weighting function and Zhdanov et alii (2004), providing a well focused inversion of gradient data. Both the methods give a much-improved solution compared with the minimum length solution, which is invariably shallow and not representative of the true source distribution. For very undetermined problems, this feature is due to the role of the depth weighting matrices used by both the methods. Recently, Cella and Fedi (2011) showed however that for magnetic and gravity data the depth weighting function has to be defined carefully, under a preliminary application of Euler Deconvolution or Depth from Extreme Point methods, yielding the appropriate structural index and then using it as the rate decay of the weighting function. We therefore propose to extend this last approach to invert jointly or independently the GGT tensor using the structural index as weighting function rate decay. In case of a joint inversion, gravity data can be added as well. This multicomponent case is also relevant because the simultaneous use of several components and gravity increase the number of data and reduce the algebraic ambiguity compared to the inversion of a single component. The reduction of such ambiguity was shown in Fedi et al, (2005) decisive to get an improved depth resolution in inverse problems, independently from any form of depth weighting function. The method is demonstrated to synthetic cases and applied to real cases, such as the Vredefort impact area (South Africa), characterized by a complex density distribution, well defining a central uplift area, ring structures and low density sediments. REFERENCES Cella F., and Fedi M., 2011, Inversion of potential field data using the structural index as weighting function rate decay, Geophysical Prospecting, doi: 10.1111/j.1365-2478.2011.00974.x Fedi M., Hansen P. C., and Paoletti V., 2005 Analysis of depth resolution in potential-field inversion. Geophysics, 70, NO. 6 Li, Y., 2001, 3-D inversion of gravity gradiometry data: 71st Annual Meeting, SEG, Expanded Abstracts, 1470-1473. Zhdanov, M. S., Ellis, R. G., and Mukherjee, S., 2004, Regularized focusing inversion of 3-D gravity tensor data: Geophysics, 69, 925-937.

  7. TU-AB-BRC-11: Moving a GPU-OpenCL-Based Monte Carlo (MC) Dose Engine Towards Routine Clinical Use: Automatic Beam Commissioning and Efficient Source Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z; Folkerts, M; Jiang, S

    Purpose: We have previously developed a GPU-OpenCL-based MC dose engine named goMC with built-in analytical linac beam model. To move goMC towards routine clinical use, we have developed an automatic beam-commissioning method, and an efficient source sampling strategy to facilitate dose calculations for real treatment plans. Methods: Our commissioning method is to automatically adjust the relative weights among the sub-sources, through an optimization process minimizing the discrepancies between calculated dose and measurements. Six models built for Varian Truebeam linac photon beams (6MV, 10MV, 15MV, 18MV, 6MVFFF, 10MVFFF) were commissioned using measurement data acquired at our institution. To facilitate dose calculationsmore » for real treatment plans, we employed inverse sampling method to efficiently incorporate MLC leaf-sequencing into source sampling. Specifically, instead of sampling source particles control-point by control-point and rejecting the particles blocked by MLC, we assigned a control-point index to each sampled source particle, according to MLC leaf-open duration of each control-point at the pixel where the particle intersects the iso-center plane. Results: Our auto-commissioning method decreased distance-to-agreement (DTA) of depth dose at build-up regions by 36.2% averagely, making it within 1mm. Lateral profiles were better matched for all beams, with biggest improvement found at 15MV for which root-mean-square difference was reduced from 1.44% to 0.50%. Maximum differences of output factors were reduced to less than 0.7% for all beams, with largest decrease being from1.70% to 0.37% found at 10FFF. Our new sampling strategy was tested on a Head&Neck VMAT patient case. Achieving clinically acceptable accuracy, the new strategy could reduce the required history number by a factor of ∼2.8 given a statistical uncertainty level and hence achieve a similar speed-up factor. Conclusion: Our studies have demonstrated the feasibility and effectiveness of our auto-commissioning approach and new efficient source sampling strategy, implying the potential of our GPU-based MC dose engine goMC for routine clinical use.« less

  8. Continuous wavelet transform and Euler deconvolution method and their application to magnetic field data of Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Singh, Upendra Kumar

    2017-02-01

    This paper deals with the application of continuous wavelet transform (CWT) and Euler deconvolution methods to estimate the source depth using magnetic anomalies. These methods are utilized mainly to focus on the fundamental issue of mapping the major coal seam and locating tectonic lineaments. The main aim of the study is to locate and characterize the source of the magnetic field by transferring the data into an auxiliary space by CWT. The method has been tested on several synthetic source anomalies and finally applied to magnetic field data from Jharia coalfield, India. Using magnetic field data, the mean depth of causative sources points out the different lithospheric depth over the study region. Also, it is inferred that there are two faults, namely the northern boundary fault and the southern boundary fault, which have an orientation in the northeastern and southeastern direction respectively. Moreover, the central part of the region is more faulted and folded than the other parts and has sediment thickness of about 2.4 km. The methods give mean depth of the causative sources without any a priori information, which can be used as an initial model in any inversion algorithm.

  9. Duration of Tsunami Generation Longer than Duration of Seismic Wave Generation in the 2011 Mw 9.0 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.

    2013-12-01

    We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al., 2011; Ide at al., 2011; Yagi and Fukahata, 2011; Suzuki et al., 2011). The comparison of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms, suggested that there was the time period common to both seismic wave generation and tsunami generation followed by the time period unique to tsunami generation. At this point, we think that comparison of the absolute values of moment rates is not so meaningful between tsunami waveform inversion and seismic waveform inversion, because of general ambiguity of rigidity values of each subfault in the fault region (assuming the rigidity value of 30 GPa of Yoshida et al (2011)). Considering this, the normalized value of moment rate function was also evaluated and it does not change the general feature of two moment rate functions in terms of duration property. Furthermore, the results suggested that tsunami generation process apparently took more time than seismic wave generation process did. Tsunami can be generated even by "extra" motions resulting from many suggested abnormal mechanisms. These extra motions may be attribute to the relatively larger-scale tsunami generation than expected from the magnitude level from seismic ground motion, and attribute to the longer duration of tsunami generation process.

  10. Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.

    PubMed

    de Barros, Louis; Dietrich, Michel

    2008-03-01

    Analytical formulas are derived to compute the first-order effects produced by plane inhomogeneities on the point source seismic response of a fluid-filled stratified porous medium. The derivation is achieved by a perturbation analysis of the poroelastic wave equations in the plane-wave domain using the Born approximation. This approach yields the Frechet derivatives of the P-SV- and SH-wave responses in terms of the Green's functions of the unperturbed medium. The accuracy and stability of the derived operators are checked by comparing, in the time-distance domain, differential seismograms computed from these analytical expressions with complete solutions obtained by introducing discrete perturbations into the model properties. For vertical and horizontal point forces, it is found that the Frechet derivative approach is remarkably accurate for small and localized perturbations of the medium properties which are consistent with the Born approximation requirements. Furthermore, the first-order formulation appears to be stable at all source-receiver offsets. The porosity, consolidation parameter, solid density, and mineral shear modulus emerge as the most sensitive parameters in forward and inverse modeling problems. Finally, the amplitude-versus-angle response of a thin layer shows strong coupling effects between several model parameters.

  11. A programmable metasurface with dynamic polarization, scattering and focusing control

    NASA Astrophysics Data System (ADS)

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-10-01

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.

  12. A programmable metasurface with dynamic polarization, scattering and focusing control

    PubMed Central

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-01-01

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997

  13. A programmable metasurface with dynamic polarization, scattering and focusing control.

    PubMed

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-10-24

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.

  14. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.

  15. Sensitivity Kernels for the Cross-Convolution Measure: Eliminate the Source in Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Menke, W. H.

    2017-12-01

    We use the adjoint method to derive sensitivity kernels for the cross-convolution measure, a goodness-of-fit criterion that is applicable to seismic data containing closely-spaced multiple arrivals, such as reverberating compressional waves and split shear waves. In addition to a general formulation, specific expressions for sensitivity with respect to density, Lamé parameter and shear modulus are derived for a isotropic elastic solid. As is typical of adjoint methods, the kernels depend upon an adjoint field, the source of which, in this case, is the reference displacement field, pre-multiplied by a matrix of cross-correlations of components of the observed field. We use a numerical simulation to evaluate the resolving power of a topographic inversion that employs the cross-convolution measure. The estimated resolving kernel shows is point-like, indicating that the cross-convolution measure will perform well in waveform tomography settings.

  16. Intermittent inflations recorded by broadband seismometers prior to caldera formation at Miyake-jima volcano in 2000

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu; Ohminato, Takao; Ida, Yoshiaki; Fujita, Eisuke

    2012-12-01

    Very-long-period (VLP) pulses with widths of 20 s on velocity seismograms were observed during volcanic activity at Miyake-jima Volcano, Japan in 2000. The VLP events occurred repeatedly during a few days prior to caldera formation and essentially vanished following the onset of caldera collapse. Waveform inversions of the pulse-like signals point to a source offset 3.5 km beneath and 1 km south of the summit. A candidate for the source mechanism is the inflation of an elliptical cylinder with axis tilted 20-30° from vertical and major axis of the elliptical cross section oriented northeast-southwest. The inferred mechanism appears consistent with a step-like pressurization of a magma reservoir impacted by a falling rock mass in response to gravitational instability. The repeated occurrences of the rock collapses lead to the caldera formation at Miyake-jima.

  17. Monitoring fossil fuel sources of methane in Australia

    NASA Astrophysics Data System (ADS)

    Loh, Zoe; Etheridge, David; Luhar, Ashok; Hibberd, Mark; Thatcher, Marcus; Noonan, Julie; Thornton, David; Spencer, Darren; Gregory, Rebecca; Jenkins, Charles; Zegelin, Steve; Leuning, Ray; Day, Stuart; Barrett, Damian

    2017-04-01

    CSIRO has been active in identifying and quantifying methane emissions from a range of fossil fuel sources in Australia over the past decade. We present here a history of the development of our work in this domain. While we have principally focused on optimising the use of long term, fixed location, high precision monitoring, paired with both forward and inverse modelling techniques suitable either local or regional scales, we have also incorporated mobile ground surveys and flux calculations from plumes in some contexts. We initially developed leak detection methodologies for geological carbon storage at a local scale using a Bayesian probabilistic approach coupled to a backward Lagrangian particle dispersion model (Luhar et al. JGR, 2014), and single point monitoring with sector analysis (Etheridge et al. In prep.) We have since expanded our modelling techniques to regional scales using both forward and inverse approaches to constrain methane emissions from coal mining and coal seam gas (CSG) production. The Surat Basin (Queensland, Australia) is a region of rapidly expanding CSG production, in which we have established a pair of carefully located, well-intercalibrated monitoring stations. These data sets provide an almost continuous record of (i) background air arriving at the Surat Basin, and (ii) the signal resulting from methane emissions within the Basin, i.e. total downwind methane concentration (comprising emissions including natural geological seeps, agricultural and biogenic sources and fugitive emissions from CSG production) minus background or upwind concentration. We will present our latest results on monitoring from the Surat Basin and their application to estimating methane emissions.

  18. Concurrence control for transactions with priorities

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith

    1989-01-01

    Priority inversion occurs when a process is delayed by the actions of another process with less priority. With atomic transactions, the concurrency control mechanism can cause delays, and without taking priorities into account can be a source of priority inversion. Three traditional concurrency control algorithms are extended so that they are free from unbounded priority inversion.

  19. Regularized inversion of controlled source audio-frequency magnetotelluric data in horizontally layered transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmei; Wang, Jianxun; Shang, Qinglong; Wang, Hongnian; Yin, Changchun

    2014-04-01

    We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value.

  20. Efficient calculation of full waveform time domain inversion for electromagnetic problem using fictitious wave domain method and cascade decimation decomposition

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2016-12-01

    Recently, a full waveform time domain inverse solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion to solve simultaneously for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations, the ability to operate in areas of high levels of source signal spatial complexity, and non-stationarity. This goal would not be obtainable if one were to adopt the pure time domain solution for the inverse problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across a large frequency bandwidth. This means that for the forward simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a sensitivity matrix that is computationally burdensome to solve a model update. We have implemented a code that addresses this situation through the use of cascade decimation decomposition to reduce the size of the sensitivity matrix substantially, through quasi-equivalent time domain decomposition. We also use a fictitious wave domain method to speed up computation time of the forward simulation in the time domain. By combining these refinements, we have developed a full waveform joint source field/earth conductivity inverse modeling method. We found that cascade decimation speeds computations of the sensitivity matrices dramatically, keeping the solution close to that of the undecimated case. For example, for a model discretized into 2.6x105 cells, we obtain model updates in less than 1 hour on a 4U rack-mounted workgroup Linux server, which is a practical computational time for the inverse problem.

  1. Analytical volcano deformation modelling: A new and fast generalized point-source approach with application to the 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Nikkhoo, M.; Walter, T. R.; Lundgren, P.; Prats-Iraola, P.

    2015-12-01

    Ground deformation at active volcanoes is one of the key precursors of volcanic unrest, monitored by InSAR and GPS techniques at high spatial and temporal resolution, respectively. Modelling of the observed displacements establishes the link between them and the underlying subsurface processes and volume change. The so-called Mogi model and the rectangular dislocation are two commonly applied analytical solutions that allow for quick interpretations based on the location, depth and volume change of pressurized spherical cavities and planar intrusions, respectively. Geological observations worldwide, however, suggest elongated, tabular or other non-equidimensional geometries for the magma chambers. How can these be modelled? Generalized models such as the Davis's point ellipsoidal cavity or the rectangular dislocation solutions, are geometrically limited and could barely improve the interpretation of data. We develop a new analytical artefact-free solution for a rectangular dislocation, which also possesses full rotational degrees of freedom. We construct a kinematic model in terms of three pairwise-perpendicular rectangular dislocations with a prescribed opening only. This model represents a generalized point source in the far field, and also performs as a finite dislocation model for planar intrusions in the near field. We show that through calculating the Eshelby's shape tensor the far-field displacements and stresses of any arbitrary triaxial ellipsoidal cavity can be reproduced by using this model. Regardless of its aspect ratios, the volume change of this model is simply the sum of the volume change of the individual dislocations. Our model can be integrated in any inversion scheme as simply as the Mogi model, profiting at the same time from the advantages of a generalized point source. After evaluating our model by using a boundary element method code, we apply it to ground displacements of the 2015 Calbuco eruption, Chile, observed by the Sentinel-1 satellite. We infer the parameters of a deflating elongated source located beneath Calbuco, and find significant differences to Mogi type solutions. The results imply that interpretations based on our model may help us better understand source characteristics, and in the case of Calubuco volcano infer a volcano-tectonic coupling mechanism.

  2. Signature inversion / chiral-twin bands in odd-odd Pr nuclei?

    NASA Astrophysics Data System (ADS)

    Fetea, Mirela; Thompson, Sarah

    2001-10-01

    Over the past few years, sufficient data have been accumulated to enable a meaningful study of the systematic trends of the signature inversion (inversion point shift in spin with increasing proton and neutron numbers in a chain of isotones / isotopes as well as the magnitude of odd-even staggering). Our aim is to understand these systematic features within the framework of particle rotor model including both a residual pn interaction and a γ deformation. Signature inversion is present in the bands of odd-odd nuclei , ^120-130Cs, ^124-132La, ^126-134Pr and ^132-136Pm and having an yrast structure built on π h_11/2ν h_11/2 orbitals. Pr isotopes seem to indicate an inversion decreasing for smaller neutron numbers, trend that is opposite for the Cs nuclei(J.F. Smith et al., Phys. Lett B 406, 7 (1997)). Why? A question that remains to be answered is if there is any relation of signature inversion to chiral twin bands (two ''look alike positive parity'' bands proposed for as in ). The lower band has signature inversion all the way up. Could these effects be related to triaxiality? Can one trust an apparent conclusion suggested by L.L. Riedinger( L.L. Riedinger, talk presented at High) Spin Physics 2001, Warsaw, Poland, February, 2001, to be published in Acta Phys. Pol.: ''signature inversion in an odd-odd band of two quasiparticles pointed along different axes is always associated with the formation of chiral twin bands''?

  3. Three-dimensional semi-analytical solution to groundwater flow in confined and unconfined wedge-shaped aquifers

    NASA Astrophysics Data System (ADS)

    Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent

    2009-06-01

    The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.

  4. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 2. Combining seismic and geodetic data

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    2001-01-01

    Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.

  5. Novel fusion for hybrid optical/microcomputed tomography imaging based on natural light surface reconstruction and iterated closest point

    NASA Astrophysics Data System (ADS)

    Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo

    2014-02-01

    In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.

  6. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  7. Pilot points method for conditioning multiple-point statistical facies simulation on flow data

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Jafarpour, Behnam

    2018-05-01

    We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  8. Assimilating Flow Data into Complex Multiple-Point Statistical Facies Models Using Pilot Points Method

    NASA Astrophysics Data System (ADS)

    Ma, W.; Jafarpour, B.

    2017-12-01

    We develop a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information:: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) and its multiple data assimilation variant (ES-MDA) are adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at select locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  9. Bright Points and Subflares in UV Lines and in X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Tandberg-Hanssen, E.

    1998-01-01

    We have analysed an active region which was observed in Halpha (MSDP), UV lines (SMM/UVSP), and in X rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X rays. Using an extrapolation based on the Fourier transform we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find 2 different zones: 1. a high shear region (less than 70 degrees) where subflares occur 2. a low shear region along the magnetic inversion line where UV bright points are observed.

  10. Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: Application to volcano interferometric synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Walter, T. R.

    2009-10-01

    Modern geodetic techniques provide valuable and near real-time observations of volcanic activity. Characterizing the source of deformation based on these observations has become of major importance in related monitoring efforts. We investigate two random search approaches, simulated annealing (SA) and genetic algorithm (GA), and utilize them in an iterated manner. The iterated approach helps to prevent GA in general and SA in particular from getting trapped in local minima, and it also increases redundancy for exploring the search space. We apply a statistical competency test for estimating the confidence interval of the inversion source parameters, considering their internal interaction through the model, the effect of the model deficiency, and the observational error. Here, we present and test this new randomly iterated search and statistical competency (RISC) optimization method together with GA and SA for the modeling of data associated with volcanic deformations. Following synthetic and sensitivity tests, we apply the improved inversion techniques to two episodes of activity in the Campi Flegrei volcanic region in Italy, observed by the interferometric synthetic aperture radar technique. Inversion of these data allows derivation of deformation source parameters and their associated quality so that we can compare the two inversion methods. The RISC approach was found to be an efficient method in terms of computation time and search results and may be applied to other optimization problems in volcanic and tectonic environments.

  11. Seismic source parameters of the induced seismicity at The Geysers geothermal area, California, by a generalized inversion approach

    NASA Astrophysics Data System (ADS)

    Picozzi, Matteo; Oth, Adrien; Parolai, Stefano; Bindi, Dino; De Landro, Grazia; Amoroso, Ortensia

    2017-04-01

    The accurate determination of stress drop, seismic efficiency and how source parameters scale with earthquake size is an important for seismic hazard assessment of induced seismicity. We propose an improved non-parametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for the attenuation and site contributions. Then, the retrieved source spectra are inverted by a non-linear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (ML 2-4.5) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations of the Lawrence Berkeley National Laboratory Geysers/Calpine surface seismic network, more than 17.000 velocity records). We find for most of the events a non-selfsimilar behavior, empirical source spectra that requires ωγ source model with γ > 2 to be well fitted and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes, and that the proportion of high frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with the earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that, in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping fault in the fluid pressure diffusion.

  12. Moment tensor inversion with three-dimensional sensor configuration of mining induced seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-06-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). A stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double-couple and full moment tensor with high frequency data, is very challenging. Moreover, the application to underground mining system requires accounting for the 3-D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3-D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in the presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to eight events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double-couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip and rake configurations of the double-couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  13. Moment Tensor Inversion with 3D sensor configuration of Mining Induced Seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-03-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  14. Active and Passive Hydrologic Tomographic Surveys:A Revolution in Hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    Yeh, T. J.

    2013-12-01

    Mathematical forward or inverse problems of flow through geological media always have unique solutions if necessary conditions are givens. Unique mathematical solutions to forward or inverse modeling of field problems are however always uncertain (an infinite number of possibilities) due to many reasons. They include non-representativeness of the governing equations, inaccurate necessary conditions, multi-scale heterogeneity, scale discrepancies between observation and model, noise and others. Conditional stochastic approaches, which derives the unbiased solution and quantifies the solution uncertainty, are therefore most appropriate for forward and inverse modeling of hydrological processes. Conditioning using non-redundant data sets reduces uncertainty. In this presentation, we explain non-redundant data sets in cross-hole aquifer tests, and demonstrate that active hydraulic tomographic survey (using man-made excitations) is a cost-effective approach to collect the same type but non-redundant data sets for reducing uncertainty in the inverse modeling. We subsequently show that including flux measurements (a piece of non-redundant data set) collected in the same well setup as in hydraulic tomography improves the estimated hydraulic conductivity field. We finally conclude with examples and propositions regarding how to collect and analyze data intelligently by exploiting natural recurrent events (river stage fluctuations, earthquakes, lightning, etc.) as energy sources for basin-scale passive tomographic surveys. The development of information fusion technologies that integrate traditional point measurements and active/passive hydrogeophysical tomographic surveys, as well as advances in sensor, computing, and information technologies may ultimately advance our capability of characterizing groundwater basins to achieve resolution far beyond the feat of current science and technology.

  15. Mathematical Investigation of Gamma Ray and Neutron Absorption Grid Patterns for Homeland Defense Related Fourier Imaging Systems

    NASA Technical Reports Server (NTRS)

    Boccio, Dona

    2003-01-01

    Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.

  16. Bayesian ISOLA: new tool for automated centroid moment tensor inversion

    NASA Astrophysics Data System (ADS)

    Vackář, Jiří; Burjánek, Jan; Gallovič, František; Zahradník, Jiří; Clinton, John

    2017-04-01

    Focal mechanisms are important for understanding seismotectonics of a region, and they serve as a basic input for seismic hazard assessment. Usually, the point source approximation and the moment tensor (MT) are used. We have developed a new, fully automated tool for the centroid moment tensor (CMT) inversion in a Bayesian framework. It includes automated data retrieval, data selection where station components with various instrumental disturbances and high signal-to-noise are rejected, and full-waveform inversion in a space-time grid around a provided hypocenter. The method is innovative in the following aspects: (i) The CMT inversion is fully automated, no user interaction is required, although the details of the process can be visually inspected latter on many figures which are automatically plotted.(ii) The automated process includes detection of disturbances based on MouseTrap code, so disturbed recordings do not affect inversion.(iii) A data covariance matrix calculated from pre-event noise yields an automated weighting of the station recordings according to their noise levels and also serves as an automated frequency filter suppressing noisy frequencies.(iv) Bayesian approach is used, so not only the best solution is obtained, but also the posterior probability density function.(v) A space-time grid search effectively combined with the least-squares inversion of moment tensor components speeds up the inversion and allows to obtain more accurate results compared to stochastic methods. The method has been tested on synthetic and observed data. It has been tested by comparison with manually processed moment tensors of all events greater than M≥3 in the Swiss catalogue over 16 years using data available at the Swiss data center (http://arclink.ethz.ch). The quality of the results of the presented automated process is comparable with careful manual processing of data. The software package programmed in Python has been designed to be as versatile as possible in order to be applicable in various networks ranging from local to regional. The method can be applied either to the everyday network data flow, or to process large previously existing earthquake catalogues and data sets.

  17. Near-Field Tsunami Models with Rapid Earthquake Source Inversions from Land and Ocean-Based Observations: The Potential for Forecast and Warning

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Bock, Y.; Crowell, B. W.; Haase, J. S.

    2013-12-01

    Computation of predicted tsunami wave heights and runup in the regions adjacent to large earthquakes immediately after rupture initiation remains a challenging problem. Limitations of traditional seismological instrumentation in the near field which cannot be objectively employed for real-time inversions and the non-unique source inversion results are a major concern for tsunami modelers. Employing near-field seismic, GPS and wave gauge data from the Mw 9.0 2011 Tohoku-oki earthquake, we test the capacity of static finite fault slip models obtained from newly developed algorithms to produce reliable tsunami forecasts. First we demonstrate the ability of seismogeodetic source models determined from combined land-based GPS and strong motion seismometers to forecast near-source tsunamis in ~3 minutes after earthquake origin time (OT). We show that these models, based on land-borne sensors only tend to underestimate the tsunami but are good enough to provide a realistic first warning. We then demonstrate that rapid ingestion of offshore shallow water (100 - 1000 m) wave gauge data significantly improves the model forecasts and possible warnings. We ingest data from 2 near-source ocean-bottom pressure sensors and 6 GPS buoys into the earthquake source inversion process. Tsunami Green functions (tGFs) are generated using the GeoClaw package, a benchmarked finite volume code with adaptive mesh refinement. These tGFs are used for a joint inversion with the land-based data and substantially improve the earthquake source and tsunami forecast. Model skill is assessed by detailed comparisons of the simulation output to 2000+ tsunami runup survey measurements collected after the event. We update the source model and tsunami forecast and warning at 10 min intervals. We show that by 20 min after OT the tsunami is well-predicted with a high variance reduction to the survey data and by ~30 minutes a model that can be considered final, since little changed is observed afterwards, is achieved. This is an indirect approach to tsunami warning, it relies on automatic determination of the earthquake source prior to tsunami simulation. It is more robust than ad-hoc approaches because it relies on computation of a finite-extent centroid moment tensor to objectively determine the style of faulting and the fault plane geometry on which to launch the heterogeneous static slip inversion. Operator interaction and physical assumptions are minimal. Thus, the approach can provide the initial conditions for tsunami simulation (seafloor motion) irrespective of the type of earthquake source and relies heavily on oceanic wave gauge measurements for source determination. It reliably distinguishes among strike-slip, normal and thrust faulting events, all of which have been observed recently to occur in subduction zones and pose distinct tsunami hazards.

  18. Hybrid-dual-fourier tomographic algorithm for a fast three-dimensionial optical image reconstruction in turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor)

    2007-01-01

    A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.

  19. An inverse problem in thermal imaging

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Caudill, Lester F., Jr.

    1994-01-01

    This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied both in the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.

  20. Unmanned Systems: A Lab Based Robotic Arm for Grasping Phase II

    DTIC Science & Technology

    2016-12-01

    Leap Motion Controller, inverse kinematics, DH parameters. 15. NUMBER OF PAGES 89 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...robotic actuator. Inverse kinematics and Denavit-Hartenberg (DH) parameters will be briefly explained. A. POSITION ANALYSIS According to [3] and... inverse kinematic” method and allows us to calculate the actuator’s position in order to move the robot’s end effector to a specific point in space

  1. Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the > 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an intermediate mass black hole.

  2. Rapid Large Earthquake and Run-up Characterization in Quasi Real Time

    NASA Astrophysics Data System (ADS)

    Bravo, F. J.; Riquelme, S.; Koch, P.; Cararo, S.

    2017-12-01

    Several test in quasi real time have been conducted by the rapid response group at CSN (National Seismological Center) to characterize earthquakes in Real Time. These methods are known for its robustness and realibility to create Finite Fault Models. The W-phase FFM Inversion, The Wavelet Domain FFM and The Body Wave and FFM have been implemented in real time at CSN, all these algorithms are running automatically and triggered by the W-phase Point Source Inversion. Dimensions (Large and Width ) are predefined by adopting scaling laws for earthquakes in subduction zones. We tested the last four major earthquakes occurred in Chile using this scheme: The 2010 Mw 8.8 Maule Earthquake, The 2014 Mw 8.2 Iquique Earthquake, The 2015 Mw 8.3 Illapel Earthquake and The 7.6 Melinka Earthquake. We obtain many solutions as time elapses, for each one of those we calculate the run-up using an analytical formula. Our results are in agreements with some FFM already accepted by the sicentific comunnity aswell as run-up observations in the field.

  3. VizieR Online Data Catalog: MSX high-contrast IRDCs with NH3 (Chira+,

    NASA Astrophysics Data System (ADS)

    Chira, R.-A.; Beuther, H.; Linz, H.; Walmsley, C. M.; Menten, K. M.; Bonfman, L.

    2013-02-01

    Based on MSX data, a catalogue of more than 10,000 candidate IRDCs was compiled. From this catalogue we selected a complete sample of northern hemisphere high-contrast IRDCs with Galactic longitudes >=19.27° (and nine exceptions with Galactic longitudes <19°). The sample was observed in ammonia (1,1) and (2,2) inversion transitions with the Effelsberg 100-m telescope. NH3 parameters are derived for 109 sample sources. For each source galactic coordinates, brightness temperatures, line width FWHMs and optical depths of (1,1) and (2,2) inversion lines and LSR velocity of (1,1) inversion line are given. Furthermore, we derived the rotation and kinetic temperatures, ammonia column densities, kinematic distances and virial masses using the NH3 data. In addition, notes about whether the sources being associated with Spitzer sources or not are given. Using ATLASGAL data, the 870 micron flux densities gas masses, virial parameters, H2 column densities and NH3 abundances are given. In addition, we listed the sample sources where no ammonia which did not fulfil our selection criteria. (4 data files).

  4. Concurrency control for transactions with priorities

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith

    1989-01-01

    Priority inversion occurs when a process is delayed by the actions of another process with less priority. With atomic transations, the concurrency control mechanism can cause delays, and without taking priorities into account can be a source of priority inversion. In this paper, three traditional concurrency control algorithms are extended so that they are free from unbounded priority inversion.

  5. The Atmospheric Constraint: What we Know About the State of the Carbon Cycle by Observing Carbon Dioxide and Methane

    NASA Astrophysics Data System (ADS)

    Denning, S.; Jacobson, A. R.; Miller, J. B.; Ballantyne, A.; Bruhwiler, L.; Chatterjee, A.; Davis, K. J.; Duncan, B. N.; Gurney, K. R.; Houghton, R. A.; Keppel-Aleks, G.; Michalak, A. M.; Ott, L.

    2016-12-01

    Much of what is known about the global carbon cycle has been learned by studying the time rate of change and spatial distribution of carbon gases in the atmosphere. In the past decade, the network of measurements of atmospheric CO2 and CH4 has increased by leaps and bounds. Observations now include many programs of sample collection; commercial as well as academic and government measurement programs; in-situ measurements from towers, ships, and aircraft; and new satellite sensors with near-global coverage. Quantitative estimates of regional budgets for both CO2 and CH4 require atmospheric tracer transport inversion. These methods have been further developed and improved in recent years and several groups are now providing updated regional fluxes using a suite of such models. Analysis of atmospheric CO2 has shown that ongoing sink processes continue to sequester about half of global fossil fuel emissions, with about half the sink activity on land and half in the oceans. Enhanced observing and improved inverse modeling of CO2 has been evaluated for smaller regions and shown to match direct carbon inventories. Aircraft sampling and satellite observations have finally begun to converge on the partition between tropical and extratropical land sinks and on the influence of climate variability. Additional tracers such as 13CO2, 14CO2, and COS as well as new remote sensing products such as solar induced fluorescence are helping carbon cycle scientists to better understand and predict sink mechanisms. An emerging area of work is the use of atmospheric data to conduct monitoring, reporting, and verification of emissions from point sources and cities. A major field campaign to study CO2 transport by convective and frontal storms is now underway. After a period of stable concentrations, concentrations of atmospheric CH4 have again begun to increase. Campaigns using mobile instruments and in-situ measurements made from fixed towers have established that leakage of CH4 associated with oil and gas extraction is greater than had previously been estimated. A dedicated field campaigns to study CH4 sources in the Arctic have carefully quantified emissions from seasonal sources such as wetlands and forests as well as point sources.

  6. Global High Resolution Crustal Magnetic Field Mapping at the Surface of the Moon from Lunar Prospector and SELENE/Kaguya Satellites

    NASA Astrophysics Data System (ADS)

    Ravat, D.; Purucker, M.; Olsen, N.; Finlay, C.

    2017-12-01

    We derive new models of the lunar crustal magnetic field at the lunar surface with data from Lunar Prospector (LP) and SELENE/Kaguya (K) satellite using a global set of 35820 1° equal area monopoles (O'Brien and Parker, 1994; Olsen et al., 2017). The resulting fields have similar features to surface fields obtained by Tsunakawa et al. (2015) using 230 subset regions and the primary differences are due to our stringent data selection (see below). The use of monopoles allows closer spacing than dipoles with lesser amount of regularization and moderate cluster computer resources. We use the scheme of iteratively reweighted least-squares inversion to compute the initial model. Then the amplitudes of these monopoles are determined by minimizing the misfit to the components together with the global average of |Br| at the ellipsoid surface (i.e. applying a L1 model regularization of Br). In a final step we transform the point-source representation to a spherical harmonic expansion. We extract high quality data segments using a processing scheme based on internal/external dipole field removal, low order polynomial removal, and a new processing scheme called Joint Equivalent Source Cross-validation. In the cross-validation procedure we analyze the fit of modeled components to data in 10° latitudinal segments from an inversion of triplets of nearby passes to a single set of dipoles along the passes. We evaluate the fit using four criteria in each segment: correlation coefficient, amplitude ratio, RMS of the misfit, and standard deviation of field values themselves. We fine-tune the criteria to the choice we would have made in visually retaining pass segments and this yields a global dataset of more than 2.87 million (x 3 components) points at altitudes <60 km. The selected Lunar Prospector and Kaguya magnetic data independently show similar features and statistics for altitudes, observed and modeled components, and their misfit (number of observation locations: LP 1.8 million and K 1.07 million x 3 components). We use these data to make a regional assessment of key magnetic features on the Moon (including impacts and swirls), the depth of magnetization of regional sources, and source parameters of isolated anomalies.

  7. Hybrid Weighted Minimum Norm Method A new method based LORETA to solve EEG inverse problem.

    PubMed

    Song, C; Zhuang, T; Wu, Q

    2005-01-01

    This Paper brings forward a new method to solve EEG inverse problem. Based on following physiological characteristic of neural electrical activity source: first, the neighboring neurons are prone to active synchronously; second, the distribution of source space is sparse; third, the active intensity of the sources are high centralized, we take these prior knowledge as prerequisite condition to develop the inverse solution of EEG, and not assume other characteristic of inverse solution to realize the most commonly 3D EEG reconstruction map. The proposed algorithm takes advantage of LORETA's low resolution method which emphasizes particularly on 'localization' and FOCUSS's high resolution method which emphasizes particularly on 'separability'. The method is still under the frame of the weighted minimum norm method. The keystone is to construct a weighted matrix which takes reference from the existing smoothness operator, competition mechanism and study algorithm. The basic processing is to obtain an initial solution's estimation firstly, then construct a new estimation using the initial solution's information, repeat this process until the solutions under last two estimate processing is keeping unchanged.

  8. Studies of Trace Gas Chemical Cycles Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2003-01-01

    We report progress in the first year, and summarize proposed work for the second year of the three-year dynamical-chemical modeling project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (b) utilization of inverse methods to determine these source/sink strengths using either MATCH (Model for Atmospheric Transport and Chemistry) which is based on analyzed observed wind fields or back-trajectories computed from these wind fields, (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important goals include determination of regional source strengths of methane, nitrous oxide, methyl bromide, and other climatically and chemically important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal protocol and its follow-on agreements and hydrohalocarbons now used as alternatives to the restricted halocarbons.

  9. Estimating accidental pollutant releases in the built environment from turbulent concentration signals

    NASA Astrophysics Data System (ADS)

    Ben Salem, N.; Salizzoni, P.; Soulhac, L.

    2017-01-01

    We present an inverse atmospheric model to estimate the mass flow rate of an impulsive source of pollutant, whose position is known, from concentration signals registered at receptors placed downwind of the source. The originality of this study is twofold. Firstly, the inversion is performed using high-frequency fluctuating, i.e. turbulent, concentration signals. Secondly, the inverse algorithm is applied to a dispersion process within a dense urban canopy, at the district scale, and a street network model, SIRANERISK, is adopted. The model, which is tested against wind tunnel experiments, simulates the dispersion of short-duration releases of pollutant in different typologies of idealised urban geometries. Results allow us to discuss the reliability of the inverse model as an operational tool for crisis management and the risk assessments related to the accidental release of toxic and flammable substances.

  10. Probabilistic inversion with graph cuts: Application to the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Pirot, Guillaume; Linde, Niklas; Mariethoz, Grégoire; Bradford, John H.

    2017-02-01

    Inversion methods that build on multiple-point statistics tools offer the possibility to obtain model realizations that are not only in agreement with field data, but also with conceptual geological models that are represented by training images. A recent inversion approach based on patch-based geostatistical resimulation using graph cuts outperforms state-of-the-art multiple-point statistics methods when applied to synthetic inversion examples featuring continuous and discontinuous property fields. Applications of multiple-point statistics tools to field data are challenging due to inevitable discrepancies between actual subsurface structure and the assumptions made in deriving the training image. We introduce several amendments to the original graph cut inversion algorithm and present a first-ever field application by addressing porosity estimation at the Boise Hydrogeophysical Research Site, Boise, Idaho. We consider both a classical multi-Gaussian and an outcrop-based prior model (training image) that are in agreement with available porosity data. When conditioning to available crosshole ground-penetrating radar data using Markov chain Monte Carlo, we find that the posterior realizations honor overall both the characteristics of the prior models and the geophysical data. The porosity field is inverted jointly with the measurement error and the petrophysical parameters that link dielectric permittivity to porosity. Even though the multi-Gaussian prior model leads to posterior realizations with higher likelihoods, the outcrop-based prior model shows better convergence. In addition, it offers geologically more realistic posterior realizations and it better preserves the full porosity range of the prior.

  11. Errors in Tsunami Source Estimation from Tide Gauges

    NASA Astrophysics Data System (ADS)

    Arcas, D.

    2012-12-01

    Linearity of tsunami waves in deep water can be assessed as a comparison of flow speed, u to wave propagation speed √gh. In real tsunami scenarios this evaluation becomes impractical due to the absence of observational data of tsunami flow velocities in shallow water. Consequently the extent of validity of the linear regime in the ocean is unclear. Linearity is the fundamental assumption behind tsunami source inversion processes based on linear combinations of unit propagation runs from a deep water propagation database (Gica et al., 2008). The primary tsunami elevation data for such inversion is usually provided by National Oceanic and Atmospheric (NOAA) deep-water tsunami detection systems known as DART. The use of tide gauge data for such inversions is more controversial due to the uncertainty of wave linearity at the depth of the tide gauge site. This study demonstrates the inaccuracies incurred in source estimation using tide gauge data in conjunction with a linear combination procedure for tsunami source estimation.

  12. New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength

    NASA Astrophysics Data System (ADS)

    Clark, David A.

    2012-09-01

    Acquisition of magnetic gradient tensor data is likely to become routine in the near future. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetisation direction. In combination the NSS and its vector gradient determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Inversion based on the vector gradient of the NSS over the Tallawang magnetite deposit obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Besides the geological applications, the algorithms for the dipole model are readily applicable to the detection, location and characterisation (DLC) of magnetic objects, such as naval mines, unexploded ordnance, shipwrecks, archaeological artefacts, and buried drums.

  13. Waveform-based Bayesian full moment tensor inversion and uncertainty determination for the induced seismicity in an oil/gas field

    NASA Astrophysics Data System (ADS)

    Gu, Chen; Marzouk, Youssef M.; Toksöz, M. Nafi

    2018-03-01

    Small earthquakes occur due to natural tectonic motions and are induced by oil and gas production processes. In many oil/gas fields and hydrofracking processes, induced earthquakes result from fluid extraction or injection. The locations and source mechanisms of these earthquakes provide valuable information about the reservoirs. Analysis of induced seismic events has mostly assumed a double-couple source mechanism. However, recent studies have shown a non-negligible percentage of non-double-couple components of source moment tensors in hydraulic fracturing events, assuming a full moment tensor source mechanism. Without uncertainty quantification of the moment tensor solution, it is difficult to determine the reliability of these source models. This study develops a Bayesian method to perform waveform-based full moment tensor inversion and uncertainty quantification for induced seismic events, accounting for both location and velocity model uncertainties. We conduct tests with synthetic events to validate the method, and then apply our newly developed Bayesian inversion approach to real induced seismicity in an oil/gas field in the sultanate of Oman—determining the uncertainties in the source mechanism and in the location of that event.

  14. PROGRESS TOWARDS NEXT GENERATION, WAVEFORM BASED THREE-DIMENSIONAL MODELS AND METRICS TO IMPROVE NUCLEAR EXPLOSION MONITORING IN THE MIDDLE EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, B; Peter, D; Covellone, B

    2009-07-02

    Efforts to update current wave speed models of the Middle East require a thoroughly tested database of sources and recordings. Recordings of seismic waves traversing the region from Tibet to the Red Sea will be the principal metric in guiding improvements to the current wave speed model. Precise characterizations of the earthquakes, specifically depths and faulting mechanisms, are essential to avoid mapping source errors into the refined wave speed model. Errors associated with the source are manifested in amplitude and phase changes. Source depths and paths near nodal planes are particularly error prone as small changes may severely affect themore » resulting wavefield. Once sources are quantified, regions requiring refinement will be highlighted using adjoint tomography methods based on spectral element simulations [Komatitsch and Tromp (1999)]. An initial database of 250 regional Middle Eastern events from 1990-2007, was inverted for depth and focal mechanism using teleseismic arrivals [Kikuchi and Kanamori (1982)] and regional surface and body waves [Zhao and Helmberger (1994)]. From this initial database, we reinterpreted a large, well recorded subset of 201 events through a direct comparison between data and synthetics based upon a centroid moment tensor inversion [Liu et al. (2004)]. Evaluation was done using both a 1D reference model [Dziewonski and Anderson (1981)] at periods greater than 80 seconds and a 3D model [Kustowski et al. (2008)] at periods of 25 seconds and longer. The final source reinterpretations will be within the 3D model, as this is the initial starting point for the adjoint tomography. Transitioning from a 1D to 3D wave speed model shows dramatic improvements when comparisons are done at shorter periods, (25 s). Synthetics from the 1D model were created through mode summations while those from the 3D simulations were created using the spectral element method. To further assess errors in source depth and focal mechanism, comparisons between the three methods were made. These comparisons help to identify problematic stations and sources which may bias the final solution. Estimates of standard errors were generated for each event's source depth and focal mechanism to identify poorly constrained events. A final, well characterized set of sources and stations will be then used to iteratively improve the wave speed model of the Middle East. After a few iterations during the adjoint inversion process, the sources will be reexamined and relocated to further reduce mapping of source errors into structural features. Finally, efforts continue in developing the infrastructure required to 'quickly' generate event kernels at the n-th iteration and invert for a new, (n+1)-th, wave speed model of the Middle East. While development of the infrastructure proceeds, initial tests using a limited number of events shows the 3D model, while showing vast improvement compared to the 1D model, still requires substantial modifications. Employing our new, full source set and iterating the adjoint inversions at successively shorter periods will lead to significant changes and refined wave speed structures of the Middle East.« less

  15. Interpretation of magnetic anomalies using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kaftan, İlknur

    2017-08-01

    A genetic algorithm (GA) is an artificial intelligence method used for optimization. We applied a GA to the inversion of magnetic anomalies over a thick dike. Inversion of nonlinear geophysical problems using a GA has advantages because it does not require model gradients or well-defined initial model parameters. The evolution process consists of selection, crossover, and mutation genetic operators that look for the best fit to the observed data and a solution consisting of plausible compact sources. The efficiency of a GA on both synthetic and real magnetic anomalies of dikes by estimating model parameters, such as depth to the top of the dike ( H), the half-width of the dike ( B), the distance from the origin to the reference point ( D), the dip of the thick dike ( δ), and the susceptibility contrast ( k), has been shown. For the synthetic anomaly case, it has been considered for both noise-free and noisy magnetic data. In the real case, the vertical magnetic anomaly from the Pima copper mine in Arizona, USA, and the vertical magnetic anomaly in the Bayburt-Sarıhan skarn zone in northeastern Turkey have been inverted and interpreted. We compared the estimated parameters with the results of conventional inversion methods used in previous studies. We can conclude that the GA method used in this study is a useful tool for evaluating magnetic anomalies for dike models.

  16. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  17. Moment tensor solutions estimated using optimal filter theory for 51 selected earthquakes, 1980-1984

    USGS Publications Warehouse

    Sipkin, S.A.

    1987-01-01

    The 51 global events that occurred from January 1980 to March 1984, which were chosen by the convenors of the Symposium on Seismological Theory and Practice, have been analyzed using a moment tensor inversion algorithm (Sipkin). Many of the events were routinely analyzed as part of the National Earthquake Information Center's (NEIC) efforts to publish moment tensor and first-motion fault-plane solutions for all moderate- to large-sized (mb>5.7) earthquakes. In routine use only long-period P-waves are used and the source-time function is constrained to be a step-function at the source (??-function in the far-field). Four of the events were of special interest, and long-period P, SH-wave solutions were obtained. For three of these events, an unconstrained inversion was performed. The resulting time-dependent solutions indicated that, for many cases, departures of the solutions from pure double-couples are caused by source complexity that has not been adequately modeled. These solutions also indicate that source complexity of moderate-sized events can be determined from long-period data. Finally, for one of the events of special interest, an inversion of the broadband P-waveforms was also performed, demonstrating the potential for using broadband waveform data in inversion procedures. ?? 1987.

  18. Partitioning Regional Sea Level in the Bay of Bengal from a Global Grace and Jason-1/-2 Joint Inversion

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Uebbing, B.; Rietbroek, R.

    2014-12-01

    In Bangladesh, large areas are located just above sea level. Present-day sea level rise in combination with land subsidence, poses a major threat to the coastal regions, home of about 30 million people. Consequently, monitoring of sea level and knowledge of all recurrent effects are crucial for coastal protection. As part of the Belmont-project "Bangladesh Delta: Assessment of the Causes of Sea-level Rise Hazards and Integrated Development of Predictive Modeling Towards Mitigation and Adaptation" (BAND-AID) a global inverse method is employed to estimate the different contributors to sea level, such as melting of glaciers and ice-sheets, hydrology, glacial isostatic adjustment, as well as shallow and deep steric effects from Jason-1/2 altimetry and GRACE data. In the global inverse method, spatial patterns (fingerprints) are computed a-priori for each of the contributing process, applying the sea level equation for mass fingerprints, and empirically (PCA) for steric fingerprints from ARGO data. Temporal GRACE gravity data and along-track Jason-1/ -2 altimetry is then combined to estimate the temporal evolution of these patterns, which allows the partitioning of altimetric sea level into individual sources. This method largely mitigates truncation and leakage problems associated with GRACE resolution. Globally, our estimates are close to others, although they point at a somewhat larger deep steric effect. In this work we provide preliminary results for the Bay of Bengal / Bangladesh region by confronting global inversion with local measurements. Estimated sea level trends are compared to trends from tide gauges and differences are interpreted in terms of unmodeled regional effects, such as land subsidence. Initial results provide an indication on the magnitude of the contributions from the different sources at the coast of Bangladesh / in the Bay of Bengal; e.g. the contribution from the Greenland ice-sheets between 2003 and 2011 (0.69 mm/a) is significantly larger compared to that of Antarctica (0.15 mm/a), but the biggest effect results from steric sea level changes (-1.5 to 6 mm/a).

  19. Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum

    NASA Astrophysics Data System (ADS)

    Ermert, Laura; Sager, Korbinian; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-11-01

    The sources of ambient seismic noise are extensively studied both to better understand their influence on ambient noise tomography and related techniques, and to infer constraints on their excitation mechanisms. Here we develop a gradient-based inversion method to infer the space-dependent and time-varying source power spectral density of the Earth's hum from cross correlations of continuous seismic data. The precomputation of wavefields using spectral elements allows us to account for both finite-frequency sensitivity and for three-dimensional Earth structure. Although similar methods have been proposed previously, they have not yet been applied to data to the best of our knowledge. We apply this method to image the seasonally varying sources of Earth's hum during North and South Hemisphere winter. The resulting models suggest that hum sources are localized, persistent features that occur at Pacific coasts or shelves and in the North Atlantic during North Hemisphere winter, as well as South Pacific coasts and several distinct locations in the Southern Ocean in South Hemisphere winter. The contribution of pelagic sources from the central North Pacific cannot be constrained. Besides improving the accuracy of noise source locations through the incorporation of finite-frequency effects and 3-D Earth structure, this method may be used in future cross-correlation waveform inversion studies to provide initial source models and source model updates.

  20. Effect of conductor geometry on source localization: Implications for epilepsy studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlitt, H.; Heller, L.; Best, E.

    1994-07-01

    We shall discuss the effects of conductor geometry on source localization for applications in epilepsy studies. The most popular conductor model for clinical MEG studies is a homogeneous sphere. However, several studies have indicated that a sphere is a poor model for the head when the sources are deep, as is the case for epileptic foci in the mesial temporal lobe. We believe that replacing the spherical model with a more realistic one in the inverse fitting procedure will improve the accuracy of localizing epileptic sources. In order to include a realistic head model in the inverse problem, we mustmore » first solve the forward problem for the realistic conductor geometry. We create a conductor geometry model from MR images, and then solve the forward problem via a boundary integral equation for the electric potential due to a specified primary source. One the electric potential is known, the magnetic field can be calculated directly. The most time-intensive part of the problem is generating the conductor model; fortunately, this needs to be done only once for each patient. It takes little time to change the primary current and calculate a new magnetic field for use in the inverse fitting procedure. We present the results of a series of computer simulations in which we investigate the localization accuracy due to replacing the spherical model with the realistic head model in the inverse fitting procedure. The data to be fit consist of a computer generated magnetic field due to a known current dipole in a realistic head model, with added noise. We compare the localization errors when this field is fit using a spherical model to the fit using a realistic head model. Using a spherical model is comparable to what is usually done when localizing epileptic sources in humans, where the conductor model used in the inverse fitting procedure does not correspond to the actual head.« less

  1. Patient-specific Monte Carlo-based dose-kernel approach for inverse planning in afterloading brachytherapy.

    PubMed

    D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc

    2011-12-01

    Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Accounting for uncertain fault geometry in earthquake source inversions - I: theory and simplified application

    NASA Astrophysics Data System (ADS)

    Ragon, Théa; Sladen, Anthony; Simons, Mark

    2018-05-01

    The ill-posed nature of earthquake source estimation derives from several factors including the quality and quantity of available observations and the fidelity of our forward theory. Observational errors are usually accounted for in the inversion process. Epistemic errors, which stem from our simplified description of the forward problem, are rarely dealt with despite their potential to bias the estimate of a source model. In this study, we explore the impact of uncertainties related to the choice of a fault geometry in source inversion problems. The geometry of a fault structure is generally reduced to a set of parameters, such as position, strike and dip, for one or a few planar fault segments. While some of these parameters can be solved for, more often they are fixed to an uncertain value. We propose a practical framework to address this limitation by following a previously implemented method exploring the impact of uncertainties on the elastic properties of our models. We develop a sensitivity analysis to small perturbations of fault dip and position. The uncertainties in fault geometry are included in the inverse problem under the formulation of the misfit covariance matrix that combines both prediction and observation uncertainties. We validate this approach with the simplified case of a fault that extends infinitely along strike, using both Bayesian and optimization formulations of a static inversion. If epistemic errors are ignored, predictions are overconfident in the data and source parameters are not reliably estimated. In contrast, inclusion of uncertainties in fault geometry allows us to infer a robust posterior source model. Epistemic uncertainties can be many orders of magnitude larger than observational errors for great earthquakes (Mw > 8). Not accounting for uncertainties in fault geometry may partly explain observed shallow slip deficits for continental earthquakes. Similarly, ignoring the impact of epistemic errors can also bias estimates of near surface slip and predictions of tsunamis induced by megathrust earthquakes. (Mw > 8)

  3. Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension

    DOE PAGES

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    2017-05-31

    In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less

  4. A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem

    PubMed Central

    Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.

    2013-01-01

    Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554

  5. Source Process of the 2007 Niigata-ken Chuetsu-oki Earthquake Derived from Near-fault Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Sekiguchi, H.; Morikawa, N.; Ozawa, T.; Kunugi, T.; Shirasaka, M.

    2007-12-01

    The 2007 Niigata-ken Chuetsu-oki earthquake occurred on July 16th, 2007, 10:13 JST. We performed a multi- time window linear waveform inversion analysis (Hartzell and Heaton, 1983) to estimate the rupture process from the near fault strong motion data of 14 stations from K-NET, KiK-net, F-net, JMA, and Niigata prefecture. The fault plane for the mainshock has not been clearly determined yet from the aftershock distribution, so that we performed two waveform inversions for north-west dipping fault (Model A) and south-east dipping fault (Model B). Their strike, dip, and rake are set to those of the moment tensor solutions by F-net. Fault plane model of 30 km length by 24 km width is set to cover aftershock distribution within 24 hours after the mainshock. Theoretical Green's functions were calculated by the discrete wavenumber method (Bouchon, 1981) and the R/T matrix method (Kennett, 1983) with the different stratified medium for each station based on the velocity structure including the information form the reflection survey and borehole logging data. Convolution of moving dislocation was introduced to represent the rupture propagation in an each subfault (Sekiguchi et al., 2002). The observed acceleration records were integrated into velocity except of F-net velocity data, and bandpass filtered between 0.1 and 1.0 Hz. We solved least-squared equation to obtain slip amount of each time window on each subfault to minimize squared residual of the waveform fitting between observed and synthetic waveforms. Both models provide moment magnitudes of 6.7. Regarding Model A, we obtained large slip in the south-west deeper part of the rupture starting point, which is close to Kashiwazaki-city. The second or third velocity pulses of observed velocity waveforms seem to be composed of slip from the asperity. Regarding Model B, we obtained large slip in the southwest shallower part of the rupture starting point, which is also close to Kashiwazaki-city. In both models, we found small slip near the rupture starting point, and largest slip at about ten kilometer in the south-west of the rupture starting point with the maximum slip of 2.3 and 2.5 m for Models A and B, respectively. The difference of the residual between observed and synthetic waveforms for both models is not significant, therefore it is difficult to conclude which fault plane is appropriate to explain. The estimated large-slip regions in the inverted source models with the Models A and B are located near the cross point of the two fault plane models, which should have similar radiation pattern. This situation may be one of the reasons why judgment of the fault plane orientation is such difficult. We need careful examinations not only strong motion data but also geodetic data to further explore the fault orientation and the source process of this earthquake.

  6. Molecular symmetry: Why permutation-inversion (PI) groups don't render the point groups obsolete

    NASA Astrophysics Data System (ADS)

    Groner, Peter

    2018-01-01

    The analysis of spectra of molecules with internal large-amplitude motions (LAMs) requires molecular symmetry (MS) groups that are larger than and significantly different from the more familiar point groups. MS groups are described often by the permutation-inversion (PI) group method. It is shown that point groups still can and should play a significant role together with the PI groups for a class of molecules with internal rotors. In molecules of this class, several simple internal rotors are attached to a rigid molecular frame. The PI groups for this class are semidirect products like H ^ F, where the invariant subgroup H is a direct product of cyclic groups and F is a point group. This result is used to derive meaningful labels for MS groups, and to derive correlation tables between MS groups and point groups. MS groups of this class have many parallels to space groups of crystalline solids.

  7. Efficient moving target analysis for inverse synthetic aperture radar images via joint speeded-up robust features and regular moment

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Su, Fulin

    2018-01-01

    We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.

  8. Inversion of Acoustic and Electromagnetic Recordings for Mapping Current Flow in Lightning Strikes

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J.; Arechiga, R. O.; Thomas, R. J.

    2012-12-01

    Acoustic recordings can be used to map current-carrying conduits in lightning strikes. Unlike stepped leaders, whose very high frequency (VHF) radio emissions have short (meter-scale) wavelengths and can be located by lightning-mapping arrays, current pulses emit longer (kilometer-scale) waves and cannot be mapped precisely by electromagnetic observations alone. While current pulses are constrained to conductive channels created by stepped leaders, these leaders often branch as they propagate, and most branches fail to carry current. Here, we present a method to use thunder recordings to map current pulses, and we apply it to acoustic and VHF data recorded in 2009 in the Magdalena mountains in central New Mexico, USA. Thunder is produced by rapid heating and expansion of the atmosphere along conductive channels in response to current flow, and therefore can be used to recover the geometry of the current-carrying channel. Toward this goal, we use VHF pulse maps to identify candidate conductive channels where we treat each channel as a superposition of finely-spaced acoustic point sources. We apply ray tracing in variable atmospheric structures to forward model the thunder that our microphone network would record for each candidate channel. Because multiple channels could potentially carry current, a non-linear inversion is performed to determine the acoustic source strength of each channel. For each combination of acoustic source strengths, synthetic thunder is modeled as a superposition of thunder signals produced by each channel, and a power envelope of this stack is then calculated. The inversion iteratively minimizes the misfit between power envelopes of recorded and modeled thunder. Because the atmospheric sound speed structure through which the waves propagate during these events is unknown, we repeat the procedure on many plausible atmospheres to find an optimal fit. We then determine the candidate channel, or channels, that minimizes residuals between synthetic and acoustic recordings. We demonstrate the usefulness of this method on both intracloud and cloud-to-ground strikes, and discuss factors affecting our ability to replicate recorded thunder.

  9. Aftermath of Ankle Inversion Injuries: Spectrum of MR Imaging Findings.

    PubMed

    Meehan, Timothy M; Martinez-Salazar, Edgar Leonardo; Torriani, Martin

    2017-02-01

    Acute and chronic ankle inversion injuries are a common source of pain and a diagnostic challenge. Several studies have shown a variety of injury patterns after inversion injury both in acute and chronic settings. Although traditional assessment with clinical examination and radiographs is generally accepted for inversion injuries, MR imaging is a useful tool to detect occult injuries and in patients with chronic symptoms. This article examines a range of MR imaging findings that may be present in patients with lateral ankle pain following an acute or chronic inversion injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Adjoint tomography of Europe

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Bozdag, E.; Peter, D. B.; Tromp, J.

    2010-12-01

    We use spectral-element and adjoint methods to image crustal and upper mantle heterogeneity in Europe. The study area involves the convergent boundaries of the Eurasian, African and Arabian plates and the divergent boundary between the Eurasian and North American plates, making the tectonic structure of this region complex. Our goal is to iteratively fit observed seismograms and improve crustal and upper mantle images by taking advantage of 3D forward and inverse modeling techniques. We use data from 200 earthquakes with magnitudes between 5 and 6 recorded by 262 stations provided by ORFEUS. Crustal model Crust2.0 combined with mantle model S362ANI comprise the initial 3D model. Before the iterative adjoint inversion, we determine earthquake source parameters in the initial 3D model by using 3D Green functions and their Fréchet derivatives with respect to the source parameters (i.e., centroid moment tensor and location). The updated catalog is used in the subsequent structural inversion. Since we concentrate on upper mantle structures which involve anisotropy, transversely isotropic (frequency-dependent) traveltime sensitivity kernels are used in the iterative inversion. Taking advantage of the adjoint method, we use as many measurements as can obtain based on comparisons between observed and synthetic seismograms. FLEXWIN (Maggi et al., 2009) is used to automatically select measurement windows which are analyzed based on a multitaper technique. The bandpass ranges from 15 second to 150 second. Long-period surface waves and short-period body waves are combined in source relocations and structural inversions. A statistical assessments of traveltime anomalies and logarithmic waveform differences is used to characterize the inverted sources and structure.

  11. Non-cavitating propeller noise modeling and inversion

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Lee, Keunhwa; Seong, Woojae

    2014-12-01

    Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.

  12. 75 FR 55494 - Approval and Promulgation of Implementation Plans; Idaho; Interstate Transport of Pollution

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... and persistent temperature inversions occurred, were specifically identified as a key source of PM... effect' resulting from an inversion that has a stagnant air pollution mass surrounded by the Oquirrh...

  13. Sensitivity of a Bayesian atmospheric-transport inversion model to spatio-temporal sensor resolution applied to the 2006 North Korean nuclear test

    NASA Astrophysics Data System (ADS)

    Lundquist, K. A.; Jensen, D. D.; Lucas, D. D.

    2017-12-01

    Atmospheric source reconstruction allows for the probabilistic estimate of source characteristics of an atmospheric release using observations of the release. Performance of the inversion depends partially on the temporal frequency and spatial scale of the observations. The objective of this study is to quantify the sensitivity of the source reconstruction method to sparse spatial and temporal observations. To this end, simulations of atmospheric transport of noble gasses are created for the 2006 nuclear test at the Punggye-ri nuclear test site. Synthetic observations are collected from the simulation, and are taken as "ground truth". Data denial techniques are used to progressively coarsen the temporal and spatial resolution of the synthetic observations, while the source reconstruction model seeks to recover the true input parameters from the synthetic observations. Reconstructed parameters considered here are source location, source timing and source quantity. Reconstruction is achieved by running an ensemble of thousands of dispersion model runs that sample from a uniform distribution of the input parameters. Machine learning is used to train a computationally-efficient surrogate model from the ensemble simulations. Monte Carlo sampling and Bayesian inversion are then used in conjunction with the surrogate model to quantify the posterior probability density functions of source input parameters. This research seeks to inform decision makers of the tradeoffs between more expensive, high frequency observations and less expensive, low frequency observations.

  14. An XMM-Newton Study of 9SGR and the Lagoon Nebula

    NASA Technical Reports Server (NTRS)

    Rauw, G.; Blomme, R.; Waldron, W. L.; Naze, Y.; Harries, T. J.; Chapman, J. M.; Corcoran, M. F.; Detal, A.; Gosset, E.

    2001-01-01

    We report preliminary results of an XMM-Newton observation of the 04 V star 9 Sgr (= HD 164794). 9 Sgr is one of a few single OB stars that display a non-thermal radio emission attributed to synchrotron emission by relativistic electrons. Inverse Compton scattering of photospheric UV photons by these relativistic electrons is a priori expected to generate a non-thermal power-law tail in the X-ray spectrum. Our EPIC and RGS spectra of 9 Sgr suggest a more complex situation than expected from this 'simple' theoretical picture. Furthermore, soft-band EPIC images of the region around 9 Sgr reveal a number of point sources inside the Lagoon Nebula (M8). Most of these sources have optical counterparts inside the very young open cluster NGC 6530 and several X-ray sources are associated with low and intermediate mass pre-main sequence stars. Finally, we also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the HG region.

  15. Infrasonic troposphere-ionosphere coupling in Hawaii

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2011-12-01

    The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.

  16. Mathematical Inversion of Lightning Data: Techniques and Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2003-01-01

    A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of lightning are presented. A discussion of why NASA is interested in lightning, what specific physical properties of lightning are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The LMA supports on-going ground-validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated lightning VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in high-resolution, color-coded, error maps.

  17. Apparatus and method to compensate for refraction of radiation

    DOEpatents

    Allen, Gary R.; Moskowitz, Philip E.

    1990-01-01

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided.

  18. Apparatus and method to compensate for refraction of radiation

    DOEpatents

    Allen, G.R.; Moskowitz, P.E.

    1990-03-27

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided. 4 figs.

  19. Rugged: an operational, open-source solution for Sentinel-2 mapping

    NASA Astrophysics Data System (ADS)

    Maisonobe, Luc; Seyral, Jean; Prat, Guylaine; Guinet, Jonathan; Espesset, Aude

    2015-10-01

    When you map the entire Earth every 5 days with the aim of generating high-quality time series over land, there is no room for geometrical error: the algorithms have to be stable, reliable, and precise. Rugged, a new open-source library for pixel geolocation, is at the geometrical heart of the operational processing for Sentinel-2. Rugged performs sensor-to-terrain mapping taking into account ground Digital Elevation Models, Earth rotation with all its small irregularities, on-board sensor pixel individual lines-of-sight, spacecraft motion and attitude, and all significant physical effects. It provides direct and inverse location, i.e. it allows the accurate computation of which ground point is viewed from a specific pixel in a spacecraft instrument, and conversely which pixel will view a specified ground point. Direct and inverse location can be used to perform full ortho-rectification of images and correlation between sensors observing the same area. Implemented as an add-on for Orekit (Orbits Extrapolation KIT; a low-level space dynamics library), Rugged also offers the possibility of simulating satellite motion and attitude auxiliary data using Orekit's full orbit propagation capability. This is a considerable advantage for test data generation and mission simulation activities. Together with the Orfeo ToolBox (OTB) image processing library, Rugged provides the algorithmic core of Sentinel-2 Instrument Processing Facilities. The S2 complex viewing model - with 12 staggered push-broom detectors and 13 spectral bands - is built using Rugged objects, enabling the computation of rectification grids for mapping between cartographic and focal plane coordinates. These grids are passed to the OTB library for further image resampling, thus completing the ortho-rectification chain. Sentinel-2 stringent operational requirements to process several terabytes of data per week represented a tough challenge, though one that was well met by Rugged in terms of the robustness and performance of the library.

  20. Analysis of the enhanced negative correlation between electron density and electron temperature related to earthquakes

    NASA Astrophysics Data System (ADS)

    Shen, X. H.; Zhang, X.; Liu, J.; Zhao, S. F.; Yuan, G. P.

    2015-04-01

    Ionospheric perturbations in plasma parameters have been observed before large earthquakes, but the correlation between different parameters has been less studied in previous research. The present study is focused on the relationship between electron density (Ne) and temperature (Te) observed by the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite during local nighttime, in which a positive correlation has been revealed near the equator and a weak correlation at mid- and low latitudes over both hemispheres. Based on this normal background analysis, the negative correlation with the lowest percent in all Ne and Te points is studied before and after large earthquakes at mid- and low latitudes. The multiparameter observations exhibited typical synchronous disturbances before the Chile M8.8 earthquake in 2010 and the Pu'er M6.4 in 2007, and Te varied inversely with Ne over the epicentral areas. Moreover, statistical analysis has been done by selecting the orbits at a distance of 1000 km and ±7 days before and after the global earthquakes. Enhanced negative correlation coefficients lower than -0.5 between Ne and Te are found in 42% of points to be connected with earthquakes. The correlation median values at different seismic levels show a clear decrease with earthquakes larger than 7. Finally, the electric-field-coupling model is discussed; furthermore, a digital simulation has been carried out by SAMI2 (Sami2 is Another Model of the Ionosphere), which illustrates that the external electric field in the ionosphere can strengthen the negative correlation in Ne and Te at a lower latitude relative to the disturbed source due to the effects of the geomagnetic field. Although seismic activity is not the only source to cause the inverse Ne-Te variations, the present results demonstrate one possibly useful tool in seismo-electromagnetic anomaly differentiation, and a comprehensive analysis with multiple parameters helps to further understand the seismo-ionospheric coupling mechanism.

  1. Analysis of the load selection on the error of source characteristics identification for an engine exhaust system

    NASA Astrophysics Data System (ADS)

    Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin

    2015-05-01

    Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.

  2. 3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI

    NASA Astrophysics Data System (ADS)

    Thiesson, J.; Tabbagh, A.; Simon, F.-X.; Dabas, M.

    2017-01-01

    Low induction number EMI instruments are able to simultaneously measure a soil's apparent magnetic susceptibility and electrical conductivity. This family of dual measurement instruments is highly useful for the analysis of soils and archeological sites. However, the electromagnetic properties of soils are found to vary over considerably different ranges: whereas their electrical conductivity varies from ≤ 0.1 to ≥ 100 mS/m, their relative magnetic permeability remains within a very small range, between 1.0001 and 1.01 SI. Consequently, although apparent conductivity measurements need to be inverted using non-linear processes, the variations of the apparent magnetic susceptibility can be approximated through the use of linear processes, as in the case of the magnetic prospection technique. Our proposed 3D inversion algorithm starts from apparent susceptibility data sets, acquired using different instruments over a given area. A reference vertical profile is defined by considering the mode of the vertical distributions of both the electrical resistivity and of the magnetic susceptibility. At each point of the mapped area, the reference vertical profile response is subtracted to obtain the apparent susceptibility variation dataset. A 2D horizontal Fourier transform is applied to these variation datasets and to the dipole (impulse) response of each instrument, a (vertical) 1D inversion is performed at each point in the spectral domain, and finally the resulting dataset is inverse transformed to restore the apparent 3D susceptibility variations. It has been shown that when applied to synthetic results, this method is able to correct the apparent deformations of a buried object resulting from the geometry of the instrument, and to restore reliable quantitative susceptibility contrasts. It also allows the thin layer solution, similar to that used in magnetic prospection, to be implemented. When applied to field data it initially delivers a level of contrast comparable to that obtained with a non-linear 3D inversion. Over four different sites, this method is able to produce, following an acceptably short computation time, realistic values for the lateral and vertical variations in susceptibility, which are significantly different to those given by a point-by-point 1D inversion.

  3. On increasing stability in the two dimensional inverse source scattering problem with many frequencies

    NASA Astrophysics Data System (ADS)

    Entekhabi, Mozhgan Nora; Isakov, Victor

    2018-05-01

    In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.

  4. On the value of incorporating spatial statistics in large-scale geophysical inversions: the SABRe case

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.

    2010-12-01

    Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.

  5. DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Ke, Xiaoping; Wang, Yong

    2018-04-01

    This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.

  6. Applications of Generalized Derivatives to Viscoelasticity.

    DTIC Science & Technology

    1979-11-01

    Integration Used to Evaluate the Inverse Transform 78 B-i Schematic of the Half-Space of Newtonian Fluid Bounded by a "Wetted" Surface 96 C-I The...of the response at discrete frequencies. The inverse transform of the response is evaluated numerically to produce the time history. The major drawback...of this method is the arduous task of calculating the inverse transform for every point in time at which the value of the response is required. The

  7. Joint Application of Concentrations and Isotopic Signatures to Investigate the Global Atmospheric Carbon Monoxide Budget: Inverse Modeling Approach

    NASA Astrophysics Data System (ADS)

    Park, K.; Emmons, L. K.; Mak, J. E.

    2007-12-01

    Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year- simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers that contain the source information, jointly applying the isotope and the concentration information is expected to provide more precise optimization results in CO budget estimation. Our accumulated long-term CO isotope measurement data contribute to having more confidence of the inversions as well. Besides the benefit of adding isotope data on the inverse modeling, a trait of each isotope of CO (oxygen and carbon isotope) contains another advantageous use in the top-down estimation of the CO budget. δ18O and δ13C has a distinctive isotopic signature on a specific source; combustion sources such as a fossil fuel use show clearly different values from other natural sources in the δ18O signatures and the methane source can be easily separated by using δ13C information. Therefore, inversions of the two major sources of CO respond with different sensitivity for the different isotopes. To maximize the strengths of using isotope data in the inverse modeling analysis, various coupling schemes combining [CO], δ18O and δ13C have been investigated to enhance the credibility of the CO budget optimization.

  8. Joint Application of Concentrations and Isotopic Signatures to Investigate the Global Atmospheric Carbon Monoxide Budget: Inverse Modeling Approach

    NASA Astrophysics Data System (ADS)

    Park, K.; Mak, J. E.; Emmons, L. K.

    2008-12-01

    Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers that contain the source information, jointly applying the isotope and the concentration information is expected to provide more precise optimization results in CO budget estimation. Our accumulated long-term CO isotope measurement data contribute to having more confidence of the inversions as well. Besides the benefit of adding isotope data on the inverse modeling, a trait of each isotope of CO (oxygen and carbon isotope) contains another advantageous use in the top-down estimation of the CO budget. δ18O and δ13C has a distinctive isotopic signature on a specific source; combustion sources such as a fossil fuel use show clearly different values from other natural sources in the δ18O signatures and the methane source can be easily separated by using δ13C information. Therefore, inversions of the two major sources of CO respond with different sensitivity for the different isotopes. To maximize the strengths of using isotope data in the inverse modeling analysis, various coupling schemes combining [CO], δ18O and δ13C have been investigated to enhance the credibility of the CO budget optimization.

  9. Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Inoue, H.

    2008-06-01

    We propose a method of waveform inversion to rapidly and routinely estimate both the moment function and the centroid moment tensor (CMT) of an earthquake. In this method, waveform inversion is carried out in the frequency domain to obtain the moment function more rapidly than when solved in the time domain. We assume a pure double-couple source mechanism in order to stabilize the solution when using data from a small number of seismic stations. The fault and slip orientations are estimated by a grid search with respect to the strike, dip and rake angles. The moment function in the time domain is obtained from the inverse Fourier transform of the frequency components determined by the inversion. Since observed waveforms used for the inversion are limited in a particular frequency band, the estimated moment function is a bandpassed form. We develop a practical approach to estimate the deconvolved form of the moment function, from which we can reconstruct detailed rupture history and the seismic moment. The source location is determined by a spatial grid search using adaptive grid spacings, which are gradually decreased in each step of the search. We apply this method to two events that occurred in Indonesia by using data from a broad-band seismic network in Indonesia (JISNET): one northeast of Sulawesi (Mw = 7.5) on 2007 January 21, and the other south of Java (Mw = 7.5) on 2006 July 17. The source centroid locations and mechanisms we estimated for both events are consistent with those determined by the Global CMT Project and the National Earthquake Information Center of the U.S. Geological Survey. The estimated rupture duration of the Sulawesi event is 16 s, which is comparable to a typical duration for earthquakes of this magnitude, while that of the Java event is anomalously long (176 s), suggesting that this event was a tsunami earthquake. Our application demonstrates that this inversion method has great potential for rapid and routine estimations of both the CMT and the moment function, and may be useful for identification of tsunami earthquakes.

  10. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    NASA Astrophysics Data System (ADS)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases, the inverted slip model and moment rate function better match previous results incorporating field observations, geodetic and seismic data.

  11. Impact of structural and autocyclic basin-floor topography on the depositional evolution of the deep-water Valparaiso forearc basin, central Chile

    USGS Publications Warehouse

    Laursen, J.; Normark, W.R.

    2003-01-01

    The Valparaiso Basin constitutes a unique and prominent deep-water forearc basin underlying a 40-km by 60-km mid-slope terrace at 2.5-km water depth on the central Chile margin. Seismic-reflection data, collected as part of the CONDOR investigation, image a 3-3.5-km thick sediment succession that fills a smoothly sagged, margin-parallel, elongated trough at the base of the upper slope. In response to underthrusting of the Juan Ferna??ndez Ridge on the Nazca plate, the basin fill is increasingly deformed in the seaward direction above seaward-vergent outer forearc compressional highs. Syn-depositional growth of a large, margin-parallel monoclinal high in conjunction with sagging of the inner trough of the basin created stratal geometries similar to those observed in forearc basins bordered by large accretionary prisms. Margin-parallel compressional ridges diverted turbidity currents along the basin axis and exerted a direct control on sediment depositional processes. As structural depressions became buried, transverse input from point sources on the adjacent upper slope formed complex fan systems with sediment waves characterising the overbank environment, common on many Pleistocene turbidite systems. Mass failure as a result of local topographic inversion formed a prominent mass-flow deposit, and ultimately resulted in canyon formation and hence a new focused point source feeding the basin. The Valparaiso Basin is presently filled to the spill point of the outer forearc highs, causing headward erosion of incipient canyons into the basin fill and allowing bypass of sediment to the Chile Trench. Age estimates that are constrained by subduction-related syn-depositional deformation of the upper 700-800m of the basin fill suggest that glacio-eustatic sea-level lowstands, in conjunction with accelerated denudation rates, within the past 350 ka may have contributed to the increase in simultaneously active point sources along the upper slope as well as an increased complexity of proximal depositional facies.

  12. Advancements and challenges in crosshole GPR full-waveform inversion for hydrological applications

    NASA Astrophysics Data System (ADS)

    Klotzsche, A.; Van Der Kruk, J.; Vereecken, H.

    2016-12-01

    Crosshole ground penetrating radar (GPR) full-waveform inversion (FWI) demonstrated over the last decade a high potential to detect, map, and resolve decimeter-small-scale structures within aquifers. GPR FWI uses Maxwell's equations to find a model that fits the measurements with the entire measured waveform. One big advantage is that by applying one method, we can derive two soil properties: dielectric permittivity and electrical conductivity. Both parameters are sensitive to different soil properties such as soil water content and porosity, or, clay content. Hence, an improved characterization of the critical zone is possible. The application of the FWI to aquifers in Germany, Switzerland, Denmark, and USA showed for all sites improved and higher resolution images than standard ray-based methods and provided new insights in the aquifers' structures. Furthermore, small-scale high contrast layers caused by changes in porosity were characterize and enhanced our understanding of the electromagnetic wave propagation related to these features. However, to obtain reliable and accurate inversion results from experimental data and hence porosity estimates, many detailed steps in acquiring the data, pre-processing and inverting the data need to be carefully followed. Here, we provide an overview of recent developments and advancements of the 2D crosshole GPR FWI that provide improved inversion results for permittivity and electrical conductivity. In addition, we will provide guidelines and point out important challenges and pitfalls that can occur during the inversion of experimental data. We will illustrate the necessary steps that are required to achieve reliable FWI results, which are indicated by e.g. a good fit of the measured and modelled traces, and, absence of a remaining gradient for the final models. Important requirements for a successful application are an accurate time zero correction, good starting models for the FWI, and, a well-estimated source wavelet.

  13. Comparison of three methods of solution to the inverse problem of groundwater hydrology for multiple pumping stimulation

    NASA Astrophysics Data System (ADS)

    Giudici, Mauro; Casabianca, Davide; Comunian, Alessandro

    2015-04-01

    The basic classical inverse problem of groundwater hydrology aims at determining aquifer transmissivity (T ) from measurements of hydraulic head (h), estimates or measures of source terms and with the least possible knowledge on hydraulic transmissivity. The theory of inverse problems shows that this is an example of ill-posed problem, for which non-uniqueness and instability (or at least ill-conditioning) might preclude the computation of a physically acceptable solution. One of the methods to reduce the problems with non-uniqueness, ill-conditioning and instability is a tomographic approach, i.e., the use of data corresponding to independent flow situations. The latter might correspond to different hydraulic stimulations of the aquifer, i.e., to different pumping schedules and flux rates. Three inverse methods have been analyzed and tested to profit from the use of multiple sets of data: the Differential System Method (DSM), the Comparison Model Method (CMM) and the Double Constraint Method (DCM). DSM and CMM need h all over the domain and thus the first step for their application is the interpolation of measurements of h at sparse points. Moreover, they also need the knowledge of the source terms (aquifer recharge, well pumping rates) all over the aquifer. DSM is intrinsically based on the use of multiple data sets, which permit to write a first-order partial differential equation for T , whereas CMM and DCM were originally proposed to invert a single data set and have been extended to work with multiple data sets in this work. CMM and DCM are based on Darcy's law, which is used to update an initial guess of the T field with formulas based on a comparison of different hydraulic gradients. In particular, the CMM algorithm corrects the T estimate with ratio of the observed hydraulic gradient and that obtained with a comparison model which shares the same boundary conditions and source terms as the model to be calibrated, but a tentative T field. On the other hand the DCM algorithm applies the ratio of the hydraulic gradients obtained for two different forward models, one with the same boundary conditions and source terms as the model to be calibrated and the other one with prescribed head at the positions where in- or out-flow is known and h is measured. For DCM and CMM, multiple stimulation is used by updating the T field separately for each data set and then combining the resulting updated fields with different possible statistics (arithmetic, geometric or harmonic mean, median, least change, etc.). The three algorithms are tested and their characteristics and results are compared with a field data set, which was provided by prof. Fritz Stauffer (ETH) and corresponding to a pumping test in a thin alluvial aquifer in northern Switzerland. Three data sets are available and correspond to the undisturbed state, to the flow field created by a single pumping well and to the situation created by an 'hydraulic dipole', i.e., an extraction and an injection wells. These data sets permit to test the three inverse methods and the different options which can be chosen for their use.

  14. Longitudinal patterns of youth access to cigarettes and smoking progression: Minnesota Adolescent Community Cohort (MACC) study (2000 – 2003)

    PubMed Central

    Widome, Rachel; Forster, Jean L.; Hannan, Peter J.; Perry, Cheryl L.

    2008-01-01

    OBJECTIVES To measure community-level changes in the methods youth use to obtain cigarettes over time and to relate these methods to the progression of smoking. METHODS We analyzed 2000-2003 data from the Minnesota Adolescent Community Cohort study, where youth (beginning at age 12), who were living in Minnesota at baseline, were surveyed every six months via telephone. We conducted mixed model repeated measures logistic regression to obtain probabilities of cigarette access methods among past 30-day smokers (n = 340 at baseline). RESULTS The probability of obtaining cigarettes from a commercial source in the past month declined from 0.36 at baseline to 0.22 at the sixth survey point while the probability of obtaining cigarettes from a social source during the previous month increased from 0.54 to 0.76 (p for both trends = 0.0001). At the community level, the likelihood of adolescents obtaining cigarettes from social sources was inversely related to the likelihood of progressing to heavy smoking (p < 0.001). CONCLUSIONS During this time, youth shifted to greater reliance on social sources and less on commercial sources. A trend toward less commercial access to cigarettes accompanied by an increase in social access may translate to youth being less likely to progress to heavier smoking. PMID:17719080

  15. Moment Tensor Analysis of Shallow Sources

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.

    2015-12-01

    A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.

  16. Propeller sheet cavitation noise source modeling and inversion

    NASA Astrophysics Data System (ADS)

    Lee, Keunhwa; Lee, Jaehyuk; Kim, Dongho; Kim, Kyungseop; Seong, Woojae

    2014-02-01

    Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.

  17. Towards a Full Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2015-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green's function between the two receivers. This assumption, however, is only met under specific conditions, for instance, wavefield diffusivity and equipartitioning, zero attenuation, etc., that are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations regarding Earth structure and noise generation. To overcome this limitation we attempt to develop a method that consistently accounts for noise distribution, 3D heterogeneous Earth structure and the full seismic wave propagation physics in order to improve the current resolution of tomographic images of the Earth. As an initial step towards a full waveform ambient noise inversion we develop a preliminary inversion scheme based on a 2D finite-difference code simulating correlation functions and on adjoint techniques. With respect to our final goal, a simultaneous inversion for noise distribution and Earth structure, we address the following two aspects: (1) the capabilities of different misfit functionals to image wave speed anomalies and source distribution and (2) possible source-structure trade-offs, especially to what extent unresolvable structure could be mapped into the inverted noise source distribution and vice versa.

  18. Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Suntharalingam, Parvadha; Jones, Dylan B. A.; Jacob, Daniel J.; Streets, David G.; Fu, Qingyan; Vay, Stephanie A.; Sachse, Glen W.

    2006-01-01

    Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients are included in the inversion as off-diagonal entries in the a priori and observation error covariance matrices. We derive error correlations in a priori combustion source estimates of CO2 and CO by propagating error estimates of fuel consumption rates and emission factors. However, we find that these correlations are weak because CO source uncertainties are mostly determined by emission factors. Observed correlations between atmospheric CO2 and CO concentrations imply corresponding error correlations in the chemical transport model used as the forward model for the inversion. These error correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-CO inversion to achieve significant improvement over a CO2-only inversion for quantifying regional fluxes of CO2.

  19. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Chevallier, Frederic; Ciais, Philippe; Yin, Yi; Deeter, Merritt N.; Worden, Helen M.; Wang, Yilong; Zhang, Qiang; He, Kebin

    2018-04-01

    Measurements of Pollution in the Troposphere (MOPITT) satellite and ground-based carbon monoxide (CO) measurements both suggest a widespread downward trend in CO concentrations over East Asia during the period 2005–2016. This negative trend is inconsistent with global bottom-up inventories of CO emissions, which show a small increase or stable emissions in this region. We try to reconcile the observed CO trend with emission inventories using an atmospheric inversion of the MOPITT CO data that estimates emissions from primary sources, secondary production, and chemical sinks of CO. The atmospheric inversion indicates a ~ ‑2% yr‑1 decrease in emissions from primary sources in East Asia from 2005–2016. The decreasing emissions are mainly caused by source reductions in China. The regional MEIC inventory for China is the only bottom up estimate consistent with the inversion-diagnosed decrease of CO emissions. According to the MEIC data, decreasing CO emissions from four main sectors (iron and steel industries, residential sources, gasoline-powered vehicles, and construction materials industries) in China explain 76% of the inversion-based trend of East Asian CO emissions. This result suggests that global inventories underestimate the recent decrease of CO emission factors in China which occurred despite increasing consumption of carbon-based fuels, and is driven by rapid technological changes with improved combustion efficiency and emission control measures.

  20. Hamiltonian Monte Carlo Inversion of Seismic Sources in Complex Media

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; Simutė, S.

    2017-12-01

    We present a probabilistic seismic source inversion method that properly accounts for 3D heterogeneous Earth structure and provides full uncertainty information on the timing, location and mechanism of the event. Our method rests on two essential elements: (1) reciprocity and spectral-element simulations in complex media, and (2) Hamiltonian Monte Carlo sampling that requires only a small amount of test models. Using spectral-element simulations of 3D, visco-elastic, anisotropic wave propagation, we precompute a data base of the strain tensor in time and space by placing sources at the positions of receivers. Exploiting reciprocity, this receiver-side strain data base can be used to promptly compute synthetic seismograms at the receiver locations for any hypothetical source within the volume of interest. The rapid solution of the forward problem enables a Bayesian solution of the inverse problem. For this, we developed a variant of Hamiltonian Monte Carlo (HMC) sampling. Taking advantage of easily computable derivatives, HMC converges to the posterior probability density with orders of magnitude less samples than derivative-free Monte Carlo methods. (Exact numbers depend on observational errors and the quality of the prior). We apply our method to the Japanese Islands region where we previously constrained 3D structure of the crust and upper mantle using full-waveform inversion with a minimum period of around 15 s.

  1. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains.

    PubMed

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S

    2007-11-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.

  2. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su

    2017-12-01

    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

  3. Solving Inverse Kinematics of Robot Manipulators by Means of Meta-Heuristic Optimisation

    NASA Astrophysics Data System (ADS)

    Wichapong, Kritsada; Bureerat, Sujin; Pholdee, Nantiwat

    2018-05-01

    This paper presents the use of meta-heuristic algorithms (MHs) for solving inverse kinematics of robot manipulators based on using forward kinematic. Design variables are joint angular displacements used to move a robot end-effector to the target in the Cartesian space while the design problem is posed to minimize error between target points and the positions of the robot end-effector. The problem is said to be a dynamic problem as the target points always changed by a robot user. Several well established MHs are used to solve the problem and the results obtained from using different meta-heuristics are compared based on the end-effector error and searching speed of the algorithms. From the study, the best performer will be obtained for setting as the baseline for future development of MH-based inverse kinematic solving.

  4. Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K., E-mail: qadir.timerghazin@marquette.edu

    2015-10-07

    Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrastedmore » to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field.« less

  5. North Korea nuclear test analysis results using KMA seismic and infrasound networks

    NASA Astrophysics Data System (ADS)

    Jeon, Y. S.; Park, E.; Lee, D.; Min, K.; CHO, S.

    2017-12-01

    Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Seismic and infrasound network operated by Korea Meteorological Administration(KMA) successfully detected signals took place in the DPRK's test site, Punggye-ri. First, we checked that Pg/Lg spectral amplitude ratio greater than 1 in the frequency range from 1.0 to 10.0 Hz is useful to discriminate between DPRK test signals and natural earthquakes. KMA's infrasound stations of Cheorwon(CW) and Yanggu(YG) successfully monitored the azimuth direction of the arrival of the infrasound signals generated from DPRK underground nuclear explosions, including the recent test on September 03, 2017. The azimuthal direction of 210(CW) and 130 (YG) point out Punggye-ri test site. Complete waveforms at stations MDJ, CHC2, YNCB in long period(0.05 to 0.1 HZ) are jointly inverted with local P-wave polarities to generate moment tensor inversion result of the explosive moment 1.20e+24 dyne cm(Mw 5.31) and 65% of ISO. The moment magnitude of 5th, 4th and 3rd are 4.61, 4.69 and 4.46 respectively. Source type moment tensor inversion result of DPRK nuclear tests show that the event is significantly away from the deviatoric line of the Hudson et at. (1989) source-type diagram and identifies as having a significant explosive component. Analysis results using seismic and infrasound network verify that the DPRK's explosion tests classified as nuclear test.

  6. Resolving the Detailed Spatiotemporal Slip Evolution of Deep Tremor in Western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuaki; Ide, Satoshi

    2017-12-01

    We study the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. Although many studies now recognize tremor as shear slip along the plate interface manifested in low-frequency earthquake (LFE) swarms, a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12 day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  7. Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances

    NASA Astrophysics Data System (ADS)

    Stähler, Simon C.; Sigloch, Karin

    2016-11-01

    Seismic source inversion, a central task in seismology, is concerned with the estimation of earthquake source parameters and their uncertainties. Estimating uncertainties is particularly challenging because source inversion is a non-linear problem. In a companion paper, Stähler and Sigloch (2014) developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements, a problem we address here. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D = 1 - CC of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. By identifying and quantifying this likelihood function, we make D and thus waveform cross-correlation measurements usable for fully probabilistic sampling strategies, in source inversion and related applications such as seismic tomography.

  8. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    DOE PAGES

    Acero, F.

    2016-04-22

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less

  9. Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)

    NASA Astrophysics Data System (ADS)

    Kasibhatla, P.

    2004-12-01

    In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.

  10. Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia

    NASA Astrophysics Data System (ADS)

    Babeyko, A. Y.; Hoechner, A.; Sobolev, S. V.

    2010-07-01

    We present the GITEWS approach to source modeling for the tsunami early warning in Indonesia. Near-field tsunami implies special requirements to both warning time and details of source characterization. To meet these requirements, we employ geophysical and geological information to predefine a maximum number of rupture parameters. We discretize the tsunamigenic Sunda plate interface into an ordered grid of patches (150×25) and employ the concept of Green's functions for forward and inverse rupture modeling. Rupture Generator, a forward modeling tool, additionally employs different scaling laws and slip shape functions to construct physically reasonable source models using basic seismic information only (magnitude and epicenter location). GITEWS runs a library of semi- and fully-synthetic scenarios to be extensively employed by system testing as well as by warning center personnel teaching and training. Near real-time GPS observations are a very valuable complement to the local tsunami warning system. Their inversion provides quick (within a few minutes on an event) estimation of the earthquake magnitude, rupture position and, in case of sufficient station coverage, details of slip distribution.

  11. Source parameter inversion of compound earthquakes on GPU/CPU hybrid platform

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ni, S.; Chen, W.

    2012-12-01

    Source parameter of earthquakes is essential problem in seismology. Accurate and timely determination of the earthquake parameters (such as moment, depth, strike, dip and rake of fault planes) is significant for both the rupture dynamics and ground motion prediction or simulation. And the rupture process study, especially for the moderate and large earthquakes, is essential as the more detailed kinematic study has became the routine work of seismologists. However, among these events, some events behave very specially and intrigue seismologists. These earthquakes usually consist of two similar size sub-events which occurred with very little time interval, such as mb4.5 Dec.9, 2003 in Virginia. The studying of these special events including the source parameter determination of each sub-events will be helpful to the understanding of earthquake dynamics. However, seismic signals of two distinctive sources are mixed up bringing in the difficulty of inversion. As to common events, the method(Cut and Paste) has been proven effective for resolving source parameters, which jointly use body wave and surface wave with independent time shift and weights. CAP could resolve fault orientation and focal depth using a grid search algorithm. Based on this method, we developed an algorithm(MUL_CAP) to simultaneously acquire parameters of two distinctive events. However, the simultaneous inversion of both sub-events make the computation very time consuming, so we develop a hybrid GPU and CPU version of CAP(HYBRID_CAP) to improve the computation efficiency. Thanks to advantages on multiple dimension storage and processing in GPU, we obtain excellent performance of the revised code on GPU-CPU combined architecture and the speedup factors can be as high as 40x-90x compared to classical cap on traditional CPU architecture.As the benchmark, we take the synthetics as observation and inverse the source parameters of two given sub-events and the inversion results are very consistent with the true parameters. For the events in Virginia, USA on 9 Dec, 2003, we re-invert source parameters and detailed analysis of regional waveform indicates that Virginia earthquake included two sub-events which are Mw4.05 and Mw4.25 at the same depth of 10km with focal mechanism of strike65/dip32/rake135, which are consistent with previous study. Moreover, compared to traditional two-source model method, MUL_CAP is more automatic with no need for human intervention.

  12. Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects.

    PubMed

    Fitzgerald, Sue-Anne; Brooks, Anna; van der Zwan, Rick; Blair, Duncan

    2014-01-01

    Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed.

  13. Recombination rate predicts inversion size in Diptera.

    PubMed Central

    Cáceres, M; Barbadilla, A; Ruiz, A

    1999-01-01

    Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination. PMID:10471710

  14. Imaging the complex geometry of a magma reservoir using FEM-based linear inverse modeling of InSAR data: application to Rabaul Caldera, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martì Molist, Joan

    2017-06-01

    We test an innovative inversion scheme using Green's functions from an array of pressure sources embedded in finite-element method (FEM) models to image, without assuming an a-priori geometry, the composite and complex shape of a volcano deformation source. We invert interferometric synthetic aperture radar (InSAR) data to estimate the pressurization and shape of the magma reservoir of Rabaul caldera, Papua New Guinea. The results image the extended shallow magmatic system responsible for a broad and long-term subsidence of the caldera between 2007 February and 2010 December. Elastic FEM solutions are integrated into the regularized linear inversion of InSAR data of volcano surface displacements in order to obtain a 3-D image of the source of deformation. The Green's function matrix is constructed from a library of forward line-of-sight displacement solutions for a grid of cubic elementary deformation sources. Each source is sequentially generated by removing the corresponding cubic elements from a common meshed domain and simulating the injection of a fluid mass flux into the cavity, which results in a pressurization and volumetric change of the fluid-filled cavity. The use of a single mesh for the generation of all FEM models avoids the computationally expensive process of non-linear inversion and remeshing a variable geometry domain. Without assuming an a-priori source geometry other than the configuration of the 3-D grid that generates the library of Green's functions, the geodetic data dictate the geometry of the magma reservoir as a 3-D distribution of pressure (or flux of magma) within the source array. The inversion of InSAR data of Rabaul caldera shows a distribution of interconnected sources forming an amorphous, shallow magmatic system elongated under two opposite sides of the caldera. The marginal areas at the sides of the imaged magmatic system are the possible feeding reservoirs of the ongoing Tavurvur volcano eruption of andesitic products on the east side and of the past Vulcan volcano eruptions of more evolved materials on the west side. The interconnection and spatial distributions of sources correspond to the petrography of the volcanic products described in the literature and to the dynamics of the single and twin eruptions that characterize the caldera. The ability to image the complex geometry of deformation sources in both space and time can improve our ability to monitor active volcanoes, widen our understanding of the dynamics of active volcanic systems and improve the predictions of eruptions.

  15. Inverse modeling of April 2013 radioxenon detections

    NASA Astrophysics Data System (ADS)

    Hofman, Radek; Seibert, Petra; Philipp, Anne

    2014-05-01

    Significant concentrations of radioactive xenon isotopes (radioxenon) were detected by the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in April 2013 in Japan. Particularly, three detections of Xe-133 made between 2013-04-07 18:00 UTC and 2013-04-09 06:00 UTC at the station JPX38 are quite notable with respect to the measurement history of the station. Our goal is to analyze the data and perform inverse modeling under different assumptions. This work is useful with respect to nuclear test monitoring as well as for the analysis of and response to nuclear emergencies. Two main scenarios will be pursued: (i) Source location is assumed to be known (DPRK test site). (ii) Source location is considered unknown. We attempt to estimate the source strength and the source strength along with its plausible location compatible with the data in scenario (i) and (ii), respectively. We are considering also the possibility of a vertically distributed source. Calculations of source-receptor sensitivity (SRS) fields and the subsequent inversion are aimed at going beyond routine calculations performed by the CTBTO. For SRS calculations, we employ the Lagrangian particle dispersion model FLEXPART with high resolution ECMWF meteorological data (grid cell sizes of 0.5, 0.25 and ca. 0.125 deg). This is important in situations where receptors or sources are located in complex terrain which is the case of the likely source of detections-the DPRK test site. SRS will be calculated with convection enabled in FLEXPART which will also increase model accuracy. In the variational inversion procedure attention will be paid not only to all significant detections and their uncertainties but also to non-detections which can have a large impact on inversion quality. We try to develop and implement an objective algorithm for inclusion of relevant data where samples from temporal and spatial vicinity of significant detections are added in an iterative manner and the inversion is recalculated in each iteration. This procedure should gradually narrow down the set of hypotheses on the source term, where the source term is here understood as an emission in both spatial and temporal domains. Especially in scenario (ii) we expect a strong impact of non-detections for the reduction of possible solutions. For these and also other purposes like statistical quantification of typical background values, measurements from all IMS noble gas stations north of 30 deg S for a period from January to June 2013 were extracted from vDEC platform. We would like to acknowledge the Preparatory Commission for the CTBTO for kindly providing limited access to the IMS data. This work contains only opinions of the authors, which can not in any case establish legal engagement of the Provisional Technical Secretariat of the CTBTO. This work is partially financed through the project "PREPARE: Innovative integrated tools and platforms for radiological emergency preparedness and post-accident response in Europe" (FP7, Grant 323287).

  16. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method

    NASA Astrophysics Data System (ADS)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-06-01

    We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the southwestern Pacific and eastern Africa, while low attenuation zones fade beneath most of the cratons. The strong negative correlation of Q^{-1}_μ and VS anomalies at shallow upper-mantle depths points to a common dominant origin for the two, likely due to variations in thermal structure. A comparison with two other global upper-mantle attenuation models shows promising consistency. As we updated the elastic 3-D model in alternate iterations, we found that the VS part of the model was stable, while the ξ structure evolution was more pronounced, indicating that it may be important to include 3-D attenuation effects when inverting for ξ, possibly due to the influence of dispersion corrections on this less well-constrained parameter.

  17. Is chemical heating a major cause of the mesosphere inversion layer?

    NASA Technical Reports Server (NTRS)

    Meriwether, John W.; Mlynczak, Martin G.

    1995-01-01

    A region of thermal enhancement of the mesosphere has been detected on numerous occasions by in situ measurements, remote sensing from space, and lidar techniques. The source of these 'temperature inversion layers' has been attributed in the literature to the dissipation relating to dynamical forcing by gravity wave or tidal activity. However, evidence that gravity wave breaking can produce the inversion layer with amplitude as large as that observed in lidar measurements has been limited to results of numerical modeling. An alternative source for the production of the thermal inversion layer in the mesosphere is the direct deposition of heat by exothermic chemical reactions. Two-dimensional modeling combining a comprehensive model of the mesosphere photochemistry with the dynamical transport of long-lived species shows that the region from 80 to 95 km may be heated as much as 3 to 10 K/d during the night and half this rate during the day. Given the uncertainties in our understanding of the dynamics and chemistry for the mesopause region, separating the two sources by passive observations of the mesosphere thermal structure looks to be difficult. Therefore we have considered an active means for producing a mesopause thermal layer, namely the release of ozone into the upper mesosphere from a rocket payload. The induced effects would include artificial enhancements of the OH and Na airglow intensities as well as the mesopause thermal structure. The advantages of the rocket release of ozone is that detection of these effects by ground-based imaging, radar, and lidar systems and comparison of these effects with model predictions would help quantify the partition of the artificial inversion layer production into sources of dynamical and chemical forcing.

  18. Weyl Points and Line Nodes in Gyroid Photonic Crystals

    DTIC Science & Technology

    2013-04-01

    ANSI Std Z39-18 © 2013 Macmillan Publishers Limited. All rights reserved. direct-product group of I4132 and inversion. The red gyroid in Fig. 1a...the inversion counterpart of the red gyroid with respect to the origin; the two gyroids do not overlap in space. The band structures of both the SG...air-spheres (one on each gyroid). The first air-sphere is placed in the red gyroid as illustrated in Fig. 1a, and the other is its inversion

  19. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  20. Interpretation of the Total Magnetic Field Anomalies Measured by the CHAMP Satellite Over a Part of Europe and the Pannonian Basin

    NASA Technical Reports Server (NTRS)

    Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Toronyi, B.; Puszta, S.

    2012-01-01

    In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions: Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals.

  1. Forward and Inverse Modeling of Near-Field Seismic Waveforms from Underground Nuclear Explosions for Effective Source Functions and Structure Parameters.

    DTIC Science & Technology

    1987-04-05

    IP o , I-S " M4.7 :" * AMIWILTON & U, .-- EALY(I969) : o H CARROLL(1966) HADLEY (19811 C . Figure 2. P and S-wave velocity structure for Pahute Mesa...8217; 0 .02 s wh ilIe S -. cI by C ) >, s) thIe kta i Is o f t he wav e for:7s are quite well modeled bot h ir tr~~e inversion nd in tefrad mod e Iin~ indi...ESTIMATION 7-Te source parameters determined through waveform inversion for the fo: s o r c ri i c e h v h s~ ahute Mesa events studied are sum.:rarited in

  2. Focal mechanism of the seismic series prior to the 2011 El Hierro eruption

    NASA Astrophysics Data System (ADS)

    del Fresno, C.; Buforn, E.; Cesca, S.; Domínguez Cerdeña, I.

    2015-12-01

    The onset of the submarine eruption of El Hierro (10-Oct-2011) was preceded by three months of low-magnitude seismicity (Mw<4.0) characterized by a well documented hypocenter migration from the center to the south of the island. Seismic sources of this series have been studied in order to understand the physical process of magma migration. Different methodologies were used to obtain focal mechanisms of largest shocks. Firstly, we have estimated the joint fault plane solutions for 727 shocks using first motion P polarities to infer the stress pattern of the sequence and to determine the time evolution of principle axes orientation. Results show almost vertical T-axes during the first two months of the series and horizontal P-axes on N-S direction coinciding with the migration. Secondly, a point source MT inversion was performed with data of the largest 21 earthquakes of the series (M>3.5). Amplitude spectra was fitted at local distances (<20km). Reliability and stability of the results were evaluated with synthetic data. Results show a change in the focal mechanism pattern within the first days of October, varying from complex sources of higher non-double-couple components before that date to a simpler strike-slip mechanism with horizontal tension axes on E-W direction the week prior to the eruption onset. A detailed study was carried out for the 8 October 2011 earthquake (Mw=4.0). Focal mechanism was retrieved using a MT inversion at regional and local distances. Results indicate an important component of strike-slip fault and null isotropic component. The stress pattern obtained corresponds to horizontal compression in a NNW-SSE direction, parallel to the southern ridge of the island, and a quasi-horizontal extension in an EW direction. Finally, a simple source time function of 0.3s has been estimated for this shock using the Empirical Green function methodology.

  3. Recent achievements in real-time computational seismology in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information < 120 sec; ROS completes a 3D simulation < 3 minutes). All of these computational results are posted on the internet in real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  4. Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.

  5. Curie Depth Analysis of the Salton Sea Region, Southern California

    NASA Astrophysics Data System (ADS)

    Mickus, Kevin; Hussein, Musa

    2016-02-01

    Aeromagnetic data were analyzed to determine the bottom of magnetic bodies that might be related to the Curie point depth (CPD) by 2D spectral and 3D inversion methods within the Salton Trough and the surrounding region in southern California. The bottom of the magnetic bodies for 55 × 55 km windows varied in depth between 11 and 23 km in depth using 2D spectral methods. Since the 55 × 55 km square window may include both shallow and deep source, a 3D inversion method was used to provide better resolution of the bottom of the magnetic bodies. The 3D models indicate the depth to the bottom of the magnetic bodies varied between 5 and 23 km. Even though both methods produced similar results, the 3D inversion method produced higher resolution of the CPD depths. The shallowest depths (5-8 km) occur along and west of the Brawley Seismic Zone and the southwestern portion of the Imperial Valley. The source of these shallow CPD values may be related to geothermal systems including hydrothermal circulation and/or partially molten material. Additionally, shallow CPD depths (7-12 km) were found in a northwest-trending zone in the center of the Salton Trough. These depths coincide with previous seismic analyses that indicated a lower crustal low velocity region which is believed to be caused by partially molten material. Lower velocity zones in several regions may be related to fracturing and/or hydrothermal fluids. If the majority of these shallow depths are related to temperature, they are likely associated with the CPD, and the partially molten material extends over a wider zone than previously known. Greater depths within the Salton Trough coincide with the base of basaltic material and/or regions of intense metamorphism intruded by mafic material in the middle/lower crust.

  6. Near constant-time optimal piecewise LDR to HDR inverse tone mapping

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Su, Guan-Ming; Yin, Peng

    2015-02-01

    In a backward compatible HDR image/video compression, it is a general approach to reconstruct HDR from compressed LDR as a prediction to original HDR, which is referred to as inverse tone mapping. Experimental results show that 2- piecewise 2nd order polynomial has the best mapping accuracy than 1 piece high order or 2-piecewise linear, but it is also the most time-consuming method because to find the optimal pivot point to split LDR range to 2 pieces requires exhaustive search. In this paper, we propose a fast algorithm that completes optimal 2-piecewise 2nd order polynomial inverse tone mapping in near constant time without quality degradation. We observe that in least square solution, each entry in the intermediate matrix can be written as the sum of some basic terms, which can be pre-calculated into look-up tables. Since solving the matrix becomes looking up values in tables, computation time barely differs regardless of the number of points searched. Hence, we can carry out the most thorough pivot point search to find the optimal pivot that minimizes MSE in near constant time. Experiment shows that our proposed method achieves the same PSNR performance while saving 60 times computation time compared to the traditional exhaustive search in 2-piecewise 2nd order polynomial inverse tone mapping with continuous constraint.

  7. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    USGS Publications Warehouse

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  8. Abel inversion using fast Fourier transforms.

    PubMed

    Kalal, M; Nugent, K A

    1988-05-15

    A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.

  9. Fully probabilistic earthquake source inversion on teleseismic scales

    NASA Astrophysics Data System (ADS)

    Stähler, Simon; Sigloch, Karin

    2017-04-01

    Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters but also estimates of their uncertainties are of great practical importance. We have developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. These unknowns are parameterised efficiently by harnessing as prior knowledge solutions from a large number of non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 source time functions (STFs) by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. References: Stähler, S. C. and Sigloch, K.: Fully probabilistic seismic source inversion - Part 1: Efficient parameterisation, Solid Earth, 5, 1055-1069, doi:10.5194/se-5-1055-2014, 2014. Stähler, S. C. and Sigloch, K.: Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances, Solid Earth, 7, 1521-1536, doi:10.5194/se-7-1521-2016, 2016.

  10. A Fortran 77 computer code for damped least-squares inversion of Slingram electromagnetic anomalies over thin tabular conductors

    NASA Astrophysics Data System (ADS)

    Dondurur, Derman; Sarı, Coşkun

    2004-07-01

    A FORTRAN 77 computer code is presented that permits the inversion of Slingram electromagnetic anomalies to an optimal conductor model. Damped least-squares inversion algorithm is used to estimate the anomalous body parameters, e.g. depth, dip and surface projection point of the target. Iteration progress is controlled by maximum relative error value and iteration continued until a tolerance value was satisfied, while the modification of Marquardt's parameter is controlled by sum of the squared errors value. In order to form the Jacobian matrix, the partial derivatives of theoretical anomaly expression with respect to the parameters being optimised are calculated by numerical differentiation by using first-order forward finite differences. A theoretical and two field anomalies are inserted to test the accuracy and applicability of the present inversion program. Inversion of the field data indicated that depth and the surface projection point parameters of the conductor are estimated correctly, however, considerable discrepancies appeared on the estimated dip angles. It is therefore concluded that the most important factor resulting in the misfit between observed and calculated data is due to the fact that the theory used for computing Slingram anomalies is valid for only thin conductors and this assumption might have caused incorrect dip estimates in the case of wide conductors.

  11. 3-D acoustic waveform simulation and inversion supplemented by infrasound sensors on a tethered weather balloon at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Iezzi, A. M.; Fee, D.; Matoza, R. S.; Jolly, A. D.; Kim, K.; Christenson, B. W.; Johnson, R.; Kilgour, G.; Garaebiti, E.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Gomez, C.; Key, N.

    2017-12-01

    Well-constrained acoustic waveform inversion can provide robust estimates of erupted volume and mass flux, increasing our ability to monitor volcanic emissions (potentially in real-time). Previous studies have made assumptions about the multipole source mechanism, which can be represented as the combination of pressure fluctuations from a volume change, directionality, and turbulence. The vertical dipole has not been addressed due to ground-based recording limitations. In this study we deployed a high-density seismo-acoustic network around Yasur Volcano, Vanuatu, including multiple acoustic sensors along a tethered balloon that was moved every 15-60 minutes. Yasur has frequent strombolian eruptions every 1-4 minutes from any one of three active vents within a 400 m diameter crater. Our experiment captured several explosions from each vent at 38 tether locations covering 200 in azimuth and a take-off range of 50 (Jolly et. al., in review). Additionally, FLIR, FTIR, and a variety of visual imagery were collected during the deployment to aid in the seismo-acoustic interpretations. The third dimension (vertical) of pressure sensor coverage allows us to more completely constrain the acoustic source. Our analysis employs Finite-Difference Time-Domain (FDTD) modeling to obtain the full 3-D Green's functions for each propagation path. This method, following Kim et al. (2015), takes into account realistic topographic scattering based on a high-resolution digital elevation model created using structure-from-motion techniques. We then invert for the source location and multipole source-time function using a grid-search approach. We perform this inversion for multiple events from vents A and C to examine the source characteristics of the vents, including an infrasound-derived volume flux as a function of time. These volumes fluxes are then compared to those derived independently from geochemical and seismic inversion techniques. Jolly, A., Matoza, R., Fee, D., Kennedy, B., Iezzi, A., Fitzgerald, R., Austin, A., & Johnson, R. (in review). Kim, K., Fee, D., Yokoo, A., & Lees, J. M. (2015). Acoustic source inversion to estimate volume flux from volcanic explosions. Geophysical Research Letters, 42(13), 5243-5249.

  12. Quantification of airport community noise impact in terms of noise levels, population density, and human subjective response

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The Fraction Impact Method (FIM), developed by the National Research Council (NRC) for assessing the amount and physiological effect of noise, is described. Here, the number of people exposed to a given level of noise is multiplied by a weighting factor that depends on noise level. It is pointed out that the Aircraft-noise Levels and Annoyance MOdel (ALAMO), recently developed at NASA Langley Research Center, can perform the NRC fractional impact calculations for given modes of operation at any U.S. airport. The sensitivity of these calculations to errors in estimates of population, noise level, and human subjective response is discussed. It is found that a change in source noise causes a substantially smaller change in contour area than would be predicted simply on the basis of inverse square law considerations. Another finding is that the impact calculations are generally less sensitive to source noise errors than to systematic errors in population or subjective response.

  13. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain

    PubMed Central

    2014-01-01

    Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818

  14. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain.

    PubMed

    Shmool, Jessie Lc; Michanowicz, Drew R; Cambal, Leah; Tunno, Brett; Howell, Jeffery; Gillooly, Sara; Roper, Courtney; Tripathy, Sheila; Chubb, Lauren G; Eisl, Holger M; Gorczynski, John E; Holguin, Fernando E; Shields, Kyra Naumoff; Clougherty, Jane E

    2014-04-16

    Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.

  15. Incorporation of Multiple Datasets in Earthquake Source Inversions: Case Study for the 2015 Illapel Earthquake

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Cummins, P. R.; Newman, A. V.; Benavente, R. F.

    2016-12-01

    The 2015 Illapel, Chile earthquake was recorded over a wide range of seismic, geodetic and oceanographic instruments. The USGS assigned magnitude 8.3 earthquake produced a tsunami that was recorded trans-oceanically at both tide gauges and deep-water tsunami pressure sensors. The event also generated surface deformation along the Chilean coast that was recovered through ascending and descending paths of the Sentinel-1A satellite. Additionally, seismic waves were recorded across various global seismic networks. While the determination of the rupture source through seismic and geodetic means is now commonplace and has been studied extensively in this fashion for the Illapel event, the use of tsunami datasets in the inversion process, rather than purely as a forward validation of models, is less common. In this study, we evaluate the use of both near and far field tsunami pressure gauges in the source inversion process, examining their contribution to seismic and geodetic joint inversions- as well as examine the contribution of dispersive and elastic loading parameters on the numerical tsunami propagation. We determine that the inclusion of near field tsunami pressure gauges assists in resolving the degree of slip in the near-trench environment, where purely geodetic inversions lose most resolvability. The inclusion of a far-field dataset has the potential to add further confidence to tsunami inversions, however at a high computational cost. When applied to the Illapel earthquake, this added near-trench resolvability leads to a better estimation of tsunami arrival times at near field gauges and contributes understanding to the wide variation in tsunamigenic slip present along the highly active Peru-Chile trench.

  16. RAiSE II: resolved spectral evolution in radio AGN

    NASA Astrophysics Data System (ADS)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  17. Mod3DMT and EMTF: Free Software for MT Data Processing and Inversion

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.; Kelbert, A.; Meqbel, N. M.

    2017-12-01

    "ModEM" was developed at Oregon State University as a modular system for inversion of electromagnetic (EM) geophysical data (Egbert and Kelbert, 2012; Kelbert et al., 2014). Although designed for more general (frequency domain) EM applications, and originally intended as a testbed for exploring inversion search and regularization strategies, our own initial uses of ModEM were for 3-D imaging of the deep crust and upper mantle at large scales. Since 2013 we have offered a version of the source code suitable for 3D magnetotelluric (MT) inversion on an "as is, user beware" basis for free for non-commercial applications. This version, which we refer to as Mod3DMT, has since been widely used by the international MT community. Over 250 users have registered to download the source code, and at least 50 MT studies in the refereed literature, covering locations around the globe at a range of spatial scales, cite use of ModEM for 3D inversion. For over 30 years I have also made MT processing software available for free use. In this presentation, I will discuss my experience with these freely available (but perhaps not truly open-source) computer codes. Although users are allowed to make modifications to the codes (on conditions that they provide a copy of the modified version) only a handful of users have tried to make any modification, and only rarely are modifications even reported, much less provided back to the developers.

  18. Moment Tensor Inversion of the 1998 Aiquile Earthquake Using Long-period surface waves

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2016-12-01

    On 22nd May 1998 at 04:49(GMT), an earthquake of magnitude Mw = 6.6 struck the Aiquile region of Bolivia, causing 105 deaths and significant damage to the nearby towns of Hoyadas and Pampa Grande. This was the largest shallow earthquake (15 km depth) in Bolivia in over 50 years, and was felt as far Sucre, approximately 100 km away. In this report, a centroid moment tensor (CMT) inversion is carried using body waves and surface waves from 1998 Aiquile earthquake with 1-D and 3-D earth models to obtain the source model parameters and moment tensor, which are the values will be subsequently compared against the Global Centroid Moment Tensor Catalog(GCMT). Also, the excitation kernels could be gained and synthetic data can be created with different earth models. The two method for calculating synthetic seismograms are SPECFEM3D Globe which is based on shear wave mantle model S40RTS and crustal model CRUST 2.0, and AxiSEM which is based on PREM 1-D earth Model. Within the report, the theory behind the CMT inversion was explained and the source parameters gained from the inversion can be used to reveal the tectonics of the source of this earthquake, these information could be helpful in assessing seismic hazard and overall tectonic regime of this region. Furthermore, results of synthetic seismograms and the solution of inversion are going to be used to assess two models.

  19. Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Ekinci, Yunus Levent; Özyalın, Şenol; Sındırgı, Petek; Balkaya, Çağlayan; Göktürkler, Gökhan

    2017-12-01

    In this work, analytic signal amplitude (ASA) inversion of total field magnetic anomalies has been achieved by differential evolution (DE) which is a population-based evolutionary metaheuristic algorithm. Using an elitist strategy, the applicability and effectiveness of the proposed inversion algorithm have been evaluated through the anomalies due to both hypothetical model bodies and real isolated geological structures. Some parameter tuning studies relying mainly on choosing the optimum control parameters of the algorithm have also been performed to enhance the performance of the proposed metaheuristic. Since ASAs of magnetic anomalies are independent of both ambient field direction and the direction of magnetization of the causative sources in a two-dimensional (2D) case, inversions of synthetic noise-free and noisy single model anomalies have produced satisfactory solutions showing the practical applicability of the algorithm. Moreover, hypothetical studies using multiple model bodies have clearly showed that the DE algorithm is able to cope with complicated anomalies and some interferences from neighbouring sources. The proposed algorithm has then been used to invert small- (120 m) and large-scale (40 km) magnetic profile anomalies of an iron deposit (Kesikköprü-Bala, Turkey) and a deep-seated magnetized structure (Sea of Marmara, Turkey), respectively to determine depths, geometries and exact origins of the source bodies. Inversion studies have yielded geologically reasonable solutions which are also in good accordance with the results of normalized full gradient and Euler deconvolution techniques. Thus, we propose the use of DE not only for the amplitude inversion of 2D analytical signals of magnetic profile anomalies having induced or remanent magnetization effects but also the low-dimensional data inversions in geophysics. A part of this paper was presented as an abstract at the 2nd International Conference on Civil and Environmental Engineering, 8-10 May 2017, Cappadocia-Nevşehir (Turkey).

  20. Determination of Monthly Aerosol Types in Manila Observatory and Notre Dame of Marbel University from Aerosol Robotic Network (AERONET) measurements.

    NASA Astrophysics Data System (ADS)

    Ong, H. J. J.; Lagrosas, N.; Uy, S. N.; Gacal, G. F. B.; Dorado, S.; Tobias, V., Jr.; Holben, B. N.

    2016-12-01

    This study aims to identify aerosol types in Manila Observatory (MO) and Notre Dame of Marbel University (NDMU) using Aerosol Robotic Network (AERONET) Level 2.0 inversion data and five dimensional specified clustering and Mahalanobis classification. The parameters used are the 440-870 nm extinction Angström exponent (EAE), 440 nm single scattering albedo (SSA), 440-870 nm absorption Angström exponent (AAE), 440 nm real and imaginary refractive indices. Specified clustering makes use of AERONET data from 7 sites to define 7 aerosol classes: mineral dust (MD), polluted dust (PD), urban industrial (UI), urban industrial developing (UID), biomass burning white smoke (BBW), biomass burning dark smoke (BBD), and marine aerosols. This is similar to the classes used by Russell et al, 2014. A data point is classified into a class based on the closest 5-dimensional Mahalanobis distance (Russell et al, 2014 & Hamill et al, 2016). This method is applied to all 173 MO data points from January 2009 to June 2015 and to all 24 NDMU data points from December 2009 to July 2015 to look at monthly and seasonal variations of aerosol types. The MO and NDMU aerosols are predominantly PD ( 77%) and PD & UID ( 75%) respectively (Figs.1a-b); PD is predominant in the months of February to May in MO and February to March in NDMU. PD results from less strict emission and environmental regulations (Catrall 2005). Average SSA values in MO is comparable to the mean SSA for PD ( 0.89). This can be attributed to presence of high absorbing aerosol types, e.g., carbon which is a product of transportation emissions. The second most dominant aerosol type in MO is UID ( 15%), in NDMU it is BBW ( 25%). In Manila, the high sources of PD and UID (fine particles) is generally from vehicular combustion (Oanh, et al 2006). The detection of BBW in MO from April to May can be attributed to the fires which are common in these dry months. In NDMU, BBW source is from biomass burning (smoldering). In this analysis, smoke from biomass burning transported from other Southeast Asian countries are not observed because of low number of inversion data points. However, fine mode AOD values in NDMU from September to October can have values greater than 1 which implies detection of this transported biomass burning smoke.

Top