NASA Astrophysics Data System (ADS)
Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Bai, Shengjian; Xu, Wanying
2014-07-01
Infrared moving target detection is an important part of infrared technology. We introduce a novel infrared small moving target detection method based on tracking interest points under complicated background. Firstly, Difference of Gaussians (DOG) filters are used to detect a group of interest points (including the moving targets). Secondly, a sort of small targets tracking method inspired by Human Visual System (HVS) is used to track these interest points for several frames, and then the correlations between interest points in the first frame and the last frame are obtained. Last, a new clustering method named as R-means is proposed to divide these interest points into two groups according to the correlations, one is target points and another is background points. In experimental results, the target-to-clutter ratio (TCR) and the receiver operating characteristics (ROC) curves are computed experimentally to compare the performances of the proposed method and other five sophisticated methods. From the results, the proposed method shows a better discrimination of targets and clutters and has a lower false alarm rate than the existing moving target detection methods.
Research on infrared dim-point target detection and tracking under sea-sky-line complex background
NASA Astrophysics Data System (ADS)
Dong, Yu-xing; Li, Yan; Zhang, Hai-bo
2011-08-01
Target detection and tracking technology in infrared image is an important part of modern military defense system. Infrared dim-point targets detection and recognition under complex background is a difficulty and important strategic value and challenging research topic. The main objects that carrier-borne infrared vigilance system detected are sea-skimming aircrafts and missiles. Due to the characteristics of wide field of view of vigilance system, the target is usually under the sea clutter. Detection and recognition of the target will be taken great difficulties .There are some traditional point target detection algorithms, such as adaptive background prediction detecting method. When background has dispersion-decreasing structure, the traditional target detection algorithms would be more useful. But when the background has large gray gradient, such as sea-sky-line, sea waves etc .The bigger false-alarm rate will be taken in these local area .It could not obtain satisfactory results. Because dim-point target itself does not have obvious geometry or texture feature ,in our opinion , from the perspective of mathematics, the detection of dim-point targets in image is about singular function analysis .And from the perspective image processing analysis , the judgment of isolated singularity in the image is key problem. The foregoing points for dim-point targets detection, its essence is a separation of target and background of different singularity characteristics .The image from infrared sensor usually accompanied by different kinds of noise. These external noises could be caused by the complicated background or from the sensor itself. The noise might affect target detection and tracking. Therefore, the purpose of the image preprocessing is to reduce the effects from noise, also to raise the SNR of image, and to increase the contrast of target and background. According to the low sea-skimming infrared flying small target characteristics , the median filter is used to eliminate noise, improve signal-to-noise ratio, then the multi-point multi-storey vertical Sobel algorithm will be used to detect the sea-sky-line ,so that we can segment sea and sky in the image. Finally using centroid tracking method to capture and trace target. This method has been successfully used to trace target under the sea-sky complex background.
Small target detection using objectness and saliency
NASA Astrophysics Data System (ADS)
Zhang, Naiwen; Xiao, Yang; Fang, Zhiwen; Yang, Jian; Wang, Li; Li, Tao
2017-10-01
We are motived by the need for generic object detection algorithm which achieves high recall for small targets in complex scenes with acceptable computational efficiency. We propose a novel object detection algorithm, which has high localization quality with acceptable computational cost. Firstly, we obtain the objectness map as in BING[1] and use NMS to get the top N points. Then, k-means algorithm is used to cluster them into K classes according to their location. We set the center points of the K classes as seed points. For each seed point, an object potential region is extracted. Finally, a fast salient object detection algorithm[2] is applied to the object potential regions to highlight objectlike pixels, and a series of efficient post-processing operations are proposed to locate the targets. Our method runs at 5 FPS on 1000*1000 images, and significantly outperforms previous methods on small targets in cluttered background.
Feng, Kejun; Zhao, Jingjin; Wu, Zai-Sheng; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin
2011-03-15
Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection. Copyright © 2010 Elsevier B.V. All rights reserved.
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-01-01
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis. PMID:28029121
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-12-24
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.
Micro Ring Grating Spectrometer with Adjustable Aperture
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)
2012-01-01
A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.
Point target detection utilizing super-resolution strategy for infrared scanning oversampling system
NASA Astrophysics Data System (ADS)
Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei
2017-11-01
To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.
Foliage penetration by using 4-D point cloud data
NASA Astrophysics Data System (ADS)
Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.
2012-06-01
Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.
The small low SNR target tracking using sparse representation information
NASA Astrophysics Data System (ADS)
Yin, Lifan; Zhang, Yiqun; Wang, Shuo; Sun, Chenggang
2017-11-01
Tracking small targets, such as missile warheads, from a remote distance is a difficult task since the targets are "points" which are similar to sensor's noise points. As a result, traditional tracking algorithms only use the information contained in point measurement, such as the position information and intensity information, as characteristics to identify targets from noise points. But in fact, as a result of the diffusion of photon, any small target is not a point in the focal plane array and it occupies an area which is larger than one sensor cell. So, if we can take the geometry characteristic into account as a new dimension of information, it will be of helpful in distinguishing targets from noise points. In this paper, we use a novel method named sparse representation (SR) to depict the geometry information of target intensity and define it as the SR information of target. Modeling the intensity spread and solving its SR coefficients, the SR information is represented by establishing its likelihood function. Further, the SR information likelihood is incorporated in the conventional Probability Hypothesis Density (PHD) filter algorithm with point measurement. To illustrate the different performances of algorithm with or without the SR information, the detection capability and estimation error have been compared through simulation. Results demonstrate the proposed method has higher estimation accuracy and probability of detecting target than the conventional algorithm without the SR information.
Infrared dim and small target detecting and tracking method inspired by Human Visual System
NASA Astrophysics Data System (ADS)
Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Shen, Lurong; Bai, Shengjian
2014-01-01
Detecting and tracking dim and small target in infrared images and videos is one of the most important techniques in many computer vision applications, such as video surveillance and infrared imaging precise guidance. Recently, more and more algorithms based on Human Visual System (HVS) have been proposed to detect and track the infrared dim and small target. In general, HVS concerns at least three mechanisms including contrast mechanism, visual attention and eye movement. However, most of the existing algorithms simulate only a single one of the HVS mechanisms, resulting in many drawbacks of these algorithms. A novel method which combines the three mechanisms of HVS is proposed in this paper. First, a group of Difference of Gaussians (DOG) filters which simulate the contrast mechanism are used to filter the input image. Second, a visual attention, which is simulated by a Gaussian window, is added at a point near the target in order to further enhance the dim small target. This point is named as the attention point. Eventually, the Proportional-Integral-Derivative (PID) algorithm is first introduced to predict the attention point of the next frame of an image which simulates the eye movement of human being. Experimental results of infrared images with different types of backgrounds demonstrate the high efficiency and accuracy of the proposed method to detect and track the dim and small targets.
Algorithms used in the Airborne Lidar Processing System (ALPS)
Nagle, David B.; Wright, C. Wayne
2016-05-23
The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.
Staircase-scene-based nonuniformity correction in aerial point target detection systems.
Huo, Lijun; Zhou, Dabiao; Wang, Dejiang; Liu, Rang; He, Bin
2016-09-01
Focal-plane arrays (FPAs) are often interfered by heavy fixed-pattern noise, which severely degrades the detection rate and increases the false alarms in airborne point target detection systems. Thus, high-precision nonuniformity correction is an essential preprocessing step. In this paper, a new nonuniformity correction method is proposed based on a staircase scene. This correction method can compensate for the nonlinear response of the detector and calibrate the entire optical system with computational efficiency and implementation simplicity. Then, a proof-of-concept point target detection system is established with a long-wave Sofradir FPA. Finally, the local standard deviation of the corrected image and the signal-to-clutter ratio of the Airy disk of a Boeing B738 are measured to evaluate the performance of the proposed nonuniformity correction method. Our experimental results demonstrate that the proposed correction method achieves high-quality corrections.
Designing efficient surveys: spatial arrangement of sample points for detection of invasive species
Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight
2015-01-01
Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...
Fly eye radar or micro-radar sensor technology
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo; Asmolova, Olga
2014-05-01
To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.
NASA Astrophysics Data System (ADS)
Zhou, Anran; Xie, Weixin; Pei, Jihong
2018-06-01
Accurate detection of maritime targets in infrared imagery under various sea clutter conditions is always a challenging task. The fractional Fourier transform (FRFT) is the extension of the Fourier transform in the fractional order, and has richer spatial-frequency information. By combining it with the high order statistic filtering, a new ship detection method is proposed. First, the proper range of angle parameter is determined to make it easier for the ship components and background to be separated. Second, a new high order statistic curve (HOSC) at each fractional frequency point is designed. It is proved that maximal peak interval in HOSC reflects the target information, while the points outside the interval reflect the background. And the value of HOSC relative to the ship is much bigger than that to the sea clutter. Then, search the curve's maximal target peak interval and extract the interval by bandpass filtering in fractional Fourier domain. The value outside the peak interval of HOSC decreases rapidly to 0, so the background is effectively suppressed. Finally, the detection result is obtained by the double threshold segmenting and the target region selection method. The results show the proposed method is excellent for maritime targets detection with high clutters.
Background suppression of infrared small target image based on inter-frame registration
NASA Astrophysics Data System (ADS)
Ye, Xiubo; Xue, Bindang
2018-04-01
We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.
NASA Astrophysics Data System (ADS)
Zhou, Anran; Xie, Weixin; Pei, Jihong; Chen, Yapei
2018-02-01
For ship targets detection in cluttered infrared image sequences, a robust detection method, based on the probabilistic single Gaussian model of sea background in Fourier domain, is put forward. The amplitude spectrum sequences at each frequency point of the pure seawater images in Fourier domain, being more stable than the gray value sequences of each background pixel in the spatial domain, are regarded as a Gaussian model. Next, a probability weighted matrix is built based on the stability of the pure seawater's total energy spectrum in the row direction, to make the Gaussian model more accurate. Then, the foreground frequency points are separated from the background frequency points by the model. Finally, the false-alarm points are removed utilizing ships' shape features. The performance of the proposed method is tested by visual and quantitative comparisons with others.
NASA Astrophysics Data System (ADS)
Barkley, Brett E.
A cooperative detection and tracking algorithm for multiple targets constrained to a road network is presented for fixed-wing Unmanned Air Vehicles (UAVs) with a finite field of view. Road networks of interest are formed into graphs with nodes that indicate the target likelihood ratio (before detection) and position probability (after detection). A Bayesian likelihood ratio tracker recursively assimilates target observations until the cumulative observations at a particular location pass a detection criterion. At this point, a target is considered detected and a position probability is generated for the target on the graph. Data association is subsequently used to route future measurements to update the likelihood ratio tracker (for undetected target) or to update a position probability (a previously detected target). Three strategies for motion planning of UAVs are proposed to balance searching for new targets with tracking known targets for a variety of scenarios. Performance was tested in Monte Carlo simulations for a variety of mission parameters, including tracking on road networks with varying complexity and using UAVs at various altitudes.
Appraisal of an Array TEM Method in Detecting a Mined-Out Area Beneath a Conductive Layer
NASA Astrophysics Data System (ADS)
Li, Hai; Xue, Guo-qiang; Zhou, Nan-nan; Chen, Wei-ying
2015-10-01
The transient electromagnetic method has been extensively used for the detection of mined-out area in China for the past few years. In the cases that the mined-out area is overlain by a conductive layer, the detection of the target layer is difficult with a traditional loop source TEM method. In order to detect the target layer in this condition, this paper presents a newly developed array TEM method, which uses a grounded wire source. The underground current density distribution and the responses of the grounded wire source TEM configuration are modeled to demonstrate that the target layer is detectable in this condition. The 1D OCCAM inversion routine is applied to the synthetic single station data and common middle point gather. The result reveals that the electric source TEM method is capable of recovering the resistive target layer beneath the conductive overburden. By contrast, the conductive target layer cannot be recovered unless the distance between the target layer and the conductive overburden is large. Compared with inversion result of the single station data, the inversion of common middle point gather can better recover the resistivity of the target layer. Finally, a case study illustrates that the array TEM method is successfully applied in recovering a water-filled mined-out area beneath a conductive overburden.
Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay
NASA Astrophysics Data System (ADS)
Zhou, Huijuan; Wu, Baoyan
2008-12-01
The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.
Wei, Xiaofeng; Tian, Tian; Jia, Shasha; Zhu, Zhi; Ma, Yanli; Sun, Jianjun; Lin, Zhenyu; Yang, Chaoyong James
2015-04-21
A versatile point-of-care assay platform was developed for simultaneous detection of multiple targets based on a microfluidic paper-based analytic device (μPAD) using a target-responsive hydrogel to mediate fluidic flow and signal readout. An aptamer-cross-linked hydrogel was used as a target-responsive flow regulator in the μPAD. In the absence of a target, the hydrogel is formed in the flow channel, stopping the flow in the μPAD and preventing the colored indicator from traveling to the final observation spot, thus yielding a "signal off" readout. In contrast, in the presence of a target, no hydrogel is formed because of the preferential interaction of target and aptamer. This allows free fluidic flow in the μPAD, carrying the indicator to the observation spot and producing a "signal on" readout. The device is inexpensive to fabricate, easy to use, and disposable after detection. Testing results can be obtained within 6 min by the naked eye via a simple loading operation without the need for any auxiliary equipment. Multiple targets, including cocaine, adenosine, and Pb(2+), can be detected simultaneously, even in complex biological matrices such as urine. The reported method offers simple, low cost, rapid, user-friendly, point-of-care testing, which will be useful in many applications.
Binocular stereo matching method based on structure tensor
NASA Astrophysics Data System (ADS)
Song, Xiaowei; Yang, Manyi; Fan, Yubo; Yang, Lei
2016-10-01
In a binocular visual system, to recover the three-dimensional information of the object, the most important step is to acquire matching points. Structure tensor is the vector representation of each point in its local neighborhood. Therefore, structure tensor performs well in region detection of local structure, and it is very suitable for detecting specific graphics such as pedestrians, cars and road signs in the image. In this paper, the structure tensor is combined with the luminance information to form the extended structure tensor. The directional derivatives of luminance in x and y directions are calculated, so that the local structure of the image is more prominent. Meanwhile, the Euclidean distance between the eigenvectors of key points is used as the similarity determination metric of key points in the two images. By matching, the coordinates of the matching points in the detected target are precisely acquired. In this paper, experiments were performed on the captured left and right images. After the binocular calibration, image matching was done to acquire the matching points, and then the target depth was calculated according to these matching points. By comparison, it is proved that the structure tensor can accurately acquire the matching points in binocular stereo matching.
Lee, Daniel J; Recabal, Pedro; Sjoberg, Daniel D; Thong, Alan; Lee, Justin K; Eastham, James A; Scardino, Peter T; Vargas, Hebert Alberto; Coleman, Jonathan; Ehdaie, Behfar
2016-09-01
We compared the diagnostic outcomes of magnetic resonance-ultrasound fusion and visually targeted biopsy for targeting regions of interest on prostate multiparametric magnetic resonance imaging. Patients presenting for prostate biopsy with regions of interest on multiparametric magnetic resonance imaging underwent magnetic resonance imaging targeted biopsy. For each region of interest 2 visually targeted cores were obtained, followed by 2 cores using a magnetic resonance-ultrasound fusion device. Our primary end point was the difference in the detection of high grade (Gleason 7 or greater) and any grade cancer between visually targeted and magnetic resonance-ultrasound fusion, investigated using McNemar's method. Secondary end points were the difference in detection rate by biopsy location using a logistic regression model and the difference in median cancer length using the Wilcoxon signed rank test. We identified 396 regions of interest in 286 men. The difference in the detection of high grade cancer between magnetic resonance-ultrasound fusion biopsy and visually targeted biopsy was -1.4% (95% CI -6.4 to 3.6, p=0.6) and for any grade cancer the difference was 3.5% (95% CI -1.9 to 8.9, p=0.2). Median cancer length detected by magnetic resonance-ultrasound fusion and visually targeted biopsy was 5.5 vs 5.8 mm, respectively (p=0.8). Magnetic resonance-ultrasound fusion biopsy detected 15% more cancers in the transition zone (p=0.046) and visually targeted biopsy detected 11% more high grade cancer at the prostate base (p=0.005). Only 52% of all high grade cancers were detected by both techniques. We found no evidence of a significant difference in the detection of high grade or any grade cancer between visually targeted and magnetic resonance-ultrasound fusion biopsy. However, the performance of each technique varied in specific biopsy locations and the outcomes of both techniques were complementary. Combining visually targeted biopsy and magnetic resonance-ultrasound fusion biopsy may optimize the detection of prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode
Liu, Lei; Qiu, Xiaolan; Lei, Bin
2017-01-01
This study aims to detect vessels with lengths ranging from about 70 to 300 m, in Gaofen-3 (GF-3) SAR images with ultrafine strip-map (UFS) mode as fast as possible. Based on the analysis of the characteristics of vessels in GF-3 SAR imagery, an effective vessel detection method is proposed in this paper. Firstly, the iterative constant false alarm rate (CFAR) method is employed to detect the potential ship pixels. Secondly, the mean-shift operation is applied on each potential ship pixel to identify the candidate target region. During the mean-shift process, we maintain a selection matrix recording which pixels can be taken, and these pixels are called as the valid points of the candidate target. The l1 norm regression is used to extract the principal axis and detect the valid points. Finally, two kinds of false alarms, the bright line and the azimuth ambiguity, are removed by comparing the valid area of the candidate target with a pre-defined value and computing the displacement between the true target and the corresponding replicas respectively. Experimental results on three GF-3 SAR images with UFS mode demonstrate the effectiveness and efficiency of the proposed method. PMID:28678197
Infrared small target detection based on directional zero-crossing measure
NASA Astrophysics Data System (ADS)
Zhang, Xiangyue; Ding, Qinghai; Luo, Haibo; Hui, Bin; Chang, Zheng; Zhang, Junchao
2017-12-01
Infrared small target detection under complex background and low signal-to-clutter ratio (SCR) condition is of great significance to the development on precision guidance and infrared surveillance. In order to detect targets precisely and extract targets from intricate clutters effectively, a detection method based on zero-crossing saliency (ZCS) map is proposed. The original map is first decomposed into different first-order directional derivative (FODD) maps by using FODD filters. Then the ZCS map is obtained by fusing all directional zero-crossing points. At last, an adaptive threshold is adopted to segment targets from the ZCS map. Experimental results on a series of images show that our method is effective and robust for detection under complex backgrounds. Moreover, compared with other five state-of-the-art methods, our method achieves better performance in terms of detection rate, SCR gain and background suppression factor.
Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei
2016-01-01
Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209
NASA Astrophysics Data System (ADS)
Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei
2016-01-01
Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.
Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei
2016-01-05
Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.
Detection of dual-band infrared small target based on joint dynamic sparse representation
NASA Astrophysics Data System (ADS)
Zhou, Jinwei; Li, Jicheng; Shi, Zhiguang; Lu, Xiaowei; Ren, Dongwei
2015-10-01
Infrared small target detection is a crucial and yet still is a difficult issue in aeronautic and astronautic applications. Sparse representation is an important mathematic tool and has been used extensively in image processing in recent years. Joint sparse representation is applied in dual-band infrared dim target detection in this paper. Firstly, according to the characters of dim targets in dual-band infrared images, 2-dimension Gaussian intensity model was used to construct target dictionary, then the dictionary was classified into different sub-classes according to different positions of Gaussian function's center point in image block; The fact that dual-band small targets detection can use the same dictionary and the sparsity doesn't lie in atom-level but in sub-class level was utilized, hence the detection of targets in dual-band infrared images was converted to be a joint dynamic sparse representation problem. And the dynamic active sets were used to describe the sparse constraint of coefficients. Two modified sparsity concentration index (SCI) criteria was proposed to evaluate whether targets exist in the images. In experiments, it shows that the proposed algorithm can achieve better detecting performance and dual-band detection is much more robust to noise compared with single-band detection. Moreover, the proposed method can be expanded to multi-spectrum small target detection.
Shin, Toshitaka; Smyth, Thomas B; Ukimura, Osamu; Ahmadi, Nariman; de Castro Abreu, Andre Luis; Ohe, Chisato; Oishi, Masakatsu; Mimata, Hiromitsu; Gill, Inderbir S
2018-01-01
To evaluate the accuracy of a magnetic resonance imaging (MRI)-based Likert scoring system in the detection of clinically significant prostate cancer (CSPC), using MRI/ultrasonography (US) image-fusion targeted biopsy (FTB) as a reference standard. We retrospectively reviewed 1218 MRI-detected lesions in 629 patients who underwent subsequent MRI/US FTB between October 2012 and August 2015. 3-Tesla MRI was independently reported by one of eight radiologists with varying levels of experience and scored on a five-point Likert scale. All lesions with Likert scores 1-5 were prospectively defined as targets for MRI/US FTB. CSPC was defined as Gleason score ≥7. The median patient age was 64 years, PSA level 6.97 ng/mL and estimated prostate volume 52.2 mL. Of 1218 lesions, 48% (n = 581) were rated as Likert 1-2, 35% (n = 428) were Likert 3 and 17% (n = 209) were Likert 4-5. For Likert scores 1-5, the overall cancer detection rates were 12%, 13%, 22%, 50% and 59%, respectively, and the CSPC detection rates were 4%, 4%, 12%, 33% and 48%, respectively. Grading using the five-point scale showed strong positive correlation with overall cancer detection rate (r = 0.949, P = 0.05) and CSPC detection rate (r = 0.944, P = 0.05). By comparison, in Likert 4-5 lesions, significant differences were noted in overall cancer detection rate (63% vs 35%; P = 0.001) and CSPC detection rate (47% vs 29%; P = 0.027) for the more experienced vs the less experienced radiologists. The detection rates of overall cancer and CSPC strongly correlated with the five-point grading of the Likert scale. Among radiologists with different levels of experience, there were significant differences in these cancer detection rates. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Grant, W. B.; Hinkley, E. D.
1984-01-01
Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.
Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer.
Xu, Huo; Zhang, Rongbo; Li, Feng; Zhou, Yingying; Peng, Ting; Wang, Xuedong; Shen, Zhifa
2016-09-01
A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems. Graphical Abstract A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons.
NASA Astrophysics Data System (ADS)
Yang, Hongxin; Su, Fulin
2018-01-01
We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.
A new method of small target detection based on neural network
NASA Astrophysics Data System (ADS)
Hu, Jing; Hu, Yongli; Lu, Xinxin
2018-02-01
The detection and tracking of moving dim target in infrared image have been an research hotspot for many years. The target in each frame of images only occupies several pixels without any shape and structure information. Moreover, infrared small target is often submerged in complicated background with low signal-to-clutter ratio, making the detection very difficult. Different backgrounds exhibit different statistical properties, making it becomes extremely complex to detect the target. If the threshold segmentation is not reasonable, there may be more noise points in the final detection, which is unfavorable for the detection of the trajectory of the target. Single-frame target detection may not be able to obtain the desired target and cause high false alarm rate. We believe the combination of suspicious target detection spatially in each frame and temporal association for target tracking will increase reliability of tracking dim target. The detection of dim target is mainly divided into two parts, In the first part, we adopt bilateral filtering method in background suppression, after the threshold segmentation, the suspicious target in each frame are extracted, then we use LSTM(long short term memory) neural network to predict coordinates of target of the next frame. It is a brand-new method base on the movement characteristic of the target in sequence images which could respond to the changes in the relationship between past and future values of the values. Simulation results demonstrate proposed algorithm can effectively predict the trajectory of the moving small target and work efficiently and robustly with low false alarm.
Luo, Xiaoteng; Hsing, I-Ming
2009-10-01
Nucleic acid based analysis provides accurate differentiation among closely affiliated species and this species- and sequence-specific detection technique would be particularly useful for point-of-care (POC) testing for prevention and early detection of highly infectious and damaging diseases. Electrochemical (EC) detection and polymerase chain reaction (PCR) are two indispensable steps, in our view, in a nucleic acid based point-of-care testing device as the former, in comparison with the fluorescence counterpart, provides inherent advantages of detection sensitivity, device miniaturization and operation simplicity, and the latter offers an effective way to boost the amount of targets to a detectable quantity. In this mini-review, we will highlight some of the interesting investigations using the combined EC detection and PCR amplification approaches for end-point detection and real-time monitoring. The promise of current approaches and the direction for future investigations will be discussed. It would be our view that the synergistic effect of the combined EC-PCR steps in a portable device provides a promising detection technology platform that will be ready for point-of-care applications in the near future.
Dim target trajectory-associated detection in bright earth limb background
NASA Astrophysics Data System (ADS)
Chen, Penghui; Xu, Xiaojian; He, Xiaoyu; Jiang, Yuesong
2015-09-01
The intensive emission of earth limb in the field of view of sensors contributes much to the observation images. Due to the low signal-to-noise ratio (SNR), it is a challenge to detect small targets in earth limb background, especially for the detection of point-like targets from a single frame. To improve the target detection, track before detection (TBD) based on the frame sequence is performed. In this paper, a new technique is proposed to determine the target associated trajectories, which jointly carries out background removing, maximum value projection (MVP) and Hough transform. The background of the bright earth limb in the observation images is removed according to the profile characteristics. For a moving target, the corresponding pixels in the MVP image are shifting approximately regularly in time sequence. And the target trajectory is determined by Hough transform according to the pixel characteristics of the target and the clutter and noise. Comparing with traditional frame-by-frame methods, determining associated trajectories from MVP reduces the computation load. Numerical simulations are presented to demonstrate the effectiveness of the approach proposed.
Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan
2007-11-01
Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan
2007-11-01
Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-01-01
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions. PMID:25199907
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye
NASA Astrophysics Data System (ADS)
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-09-01
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.
Dew inspired breathing-based detection of genetic point mutation visualized by naked eye.
Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan
2014-09-09
A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.
Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.
2016-01-01
Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650
An Improved Vision-based Algorithm for Unmanned Aerial Vehicles Autonomous Landing
NASA Astrophysics Data System (ADS)
Zhao, Yunji; Pei, Hailong
In vision-based autonomous landing system of UAV, the efficiency of target detecting and tracking will directly affect the control system. The improved algorithm of SURF(Speed Up Robust Features) will resolve the problem which is the inefficiency of the SURF algorithm in the autonomous landing system. The improved algorithm is composed of three steps: first, detect the region of the target using the Camshift; second, detect the feature points in the region of the above acquired using the SURF algorithm; third, do the matching between the template target and the region of target in frame. The results of experiment and theoretical analysis testify the efficiency of the algorithm.
Contrast, size, and orientation-invariant target detection in infrared imagery
NASA Astrophysics Data System (ADS)
Zhou, Yi-Tong; Crawshaw, Richard D.
1991-08-01
Automatic target detection in IR imagery is a very difficult task due to variations in target brightness, shape, size, and orientation. In this paper, the authors present a contrast, size, and orientation invariant algorithm based on Gabor functions for detecting targets from a single IR image frame. The algorithms consists of three steps. First, it locates potential targets by using low-resolution Gabor functions which resist noise and background clutter effects, then, it removes false targets and eliminates redundant target points based on a similarity measure. These two steps mimic human vision processing but are different from Zeevi's Foveating Vision System. Finally, it uses both low- and high-resolution Gabor functions to verify target existence. This algorithm has been successfully tested on several IR images that contain multiple examples of military vehicles with different size and brightness in various background scenes and orientations.
Sawamura, Kensuke; Hashimoto, Masahiko
2017-01-01
A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).
Ultraviolet corona detection sensor study
NASA Technical Reports Server (NTRS)
Schmitt, R. J.; MATHERN
1976-01-01
The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.
Research on photodiode detector-based spatial transient light detection and processing system
NASA Astrophysics Data System (ADS)
Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng
2016-10-01
In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.
Gao, Yali; Lam, Albert W Y; Chan, Warren C W
2013-04-24
The impact of detecting multiple infectious diseases simultaneously at point-of-care with good sensitivity, specificity, and reproducibility would be enormous for containing the spread of diseases in both resource-limited and rich countries. Many barcoding technologies have been introduced for addressing this need as barcodes can be applied to detecting thousands of genetic and protein biomarkers simultaneously. However, the assay process is not automated and is tedious and requires skilled technicians. Barcoding technology is currently limited to use in resource-rich settings. Here we used magnetism and microfluidics technology to automate the multiple steps in a quantum dot barcode assay. The quantum dot-barcoded microbeads are sequentially (a) introduced into the chip, (b) magnetically moved to a stream containing target molecules, (c) moved back to the original stream containing secondary probes, (d) washed, and (e) finally aligned for detection. The assay requires 20 min, has a limit of detection of 1.2 nM, and can detect genetic targets for HIV, hepatitis B, and syphilis. This study provides a simple strategy to automate the entire barcode assay process and moves barcoding technologies one step closer to point-of-care applications.
Distance-based microfluidic quantitative detection methods for point-of-care testing.
Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James
2016-04-07
Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.
Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio
2012-01-01
This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed. PMID:22368499
Choi, Jane Ru; Yong, Kar Wey; Tang, Ruihua; Gong, Yan; Wen, Ting; Yang, Hui; Li, Ang; Chia, Yook Chin; Pingguan-Murphy, Belinda; Xu, Feng
2017-01-01
Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Concurrent-scene/alternate-pattern analysis for robust video-based docking systems
NASA Technical Reports Server (NTRS)
Udomkesmalee, Suraphol
1991-01-01
A typical docking target employs a three-point design of retroreflective tape, one at each endpoint of the center-line, and one on the tip of the central post. Scenes, sensed via laser diode illumination, produce pictures with spots corresponding to desired reflection from the retroreflectors and other reflections. Control corrections for each axis of the vehicle can then be properly applied if the desired spots are accurately tracked. However, initial acquisition of these three spots (detection and identification problem) are non-trivial under a severe noise environment. Signal-to-noise enhancement, accomplished by subtracting the non-illuminated scene from the target scene illuminated by laser diodes, can not eliminate every false spot. Hence, minimization of docking failures due to target mistracking would suggest needed inclusion of added processing features pertaining to target locations. In this paper, we present a concurrent processing scheme for a modified docking target scene which could lead to a perfect docking system. Since the non-illuminated target scene is already available, adding another feature to the three-point design by marking two non-reflective lines, one between the two end-points and one from the tip of the central post to the center-line, would allow this line feature to be picked-up only when capturing the background scene (sensor data without laser illumination). Therefore, instead of performing the image subtraction to generate a picture with a high signal-to-noise ratio, a processed line-image based on the robust line detection technique (Hough transform) can be used to fuse with the actively sensed three-point target image to deduce the true locations of the docking target. This dual-channel confirmation scheme is necessary if a fail-safe system is to be realized from both the sensing and processing point-of-views. Detailed algorithms and preliminary results are presented.
Detection and identification of human targets in radar data
NASA Astrophysics Data System (ADS)
Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.
2007-04-01
Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.
On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood
Cai, H.; Stott, M. A.; Ozcelik, D.; Parks, J. W.; Hawkins, A. R.; Schmidt, H.
2016-01-01
We have developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. We demonstrate blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. We detect and identify multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, we extract two types of melanoma biomarkers, mutated cell-free nucleic acids —BRAFV600E and NRAS, from whole blood. We detect and identify these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate. These results point the way toward a full front-to-back chip-based optofluidic compact system for high-performance analysis of complex biological samples. PMID:28058082
System considerations for detection and tracking of small targets using passive sensors
NASA Astrophysics Data System (ADS)
DeBell, David A.
1991-08-01
Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.
Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise
NASA Astrophysics Data System (ADS)
Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru
2004-05-01
The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Martinez, Aaron
2018-01-01
Point-cloud coordinate information derived from terrestrial Light Detection And Ranging (LiDAR) is important for several applications in surveying and civil engineering. Plane fitting and segmentation of target-surfaces is an important step in several applications such as in the monitoring of structures. Reliable parametric modeling and segmentation relies on the underlying quality of the point-cloud. Therefore, understanding how point-cloud errors affect fitting of planes and segmentation is important. Point-cloud intensity, which accompanies the point-cloud data, often goes hand-in-hand with point-cloud noise. This study uses industrial particle boards painted with eight different colors (black, white, grey, red, green, blue, brown, and yellow) and two different sheens (flat and semi-gloss) to explore how noise and plane residuals vary with scanning geometry (i.e., distance and incidence angle) and target-color. Results show that darker colors, such as black and brown, can produce point clouds that are several times noisier than bright targets, such as white. In addition, semi-gloss targets manage to reduce noise in dark targets by about 2-3 times. The study of plane residuals with scanning geometry reveals that, in many of the cases tested, residuals decrease with increasing incidence angles, which can assist in understanding the distribution of plane residuals in a dataset. Finally, a scheme is developed to derive survey guidelines based on the data collected in this experiment. Three examples demonstrate that users should consider instrument specification, required precision of plane residuals, required point-spacing, target-color, and target-sheen, when selecting scanning locations. Outcomes of this study can aid users to select appropriate instrumentation and improve planning of terrestrial LiDAR data-acquisition.
Polley, Spencer D.; Mori, Yasuyoshi; Watson, Julie; Perkins, Mark D.; González, Iveth J.; Notomi, Tsugunori; Chiodini, Peter L.; Sutherland, Colin J.
2010-01-01
Loop-mediated isothermal amplification (LAMP) of DNA offers the ability to detect very small quantities of pathogen DNA following minimal tissue sample processing and is thus an attractive methodology for point-of-care diagnostics. Previous attempts to diagnose malaria by the use of blood samples and LAMP have targeted the parasite small-subunit rRNA gene, with a resultant sensitivity for Plasmodium falciparum of around 100 parasites per μl. Here we describe the use of mitochondrial targets for LAMP-based detection of any Plasmodium genus parasite and of P. falciparum specifically. These new targets allow routine amplification from samples containing as few as five parasites per μl of blood. Amplification is complete within 30 to 40 min and is assessed by real-time turbidimetry, thereby offering rapid diagnosis with greater sensitivity than is achieved by the most skilled microscopist or antigen detection using lateral flow immunoassays. PMID:20554824
Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng
2011-01-01
Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.
Infrared images target detection based on background modeling in the discrete cosine domain
NASA Astrophysics Data System (ADS)
Ye, Han; Pei, Jihong
2018-02-01
Background modeling is the critical technology to detect the moving target for video surveillance. Most background modeling techniques are aimed at land monitoring and operated in the spatial domain. A background establishment becomes difficult when the scene is a complex fluctuating sea surface. In this paper, the background stability and separability between target are analyzed deeply in the discrete cosine transform (DCT) domain, on this basis, we propose a background modeling method. The proposed method models each frequency point as a single Gaussian model to represent background, and the target is extracted by suppressing the background coefficients. Experimental results show that our approach can establish an accurate background model for seawater, and the detection results outperform other background modeling methods in the spatial domain.
Tzonev, Svilen
2018-01-01
Current commercially available digital PCR (dPCR) systems and assays are capable of detecting individual target molecules with considerable reliability. As tests are developed and validated for use on clinical samples, the need to understand and develop robust statistical analysis routines increases. This chapter covers the fundamental processes and limitations of detecting and reporting on single molecule detection. We cover the basics of quantification of targets and sources of imprecision. We describe the basic test concepts: sensitivity, specificity, limit of blank, limit of detection, and limit of quantification in the context of dPCR. We provide basic guidelines how to determine those, how to choose and interpret the operating point, and what factors may influence overall test performance in practice.
Point detection of bacterial and viral pathogens using oral samples
NASA Astrophysics Data System (ADS)
Malamud, Daniel
2008-04-01
Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.
Inferring Models of Bacterial Dynamics toward Point Sources
Jashnsaz, Hossein; Nguyen, Tyler; Petrache, Horia I.; Pressé, Steve
2015-01-01
Experiments have shown that bacteria can be sensitive to small variations in chemoattractant (CA) concentrations. Motivated by these findings, our focus here is on a regime rarely studied in experiments: bacteria tracking point CA sources (such as food patches or even prey). In tracking point sources, the CA detected by bacteria may show very large spatiotemporal fluctuations which vary with distance from the source. We present a general statistical model to describe how bacteria locate point sources of food on the basis of stochastic event detection, rather than CA gradient information. We show how all model parameters can be directly inferred from single cell tracking data even in the limit of high detection noise. Once parameterized, our model recapitulates bacterial behavior around point sources such as the “volcano effect”. In addition, while the search by bacteria for point sources such as prey may appear random, our model identifies key statistical signatures of a targeted search for a point source given any arbitrary source configuration. PMID:26466373
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
An Automated Directed Spectral Search Methodology for Small Target Detection
NASA Astrophysics Data System (ADS)
Grossman, Stanley I.
Much of the current efforts in remote sensing tackle macro-level problems such as determining the extent of wheat in a field, the general health of vegetation or the extent of mineral deposits in an area. However, for many of the remaining remote sensing challenges being studied currently, such as border protection, drug smuggling, treaty verification, and the war on terror, most targets are very small in nature - a vehicle or even a person. While in typical macro-level problems the objective vegetation is in the scene, for small target detection problems it is not usually known if the desired small target even exists in the scene, never mind finding it in abundance. The ability to find specific small targets, such as vehicles, typifies this problem. Complicating the analyst's life, the growing number of available sensors is generating mountains of imagery outstripping the analysts' ability to visually peruse them. This work presents the important factors influencing spectral exploitation using multispectral data and suggests a different approach to small target detection. The methodology of directed search is presented, including the use of scene-modeled spectral libraries, various search algorithms, and traditional statistical and ROC curve analysis. The work suggests a new metric to calibrate analysis labeled the analytic sweet spot as well as an estimation method for identifying the sweet spot threshold for an image. It also suggests a new visualization aid for highlighting the target in its entirety called nearest neighbor inflation (NNI). It brings these all together to propose that these additions to the target detection arena allow for the construction of a fully automated target detection scheme. This dissertation next details experiments to support the hypothesis that the optimum detection threshold is the analytic sweet spot and that the estimation method adequately predicts it. Experimental results and analysis are presented for the proposed directed search techniques of spectral image based small target detection. It offers evidence of the functionality of the NNI visualization and also provides evidence that the increased spectral dimensionality of the 8-band Worldview-2 datasets provides noteworthy improvement in results over traditional 4-band multispectral datasets. The final experiment presents the results from a prototype fully automated target detection scheme in support of the overarching premise. This work establishes the analytic sweet spot as the optimum threshold defined as the point where error detection rate curves -- false detections vs. missing detections -- cross. At this point the errors are minimized while the detection rate is maximized. It then demonstrates that taking the first moment statistic of the histogram of calculated target detection values from a detection search with test threshold set arbitrarily high will estimate the analytic sweet spot for that image. It also demonstrates that directed search techniques -- when utilized with appropriate scene-specific modeled signatures and atmospheric compensations -- perform at least as well as in-scene search techniques 88% of the time and grossly under-performing only 11% of the time; the in-scene only performs as well or better 50% of the time. It further demonstrates the clear advantage increased multispectral dimensionality brings to detection searches improving performance in 50% of the cases while performing at least as well 72% of the time. Lastly, it presents evidence that a fully automated prototype performs as anticipated laying the groundwork for further research into fully automated processes for small target detection.
Dalmaso, Mario; Galfano, Giovanni; Tarqui, Luana; Forti, Bruno; Castelli, Luigi
2013-09-01
The nature of possible impairments in orienting attention to social signals in schizophrenia is controversial. The present research was aimed at addressing this issue further by comparing gaze and arrow cues. Unlike previous studies, we also included pointing gestures as social cues, with the goal of addressing whether any eventual impairment in the attentional response was specific to gaze signals or reflected a more general deficit in dealing with social stimuli. Patients with schizophrenia or schizoaffective disorder and matched controls performed a spatial-cuing paradigm in which task-irrelevant centrally displayed gaze, pointing finger, and arrow cues oriented rightward or leftward, preceded a lateralized target requiring a simple detection response. Healthy controls responded faster to spatially congruent targets than to spatially incongruent targets, irrespective of cue type. In contrast, schizophrenic patients responded faster to spatially congruent targets than to spatially incongruent targets only for arrow and pointing finger cues. No cuing effect emerged for gaze cues. The results support the notion that gaze cuing is impaired in schizophrenia, and suggest that this deficit may not extend to all social cues.
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
NASA Astrophysics Data System (ADS)
Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-01
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.
Point Target Detection in IR Image Sequences using Spatio-Temporal Hypotheses Testing
1999-02-01
incorporate temporal as well as spatial infor- mation, they are often referred to as \\ track before detect " algorithms. The standard approach was to pose the...6, 3]. A drawback of these track - before - detect techniques is that they are very computationally intensive since the entire 3-D space must be ltered
Visual-Vestibular Conflict Detection Depends on Fixation.
Garzorz, Isabelle T; MacNeilage, Paul R
2017-09-25
Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.
A fast automatic target detection method for detecting ships in infrared scenes
NASA Astrophysics Data System (ADS)
Özertem, Kemal Arda
2016-05-01
Automatic target detection in infrared scenes is a vital task for many application areas like defense, security and border surveillance. For anti-ship missiles, having a fast and robust ship detection algorithm is crucial for overall system performance. In this paper, a straight-forward yet effective ship detection method for infrared scenes is introduced. First, morphological grayscale reconstruction is applied to the input image, followed by an automatic thresholding onto the suppressed image. For the segmentation step, connected component analysis is employed to obtain target candidate regions. At this point, it can be realized that the detection is defenseless to outliers like small objects with relatively high intensity values or the clouds. To deal with this drawback, a post-processing stage is introduced. For the post-processing stage, two different methods are used. First, noisy detection results are rejected with respect to target size. Second, the waterline is detected by using Hough transform and the detection results that are located above the waterline with a small margin are rejected. After post-processing stage, there are still undesired holes remaining, which cause to detect one object as multi objects or not to detect an object as a whole. To improve the detection performance, another automatic thresholding is implemented only to target candidate regions. Finally, two detection results are fused and post-processing stage is repeated to obtain final detection result. The performance of overall methodology is tested with real world infrared test data.
Apparatus for point-of-care detection of nucleic acid in a sample
Bearinger, Jane P.; Dugan, Lawrence C.
2016-04-19
Provided herein are methods and apparatus for detecting a target nucleic acid in a sample and related methods and apparatus for diagnosing a condition in an individual. The condition is associated with presence of nucleic acid produced by certain pathogens in the individual.
Methods for point-of-care detection of nucleic acid in a sample
Bearinger, Jane P.; Dugan, Lawrence C.
2015-12-29
Provided herein are methods and apparatus for detecting a target nucleic acid in a sample and related methods and apparatus for diagnosing a condition in an individual. The condition is associated with presence of nucleic acid produced by certain pathogens in the individual.
The ship edge feature detection based on high and low threshold for remote sensing image
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Shengyang
2018-05-01
In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.
Indoor detection of passive targets recast as an inverse scattering problem
NASA Astrophysics Data System (ADS)
Gottardi, G.; Moriyama, T.
2017-10-01
The wireless local area networks represent an alternative to custom sensors and dedicated surveillance systems for target indoor detection. The availability of the channel state information has opened the exploitation of the spatial and frequency diversity given by the orthogonal frequency division multiplexing. Such a fine-grained information can be used to solve the detection problem as an inverse scattering problem. The goal of the detection is to reconstruct the properties of the investigation domain, namely to estimate if the domain is empty or occupied by targets, starting from the measurement of the electromagnetic perturbation of the wireless channel. An innovative inversion strategy exploiting both the frequency and the spatial diversity of the channel state information is proposed. The target-dependent features are identified combining the Kruskal-Wallis test and the principal component analysis. The experimental validation points out the detection performance of the proposed method when applied to an existing wireless link of a WiFi architecture deployed in a real indoor scenario. False detection rates lower than 2 [%] have been obtained.
NASA Astrophysics Data System (ADS)
Olory Agomma, R.; Vázquez, C.; Cresson, T.; De Guise, J.
2018-02-01
Most algorithms to detect and identify anatomical structures in medical images require either to be initialized close to the target structure, or to know that the structure is present in the image, or to be trained on a homogeneous database (e.g. all full body or all lower limbs). Detecting these structures when there is no guarantee that the structure is present in the image, or when the image database is heterogeneous (mixed configurations), is a challenge for automatic algorithms. In this work we compared two state-of-the-art machine learning techniques in order to determine which one is the most appropriate for predicting targets locations based on image patches. By knowing the position of thirteen landmarks points, labelled by an expert in EOS frontal radiography, we learn the displacement between salient points detected in the image and these thirteen landmarks. The learning step is carried out with a machine learning approach by exploring two methods: Convolutional Neural Network (CNN) and Random Forest (RF). The automatic detection of the thirteen landmarks points in a new image is then obtained by averaging the positions of each one of these thirteen landmarks estimated from all the salient points in the new image. We respectively obtain for CNN and RF, an average prediction error (both mean and standard deviation in mm) of 29 +/-18 and 30 +/- 21 for the thirteen landmarks points, indicating the approximate location of anatomical regions. On the other hand, the learning time is 9 days for CNN versus 80 minutes for RF. We provide a comparison of the results between the two machine learning approaches.
Space-based infrared sensors of space target imaging effect analysis
NASA Astrophysics Data System (ADS)
Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang
2018-02-01
Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.
TaqMan based real time PCR assay targeting EML4-ALK fusion transcripts in NSCLC.
Robesova, Blanka; Bajerova, Monika; Liskova, Kvetoslava; Skrickova, Jana; Tomiskova, Marcela; Pospisilova, Sarka; Mayer, Jiri; Dvorakova, Dana
2014-07-01
Lung cancer with the ALK rearrangement constitutes only a small fraction of patients with non-small cell lung cancer (NSCLC). However, in the era of molecular-targeted therapy, efficient patient selection is crucial for successful treatment. In this context, an effective method for EML4-ALK detection is necessary. We developed a new highly sensitive variant specific TaqMan based real time PCR assay applicable to RNA from formalin-fixed paraffin-embedded tissue (FFPE). This assay was used to analyze the EML4-ALK gene in 96 non-selected NSCLC specimens and compared with two other methods (end-point PCR and break-apart FISH). EML4-ALK was detected in 33/96 (34%) specimens using variant specific real time PCR, whereas in only 23/96 (24%) using end-point PCR. All real time PCR positive samples were confirmed with direct sequencing. A total of 46 specimens were subsequently analyzed by all three detection methods. Using variant specific real time PCR we identified EML4-ALK transcript in 17/46 (37%) specimens, using end-point PCR in 13/46 (28%) specimens and positive ALK rearrangement by FISH was detected in 8/46 (17.4%) specimens. Moreover, using variant specific real time PCR, 5 specimens showed more than one EML4-ALK variant simultaneously (in 2 cases the variants 1+3a+3b, in 2 specimens the variants 1+3a and in 1 specimen the variant 1+3b). In one case of 96 EML4-ALK fusion gene and EGFR mutation were detected. All simultaneous genetic variants were confirmed using end-point PCR and direct sequencing. Our variant specific real time PCR assay is highly sensitive, fast, financially acceptable, applicable to FFPE and seems to be a valuable tool for the rapid prescreening of NSCLC patients in clinical practice, so, that most patients able to benefit from targeted therapy could be identified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[A review on polarization information in the remote sensing detection].
Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao
2010-04-01
Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.
Rare targets are less susceptible to attention capture once detection has begun.
Hon, Nicholas; Ng, Gavin; Chan, Gerald
2016-04-01
Rare or low probability targets are detected more slowly and/ or less accurately than higher probability counterparts. Various proposals have implicated perceptual and response-based processes in this deficit. Recent evidence, however, suggests that it is attentional in nature, with low probability targets requiring more attentional resources than high probability ones to detect. This difference in attentional requirements, in turn, suggests the possibility that low and high probability targets may have different susceptibilities to attention capture, which is also known to be resource-dependent. Supporting this hypothesis, we found that, once attentional resources have begun to be engaged by detection processes, low, but not high, probability targets have a reduced susceptibility to capture. Our findings speak to several issues. First, they indicate that the likelihood of attention capture occurring when a given task-relevant stimulus is being processed is dependent, to some extent, on how said stimulus is represented within mental task sets. Second, they provide added support for the idea that the behavioural deficit associated with low probability targets is attention-based. Finally, the current data point to reduced top-down biasing of target templates as a likely mechanism underlying the attentional locus of the deficit in question.
Detection of Moving Targets Using Soliton Resonance Effect
NASA Technical Reports Server (NTRS)
Kulikov, Igor K.; Zak, Michail
2013-01-01
The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.
Least-mean-square spatial filter for IR sensors.
Takken, E H; Friedman, D; Milton, A F; Nitzberg, R
1979-12-15
A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.
Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus
NASA Astrophysics Data System (ADS)
Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.
2014-09-01
An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.
Here we report results from a multi-laboratory (n=11) evaluation of four different PCR methods targeting the 16S rRNA gene of Catellicoccus marimammalium used to detect fecal contamination from birds in coastal environments. The methods included conventional end-point PCR, a SYBR...
Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin
2012-01-01
Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests. PMID:22539973
The influence of the earth radiation on space target detection system
NASA Astrophysics Data System (ADS)
Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .
2017-05-01
In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.
A Sensitive DNA Capacitive Biosensor Using Interdigitated Electrodes
Wang, Lei; Veselinovic, Milena; Yang, Lang; Geiss, Brian J.; Dandy, David S.; Chen, Tom
2017-01-01
This paper presents a label-free affinity-based capacitive biosensor using interdigitated electrodes. Using an optimized process of DNA probe preparation to minimize the effect of contaminants in commercial thiolated DNA probe, the electrode surface was functionalized with the 24-nucleotide DNA probes based on the West Nile virus sequence (Kunjin strain). The biosensor has the ability to detect complementary DNA fragments with a detection limit down to 20 DNA target molecules (1.5 aM range), making it suitable for a practical point-of-care (POC) platform for low target count clinical applications without the need for amplification. The reproducibility of the biosensor detection was improved with efficient covalent immobilization of purified single-stranded DNA probe oligomers on cleaned gold microelectrodes. In addition to the low detection limit, the biosensor showed a dynamic range of detection from 1 μL−1 to 105 μL−1 target molecules (20 to 2 million targets), making it suitable for sample analysis in a typical clinical application environment. The binding results presented in this paper were validated using fluorescent oligomers. PMID:27619528
An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care.
Choi, Jane Ru; Hu, Jie; Tang, Ruihua; Gong, Yan; Feng, Shangsheng; Ren, Hui; Wen, Ting; Li, XiuJun; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng
2016-02-07
With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
Space moving target detection and tracking method in complex background
NASA Astrophysics Data System (ADS)
Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui
2018-06-01
The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.
Spectral Target Detection using Schroedinger Eigenmaps
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.
Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
Laser Truss Sensor for Segmented Telescope Phasing
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng
2011-01-01
A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.
Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.
2018-01-01
Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424
Geller, Alan C; Dickerman, Barbra A; Taber, Jennifer M; Dwyer, Laura A; Hartman, Anne M; Perna, Frank M
2018-06-01
While the general efficacy of skin cancer interventions have been reviewed, employing the cancer control continuum would be useful to identify research gaps at specific cancer control points. We characterized the intervention evidence base for specific behavioral targets (e.g., tanning, sun protection, screening) and clinically related targets (e.g., sunburn, skin exams, cancers) at each point in the cancer control continuum. The review included articles published from 1/1/2000-6/30/15 that had an experimental design and targeted behavioral intervention in skin cancer (e.g., specific behaviors or clinically related targets). The search yielded 86 articles, including seven dissemination studies. Of the 79 non-dissemination studies, 57 exclusively targeted primary prevention behaviors, five exclusively targeted screening, 10 targeted both detection and prevention, and eight addressed cancer survivorship. Among prevention studies (n=67), 29 (43%) targeted children and 38 (57%) targeted adults. Of the 15 screening studies, nine targeted high-risk groups (e.g., men aged ≥50 years) and six targeted the general population. Although research has focused on skin cancer prevention, empirically validated interventions are still needed for youth engaged in indoor tanning and for behavioral interventions to pursue change in clinically relevant targets. Research must also address detection among those at highest risk for skin cancer, amelioration of emotional distress attendant to diagnosis and treatment, and survivorship concerns. We discuss essential qualities and opportunities for intervention development and translational research to inform the field. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang
2015-11-15
Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Automated multiple target detection and tracking in UAV videos
NASA Astrophysics Data System (ADS)
Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie
2010-04-01
In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.
Contour-Based Corner Detection and Classification by Using Mean Projection Transform
Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein
2014-01-01
Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images. PMID:24590354
Contour-based corner detection and classification by using mean projection transform.
Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein
2014-02-28
Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.
Advanced sensor-simulation capability
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.
1990-09-01
This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.
Clever eye algorithm for target detection of remote sensing imagery
NASA Astrophysics Data System (ADS)
Geng, Xiurui; Ji, Luyan; Sun, Kang
2016-04-01
Target detection algorithms for hyperspectral remote sensing imagery, such as the two most commonly used remote sensing detection algorithms, the constrained energy minimization (CEM) and matched filter (MF), can usually be attributed to the inner product between a weight filter (or detector) and a pixel vector. CEM and MF have the same expression except that MF requires data centralization first. However, this difference leads to a difference in the target detection results. That is to say, the selection of the data origin could directly affect the performance of the detector. Therefore, does there exist another data origin other than the zero and mean-vector points for a better target detection performance? This is a very meaningful issue in the field of target detection, but it has not been paid enough attention yet. In this study, we propose a novel objective function by introducing the data origin as another variable, and the solution of the function is corresponding to the data origin with the minimal output energy. The process of finding the optimal solution can be vividly regarded as a clever eye automatically searching the best observing position and direction in the feature space, which corresponds to the largest separation between the target and background. Therefore, this new algorithm is referred to as the clever eye algorithm (CE). Based on the Sherman-Morrison formula and the gradient ascent method, CE could derive the optimal target detection result in terms of energy. Experiments with both synthetic and real hyperspectral data have verified the effectiveness of our method.
High-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)
2010-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.
Tran, Thi Huong Giang; Ressl, Camillo; Pfeifer, Norbert
2018-02-03
This paper suggests a new approach for change detection (CD) in 3D point clouds. It combines classification and CD in one step using machine learning. The point cloud data of both epochs are merged for computing features of four types: features describing the point distribution, a feature relating to relative terrain elevation, features specific for the multi-target capability of laser scanning, and features combining the point clouds of both epochs to identify the change. All these features are merged in the points and then training samples are acquired to create the model for supervised classification, which is then applied to the whole study area. The final results reach an overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new building, changed ground, unchanged building, unchanged tree, and unchanged ground.
NASA Astrophysics Data System (ADS)
Lee, Ai Cheng; Ye, Jian-Shan; Ngin Tan, Swee; Poenar, Daniel P.; Sheu, Fwu-Shan; Kiat Heng, Chew; Meng Lim, Tit
2007-11-01
A novel carbon nanotube (CNT) derived label capable of dramatic signal amplification of nucleic acid detection and direct visual detection of target hybridization has been developed. Highly sensitive colorimetric detection of human acute lymphocytic leukemia (ALL) related oncogene sequences amplified by the novel CNT-based label was demonstrated. Atomic force microscope (AFM) images confirmed that a monolayer of horseradish peroxidase and detection probe molecules was immobilized along the carboxylated CNT carrier. The resulting CNT labels significantly enhanced the nucleic acid assay sensitivity by at least 1000 times compared to that of conventional labels used in enzyme-linked oligosorbent assay (ELOSA). An excellent detection limit of 1 × 10-12 M (60 × 10-18 mol in 60 µl) and a four-order wide dynamic range of target concentration were achieved. Hybridizations using these labels were coupled to a concentration-dependent formation of visible dark aggregates. Targets can thus be detected simply with visual inspection, eliminating the need for expensive and sophisticated detection systems. The approach holds promise for ultrasensitive and low cost visual inspection and colorimetric nucleic acid detection in point-of-care and early disease diagnostic application.
NASA Astrophysics Data System (ADS)
Mancuso, Matthew; Jiang, Li; Cesarman, Ethel; Erickson, David
2013-01-01
Kaposi's sarcoma (KS) is an infectious cancer occurring most commonly in human immunodeficiency virus (HIV) positive patients and in endemic regions, such as Sub-Saharan Africa, where KS is among the top four most prevalent cancers. The cause of KS is the Kaposi's sarcoma-associated herpesvirus (KSHV, also called HHV-8), an oncogenic herpesvirus that while routinely diagnosed in developed nations, provides challenges to developing world medical providers and point-of-care detection. A major challenge in the diagnosis of KS is the existence of a number of other diseases with similar clinical presentation and histopathological features, requiring the detection of KSHV in a biopsy sample. In this work we develop an answer to this challenge by creating a multiplexed one-pot detection system for KSHV DNA and DNA from a frequently confounding disease, bacillary angiomatosis. Gold and silver nanoparticle aggregation reactions are tuned for each target and a multi-color change system is developed capable of detecting both targets down to levels between 1 nM and 2 nM. The system developed here could later be integrated with microfluidic sample processing to create a final device capable of solving the two major challenges in point-of-care KS detection.
Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ai Cheng; Du, Dan; Chen, Baowei
2014-09-07
Here we describe an ultrasensitive electrochemical nucleic acids assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL) related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation, and used to label and amplify target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection wasmore » studied systematically for the first time. Under optimized conditions, the signal-amplified assay achieved a detection limit of 83 fM targets oligonuecleotides and a 4-order wide dynamic range of target concentration. The resulting assay allowed a robust discrimination between the perfect match and a three-base mismatch sequence. When subjected to full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of approximately 33 pg of the target gene. The high sensitivity and specificity of assay enabled PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15, in comparison to those obtained from negative cell lines HL-60. The approach holds promise for simple, low cost and ultrasensitive electrochemical nucleic acids detection in portable devices, point-of-care and early disease diagnostic applications.« less
Can satellite-based monitoring techniques be used to quantify volcanic CO2 emissions?
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Carn, Simon A.; Kuze, Akihiko; Kataoka, Fumie; Shiomi, Kei; Goto, Naoki; Popp, Christoph; Ajiro, Masataka; Suto, Hiroshi; Takeda, Toru; Kanekon, Sayaka; Sealing, Christine; Flower, Verity
2014-05-01
Since 2010, we investigate and improve possible methods to regularly target volcanic centers from space in order to detect volcanic carbon dioxide (CO2) point source anomalies, using the Japanese Greenhouse gas Observing SATellite (GOSAT). Our long-term goals are: (a) better spatial and temporal coverage of volcano monitoring techniques; (b) improvement of the currently highly uncertain global CO2 emission inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude, strong point source emission and dispersion studies in atmospheric science. The difficulties posed by strong relief, orogenic clouds, and aerosols are minimized by a small field of view, enhanced spectral resolving power, by employing repeat target mode observation strategies, and by comparison to continuous ground based sensor network validation data. GOSAT is a single-instrument Earth observing greenhouse gas mission aboard JAXA's IBUKI satellite in sun-synchronous polar orbit. GOSAT's Fourier-Transform Spectrometer (TANSO-FTS) has been producing total column XCO2 data since January 2009, at a repeat cycle of 3 days, offering great opportunities for temporal monitoring of point sources. GOSAT's 10 km field of view can spatially integrate entire volcanic edifices within one 'shot' in precise target mode. While it doesn't have any spatial scanning or mapping capability, it does have strong spectral resolving power and agile pointing capability to focus on several targets of interest per orbit. Sufficient uncertainty reduction is achieved through comprehensive in-flight vicarious calibration, in close collaboration between NASA and JAXA. Challenges with the on-board pointing mirror system have been compensated for employing custom observation planning strategies, including repeat sacrificial upstream reference points to control pointing mirror motion, empirical individualized target offset compensation, observation pattern simulations to minimize view angle azimuth. Since summer 2010 we have conducted repeated target mode observations of now almost 40 persistently active global volcanoes and other point sources, including Etna (Italy), Mayon (Philippines), Hawaii (USA), Popocatepetl (Mexico), and Ambrym (Vanuatu), using GOSAT FTS SWIR data. In this presentation we will summarize results from over three years of measurements and progress toward understanding detectability with this method. In emerging collaboration with the Deep Carbon Observatory's DECADE program, the World Organization of Volcano Observatories (WOVO) global database of volcanic unrest (WOVOdat), and country specific observatories and agencies we see a growing potential for ground based validation synergies. Complementing the ongoing GOSAT mission, NASA is on schedule to launch its OCO-2 satellite in July 2014, which will provide higher spatial but lower temporal resolution. Further orbiting and geostationary satellite sensors are in planning at JAXA, NASA, and ESA.
NASA Astrophysics Data System (ADS)
Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.
2016-05-01
The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis. Electronic supplementary information (ESI) available: Base pair mismatch tuning of CProbes. Binding capacity of the QDs. Theoretical limit of detection (LOD) for the monoplex systems. Kinetics of strand displacement. Kinetics of QProbe-CProbe binding. LOD and saturation point calculations. See DOI: 10.1039/c6nr00484a
Space-based IR tracking bias removal using background star observations
NASA Astrophysics Data System (ADS)
Clemons, T. M., III; Chang, K. C.
2009-05-01
This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
De-Trending K2 Exoplanet Targets for High Spacecraft Motion
NASA Astrophysics Data System (ADS)
Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory
2018-01-01
After the failure of two reaction wheels, the Kepler space telescope lost its fine pointing ability and entered a new phase of observation, K2. Targets observed by K2 have high motion relative to the detector and K2 light curves have higher noise than Kepler observations. Despite the increased noise, systematics removal pipelines such as K2SFF and EVEREST have enabled continued high-precision transiting planet science with the telescope, resulting in the detection of hundreds of new exoplanets. However, as the spacecraft begins to run out of fuel, sputtering will drive large and random variations in pointing that can prevent detection of exoplanets during the remaining 5 campaigns. In general, higher motion will spread the stellar point spread function (PSF) across more pixels during a campaign, which increases the number of degrees of freedom in the noise component and significantly reduces the de-trending power of traditional systematics removal methods. We use a model of the Kepler CCD combined with pixel-level information of a large number of stars across the detector to improve the performance of the EVEREST pipeline at high motion. We also consider the problem of increased crowding for static apertures in the high-motion regime and develop pixel response function (PRF)-fitting techniques to mitigate contamination and maximize the de-trending power. We assess the performance of our code by simulating sputtering events and assessing exoplanet detection efficiency with transit injection/recovery tests. We find that targets with roll amplitudes of up to 8 pixels, approximately 15 times K2 roll, can be de-trended within 2 to 3 factors of current K2 photometric precision for stars up to 14th magnitude. Achieved recovery precision allows detection of small planets around 11th and 12th magnitude stars. These methods can be applied to the light curves of K2 targets for existing and future campaigns to ensure that precision exoplanet science can still be performed despite increased motion. We further discuss how these methods can be applied to upcoming space telescope missions, such as the Transiting Exoplanet Survey Satellite (TESS), to improve future detection and characterization of exoplanet candidates.
1991-05-01
Plans t(NI) tasks. The tics of the C17. (2) develop training strate- aflIsi was. conlducted in s~uppiort of a mile- gies for armor and mechanized...the point of impact on the target, and if the round impacto the ground or an object other than the intended target. The hit detection computations
Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption.
Lee, Wonsuk; Chen, Qiushu; Fan, Xudong; Yoon, Dong Ki
2016-11-29
DNA lasers self-amplify optical signals from a DNA analyte as well as thermodynamic differences between sequences, allowing quasi-digital DNA detection. However, these systems have drawbacks, such as relatively large sample consumption and complicated dye labelling. Moreover, although the lasing signal can detect the target DNA, it is superimposed on an unintended fluorescence background, which persists for non-target DNA samples as well. From an optical point of view, it is thus not truly digital detection and requires spectral analysis to identify the target. In this work, we propose and demonstrate an optofluidic laser that has a single layer of DNA molecules as the gain material. A target DNA produces intensive laser emission comparable to existing DNA lasers, while any unnecessary fluorescence background is successfully suppressed. As a result, the target DNA can be detected with a single laser pulse, in a truly digital manner. Since the DNA molecules cover only a single layer on the surface of the laser microcavity, the DNA sample consumption is a few orders of magnitude lower than that of existing DNA lasers. Furthermore, the DNA molecules are stained by simply immersing the microcavity in the intercalating dye solution, and thus the proposed DNA laser is free of any complex dye-labelling process prior to analysis.
Update on Astrometric Follow-Up at Apache Point Observatory by Adler Planetarium
NASA Astrophysics Data System (ADS)
Nault, Kristie A.; Brucker, Melissa; Hammergren, Mark
2016-10-01
We began our NEO astrometric follow-up and characterization program in 2014 Q4 using about 500 hours of observing time per year with the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory (APO). Our observing is split into 2 hour blocks approximately every other night for astrometry (this poster) and several half-nights per month for spectroscopy (see poster by M. Hammergren et al.) and light curve studies.For astrometry, we use the ARC Telescope Imaging Camera (ARCTIC) with an SDSS r filter, in 2 hour observing blocks centered around midnight. ARCTIC has a magnitude limit of V~23 in 60s, and we target 20 NEOs per session. ARCTIC has a FOV 1.57 times larger and a readout time half as long as the previous imager, SPIcam, which we used from 2014 Q4 through 2015 Q3. Targets are selected primarily from the Minor Planet Center's (MPC) NEO Confirmation Page (NEOCP), and NEA Observation Planning Aid; we also refer to JPL's What's Observable page, the Spaceguard Priority List and Faint NEOs List, and requests from other observers. To quickly adapt to changing weather and seeing conditions, we create faint, midrange, and bright target lists. Detected NEOs are measured with Astrometrica and internal software, and the astrometry is reported to the MPC.As of June 19, 2016, we have targeted 2264 NEOs, 1955 with provisional designations, 1582 of which were detected. We began observing NEOCP asteroids on January 30, 2016, and have targeted 309, 207 of which were detected. In addition, we serendipitously observed 281 moving objects, 201 of which were identified as previously known objects.This work is based on observations obtained with the Apache Point Observatory 3.5m telescope, which is owned and operated by the Astrophysical Research Consortium. We gratefully acknowledge support from NASA NEOO award NNX14AL17G and thank the University of Chicago Department of Astronomy and Astrophysics for observing time in 2014.
Colorimetric Detection of Ehrlichia Canis via Nucleic Acid Hybridization in Gold Nano-Colloids
Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong
2014-01-01
Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease. PMID:25111239
Oil-encapsulated nanodroplet array for bio-molecular detection.
Qiao, Wen; Zhang, Tiantian; Yen, Tony; Ku, Ti-Hsuan; Song, Junlan; Lian, Ian; Lo, Yu-Hwa
2014-09-01
Detection of low abundance biomolecules is challenging for biosensors that rely on surface chemical reactions. For surface reaction based biosensors, it require to take hours or even days for biomolecules of diffusivities in the order of 10(-10-11) m2/s to reach the surface of the sensors by Brownian motion. In addition, often times the repelling Coulomb interactions between the molecules and the probes further defer the binding process, leading to undesirably long detection time for applications such as point-of-care in vitro diagnosis. In this work, we designed an oil encapsulated nanodroplet array microchip utilizing evaporation for pre-concentration of the targets to greatly shorten the reaction time and enhance the detection sensitivity. The evaporation process of the droplets is facilitated by the superhydrophilic surface and resulting nanodroplets are encapsulated by oil drops to form stable reaction chamber. Using this method, desirable droplet volumes, concentrations of target molecules, and reaction conditions (salt concentrations, reaction temperature, etc.) in favour of fast and sensitive detection are obtained. A linear response over 2 orders of magnitude in target concentration was achieved at 10 fM for protein targets and 100 fM for miRNA mimic oligonucleotides.
Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.
Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong
2014-08-08
Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.
Isothermal amplification detection of nucleic acids by a double-nicked beacon.
Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping
2016-03-01
Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. Copyright © 2015 Elsevier Inc. All rights reserved.
A preliminary design for flight testing the FINDS algorithm
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.
1986-01-01
This report presents a preliminary design for flight testing the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a target flight computer. The FINDS software was ported onto the target flight computer by reducing the code size by 65%. Several modifications were made to the computational algorithms resulting in a near real-time execution speed. Finally, a new failure detection strategy was developed resulting in a significant improvement in the detection time performance. In particular, low level MLS, IMU and IAS sensor failures are detected instantaneously with the new detection strategy, while accelerometer and the rate gyro failures are detected within the minimum time allowed by the information generated in the sensor residuals based on the point mass equations of motion. All of the results have been demonstrated by using five minutes of sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment.
Choice of saccade endpoint under risk
Ackermann, John F.; Landy, Michael S.
2013-01-01
Eye movements function to bring detailed information onto the high-resolution region of the retina. Previous research has shown that human observers select fixation points that maximize information acquisition and minimize target location uncertainty. In this study, we ask whether human observers choose the saccade endpoint that maximizes gain when there are explicit rewards associated with correctly detecting the target. Observers performed an 8-alternative forced-choice detection task for a contrast-defined target in noise. After a single saccade, observers indicated the target location. Each potential target location had an associated reward that was known to the observer. In some conditions, the reward at one location was higher than at the other locations. We compared human saccade endpoints to those of an ideal observer that maximizes expected gain given the respective human observer's visibility map, i.e., d′ for target detection as a function of retinal location. Varying the location of the highest reward had a significant effect on human observers' distribution of saccade endpoints. Both human and ideal observers show a high density of saccades made toward the highest rewarded and actual target locations. But humans' overall spatial distributions of saccade endpoints differed significantly from the ideal observer as they made a greater number of saccade to locations far from the highest rewarded and actual target locations. Suboptimal choice of saccade endpoint, possibly in combination with suboptimal integration of information across saccades, had a significant effect on human observers' ability to correctly detect the target and maximize gain. PMID:24023277
Single-Molecule Counting of Point Mutations by Transient DNA Binding
NASA Astrophysics Data System (ADS)
Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan
2017-03-01
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
Micro spectrometer for parallel light and method of use
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2011-01-01
A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.
Simulation study into the identification of nuclear materials in cargo containers using cosmic rays
NASA Astrophysics Data System (ADS)
Blackwell, T. B.; Kudryavtsev, V. A.
2015-04-01
Muon tomography represents a new type of imaging technique that can be used in detecting high-Z materials. Monte Carlo simulations for muon scattering in different types of target materials are presented. The dependence of the detector capability to identify high-Z targets on spatial resolution has been studied. Muon tracks are reconstructed using a basic point of closest approach (PoCA) algorithm. In this article we report the development of a secondary analysis algorithm that is applied to the reconstructed PoCA points. This algorithm efficiently ascertains clusters of voxels with high average scattering angles to identify `areas of interest' within the inspected volume. Using this approach the effect of other parameters, such as the distance between detectors and the number of detectors per set, on material identification is also presented. Finally, false positive and false negative rates for detecting shielded HEU in realistic scenarios with low-Z clutter are presented.
Qu, Xiaojun; Jin, Haojun; Liu, Yuqian; Sun, Qingjiang
2018-03-06
The combination of microbead array, isothermal amplification, and molecular signaling enables the continuous development of next-generation molecular diagnostic techniques. Herein we reported the implementation of nicking endonuclease-assisted strand displacement amplification reaction on quantum dots-encoded microbead (Qbead), and demonstrated its feasibility for multiplexed miRNA assay in real sample. The Qbead featured with well-defined core-shell superstructure with dual-colored quantum dots loaded in silica core and shell, respectively, exhibiting remarkably high optical encoding stability. Specially designed stem-loop-structured probes were immobilized onto the Qbead for specific target recognition and amplification. In the presence of low abundance of miRNA target, the target triggered exponential amplification, producing a large quantity of stem-G-quadruplexes, which could be selectively signaled by a fluorescent G-quadruplex intercalator. In one-step operation, the Qbead-based isothermal amplification and signaling generated emissive "core-shell-satellite" superstructure, changing the Qbead emission-color. The target abundance-dependent emission-color changes of the Qbead allowed direct, visual detection of specific miRNA target. This visualization method achieved limit of detection at the subfemtomolar level with a linear dynamic range of 4.5 logs, and point-mutation discrimination capability for precise miRNA analyses. The array of three encoded Qbeads could simultaneously quantify three miRNA biomarkers in ∼500 human hepatoma carcinoma cells. With the advancements in ease of operation, multiplexing, and visualization capabilities, the isothermal amplification-on-Qbead assay could potentially enable the development of point-of-care diagnostics.
Functional dissection of the Hox protein Abdominal-B in Drosophila cell culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Zongzhao; CellNetworks - Cluster of Excellence, Centre for Organismal Studies; Graduate School of Chinese Academy of Sciences, Beijing 100039
2011-11-04
Highlights: Black-Right-Pointing-Pointer ct340 CRM was identified to be the posterior spiracle enhancer of gene cut. Black-Right-Pointing-Pointer ct340 is under the direct transcriptional control of Hox protein Abd-B. Black-Right-Pointing-Pointer An efficient cloning system was developed to assay protein-DNA interaction. Black-Right-Pointing-Pointer New features of Abd-B dependent target gene regulation were detected. -- Abstract: Hox transcription factors regulate the morphogenesis along the anterior-posterior (A/P) body axis through the interaction with small cis-regulatory modules (CRMs) of their target gene, however so far very few Hox CRMs are known and have been analyzed in detail. In this study we have identified a new Hox CRM,more » ct340, which guides the expression of the cell type specification gene cut (ct) in the posterior spiracle under the direct control of the Hox protein Abdominal-B (Abd-B). Using the ct340 enhancer activity as readout, an efficient cloning system to generate VP16 activation domain fusion protein was developed to unambiguously test protein-DNA interaction in Drosophila cell culture. By functionally dissecting the Abd-B protein, new features of Abd-B dependent target gene regulation were detected. Due to its easy adaptability, this system can be generally used to map functional domains within sequence-specific transcriptional factors in Drosophila cell culture, and thus provide preliminary knowledge of the protein functional domain structure for further in vivo analysis.« less
Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu
2017-05-06
In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu's algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape.
A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.
Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli
2015-07-07
Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.
Swensen, James S.; Xiao, Yi; Ferguson, Brian S.; Lubin, Arica A.; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Soh, H. Tom.
2009-01-01
The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Towards a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (~1 minute time resolution) detection of the small molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the ground work for the real-time, point-of-care detection of a wide variety of molecular targets. PMID:19271708
Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
Hsieh, Kuangwen; Ferguson, B Scott; Eisenstein, Michael; Plaxco, Kevin W; Soh, H Tom
2015-04-21
The capacity to achieve rapid, sensitive, specific, quantitative, and multiplexed genetic detection of pathogens via a robust, portable, point-of-care platform could transform many diagnostic applications. And while contemporary technologies have yet to effectively achieve this goal, the advent of microfluidics provides a potentially viable approach to this end by enabling the integration of sophisticated multistep biochemical assays (e.g., sample preparation, genetic amplification, and quantitative detection) in a monolithic, portable device from relatively small biological samples. Integrated electrochemical sensors offer a particularly promising solution to genetic detection because they do not require optical instrumentation and are readily compatible with both integrated circuit and microfluidic technologies. Nevertheless, the development of generalizable microfluidic electrochemical platforms that integrate sample preparation and amplification as well as quantitative and multiplexed detection remains a challenging and unsolved technical problem. Recognizing this unmet need, we have developed a series of microfluidic electrochemical DNA sensors that have progressively evolved to encompass each of these critical functionalities. For DNA detection, our platforms employ label-free, single-step, and sequence-specific electrochemical DNA (E-DNA) sensors, in which an electrode-bound, redox-reporter-modified DNA "probe" generates a current change after undergoing a hybridization-induced conformational change. After successfully integrating E-DNA sensors into a microfluidic chip format, we subsequently incorporated on-chip genetic amplification techniques including polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to enable genetic detection at clinically relevant target concentrations. To maximize the potential point-of-care utility of our platforms, we have further integrated sample preparation via immunomagnetic separation, which allowed the detection of influenza virus directly from throat swabs and developed strategies for the multiplexed detection of related bacterial strains from the blood of septic mice. Finally, we developed an alternative electrochemical detection platform based on real-time LAMP, which not is only capable of detecting across a broad dynamic range of target concentrations, but also greatly simplifies quantitative measurement of nucleic acids. These efforts represent considerable progress toward the development of a true sample-in-answer-out platform for genetic detection of pathogens at the point of care. Given the many advantages of these systems, and the growing interest and innovative contributions from researchers in this field, we are optimistic that iterations of these systems will arrive in clinical settings in the foreseeable future.
Recabal, Pedro; Assel, Melissa; Sjoberg, Daniel D; Lee, Daniel; Laudone, Vincent P; Touijer, Karim; Eastham, James A; Vargas, Hebert A; Coleman, Jonathan; Ehdaie, Behfar
2016-08-01
We determined whether multiparametric magnetic resonance imaging targeted biopsies may replace systematic biopsies to detect higher grade prostate cancer (Gleason score 7 or greater) and whether biopsy may be avoided based on multiparametric magnetic resonance imaging among men with Gleason 3+3 prostate cancer on active surveillance. We identified men with previously diagnosed Gleason score 3+3 prostate cancer on active surveillance who underwent multiparametric magnetic resonance imaging and a followup prostate biopsy. Suspicion for higher grade cancer was scored on a standardized 5-point scale. All patients underwent a systematic biopsy. Patients with multiparametric magnetic resonance imaging regions of interest also underwent magnetic resonance imaging targeted biopsy. The detection rate of higher grade cancer was estimated for different multiparametric magnetic resonance imaging scores with the 3 biopsy strategies of systematic, magnetic resonance imaging targeted and combined. Of 206 consecutive men on active surveillance 135 (66%) had a multiparametric magnetic resonance imaging region of interest. Overall, higher grade cancer was detected in 72 (35%) men. A higher multiparametric magnetic resonance imaging score was associated with an increased probability of detecting higher grade cancer (Wilcoxon-type trend test p <0.0001). Magnetic resonance imaging targeted biopsy detected higher grade cancer in 23% of men. Magnetic resonance imaging targeted biopsy alone missed higher grade cancers in 17%, 12% and 10% of patients with multiparametric magnetic resonance imaging scores of 3, 4 and 5, respectively. Magnetic resonance imaging targeted biopsies increased the detection of higher grade cancer among men on active surveillance compared to systematic biopsy alone. However, a clinically relevant proportion of higher grade cancer was detected using only systematic biopsy. Despite the improved detection of disease progression using magnetic resonance imaging targeted biopsy, systematic biopsy cannot be excluded as part of surveillance for men with low risk prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Samuelsen, Simone V.; Solov'Yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira
2016-10-01
New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies.
Neuhaus, Christine; Eisenberger, Tobias; Decker, Christian; Nagl, Sandra; Blank, Cornelia; Pfister, Markus; Kennerknecht, Ingo; Müller-Hofstede, Cornelie; Charbel Issa, Peter; Heller, Raoul; Beck, Bodo; Rüther, Klaus; Mitter, Diana; Rohrschneider, Klaus; Steinhauer, Ute; Korbmacher, Heike M; Huhle, Dagmar; Elsayed, Solaf M; Taha, Hesham M; Baig, Shahid M; Stöhr, Heidi; Preising, Markus; Markus, Susanne; Moeller, Fabian; Lorenz, Birgit; Nagel-Wolfrum, Kerstin; Khan, Arif O; Bolz, Hanno J
2017-09-01
Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3 , genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.
NASA Astrophysics Data System (ADS)
Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan
2018-03-01
False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.
Wiemken, Timothy L; Furmanek, Stephen P; Mattingly, William A; Wright, Marc-Oliver; Persaud, Annuradha K; Guinn, Brian E; Carrico, Ruth M; Arnold, Forest W; Ramirez, Julio A
2018-02-01
Although not all health care-associated infections (HAIs) are preventable, reducing HAIs through targeted intervention is key to a successful infection prevention program. To identify areas in need of targeted intervention, robust statistical methods must be used when analyzing surveillance data. The objective of this study was to compare and contrast statistical process control (SPC) charts with Twitter's anomaly and breakout detection algorithms. SPC and anomaly/breakout detection (ABD) charts were created for vancomycin-resistant Enterococcus, Acinetobacter baumannii, catheter-associated urinary tract infection, and central line-associated bloodstream infection data. Both SPC and ABD charts detected similar data points as anomalous/out of control on most charts. The vancomycin-resistant Enterococcus ABD chart detected an extra anomalous point that appeared to be higher than the same time period in prior years. Using a small subset of the central line-associated bloodstream infection data, the ABD chart was able to detect anomalies where the SPC chart was not. SPC charts and ABD charts both performed well, although ABD charts appeared to work better in the context of seasonal variation and autocorrelation. Because they account for common statistical issues in HAI data, ABD charts may be useful for practitioners for analysis of HAI surveillance data. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Ye, Tao; Zhou, Fuqiang
2015-04-10
When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.
Huang, Si-Qiang; Hu, Juan; Zhu, Guichi; Zhang, Chun-Yang
2015-03-15
Accurate identification of point mutation is particularly imperative in the field of biomedical research and clinical diagnosis. Here, we develop a sensitive and specific method for point mutation assay using exponential strand displacement amplification (SDA)-based surface enhanced Raman spectroscopy (SERS). In this method, a discriminating probe and a hairpin probe are designed to specifically recognize the sequence of human K-ras gene. In the presence of K-ras mutant target (C→T), the 3'-terminal of discriminating probe and the 5'-terminal of hairpin probe can be ligated to form a SDA template. Subsequently, the 3'-terminal of hairpin probe can function as a primer to initiate the SDA reaction, producing a large amount of triggers. The resultant triggers can further hybridize with the discriminating probes to initiate new rounds of SDA reaction, leading to an exponential amplification reaction. With the addition of capture probe-modified gold nanoparticles (AuNPs) and the Rox-labeled reporter probes, the amplified triggers can be assembled on the surface of AuNPs through the formation of sandwich hybrids of capture probe-trigger-reporter probe, generating a strong Raman signal. While in the presence of K-ras wild-type target (C), neither ligation nor SDA reaction can be initiated and no Raman signal is observed. The proposed method exhibits high sensitivity with a detection limit of 1.4pM and can accurately discriminate as low as 1% variant frequency from the mixture of mutant target and wild-type target. Importantly, this method can be further applied to analyze the mutant target in the spiked HEK293T cell lysate, holding great potential for genetic analysis and disease prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Automatic Registration of Terrestrial Laser Scanner Point Clouds Using Natural Planar Surfaces
NASA Astrophysics Data System (ADS)
Theiler, P. W.; Schindler, K.
2012-07-01
Terrestrial laser scanners have become a standard piece of surveying equipment, used in diverse fields like geomatics, manufacturing and medicine. However, the processing of today's large point clouds is time-consuming, cumbersome and not automated enough. A basic step of post-processing is the registration of scans from different viewpoints. At present this is still done using artificial targets or tie points, mostly by manual clicking. The aim of this registration step is a coarse alignment, which can then be improved with the existing algorithm for fine registration. The focus of this paper is to provide such a coarse registration in a fully automatic fashion, and without placing any target objects in the scene. The basic idea is to use virtual tie points generated by intersecting planar surfaces in the scene. Such planes are detected in the data with RANSAC and optimally fitted using least squares estimation. Due to the huge amount of recorded points, planes can be determined very accurately, resulting in well-defined tie points. Given two sets of potential tie points recovered in two different scans, registration is performed by searching for the assignment which preserves the geometric configuration of the largest possible subset of all tie points. Since exhaustive search over all possible assignments is intractable even for moderate numbers of points, the search is guided by matching individual pairs of tie points with the help of a novel descriptor based on the properties of a point's parent planes. Experiments show that the proposed method is able to successfully coarse register TLS point clouds without the need for artificial targets.
Hoang, Phuong Le; Ahn, Sanghoon; Kim, Jeng-o; Kang, Heeshin; Noh, Jiwhan
2017-01-01
In modern high-intensity ultrafast laser processing, detecting the focal position of the working laser beam, at which the intensity is the highest and the beam diameter is the lowest, and immediately locating the target sample at that point are challenging tasks. A system that allows in-situ real-time focus determination and fabrication using a high-power laser has been in high demand among both engineers and scientists. Conventional techniques require the complicated mathematical theory of wave optics, employing interference as well as diffraction phenomena to detect the focal position; however, these methods are ineffective and expensive for industrial application. Moreover, these techniques could not perform detection and fabrication simultaneously. In this paper, we propose an optical design capable of detecting the focal point and fabricating complex patterns on a planar sample surface simultaneously. In-situ real-time focus detection is performed using a bandpass filter, which only allows for the detection of laser transmission. The technique enables rapid, non-destructive, and precise detection of the focal point. Furthermore, it is sufficiently simple for application in both science and industry for mass production, and it is expected to contribute to the next generation of laser equipment, which can be used to fabricate micro-patterns with high complexity. PMID:28671566
Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles
NASA Technical Reports Server (NTRS)
Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick
2012-01-01
Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.
A Brownian Bridge Movement Model to Track Mobile Targets
2016-09-01
breakout of Chinese forces in the South China Sea. Probability heat maps, depicting the probability of a target location at discrete times, are...achieve a higher probability of detection, it is more effective to have sensors cover a wider area at fewer discrete points in time than to have a...greater number of discrete looks using sensors covering smaller areas. 14. SUBJECT TERMS Brownian bridge movement models, unmanned sensors
Gonzalez, Jean; Roman, Manuela; Hall, Michael; Godavarty, Anuradha
2012-01-01
Hand-held near-infrared (NIR) optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2) hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s) allows for reflectance imaging (as in ultrasound) and transillumination or compressed imaging (as in X-ray mammography). Phantom studies were performed to demonstrate two-dimensional (2D) target detection via reflectance and transillumination imaging at various target depths (1-5 cm deep) and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.
Magnetic resonance imaging-ultrasound fusion biopsy for prediction of final prostate pathology.
Le, Jesse D; Stephenson, Samuel; Brugger, Michelle; Lu, David Y; Lieu, Patricia; Sonn, Geoffrey A; Natarajan, Shyam; Dorey, Frederick J; Huang, Jiaoti; Margolis, Daniel J A; Reiter, Robert E; Marks, Leonard S
2014-11-01
We explored the impact of magnetic resonance imaging-ultrasound fusion prostate biopsy on the prediction of final surgical pathology. A total of 54 consecutive men undergoing radical prostatectomy at UCLA after fusion biopsy were included in this prospective, institutional review board approved pilot study. Using magnetic resonance imaging-ultrasound fusion, tissue was obtained from a 12-point systematic grid (mapping biopsy) and from regions of interest detected by multiparametric magnetic resonance imaging (targeted biopsy). A single radiologist read all magnetic resonance imaging, and a single pathologist independently rereviewed all biopsy and whole mount pathology, blinded to prior interpretation and matched specimen. Gleason score concordance between biopsy and prostatectomy was the primary end point. Mean patient age was 62 years and median prostate specific antigen was 6.2 ng/ml. Final Gleason score at prostatectomy was 6 (13%), 7 (70%) and 8-9 (17%). A tertiary pattern was detected in 17 (31%) men. Of 45 high suspicion (image grade 4-5) magnetic resonance imaging targets 32 (71%) contained prostate cancer. The per core cancer detection rate was 20% by systematic mapping biopsy and 42% by targeted biopsy. The highest Gleason pattern at prostatectomy was detected by systematic mapping biopsy in 54%, targeted biopsy in 54% and a combination in 81% of cases. Overall 17% of cases were upgraded from fusion biopsy to final pathology and 1 (2%) was downgraded. The combination of targeted biopsy and systematic mapping biopsy was needed to obtain the best predictive accuracy. In this pilot study magnetic resonance imaging-ultrasound fusion biopsy allowed for the prediction of final prostate pathology with greater accuracy than that reported previously using conventional methods (81% vs 40% to 65%). If confirmed, these results will have important clinical implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu
2017-01-01
In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu’s algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape. PMID:28481260
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Dynamic path planning for mobile robot based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.
From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages.
Anany, H; Chou, Y; Cucic, S; Derda, R; Evoy, S; Griffiths, M W
2017-02-28
The innate specificity of bacteriophages toward their hosts makes them excellent candidates for the development of detection assays. They can be used in many ways to detect pathogens, and each has its own advantages and disadvantages. Whole bacteriophages can carry reporter genes to alter the phenotype of the target. Bacteriophages can act as staining agents or the progeny of the infection process can be detected, which further increases the sensitivity of the detection assay. Compared with whole-phage particles, use of phage components as probes offers other advantages: for example, smaller probe size to enhance binding activity, phage structures that can be engineered for better affinity, as well as specificity, binding properties, and robustness. When no natural binding with the target exists, phages can be used as vehicles to identify new protein-ligand interactions necessary for diagnostics. This review comprehensively summarizes many uses of phages as detection tools and points the way toward how phage-based technologies may be improved.
Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.
Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul
2016-06-01
Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.
NASA Astrophysics Data System (ADS)
Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang
2018-05-01
Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.
Javier, David J.; Castellanos-Gonzalez, Alejandro; Weigum, Shannon E.; White, A. Clinton; Richards-Kortum, Rebecca
2009-01-01
We report on a novel strategy for the detection of mRNA targets derived from Cryptosporidium parvum oocysts by the use of oligonucleotide-gold nanoparticles. Gold nanoparticles are functionalized with oligonucleotides which are complementary to unique sequences present on the heat shock protein 70 (HSP70) DNA/RNA target. The results indicate that the presence of HPS70 targets of increasing complexity causes the formation of oligonucleotide-gold nanoparticle networks which can be visually monitored via a simple colorimetric readout measured by a total internal reflection imaging setup. Furthermore, the induced expression of HSP70 mRNA in Cryptosporidium parvum oocysts via a simple heat shock process provides nonenzymatic amplification such that the HSP70 mRNA derived from as few as 5 × 103 purified C. parvum oocysts was successfully detected. Taken together, these results support the use of oligonucleotide-gold nanoparticles for the molecular diagnosis of cryptosporidiosis, offering new opportunities for the further development of point-of-care diagnostic assays with low-cost, robust reagents and simple colorimetric detection. PMID:19828740
NASA Astrophysics Data System (ADS)
Su, Qiang; Zhou, Xiaoming
2008-12-01
Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.
Fpga based L-band pulse doppler radar design and implementation
NASA Astrophysics Data System (ADS)
Savci, Kubilay
As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed point arithmetic operations as it is fast and facilitates source requirement as it consumes less hardware than floating point arithmetic operations. The software uses floating point arithmetic operations, which ensure precision in processing at the expense of speed. The functionality of the radar system has been tested for experimental validation in the field with a moving car and the validation of submodules are tested with synthetic data simulated on MATLAB.
Diffusion tensor driven contour closing for cell microinjection targeting.
Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G
2010-01-01
This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.
Yew, Chee-Hong Takahiro; Azari, Pedram; Choi, Jane Ru; Li, Fei; Pingguan-Murphy, Belinda
2018-06-07
Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Ahirwar, Rajesh; Nahar, Pradip
2016-01-01
The increasing demand for easily available and low-cost diagnostics has fuelled the development of aptasensors as platforms for rapid, sensitive, and point-of-care testing of target analytes. Recently, gold nanoparticle (AuNP)-based aptasensors have attracted wide recognition owing to their color transition properties which allow real-time rapid sensing of targets. In this study, we utilized the color transition property of aptamer-functionalized AuNPs to detect and quantify estrogen receptor alpha (ERα), a key biomarker protein in breast cancer. We found that the coating of AuNPs with unmodified ERα-RNA aptamer (GGGGUCAAGGUGACCCC) makes them resistant to salt-induced aggregation. However, addition of ERα to the aptamer-protected AuNPs results in their spontaneous aggregation as evident from a color transition from wine red to deep blue. On the basis of this, we developed an ERα aptasensor, with limits of detection and quantification of 0.64 and 2.16 ng/mL, respectively; the aptasensor can efficiently detect and quantify ERα in a working range of 10 ng/mL-5μg/mL protein. Validation of the aptasensor on cellular extracts of ERα-positive MCF-7 and ERα-deficient MDA-MB-231 breast cancer cells showed a target-selective response in ERα-positive samples but not in cellular extracts of ERα-deficient breast cancer cells. Further, the small size and simple fabrication chemistry of aptamers provide an additional benefit to make the ERα aptasensor a potentially useful and cost-effective tool in point-of-care analyses of ERα.
Verberkmoes, Nathan C; Hervey, W Judson; Shah, Manesh; Land, Miriam; Hauser, Loren; Larimer, Frank W; Van Berkel, Gary J; Goeringer, Douglas E
2005-02-01
There is currently a great need for rapid detection and positive identification of biological threat agents, as well as microbial species in general, directly from complex environmental samples. This need is most urgent in the area of homeland security, but also extends into medical, environmental, and agricultural sciences. Mass-spectrometry-based analysis is one of the leading technologies in the field with a diversity of different methodologies for biothreat detection. Over the past few years, "shotgun"proteomics has become one method of choice for the rapid analysis of complex protein mixtures by mass spectrometry. Recently, it was demonstrated that this methodology is capable of distinguishing a target species against a large database of background species from a single-component sample or dual-component mixtures with relatively the same concentration. Here, we examine the potential of shotgun proteomics to analyze a target species in a background of four contaminant species. We tested the capability of a common commercial mass-spectrometry-based shotgun proteomics platform for the detection of the target species (Escherichia coli) at four different concentrations and four different time points of analysis. We also tested the effect of database size on positive identification of the four microbes used in this study by testing a small (13-species) database and a large (261-species) database. The results clearly indicated that this technology could easily identify the target species at 20% in the background mixture at a 60, 120, 180, or 240 min analysis time with the small database. The results also indicated that the target species could easily be identified at 20% or 6% but could not be identified at 0.6% or 0.06% in either a 240 min analysis or a 30 h analysis with the small database. The effects of the large database were severe on the target species where detection above the background at any concentration used in this study was impossible, though the three other microbes used in this study were clearly identified above the background when analyzed with the large database. This study points to the potential application of this technology for biological threat agent detection but highlights many areas of needed research before the technology will be useful in real world samples.
Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype
NASA Astrophysics Data System (ADS)
Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille
2012-06-01
The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.
Research with Radioactive Targets
NASA Astrophysics Data System (ADS)
Ahle, Larry
2004-10-01
Obtaining precise information about neutron capture cross-sections for s-process branch points is a key goal of nuclear astrophysics. Since these nuclei are unstable and neutron targets do not exist, performing these measurements require a facility that can produce the nuclei of interest at a sufficient rate to allow formation of a meaningful target (at least 1015 atoms). The Rare Isotope Accelerator (RIA) promises such rates, often enabling collection of greater than 1016 atoms after only of few days of production running. By properly designing both the ISOL and fragmentation lines, these collections will often be possible to obtained parasitically to other radioactive ion beam production. But given a target, performing the neutron capture cross-section measurement also presents its own challenges. In many cases, activation measurements are feasible, providing one obtains a target of sufficient purity. But for many branch point nuclei, the capture product is stable or long enough lived that no radiation signature is available for detection. Measurements for these nuclei will require a BaF2 array like DANCE at Los Alamos National Laboratory, which uses gamma calorimetry to detect neutron capture events. Plans and issues associated with isotope harvesting will be discussed, as well as challenges associated with performing theses measurements. Current plans for doing DANCE type measurements at RIA will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Robust pedestrian detection and tracking from a moving vehicle
NASA Astrophysics Data System (ADS)
Tuong, Nguyen Xuan; Müller, Thomas; Knoll, Alois
2011-01-01
In this paper, we address the problem of multi-person detection, tracking and distance estimation in a complex scenario using multi-cameras. Specifically, we are interested in a vision system for supporting the driver in avoiding any unwanted collision with the pedestrian. We propose an approach using Histograms of Oriented Gradients (HOG) to detect pedestrians on static images and a particle filter as a robust tracking technique to follow targets from frame to frame. Because the depth map requires expensive computation, we extract depth information of targets using Direct Linear Transformation (DLT) to reconstruct 3D-coordinates of correspondent points found by running Speeded Up Robust Features (SURF) on two input images. Using the particle filter the proposed tracker can efficiently handle target occlusions in a simple background environment. However, to achieve reliable performance in complex scenarios with frequent target occlusions and complex cluttered background, results from the detection module are integrated to create feedback and recover the tracker from tracking failures due to the complexity of the environment and target appearance model variability. The proposed approach is evaluated on different data sets both in a simple background scenario and a cluttered background environment. The result shows that, by integrating detector and tracker, a reliable and stable performance is possible even if occlusion occurs frequently in highly complex environment. A vision-based collision avoidance system for an intelligent car, as a result, can be achieved.
Impaired search for orientation but not color in hemi-spatial neglect.
Wilkinson, David; Ko, Philip; Milberg, William; McGlinchey, Regina
2008-01-01
Patients with hemi-spatial neglect have trouble finding targets defined by a conjunction of visual features. The problem is widely believed to stem from a high-level deficit in attentional deployment, which in turn has led to disagreement over whether the detection of basic features is also disrupted. If one assumes that the detection of salient visual features can be based on the output of spared 'preattentive' processes (Treisman and Gelade, 1980), then feature detection should remain intact. However, if one assumes that all forms of detection require at least a modicum of focused attention (Duncan and Humphreys, 1992), then all forms of search will be disrupted to some degree. Here we measured the detection of feature targets that were defined by either a unique color or orientation. Comparable detection rates were observed in non-neglected space, which indicated that both forms of search placed similar demands on attention. For either of the above accounts to be true, the two targets should therefore be detected with equal efficiency in the neglected field. We found that while the detection rate for color was normal in four of our five patients, all showed an increased reaction time and/or error rate for orientation. This result points to a selective deficit in orientation discrimination, and implies that neglect disrupts specific feature representations. That is, the effects of neglect on visual search are not only attentional but also perceptual.
Performance Analysis of a Pole and Tree Trunk Detection Method for Mobile Laser Scanning Data
NASA Astrophysics Data System (ADS)
Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Kukko, A.; Kaartinen, H.
2011-09-01
Dense point clouds can be collected efficiently from large areas using mobile laser scanning (MLS) technology. Accurate MLS data can be used for detailed 3D modelling of the road surface and objects around it. The 3D models can be utilised, for example, in street planning and maintenance and noise modelling. Utility poles, traffic signs, and lamp posts can be considered an important part of road infrastructure. Poles and trees stand out from the environment and should be included in realistic 3D models. Detection of narrow vertical objects, such as poles and tree trunks, from MLS data was studied. MLS produces huge amounts of data and, therefore, processing methods should be as automatic as possible and for the methods to be practical, the algorithms should run in an acceptable time. The automatic pole detection method tested in this study is based on first finding point clusters that are good candidates for poles and then separating poles and tree trunks from other clusters using features calculated from the clusters and by applying a mask that acts as a model of a pole. The method achieved detection rates of 77.7% and 69.7% in the field tests while 81.0% and 86.5% of the detected targets were correct. Pole-like targets that were surrounded by other objects, such as tree trunks that were inside branches, were the most difficult to detect. Most of the false detections came from wall structures, which could be corrected in further processing.
NASA Astrophysics Data System (ADS)
Zhang, Haiying; Bai, Jiaojiao; Li, Zhengjie; Liu, Yan; Liu, Kunhong
2017-06-01
The detection and discrimination of infrared small dim targets is a challenge in automatic target recognition (ATR), because there is no salient information of size, shape and texture. Many researchers focus on mining more discriminative information of targets in temporal-spatial. However, such information may not be available with the change of imaging environments, and the targets size and intensity keep changing in different imaging distance. So in this paper, we propose a novel research scheme using density-based clustering and backtracking strategy. In this scheme, the speeded up robust feature (SURF) detector is applied to capture candidate targets in single frame at first. And then, these points are mapped into one frame, so that target traces form a local aggregation pattern. In order to isolate the targets from noises, a newly proposed density-based clustering algorithm, fast search and find of density peak (FSFDP for short), is employed to cluster targets by the spatial intensive distribution. Two important factors of the algorithm, percent and γ , are exploited fully to determine the clustering scale automatically, so as to extract the trace with highest clutter suppression ratio. And at the final step, a backtracking algorithm is designed to detect and discriminate target trace as well as to eliminate clutter. The consistence and continuity of the short-time target trajectory in temporal-spatial is incorporated into the bounding function to speed up the pruning. Compared with several state-of-arts methods, our algorithm is more effective for the dim targets with lower signal-to clutter ratio (SCR). Furthermore, it avoids constructing the candidate target trajectory searching space, so its time complexity is limited to a polynomial level. The extensive experimental results show that it has superior performance in probability of detection (Pd) and false alarm suppressing rate aiming at variety of complex backgrounds.
Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space
NASA Astrophysics Data System (ADS)
Jun, Chen; Wenjun, Hou; Qing, Sheng
After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.
Portable point-of-care blood analysis system for global health (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dou, James J.; Aitchison, James Stewart; Chen, Lu; Nayyar, Rakesh
2016-03-01
In this paper we present a portable blood analysis system based on a disposable cartridge and hand-held reader. The platform can perform all the sample preparation, detection and waste collection required to complete a clinical test. In order to demonstrate the utility of this approach a CD4 T cell enumeration was carried out. A handheld, point-of-care CD4 T cell system was developed based on this system. In particular we will describe a pneumatic, active pumping method to control the on-chip fluidic actuation. Reagents for the CD4 T cell counting assay were dried on a reagent plug to eliminate the need for cold chain storage when used in the field. A micromixer based on the active fluidic actuation was designed to complete sample staining with fluorescent dyes that was dried on the reagent plugs. A novel image detection and analysis algorithm was developed to detect and track the flight of target particles and cells during each analysis. The handheld, point-of-care CD4 testing system was benchmarked against clinical cytometer. The experimental results demonstrated experimental results were closely matched with the flow cytometry. The same platform can be further expanded into a bead-array detection system where other types of biomolecules such as proteins can be detected using the same detection system.
Boyle, David S; Lehman, Dara A; Lillis, Lorraine; Peterson, Dylan; Singhal, Mitra; Armes, Niall; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie
2013-04-02
Early diagnosis and treatment of human immunodeficiency virus type 1 (HIV-1) infection in infants can greatly reduce mortality rates. However, current infant HIV-1 diagnostics cannot reliably be performed at the point of care, often delaying treatment and compromising its efficacy. Recombinase polymerase amplification (RPA) is a novel technology that is ideal for an HIV-1 diagnostic, as it amplifies target DNA in <20 min at a constant temperature, without the need for complex thermocycling equipment. Here we tested 63 HIV-1-specific primer and probe combinations and identified two RPA assays that target distinct regions of the HIV-1 genome (long terminal repeat [LTR] and pol) and can reliably detect 3 copies of proviral DNA by the use of fluorescence detection and lateral-flow strip detection. These pol and LTR primers amplified 98.6% and 93%, respectively, of the diverse HIV-1 variants tested. This is the first example of an isothermal assay that consistently detects all of the major HIV-1 global subtypes.
Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy
NASA Astrophysics Data System (ADS)
Kühnemund, Malte; Wei, Qingshan; Darai, Evangelia; Wang, Yingjie; Hernández-Neuta, Iván; Yang, Zhao; Tseng, Derek; Ahlford, Annika; Mathot, Lucy; Sjöblom, Tobias; Ozcan, Aydogan; Nilsson, Mats
2017-01-01
Molecular diagnostics is typically outsourced to well-equipped centralized laboratories, often far from the patient. We developed molecular assays and portable optical imaging designs that permit on-site diagnostics with a cost-effective mobile-phone-based multimodal microscope. We demonstrate that targeted next-generation DNA sequencing reactions and in situ point mutation detection assays in preserved tumour samples can be imaged and analysed using mobile phone microscopy, achieving a new milestone for tele-medicine technologies.
Tracking Subpixel Targets with Critically Sampled Optical Sensors
2012-09-01
5 [32]. The Viterbi algorithm is a dynamic programming method for calculating the MAP in O(tn2) time . The most common use of this algorithm is in the... method to detect subpixel point targets using the sensor’s PSF as an identifying characteristic. Using matched filtering theory, a measure is defined to...ocean surface beneath the cloud will have a different distribution. While the basic methods will adapt to changes in cloud cover over time , it is also
Hand-held optical imager (Gen-2): improved instrumentation and target detectability
Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard
2012-01-01
Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163
Kokki, Tommi; Sipilä, Hannu T; Teräs, Mika; Noponen, Tommi; Durand-Schaefer, Nicolas; Klén, Riku; Knuuti, Juhani
2010-01-01
In PET imaging respiratory and cardiac contraction motions interfere the imaging of heart. The aim was to develop and evaluate dual gating method for improving the detection of small targets of the heart. The method utilizes two independent triggers which are sent periodically into list mode data based on respiratory and ECG cycles. An algorithm for generating dual gated segments from list mode data was developed. The test measurements showed that rotational and axial movements of point source can be separated spatially to different segments with well-defined borders. The effect of dual gating on detection of small moving targets was tested with a moving heart phantom. Dual gated images showed 51% elimination (3.6 mm out of 7.0 mm) of contraction motion of hot spot (diameter 3 mm) and 70% elimination (14 mm out of 20 mm) of respiratory motion. Averaged activity value of hot spot increases by 89% when comparing to non-gated images. Patient study of suspected cardiac sarcoidosis shows sharper spatial myocardial uptake profile and improved detection of small myocardial structures such as papillary muscles. The dual gating method improves detection of small moving targets in a phantom and it is feasible in clinical situations.
A 6.7 GHz Methanol Maser Survey at High Galactic Latitudes
NASA Astrophysics Data System (ADS)
Yang, Kai; Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Wang, Jun-Zhi; Jiang, Dong-Rong; Li, Juan; Dong, Jian; Wu, Ya-Jun; Qiao, Hai-Hua; Ren, Zhiyuan
2017-09-01
We performed a systematic 6.7 GHz Class II methanol maser survey using the Shanghai Tianma Radio Telescope toward targets selected from the all-sky Wide-Field Infrared Survey Explorer (WISE) point catalog. In this paper, we report the results from the survey of those at high Galactic latitudes, I.e., | b| > 2°. Of 1473 selected WISE point sources at high latitude, 17 point positions that were actually associated with 12 sources were detected with maser emission, reflecting the rarity (1%-2%) of methanol masers in the region away from the Galactic plane. Out of the 12 sources, 3 are detected for the first time. The spectral energy distribution at infrared bands shows that these new detected masers occur in the massive star-forming regions. Compared to previous detections, the methanol maser changes significantly in both spectral profiles and flux densities. The infrared WISE images show that almost all of these masers are located in the positions of the bright WISE point sources. Compared to the methanol masers at the Galactic plane, these high-latitude methanol masers provide good tracers for investigating the physics and kinematics around massive young stellar objects, because they are believed to be less affected by the surrounding cluster environment.
Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT
2009-01-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539
Zhang, Xianxia; Xiao, Kunyi; Cheng, Liwei; Chen, Hui; Liu, Baohong; Zhang, Song; Kong, Jilie
2014-06-03
Rapid and efficient detection of cancer cells at their earliest stages is one of the central challenges in cancer diagnostics. We developed a simple, cost-effective, and highly sensitive colorimetric method for visually detecting rare cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and linker DNAs stably coexist in solution, and the linker DNA assembles DNA-AuNPs, producing a purple solution. In the presence of target cells, the specific binding of HAPs to the target cells triggers a conformational switch that results in linker DNA hybridization and cleavage by nicking endonuclease-strand scission cycles. Consequently, the cleaved fragments of linker DNA can no longer assemble into DNA-AuNPs, resulting in a red color. UV-vis spectrometry and photograph analyses demonstrated that this CTCESA-based method exhibited selective and sensitive colorimetric responses to the presence of target CCRF-CEM cells, which could be detected by the naked eye. The linear response for CCRF-CEM cells in a concentration range from 10(2) to 10(4) cells was obtained with a detection limit of 40 cells, which is approximately 20 times lower than the detection limit of normal AuNP-based methods without amplification. Given the high specificity and sensitivity of CTCESA, this colorimetric method provides a sensitive, label-free, and cost-effective approach for early cancer diagnosis and point-to-care applications.
Johnston, Kevin; Timney, Brian; Goodale, Melvyn A.
2013-01-01
Numerous studies have investigated the effects of alcohol consumption on controlled and automatic cognitive processes. Such studies have shown that alcohol impairs performance on tasks requiring conscious, intentional control, while leaving automatic performance relatively intact. Here, we sought to extend these findings to aspects of visuomotor control by investigating the effects of alcohol in a visuomotor pointing paradigm that allowed us to separate the influence of controlled and automatic processes. Six male participants were assigned to an experimental “correction” condition in which they were instructed to point at a visual target as quickly and accurately as possible. On a small percentage of trials, the target “jumped” to a new location. On these trials, the participants’ task was to amend their movement such that they pointed to the new target location. A second group of 6 participants were assigned to a “countermanding” condition, in which they were instructed to terminate their movements upon detection of target “jumps”. In both the correction and countermanding conditions, participants served as their own controls, taking part in alcohol and no-alcohol conditions on separate days. Alcohol had no effect on participants’ ability to correct movements “in flight”, but impaired the ability to withhold such automatic corrections. Our data support the notion that alcohol selectively impairs controlled processes in the visuomotor domain. PMID:23861934
Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress
Cui, Licao; Feng, Kewei; Liu, Fuyan; Du, Xianghong; Tong, Wei; Nie, Xiaojun; Ji, Wanquan; Weining, Song
2015-01-01
Salinity is a major limiting factor for agricultural production worldwide. A better understanding of the mechanisms of salinity stress response will aid efforts to improve plant salt tolerance. In this study, a combination of small RNA and mRNA degradome sequencing was used to identify salinity responsive-miRNAs and their targets in barley. A total of 152 miRNAs belonging to 126 families were identified, of which 44 were found to be salinity responsive with 30 up-regulated and 25 down-regulated respectively. The majority of the salinity-responsive miRNAs were up-regulated at the 8h time point, while down-regulated at the 3h and 27h time points. The targets of these miRNAs were further detected by degradome sequencing coupled with bioinformatics prediction. Finally, qRT-PCR was used to validate the identified miRNA and their targets. Our study systematically investigated the expression profile of miRNA and their targets in barley during salinity stress phase, which can contribute to understanding how miRNAs respond to salinity stress in barley and other cereal crops. PMID:26372557
Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING
Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven
2003-01-01
TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384
Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica.
Cho, Hyoungsig; Hong, Seunghwan; Kim, Sangmin; Park, Hyokeun; Park, Ilsuk; Sohn, Hong-Gyoo
2015-09-16
A terrestrial Light Detection and Ranging (LIDAR) system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1) a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2) co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP) algorithm; and (3) a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS) receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM) generated from the LIDAR scanning data was ±27.7 cm.
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
Shin, Toshitaka; Smyth, Thomas B; Ukimura, Osamu; Ahmadi, Nariman; de Castro Abreu, Andre Luis; Oishi, Masakatsu; Mimata, Hiromitsu; Gill, Inderbir S
2017-08-01
To assess the diagnostic yield of targeted prostate biopsy in African-American (A-A) men using image fusion of multi-parametric magnetic resonance imaging (mpMRI) with real-time transrectal ultrasonography (US). We retrospectively analysed 661 patients (117 A-A and 544 Caucasian) who had mpMRI before biopsy and then underwent MRI/US image-fusion targeted biopsy (FTB) between October 2012 and August 2015. The mpMRIs were reported on a 5-point Likert scale of suspicion. Clinically significant prostate cancer (CSPC) was defined as biopsy Gleason score ≥7. After controlling for age, prostate-specific antigen level and prostate volume, there were no significant differences between A-A and Caucasian men in the detection rate of overall cancer (35.0% vs 34.2%, P = 0.9) and CSPC (18.8% vs 21.7%, P = 0.3) with MRI/US FTB. There were no significant differences between the races in the location of dominant lesions on mpMRI, and in the proportion of 5-point Likert scoring. In A-A men, MRI/US FTB from the grade 4-5 lesions outperformed random biopsy in the detection rate of overall cancer (70.6% vs 37.2%, P = 0.003) and CSPC (52.9% vs 12.4%, P < 0.001). MRI/US FTB outperformed random biopsy in cancer core length (5.0 vs 2.4 mm, P = 0.001), in cancer rate per core (24.9% vs 6.8%, P < 0.001), and in efficiency for detecting one patient with CSPC (mean number of cores needed 13.3 vs 81.9, P < 0.001), respectively. Our key finding confirms a lack of racial difference in the detection rate of overall prostate cancers and CSPC with MRI/US FTB between A-A and Caucasian men. MRI/US FTB detected more CSPC using fewer cores compared with random biopsy. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization.
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.
de Azevedo Neto, Raymundo Machado; Teixeira, Luis Augusto
2011-05-01
This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.
Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L
2009-03-15
Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.
Novak, Avrey; Nyflot, Matthew J; Ermoian, Ralph P; Jordan, Loucille E; Sponseller, Patricia A; Kane, Gabrielle M; Ford, Eric C; Zeng, Jing
2016-05-01
Radiation treatment planning involves a complex workflow that has multiple potential points of vulnerability. This study utilizes an incident reporting system to identify the origination and detection points of near-miss errors, in order to guide their departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or applied a near-miss risk index (NMRI) to gauge severity. From 3/2012 to 3/2014, 1897 incidents were analyzed from a departmental incident learning system. All incidents were prospectively reviewed weekly by a multidisciplinary team and assigned a NMRI score ranging from 0 to 4 reflecting potential harm to the patient (no potential harm to potential critical harm). Incidents were classified by point of incident origination and detection based on a 103-step workflow. The individual steps were divided among nine broad workflow categories (patient assessment, imaging for radiation therapy (RT) planning, treatment planning, pretreatment plan review, treatment delivery, on-treatment quality management, post-treatment completion, equipment/software quality management, and other). The average NMRI scores of incidents originating or detected within each broad workflow area were calculated. Additionally, out of 103 individual process steps, 35 were classified as safety barriers, the process steps whose primary function is to catch errors. The safety barriers which most frequently detected incidents were identified and analyzed. Finally, the distance between event origination and detection was explored by grouping events by the number of broad workflow area events passed through before detection, and average NMRI scores were compared. Near-miss incidents most commonly originated within treatment planning (33%). However, the incidents with the highest average NMRI scores originated during imaging for RT planning (NMRI = 2.0, average NMRI of all events = 1.5), specifically during the documentation of patient positioning and localization of the patient. Incidents were most frequently detected during treatment delivery (30%), and incidents identified at this point also had higher severity scores than other workflow areas (NMRI = 1.6). Incidents identified during on-treatment quality management were also more severe (NMRI = 1.7), and the specific process steps of reviewing portal and CBCT images tended to catch highest-severity incidents. On average, safety barriers caught 46% of all incidents, most frequently at physics chart review, therapist's chart check, and the review of portal images; however, most of the incidents that pass through a particular safety barrier are not designed to be capable of being captured at that barrier. Incident learning systems can be used to assess the most common points of error origination and detection in radiation oncology. This can help tailor safety improvement efforts and target the highest impact portions of the workflow. The most severe near-miss events tend to originate during simulation, with the most severe near-miss events detected at the time of patient treatment. Safety barriers can be improved to allow earlier detection of near-miss events.
Where Boron? Mars Rover Detects It
2016-12-13
This map shows the route driven by NASA's Curiosity Mars rover (blue line) and locations where the rover's Chemistry and Camera (ChemCam) instrument detected the element boron (dots, colored by abundance of boron according to the key at right). The main map shows the traverse from landing day (Sol 0) in August 2012 to the rover's location in September 2016, with boron detections through September 2015. The inset at upper left shows a magnified version of the most recent portion of that traverse, with boron detections during that portion. Overlapping dots represent cases when boron was detected in multiple ChemCam observation points in the same target and non-overlapping dots represent cases where two different targets in the same location have boron. Most of the mission's detections of boron have been made in the most recent seven months (about 200 sols) of the rover's uphill traverse. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. The scale bar at lower right represents one kilometer (0.62 mile). http://photojournal.jpl.nasa.gov/catalog/PIA21150
Micro-vibration detection with heterodyne holography based on time-averaged method
NASA Astrophysics Data System (ADS)
Qin, XiaoDong; Pan, Feng; Chen, ZongHui; Hou, XueQin; Xiao, Wen
2017-02-01
We propose a micro-vibration detection method by introducing heterodyne interferometry to time-averaged holography. This method compensates for the deficiency of time-average holography in quantitative measurements and widens its range of application effectively. Acousto-optic modulators are used to modulate the frequencies of the reference beam and the object beam. Accurate detection of the maximum amplitude of each point in the vibration plane is performed by altering the frequency difference of both beams. The range of amplitude detection of plane vibration is extended. In the stable vibration mode, the distribution of the maximum amplitude of each point is measured and the fitted curves are plotted. Hence the plane vibration mode of the object is demonstrated intuitively and detected quantitatively. We analyzed the method in theory and built an experimental system with a sine signal as the excitation source and a typical piezoelectric ceramic plate as the target. The experimental results indicate that, within a certain error range, the detected vibration mode agrees with the intrinsic vibration characteristics of the object, thus proving the validity of this method.
Lai, Wei-An; Lin, Chih-Heng; Yang, Yuh-Shyong; Lu, Michael S-C
2012-05-15
This work presents miniaturized CMOS (complementary metal oxide semiconductor) sensors for non-faradic impedimetric detection of AIV (avian influenza virus) oligonucleotides. The signal-to-noise ratio is significantly improved by monolithic sensor integration to reduce the effect of parasitic capacitances. The use of sub-μm interdigitated microelectrodes is also beneficial for promoting the signal coupling efficiency. Capacitance changes associated with surface modification, functionalization, and DNA hybridization were extracted from the measured frequency responses based on an equivalent-circuit model. Hybridization of the AIV H5 capture and target DNA probes produced a capacitance reduction of -13.2 ± 2.1% for target DNA concentrations from 1 fM to 10 fM, while a capacitance increase was observed when H5 target DNA was replaced with non-complementary H7 target DNA. With the demonstrated superior sensing capabilities, this miniaturized CMOS sensing platform shows great potential for label-free point-of-care biosensing applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Smartphone-based portable wireless optical system for the detection of target analytes.
Gautam, Shreedhar; Batule, Bhagwan S; Kim, Hyo Yong; Park, Ki Soo; Park, Hyun Gyu
2017-02-01
Rapid and accurate on-site wireless measurement of hazardous molecules or biomarkers is one of the biggest challenges in nanobiotechnology. A novel smartphone-based Portable and Wireless Optical System (PAWS) for rapid, quantitative, and on-site analysis of target analytes is described. As a proof-of-concept, we employed gold nanoparticles (GNP) and an enzyme, horse radish peroxidase (HRP), to generate colorimetric signals in response to two model target molecules, melamine and hydrogen peroxide, respectively. The colorimetric signal produced by the presence of the target molecules is converted to an electrical signal by the inbuilt electronic circuit of the device. The converted electrical signal is then measured wirelessly via multimeter in the smartphone which processes the data and displays the results, including the concentration of analytes and its significance. This handheld device has great potential as a programmable and miniaturized platform to achieve rapid and on-site detection of various analytes in a point-of-care testing (POCT) manner. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schönhuber, Wilhelm; Zarda, Boris; Eix, Stella; Rippka, Rosmarie; Herdman, Michael; Ludwig, Wolfgang; Amann, Rudolf
1999-01-01
Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria. PMID:10049892
The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes
NASA Astrophysics Data System (ADS)
Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.
2007-09-01
The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.
Wu, Li; Ren, Jinsong; Qu, Xiaogang
2014-01-01
Nucleic acids have become a powerful tool in nanotechnology because of their controllable diverse conformational transitions and adaptable higher-order nanostructure. Using single-stranded DNA probes as the pore-caps for various target recognition, here we present an ultrasensitive universal electrochemical detection system based on graphene and mesoporous silica, and achieve sensitivity with all of the major classes of analytes and simultaneously realize DNA logic gate operations. The concept is based on the locking of the pores and preventing the signal-reporter molecules from escape by target-induced the conformational change of the tailored DNA caps. The coupling of ‘waking up’ gatekeeper with highly specific biochemical recognition is an innovative strategy for the detection of various targets, able to compete with classical methods which need expensive instrumentation and sophisticated experimental operations. The present study has introduced a new electrochemical signal amplification concept and also adds a new dimension to the function of graphene-mesoporous materials hybrids as multifunctional nanoscale logic devices. More importantly, the development of this approach would spur further advances in important areas, such as point-of-care diagnostics or detection of specific biological contaminations, and hold promise for use in field analysis. PMID:25249622
Effect of H-wave polarization on laser radar detection of partially convex targets in random media.
El-Ocla, Hosam
2010-07-01
A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.
Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy
Kühnemund, Malte; Wei, Qingshan; Darai, Evangelia; Wang, Yingjie; Hernández-Neuta, Iván; Yang, Zhao; Tseng, Derek; Ahlford, Annika; Mathot, Lucy; Sjöblom, Tobias; Ozcan, Aydogan; Nilsson, Mats
2017-01-01
Molecular diagnostics is typically outsourced to well-equipped centralized laboratories, often far from the patient. We developed molecular assays and portable optical imaging designs that permit on-site diagnostics with a cost-effective mobile-phone-based multimodal microscope. We demonstrate that targeted next-generation DNA sequencing reactions and in situ point mutation detection assays in preserved tumour samples can be imaged and analysed using mobile phone microscopy, achieving a new milestone for tele-medicine technologies. PMID:28094784
2012-07-01
cross track direction is calculated. This is accomplished by taking a 101 point horizontal slice of pixels centered on the alarm. Then, a 101 point...Hamming window, is the 101 -length row vector of FLGPR image pixels surrounding alarm A. We then store the first 50 frequency values (excluding the...Figure 3. Illustration of spectral features in the cross track direction and the difference between actual targets and FAs. Eleven rows of 101
Lyford, F.P.; Kliever, J.D.; Scott, Clifford
1999-01-01
Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.
Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.
Tang, Longhua; Li, Jinghong
2017-07-28
Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.
Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi
2008-04-15
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.
On the significance of future trends in flood frequencies
NASA Astrophysics Data System (ADS)
Bernhardt, M.; Schulz, K.; Wieder, O.
2015-12-01
Floods are a significant threat for alpine headwater catchments and for the forelands. The formation of significant flood events is thereby often coupled on processes occurring in the alpine zone. Rain on snow events are just one example. The prediction of flood risks or trends of flood risks is of major interest to people under direct threat, policy and decision makers as well as for insurance companies. A lot of research was and is currently done in view of detecting future trends in flood extremes or return periods. From a pure physically based point of view, there is strong evidence that those trends exist. But, the central point question is if trends in flood events or other extreme events could be detected from a statistical point of view and on the basis of the available data. This study will investigate this question on the basis of different target parameters and by using long term measurements.
Self-Similar Spin Images for Point Cloud Matching
NASA Astrophysics Data System (ADS)
Pulido, Daniel
The rapid growth of Light Detection And Ranging (Lidar) technologies that collect, process, and disseminate 3D point clouds have allowed for increasingly accurate spatial modeling and analysis of the real world. Lidar sensors can generate massive 3D point clouds of a collection area that provide highly detailed spatial and radiometric information. However, a Lidar collection can be expensive and time consuming. Simultaneously, the growth of crowdsourced Web 2.0 data (e.g., Flickr, OpenStreetMap) have provided researchers with a wealth of freely available data sources that cover a variety of geographic areas. Crowdsourced data can be of varying quality and density. In addition, since it is typically not collected as part of a dedicated experiment but rather volunteered, when and where the data is collected is arbitrary. The integration of these two sources of geoinformation can provide researchers the ability to generate products and derive intelligence that mitigate their respective disadvantages and combine their advantages. Therefore, this research will address the problem of fusing two point clouds from potentially different sources. Specifically, we will consider two problems: scale matching and feature matching. Scale matching consists of computing feature metrics of each point cloud and analyzing their distributions to determine scale differences. Feature matching consists of defining local descriptors that are invariant to common dataset distortions (e.g., rotation and translation). Additionally, after matching the point clouds they can be registered and processed further (e.g., change detection). The objective of this research is to develop novel methods to fuse and enhance two point clouds from potentially disparate sources (e.g., Lidar and crowdsourced Web 2.0 datasets). The scope of this research is to investigate both scale and feature matching between two point clouds. The specific focus of this research will be in developing a novel local descriptor based on the concept of self-similarity to aid in the scale and feature matching steps. An open problem in fusion is how best to extract features from two point clouds and then perform feature-based matching. The proposed approach for this matching step is the use of local self-similarity as an invariant measure to match features. In particular, the proposed approach is to combine the concept of local self-similarity with a well-known feature descriptor, Spin Images, and thereby define "Self-Similar Spin Images". This approach is then extended to the case of matching two points clouds in very different coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to address this problem by introducing a "Self-Similar Keyscale" that matches the spatial scales of two point clouds. Another open problem is how best to detect changes in content between two point clouds. A method is proposed to find changes between two point clouds by analyzing the order statistics of the nearest neighbors between the two clouds, and thereby define the "Nearest Neighbor Order Statistic" method. Note that the well-known Hausdorff distance is a special case as being just the maximum order statistic. Therefore, by studying the entire histogram of these nearest neighbors it is expected to yield a more robust method to detect points that are present in one cloud but not the other. This approach is applied at multiple resolutions. Therefore, changes detected at the coarsest level will yield large missing targets and at finer levels will yield smaller targets.
NASA Astrophysics Data System (ADS)
Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe
2017-07-01
This paper introduces a statistical framework for detecting cylindrical shapes in dense point clouds. We target the application of mapping fallen trees in datasets obtained through terrestrial laser scanning. This is a challenging task due to the presence of ground vegetation, standing trees, DTM artifacts, as well as the fragmentation of dead trees into non-collinear segments. Our method shares the concept of voting in parameter space with the generalized Hough transform, however two of its significant drawbacks are improved upon. First, the need to generate samples on the shape's surface is eliminated. Instead, pairs of nearby input points lying on the surface cast a vote for the cylinder's parameters based on the intrinsic geometric properties of cylindrical shapes. Second, no discretization of the parameter space is required: the voting is carried out in continuous space by means of constructing a kernel density estimator and obtaining its local maxima, using automatic, data-driven kernel bandwidth selection. Furthermore, we show how the detected cylindrical primitives can be efficiently merged to obtain object-level (entire tree) semantic information using graph-cut segmentation and a tailored dynamic algorithm for eliminating cylinder redundancy. Experiments were performed on 3 plots from the Bavarian Forest National Park, with ground truth obtained through visual inspection of the point clouds. It was found that relative to sample consensus (SAC) cylinder fitting, the proposed voting framework can improve the detection completeness by up to 10 percentage points while maintaining the correctness rate.
Neutral point testing of color vision in the domestic cat.
Clark, Daria L; Clark, Robert A
2016-12-01
Despite extensive study, the basic nature of feline spectral sensitivity is still unresolved. Most electrophysiological studies have demonstrated two photopic receptors within the cat's retina, one most sensitive to longer wavelengths near 560 nm and the other most sensitive to shorter wavelengths near 460 nm, providing the neuroretinal basis for dichromatic vision. A few studies, however, have detected a third photopic receptor most sensitive to medium wavelengths between 500 and 520 nm, overlapping in spectrally sensitivity with the feline scotopic receptor, that potentially could allow trichromatic vision. Indeed, one behavioral study has demonstrated trichromatic vision in cats, but a flaw within its experimental design raises the possibility that achromatic intensity cues might have allowed the accurate identification of medium wavelength targets. This study tested for a spectral neutral point in the domestic cat using a two-choice discrimination task. The positive targets were created using monochromatic light from various single wavelength light emitting diodes (LEDs) combined with a white light of variable intensity, while the negative targets were created using white light of variable intensity. Trials were performed with varying intensities of positive and negative targets, from brighter positive targets to brighter negative targets, to eliminate achromatic intensity cues. Two cats with prior experience with two-choice discrimination tasks, one male and one female, successfully discriminated monochromatic light from 456 nm to 497 nm and from 510 nm to 524 nm, but both failed to discriminate monochromatic light at 505 nm over multiple trials. These results provide strong evidence that cats are dichromatic with a neutral point near 505 nm. This neutral point is nearly identical to the neutral point of the human deuteuranope, making feline vision a more accurate a model for red-green colorblind individuals than normal trichromats. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Che, Ruping; Luo, Pinchen; Meng, Changgong
2017-01-15
A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem. The released initial and secondary targets take part in another cycle of digestion, thus leading to the release of a huge amount of free ATMND for signal transducing. Based on the fluorescence recovery, the as-proposed label-free fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 10pM to 1μM, a low limit of detection of 6pM, good selectivity, and a facile one-step operation at room temperature. Practical sample analysis in serum samples indicates the method has good precision and accuracy, which may thus have application potentials for point-of-care screening of DNA in complex clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Yan; Yang, Shenghui; Xiao, Jianhua; Yu, Liang; Chen, Li; Zou, Ju; Wang, Kegeng; Tan, Sijie; Yu, Zhengyang; Zeng, Qingren
2015-01-01
The present study was to determine the targeting effect of M13 phage peptide ZL4 (MppZL4) on Schistosoma japonicum (S.j). Mice infected with S.j were injected with MppZL4. Real-time PCR was used to detect the distribution and metabolism of MppZL4 in the livers and lungs of mice. In vivo refusion test was performed to detect the targeting of MppZL4. Western blotting was employed to determine the expression of MppZL4. Live imaging was used to detect the distribution of oligopeptide MppZL4. Immunohistochemistry was employed to determine MppZL4 location on adult S.j body surface. Gomori method was employed to detect the influence of oligopeptide MppZL4 on alkaline phosphatase activity. The distribution and metabolism of MppZL4 and M13KE are not significantly different from each other at each time point. The abundance of MppZL4 is changed as S.j migrates in mice. The targeted binding effect of MppZL4 varies at different stages. ZL4 oligopeptide targets S.j in mice. The specific binding sites of MppZL4 on S.j body are mainly located in syncytial cells. The binding sites of MppZL4 on S.j body surface might be ALP or ALP-related proteins. MppZL4 had targeted binding effect on S.j with its binding site being associated with proteins related to S.j alkaline phosphatase. S.j tegument had a specifically binding site with exogenous peptides, offering new means to explore the interactions between hosts and parasites. Additionally, MppZL4 can possibly be used as targeting molecules in worm-resistant drugs or as tracing molecules in imaging diagnosis technologies.
Optical phase measuring sensors for automated rendezvous and capture
NASA Technical Reports Server (NTRS)
Metheny, Wayne; Malin, Mark
1991-01-01
A technique is described for sensing relative spatial orientations of approach and target vehicles, using optical phase mensuration (in the interferometric sense, as opposed to LIDAR), in place of the more conventional intensity, image, or transit time measurements. This approach permits the parameters to be measured with great accuracy with relatively simple, small sensors having no moving components. A suite of sensors operating on this principle can produce all desired data using either active detection on the target or passive retroreflection to the detectors on the approach vehicle. These optical phase measurements can be applied to determine bearing angle (location of the target vehicle in the approach vehicle coordinates), range, and attitude (orientation of the target vehicle with respect to the line-of-sight). The first two quantities require the approach vehicle to project a modulated interference pattern into space. The bearing angle is determined for a selected point on the target by measuring the phase of the interference pattern at that point using either a detector on the target or a retroreflector on the target and a detector at the transmitter. The range is found by measuring differential bearing angles to predetermined relative instrumentation sites. Two interferometers, a coarse and a fine ranger are required to resolve the 2pi ambiguity.
Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin
2017-04-19
Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.
Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.
Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt
2016-08-16
Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.
Monitoring the Level of Students' GPAs over Time
ERIC Educational Resources Information Center
Bakir, Saad T.; McNeal, Bob
2010-01-01
A nonparametric (or distribution-free) statistical quality control chart is used to monitor the cumulative grade point averages (GPAs) of students over time. The chart is designed to detect any statistically significant positive or negative shifts in student GPAs from a desired target level. This nonparametric control chart is based on the…
Aluminum oxide in stellar spectra - An infrared electronic transition
NASA Technical Reports Server (NTRS)
Luck, R. E.; Lambert, D. L.
1974-01-01
Review of recent research on the possibility of detecting the infrared electronic transition of aluminum oxide in the spectra of cool stars. It is shown that this transition may be of considerable significance for the study of Mira-type variables. Specific targets of further laboratory investigation of the transition are pointed out.
Scene-based nonuniformity correction for airborne point target detection systems.
Zhou, Dabiao; Wang, Dejiang; Huo, Lijun; Liu, Rang; Jia, Ping
2017-06-26
Images acquired by airborne infrared search and track (IRST) systems are often characterized by nonuniform noise. In this paper, a scene-based nonuniformity correction method for infrared focal-plane arrays (FPAs) is proposed based on the constant statistics of the received radiation ratios of adjacent pixels. The gain of each pixel is computed recursively based on the ratios between adjacent pixels, which are estimated through a median operation. Then, an elaborate mathematical model describing the error propagation, derived from random noise and the recursive calculation procedure, is established. The proposed method maintains the characteristics of traditional methods in calibrating the whole electro-optics chain, in compensating for temporal drifts, and in not preserving the radiometric accuracy of the system. Moreover, the proposed method is robust since the frame number is the only variant, and is suitable for real-time applications owing to its low computational complexity and simplicity of implementation. The experimental results, on different scenes from a proof-of-concept point target detection system with a long-wave Sofradir FPA, demonstrate the compelling performance of the proposed method.
Risk Factors Detection for Strategic Importance Objectives in Littoral Areas
NASA Astrophysics Data System (ADS)
Slămnoiu, G.; Radu, O.; Roşca, V.; Pascu, C.; Surdu, G.; Curcă, E.; Damian, R. G.; Rădulescu, A.
2017-06-01
With the invention and development of underwater explosive devices the need to neutralize them has also appeared, both for enemy and for own devices once conflicts are finished. The fight against active underwater explosive devices is a very complicated action that requires a very careful approach. Also, in the current context, strategic importance objectives located in the littoral areas can also become targets for divers or fast boats (suicidal actions).The system for detection, localization, tracking and identification of risk factors for strategic importance objectives in littoral areas has as one of its components an AUV and a hydro-acoustic sub-system for determining the ‘fingerprints’ of potential targets. The overall system will provide support for main missions such as underwater environment surveillance (detection, monitoring) in harbor areas and around other coast objectives, ship anchorage areas, mandatory pass points and also provide warnings about the presence of underwater and surface dangers in the interest areas.
User acceptance of intelligent avionics: A study of automatic-aided target recognition
NASA Technical Reports Server (NTRS)
Becker, Curtis A.; Hayes, Brian C.; Gorman, Patrick C.
1991-01-01
User acceptance of new support systems typically was evaluated after the systems were specified, designed, and built. The current study attempts to assess user acceptance of an Automatic-Aided Target Recognition (ATR) system using an emulation of such a proposed system. The detection accuracy and false alarm level of the ATR system were varied systematically, and subjects rated the tactical value of systems exhibiting different performance levels. Both detection accuracy and false alarm level affected the subjects' ratings. The data from two experiments suggest a cut-off point in ATR performance below which the subjects saw little tactical value in the system. An ATR system seems to have obvious tactical value only if it functions at a correct detection rate of 0.7 or better with a false alarm level of 0.167 false alarms per square degree or fewer.
Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing
2018-05-15
Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.
Zhang, Jing; Wang, Liang-Liang; Hou, Mei-Feng; Xia, Yao-Kun; He, Wen-Hui; Yan, An; Weng, Yun-Ping; Zeng, Lu-Peng; Chen, Jing-Hua
2018-04-15
Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
DBSCAN-based ROI extracted from SAR images and the discrimination of multi-feature ROI
NASA Astrophysics Data System (ADS)
He, Xin Yi; Zhao, Bo; Tan, Shu Run; Zhou, Xiao Yang; Jiang, Zhong Jin; Cui, Tie Jun
2009-10-01
The purpose of the paper is to extract the region of interest (ROI) from the coarse detected synthetic aperture radar (SAR) images and discriminate if the ROI contains a target or not, so as to eliminate the false alarm, and prepare for the target recognition. The automatic target clustering is one of the most difficult tasks in the SAR-image automatic target recognition system. The density-based spatial clustering of applications with noise (DBSCAN) relies on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN was first used in the SAR image processing, which has many excellent features: only two insensitivity parameters (radius of neighborhood and minimum number of points) are needed; clusters of arbitrary shapes which fit in with the coarse detected SAR images can be discovered; and the calculation time and memory can be reduced. In the multi-feature ROI discrimination scheme, we extract several target features which contain the geometry features such as the area discriminator and Radon-transform based target profile discriminator, the distribution characteristics such as the EFF discriminator, and the EM scattering property such as the PPR discriminator. The synthesized judgment effectively eliminates the false alarms.
Remote sensing of atmospheric winds using a coherent, CW lidar and speckle-turbulence interaction
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Amzajerdian, F.; Gudimetla, V. S. R.; Hunt, J. M.
1986-01-01
Speckle turbulence interaction has the potential for allowing single ended remote sensing of the path averaged vector crosswind in a plane perpendicular to the line of sight to a target. If a laser transmitter is used to illuminate a target, the resultant speckle field generated by the target is randomly perturbed by the atmospheric turbulence as it propagates back to the location of the transmitter-receiver. When a cross wind is present, this scintillation pattern will move with time across the receiver. A continuous wave (cw) laser transmitter of modest power level in conjunction with optical heterodyne detection was used to exploit the speckel turbulence interaction and measure the crosswind. The use of a cw transmitter at 10.6 microns and optical heterodyne detection has many advantages over direct detection and a double pulsed source in the visible or near infrared. These advantages include the availability of compact, reliable and inexpensive transmitters, better penetration of smoke, dust and fog; stable output power; low beam pointing jitter; and considerably reduced complexity in the receiver electronics.
Melendez, Johan H.; Santaus, Tonya M.; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A.; Geddes, Chris D.
2016-01-01
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by the detection of the genomic target often involving PCR-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (GC) DNA. Our approach is based on the use of highly-focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the present study, we show that highly focused microwaves at 2.45 GHz, using 12.3 mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification in less than 10 minutes total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward towards the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503
[Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].
Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming
2009-08-01
The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.
Kalman Filters for UXO Detection: Real-Time Feedback and Small Target Detection
2012-05-01
last two decades. Accomplishments reported from both hardware and software point of views have moved the re- search focus from simple laboratory tests...quality data which in turn require a good positioning of the sensors atop the UXOs. The data collection protocol is currently based on a two-stage process...Note that this results is merely an illustration of the convergence of the Kalman filter. In practise , the linear part can be directly inverted for if
Robust human detection, tracking, and recognition in crowded urban areas
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
In this paper, we present algorithms we recently developed to support an automated security surveillance system for very crowded urban areas. In our approach for human detection, the color features are obtained by taking the difference of R, G, B spectrum and converting R, G, B to HSV (Hue, Saturation, Value) space. Morphological patch filtering and regional minimum and maximum segmentation on the extracted features are applied for target detection. The human tracking process approach includes: 1) Color and intensity feature matching track candidate selection; 2) Separate three parallel trackers for color, bright (above mean intensity), and dim (below mean intensity) detections, respectively; 3) Adaptive track gate size selection for reducing false tracking probability; and 4) Forward position prediction based on previous moving speed and direction for continuing tracking even when detections are missed from frame to frame. The Human target recognition is improved with a Super-Resolution Image Enhancement (SRIE) process. This process can improve target resolution by 3-5 times and can simultaneously process many targets that are tracked. Our approach can project tracks from one camera to another camera with a different perspective viewing angle to obtain additional biometric features from different perspective angles, and to continue tracking the same person from the 2nd camera even though the person moved out of the Field of View (FOV) of the 1st camera with `Tracking Relay'. Finally, the multiple cameras at different view poses have been geo-rectified to nadir view plane and geo-registered with Google- Earth (or other GIS) to obtain accurate positions (latitude, longitude, and altitude) of the tracked human for pin-point targeting and for a large area total human motion activity top-view. Preliminary tests of our algorithms indicate than high probability of detection can be achieved for both moving and stationary humans. Our algorithms can simultaneously track more than 100 human targets with averaged tracking period (time length) longer than the performance of the current state-of-the-art.
NASA Astrophysics Data System (ADS)
Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.
2017-12-01
Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH4 flux estimation have improve spatial resolution (˜1km2 ) to further enhance column density changes. We also propose adding imaging capability to monitor plume orientation. We will present laboratory model results and a sampling pattern optimization study that combines local emission source and global survey observations.
Olivetti Belardinelli, Marta; Santangelo, Valerio
2005-07-08
This paper examines the characteristics of spatial attention orienting in situations of visual impairment. Two groups of subjects, respectively schizophrenic and blind, with different degrees of visual spatial information impairment, were tested. In Experiment 1, the schizophrenic subjects were instructed to detect an auditory target, which was preceded by a visual cue. The cue could appear in the same location as the target, separated from it respectively by the vertical visual meridian (VM), the vertical head-centered meridian (HCM) or another meridian. Similarly to normal subjects tested with the same paradigm (Ferlazzo, Couyoumdjian, Padovani, and Olivetti Belardinelli, 2002), schizophrenic subjects showed slower reactions times (RTs) when cued, and when the target locations were on the opposite sides of the HCM. This HCM effect strengthens the assumption that different auditory and visual spatial maps underlie the representation of attention orienting mechanisms. In Experiment 2, blind subjects were asked to detect an auditory target, which had been preceded by an auditory cue, while staring at an imaginary point. The point was located either to the left or to the right, in order to control for ocular movements and maintain the dissociation between the HCM and the VM. Differences between crossing and no-crossing conditions of HCM were not found. Therefore it is possible to consider the HCM effect as a consequence of the interaction between visual and auditory modalities. Related theoretical issues are also discussed.
Fischer, Richard; Scharr, Dirk; Büchert, Martin; Stern, Angelika; Gille, Hendrik; Audoly, Laurent P.; Scheulen, Max E.
2013-01-01
Background To report the nonrandomized first-in-human phase I trial of PRS-050, a novel, rationally engineered Anticalin based on human tear lipocalin that targets and antagonizes vascular endothelial growth factor A (VEGF-A). Methods Patients with advanced solid tumors received PRS-050 at 0.1 mg/kg to 10 mg/kg by IV in successive dosing cohorts according to the 3+3 escalation scheme. The primary end point was safety. Results Twenty-six patients were enrolled; 25 were evaluable. Two patients experienced dose-limiting toxicity, comprising grade (G) 3 hypertension and G3 pyrexia, respectively. The maximum tolerated dose was not reached. Most commonly reported treatment-emergent adverse events (AEs) included chills (52%; G3, 4%), fatigue (52%; G3, 4%), hypertension (44%; G3, 16%), and nausea (40%, all G1/2). No anti–PRS-050 antibodies following multiple administration of the drug were detected. PRS-050 showed dose-proportional pharmacokinetics (PK), with a terminal half-life of approximately 6 days. Free VEGF-A was detectable at baseline in 9/25 patients, becoming rapidly undetectable after PRS-050 infusion for up to 3 weeks. VEGF-A/PRS-050 complex was detectable for up to 3 weeks at all dose levels, including in patients without detectable baseline-free VEGF-A. We also detected a significant reduction in circulating matrix metalloproteinase 2, suggesting this end point could be a pharmacodynamic (PD) marker of the drug’s activity. Conclusions PRS-050, a novel Anticalin with high affinity for VEGF-A, was well-tolerated when administered at the highest dose tested, 10 mg/kg. Based on target engagement and PK/PD data, the recommended phase II dose is 5 mg/kg every 2 weeks administered as a 120-minute infusion. Trial Registration ClinicalTrials.gov NCT01141257 http://clinicaltrials.gov/ct2/show/NCT01141257 PMID:24349470
The wide window of face detection.
Hershler, Orit; Golan, Tal; Bentin, Shlomo; Hochstein, Shaul
2010-08-20
Faces are detected more rapidly than other objects in visual scenes and search arrays, but the cause for this face advantage has been contested. In the present study, we found that under conditions of spatial uncertainty, faces were easier to detect than control targets (dog faces, clocks and cars) even in the absence of surrounding stimuli, making an explanation based only on low-level differences unlikely. This advantage improved with eccentricity in the visual field, enabling face detection in wider visual windows, and pointing to selective sparing of face detection at greater eccentricities. This face advantage might be due to perceptual factors favoring face detection. In addition, the relative face advantage is greater under flanked than non-flanked conditions, suggesting an additional, possibly attention-related benefit enabling face detection in groups of distracters.
Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza
2017-01-01
A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.
Development of a QCL based IR polarimetric system for the stand-off detection and location of IEDs
NASA Astrophysics Data System (ADS)
Stokes, Robert J.; Normand, Erwan L.; Carrie, Iain D.; Foulger, Brian; Lewis, Colin
2009-09-01
Following the development of point sensing improvised explosive device (IED) technology[1] Cascade Technologies have initial work in the development of equivalent stand-off capability. Stand-off detection of IEDs is a very important technical requirement that would enable the safe identification and quantification of hazardous materials prior to a terrorist attack. This could provide advanced warning of potential danger allowing evacuation and mitigation measures to be implemented. With support from the UK government, Cascade Technologies is currently investigating technology developments aimed at addressing the above stand-off IED detection capability gap. To demonstrate and validate the concept, a novel stand-off platform will target the detection and identification of common high vapor pressure IED precursor compounds, such as hydrogen peroxide (H2O2), emanating from a point source. By actively probing a scene with polarized light, the novel platform will offer both enhanced selectivity and sensitivity as compared to traditional hyperspectral sensors, etc. The presentation will highlight the concept of this novel detection technique as well as illustrating preliminary results.
Rowe, Steven P; Macura, Katarzyna J; Mena, Esther; Blackford, Amanda L; Nadal, Rosa; Antonarakis, Emmanuel S; Eisenberger, Mario; Carducci, Michael; Fan, Hong; Dannals, Robert F; Chen, Ying; Mease, Ronnie C; Szabo, Zsolt; Pomper, Martin G; Cho, Steve Y
2016-06-01
Current standard of care conventional imaging modalities (CIM) such as X-ray computed tomography (CT) and bone scan can be limited for detection of metastatic prostate cancer and therefore improved imaging methods are an unmet clinical need. We evaluated the utility of a novel second-generation low molecular weight radiofluorinated prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) radiotracer, [(18)F]DCFPyL, in patients with metastatic prostate cancer. Nine patients with suspected prostate cancer recurrence, eight with CIM evidence of metastatic prostate cancer and one with biochemical recurrence, were imaged with [(18)F]DCFPyL PET/CT. Eight of the patients had contemporaneous CIM for comparison. A lesion-by-lesion comparison of the detection of suspected sites of metastatic prostate cancer was carried out between PET and CIM. Statistical analysis for estimated proportions of inter-modality agreement for detection of metastatic disease was calculated accounting for intra-patient correlation using general estimating equation (GEE) intercept-only regression models. One hundred thirty-nine sites of PET positive [(18)F]DCFPyL uptake (138 definite, 1 equivocal) for metastatic disease were detected in the eight patients with available comparison CIM. By contrast, only 45 lesions were identified on CIM (30 definite, 15 equivocal). When lesions were negative or equivocal on CIM, it was estimated that a large portion of these lesions or 0.72 (95 % confidence interval (CI) 0.55-0.84) would be positive on [(18)F]DCFPyL PET. Conversely, of those lesions negative or equivocal on [(18)F]DCFPyL PET, it was estimated that only a very small proportion or 0.03 (95 % CI 0.01-0.07) would be positive on CIM. Delayed 2-h-post-injection time point PET yielded higher tumor radiotracer uptake and higher tumor-to-background ratios than an earlier 1-h-post-injection time point. A novel PSMA-targeted PET radiotracer, [(18)F]DCFPyL, was able to a large number of suspected sites of prostate cancer, many of which were occult or equivocal by CIM. This study provides strong preliminary evidence for the use of this second-generation PSMA-targeted PET radiotracer for detection of metastatic prostate cancer and lends further support for the importance of PSMA-targeted PET imaging in prostate cancer.
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine. PMID:28542229
Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V
2016-01-15
Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ly, Canh
2004-08-01
Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.
Ito, Masaoki; Miyata, Yoshihiro; Hirano, Shoko; Kimura, Shingo; Irisuna, Fumiko; Ikeda, Kyoko; Kushitani, Kei; Tsutani, Yasuhiro; Ueda, Daisuke; Tsubokawa, Norifumi; Takeshima, Yukio; Okada, Morihito
2017-12-12
Small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung are classified as variants of endocrine carcinoma and subdivided into pure or combined type. Clinical benefit of target therapy has not been established in these tumors. This study aimed to compare genetic and clinicopathological features between SCLC and LCNEC or pure and combined types, and explore the possibility of target therapy using next-generation sequencing. In 13 SCLC and 22 LCNEC cases, 72 point mutations, 19 deletions, and 3 insertions were detected. As therapeutically targetable variants, mutations in EGFR (L858R), KRAS (G12D, G12A, G12V), and PIK3CA (E545K) were detected in 5 cases. The case harboring EGFR mutation showed response to EGFR-tyrosine kinase inhibitor. However, there are no clinicopathological features associated with therapeutically targetable cases. And there was no significant genetic feature between SCLC and LCNEC or pure and combined types. In conclusion, although patients with SCLC and LCNEC may benefit from target therapy, they were not identifiable by clinicopathologic background. And there was not significant genetic difference between SCLC and LCNEC, including between pure and combined types. Classifying SCLC and LCNEC in same category is reasonable. However, distinguishing the pure type from combined type was not validated. Comprehensive genetic analysis should be performed to detect targetable variants in any type of SCLC and LCNEC.
Gomes, Rui S; Moreira, Felismina T C; Fernandes, Ruben; Sales, M Goreti F
2018-01-01
This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15-3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15-3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes.
Gomes, Rui S.; Moreira, Felismina T. C.; Fernandes, Ruben
2018-01-01
This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15–3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15–3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes. PMID:29715330
Lenses matching of compound eye for target positioning
NASA Astrophysics Data System (ADS)
Guo, Fang; Zheng, Yan Pei; Wang, Keyi
2012-10-01
Compound eye, as a new imaging method with multi-lens for a large field of view, could complete target positioning and detection fastly, especially at close range. Therefore it could be applicated in the fields of military and medical treatment and aviation with vast market potential and development prospect. Yet the compound eye imaging method designed use three layer construction of multiple lens array arranged in a curved surface and refractive lens and imaging sensor of CMOS. In order to simplify process structure and increase the imaging area of every sub-eye, the imaging area of every eye is coved with the whole CMOS. Therefore, for several imaging point of one target, the corresponding lens of every imaging point is unkonown, and thus to identify. So an algorithm was put forward. Firstly, according to the Regular Geometry relationship of several adjacent lenses, data organization of seven lenses with a main lens was built. Subsequently, by the data organization, when one target was caught by several unknown lenses, we search every combined type of the received lenses. And for every combined type, two lenses were selected to combine and were used to calculate one three-dimensional (3D) coordinate of the target. If the 3D coordinates are same to the some combine type of the lenses numbers, in theory, the lenses and the imaging points are matched. So according to error of the 3D coordinates is calculated by the different seven lenses numbers combines, the unknown lenses could be distinguished. The experimental results show that the presented algorithm is feasible and can complete matching task for imaging points and corresponding lenses.
Distributed Simulation Testing for Weapons System Performance of the F/A-18 and AIM-120 AMRAAM
1998-01-01
Support Facility (WSSF) at China Lake, CA and the AIM-120 Hardware in the Loop (HWIL) laboratory at Point Mugu, CA. The link was established in response to...ROCKET MOTOR TARGET DETECTION (FUZE) SEEKERIASSEMBLYWAH D . ANTENN ’ A TRA-kN.SiV, ITfrER’I" ACTUATOR ELECTRONICS DATA LIX -K PARAMETERS ADIMI20AI AIMI...test series. 3.2 Hardware in the Loop : The AMRAAM Hardware-In-the- Loop (HWIL) lab located at the Naval Air Warfare Center in Point Mugu, CA provides
Spatial and Temporal Point Tracking in Real Hyperspectral Images
2006-08-26
Dr. Stanley Rotman 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Ben-Gurion University of the Negev PO Box 653...results from a contract tasking Ben-Gurion University of the Negev as follows: The Grantee will investigate developing a full target detection module...point tracking in real hyper spectral imagesʺ Benjamin Aminov, Ofir Nichtern, Stanley Rotman Page 1 of 102 BEN-GURION UNIVERSITY OF THE NEGEV
Wnuczko, Marta; Kennedy, John M
2011-10-01
Observers pointing to a target viewed directly may elevate their fingertip close to the line of sight. However, pointing blindfolded, after viewing the target, they may pivot lower, from the shoulder, aligning the arm with the target as if reaching to the target. Indeed, in Experiment 1 participants elevated their arms more in visually monitored than blindfolded pointing. In Experiment 2, pointing to a visible target they elevated a short pointer more than a long one, raising its tip to the line of sight. In Experiment 3, the Experimenter aligned the participant's arm with the target. Participants judged they were pointing below a visually monitored target. In Experiment 4, participants viewing another person pointing, eyes-open or eyes-closed, judged the target was aligned with the pointing arm. In Experiment 5, participants viewed their arm and the target via a mirror and posed their arm so that it was aligned with the target. Arm elevation was higher in pointing directly.
Van Zijl, Magdalena Catherina; Aneck-Hahn, Natalie Hildegard; Swart, Pieter; Hayward, Stefan; Genthe, Bettina; De Jager, Christiaan
2017-11-01
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and have been detected in drinking water from various countries. Although various water treatment processes can remove EDCs, chemicals can also migrate from pipes that transport water and contaminate drinking water. This study investigated the estrogenic activity in drinking water from various distribution points in Pretoria (City of Tshwane) (n = 40) and Cape Town (n = 40), South Africa, using the recombinant yeast estrogen screen (YES) and the T47D-KBluc reporter gene assay. The samples were collected seasonally over four sampling periods. The samples were also analysed for bisphenol A (BPA), nonylphenol (NP), di(2-ethylhexyl) adipate (DEHA), dibutyl phthalate (DBP), di(2-ethylhexyl) phthalate (DEHP), diisononylphthalate (DINP), 17β-estradiol (E 2 ), estrone (E 1 ) and ethynylestradiol (EE 2 ) using ultra-performance liquid chromatography-tandem mass spectrophotometry (UPLC-MS/MS). This was followed by a scenario based health risk assessment to assess the carcinogenic and toxic human health risks associated with the consumption of distribution point water. None of the water extracts from the distribution points were above the detection limit in the YES bioassay, but the EEq values ranged from 0.002 to 0.114 ng/L using the T47D-KBluc bioassay. BPA, DEHA, DBP, DEHP, DINP E 1 , E 2, and EE 2 were detected in distribution point water samples. NP was below the detection limit for all the samples. The estrogenic activity and levels of target chemicals were comparable to the levels found in other countries. Overall the health risk assessment revealed acceptable health and carcinogenic risks associated with the consumption of distribution point water. Copyright © 2017 Elsevier Ltd. All rights reserved.
D Scanning of Live Pigs System and its Application in Body Measurements
NASA Astrophysics Data System (ADS)
Guo, H.; Wang, K.; Su, W.; Zhu, D. H.; Liu, W. L.; Xing, Ch.; Chen, Z. R.
2017-09-01
The shape of a live pig is an important indicator of its health and value, whether for breeding or for carcass quality. This paper implements a prototype system for live single pig body surface 3d scanning based on two consumer depth cameras, utilizing the 3d point clouds data. These cameras are calibrated in advance to have a common coordinate system. The live 3D point clouds stream of moving single pig is obtained by two Xtion Pro Live sensors from different viewpoints simultaneously. A novel detection method is proposed and applied to automatically detect the frames containing pigs with the correct posture from the point clouds stream, according to the geometric characteristics of pig's shape. The proposed method is incorporated in a hybrid scheme, that serves as the preprocessing step in a body measurements framework for pigs. Experimental results show the portability of our scanning system and effectiveness of our detection method. Furthermore, an updated this point cloud preprocessing software for livestock body measurements can be downloaded freely from https://github.com/LiveStockShapeAnalysis to livestock industry, research community and can be used for monitoring livestock growth status.
A complete system for 3D reconstruction of roots for phenotypic analysis.
Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J
2015-01-01
Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.
MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis.
Kasivisvanathan, Veeru; Rannikko, Antti S; Borghi, Marcelo; Panebianco, Valeria; Mynderse, Lance A; Vaarala, Markku H; Briganti, Alberto; Budäus, Lars; Hellawell, Giles; Hindley, Richard G; Roobol, Monique J; Eggener, Scott; Ghei, Maneesh; Villers, Arnauld; Bladou, Franck; Villeirs, Geert M; Virdi, Jaspal; Boxler, Silvan; Robert, Grégoire; Singh, Paras B; Venderink, Wulphert; Hadaschik, Boris A; Ruffion, Alain; Hu, Jim C; Margolis, Daniel; Crouzet, Sébastien; Klotz, Laurence; Taneja, Samir S; Pinto, Peter; Gill, Inderbir; Allen, Clare; Giganti, Francesco; Freeman, Alex; Morris, Stephen; Punwani, Shonit; Williams, Norman R; Brew-Graves, Chris; Deeks, Jonathan; Takwoingi, Yemisi; Emberton, Mark; Moore, Caroline M
2018-05-10
Multiparametric magnetic resonance imaging (MRI), with or without targeted biopsy, is an alternative to standard transrectal ultrasonography-guided biopsy for prostate-cancer detection in men with a raised prostate-specific antigen level who have not undergone biopsy. However, comparative evidence is limited. In a multicenter, randomized, noninferiority trial, we assigned men with a clinical suspicion of prostate cancer who had not undergone biopsy previously to undergo MRI, with or without targeted biopsy, or standard transrectal ultrasonography-guided biopsy. Men in the MRI-targeted biopsy group underwent a targeted biopsy (without standard biopsy cores) if the MRI was suggestive of prostate cancer; men whose MRI results were not suggestive of prostate cancer were not offered biopsy. Standard biopsy was a 10-to-12-core, transrectal ultrasonography-guided biopsy. The primary outcome was the proportion of men who received a diagnosis of clinically significant cancer. Secondary outcomes included the proportion of men who received a diagnosis of clinically insignificant cancer. A total of 500 men underwent randomization. In the MRI-targeted biopsy group, 71 of 252 men (28%) had MRI results that were not suggestive of prostate cancer, so they did not undergo biopsy. Clinically significant cancer was detected in 95 men (38%) in the MRI-targeted biopsy group, as compared with 64 of 248 (26%) in the standard-biopsy group (adjusted difference, 12 percentage points; 95% confidence interval [CI], 4 to 20; P=0.005). MRI, with or without targeted biopsy, was noninferior to standard biopsy, and the 95% confidence interval indicated the superiority of this strategy over standard biopsy. Fewer men in the MRI-targeted biopsy group than in the standard-biopsy group received a diagnosis of clinically insignificant cancer (adjusted difference, -13 percentage points; 95% CI, -19 to -7; P<0.001). The use of risk assessment with MRI before biopsy and MRI-targeted biopsy was superior to standard transrectal ultrasonography-guided biopsy in men at clinical risk for prostate cancer who had not undergone biopsy previously. (Funded by the National Institute for Health Research and the European Association of Urology Research Foundation; PRECISION ClinicalTrials.gov number, NCT02380027 .).
The Rapidly Moving Telescope: an Instrument for the Precise Study of Optical Transients
NASA Technical Reports Server (NTRS)
Teegarden, B. J.; Vonrosenvinge, T. T.; Cline, T. L.; Kaipa, R.
1983-01-01
The development of a small telescope with a very rapid pointing capability is described whose purpose is to search for and study fast optical transients that may be associated with gamma-ray bursts and other phenomena. The primary motivation for this search is the discovery of the existence of a transient optical event from the known location of a gamma-ray bursts. The telescope has the capability of rapidly acquiring any target in the night sky within 0.7 second and locating the object's position with + or - 1 arcsec accuracy. The initial detection of the event is accomplished by the MIT explosive transient camera or ETC. This provides rough pointing coordinates to the RMT on the average within approximately 1 second after the detection of the event.
Nie, Ji; Zhang, De-Wen; Tie, Cai; Zhou, Ying-Lin; Zhang, Xin-Xiang
2013-11-15
The combination of aptamer and peroxidase-mimicking DNAzyme within a hairpin structure can form a functional DNA probe. The activities of both aptamer (as biorecognition element) and DNAzyme (as signal amplification element) are blocked via base pairing in the hairpin structure. The presence of target triggers the opening of the hairpin to form target/aptamer complex and releases G-quadruplex sequence which can generate amplified colorimetric signals. In this work, we elaborated a universal and simple procedure to design an efficient and sensitive hairpin probe with suitable functional DNA partners. A fill-in-the-blank process was developed for sequence design, and two key points including the pretreatment of the hairpin probe and the selection of suitable signal transducer sequence were proved to enhance the detection sensitivity. Cocaine was chosen as a model target for a proof of concept. A series of hairpins with different numbers of base pairs in the stem region were prepared. Hairpin-C10 with ten base pairs was screened out and a lowest detectable cocaine concentration of 5 μM by colorimetry was obtained. The proposed functional DNA hairpin showed good selectivity and satisfactory analysis in spiked biologic fluid. The whole "mix-and-measure" detection based on DNA hairpin without the need of immobilization and labeling was indicated to be time and labor saving. The strategy has potential to be transplanted into more smart hairpins toward other targets for general application in bioanalytical chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.
Sinigalliano, Christopher D.; Ervin, Jared S.; Van De Werfhorst, Laurie C.; Badgley, Brian D.; Ballestée, Elisenda; Bartkowiaka, Jakob; Boehm, Alexandria B.; Byappanahalli, Muruleedhara N.; Goodwin, Kelly D.; Gourmelon, Michèle; Griffith, John; Holden, Patricia A.; Jay, Jenny; Layton, Blythe; Lee, Cheonghoon; Lee, Jiyoung; Meijer, Wim G.; Noble, Rachel; Raith, Meredith; Ryu, Hodon; Sadowsky, Michael J.; Schriewer, Alexander; Wang, Dan; Wanless, David; Whitman, Richard; Wuertz, Stefan; Santo Domingo, Jorge W.
2013-01-01
Here we report results from a multi-laboratory (n = 11) evaluation of four different PCR methods targeting the 16S rRNA gene of Catellicoccus marimammalium originally developed to detect gull fecal contamination in coastal environments. The methods included a conventional end-point PCR method, a SYBR® Green qPCR method, and two TaqMan® qPCR methods. Different techniques for data normalization and analysis were tested. Data analysis methods had a pronounced impact on assay sensitivity and specificity calculations. Across-laboratory standardization of metrics including the lower limit of quantification (LLOQ), target detected but not quantifiable (DNQ), and target not detected (ND) significantly improved results compared to results submitted by individual laboratories prior to definition standardization. The unit of measure used for data normalization also had a pronounced effect on measured assay performance. Data normalization to DNA mass improved quantitative method performance as compared to enterococcus normalization. The MST methods tested here were originally designed for gulls but were found in this study to also detect feces from other birds, particularly feces composited from pigeons. Sequencing efforts showed that some pigeon feces from California contained sequences similar to C. marimammalium found in gull feces. These data suggest that the prevalence, geographic scope, and ecology of C. marimammalium in host birds other than gulls require further investigation. This study represents an important first step in the multi-laboratory assessment of these methods and highlights the need to broaden and standardize additional evaluations, including environmentally relevant target concentrations in ambient waters from diverse geographic regions.
Li, Baisheng; Liu, Xiao; Zhao, Yong; Tan, Hailing; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Qiu, Haiyan; Wang, Duochun; Diao, Baowei; Jing, Huaiqi; Yang, Ruifu; Kan, Biao
2017-01-01
Vibrio cholerae serogroups O1 and O139 are etiological agents of cholera, a serious and acute diarrheal disease, and rapid detection of V. cholerae is a key method for preventing and controlling cholera epidemics. Here, a point of care testing (POCT) method called Vch-UPT-LF, which is an up-converting phosphor technology-based lateral flow (UPT-LF) assay with a dual-target detection mode, was developed to detect V. cholerae O1 and O139 simultaneously from one sample loading. Although applying an independent reaction pair made both detection results for the two Vch-UPT-LF detection channels more stable, the sensitivity slightly declined from 104 to 105 colony-forming units (CFU) mL−1 compared with that of the single-target assay, while the quantification ranges covering four orders of magnitude were maintained. The strip showed excellent specificity for seven Vibrio species that are highly related genetically, and nine food-borne species whose transmission routes are similar to those of V. cholerae. The legitimate arrangement of the two adjacent test lines lessened the mutual impact of the quantitation results between the two targets, and the quantification values did not differ by more than one order of magnitude when the samples contained high concentrations of both V. cholerae O1 and O139. Under pre-incubation conditions, 1×101 CFU mL−1 of V. cholerae O1 or O139 could be detected in fewer than 7 h, while the Vch-UPT-LF assay exhibited sensitivity as high as a real-time fluorescent polymerase chain reaction with fewer false-positive results. Therefore, successful development of Vch-UPT-LF as a dual-target assay for quantitative detection makes this assay a good candidate POCT method for the detection and surveillance of epidemic cholera. PMID:28662147
Longitudinal gas-density profilometry for plasma-wakefield acceleration targets
NASA Astrophysics Data System (ADS)
Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens
2014-03-01
Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.
Structural Information Detection Based Filter for GF-3 SAR Images
NASA Astrophysics Data System (ADS)
Sun, Z.; Song, Y.
2018-04-01
GF-3 satellite with high resolution, large swath, multi-imaging mode, long service life and other characteristics, can achieve allweather and all day monitoring for global land and ocean. It has become the highest resolution satellite system in the world with the C-band multi-polarized synthetic aperture radar (SAR) satellite. However, due to the coherent imaging system, speckle appears in GF-3 SAR images, and it hinders the understanding and interpretation of images seriously. Therefore, the processing of SAR images has big challenges owing to the appearance of speckle. The high-resolution SAR images produced by the GF-3 satellite are rich in information and have obvious feature structures such as points, edges, lines and so on. The traditional filters such as Lee filter and Gamma MAP filter are not appropriate for the GF-3 SAR images since they ignore the structural information of images. In this paper, the structural information detection based filter is constructed, successively including the point target detection in the smallest window, the adaptive windowing method based on regional characteristics, and the most homogeneous sub-window selection. The despeckling experiments on GF-3 SAR images demonstrate that compared with the traditional filters, the proposed structural information detection based filter can well preserve the points, edges and lines as well as smooth the speckle more sufficiently.
The WIRED Survey. 2; Infrared Excesses in the SDSS DR7 White Dwarf Catalog
NASA Technical Reports Server (NTRS)
Debes, John H.; Hoard, D. W.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin
2011-01-01
With the launch of the Wide-field Infrar.ed Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From -18,000 input targets, there are WISE detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large (approx. 6") WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.
Pierce, K E; Mistry, R; Reid, S M; Bharya, S; Dukes, J P; Hartshorn, C; King, D P; Wangh, L J
2010-07-01
A novel molecular assay for the detection of foot-and-mouth disease virus (FMDV) was developed using linear-after-the-exponential polymerase chain reaction (LATE-PCR). Pilot experiments using synthetic DNA targets demonstrated the ability of LATE-PCR to quantify initial target concentration through endpoint detection. A two-step protocol involving reverse transcription (RT) followed by LATE-PCR was then used to confirm the ability of the assay to detect FMDV RNA. Finally, RT and LATE-PCR were combined in a one-step duplex assay for co-amplification of an FMDV RNA segment and an internal control comprised of an Armored RNA. In that form, each of the excess primers in the reaction mixture hybridize to their respective RNA targets during a short pre-incubation, then generate cDNA strands during a 3-min RT step at 60°C, and the resulting cDNA is amplified by LATE-PCR without intervening sample processing. The RT-LATE-PCR assay generates fluorescent signals at endpoint that are proportional to the starting number of RNA targets and can detect a range of sequence variants using a single mismatch-tolerant probe. In addition to offering improvements over current laboratory-based molecular diagnostic assays for FMDV, this new assay is compatible with a novel portable ('point-of-care') device, the BioSeeq II, designed for the rapid diagnosis of FMD in the field. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.
The Spacelab Instrument Pointing System (IPS) and its first flight
NASA Astrophysics Data System (ADS)
Heusmann, H.; Wolf, P.
1985-11-01
The development of the Instrument Pointing System (IPS) as part of Spacelab's experimental apparatus for open Pallet direct space exposure, and its test flight aboard the Shuttle Orbiter are discussed. The IPS is a three-axis-controlled platform with stellar, sun and earth pointing modes, and a better than 1 arcsec pointing ability. The development of an 'inside-out gimbal' configuration with the platform acting like a joint between the unstable Shuttle and the inertially stabilized payload facilitated close to hemispherical pointing and the adaptability for payloads of almost any size. Gimbal axes torquers counteract Orbiter acceleration due to crew movement and thruster firings, and facilitate target acquisition and precision pointing, by command from a crew-engaged computer preprogrammed for all possible control steps. Carrying an experimental solar-physics payload, the IPS correctly performed all intended functions and withstood launch and orbital loads. Several anomalies were detected and successfully corrected in-flight.
Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D
2016-10-01
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Rathore, Kusum; Choudhary, Shambhunath; Odoi, Agricola; Wang, Hwa-Chain R.
2012-01-01
Long-term exposure to low doses of environmental carcinogens contributes to sporadic human breast cancers. Epidemiologic and experimental studies indicate that green tea catechins (GTCs) may intervene with breast cancer development. We have been developing a chronically induced breast cell carcinogenesis model wherein we repeatedly expose non-cancerous, human breast epithelial MCF10A cells to bioachievable picomolar concentrations of environmental carcinogens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), to progressively induce cellular acquisition of cancer-associated properties, as measurable end points. The model is then used as a target to identify non-cytotoxic preventive agents effective in suppression of cellular carcinogenesis. Here, we demonstrate, for the first time, a two-step strategy that initially used end points that were transiently induced by short-term exposure to NNK and B[a]P as targets to detect GTCs capable of blocking the acquisition of cancer-associated properties and subsequently used end points constantly induced by long-term exposure to carcinogens as targets to verify GTCs capable of suppressing carcinogenesis. We detected that short-term exposure to NNK and B[a]P resulted in elevation of reactive oxygen species (ROS), leading to Raf-independent extracellular signal-regulated kinase (ERK) pathway activation and subsequent induction of cell proliferation and DNA damage. These GTCs, at non-cytotoxic levels, were able to suppress chronically induced cellular carcinogenesis by blocking carcinogen-induced ROS elevation, ERK activation, cell proliferation and DNA damage in each exposure cycle. Our model may help accelerate the identification of preventive agents to intervene in carcinogenesis induced by long-term exposure to environmental carcinogens, thereby safely and effectively reducing the health risk of sporadic breast cancer. PMID:22045026
Study on feasibility of laser reflective tomography with satellite-accompany
NASA Astrophysics Data System (ADS)
Gu, Yu; Hu, Yi-hua; Hao, Shi-qi; Gu, You-lin; Zhao, Nan-xiang; Wang, Yang-yang
2015-10-01
Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.
Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B
2016-09-28
A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced colorectal cancer (CRC), as well as targetable alterations in many other genes. This includes detection of a broad spectrum of activating KRAS alterations frequently missed by focused molecular hotspot testing, as well as other RAS/RAF pathway alterations, mutations shown to disrupt antibody binding, RTK activating point mutations, amplifications, and rearrangements, and activating alterations in downstream effectors including PI3K and MEK1. The use of CGP in clinical practice is critical to guide appropriate selection of targeted therapies for patients with advanced CRC. ©AlphaMed Press.
Li, Fengqin; Xu, Yanmei; Yu, Xiang; Yu, Zhigang; He, Xunjun; Ji, Hongrui; Dong, Jinghao; Song, Yongbin; Yan, Hong; Zhang, Guiling
2016-08-15
One "signal on" electrochemical sensing strategy was constructed for the detection of a specific hepatitis B virus (HBV) gene sequence based on the protection-displacement-hybridization-based (PDHB) signaling mechanism. This sensing system is composed of three probes, one capturing probe (CP) and one assistant probe (AP) which are co-immobilized on the Au electrode surface, and one 3-methylene blue (MB) modified signaling probe (SP) free in the detection solution. One duplex are formed between AP and SP with the target, a specific HBV gene sequence, hybridizing with CP. This structure can drive the MB labels close to the electrode surface, thereby producing a large detection current. Two electrochemical testing techniques, alternating current voltammetry (ACV) and cyclic voltammetry (CV), were used for characterizing the sensor. Under the optimized conditions, the proposed sensor exhibits a high sensitivity with the detection limit of ∼5fM for the target. When used for the discrimination of point mutation, the sensor also features an outstanding ability and its peculiar high adjustability. Copyright © 2016 Elsevier B.V. All rights reserved.
Path planning in GPS-denied environments via collective intelligence of distributed sensor networks
NASA Astrophysics Data System (ADS)
Jha, Devesh K.; Chattopadhyay, Pritthi; Sarkar, Soumik; Ray, Asok
2016-05-01
This paper proposes a framework for reactive goal-directed navigation without global positioning facilities in unknown dynamic environments. A mobile sensor network is used for localising regions of interest for path planning of an autonomous mobile robot. The underlying theory is an extension of a generalised gossip algorithm that has been recently developed in a language-measure-theoretic setting. The algorithm has been used to propagate local decisions of target detection over a mobile sensor network and thus, it generates a belief map for the detected target over the network. In this setting, an autonomous mobile robot may communicate only with a few mobile sensing nodes in its own neighbourhood and localise itself relative to the communicating nodes with bounded uncertainties. The robot makes use of the knowledge based on the belief of the mobile sensors to generate a sequence of way-points, leading to a possible goal. The estimated way-points are used by a sampling-based motion planning algorithm to generate feasible trajectories for the robot. The proposed concept has been validated by numerical simulation on a mobile sensor network test-bed and a Dubin's car-like robot.
Evaluation of NinePoint Medical's Nvision VLE device for gastrointestinal applications.
Mosko, Jeffrey D; Pleskow, Douglas
2017-07-01
The incidence of esophageal adenocarcinoma (EAC) has increased over the last few decades. With a known precursor lesion, Barrett's esophagus, this remains a target for screening and surveillance with the goal of detecting and providing curative treatment for early neoplasia. Areas covered: Current surveillance techniques rely on white light endoscopy and random tissue sampling which is time consuming, costly and prone to sampling error. Volumetric laser endomicroscopy (VLE), a second-generation optical coherence technology, has emerged as an advanced imaging modality with the potential to improve dysplasia detection, surveillance and subsequently prevent esophageal adenocarcinoma. This review will focus on the use of VLE for advanced imaging of Barrett's esophagus and summarize its current and potential uses elsewhere in the GI tract. Expert commentary: NinePoint's VLE imaging device enables imaging of large segments of BE facilitating identification of luminal and subsurface abnormalities that may have otherwise been missed. Its diagnostic accuracy is improving and laser-marking system adds the capacity for accurate VLE-histologic correlation. With the adoption of dysplasia scoring systems that utilize very few VLE imaging features, inexperienced endoscopists will likely be able to pick out areas concerning for dysplasia to target therapy.
A paper-based device for double-stranded DNA detection with Zif268
NASA Astrophysics Data System (ADS)
Zhang, Daohong
2017-05-01
Here, a small analytical device was fabricated on both nitrocellulose membrane and filter paper, for the detection of biotinylated double-stranded DNA (dsDNA) from 1 nM. Zif268 was utilized for capturing the target DNA, which was a zinc finger protein that recognized only a dsDNA with specific sequence. Therefore, this detection platform could be utilized for PCR result detection, with the well-designed primers (interpolate both biotin and Zif268 binding sequence). The result of the assay could be recorded by a camera-phone, and analyzed with software. The whole assay finished within 1 hour. Due to the easy fabrication, operation and disposal of this device, this method can be employed in point-of-care detection or on-site monitoring.
External calibration of polarimetric radars using point and distributed targets
NASA Technical Reports Server (NTRS)
Yueh, S. H.; Kong, J. A.; Shin, R. T.
1991-01-01
Polarimetric calibration algorithms using combinations of point targets and reciprocal distributed targets are developed. From the reciprocity relations of distributed targets, and equivalent point target response is derived. Then the problem of polarimetric calibration using two point targets and one distributed target reduces to that using three point targets, which has been previously solved. For calibration using one point target and one reciprocal distributed target, two cases are analyzed with the point target being a trihedral reflector or a polarimetric active radar calibrator (PARC). For both cases, the general solutions of the system distortion matrices are written as a product of a particular solution and a matrix with one free parameter. For the trihedral-reflector case, this free parameter is determined by assuming azimuthal symmetry for the distributed target. For the PARC case, knowledge of one ratio of two covariance matrix elements of the distributed target is required to solve for the free parameter. Numerical results are simulated to demonstrate the usefulness of the developed algorithms.
External calibration of polarimetric radars using point and distributed targets
NASA Astrophysics Data System (ADS)
Yueh, S. H.; Kong, J. A.; Shin, R. T.
1991-08-01
Polarimetric calibration algorithms using combinations of point targets and reciprocal distributed targets are developed. From the reciprocity relations of distributed targets, and equivalent point target response is derived. Then the problem of polarimetric calibration using two point targets and one distributed target reduces to that using three point targets, which has been previously solved. For calibration using one point target and one reciprocal distributed target, two cases are analyzed with the point target being a trihedral reflector or a polarimetric active radar calibrator (PARC). For both cases, the general solutions of the system distortion matrices are written as a product of a particular solution and a matrix with one free parameter. For the trihedral-reflector case, this free parameter is determined by assuming azimuthal symmetry for the distributed target. For the PARC case, knowledge of one ratio of two covariance matrix elements of the distributed target is required to solve for the free parameter. Numerical results are simulated to demonstrate the usefulness of the developed algorithms.
Babu, Binoy; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Sarigul, Tulin; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L
2017-02-01
Rose rosette disease caused by Rose rosette virus (RRV; genus Emaravirus) is the most economically relevant disease of Knock Out ® series roses in the U.S. As there are no effective chemical control options for the disease, the most critical disease management strategies include the use of virus free clean plants for propagation and early detection and destruction of infected plants. The current diagnostic techniques for RRV including end-point reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR (RT-qPCR) are highly sensitive, but limited to diagnostic labs with the equipment and expertise; and is time consuming. To address this limitation, an isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) assay based on multiple gene targets for specific detection of RRV was developed. The assay is highly specific and did not cross react with other viruses belonging to the inclusive and exclusive genus. Dilution assays using the in vitro transcripts showed that the primer sets designed (RPA-267, RPA-131, and RPA-321) are highly sensitive, consistently detecting RRV with a detection limit of 1fg/μL. Testing of the infected plants using the primer sets indicated that the virus could be detected from leaves, stems and petals of roses. The primer pair RPA-267 produced 100% positive detection of the virus from infected leaf tissues, while primer set RPA-131 produced 100% detection from stems and petals. The primer set RPA-321 produced 83%, 87.5% and 75% positive detection from leaves, petals and stem tissues, respectively. In addition, the assay has been efficiently used in the detection of RRV infecting Knock Out ® roses, collected from different states in the U.S. The assay can be completed in 20min as compared to the end-point RT-PCR assay (3-4h) and RT-qPCR (1.5h). The RT-RPA assay is reliable, rapid, highly sensitive, and can be easily used in diagnostic laboratories for detection of RRV with no need for any special equipment. Copyright © 2016 Elsevier B.V. All rights reserved.
Schema generation in recurrent neural nets for intercepting a moving target.
Fleischer, Andreas G
2010-06-01
The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.
McKenna, James Patrick; Cox, Ciara; Fairley, Derek John; Burke, Rachael; Shields, Michael D; Watt, Alison; Coyle, Peter Valentine
2017-03-01
Neonatal sepsis caused by Streptococcus agalactiae [group B streptococcus (GBS)] is a life-threatening condition, which is preventable if colonized mothers are identified and given antibiotic prophylaxis during labour. Conventional culture is time consuming and unreliable, and many available non-culture diagnostics are too complex to implement routinely at point of care. Loop-mediated isothermal amplification (LAMP) is a method that, enables the rapid and specific detection of target nucleic acid sequences in clinical materials without the requirement for extensive sample preparation. A prototype LAMP assay targeting GBS sip gene is described. The assay was 100 % specific for GBS, with a limit of detection of 14 genome copies per reaction. The clinical utility of the LAMP assay for rapid direct molecular detection of GBS was determined by testing a total of 157 vaginal swabs with minimal sample processing using a rapid lysis solution. Compared to a reference quantitative real-time PCR assay, the direct LAMP protocol had a sensitivity and specificity of 95.4 and 100 %, respectively, with positive and negative predictive values of 100 and 98.3 %, respectively. Positive and negative likelihood ratios were infinity and 0.05, respectively. The direct LAMP method required a mean time of 45 min from the receipt of a swab to generation of a confirmed result, compared to 2 h 30 min for the reference quantitative real-time PCR test. The direct LAMP protocol described is easy to perform, facilitating rapid and accurate detection of GBS in vaginal swabs. This test has a potential for use at point of care.
NASA Astrophysics Data System (ADS)
Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro
2017-07-01
In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.
LWIR hyperspectral micro-imager for detection of trace explosive particles
NASA Astrophysics Data System (ADS)
Bingham, Adam L.; Lucey, Paul G.; Akagi, Jason T.; Hinrichs, John L.; Knobbe, Edward T.
2014-05-01
Chemical micro-imaging is a powerful tool for the detection and identification of analytes of interest against a cluttered background (i.e. trace explosive particles left behind in a fingerprint). While a variety of groups have demonstrated the efficacy of Raman instruments for these applications, point by point or line by line acquisition of a targeted field of view (FOV) is a time consuming process if it is to be accomplished with useful spatial resolutions. Spectrum Photonics has developed and demonstrated a prototype system utilizing long wave infrared hyperspectral microscopy, which enables the simultaneous collection of LWIR reflectance spectra from 8-14 μm in a 30 x 7 mm FOV with 30 μm spatial resolution in 30 s. An overview of the uncooled Sagnac-based LWIR HSM system will be given, emphasizing the benefits of this approach. Laboratory Hyperspectral data collected from custom mixtures and fingerprint residues is shown, focusing on the ability of the LWIR chemical micro-imager to detect chemicals of interest out of a cluttered background.
Electronic method for autofluorography of macromolecules on two-D matrices
Davidson, Jackson B.; Case, Arthur L.
1983-01-01
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100-1000 times.
The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets
NASA Astrophysics Data System (ADS)
Gillon, M.; Demory, B.-O.; Lovis, C.; Deming, D.; Ehrenreich, D.; Lo Curto, G.; Mayor, M.; Pepe, F.; Queloz, D.; Seager, S.; Ségransan, D.; Udry, S.
2017-05-01
Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117
Development of Optical System for ARGO-M
NASA Astrophysics Data System (ADS)
Nah, Jakyoung; Jang, Jung-Guen; Jang, Bi-Ho; Han, In-Woo; Han, Jeong-Yeol; Park, Kwijong; Lim, Hyung-Chul; Yu, Sung-Yeol; Park, Eunseo; Seo, Yoon-Kyung; Moon, Il-Kwon; Choi, Byung-Kyu; Na, Eunjoo; Nam, Uk-Won
2013-03-01
ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.
The analysis of selected orientation methods of architectural objects' scans
NASA Astrophysics Data System (ADS)
Markiewicz, Jakub S.; Kajdewicz, Irmina; Zawieska, Dorota
2015-05-01
The terrestrial laser scanning is commonly used in different areas, inter alia in modelling architectural objects. One of the most important part of TLS data processing is scans registration. It significantly affects the accuracy of generation of high resolution photogrammetric documentation. This process is time consuming, especially in case of a large number of scans. It is mostly based on an automatic detection and a semi-automatic measurement of control points placed on the object. In case of the complicated historical buildings, sometimes it is forbidden to place survey targets on an object or it may be difficult to distribute survey targets in the optimal way. Such problems encourage the search for the new methods of scan registration which enable to eliminate the step of placing survey targets on the object. In this paper the results of target-based registration method are presented The survey targets placed on the walls of historical chambers of the Museum of King Jan III's Palace at Wilanów and on the walls of ruins of the Bishops Castle in Iłża were used for scan orientation. Several variants of orientation were performed, taking into account different placement and different number of survey marks. Afterwards, during next research works, raster images were generated from scans and the SIFT and SURF algorithms for image processing were used to automatically search for corresponding natural points. The case of utilisation of automatically identified points for TLS data orientation was analysed. The results of both methods for TLS data registration were summarized and presented in numerical and graphical forms.
Bester, Rachelle; Jooste, Anna E C; Maree, Hans J; Burger, Johan T
2012-09-27
Grapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM. The real-time RT-PCR HRM provides a sensitive, automated and rapid tool to detect and differentiate different variant groups in order to study the epidemiology of leafroll disease.
Wavelet-based polarimetry analysis
NASA Astrophysics Data System (ADS)
Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik
2014-06-01
Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.
Roy, Sharmili; Wei, Sim Xiao; Ying, Jean Liew Zhi; Safavieh, Mohammadali; Ahmed, Minhaz Uddin
2016-12-15
Electrochemiluminescence (ECL) has been widely rendered for nucleic acid testing. Here, we integrate loop-mediated isothermal amplification (LAMP) with ECL technique for DNA detection and quantification. The target LAMP DNA bound electrostatically with [Ru(bpy)3](+2) on the carbon electrode surface, and an ECL reaction was triggered by tripropylamine (TPrA) to yield luminescence. We illustrated this method as a new and highly sensitive strategy for the detection of sequence-specific DNA from different meat species at picogram levels. The proposed strategy renders the signal amplification capacities of TPrA and combines LAMP with inherently high sensitivity of the ECL technique, to facilitate the detection of low quantities of DNA. By leveraging this technique, target DNA of Sus scrofa (pork) meat was detected as low as 1pg/µL (3.43×10(-1)copies/µL). In addition, the proposed technique was applied for detection of Bacillus subtilis DNA samples and detection limit of 10pg/µL (2.2×10(3)copies/µL) was achieved. The advantages of being isothermal, sensitive and robust with ability for multiplex detection of bio-analytes makes this method a facile and appealing sensing modality in hand-held devices to be used at the point-of-care (POC). Copyright © 2016 Elsevier B.V. All rights reserved.
Ensminger, Michael P; Vasquez, Martice; Tsai, Hsing-Ju; Mohammed, Sarah; Van Scoy, A; Goodell, Korena; Cho, Gail; Goh, Kean S
2017-10-01
Monitoring of surface waters for organic contaminants is costly. Grab water sampling often results in non-detects for organic contaminants due to missing a pulse event or analytical instrumentation limitations with a small sample size. Continuous Low-Level Aquatic Monitoring (CLAM) samplers (C.I.Agent ® Solutions) continually extract and concentrate organic contaminants in surface water onto a solid phase extraction disk. Utilizing CLAM samplers, we developed a broad spectrum analytical screen for monitoring organic contaminants in urban runoff. An intermediate polarity solid phase, hydrophobic/lipophilic balance (HLB), was chosen as the sorbent for the CLAM to target a broad range of compounds. Eighteen urban-use pesticides and pesticide degradates were targeted for analysis by LC/MS/MS, with recoveries between 59 and 135% in laboratory studies. In field studies, CLAM samplers were deployed at discrete time points from February 2015 to March 2016. Half of the targeted chemicals were detected with reporting limits up to 90 times lower than routine 1-L grab samples with good precision between field replicates. In a final deployment, CLAM samplers were compared to 1-L water samples. In this side-by-side comparison, imidacloprid, fipronil, and three fipronil degradates were detected by the CLAM sampler but only imidacloprid and fipronil sulfone were detected in the water samples. However, concentrations of fipronil sulfone and imidacloprid were significantly lower with the CLAM and a transient spike of diuron was not detected. Although the CLAM sampler has limitations, it can be a powerful tool for development of more focused and informed monitoring efforts based on pre-identified targets in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark
2016-06-01
Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.
Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ
Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats
2015-01-01
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ. PMID:26240388
Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth
2014-08-01
Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.
Laser-Induced Breakdown Spectroscopy: Capabilities and Applications
2010-07-01
substances such as drugs, counterfeit goods, and laundered money . It may even be possible to pinpoint specific manufacturing facilities based on...point detection or standoff mode operation. LIBS used in conjunction with broadband detectors (ultraviolet [ UV ]-visible[VIS]-near-infrared[NIR] spectral...lines in the UV -VIS-NIR spectral range. Although most early LIBS applications involved metal targets, LIBS has recently been applied to a variety
Thermal bioaerosol cloud tracking with Bayesian classification
NASA Astrophysics Data System (ADS)
Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.
2017-05-01
The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.
"Paper Machine" for Molecular Diagnostics.
Connelly, John T; Rolland, Jason P; Whitesides, George M
2015-08-04
Clinical tests based on primer-initiated amplification of specific nucleic acid sequences achieve high levels of sensitivity and specificity. Despite these desirable characteristics, these tests have not reached their full potential because their complexity and expense limit their usefulness to centralized laboratories. This paper describes a device that integrates sample preparation and loop-mediated isothermal amplification (LAMP) with end point detection using a hand-held UV source and camera phone. The prototype device integrates paper microfluidics (to enable fluid handling) and a multilayer structure, or a "paper machine", that allows a central patterned paper strip to slide in and out of fluidic path and thus allows introduction of sample, wash buffers, amplification master mix, and detection reagents with minimal pipetting, in a hand-held, disposable device intended for point-of-care use in resource-limited environments. This device creates a dynamic seal that prevents evaporation during incubation at 65 °C for 1 h. This interval is sufficient to allow a LAMP reaction for the Escherichia coli malB gene to proceed with an analytical sensitivity of 1 double-stranded DNA target copy. Starting with human plasma spiked with whole, live E. coli cells, this paper demonstrates full integration of sample preparation with LAMP amplification and end point detection with a limit of detection of 5 cells. Further, it shows that the method used to prepare sample enables concentration of DNA from sample volumes commonly available from fingerstick blood draw.
Rajaram, Kaushik; Losada-Pérez, Patricia; Vermeeren, Veronique; Hosseinkhani, Baharak; Wagner, Patrick; Somers, Veerle; Michiels, Luc
2015-01-01
Over the last three decades, phage display technology has been used for the display of target-specific biomarkers, peptides, antibodies, etc. Phage display-based assays are mostly limited to the phage ELISA, which is notorious for its high background signal and laborious methodology. These problems have been recently overcome by designing a dual-display phage with two different end functionalities, namely, streptavidin (STV)-binding protein at one end and a rheumatoid arthritis-specific autoantigenic target at the other end. Using this dual-display phage, a much higher sensitivity in screening specificities of autoantibodies in complex serum sample has been detected compared to single-display phage system on phage ELISA. Herein, we aimed to develop a novel, rapid, and sensitive dual-display phage to detect autoantibodies presence in serum samples using quartz crystal microbalance with dissipation monitoring as a sensing platform. The vertical functionalization of the phage over the STV-modified surfaces resulted in clear frequency and dissipation shifts revealing a well-defined viscoelastic signature. Screening for autoantibodies using antihuman IgG-modified surfaces and the dual-display phage with STV magnetic bead complexes allowed to isolate the target entities from complex mixtures and to achieve a large response as compared to negative control samples. This novel dual-display strategy can be a potential alternative to the time consuming phage ELISA protocols for the qualitative analysis of serum autoantibodies and can be taken as a departure point to ultimately achieve a point of care diagnostic system.
NASA Astrophysics Data System (ADS)
DeLuca, R.
2006-03-01
Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.
Pancreatic cancer cell detection by targeted lipid microbubbles and multiphoton imaging
NASA Astrophysics Data System (ADS)
Cromey, Benjamin; McDaniel, Ashley; Matsunaga, Terry; Vagner, Josef; Kieu, Khanh Quoc; Banerjee, Bhaskar
2018-04-01
Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery.
Weir, Nichola-Jane M; Pattison, Sally H; Kearney, Paddy; Stafford, Bob; Gormley, Gerard J; Crockard, Martin A; Gilpin, Deirdre F; Tunney, Michael M; Hughes, Carmel M
2018-01-01
Urinary Tract Infections (UTIs) are common bacterial infections, second only to respiratory tract infections and particularly prevalent within primary care. Conventional detection of UTIs is culture, however, return of results can take between 24 and 72 hours. The introduction of a point of care (POC) test would allow for more timely identification of UTIs, facilitating improved, targeted treatment. This study aimed to obtain consensus on the criteria required for a POC UTI test, to meet patient need within primary care. Criteria for consideration were compiled by the research team. These criteria were validated through a two-round Delphi process, utilising an expert panel of healthcare professionals from across Europe and United States of America. Using web-based questionnaires, panellists recorded their level of agreement with each criterion based on a 5-point Likert Scale, with space for comments. Using median response, interquartile range and comments provided, criteria were accepted/rejected/revised depending on pre-agreed cut-off scores. The first round questionnaire presented thirty-three criteria to the panel, of which 22 were accepted. Consensus was not achieved for the remaining 11 criteria. Following response review, one criterion was removed, while after revision, the remaining 10 criteria entered the second round. Of these, four were subsequently accepted, resulting in 26 criteria considered appropriate for a POC test to detect urinary infections. This study generated an approved set of criteria for a POC test to detect urinary infections. Criteria acceptance and comments provided by the healthcare professionals also supports the development of a multiplex point of care UTI test.
NASA Astrophysics Data System (ADS)
Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang
2008-03-01
Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.
Methods for threshold determination in multiplexed assays
Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J
2014-06-24
Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.
Research on application of LADAR in ground vehicle recognition
NASA Astrophysics Data System (ADS)
Lan, Jinhui; Shen, Zhuoxun
2009-11-01
For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.
Miotke, Laura; Lau, Billy T; Rumma, Rowza T; Ji, Hanlee P
2014-03-04
In this study, we present a highly customizable method for quantifying copy number and point mutations utilizing a single-color, droplet digital PCR platform. Droplet digital polymerase chain reaction (ddPCR) is rapidly replacing real-time quantitative PCR (qRT-PCR) as an efficient method of independent DNA quantification. Compared to quantative PCR, ddPCR eliminates the needs for traditional standards; instead, it measures target and reference DNA within the same well. The applications for ddPCR are widespread including targeted quantitation of genetic aberrations, which is commonly achieved with a two-color fluorescent oligonucleotide probe (TaqMan) design. However, the overall cost and need for optimization can be greatly reduced with an alternative method of distinguishing between target and reference products using the nonspecific DNA binding properties of EvaGreen (EG) dye. By manipulating the length of the target and reference amplicons, we can distinguish between their fluorescent signals and quantify each independently. We demonstrate the effectiveness of this method by examining copy number in the proto-oncogene FLT3 and the common V600E point mutation in BRAF. Using a series of well-characterized control samples and cancer cell lines, we confirmed the accuracy of our method in quantifying mutation percentage and integer value copy number changes. As another novel feature, our assay was able to detect a mutation comprising less than 1% of an otherwise wild-type sample, as well as copy number changes from cancers even in the context of significant dilution with normal DNA. This flexible and cost-effective method of independent DNA quantification proves to be a robust alternative to the commercialized TaqMan assay.
Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko
2013-01-01
A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.
Using more different and more familiar targets improves the detection of concealed information.
Suchotzki, Kristina; De Houwer, Jan; Kleinberg, Bennett; Verschuere, Bruno
2018-04-01
When embedded among a number of plausible irrelevant options, the presentation of critical (e.g., crime-related or autobiographical) information is associated with a marked increase in response time (RT). This RT effect crucially depends on the inclusion of a target/non-target discrimination task with targets being a dedicated set of items that require a unique response (press YES; for all other items press NO). Targets may be essential because they share a feature - familiarity - with the critical items. Whereas irrelevant items have not been encountered before, critical items are known from the event or the facts of the investigation. Target items are usually learned before the test, and thereby made familiar to the participants. Hence, familiarity-based responding needs to be inhibited on the critical items and may therefore explain the RT increase on the critical items. This leads to the hypothesis that the more participants rely on familiarity, the more pronounced the RT increase on critical items may be. We explored two ways to increase familiarity-based responding: (1) Increasing the number of different target items, and (2) using familiar targets. In two web-based studies (n = 357 and n = 499), both the number of different targets and the use of familiar targets facilitated concealed information detection. The effect of the number of different targets was small yet consistent across both studies, the effect of target familiarity was large in both studies. Our results support the role of familiarity-based responding in the Concealed Information Test and point to ways on how to improve validity of the Concealed Information Test. Copyright © 2018 Elsevier B.V. All rights reserved.
The Search for Habitable Worlds. 1. The Viability of a Starshade Mission
NASA Technical Reports Server (NTRS)
Turnbull, Margaret C.; Glassman, Tiffany; Roberge, Aki; Cash, Webster; Noecker, Charley; Lo, Amy; Mason, Brian; Oakley, Phil; Bally, John
2012-01-01
As part of NASA's mission to explore habitable planets orbiting nearby stars, this article explores the detection and characterization capabilities of a 4 m space telescope plus 50 m starshade located at the Earth-Sun L2 point, known as the New Worlds Observer (NWO). Our calculations include the true spectral types and distribution of stars on the sky, an iterative target selection protocol designed to maximize efficiency based on prior detections, and realistic mission constraints. We conduct simulated observing runs for a wide range in exozodiacal background levels (epsilon = 1-100 times the local zodi brightness) and overall prevalence of Earth-like terrestrial planets (eta(sub solar halo))0.1-1). We find that even without any return visits, the NWO baseline architecture (IWA = 65 mas, limiting FPB = 4 x 10(exp -11) can achieve a 95% probability of detecting and spectrally characterizing at least one habitable Earth-like planet and an expectation value of approximately 3 planets found, within the mission lifetime and delta V budgets, even in the worst-case scenario (eta(sub solar halo) = 0.1 and = epsilon = 100 zodis for every target). This achievement requires about 1 yr of integration time spread over the 5 yr mission, leaving the remainder of the telescope time for UV-NIR general astrophysics. Cost and technical feasibility considerations point to a "sweet spot" in starshade design near a 50 m starshade effective diameter. with 12 or 16 petals, at a distance of 70,000-100,000 km from the telescope.
Wu, Dong; Xu, Huo; Shi, Haimei; Li, Weihong; Sun, Mengze; Wu, Zai-Sheng
2017-03-08
K-Ras mutations at codon 12 play an important role in an early step of carcinogenesis. Here, a label-free colorimetric isothermal cascade amplification for ultrasensitive and specific detection of K-Ras point mutation is developed based on a double-hairpin molecular beacon (DHMB). The biosensor consists of DHMB probe and a primer-incorporated polymerization template (PPT) designed partly complementary to DHMB. In the presence of polymerase, target DNA is designed to trigger strand displacement amplification (SDA) via promote the hybridization of PPT with DHMB and subsequently initiates cascade amplification process with the help of the nicking endonuclease. During the hybridization and enzymatic reaction, G-quadruplex/hemin DNAzymes are generated, catalyzing the oxidation of ABTS 2- by H 2 O 2 in the presence of hemin. Utilizing the proposed facile colorimetric scheme, the target DNA can be quantified down to 4 pM with the dynamic response range of 5 orders of magnitude, indicating the substantially improved detection capability. Even more strikingly, point mutation in K-ras gene can be readily observed by the naked eye without the need for the labeling or expensive equipment. Given the high-performance for K-Ras analysis, the enhanced signal transduction capability associated with double-hairpin structure of DHMB provides a novel rout to screen biomarkers, and the descripted colorimetric biosensor seems to hold great promise for diagnostic applications of genetic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated Circuits for Rapid Sample Processing and Electrochemical Detection of Biomarkers
NASA Astrophysics Data System (ADS)
Besant, Justin
The trade-off between speed and sensitivity of detection is a fundamental challenge in the design of point-of-care diagnostics. As the relevant molecules in many diseases exist natively at extremely low levels, many gold-standard diagnostic tests are designed with high sensitivity at the expense of long incubations needed to amplify the target analytes. The central aim of this thesis is to design new strategies to detect biologically relevant analytes with both high speed and sensitivity. The response time of a biosensor is limited by the ability of the target analyte to accumulate to detectable levels at the sensor surface. We overcome this limitation by designing a range of integrated devices to optimize the flux of the analyte to the sensor by increasing the effective analyte concentration, shortening the required diffusion distance, and confining the analyte in close proximity to the sensor. We couple these devices with novel ultrasensitive electrochemical transduction strategies to convert rare analytes into a detectable signal. We showcase the clinical utility of these approaches with several applications including cancer diagnosis, bacterial identification, and antibiotic susceptibility profiling. We design and optimize a device to isolate rare cancer cells from the bloodstream with near 100% efficiency and 10 000-fold specificity. We analyse pathogen specific nucleic acids by lysing bacteria in close proximity to an electrochemical sensor and find that this approach has 10-fold higher sensitivity than standard lysis in bulk solution. We design an electronic chip to readout the antibiotic susceptibility profile with an hour-long incubation by concentrating bacteria into nanoliter chambers with integrated electrodes. Finally, we report a strategy for ultrasensitive visual readout of nucleic acids as low as 100 fM within 10 minutes using an amplification cascade. The strategies presented could guide the development of fast, sensitive and low-cost diagnostics for diseases not previously detectable at the point-of-care.
Retina-V1 model of detectability across the visual field
Bradley, Chris; Abrams, Jared; Geisler, Wilson S.
2014-01-01
A practical model is proposed for predicting the detectability of targets at arbitrary locations in the visual field, in arbitrary gray scale backgrounds, and under photopic viewing conditions. The major factors incorporated into the model include (a) the optical point spread function of the eye, (b) local luminance gain control (Weber's law), (c) the sampling array of retinal ganglion cells, (d) orientation and spatial frequency–dependent contrast masking, (e) broadband contrast masking, and (f) efficient response pooling. The model is tested against previously reported threshold measurements on uniform backgrounds (the ModelFest data set and data from Foley, Varadharajan, Koh, & Farias, 2007) and against new measurements reported here for several ModelFest targets presented on uniform, 1/f noise, and natural backgrounds at retinal eccentricities ranging from 0° to 10°. Although the model has few free parameters, it is able to account quite well for all the threshold measurements. PMID:25336179
Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.
Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen
2018-03-26
A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Living with a Red Dwarf: A Chandra Archival Study of dM Star Activity and Habitability
NASA Astrophysics Data System (ADS)
Engle, Scott
2017-09-01
We propose to analyze 6 archival Chandra visits, not pointed at, but serendipitously including 3 dM stars of known age. GJ 669 AB are a common proper motion pair, each are resolved and detected in 3 exposures, and LHS 373 is a much older dM star also detected on 3 exposures. Photometry (by us) of GJ 669 AB began 5 years ago, is ongoing, and has precisely determined rotation rates for both stars and evidence of frequent flaring from GJ 669 B. We will analyze the multiple exposures, derive an accurate mean level of X-ray activity from the targets, and also separate out and individually analyze and model any observed X-ray flares. This proposal will provide highly accurate coronal properties for the targets, but also very useful data for stellar evolution and planetary habitability studies.
Pivots for Pointing: Visually-Monitored Pointing Has Higher Arm Elevations than Pointing Blindfolded
ERIC Educational Resources Information Center
Wnuczko, Marta; Kennedy, John M.
2011-01-01
Observers pointing to a target viewed directly may elevate their fingertip close to the line of sight. However, pointing blindfolded, after viewing the target, they may pivot lower, from the shoulder, aligning the arm with the target as if reaching to the target. Indeed, in Experiment 1 participants elevated their arms more in visually monitored…
Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Ankit; Alam, Muhammad Ashraful, E-mail: alam@purdue.edu
2014-08-25
A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find thatmore » a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.« less
Zhou, Haidong; Ying, Tianqi; Wang, Xuelian; Liu, Jianbo
2016-01-01
Twelve selected pharmaceuticals including antibiotics, analgesics, antiepileptics and lipid regulators were analysed and detected in water samples collected from 18 sampling sections along the three main urban rivers in Yangpu District of Shanghai, China during four sampling campaigns. Besides, algal growth inhibition test was conducted to preliminarily assess the eco-toxicology induced by the target pharmaceuticals in the rivers. Mean levels for most of target compounds were generally below 100 ng/L at sampling sections, with the exception of caffeine and paracetamol presenting considerably high concentration. The detected pharmaceuticals in the urban rivers ranged from
NASA Astrophysics Data System (ADS)
Zhou, Haidong; Ying, Tianqi; Wang, Xuelian; Liu, Jianbo
2016-10-01
Twelve selected pharmaceuticals including antibiotics, analgesics, antiepileptics and lipid regulators were analysed and detected in water samples collected from 18 sampling sections along the three main urban rivers in Yangpu District of Shanghai, China during four sampling campaigns. Besides, algal growth inhibition test was conducted to preliminarily assess the eco-toxicology induced by the target pharmaceuticals in the rivers. Mean levels for most of target compounds were generally below 100 ng/L at sampling sections, with the exception of caffeine and paracetamol presenting considerably high concentration. The detected pharmaceuticals in the urban rivers ranged from
VizieR Online Data Catalog: ROSAT detected quasars. I. (Brinkmann+ 1997)
NASA Astrophysics Data System (ADS)
Brinkmann, W.; Yuan, W.
1996-09-01
We have compiled a sample of all quasars with measured radio emission from the Veron-Cetty - Veron catalogue (1993, VV93
Rennert, Hanna; Eng, Kenneth; Zhang, Tuo; Tan, Adrian; Xiang, Jenny; Romanel, Alessandro; Kim, Robert; Tam, Wayne; Liu, Yen-Chun; Bhinder, Bhavneet; Cyrta, Joanna; Beltran, Himisha; Robinson, Brian; Mosquera, Juan Miguel; Fernandes, Helen; Demichelis, Francesca; Sboner, Andrea; Kluk, Michael; Rubin, Mark A; Elemento, Olivier
2016-01-01
We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care. PMID:28781886
A low density microarray method for the identification of human papillomavirus type 18 variants.
Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C
2013-09-26
We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings.
A Low Density Microarray Method for the Identification of Human Papillomavirus Type 18 Variants
Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B.; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C.
2013-01-01
We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings. PMID:24077317
Jerris, Robert C; Williams, Sally R; MacDonald, Heather J; Ingebrigtsen, Danielle R; Westblade, Lars F; Rogers, Beverly B
2015-01-01
Background The FilmArray Respiratory Panel (RP) detects multiple pathogens, including Bordetella pertussis. The multiplex PCR system is appropriate for a core laboratory or point of care due to ease of use. The purpose of this study is to compare the analytical sensitivity of the FilmArray RP, which targets the promoter region of the B. pertussis toxin gene, with the Focus real-time PCR assay, which targets the insertion sequence IS481. Methods Seventy-one specimens from patients aged 1 month to 18 years, which had tested positive for B. pertussis using the Focus assay, were analysed using the FilmArray RP. Results Forty-six specimens were positive for B. pertussis by both the Focus and the FilmArray RP assays. Twenty-five specimens were negative for B. pertussis using the FilmArray RP assay, but positive using the Focus assay. Conclusions The FilmArray RP assays will detect approximately 1/3 less cases of B. pertussis than the Focus assay. PMID:25742911
Brooks, Adam D; Yeung, Kimy; Lewis, Gregory G; Phillips, Scott T
2015-09-07
Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.
Brooks, Adam D.; Yeung, Kimy; Lewis, Gregory G.
2015-01-01
Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics. PMID:26604988
DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection.
Qi, Lin; Xiao, Mingshu; Wang, Xiwei; Wang, Cheng; Wang, Lihua; Song, Shiping; Qu, Xiangmeng; Li, Li; Shi, Jiye; Pei, Hao
2017-09-19
The development of highly sensitive and selective methods for the detection of microRNA (miRNA) has attracted tremendous attention because of its importance in fundamental biological studies and diagnostic applications. In this work, we develop DNA-encoded Raman-active anisotropic nanoparticles modified origami paper analytical devices (oPADs) for rapid, highly sensitive, and specific miRNA detection. The Raman-active anisotropic nanoparticles were prepared using 10-mer oligo-A, -T, -C, and -G to mediate the growth of Ag cubic seeds into Ag nanoparticles (AgNPs) with different morphologies. The resulting AgNPs were further encoded with DNA probes to serve as effective surface-enhanced Raman scattering (SERS) probes. The analytical device was then fabricated on a single piece of SERS probes loaded paper-based substrate and assembled based on the principles of origami. The addition of the target analyte amplifies the Raman signals on DNA-encoded AgNPs through a target-dependent, sequence specific DNA hybridization assembly. This simple and low-cost analytical device is generic and applicable to a variety of miRNAs, allowing detection sensitivity down to 1 pM and assay time within 15 min, and therefore holds promising applications in point-of-care diagnostics.
Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng
2016-09-07
A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed "U shape" reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi.
Horká, Marie; Růzicka, Filip; Kubesová, Anna; Holá, Veronika; Slais, Karel
2009-05-15
In immunocompromised people fungal agents are able to cause serious infections with high mortality rate. An early diagnosis can increase the chances of survival of the affected patients. Simultaneously, the fungi produce toxins and they are frequent cause of allergy. Currently, various methods are used for detection and identification of these pathogens. They use microscopic examination and growth characteristic of the fungi. New methods are based on the analysis of structural elements of the target microorganisms such as proteins, polysaccharides, glycoproteins, nucleic acids, etc. for the construction of antibodies, probes, and primers for detection. The above-mentioned methods are time-consuming and elaborate. Here hydrophobic conidia from the cultures of different strains of the filamentous fungi were focused and separated by capillary zone electrophoresis and capillary isoelectric focusing. The detection was optimized by dynamic modifying of conidia by the nonionogenic tenside on the basis of pyrenebutanoate. Down to 10 labeled conidia of the fungal strains were fluorometrically detected, and isoelectric points of conidia were determined. The observed isoelectric points were compared with those obtained from the separation of the cultured clinical samples, and they were found to be not host-specific.
A Survey of nearby, nearly face-on spiral galaxies
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2014-09-01
This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.
NASA Astrophysics Data System (ADS)
Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash
2012-06-01
This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air...) The regulations. (i) Through navigation of surface craft outside the target areas will be permitted at...
The increasing X-Ray Activity of PKS 2155-304
NASA Astrophysics Data System (ADS)
Kapanadze, Bidzina
2016-10-01
The southern TeV-detected HBL source PKS 2155-304 (z=0.116) is prominent with its very strong TeV/X-ray flaring behaviour (see, e.g., Aharonian et al. 2009, A & A, 502, 749; Abramowski et al. 2012, A & A, 539; Kapanadze et al. 2014, MNRAS, 444; 1076), and, therefore, it represents one of the frequent Swift targets (203 observations since 2005 November 17). In the framework of our Target of Opportunity (ToO) request Number 8344, the source was pointed nine time by X-Ray Telescope onboard the Swift satellite (Swift-XRT) since 2016 August 5 with one week intervals between the successive observations.
A Study of Impact Point Detecting Method Based on Seismic Signal
NASA Astrophysics Data System (ADS)
Huo, Pengju; Zhang, Yu; Xu, Lina; Huang, Yong
The projectile landing position has to be determined for its recovery and range in the targeting test. In this paper, a global search method based on the velocity variance is proposed. In order to verify the applicability of this method, simulation analysis within the scope of four million square meters has been conducted in the same array structure of the commonly used linear positioning method, and MATLAB was used to compare and analyze the two methods. The compared simulation results show that the global search method based on the speed of variance has high positioning accuracy and stability, which can meet the needs of impact point location.
Costa, Tiago; Cardoso, Filipe A; Germano, Jose; Freitas, Paulo P; Piedade, Moises S
2017-10-01
The development of giant magnetoresistive (GMR) sensors has demonstrated significant advantages in nanomedicine, particularly for ultrasensitive point-of-care diagnostics. To this end, the detection system is required to be compact, portable, and low power consuming at the same time that a maximum signal to noise ratio is maintained. This paper reports a CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. Based on the characterization of the GMR sensor's signal and noise, CMOS building blocks (i.e., current source, multiplexers, and preamplifier) were designed targeting a negligible noise when compared with the GMR sensor's noise and a low power consumption. The CMOS front-end was fabricated using AMS [Formula: see text] technology and the magnetoresistive sensors were post-fabricated on top of the CMOS chip with high yield ( [Formula: see text]). Due to its low circuit noise (16 [Formula: see text]) and overall equivalent magnetic noise ([Formula: see text]), the full system was able to detect 250 nm magnetic nanoparticles with a circuit imposed signal-to-noise ratio degradation of only -1.4 dB. Furthermore, the low power consumption (6.5 mW) and small dimensions ([Formula: see text] ) of the presented solution guarantees the portability of the detection system allowing its usage at the point-of-care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Jianbing, E-mail: yijianbing8@163.com; Yang, Xuan, E-mail: xyang0520@263.net; Li, Yan-Ran, E-mail: lyran@szu.edu.cn
2015-10-15
Purpose: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. Methods: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered atmore » points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. Results: The performances of the authors’ method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors’ method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors’ method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors’ method ranks 24 of 39. According to the index of the maximum shear stretch, the authors’ method is also efficient to describe the discontinuous motion at the lung boundaries. Conclusions: By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors’ method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.« less
Yi, Jianbing; Yang, Xuan; Chen, Guoliang; Li, Yan-Ran
2015-10-01
Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. The performances of the authors' method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors' method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors' method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors' method ranks 24 of 39. According to the index of the maximum shear stretch, the authors' method is also efficient to describe the discontinuous motion at the lung boundaries. By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors' method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.
NASA Astrophysics Data System (ADS)
Wiegert, R. F.
2009-05-01
A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.
NASA Astrophysics Data System (ADS)
Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.
2015-05-01
Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.
Bogani, Patrizia; Spiriti, Maria Michela; Lazzarano, Stefano; Arcangeli, Annarosa; Buiatti, Marcello; Minunni, Maria
2011-11-01
The World Anti-Doping Agency fears the use of gene doping to enhance athletic performances. Thus, a bioanalytical approach based on end point PCR for detecting markers' of transgenesis traceability was developed. A few sequences from two different vectors using an animal model were selected and traced in different tissues and at different times. In particular, enhanced green fluorescent protein gene and a construct-specific new marker were targeted in the analysis. To make the developed detection approach open to future routine doping analysis, matrices such as urine and tears as well blood were also tested. This study will have impact in evaluating the vector transgenes traceability for the detection of a gene doping event by non-invasive sampling.
NASA Astrophysics Data System (ADS)
Zheng, Tingting; Tan, Tingting; Zhang, Qingfeng; Fu, Jia-Ju; Wu, Jia-Jun; Zhang, Kui; Zhu, Jun-Jie; Wang, Hui
2013-10-01
We have developed a robust, nanobiotechnology-based electrochemical cytosensing approach with high sensitivity, selectivity, and reproducibility toward the simultaneous multiplex detection and classification of both acute myeloid leukemia and acute lymphocytic leukemia cells. The construction of the electrochemical cytosensor involves the hierarchical assembly of dual aptamer-functionalized, multilayered graphene-Au nanoparticle electrode interface and the utilization of hybrid electrochemical nanoprobes co-functionalized with redox tags, horseradish peroxidase, and cell-targeting nucleic acid aptamers. The hybrid nanoprobes are multifunctional, capable of specifically targeting the cells of interest, amplifying the electrochemical signals, and generating distinguishable signals for multiplex cytosensing. The as-assembled electrode interface not only greatly facilitates the interfacial electron transfer process due to its high conductivity and surface area but also exhibits excellent biocompatibility and specificity for cell recognition and adhesion. A superstructured sandwich-type sensor geometry is adopted for electrochemical cytosensing, with the cells of interest sandwiched between the nanoprobes and the electrode interface. Such an electrochemical sensing strategy allows for ultrasensitive, multiplex acute leukemia cytosensing with a detection limit as low as ~350 cells per mL and a wide linear response range from 5 × 102 to 1 × 107 cells per mL for HL-60 and CEM cells, with minimal cross-reactivity and interference from non-targeting cells. This electrochemical cytosensing approach holds great promise as a new point-of-care diagnostic tool for early detection and classification of human acute leukemia and may be readily expanded to multiplex cytosensing of other cancer cells.We have developed a robust, nanobiotechnology-based electrochemical cytosensing approach with high sensitivity, selectivity, and reproducibility toward the simultaneous multiplex detection and classification of both acute myeloid leukemia and acute lymphocytic leukemia cells. The construction of the electrochemical cytosensor involves the hierarchical assembly of dual aptamer-functionalized, multilayered graphene-Au nanoparticle electrode interface and the utilization of hybrid electrochemical nanoprobes co-functionalized with redox tags, horseradish peroxidase, and cell-targeting nucleic acid aptamers. The hybrid nanoprobes are multifunctional, capable of specifically targeting the cells of interest, amplifying the electrochemical signals, and generating distinguishable signals for multiplex cytosensing. The as-assembled electrode interface not only greatly facilitates the interfacial electron transfer process due to its high conductivity and surface area but also exhibits excellent biocompatibility and specificity for cell recognition and adhesion. A superstructured sandwich-type sensor geometry is adopted for electrochemical cytosensing, with the cells of interest sandwiched between the nanoprobes and the electrode interface. Such an electrochemical sensing strategy allows for ultrasensitive, multiplex acute leukemia cytosensing with a detection limit as low as ~350 cells per mL and a wide linear response range from 5 × 102 to 1 × 107 cells per mL for HL-60 and CEM cells, with minimal cross-reactivity and interference from non-targeting cells. This electrochemical cytosensing approach holds great promise as a new point-of-care diagnostic tool for early detection and classification of human acute leukemia and may be readily expanded to multiplex cytosensing of other cancer cells. Electronic supplementary information (ESI) available: Additional figures as noted in the text. See DOI: 10.1039/c3nr02903d
Lin, Zhimin; Zeng, Ying; Tong, Li; Zhang, Hangming; Zhang, Chi
2017-01-01
The application of electroencephalogram (EEG) generated by human viewing images is a new thrust in image retrieval technology. A P300 component in the EEG is induced when the subjects see their point of interest in a target image under the rapid serial visual presentation (RSVP) experimental paradigm. We detected the single-trial P300 component to determine whether a subject was interested in an image. In practice, the latency and amplitude of the P300 component may vary in relation to different experimental parameters, such as target probability and stimulus semantics. Thus, we proposed a novel method, Target Recognition using Image Complexity Priori (TRICP) algorithm, in which the image information is introduced in the calculation of the interest score in the RSVP paradigm. The method combines information from the image and EEG to enhance the accuracy of single-trial P300 detection on the basis of traditional single-trial P300 detection algorithm. We defined an image complexity parameter based on the features of the different layers of a convolution neural network (CNN). We used the TRICP algorithm to compute for the complexity of an image to quantify the effect of different complexity images on the P300 components and training specialty classifier according to the image complexity. We compared TRICP with the HDCA algorithm. Results show that TRICP is significantly higher than the HDCA algorithm (Wilcoxon Sign Rank Test, p<0.05). Thus, the proposed method can be used in other and visual task-related single-trial event-related potential detection. PMID:29283998
Cardoso-Leite, Pedro; Waszak, Florian
2014-07-01
A briefly flashed target stimulus can become "invisible" when immediately followed by a mask-a phenomenon known as backward masking, which constitutes a major tool in the cognitive sciences. One form of backward masking is termed metacontrast masking. It is generally assumed that in metacontrast masking, the mask suppresses activity on which the conscious perception of the target relies. This assumption biases conclusions when masking is used as a tool-for example, to study the independence between perceptual detection and motor reaction. This is because other models can account for reduced perceptual performance without requiring suppression mechanisms. In this study, we used signal detection theory to test the suppression model against an alternative view of metacontrast masking, referred to as the summation model. This model claims that target- and mask-related activations fuse and that the difficulty in detecting the target results from the difficulty to discriminate this fused response from the response produced by the mask alone. Our data support this alternative view. This study is not a thorough investigation of metacontrast masking. Instead, we wanted to point out that when a different model is used to account for the reduced perceptual performance in metacontrast masking, there is no need to postulate a dissociation between perceptual and motor responses to account for the data. Metacontrast masking, as implemented in the Fehrer-Raab situation, therefore is not a valid method to assess perceptual-motor dissociations.
Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi
2012-11-28
This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners.
Assessment of Schrodinger Eigenmaps for target detection
NASA Astrophysics Data System (ADS)
Dorado Munoz, Leidy P.; Messinger, David W.; Czaja, Wojtek
2014-06-01
Non-linear dimensionality reduction methods have been widely applied to hyperspectral imagery due to its structure as the information can be represented in a lower dimension without losing information, and because the non-linear methods preserve the local geometry of the data while the dimension is reduced. One of these methods is Laplacian Eigenmaps (LE), which assumes that the data lies on a low dimensional manifold embedded in a high dimensional space. LE builds a nearest neighbor graph, computes its Laplacian and performs the eigendecomposition of the Laplacian. These eigenfunctions constitute a basis for the lower dimensional space in which the geometry of the manifold is preserved. In addition to the reduction problem, LE has been widely used in tasks such as segmentation, clustering, and classification. In this regard, a new Schrodinger Eigenmaps (SE) method was developed and presented as a semi-supervised classification scheme in order to improve the classification performance and take advantage of the labeled data. SE is an algorithm built upon LE, where the former Laplacian operator is replaced by the Schrodinger operator. The Schrodinger operator includes a potential term V, that, taking advantage of the additional information such as labeled data, allows clustering of similar points. In this paper, we explore the idea of using SE in target detection. In this way, we present a framework where the potential term V is defined as a barrier potential: a diagonal matrix encoding the spatial position of the target, and the detection performance is evaluated by using different targets and different hyperspectral scenes.
Milagro Observations of Potential TeV Emitters
NASA Technical Reports Server (NTRS)
Abdo, A. A.; Abeysekara, A. U.; Allen, B. T.; Aune, T.; Barber, A. S.; Berley, D.; Braun, J.; Chen, C.; Christopher, G. E.; DeYoung, T.;
2014-01-01
This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL catalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi- LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.
Microfluidics in Malignant Glioma Research and Precision Medicine
Logun, Meghan; Zhao, Wujun
2018-01-01
Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12–15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM. PMID:29780878
Electronic method for autofluorography of macromolecules on two-D matrices. [Patent application
Davidson, J.B.; Case, A.L.
1981-12-30
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100 to 1000 times.
Lidars for smoke and dust cloud diagnostics
NASA Astrophysics Data System (ADS)
Fujimura, S. F.; Warren, R. E.; Lutomirski, R. F.
1980-11-01
An algorithm that integrates a time-resolved lidar signature for use in estimating transmittance, extinction coefficient, mass concentration, and CL values generated under battlefield conditions is applied to lidar signatures measured during the DIRT-I tests. Estimates are given for the dependence of the inferred transmittance and extinction coefficient on uncertainties in parameters such as the obscurant backscatter-to-extinction ratio. The enhanced reliability in estimating transmittance through use of a target behind the obscurant cloud is discussed. It is found that the inversion algorithm can produce reliable estimates of smoke or dust transmittance and extinction from all points within the cloud for which a resolvable signal can be detected, and that a single point calibration measurement can convert the extinction values to mass concentration for each resolvable signal point.
Post-image acquisition processing approaches for coherent backscatter validation
NASA Astrophysics Data System (ADS)
Smith, Christopher A.; Belichki, Sara B.; Coffaro, Joseph T.; Panich, Michael G.; Andrews, Larry C.; Phillips, Ronald L.
2014-10-01
Utilizing a retro-reflector from a target point, the reflected irradiance of a laser beam traveling back toward the transmitting point contains a peak point of intensity known as the enhanced backscatter (EBS) phenomenon. EBS is dependent on the strength regime of turbulence currently occurring within the atmosphere as the beam propagates across and back. In order to capture and analyze this phenomenon so that it may be compared to theory, an imaging system is integrated into the optical set up. With proper imaging established, we are able to implement various post-image acquisition techniques to help determine detection and positioning of EBS which can then be validated with theory by inspection of certain dependent meteorological parameters such as the refractive index structure parameter, Cn2 and wind speed.
Pancreatic cancer cell detection by targeted lipid microbubbles and multiphoton imaging.
Cromey, Benjamin; McDaniel, Ashley; Matsunaga, Terry; Vagner, Josef; Kieu, Khanh Quoc; Banerjee, Bhaskar
2018-04-01
Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Tracking, aiming, and hitting the UAV with ordinary assault rifle
NASA Astrophysics Data System (ADS)
Racek, František; Baláž, Teodor; Krejčí, Jaroslav; Procházka, Stanislav; Macko, Martin
2017-10-01
The usage small-unmanned aerial vehicles (UAVs) is significantly increasing nowadays. They are being used as a carrier of military spy and reconnaissance devices (taking photos, live video streaming and so on), or as a carrier of potentially dangerous cargo (intended for destruction and killing). Both ways of utilizing the UAV cause the necessity to disable it. From the military point of view, to disable the UAV means to bring it down by a weapon of an ordinary soldier that is the assault rifle. This task can be challenging for the soldier because he needs visually detect and identify the target, track the target visually and aim on the target. The final success of the soldier's mission depends not only on the said visual tasks, but also on the properties of the weapon and ammunition. The paper deals with possible methods of prediction of probability of hitting the UAV targets.
NASA Technical Reports Server (NTRS)
Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; Graham, James R.; Wallace, J. Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J.; Perrin, Marshall D.; Marley, Mark S.;
2016-01-01
Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of pCL99:73% less than 1:7%. We discuss our results in the context of T dwarf cloud models and photometric variability.
Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; ...
2016-03-29
Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization ofmore » $${p}_{\\mathrm{CL}99.73\\%}\\leqslant 2.4\\%$$. In conclusion, we discuss our results in the context of T dwarf cloud models and photometric variability.« less
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person,Suzette; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (1) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows that SPA can detect porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points.
Visual detection of nucleic acids based on Mie scattering and the magnetophoretic effect.
Zhao, Zichen; Chen, Shan; Ho, John Kin Lim; Chieng, Ching-Chang; Chen, Ting-Hsuan
2015-12-07
Visual detection of nucleic acid biomarkers is a simple and convenient approach to point-of-care applications. However, issues of sensitivity and the handling of complex bio-fluids have posed challenges. Here we report on a visual method detecting nucleic acids using Mie scattering of polystyrene microparticles and the magnetophoretic effect. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) were surface-functionalised with oligonucleotide probes, which can hybridise with target oligonucleotides in juxtaposition and lead to the formation of MMPs-targets-PMPs sandwich structures. Using an externally applied magnetic field, the magnetophoretic effect attracts the sandwich structure to the sidewall, which reduces the suspended PMPs and leads to a change in the light transmission via the Mie scattering. Based on the high extinction coefficient of the Mie scattering (∼3 orders of magnitude greater than that of the commonly used gold nanoparticles), our results showed the limit of detection to be 4 pM using a UV-Vis spectrometer or 10 pM by direct visual inspection. Meanwhile, we also demonstrated that this method is compatible with multiplex assays and detection in complex bio-fluids, such as whole blood or a pool of nucleic acids, without purification in advance. With a simplified operation procedure, low instrumentation requirement, high sensitivity and compatibility with complex bio-fluids, this method provides an ideal solution for visual detection of nucleic acids in resource-limited settings.
Zhang, Bin Bin; Shi, Yi; Chen, Hui; Zhu, Qing Xia; Lu, Feng; Li, Ying Wei
2018-01-02
By coupling surface-enhanced Raman spectroscopy (SERS) with thin-layer chromatography (TLC), a powerful method for detecting complex samples was successfully developed. However, in the TLC-SERS method, metal nanoparticles serving as the SERS-active substrate are likely to disturb the detection of target compounds, particularly in overlapping compounds after TLC development. In addition, the SERS detection of compounds that are invisible under both visible light and UV 254/365 after TLC development is still a significant challenge. In this study, we demonstrated a facile strategy to fabricate a TLC plate with metal-organic framework-modified gold nanoparticles as a separable SERS substrate, on which all separated components, including overlapping and invisible compounds, could be detected by a point-by-point SERS scan along the developing direction. Rhodamine 6G (R6G) was used as a probe to evaluate the performance of the substrate. The results indicated that the substrate provided good sensitivity and reproducibility, and optimal SERS signals could be collected in 5 s. Furthermore, this new substrate exhibited a long shelf life. Thus, our method has great potential for the sensitive and rapid detection of overlapping and invisible compounds in complex samples after TLC development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Tarumi, Toshiyasu; Small, Gary W; Combs, Roger J; Kroutil, Robert T
2004-04-01
Finite impulse response (FIR) filters and finite impulse response matrix (FIRM) filters are evaluated for use in the detection of volatile organic compounds with wide spectral bands by direct analysis of interferogram data obtained from passive Fourier transform infrared (FT-IR) measurements. Short segments of filtered interferogram points are classified by support vector machines (SVMs) to implement the automated detection of heated plumes of the target analyte, ethanol. The interferograms employed in this study were acquired with a downward-looking passive FT-IR spectrometer mounted on a fixed-wing aircraft. Classifiers are trained with data collected on the ground and subsequently used for the airborne detection. The success of the automated detection depends on the effective removal of background contributions from the interferogram segments. Removing the background signature is complicated when the analyte spectral bands are broad because there is significant overlap between the interferogram representations of the analyte and background. Methods to implement the FIR and FIRM filters while excluding background contributions are explored in this work. When properly optimized, both filtering procedures provide satisfactory classification results for the airborne data. Missed detection rates of 8% or smaller for ethanol and false positive rates of at most 0.8% are realized. The optimization of filter design parameters, the starting interferogram point for filtering, and the length of the interferogram segments used in the pattern recognition is discussed.
Backscattering from targets residing in caustics resulting from ocean boundary interactions
NASA Astrophysics Data System (ADS)
Dzikowicz, Benjamin R.; Marston, Philip L.
2005-04-01
Detection of targets by backscatter in shallow water can be enhanced by interactions with ocean boundaries. A laboratory experiment is performed where a spherical target passes through an Airy caustic formed by a curved surface. When the target resides in the insonified region of the caustic there are two sets of multi-path rays: two pairs reflecting once off the surface (either to or from the target), and three reflecting twice off the surface (to and from the target). When a target moves across the caustic the singly reflected rays merge, as do the doubly reflected. With a longer tone burst the rays in each set overlap and the backscatter is greatly enhanced as the target moves into the insonified region. For a point target the singly reflected backscatter scales as an Airy function [B. R. Dzikowicz and P. L. Marston, J. Acoust. Soc. Am. 116, 2751-2757 (2004)], and the doubly reflected as the square of an Airy function. For a finite target the doubly reflected backscatter unfolds into a hyperbolic umbilic function. The arguments of the Airy and Hyperbolic Umbilic functions are calculated using the relative echo times of transient pulses. [Work supported by ONR.
A robust recognition and accurate locating method for circular coded diagonal target
NASA Astrophysics Data System (ADS)
Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin
2017-10-01
As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.
begin{center} MUSIC Algorithms for Rebar Detection
NASA Astrophysics Data System (ADS)
Leone, G.; Solimene, R.
2012-04-01
In this contribution we consider the problem of detecting and localizing small cross section, with respect to the wavelength, scatterers from their scattered field once a known incident field interrogated the scene where they reside. A pertinent applicative context is rebar detection within concrete pillar. For such a case, scatterers to be detected are represented by rebars themselves or by voids due to their lacking. In both cases, as scatterers have point-like support, a subspace projection method can be conveniently exploited [1]. However, as the field scattered by rebars is stronger than the one due to voids, it is expected that the latter can be difficult to be detected. In order to circumvent this problem, in this contribution we adopt a two-step MUltiple SIgnal Classification (MUSIC) detection algorithm. In particular, the first stage aims at detecting rebars. Once rebar are detected, their positions are exploited to update the Green's function and then a further detection scheme is run to locate voids. However, in this second case, background medium encompasses also the rabars. The analysis is conducted numerically for a simplified two-dimensional scalar scattering geometry. More in detail, as is usual in MUSIC algorithm, a multi-view/multi-static single-frequency configuration is considered [2]. Baratonia, G. Leone, R. Pierri, R. Solimene, "Fault Detection in Grid Scattering by a Time-Reversal MUSIC Approach," Porc. Of ICEAA 2011, Turin, 2011. E. A. Marengo, F. K. Gruber, "Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets," EURASIP Journal on Advances in Signal Processing, 2007, Article ID 17342, 16 pages (2007).
NASA Astrophysics Data System (ADS)
Chan, YinThai
2016-03-01
Colloidal semiconductor nanocrystals are ideal fluorophores for clinical diagnostics, therapeutics, and highly sensitive biochip applications due to their high photostability, size-tunable color of emission and flexible surface chemistry. The relatively recent development of core-seeded semiconductor nanorods showed that the presence of a rod-like shell can confer even more advantageous physicochemical properties than their spherical counterparts, such as large multi-photon absorption cross-sections and facet-specific chemistry that can be exploited to deposit secondary nanoparticles. It may be envisaged that these highly fluorescent nanorods can be integrated with large scale integrated (LSI) microfluidic systems that allow miniaturization and integration of multiple biochemical processes in a single device at the nanoliter scale, resulting in a highly sensitive and automated detection platform. In this talk, I will describe a LSI microfluidic device that integrates RNA extraction, reverse transcription to cDNA, amplification and target pull-down to detect histidine decarboxylase (HDC) gene directly from human white blood cells samples. When anisotropic colloidal semiconductor nanorods (NRs) were used as the fluorescent readout, the detection limit was found to be 0.4 ng of total RNA, which was much lower than that obtained using spherical quantum dots (QDs) or organic dyes. This was attributed to the large action cross-section of NRs and their high probability of target capture in a pull-down detection scheme. The combination of large scale integrated microfluidics with highly fluorescent semiconductor NRs may find widespread utility in point-of-care devices and multi-target diagnostics.
Kearney, Paddy; Stafford, Bob; Gormley, Gerard J.; Crockard, Martin A.; Gilpin, Deirdre F.
2018-01-01
Background Urinary Tract Infections (UTIs) are common bacterial infections, second only to respiratory tract infections and particularly prevalent within primary care. Conventional detection of UTIs is culture, however, return of results can take between 24 and 72 hours. The introduction of a point of care (POC) test would allow for more timely identification of UTIs, facilitating improved, targeted treatment. This study aimed to obtain consensus on the criteria required for a POC UTI test, to meet patient need within primary care. Methods Criteria for consideration were compiled by the research team. These criteria were validated through a two-round Delphi process, utilising an expert panel of healthcare professionals from across Europe and United States of America. Using web-based questionnaires, panellists recorded their level of agreement with each criterion based on a 5-point Likert Scale, with space for comments. Using median response, interquartile range and comments provided, criteria were accepted/rejected/revised depending on pre-agreed cut-off scores. Results The first round questionnaire presented thirty-three criteria to the panel, of which 22 were accepted. Consensus was not achieved for the remaining 11 criteria. Following response review, one criterion was removed, while after revision, the remaining 10 criteria entered the second round. Of these, four were subsequently accepted, resulting in 26 criteria considered appropriate for a POC test to detect urinary infections. Conclusion This study generated an approved set of criteria for a POC test to detect urinary infections. Criteria acceptance and comments provided by the healthcare professionals also supports the development of a multiplex point of care UTI test. PMID:29879161
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity.
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-29
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
Detecting insider activity using enhanced directory virtualization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwan; Claycomb, William R.
2010-07-01
Insider threats often target authentication and access control systems, which are frequently based on directory services. Detecting these threats is challenging, because malicious users with the technical ability to modify these structures often have sufficient knowledge and expertise to conceal unauthorized activity. The use of directory virtualization to monitor various systems across an enterprise can be a valuable tool for detecting insider activity. The addition of a policy engine to directory virtualization services enhances monitoring capabilities by allowing greater flexibility in analyzing changes for malicious intent. The resulting architecture is a system-based approach, where the relationships and dependencies between datamore » sources and directory services are used to detect an insider threat, rather than simply relying on point solutions. This paper presents such an architecture in detail, including a description of implementation results.« less
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity
NASA Astrophysics Data System (ADS)
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-01
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua
2017-09-27
Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.
Array Biosensor for Toxin Detection: Continued Advances
Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Ngundi, Miriam M.; Ligler, Frances S.
2008-01-01
The following review focuses on progress made in the last five years with the NRL Array Biosensor, a portable instrument for rapid and simultaneous detection of multiple targets. Since 2003, the Array Biosensor has been automated and miniaturized for operation at the point-of-use. The Array Biosensor has also been used to demonstrate (1) quantitative immunoassays against an expanded number of toxins and toxin indicators in food and clinical fluids, and (2) the efficacy of semi-selective molecules as alternative recognition moieties. Blind trials, with unknown samples in a variety of matrices, have demonstrated the versatility, sensitivity, and reliability of the automated system. PMID:27873991
2014-05-01
hand and right hand on the piano, or strumming and chording on the guitar . Perceptual This skill category involves detecting and interpreting sensory...measured as the percent correct, # correct, accumulated points, task/test scoring correct action/timing/performance. This also includes quality rating by...competition and scoring , as well as constraints, privileges and penalties. Simulation-Based The primary delivery environment is an interactive synthetic
The role of the right posterior parietal cortex in temporal order judgment.
Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min
2009-03-01
Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the processing speed of a visual target, we applied single-pulse TMS over the region in 14 normal subjects, while they judged the temporal order of two consecutive visual stimuli. Stimulus-onset-asynchrony (SOA) randomly varied between -100 and 100 ms in 20-ms steps (with a positive SOA when a target appeared on the right hemi-field before the other on the left), and a point of subjective simultaneity was measured for individual subjects. TMS stimulation was time-locked at 50, 100, 150, and 200 ms after the onset of the first stimulus, and results in trials with TMS on right PPC were compared with those in trials without TMS. TMS over the right PPC delayed the detection of a visual target in the contralateral, i.e., left hemi-field by 24 (+/-7 SE) ms and 16 (+/-4 SE) ms, when the stimulation was given at 50 and 100 ms after the first target onset. In contrast, TMS on the left PPC was not effective. These results show that the right PPC is important in a timely detection of a target appearing on the left visual field, especially in competition with another target simultaneously appearing in the opposite field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, M; Matsuo, Y; Mukumoto, N
Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonalmore » kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.« less
3-Dimensional Reconstruction of the ROSETTA Targets - Application to Asteroid 2867 Steins
NASA Astrophysics Data System (ADS)
Besse, Sebastien; Groussin, O.; Jorda, L.; Lamy, P.; OSIRIS Team
2008-09-01
The OSIRIS imaging experiment aboard the Rosetta spacecraft will image asteroids Steins in September 2008 and Lutetia in 2010, and comet 67P/Churyumov-Gerasimenko in 2014. An accurate determination of the shape is a key point for the success of the mission operations and scientific objectives. Based on the experience of previous space missions (Deep Impact, Near, Galileo, Hayabusa), we are developing our own procedure for the shape reconstruction of small bodies. We use two different techniques : i) limb and terminator constraints and ii) ground control points (GCP) constraints. The first method allows the determination of a rough shape of the body when it is poorly resolved and no features are visible on the surface, while the second method provides an accurate shape model using high resolution images. We are currently testing both methods on simulated data, using and developing different algorithms for limb and terminator extraction (e.g.,wavelet), detection of points of interest (Harris, Susan, Fast Corner Detection), points pairing using correlation techniques (geometric model) and 3-dimensional reconstruction using line-of-sight information (photogrammetry). Both methods will be fully automated. We will hopefully present the 3D reconstruction of the Steins asteroid from images obtained during its flyby. Acknowledgment: Sébastien Besse acknowledges CNES and Thales for funding.
Arndt, Annette; Steinestel, Konrad; Rump, Alexis; Sroya, Manveer; Bogdanova, Tetiana; Kovgan, Leonila; Port, Matthias; Abend, Michael; Eder, Stefan
2018-04-06
Childhood radiation exposure has been associated with increased papillary thyroid carcinoma (PTC) risk. The role of anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related PTC remains unclear, but STRN-ALK fusions have recently been detected in PTCs from radiation exposed persons after Chernobyl using targeted next-generation sequencing and RNA-seq. We investigated ALK and RET gene rearrangements as well as known driver point mutations in PTC tumours from 77 radiation-exposed patients (mean age at surgery 22.4 years) and PTC tumours from 19 non-exposed individuals after the Chernobyl accident. ALK rearrangements were detected by fluorescence in situ hybridisation (FISH) and confirmed with immunohistochemistry (IHC); point mutations in the BRAF and RAS genes were detected by DNA pyrosequencing. Among the 77 tumours from exposed persons, we identified 7 ALK rearrangements and none in the unexposed group. When combining ALK and RET rearrangements, we found 24 in the exposed (31.2%) compared to two (10.5%) in the unexposed group. Odds ratios increased significantly in a dose-dependent manner up to 6.2 (95%CI: 1.1, 34.7; p = 0.039) at Iodine-131 thyroid doses >500 mGy. In total, 27 cases carried point mutations of BRAF or RAS genes, yet logistic regression analysis failed to identify significant dose association. To our knowledge we are the first to describe ALK rearrangements in post-Chernobyl PTC samples using routine methods such as FISH and IHC. Our findings further support the hypothesis that gene rearrangements, but not oncogenic driver mutations, are associated with ionizing radiation-related tumour risk. IHC may represent an effective method for ALK-screening in PTCs with known radiation aetiology, which is of clinical value since oncogenic ALK activation might represent a valuable target for small molecule inhibitors. © 2018 The Authors The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.
Geophysical investigation of the June 6, 1944 D-Day invasion site at Pointe du Hoc, Normandy, France
NASA Astrophysics Data System (ADS)
Everett, M. E.; Pierce, C. J.; Warden, R. R.; Burt, R. A.
2005-05-01
A near-surface geophysical survey at the D-Day invasion site atop the cliffs at Pointe du Hoc, Normandy, France was carried out using ground-penetrating radar, electromagnetic induction, and magnetic gradiometry equipment. The subsurface targets of investigation are predominantly buried concrete and steel structures and earthworks associated with the German coastal fortifications at this stronpoint of Hitler's Atlantic Wall. The targets are readily detectable embedded within the vadose zone of a weakly magnetic, electrically resistive loess soil cover. The radar and electromagnetic induction responses lend themselves to plan-view imaging of the subsurface, while the magnetics data reveal the presence of buried magnetic bodies in a more subtle fashion. Several intriguing geophysical signatures were discovered, including what may be the buried remains of a railway turntable, ordnance fragments in the bomb craters, a buried steel-reinforced concrete trench, and a linear chain of machine gun firing positins. Geophysical prospecting is shown to be a very powerful tool for historical battlefield characterization.
The effect of visual context on manual localization of remembered targets
NASA Technical Reports Server (NTRS)
Barry, S. R.; Bloomberg, J. J.; Huebner, W. P.
1997-01-01
This paper examines the contribution of egocentric cues and visual context to manual localization of remembered targets. Subjects pointed in the dark to the remembered position of a target previously viewed without or within a structured visual scene. Without a remembered visual context, subjects pointed to within 2 degrees of the target. The presence of a visual context with cues of straight ahead enhanced pointing performance to the remembered location of central but not off-center targets. Thus, visual context provides strong visual cues of target position and the relationship of body position to target location. Without a visual context, egocentric cues provide sufficient input for accurate pointing to remembered targets.
Ukimura, Osamu; Marien, Arnaud; Palmer, Suzanne; Villers, Arnauld; Aron, Manju; de Castro Abreu, Andre Luis; Leslie, Scott; Shoji, Sunao; Matsugasumi, Toru; Gross, Mitchell; Dasgupta, Prokar; Gill, Inderbir S
2015-11-01
To compare the diagnostic yield of targeted prostate biopsy using image-fusion of multi-parametric magnetic resonance (mp-MR) with real-time trans-rectal ultrasound (TRUS) for clinically significant lesions that are suspicious only on mp-MR versus lesions that are suspicious on both mp-MR and TRUS. Pre-biopsy MRI and TRUS were each scaled on a 3-point score: highly suspicious, likely, and unlikely for clinically significant cancer (sPCa). Using an MR-TRUS elastic image-fusion system (Koelis), a 127 consecutive patients with a suspicious clinically significant index lesion on pre-biopsy mp-MR underwent systematic biopsies and MR/US-fusion targeted biopsies (01/2010-09/2013). Biopsy histological outcomes were retrospectively compared with MR suspicion level and TRUS-visibility of the MR-suspicious lesion. sPCa was defined as biopsy Gleason score ≥7 and/or maximum cancer core length ≥5 mm. Targeted biopsies outperformed systematic biopsies in overall cancer detection rate (61 vs. 41 %; p = 0.007), sPCa detection rate (43 vs. 23 %; p = 0.0013), cancer core length (7.5 vs. 3.9 mm; p = 0.0002), and cancer rate per core (56 vs. 12 %; p < 0.0001), respectively. Highly suspicious lesions on mp-MR correlated with higher positive biopsy rate (p < 0.0001), higher Gleason score (p = 0.018), and greater cancer core length (p < 0.0001). Highly suspicious lesions on TRUS in corresponding to MR-suspicious lesion had a higher biopsy yield (p < 0.0001) and higher sPCa detection rate (p < 0.0001). Since majority of MR-suspicious lesions were also suspicious on TRUS, TRUS-visibility allowed selection of the specific MR-visible lesion which should be targeted from among the multiple TRUS suspicious lesions in each prostate. MR-TRUS fusion-image-guided biopsies outperformed systematic biopsies. TRUS-visibility of a MR-suspicious lesion facilitates image-guided biopsies, resulting in higher detection of significant cancer.
NASA Astrophysics Data System (ADS)
Bal, A.; Alam, M. S.; Aslan, M. S.
2006-05-01
Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.
Detection of the corrosion in reinforced concrete with GPR: the case study of the Park Guell
NASA Astrophysics Data System (ADS)
Sossa, Viviana; Perez-Gracia, Vega; Gonzalez-Drigo, Ramon; Caselles, Oriol; Clapes, Jaume
2017-04-01
Detection of corrosion is important in cultural heritage assessment. Many structures contain metallic targets embedded in masonry or mortar, and corrosion cab cause important damage. However, detection using non-destructive methods is difficult and highly localized, providing in most cases incomplete results. In order to obtain a more extended analysis, GPR was applied and evaluated to detect damage as consequence of corrosion. This technique is a non-destructive method that covers a large area of study while other methods are constrained to a small areas or specific points. Therefore, some controlled laboratory tests were designed to determine possible differences in radargrams obtained in the case of corroded and non-corroded targets. These analysis allowed to observe that the corrosion seems to increase the attenuation of the radar signal, being difficult to detect targets near the damaged bars. The results were applied to study the mosaic roofs in the Park Guell, in Barcelona. This park is one of the most important Modernista (Art Noveau) complex in Barcelona. It is characterized by structures with roofs and banks with tessellation. Some of these structures are most likely supported by metal elements, and seepage cause important damage observed over the tessellation. The objective of the study was to define the possible existence of those metallic targets, determining their location. And, in the case of existence of metallic elements, defining which are the zones more affected by corrosion. The results demonstrates the existence of metallic supports in many parts, as well as some defined areas that could be damaged. Acknowledgement: This work has been partially funded by the Spanish Government and by the European Commission with FEDER funds, through the research projects CGL2011-23621 and CGL2015-65913-P. The study is also a contribution to the EU funded COST Action TU1208, "Civil Engineering Applications of Ground Penetrating Radar", to the working group 2.2.
Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng
2011-01-01
This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver’s visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible. PMID:22164117
Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng
2011-01-01
This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver's visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible.
An improved algorithm of laser spot center detection in strong noise background
NASA Astrophysics Data System (ADS)
Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong
2018-01-01
Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougan, A D; Trombino, D; Dunlop, W
The Naval Postgraduate School has been conducting Tactical Network Topology (TNT) Maritime Interdiction Operations (MIO) experiments with Lawrence Livermore National Laboratory (LLNL) since early in 2005. In this work, we are investigating cutting edge technology to evaluate use of networks, advanced sensors and collaborative technology for globally-supported maritime interdiction operations. Some examples of our research include communications in harsh environments, between moving ships at sea; small boat drive-by radiation detection; network-centric collaboration with global partners; situational awareness; prototype sensors & biometric instruments. Since 2006, we have studied the concept of using a small vessel with fixed radiation sensors to domore » initial searches for illicit radioactive materials. In our work, we continue to evaluate concepts of operation for small boat monitoring. For example, in San Francisco Bay we established a simulated choke point using two RHIBs. Each RHIB had a large sodium iodide radiation sensor on board, mounted on the side nearest to the passing potential target boats. Once detections were made, notification over the network prompted a chase RHIB also equipped with a radiation sensor to further investigate the potential target. We have also used an unmanned surface vessel (USV) carrying a radiation sensor to perform the initial discovery. The USV was controlled remotely and to drive by boats in different configurations. The potential target vessels were arranged in a line, as a choke point and randomly spaced in the water. Search plans were problematic when weather, waves and drift complicated the ability to stay in one place. A further challenge is to both detect and identify the radioactive materials during the drive-by. Our radiation detection system, ARAM, Adaptable Radiation Area Monitor, is able to detect, alarm and quickly identify plausible radionuclides in real time. We have performed a number of experiments to better understand parameters of vessel speed, time, shielding, and distance in this complex three-dimensional space. At the NMIOTC in September 2009, we employed a dual detector portal followed by a chase. In this event, the challenge was to maintain communications after a lapse. When the chase went past the line-of sight reach of the Tactical Operational Center's (TOC) antenna, with interference from a fortress island in Suda Bay, Wave Relay extended the network for continued observation. Sodium iodide radiation detectors were mounted on two Hellenic Navy SEAL fast boats. After making the detection one of the portal boats maintained line-of sight while the other pursued the target vessel. Network access via Wave Relay antennas was maintained until the conclusion of the chase scenario. Progress has been made in the detection of radioactive materials in the maritime environment. The progression of the TNT MIO experiments has demonstrated the potential of the hardware to solve the problems encountered in this physically challenging environment. There continue to be interesting opportunities for research and development. These experiments provide a variety of platforms and motivated participants to perform real-world testing as solutions are made available.« less
NASA Astrophysics Data System (ADS)
Awrangjeb, M.; Siddiqui, F. U.
2017-11-01
In complex urban and residential areas, there are buildings which are not only connected with and/or close to one another but also partially occluded by their surrounding vegetation. Moreover, there may be buildings whose roofs are made of transparent materials. In transparent buildings, there are point returns from both the ground (or materials inside the buildings) and the rooftop. These issues confuse the previously proposed building masks which are generated from either ground points or non-ground points. The normalised digital surface model (nDSM) is generated from the non-ground points and usually it is hard to find individual buildings and trees using the nDSM. In contrast, the primary building mask is produced using the ground points, thereby it misses the transparent rooftops. This paper proposes a new building mask based on the non-ground points. The dominant directions of non-ground lines extracted from the multispectral imagery are estimated. A dummy grid with the target mask resolution is rotated at each dominant direction to obtain the corresponding height values from the non-ground points. Three sub-masks are then generated from the height grid by estimating the gradient function. Two of these sub-masks capture planar surfaces whose height remain constant in along and across the dominant direction, respectively. The third sub-mask contains only the flat surfaces where the height (ideally) remains constant in all directions. All the sub-masks generated in all estimated dominant directions are combined to produce the candidate building mask. Although the application of the gradient function helps in removal of most of the vegetation, the final building mask is obtained through removal of planar vegetation, if any, and tiny isolated false candidates. Experimental results on three Australian data sets show that the proposed method can successfully remove vegetation, thereby separate buildings from occluding vegetation and detect buildings with transparent roof materials. While compared to existing building detection techniques, the proposed technique offers higher objectbased completeness, correctness and quality, specially in complex scenes with aforementioned issues. It is not only capable of detecting transparent buildings, but also small garden sheds which are sometimes as small as 5 m2 in area.
Dugan, Lawrence C.; Baker, Brian R.; Hall, Sara B.; Ebert, Katja; Mioulet, Valerie; Madi, Mikidache; King, Donald P.
2011-01-01
Development of small footprint, disposable, fast, and inexpensive devices for pathogen detection in the field and clinic would benefit human and veterinary medicine by allowing evidence-based responses to future out breaks. We designed and tested an integrated nucleic acid extraction and amplification device employing a loop-mediated isothermal amplification (LAMP) or reverse transcriptase-LAMP assay. Our system provides a screening tool with polymerase-chain-reaction-level sensitivity and specificity for outbreak detection, response, and recovery. Time to result is ~90 min. The device utilizes a swab that collects sample and then transfers it to a disc of cellulose-based nucleic acid binding paper. The disc is positioned within a disposable containment tube with a manual loading port. In order to test for the presence of target pathogens, LAMP reagents are loaded through the tube’s port into contact with the sample containing cellulose disc. The reagents then are isothermally heated to 63°C for ~1 h to achieve sequence-specific target nucleic acid amplification. Due to the presence of a colorimetric dye, amplification induces visible color change in the reagents from purple to blue. As initial demonstrations, we detected methicillin resistant Staphylococcus aureus genomic DNA, as well as recombinant and live foot-and-mouth disease virus. PMID:21342806
Magnetic Nanoparticles and microNMR for Diagnostic Applications
Shao, Huilin; Min, Changwook; Issadore, David; Liong, Monty; Yoon, Tae-Jong; Weissleder, Ralph; Lee, Hakho
2012-01-01
Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection methods. Specifically, because biological samples have negligible magnetic background, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. This review focuses on the use of MNPs for in vitro detection of cellular biomarkers based on nuclear magnetic resonance (NMR) effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs as proximity sensors to modulate the spin-spin relaxation time of water molecules surrounding the molecularly-targeted nanoparticles. With new developments such as more effective MNP biosensors, advanced conjugational strategies, and highly sensitive miniaturized NMR systems, the DMR detection capabilities have been considerably improved. These developments have also enabled parallel and rapid measurements from small sample volumes and on a wide range of targets, including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses and bacteria. The DMR platform thus makes a robust and easy-to-use sensor system with broad applications in biomedicine, as well as clinical utility in point-of-care settings. PMID:22272219
On-a-chip biosensing with nano-optical resonators (Conference Presentation)
NASA Astrophysics Data System (ADS)
Quidant, Romain; Yavas, Ozlem; Sanz, Vanesa; Acimovic, Srdjan; Dobosz, Paulina
2016-09-01
Optical biosensing based on gold nanoparticles supporting localized surface plasmoncs (LSPR) potentially offers great opportunities for compact, sensitive and low cost diagnostic devices. While last two decades have witnessed a diversity of nanoplasmonic systems with outstanding sensitivity, the implementation of LSPR sensing into a real analytical device is only at its infancy. In this context, we present here our latest advances in the optical, label free detection of biomolecules based on gold nanoantennas integrated into a state-of-the-art microfluidic platform. We first demonstrate the capability of our platform to detect low concentrations (<1ng/ml) of protein cancer markers in human serum with low unspecific binding and high repeatability. In a second step we present a novel design that enables to simultaneously determine the absolute concentration of four different target molecules from an unknown sample. The system is validated in the context of breast cancer, as a strategy to assess the risk for brain metastasis. In the final part of the paper we discuss the use of LSPR sensing for the detection of other targets, including DNA and exosomes. Our research demonstrates the high potential of gold nanoparticles for the detection of different biomarkers in real biological samples and thus gets us closer to future LSPR-based point-of-care devices.
Reflective measurement of water concentration using millimeter wave illumination
NASA Astrophysics Data System (ADS)
Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren
2011-04-01
THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.
NASA Astrophysics Data System (ADS)
Aladag Tanik, Nilay; Demirkan, Elif; Aykut, Yakup
2018-07-01
This study investigated the electrochemical detection of specific nucleic acid hybridization sequences using a nanofiber-coated pencil graphite biosensor. The biosensor was developed to detect Val66Met single point mutations in the brain-derived neurotrophic factor gene, which is frequently observed in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and bipolar disorder. The oxidation signal of the most electroactive and stable DNA base, i.e., guanine, was used at approximately +1.0 V. Pencil graphite electrode (PGE) surfaces were coated with polyacrylonitrile nanofibers by electrospinning. Cyclic voltammetry was applied to the nanofiber-coated PGE to pretreat its surfaces. The application of cyclic voltammetry to the nanofiber-coated PGE surfaces before attaching the probe yielded a four fold increase in the oxidation signal for guanine compared with that using the untreated and uncoated PGE surface. The signal reductions were 70% for hybridization, 10% for non-complementary binding, and 14% for a single mismatch compared with the probe. The differences in full match, non-complementary, and mismatch binding indicated that the biosensor selectively detected the target, and that it was possible to determine hybridization in about 65 min. The detection limit was 0.19 μg/ml at a target concentration of 10 ppm.
Visual encoding and fixation target selection in free viewing: presaccadic brain potentials
Nikolaev, Andrey R.; Jurica, Peter; Nakatani, Chie; Plomp, Gijs; van Leeuwen, Cees
2013-01-01
In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short “scrutinizing” but not for long “explorative” saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades “moving up” in temperature were preceded by presaccadic activity of higher amplitude than those “moving down”. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene. PMID:23818877
Restoration of non-uniform exposure motion blurred image
NASA Astrophysics Data System (ADS)
Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng
2014-11-01
Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.
Oil detection in RADARSAT-2 quad-polarization imagery: implications for ScanSAR performance
NASA Astrophysics Data System (ADS)
Cheng, Angela; Arkett, Matt; Zagon, Tom; De Abreu, Roger; Mueller, Derek; Vachon, Paris; Wolfe, John
2011-11-01
Environment Canada's Integrated Satellite Tracking of Pollution (ISTOP) program uses RADARSAT-2 data to vector pollution surveillance assets to areas where oil discharges/spills are suspected in support of enforcement and/or cleanup efforts. RADARSAT-2's new imaging capabilities and ground system promises significant improvement's in ISTOP's ability to detect and report on oil pollution. Of specific interest is the potential of dual polarization ScanSAR data acquired with VV polarization to improve the detection of oil pollution compared to data acquired with HH polarization, and with VH polarization to concurrently detect ship targets. A series of 101 RADARSAT-2 fine quad images were acquired over Coal Oil Point, near Santa Barbara, California where a seep field naturally releases hydrocarbons. The oil and gas releases in this region are visible on the sea surface and have been well documented allowing for the remote sensing of a constant source of oil at a fixed location. Although the make-up of the oil seep field could be different from that of oil spills, it provides a representative target that can be routinely imaged under a variety of wind conditions. Results derived from the fine quad imagery with a lower noise floor were adjusted to mimic the noise floor limitations of ScanSAR. In this study it was found that VV performed better than HH for oil detection, especially at higher incidence angles.
NASA Astrophysics Data System (ADS)
Sjöqvist, Lars; Allard, Lars; Gustafsson, Ove; Henriksson, Markus; Pettersson, Magnus
2011-11-01
Atmospheric turbulence effects close to ground may affect the performance of laser based systems severely. The variations in the refractive index along the propagation path cause effects such as beam wander, intensity fluctuations (scintillations) and beam broadening. Typical geometries of interest for optics detection include nearly horizontal propagation paths close to the ground and up to kilometre distance to the target. The scintillations and beam wander affect the performance in terms of detection probability and false alarm rate. Of interest is to study the influence of turbulence in optics detection applications. In a field trial atmospheric turbulence effects along a 1 kilometre horizontal propagation path were studied using a diode laser with a rectangular beam profile operating at 0.8 micrometer wavelength. Single-path beam characteristics were registered and analysed using photodetectors arranged in horizontal and vertical directions. The turbulence strength along the path was determined using a scintillometer and single-point ultrasonic anemometers. Strong scintillation effects were observed as a function of the turbulence strength and amplitude characteristics were fitted to model distributions. In addition to the single-path analysis double-path measurements were carried out on different targets. Experimental results are compared with existing theoretical turbulence laser beam propagation models. The results show that influence from scintillations needs to be considered when predicting performance in optics detection applications.
Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.
2015-01-01
Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients. PMID:26562020
Nanoswitch-linked immunosorbent assay (NLISA) for fast, sensitive, and specific protein detection.
Hansen, Clinton H; Yang, Darren; Koussa, Mounir A; Wong, Wesley P
2017-09-26
Protein detection and quantification play critical roles in both basic research and clinical practice. Current detection platforms range from the widely used ELISA to more sophisticated, and more expensive, approaches such as digital ELISA. Despite advances, there remains a need for a method that combines the simplicity and cost-effectiveness of ELISA with the sensitivity and speed of modern approaches in a format suitable for both laboratory and rapid, point-of-care applications. Building on recent developments in DNA structural nanotechnology, we introduce the nanoswitch-linked immunosorbent assay (NLISA), a detection platform based on easily constructed DNA nanodevices that change conformation upon binding to a target protein with the results read out by gel electrophoresis. NLISA is surface-free and includes a kinetic-proofreading step for purification, enabling both enhanced sensitivity and reduced cross-reactivity. We demonstrate femtomolar-level detection of prostate-specific antigen in biological fluids, as well as reduced cross-reactivity between different serotypes of dengue and also between a single-mutation and wild-type protein. NLISA is less expensive, uses less sample volume, is more rapid, and, with no washes, includes fewer hands-on steps than ELISA, while also achieving superior sensitivity. Our approach also has the potential to enable rapid point-of-care assays, as we demonstrate by performing NLISA with an iPad/iPhone camera for imaging.
Pascual-Aguilar, Juan; Andreu, Vicente; Picó, Yolanda
2013-12-15
Detection and spatial distribution of 14 drugs of abuse and 17 pharmaceuticals in surface waters was investigated to determine transport hydrological connectivity between urban, agriculture and natural environments. Solid-phase extraction and liquid chromatography tandem mass spectrometry was applied to all samples. To determine spatial incidence of contaminants, analytical results of target compounds were georeferenced and integrated into a geographical information systems structure together with layers of municipal population, location of sewage water treatment plants and irrigation channels and sectors. The methodology was applied to L'Albufera Natural Park in Valencia (Spain). A total of 9 drugs of abuse were detected at 16 points (76% of the sample sites). Cocaine and its metabolite, benzoylecgonine, were the most detected substances, being found in 12 and 16 samples, respectively. Maximum concentrations were found in benzoylecgonine (78.71 ng/L) and codeine (51.60 ng/L). Thirteen pharmaceuticals were found at 16 points. The most detected compounds were carbamazepine (15 samples) and ibuprofen (11 samples). Maximum concentrations were detected in acetaminophen (17,699.4 ng/L), ibuprofen (3913.7 ng/L) and codeine (434.0 ng/L). Spatial distribution of pharmaceuticals showed a clear relationship between irrigation areas, high population densities municipalities (above 1000 h/km(2)) and sewage water treatment plants. Copyright © 2013 Elsevier B.V. All rights reserved.
Multisensory and Modality-Specific Influences on Adaptation to Optical Prisms
Calzolari, Elena; Albini, Federica; Bolognini, Nadia; Vallar, Giuseppe
2017-01-01
Visuo-motor adaptation to optical prisms displacing the visual scene (prism adaptation, PA) is a method used for investigating visuo-motor plasticity in healthy individuals and, in clinical settings, for the rehabilitation of unilateral spatial neglect. In the standard paradigm, the adaptation phase involves repeated pointings to visual targets, while wearing optical prisms displacing the visual scene laterally. Here we explored differences in PA, and its aftereffects (AEs), as related to the sensory modality of the target. Visual, auditory, and multisensory – audio-visual – targets in the adaptation phase were used, while participants wore prisms displacing the visual field rightward by 10°. Proprioceptive, visual, visual-proprioceptive, auditory-proprioceptive straight-ahead shifts were measured. Pointing to auditory and to audio-visual targets in the adaptation phase produces proprioceptive, visual-proprioceptive, and auditory-proprioceptive AEs, as the typical visual targets did. This finding reveals that cross-modal plasticity effects involve both the auditory and the visual modality, and their interactions (Experiment 1). Even a shortened PA phase, requiring only 24 pointings to visual and audio-visual targets (Experiment 2), is sufficient to bring about AEs, as compared to the standard 92-pointings procedure. Finally, pointings to auditory targets cause AEs, although PA with a reduced number of pointings (24) to auditory targets brings about smaller AEs, as compared to the 92-pointings procedure (Experiment 3). Together, results from the three experiments extend to the auditory modality the sensorimotor plasticity underlying the typical AEs produced by PA to visual targets. Importantly, PA to auditory targets appears characterized by less accurate pointings and error correction, suggesting that the auditory component of the PA process may be less central to the building up of the AEs, than the sensorimotor pointing activity per se. These findings highlight both the effectiveness of a reduced number of pointings for bringing about AEs, and the possibility of inducing PA with auditory targets, which may be used as a compensatory route in patients with visual deficits. PMID:29213233
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...
Structural Acoustic UXO Detection and Identification in Marine Environments
2016-05-01
BOSS Buried Object Scanning Sonar DVL Doppler Velocity Log EW East/West IMU Inertial Measurement Unit NRL Naval Research Laboratory NSWC-PCD... Inertial Measurement Unit (IMU) to time-delay and coherently sum matched-filtered phase histories from subsurface focal points over a large number of... Measurement Unit (IMU) systems. In our imaging algorithm, the 2D depth image of a target, i.e. one mapped over x and z or y and z, presents the
Targeting SRC Family Kinases and HSP90 in Lung Cancer
2016-12-01
inhalation of Adeno-Cre, followed by MRI imaging at regular intervals to detect tumor initiation and growth, followed by euthanasia and processing of...experimental endpoint. 10 mice were used per time point Representative MRI data describing tumor volume (TV) are shown in Figure 1. Quantification of data is...dasatinib, we were able to make several conclusions. Figure 1. Representative MRI images from Nedd9wt or Nedd9 null Kras mutant mice, treated with
Cai, Shuxian; Chen, Mei; Liu, Mengmeng; He, Wenhui; Liu, Zhijing; Wu, Dongzhi; Xia, Yaokun; Yang, Huanghao; Chen, Jinghua
2016-11-15
Herein, a signal magnification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker is constructed. Theoretically, just one DNA walker, released by target cell-responsive reaction, can automatically cleave all D-RNA (a chimeric DNA/RNA oligonucleotide with a cleavage point rArU) anchored on electrode into shorter produces, giving rise to considerably detectable signal finally. Under the optimal conditions, the electrochemical signal decreased linearly with the concentration of MCF-7 cell. The linear range is from 0 to 500 cells mL(-1) with a detection limit of 47 cellsmL(-1). In a word, this approach may have advantages over traditional reported DNA machines for bioassay, particularly in terms of ease of operation, cost efficiency, free of labeling and of complex track design, which may hold great potential for wide application. Copyright © 2016 Elsevier B.V. All rights reserved.
Optofluidic analysis system for amplification-free, direct detection of Ebola infection
NASA Astrophysics Data System (ADS)
Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.
2015-09-01
The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person, Suzette J.; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (I) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows thai SPA can dell-oct porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points
Bayesian Multiscale Modeling of Closed Curves in Point Clouds
Gu, Kelvin; Pati, Debdeep; Dunson, David B.
2014-01-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a ‘central curve’ that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem. PMID:25544786
Taiwan's Travel and Border Health Measures in Response to Zika.
Ho, Li-Li; Tsai, Yu-Hui; Lee, Wang-Ping; Liao, Szu-Tsai; Wu, Li-Gin; Wu, Yi-Chun
Zika virus has recently emerged as a worldwide public health concern. Travel and border health measures stand as one of the main strategies and frontline defenses in responding to international epidemics. As of October 31, 2016, Taiwan has reported 13 imported cases, 5 of which were detected through routine entry screening and active monitoring at international airports. This article shares Taiwan's disease surveillance activities at designated points of entry and travel and border health measures in response to Zika. The Taiwan government collaborates with its tourism industry to disseminate information about precautionary measures and encourages tour guides to report suspected individuals or events to activate early response measures. Taiwan also engages in vector control activities at points of entry, including targeting aircraft from countries where vector-borne diseases are endemic, implementing mosquito sweep measures, and collecting vector surveillance data. In future emerging and reemerging disease events, entry surveillance at designated points of entry may enable early detection of diseases of international origin and more rapid activation of public health preparedness activities and international collaboration. Taiwan will continue to maximize border and travel health measures in compliance with IHR (2005) requirements, which rely on continued risk assessment, practical implementation activities, and engagement with all stakeholders.
Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics
NASA Astrophysics Data System (ADS)
Bonanno, Lisa Marie
Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a blind clinical study that screened real patient urine samples (n=70) for opiates in collaboration with Strong Memorial Hospital Clinical Toxicology Laboratory. PSI sensor results showed improved clinical specificity over current commercial opiate immunoassay techniques and therefore, identified potential for a reduction in false-negative and false-positive screening results. Here, we demonstrate for the first time, successful clinical capability of a PSi sensor to detect opiates as a model target in real-world patient samples. The final part of this thesis explores novel sensor designs to leverage the tunable optical properties of PSi photonic devices and facilitate colorimetric readout of molecular recognition events by the unaided eye. Such a design is ideal for uncomplicated diagnostic screening at point-of-care as no instrumentation is needed for result readout. The photonic PSi transducers were integrated with target analyte-responsive hydrogels (TRAP-gels) that upon exposure to a target solution would swell and dissolute, inducing material property changes that were optically detected by the incorporated PSi transducer. This strategy extends target detection throughout the 3-ll internal volume of the PSi, improving upon current techniques that limit detection to the surface area (2-ll) of PSi. Work to acheive this approach involved design of TRAP-gel networks, polymer synthesis and characterization techniques, and optical characterization of the hybrid hydrogel-PSi material sensor. Successful implementation of a hybrid sensor design was exhibited for a. model chemical target (reducing agent), in which visual colorimetric change from red to green was observed for above-threshold exposure to the chemical target. In addition, initial proof-of-concept of an opiate responsive TRAP-gel is also demonstrated where cross-links are formed between antibody-antigen interactions and exposure to opiates induces bulk gel dissolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, V; Ruan, D; Nguyen, D
Purpose: To test the potential of early Glioblastoma Multiforme (GBM) recurrence detection utilizing image texture pattern analysis in serial MR images post primary treatment intervention. Methods: MR image-sets of six time points prior to the confirmed recurrence diagnosis of a GBM patient were included in this study, with each time point containing T1 pre-contrast, T1 post-contrast, T2-Flair, and T2-TSE images. Eight Gray-level co-occurrence matrix (GLCM) texture features including Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Sum-Average, and Variance were calculated from all images, resulting in a total of 32 features at each time point. A confirmed recurrent volume was contoured, alongmore » with an adjacent non-recurrent region-of-interest (ROI) and both volumes were propagated to all prior time points via deformable image registration. A support vector machine (SVM) with radial-basis-function kernels was trained on the latest time point prior to the confirmed recurrence to construct a model for recurrence classification. The SVM model was then applied to all prior time points and the volumes classified as recurrence were obtained. Results: An increase in classified volume was observed over time as expected. The size of classified recurrence maintained at a stable level of approximately 0.1 cm{sup 3} up to 272 days prior to confirmation. Noticeable volume increase to 0.44 cm{sup 3} was demonstrated at 96 days prior, followed by significant increase to 1.57 cm{sup 3} at 42 days prior. Visualization of the classified volume shows the merging of recurrence-susceptible region as the volume change became noticeable. Conclusion: Image texture pattern analysis in serial MR images appears to be sensitive to detecting the recurrent GBM a long time before the recurrence is confirmed by a radiologist. The early detection may improve the efficacy of targeted intervention including radiosurgery. More patient cases will be included to create a generalizable classification model applicable to a larger patient cohort. NIH R43CA183390 and R01CA188300.NSF Graduate Research Fellowship DGE-1144087.« less
Chavaillaz, Alain; Schwaninger, Adrian; Michel, Stefan; Sauer, Juergen
2018-05-25
The present study evaluated three automation modes for improving performance in an X-ray luggage screening task. 140 participants were asked to detect the presence of prohibited items in X-ray images of cabin luggage. Twenty participants conducted this task without automatic support (control group), whereas the others worked with either indirect cues (system indicated the target presence without specifying its location), or direct cues (system pointed out the exact target location) or adaptable automation (participants could freely choose between no cue, direct and indirect cues). Furthermore, automatic support reliability was manipulated (low vs. high). The results showed a clear advantage for direct cues regarding detection performance and response time. No benefits were observed for adaptable automation. Finally, high automation reliability led to better performance and higher operator trust. The findings overall confirmed that automatic support systems for luggage screening should be designed such that they provide direct, highly reliable cues.
Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR.
Barrett, Angela N; Chitty, Lyn S
2014-01-01
Cell-free fetal DNA constitutes approximately 10 % of the cell-free DNA found in maternal plasma and can be used as a reliable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD) from early pregnancy. The relatively high levels of maternal background can make detection of paternally inherited point mutations challenging. Diagnosis of inheritance of autosomal recessive disorders using qPCR is even more challenging due to the high background of mutant maternal allele. Digital PCR is a very sensitive modified method of quantitative real-time PCR (qPCR), allowing absolute quantitation and rare allele detection without the need for standards or normalization. Samples are diluted and then partitioned into a large number of small qPCR reactions, some of which contain the target molecule and some which do not; the proportion of positive reactions can be used to calculate the concentration of targets in the initial sample. Here we discuss the use of digital PCR as an accurate approach to NIPD for single-gene disorders.
M Dwarf Flares: Exoplanet Detection Implications
NASA Astrophysics Data System (ADS)
Tofflemire, B. M.; Wisniewski, J. P.; Hilton, E. J.; Kowalski, A. F.; Kundurthy, P.; Schmidt, S. J.; Hawley, S. L.; Holtzman, J. A.
2011-12-01
Low mass stars such as M dwarfs have become prime targets for exoplanet transit searches as their low luminosities and small stellar radii could enable the detection of super-Earths residing in their habitable zones. While promising transit targets, M dwarfs are also inherently variable and can exhibit up to ˜6 magnitude flux enhancements in the optical U-band. This is significantly higher than the predicted transit depths of habitable zone super-Earths (0.005 magnitude flux decrease). The behavior of flares at infrared (IR) wavelengths, particularly those likely to be used to study and characterize M dwarf exoplanets using facilities such as the James Web Space Telescope (JWST), remains largely unknown. To address these uncertainties, we are executing a coordinated, contemporaneous monitoring program of the optical and IR flux of M dwarfs known to regularly flare. A suite of telescopes located at the Kitt Peak National Observatory and the Apache Point Observatory are used for the observations. We present the initial results of this program.
Certification of windshear performance with RTCA class D radomes
NASA Technical Reports Server (NTRS)
Mathews, Bruce D.; Miller, Fran; Rittenhouse, Kirk; Barnett, Lee; Rowe, William
1994-01-01
Superposition testing of detection range performance forms a digital signal for input into a simulation of signal and data processing equipment and algorithms to be employed in a sensor system for advanced warning of hazardous windshear. For suitable pulse-Doppler radar, recording of the digital data at the input to the digital signal processor furnishes a realistic operational scenario and environmentally responsive clutter signal including all sidelobe clutter, ground moving target indications (GMTI), and large signal spurious due to mainbeam clutter and/or RFI respective of the urban airport clutter and aircraft scenarios (approach and landing antenna pointing). For linear radar system processes, a signal at the same point in the process from a hazard phenomena may be calculated from models of the scattering phenomena, for example, as represented in fine 3 dimensional reflectivity and velocity grid structures. Superposition testing furnishes a competing signal environment for detection and warning time performance confirmation of phenomena uncontrollable in a natural environment.
NASA Technical Reports Server (NTRS)
Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.
2017-01-01
Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.
Miniaturized technology for protein and nucleic acid point-of-care testing.
Olasagasti, Felix; Ruiz de Gordoa, Juan Carlos
2012-11-01
The field of point-of-care (POC) testing technology is developing quickly and producing instruments that are increasingly reliable, while their size is being gradually reduced. Proteins are a common target for POC analyses and the detection of protein markers typically involves immunoassays aimed at detecting different groups of proteins such as tumor markers, inflammation proteins, and cardiac markers; but other techniques can also be used to analyze plasma proteins. In the case of nucleic acids, hybridization and amplification strategies can be used to record electromagnetic or electric signals. These techniques allow for the identification of specific viral or bacterial infections as well as specific cancers. In this review, we consider some of the latest advances in the analysis of specific nucleic acid and protein biomarkers, taking into account their trend toward miniaturization and paying special attention to the technology that can be implemented in future applications, such as lab-on-a-chip instruments. Copyright © 2012 Mosby, Inc. All rights reserved.
Accuracy assessment of airborne LIDAR data and automated extraction of features
NASA Astrophysics Data System (ADS)
Cetin, Ali Fuat
Airborne LIDAR technology is becoming more widely used since it provides fast and dense irregularly spaced 3D point clouds. The coordinates produced as a result of calibration of the system are used for surface modeling and information extraction. In this research a new idea of LIDAR detectable targets is introduced. In the second part of this research, a new technique to delineate the edge of road pavements automatically using only LIDAR is presented. The accuracy of LIDAR data should be determined before exploitation for any information extraction to support a Geographic Information System (GIS) database. Until recently there was no definitive research to provide a methodology for common and practical assessment of both horizontal and vertical accuracy of LIDAR data for end users. The idea used in this research was to use targets of such a size and design so that the position of each target can be determined using the Least Squares Image Matching Technique. The technique used in this research can provide end users and data providers an easy way to evaluate the quality of the product, especially when there are accessible hard surfaces to install the targets. The results of the technique are determined to be in a reasonable range when the point spacing of the data is sufficient. To delineate the edge of pavements, trees and buildings are removed from the point cloud, and the road surfaces are segmented from the remaining terrain data. This is accomplished using the homogeneous nature of road surfaces in intensity and height. There are not many studies to delineate the edge of road pavement after the road surfaces are extracted. In this research, template matching techniques are used with criteria computed by Gray Level Co-occurrence Matrix (GLCM) properties, in order to locate seed pixels in the image. The seed pixels are then used for placement of the matched templates along the road. The accuracy of the delineated edge of pavement is determined by comparing the coordinates of reference points collected via photogrammetry with the coordinates of the nearest points along the delineated edge.
Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points
NASA Technical Reports Server (NTRS)
John, K. K.; Graham, L. D.; Abell, P. A.
2015-01-01
Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.
Learning game for training child bicyclists' situation awareness.
Lehtonen, Esko; Sahlberg, Heidi; Rovamo, Emilia; Summala, Heikki
2017-08-01
Encouraging more children to bicycle would produce both environmental and health benefits, but bicycling accidents are a major source of injuries and fatalities among children. One reason for this may be children's less developed hazard perception skills. We assume that children's situation awareness could be trained with a computer based learning game, which should also improve their hazard perception skills. In this paper, we present a prototype for such a game and pilot it with 8-9year old children. The game consisted of videos filmed from a bicyclist's perspective. Using a touchscreen, the player's task was to point out targets early enough to gain points. The targets were either overt (other visible road users on a potentially conflicting course) or covert (occlusions, i.e. locations where other road users could suddenly emerge). If a target was missed or identified too late, the video was paused and feedback was given. The game was tested with 49 children from the 2nd grade of primary school (aged 8-9). 31 young adults (aged 22-34) played the game for comparison. The effect of the game on situation awareness was assessed with situation awareness tests in a crossover design. Similar videos were used in the tests as in the game, but instead of pointing out the targets while watching, the video was suddenly masked and participants were asked to locate all targets which had been present just before the masking, choosing among several possible locations. Their performance was analyzed using Signal Detection Theory and answer latencies. The game decreased answer latency and marginally changed response bias in a less conservative direction for both children and adults, but it did not significantly increase sensitivity for targets. Adults performed better in the tests and in the game, and it was possible to satisfactorily predict group membership based on the scores. Children found it especially difficult to find covert targets. Overall, the described version of the learning game cannot be regarded as an effective tool for situation awareness/hazard perception training, but ways to improve the game are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-01-01
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-07-19
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.
Popescu, F C; Rymer, W Z
2000-11-01
A single force pulse was applied unexpectedly to the arms of five normal human subjects during nonvisually guided planar reaching movements of 10-cm amplitude. The pulse was applied by a powered manipulandum in a direction perpendicular to the motion of the hand, which gripped the manipulandum via a handle at the beginning, at the middle, or toward the end the movement. It was small and brief (10 N, 10 ms), so that it was barely perceptible. We found that the end points of the perturbed motions were systematically different from those of the unperturbed movements. This difference, dubbed "terminal error," averaged 14.4 +/- 9.8% (mean +/- SD) of the movement distance. The terminal error was not necessarily in the direction of the perturbation, although it was affected by it, and it did not decrease significantly with practice. For example, while perturbations involving elbow extension resulted in a statistically significant shift in mean end-point and target-acquisition frequency, the flexion perturbations were not clearly affected. We argue that this error distribution is inconsistent with the "equilibrium point hypothesis" (EPH), which predicts minimal terminal error is determined primarily by the variance in the command signal itself, a property referred to as "equifinality." This property reputedly derives from the "spring-like" properties of muscle and is enhanced by reflexes. To ensure that terminal errors were not due to mid-course voluntary corrections, we only accepted trials in which the final position was already established before such a voluntary response to the perturbation could have begun, that is, in a time interval shorter than the minimum reaction time (RT) for that subject. This RT was estimated for each subject in supplementary experiments in which the subject was instructed to move to a new target if perturbed and to the old target if no perturbation was detected. These RT movements were found to either stop or slow greatly at the original target, then re-accelerate to the new one. The average latency of this second motion was used to estimate the voluntary RT for each subject (316 ms mean). Additionally, we found that the hand neither exerted target-oriented force against the handle nor drifted toward the desired end point just before coming to rest, making it unlikely that the mechanical properties of the manipulandum prevented the hand from reaching its intended target.
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
Optimization of monolithic columns for microfluidic devices
NASA Astrophysics Data System (ADS)
Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.
2011-06-01
Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.
Small-target leak detection for a closed vessel via infrared image sequences
NASA Astrophysics Data System (ADS)
Zhao, Ling; Yang, Hongjiu
2017-03-01
This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.
NASA Astrophysics Data System (ADS)
Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.
2016-04-01
Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.
Steinhubl, Steven R; Mehta, Rajesh R; Ebner, Gail S; Ballesteros, Marissa M; Waalen, Jill; Steinberg, Gregory; Van Crocker, Percy; Felicione, Elise; Carter, Chureen T; Edmonds, Shawn; Honcz, Joseph P; Miralles, Gines Diego; Talantov, Dimitri; Sarich, Troy C; Topol, Eric J
2016-05-01
Efficient methods for screening populations for undiagnosed atrial fibrillation (AF) are needed to reduce its associated mortality, morbidity, and costs. The use of digital technologies, including wearable sensors and large health record data sets allowing for targeted outreach toward individuals at increased risk for AF, might allow for unprecedented opportunities for effective, economical screening. The trial's primary objective is to determine, in a real-world setting, whether using wearable sensors in a risk-targeted screening population can diagnose asymptomatic AF more effectively than routine care. Additional key objectives include (1) exploring 2 rhythm-monitoring strategies-electrocardiogram-based and exploratory pulse wave-based-for detection of new AF, and (2) comparing long-term clinical and resource outcomes among groups. In all, 2,100 Aetna members will be randomized 1:1 to either immediate or delayed monitoring, in which a wearable patch will capture a single-lead electrocardiogram during the first and last 2 weeks of a 4-month period beginning immediately or 4 months after enrollment, respectively. An observational, risk factor-matched control group (n = 4,000) will be developed from members who did not receive an invitation to participate. The primary end point is the incidence of new AF in the immediate- vs delayed-monitoring arms at the end of the 4-month monitoring period. Additional efficacy and safety end points will be captured at 1 and 3 years. The results of this digital medicine trial might benefit a substantial proportion of the population by helping identify and refine screening methods for undiagnosed AF. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Slavícková, A; Ivánek, R; Cerný, J; Sálková, J; Trnĕný, M
2002-11-22
PCR techniques detecting interchromosomal translocation and clonal immunoglobulin gene rearrangement (IgH) as disease markers in non-Hodgkin's lymphomas (NHL) has been utilised past ten years. However, qualitative PCR detection of persisted minimal residual disease cannot provide clinically useful prognostic information and presently, quantitative approaches are required to predict patient outcome and assess response to the treatment. In some cases, "end-point" quantifying techniques, such as comparative PCR, are applicable and the relative estimation of differences in target quantity may serve in disease monitoring rather than absolute number of target copies. Our method of comparative PCR employs co-amplification of sequences of interest (clonal CDR3, bcl2/Jh) and the segment of Hras 1 gene(ras) as an internal standard. Serial dilutions of stored diagnostic DNAs from blood and bone marrow are examined in the same PCR and, after gel densitometry, the amount of initial target is assessed by comparing exponential products of co-amplification. The comparative PCR assay was utilized in monitoring of NHL patients cured either with conventional therapy, or with high-dose regimens and transplantation with stem cells, or with chimaeric anti-CD20 monoclonal antibody (Rituximab). Results from 50 monitored intervals obtained during several months up to several years were supplemented with clinical statements retrospectively. Some of patients became PCR-negative, reappearance of PCR-positivity was observed as well. The decrease or increase of disease marker corresponded to clinical observations. Results obtained from bone marrow were in agreement with those obtained from blood. End-point quantifying PCR comparative assay may provide an information on the increased risk of relapse and impact of the therapy. The predictive value of these methods depends on the frequency of sample taking and on the sensitivity of the method, which should be monitored in negative cases.
Zhang, Y; Yang, B; Li, J; Liu, M; Liu, Z
2017-08-01
Insecticide resistance frequently results from target-site insensitivity, such as point mutations in acetylcholinesterases (AChEs) for resistance to organophosphates and carbamates. From a field-originated population of Nilaparvata lugens, a major rice pest, a resistant population (R9) was obtained by nine-generation continuous selection with chlorpyrifos. From the same field population, a relatively susceptible population (S9) was also constructed through rearing without any insecticides. Compared to the susceptible strain, Sus [medium lethal dose (LC 50 ) = 0.012 mg/l], R9 had a resistance ratio (RR) of 253.08-fold, whereas the RR of S9 was only 2.25-fold. Piperonyl butoxide and triphenyl phosphate synergized chlorpyrifos in R9 less than three-fold, indicating other important mechanisms for high resistance. The target-site insensitivity was supported by the key property differences of crude AChEs between R9 and S9. Compared to S9, three mutations (G119S, F331C and I332L) were detected in NlAChE1 from individuals of the R9 and field populations, but no mutation was detected in NlAChE2. G119S and F331C could decreased insecticide sensitivities in recombinant NlAChE1, whereas I332L took effect through increasing the influence of F331C on target insensitivity. F331C might be deleterious because of its influence on the catalytic efficiency of NlAChE1, whereas I332L would decrease these adverse effects and maintain the normal functions of AChEs. © 2017 The Royal Entomological Society.
Monitoring urban subsidence based on SAR lnterferometric point target analysis
Zhang, Y.; Zhang, Jiahua; Gong, W.; Lu, Z.
2009-01-01
lnterferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derived deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.
Improvement in detection of small wildfires
NASA Astrophysics Data System (ADS)
Sleigh, William J.
1991-12-01
Detecting and imaging small wildfires with an Airborne Scanner is done against generally high background levels. The Airborne Scanner System used is a two-channel thermal IR scanner, with one channel selected for imaging the terrain and the other channel sensitive to hotter targets. If a relationship can be determined between the two channels that quantifies the background signal for hotter targets, then an algorithm can be determined that removes the background signal in that channel leaving only the fire signal. The relationship can be determined anywhere between various points in the signal processing of the radiometric data from the radiometric input to the quantized output of the system. As long as only linear operations are performed on the signal, the relationship will only depend on the system gain and offsets within the range of interest. The algorithm can be implemented either by using a look-up table or performing the calculation in the system computer. The current presentation will describe the algorithm, its derivation, and its implementation in the Firefly Wildfire Detection System by means of an off-the-shelf commercial scanner. Improvement over the previous algorithm used and the margin gained for improving the imaging of the terrain will be demonstrated.
Improvement in detection of small wildfires
NASA Technical Reports Server (NTRS)
Sleigh, William J.
1991-01-01
Detecting and imaging small wildfires with an Airborne Scanner is done against generally high background levels. The Airborne Scanner System used is a two-channel thermal IR scanner, with one channel selected for imaging the terrain and the other channel sensitive to hotter targets. If a relationship can be determined between the two channels that quantifies the background signal for hotter targets, then an algorithm can be determined that removes the background signal in that channel leaving only the fire signal. The relationship can be determined anywhere between various points in the signal processing of the radiometric data from the radiometric input to the quantized output of the system. As long as only linear operations are performed on the signal, the relationship will only depend on the system gain and offsets within the range of interest. The algorithm can be implemented either by using a look-up table or performing the calculation in the system computer. The current presentation will describe the algorithm, its derivation, and its implementation in the Firefly Wildfire Detection System by means of an off-the-shelf commercial scanner. Improvement over the previous algorithm used and the margin gained for improving the imaging of the terrain will be demonstrated.
Xiao, Xianjin; Wu, Tongbo; Xu, Lei; Chen, Wei
2017-01-01
Abstract Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89–311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment. PMID:28201758
Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses.
González, Víctor M; Martín, M Elena; Fernández, Gerónimo; García-Sacristán, Ana
2016-12-16
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses
González, Víctor M.; Martín, M. Elena; Fernández, Gerónimo; García-Sacristán, Ana
2016-01-01
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers’ properties as a real tool for viral infection detection and treatment. PMID:27999271
Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily
2011-01-01
Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine. PMID:19275541
SKYWARD: the next generation airborne infrared search and track
NASA Astrophysics Data System (ADS)
Fortunato, L.; Colombi, G.; Ondini, A.; Quaranta, C.; Giunti, C.; Sozzi, B.; Balzarotti, G.
2016-05-01
Infrared Search and Track systems are an essential element of the modern and future combat aircrafts. Passive automatic search, detection and tracking functions, are key points for silent operations or jammed tactical scenarios. SKYWARD represents the latest evolution of IRST technology in which high quality electro-optical components, advanced algorithms, efficient hardware and software solutions are harmonically integrated to provide high-end affordable performances. Additionally, the reduction of critical opto-mechanical elements optimises weight and volume and increases the overall reliability. Multiple operative modes dedicated to different situations are available; many options can be selected among multiple or single target tracking, for surveillance or engagement, and imaging, for landing or navigation aid, assuring the maximum system flexibility. The high quality 2D-IR sensor is exploited by multiple parallel processing chains, based on linear and non-linear techniques, to extract the possible targets from background, in different conditions, with false alarm rate control. A widely tested track processor manages a large amount of candidate targets simultaneously and allows discriminating real targets from noise whilst operating with low target to background contrasts. The capability of providing reliable passive range estimation is an additional qualifying element of the system. Particular care has been dedicated to the detector non-uniformities, a possible limiting factor for distant targets detection, as well as to the design of the electro-optics for a harsh airborne environment. The system can be configured for LWIR or MWIR waveband according to the customer operational requirements. An embedded data recorder saves all the necessary images and data for mission debriefing, particularly useful during inflight system integration and tuning.
Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4 ▿ †
Li, Pingxin; Yao, Hongjie; Zhang, Zhiqiang; Li, Ming; Luo, Yuan; Thompson, Paul R.; Gilmour, David S.; Wang, Yanming
2008-01-01
Histone Arg methylation has been correlated with transcriptional activation of p53 target genes. However, whether this modification is reversed to repress the expression of p53 target genes is unclear. Here, we report that peptidylarginine deiminase 4, a histone citrullination enzyme, is involved in the repression of p53 target genes. Inhibition or depletion of PAD4 elevated the expression of a subset of p53 target genes, including p21/CIP1/WAF1, leading to cell cycle arrest and apoptosis. Moreover, the induction of p21, cell cycle arrest, and apoptosis by PAD4 depletion is p53 dependent. Protein-protein interaction studies showed an interaction between p53 and PAD4. Chromatin immunoprecipitation assays showed that PAD4 is recruited to the p21 promoter in a p53-dependent manner. RNA polymerase II (Pol II) activities and the association of PAD4 are dynamically regulated at the p21 promoter during UV irradiation. Paused RNA Pol II and high levels of PAD4 were detected before UV treatment. At early time points after UV treatment, an increase of histone Arg methylation and a decrease of citrullination were correlated with a transient activation of p21. At later times after UV irradiation, a loss of RNA Pol II and an increase of PAD4 were detected at the p21 promoter. The dynamics of RNA Pol II activities after UV treatment were further corroborated by permanganate footprinting. Together, these results suggest a role of PAD4 in the regulation of p53 target gene expression. PMID:18505818
Madden, David J.; Parks, Emily L.; Tallman, Catherine W.; Boylan, Maria A.; Hoagey, David A.; Cocjin, Sally B.; Johnson, Micah A.; Chou, Ying-hui; Potter, Guy G.; Chen, Nan-kuei; Packard, Lauren E.; Siciliano, Rachel E.; Monge, Zachary A.; Diaz, Michele T.
2016-01-01
We conducted functional magnetic resonance imaging (fMRI) with a visual search paradigm to test the hypothesis that aging is associated with increased frontoparietal involvement in both target detection and bottom-up attentional guidance (featural salience). Participants were 68 healthy adults, distributed continuously across 19-78 years of age. Frontoparietal regions of interest (ROIs) were defined from resting-state scans obtained prior to task-related fMRI. The search target was defined by a conjunction of color and orientation. Each display contained one item that was larger than the others (i.e., a size singleton) but was not informative regarding target identity. Analyses of search reaction time (RT) indicated that bottom-up attentional guidance from the size singleton (when coincident with the target) was relatively constant as a function of age. Frontoparietal fMRI activation related to target detection was constant as a function of age, as was the reduction in activation associated with salient targets. However, for individuals 35 years of age and older, engagement of the left frontal eye field (FEF) in bottom-up guidance was more prominent than for younger individuals. Further, the age-related differences in left FEF activation were a consequence of decreasing resting-state functional connectivity in visual sensory regions. These findings indicate that age-related compensatory effects may be expressed in the relation between activation and behavior, rather than in the magnitude of activation, and that relevant changes in the activation-RT relation may begin at a relatively early point in adulthood. PMID:28052456
Aptamer-Nanoparticle Strip Biosensor for Rapid and Sensitive Detection of Cancer Cells
Mao, Xun; Phillips, Joseph A.; Xu, Hui; Tan, Weihong; Zeng, Lingwen; Liu, Guodong
2009-01-01
We report an aptamer-nanoparticle strip biosensor (ANSB) for the rapid, specific, sensitive and low-cost detection of circulating cancer cells. Known for their high specificity and affinity, aptamers were first selected from live cells by the cell-SELEX (systematic evolution of ligands by exponential enrichment) process. When next combined with the unique optical properties of gold nanoparticles (Au-NPs), ANSBs were prepared on a lateral flow device. Ramos cells were used as a model target cell to demonstrate proof of principle. Under optimal conditions, the ANSB was capable of detecting a minimum of 4000 Ramos cells without instrumentation (visual judgment) and 800 Ramos cells with a portable strip reader within 15 minutes. Importantly, ANSB has successfully detected Ramos cells in human blood, thus providing a rapid, sensitive and low-cost quantitative tool for the detection of circulating cancer cells. ANSB therefore shows great promise for in-field and point-of-care cancer diagnosis and therapy. PMID:19904989
NASA Technical Reports Server (NTRS)
Detoma, Edoardo V.; Dionisio, C.
1995-01-01
The radar (an acronym for radio detection and ranging) is an instrument developed just before the WW-II to precisely measure the position of an object (target) in space. This is done by emitting a narrow pulse of electromagnetic energy in the RF spectrum, receiving the return echo and measuring the time of flight in the two-way path from the emitter to the target. The propagation delay provides a measure of the range to the target, which is not in itself sufficient to uniquely locate the position of the same in space. However, if a directional antenna is used, the direction of the echo can be assessed by the antenna pointing angles. In this way the position of the target can be uniquely determined in space. How well this can be done is a function of the resolution of the measurements performed (range and direction, i.e.: angles); in turn, the resolution will dictate the time and frequency requirements of the reference oscillator.
Texture segmentation: do the processing units on the saliency map increase with eccentricity?
Schade, Ursula; Meinecke, Cristina
2011-01-01
The saliency map is a computational model and has been constructed for simulating human saliency processing, e.g. pop-out target detection (e.g. Itti & Koch, 2000). In this study the spatial structure on the saliency map was investigated. It is proposed that the saliency map is structured into processing units whose size is increasing with retinal eccentricity. In two experiments the distance between a target in the stimulus and an irrelevant structure in the mask was varied systematically. Our findings had two main points. Firstly, in texture segmentation tasks the saliency signals from two texture irregularities interfere, when these irregularities appear within a critical spatial distance. Second, the critical distances increase with target eccentricity. The eccentricity-dependent critical distances can be interpreted as crowding effects. It is assumed that additionally to the target eccentricity, also the strength of a saliency signal can determine the spatial area of its impairing influence. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, A; Nyflot, M; Sponseller, P
2014-06-01
Purpose: Radiation treatment planning involves a complex workflow that can make safety improvement efforts challenging. This study utilizes an incident reporting system to identify detection points of near-miss errors, in order to guide our departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or their patterns. Methods: 1377 incidents were analyzed from a departmental nearmiss error reporting system from 3/2012–10/2013. All incidents were prospectively reviewed weekly by a multi-disciplinary team, and assigned a near-miss severity score ranging from 0–4 reflecting potential harm (no harm to critical). A 98-step consensus workflow was usedmore » to determine origination and detection points of near-miss errors, categorized into 7 major steps (patient assessment/orders, simulation, contouring/treatment planning, pre-treatment plan checks, therapist/on-treatment review, post-treatment checks, and equipment issues). Categories were compared using ANOVA. Results: In the 7-step workflow, 23% of near-miss errors were detected within the same step in the workflow, while an additional 37% were detected by the next step in the workflow, and 23% were detected two steps downstream. Errors detected further from origination were more severe (p<.001; Figure 1). The most common source of near-miss errors was treatment planning/contouring, with 476 near misses (35%). Of those 476, only 72(15%) were found before leaving treatment planning, 213(45%) were found at physics plan checks, and 191(40%) were caught at the therapist pre-treatment chart review or on portal imaging. Errors that passed through physics plan checks and were detected by therapists were more severe than other errors originating in contouring/treatment planning (1.81 vs 1.33, p<0.001). Conclusion: Errors caught by radiation treatment therapists tend to be more severe than errors caught earlier in the workflow, highlighting the importance of safety checks in dosimetry and physics. We are utilizing our findings to improve manual and automated checklists for dosimetry and physics.« less
49 CFR 325.77 - Computation of open site requirements-nonstandard sites.
Code of Federal Regulations, 2010 CFR
2010-10-01
... microphone target point is other than 50 feet (15.2 m), the test site must be an open site within a radius... microphone target point. (b) Plan view diagrams of nonstandard test sites are shown in Figures 3 and 4... (18.3 m) distance between the microphone location point and the microphone target point. (See § 325.79...
49 CFR 325.77 - Computation of open site requirements-nonstandard sites.
Code of Federal Regulations, 2011 CFR
2011-10-01
... microphone target point is other than 50 feet (15.2 m), the test site must be an open site within a radius... microphone target point. (b) Plan view diagrams of nonstandard test sites are shown in Figures 3 and 4... (18.3 m) distance between the microphone location point and the microphone target point. (See § 325.79...
Evaluating Gaze-Based Interface Tools to Facilitate Point-and-Select Tasks with Small Targets
ERIC Educational Resources Information Center
Skovsgaard, Henrik; Mateo, Julio C.; Hansen, John Paulin
2011-01-01
Gaze interaction affords hands-free control of computers. Pointing to and selecting small targets using gaze alone is difficult because of the limited accuracy of gaze pointing. This is the first experimental comparison of gaze-based interface tools for small-target (e.g. less than 12 x 12 pixels) point-and-select tasks. We conducted two…
Toskin, Igor; Murtagh, Maurine; Peeling, Rosanna W; Blondeel, Karel; Cordero, Joanna; Kiarie, James
2017-12-01
Advancing the field of point-of-care testing (POCT) for STIs can rapidly and substantially improve STI control and prevention by providing targeted, essential STI services (case detection and screening). POCT enables definitive diagnosis and appropriate treatment in a single visit and home and community-based testing. Since 2014, the WHO Department of Reproductive Health and Research, in collaboration with technical partners, has completed four landscape analyses of promising diagnostics for use at or near the point of patient care to detect syphilis, Neisseria gonorrhoeae , Chlamydia trachomatis , Trichomonas vaginalis and the human papillomavirus. The analyses comprised a literature review and interviews. Two International Technical Consultations on STI POCTs (2014 and 2015) resulted in the development of target product profiles (TPP). Experts in STI microbiology, laboratory diagnostics, clinical management, public health and epidemiology participated in the consultations with representation from all WHO regions. The landscape analysis identified diagnostic tests that are either available on the market, to be released in the near future or in the pipeline. The TPPs specify 28 analytical and operational characteristics of POCTs for use in different populations for surveillance, screening and case management. None of the tests that were identified in the landscape analysis met all of the targets of the TPPs. More efforts of the global health community are needed to accelerate access to affordable quality-assured STI POCTs, particularly in low- and middle-income countries, by supporting the development of new diagnostic platforms as well as strengthening the validation and implementation of existing diagnostics according to internationally endorsed standards and the best available evidence. © World Health Organization 2017. Licensee BMJ Publishing Group Limited. This is an open access article distributed under the terms of the Creative Commons Attribution IGO License (https://creativecommons.org/licenses/by/3.0/igo), which permits use, distribution,and reproduction for non-commercial purposes in any medium, provided the original work is properly cited. In any reproduction of this article there should not be any suggestion that WHO or this article endorse any specific organization or products. The use of the WHO logo is not permitted. This notice should be preserved along with the article’s original URL.
NASA Astrophysics Data System (ADS)
Nault, Kristie A.; Brucker, Melissa J.; Hammergren, Mark; Gyuk, Geza; Solontoi, Mike R.
2015-11-01
We present astrometric results of near-Earth objects (NEOs) targeted in fourth quarter 2014 and in 2015. This is part of Adler Planetarium’s NEO characterization and astrometric follow-up program, which uses the Astrophysical Research Consortium (ARC) 3.5-m telescope at Apache Point Observatory (APO). The program utilizes a 17% share of telescope time, amounting to a total of 500 hours per year. This time is divided up into two hour observing runs approximately every other night for astrometry and frequent half-night runs approximately several times a month for spectroscopy (see poster by M. Hammergren et. al.) and light curve studies (see poster by M. J. Brucker et. al.).Observations were made using Seaver Prototype Imaging Camera (SPIcam), a visible-wavelength, direct imaging CCD camera with 2048 x 2048 pixels and a field of view of 4.78’ x 4.78’. Observations were made using 2 x 2 binning.Special emphasis has been made to focus on the smallest NEOs, particularly around 140m in diameter. Targets were selected based on absolute magnitude (prioritizing for those with H > 25 mag to select small objects) and a 3σ uncertainty less than 400” to ensure that the target is in the FOV. Targets were drawn from the Minor Planet Center (MPC) NEA Observing Planning Aid, the JPL What’s Observable tool, and the Spaceguard priority list and faint NEO list.As of August 2015, we have detected 670 NEOs for astrometric follow-up, on point with our goal of providing astrometry on a thousand NEOs per year. Astrometric calculations were done using the interactive software tool Astrometrica, which is used for data reduction focusing on the minor bodies of the solar system. The program includes automatic reference star identification from new-generation star catalogs, access to the complete MPC database of orbital elements, and automatic moving object detection and identification.This work is based on observations done using the 3.5-m telescope at Apache Point Observatory, owned and operated by the Astrophysical Research Consortium. We acknowledge the support from the NASA NEOO award NNX14AL17G and thank the University of Chicago Astronomy and Astrophysics Department for observing time in 2014.
Bayat, Pouriya; Rezai, Pouya
2018-05-21
One of the common operations in sample preparation is to separate specific particles (e.g. target cells, embryos or microparticles) from non-target substances (e.g. bacteria) in a fluid and to wash them into clean buffers for further processing like detection (called solution exchange in this paper). For instance, solution exchange is widely needed in preparing fluidic samples for biosensing at the point-of-care and point-of-use, but still conducted via the use of cumbersome and time-consuming off-chip analyte washing and purification techniques. Existing small-scale and handheld active and passive devices for washing particles are often limited to very low throughputs or require external sources of energy. Here, we integrated Dean flow recirculation of two fluids in curved microchannels with selective inertial focusing of target particles to develop a microfluidic centrifuge device that can isolate specific particles (as surrogates for target analytes) from bacteria and wash them into a clean buffer at high throughput and efficiency. We could process micron-size particles at a flow rate of 1 mL min-1 and achieve throughputs higher than 104 particles per second. Our results reveal that the device is capable of singleplex solution exchange of 11 μm and 19 μm particles with efficiencies of 86 ± 2% and 93 ± 0.7%, respectively. A purity of 96 ± 2% was achieved in the duplex experiments where 11 μm particles were isolated from 4 μm particles. Application of our device in biological assays was shown by performing duplex experiments where 11 μm or 19 μm particles were isolated from an Escherichia coli bacterial suspension with purities of 91-98%. We envision that our technique will have applications in point-of-care devices for simultaneous purification and solution exchange of cells and embryos from smaller substances in high-volume suspensions at high throughput and efficiency.
Space moving target detection using time domain feature
NASA Astrophysics Data System (ADS)
Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu
2018-01-01
The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.
Vision-based control for flight relative to dynamic environments
NASA Astrophysics Data System (ADS)
Causey, Ryan Scott
The concept of autonomous systems has been considered an enabling technology for a diverse group of military and civilian applications. The current direction for autonomous systems is increased capabilities through more advanced systems that are useful for missions that require autonomous avoidance, navigation, tracking, and docking. To facilitate this level of mission capability, passive sensors, such as cameras, and complex software are added to the vehicle. By incorporating an on-board camera, visual information can be processed to interpret the surroundings. This information allows decision making with increased situational awareness without the cost of a sensor signature, which is critical in military applications. The concepts presented in this dissertation facilitate the issues inherent to vision-based state estimation of moving objects for a monocular camera configuration. The process consists of several stages involving image processing such as detection, estimation, and modeling. The detection algorithm segments the motion field through a least-squares approach and classifies motions not obeying the dominant trend as independently moving objects. An approach to state estimation of moving targets is derived using a homography approach. The algorithm requires knowledge of the camera motion, a reference motion, and additional feature point geometry for both the target and reference objects. The target state estimates are then observed over time to model the dynamics using a probabilistic technique. The effects of uncertainty on state estimation due to camera calibration are considered through a bounded deterministic approach. The system framework focuses on an aircraft platform of which the system dynamics are derived to relate vehicle states to image plane quantities. Control designs using standard guidance and navigation schemes are then applied to the tracking and homing problems using the derived state estimation. Four simulations are implemented in MATLAB that build on the image concepts present in this dissertation. The first two simulations deal with feature point computations and the effects of uncertainty. The third simulation demonstrates the open-loop estimation of a target ground vehicle in pursuit whereas the four implements a homing control design for the Autonomous Aerial Refueling (AAR) using target estimates as feedback.
Role of Alpha-Band Oscillations in Spatial Updating across Whole Body Motion
Gutteling, Tjerk P.; Medendorp, W. P.
2016-01-01
When moving around in the world, we have to keep track of important locations in our surroundings. In this process, called spatial updating, we must estimate our body motion and correct representations of memorized spatial locations in accordance with this motion. While the behavioral characteristics of spatial updating across whole body motion have been studied in detail, its neural implementation lacks detailed study. Here we use electroencephalography (EEG) to distinguish various spectral components of this process. Subjects gazed at a central body-fixed point in otherwise complete darkness, while a target was briefly flashed, either left or right from this point. Subjects had to remember the location of this target as either moving along with the body or remaining fixed in the world while being translated sideways on a passive motion platform. After the motion, subjects had to indicate the remembered target location in the instructed reference frame using a mouse response. While the body motion, as detected by the vestibular system, should not affect the representation of body-fixed targets, it should interact with the representation of a world-centered target to update its location relative to the body. We show that the initial presentation of the visual target induced a reduction of alpha band power in contralateral parieto-occipital areas, which evolved to a sustained increase during the subsequent memory period. Motion of the body led to a reduction of alpha band power in central parietal areas extending to lateral parieto-temporal areas, irrespective of whether the targets had to be memorized relative to world or body. When updating a world-fixed target, its internal representation shifts hemispheres, only when subjects’ behavioral responses suggested an update across the body midline. Our results suggest that parietal cortex is involved in both self-motion estimation and the selective application of this motion information to maintaining target locations as fixed in the world or fixed to the body. PMID:27199882
A multicore compound glass optical fiber for neutron imaging
NASA Astrophysics Data System (ADS)
Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason
2017-04-01
Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.
Glynn, Macdara; Kirby, Daniel; Chung, Danielle; Kinahan, David J; Kijanka, Gregor; Ducrée, Jens
2014-06-01
In medical diagnostics, detection of cells exhibiting specific phenotypes constitutes a paramount challenge. Detection technology must ensure efficient isolation of (often rare) targets while eliminating nontarget background cells. Technologies exist for such investigations, but many require high levels of expertise, expense, and multistep protocols. Increasing automation, miniaturization, and availability of such technologies is an aim of microfluidic lab-on-a-chip strategies. To this end, we present an integrated, dual-force cellular separation strategy using centrifugo-magnetophoresis. Whole blood spiked with target cells is incubated with (super-)paramagnetic microparticles that specifically bind phenotypic markers on target cells. Under rotation, all cells sediment into a chamber located opposite a co-rotating magnet. Unbound cells follow the radial vector, but under the additional attraction of the lateral magnetic field, bead-bound target cells are deflected to a designated reservoir. This multiforce separation is continuous and low loss. We demonstrate separation efficiently up to 92% for cells expressing the HIV/AIDS relevant epitope (CD4) from whole blood. Such highly selective separation systems may be deployed for accurate diagnostic cell isolations from biological samples such as blood. Furthermore, this high efficiency is delivered in a cheap and simple device, thus making it an attractive option for future deployment in resource-limited settings. © 2013 Society for Laboratory Automation and Screening.
Thornton, Hannah V; Hay, Alastair D; Redmond, Niamh M; Turnbull, Sophie L; Christensen, Hannah; Peters, Tim J; Leeming, John P; Lovering, Andrew; Vipond, Barry; Muir, Peter; Blair, Peter S
2017-08-01
Diagnostic uncertainty over respiratory tract infections (RTIs) in primary care contributes to over-prescribing of antibiotics and drives antibiotic resistance. If symptoms and signs predict respiratory tract microbiology, they could help clinicians target antibiotics to bacterial infection. This study aimed to determine relationships between symptoms and signs in children presenting to primary care and microbes from throat swabs. Cross-sectional study of children ≥3 months to <16 years presenting with acute cough and RTI, with subset follow-up. Associations and area under receiver operating curve (AUROC) statistics sought between clinical presentation and baseline microbe detection. Microbe prevalence compared between baseline (symptomatic) and follow-up (asymptomatic) visits. At baseline, ≥1 bacteria was detected in 1257/2113 (59.5%) children and ≥1 virus in 894/2127 (42%) children. Clinical presentation was not associated with detection of ≥1 bacteria [AUROC 0.54 (95% CI 0.52-0.56)] or ≥1 virus [0.64 (95% CI 0.61-0.66)]. Individually, only respiratory syncytial virus (RSV) was associated with clinical presentation [AUROC 0.80 (0.77-0.84)]. Prevalence fell between baseline and follow-up; more so in viruses (68% versus 26%, P < 0.001) than bacteria (56% versus 40%, P = 0.01); greatest reductions seen in RSV, influenza B and Haemophilus influenzae. Findings demonstrate that clinical presentation cannot distinguish the presence of bacteria or viruses in the upper respiratory tract. However, individual and overall microbe prevalence was greater when children were unwell than when well, providing some evidence that upper respiratory tract microbes may be the cause or consequence of the illness. If causal, selective microbial point-of-care testing could be beneficial. © The Author 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Trigo, Guilherme F.; Maass, Bolko; Krüger, Hans; Theil, Stephan
2018-01-01
Accurate autonomous navigation capabilities are essential for future lunar robotic landing missions with a pin-point landing requirement, since in the absence of direct line of sight to ground control during critical approach and landing phases, or when facing long signal delays the herein before mentioned capability is needed to establish a guidance solution to reach the landing site reliably. This paper focuses on the processing and evaluation of data collected from flight tests that consisted of scaled descent scenarios where the unmanned helicopter of approximately 85 kg approached a landing site from altitudes of 50 m down to 1 m for a downrange distance of 200 m. Printed crater targets were distributed along the ground track and their detection provided earth-fixed measurements. The Crater Navigation (CNav) algorithm used to detect and match the crater targets is an unmodified method used for real lunar imagery. We analyze the absolute position and attitude solutions of CNav obtained and recorded during these flight tests, and investigate the attainable quality of vehicle pose estimation using both CNav and measurements from a tactical-grade inertial measurement unit. The navigation filter proposed for this end corrects and calibrates the high-rate inertial propagation with the less frequent crater navigation fixes through a closed-loop, loosely coupled hybrid setup. Finally, the attainable accuracy of the fused solution is evaluated by comparison with the on-board ground-truth solution of a dual-antenna high-grade GNSS receiver. It is shown that the CNav is an enabler for building autonomous navigation systems with high quality and suitability for exploration mission scenarios.
Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics
Kocevar, Nina; Komel, Radovan
2014-01-01
Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies. PMID:24550697
Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei
2018-02-01
Smartphone optosensors with integrated optical components make mobile point-of-care (MPoC) diagnostics be done near patients' side. It'll especially have a significant impact on healthcare delivery in rural or remote areas. Current FDA-approved PoC devices achieving clinical level are still at high cost and not affordable in rural hospitals. We present a series of ultra low-cost smartphone optical sensing devices for mobile point-of-care diagnosis. Aiming different targeting analytes and sensing mechanisms, we developed custom required optical components for each smartphone optosensros. These optical devices include spectrum readers, colorimetric readers for microplate, lateral flow device readers, and chemiluminescence readers. By integrating our unique designed optical components into smartphone optosening platform, the anlaytes can be precisely detected. Clinical testing results show the clinical usability of our smartphone optosensors. Ultra low-cost portable smartphone optosensors are affordable for rural/remote doctors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuanbin; Pálffy, Adriana, E-mail: yuanbin.wu@mpi-hd.mpg.de, E-mail: Palffy@mpi-hd.mpg.de
Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario heremore » and calculate the reaction events for the astrophysically relevant reaction {sup 13}C({sup 4}He, n ){sup 16}O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.« less
Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas
NASA Astrophysics Data System (ADS)
Wu, Yuanbin; Pálffy, Adriana
2017-03-01
Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction 13C(4He, n)16O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.
NASA Astrophysics Data System (ADS)
Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu
2016-05-01
The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.
A method for detecting small targets based on cumulative weighted value of target properties
NASA Astrophysics Data System (ADS)
Jin, Xing; Sun, Gang; Wang, Wei-hua; Liu, Fang; Chen, Zeng-ping
2015-03-01
Laser detection based on the "cat's eye effect" has become the hot research project for its initiative compared to the passivity of sound detection and infrared detection. And the target detection is one of the core technologies in this system. The paper puts forward a method for detecting small targets based on cumulative weighted value of target properties using given data. Firstly, we make a frame difference to the images, then make image processing based on Morphology Principles. Secondly, we segment images, and screen the targets; then find some interesting locations. Finally, comparing to a quantity of frames, we locate the target. We did an exam to 394 true frames, the experimental result shows that the mathod can detect small targets efficiently.
Pan, Dipanjan; Caruthers, Shelton D; Hu, Grace; Senpan, Angana; Scott, Mike J; Gaffney, Patrick J; Wickline, Samuel A; Lanza, Gregory M
2008-07-23
Although gadolinium has been the dominant paramagnetic metal for MR paramagnetic contrast agents, the recent association of this lanthanide with nephrogenic systemic fibrosis, an untreatable disease, has spawned renewed interest in alternative metals for MR molecular imaging. We have developed a self-assembled, manganese(III)-labeled nanobialys (1), a toroidal-shaped MR theranostic nanoparticle. In this report, Mn(III) nanobialys are characterized as MR molecular imaging agents for targeted detection of fibrin, a major biochemical feature of thrombus. A complementary ability of nanobialys to incorporate chemotherapeutic compounds with greater than 98% efficiency and to retain more than 80% of these drugs after infinite sink dissolution, point to the theranostic potential of this platform technology.
Autonomous microsystems for ground observation (AMIGO)
NASA Astrophysics Data System (ADS)
Laou, Philips
2005-05-01
This paper reports the development of a prototype autonomous surveillance microsystem AMIGO that can be used for remote surveillance. Each AMIGO unit is equipped with various sensors and electronics. These include passive infrared motion sensor, acoustic sensor, uncooled IR camera, electronic compass, global positioning system (GPS), and spread spectrum wireless transceiver. The AMIGO unit was configured to multipoint (AMIGO units) to point (base station) communication mode. In addition, field trials were conducted with AMIGO in various scenarios. These scenarios include personnel and vehicle intrusion detection (motion or sound) and target imaging; determination of target GPS position by triangulation; GPS position real time tracking; entrance event counting; indoor surveillance; and aerial surveillance on a radio controlled model plane. The architecture and test results of AMIGO will be presented.
Audible acoustics in high-shear wet granulation: application of frequency filtering.
Hansuld, Erin M; Briens, Lauren; McCann, Joe A B; Sayani, Amyn
2009-08-13
Previous work has shown analysis of audible acoustic emissions from high-shear wet granulation has potential as a technique for end-point detection. In this research, audible acoustic emissions (AEs) from three different formulations were studied to further develop this technique as a process analytical technology. Condenser microphones were attached to three different locations on a PMA-10 high-shear granulator (air exhaust, bowl and motor) to target different sound sources. Size, flowability and tablet break load data was collected to support formulator end-point ranges and interpretation of AE analysis. Each formulation had a unique total power spectral density (PSD) profile that was sensitive to granule formation and end-point. Analyzing total PSD in 10 Hz segments identified profiles with reduced run variability and distinct maxima and minima suitable for routine granulation monitoring and end-point control. A partial least squares discriminant analysis method was developed to automate selection of key 10 Hz frequency groups using variable importance to projection. The results support use of frequency refinement as a way forward in the development of acoustic emission analysis for granulation monitoring and end-point control.
Gummlich, Linda; Kähne, Thilo; Naumann, Michael; Kilic, Ergin; Jung, Klaus; Dubiel, Wolfgang
2016-01-01
Urological cancers are a very common type of cancer worldwide and have alarming high incidence and mortality rates, especially in kidney cancers, illustrate the urgent need for new therapeutic targets. Recent publications point to a deregulated COP9 signalosome (CSN)-cullin-RING ubiquitin-ligase (CRL) pathway which is here considered and investigated as potential target in urological cancers with strong focus on renal cell carcinomas (RCC). The CSN forms supercomplexes with CRLs in order to preserve protein homeostasis and was found deregulated in several cancer types. Examination of selected CSN-CRL pathway components in RCC patient samples and four RCC cell lines revealed an interesting deregulated p27(Kip1)-Skp2-CAND1 axis and two p27(Kip1) point mutations in 786-O cells; p27(Kip1)V109G and p27(Kip1)I119T. The p27(Kip1) mutants were detected in patients with RCC and appear to be responsible for an accelerated growth rate in 786-O cells. The occurrence of p27(Kip1)V109G and p27(Kip1)I119T in RCC makes the CSN-CRL pathway an attractive therapeutic target. Copyright © 2016 Elsevier Inc. All rights reserved.
Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J; Smith, R F; Bolme, C
2011-03-23
We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISARmore » optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.« less
Target detection method by airborne and spaceborne images fusion based on past images
NASA Astrophysics Data System (ADS)
Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng
2017-11-01
To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.
Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, J Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, Maria Jesús
2015-08-18
Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas.
Bar coded retroreflective target
Vann, Charles S.
2000-01-01
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
Chromatic Perceptual Learning but No Category Effects without Linguistic Input.
Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.
Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong
2017-05-15
A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, Avrey; Nyflot, Matthew J.; Ermoian, Ralph P.
Purpose: Radiation treatment planning involves a complex workflow that has multiple potential points of vulnerability. This study utilizes an incident reporting system to identify the origination and detection points of near-miss errors, in order to guide their departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or applied a near-miss risk index (NMRI) to gauge severity. Methods: From 3/2012 to 3/2014, 1897 incidents were analyzed from a departmental incident learning system. All incidents were prospectively reviewed weekly by a multidisciplinary team and assigned a NMRI score ranging from 0 to 4 reflectingmore » potential harm to the patient (no potential harm to potential critical harm). Incidents were classified by point of incident origination and detection based on a 103-step workflow. The individual steps were divided among nine broad workflow categories (patient assessment, imaging for radiation therapy (RT) planning, treatment planning, pretreatment plan review, treatment delivery, on-treatment quality management, post-treatment completion, equipment/software quality management, and other). The average NMRI scores of incidents originating or detected within each broad workflow area were calculated. Additionally, out of 103 individual process steps, 35 were classified as safety barriers, the process steps whose primary function is to catch errors. The safety barriers which most frequently detected incidents were identified and analyzed. Finally, the distance between event origination and detection was explored by grouping events by the number of broad workflow area events passed through before detection, and average NMRI scores were compared. Results: Near-miss incidents most commonly originated within treatment planning (33%). However, the incidents with the highest average NMRI scores originated during imaging for RT planning (NMRI = 2.0, average NMRI of all events = 1.5), specifically during the documentation of patient positioning and localization of the patient. Incidents were most frequently detected during treatment delivery (30%), and incidents identified at this point also had higher severity scores than other workflow areas (NMRI = 1.6). Incidents identified during on-treatment quality management were also more severe (NMRI = 1.7), and the specific process steps of reviewing portal and CBCT images tended to catch highest-severity incidents. On average, safety barriers caught 46% of all incidents, most frequently at physics chart review, therapist’s chart check, and the review of portal images; however, most of the incidents that pass through a particular safety barrier are not designed to be capable of being captured at that barrier. Conclusions: Incident learning systems can be used to assess the most common points of error origination and detection in radiation oncology. This can help tailor safety improvement efforts and target the highest impact portions of the workflow. The most severe near-miss events tend to originate during simulation, with the most severe near-miss events detected at the time of patient treatment. Safety barriers can be improved to allow earlier detection of near-miss events.« less
Biased normalized cuts for target detection in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Xuewen; Dorado-Munoz, Leidy P.; Messinger, David W.; Cahill, Nathan D.
2016-05-01
The Biased Normalized Cuts (BNC) algorithm is a useful technique for detecting targets or objects in RGB imagery. In this paper, we propose modifying BNC for the purpose of target detection in hyperspectral imagery. As opposed to other target detection algorithms that typically encode target information prior to dimensionality reduction, our proposed algorithm encodes target information after dimensionality reduction, enabling a user to detect different targets in interactive mode. To assess the proposed BNC algorithm, we utilize hyperspectral imagery (HSI) from the SHARE 2012 data campaign, and we explore the relationship between the number and the position of expert-provided target labels and the precision/recall of the remaining targets in the scene.
Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor
NASA Astrophysics Data System (ADS)
Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui
2018-05-01
At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.
Dinzouna-Boutamba, Sylvatrie-Danne; Yang, Hye-Won; Joo, So-Young; Jeong, Sookwan; Na, Byoung-Kuk; Inoue, Noboru; Lee, Won-Ki; Kong, Hyun-Hee; Chung, Dong-Il; Goo, Youn-Kyoung; Hong, Yeonchul
2014-06-30
Malaria that is caused by Plasmodium vivax is the most widely distributed human malaria. Its recent resurgence in many parts of the world, including the Republic of Korea (ROK), emphasizes the importance of improved access to the early and accurate detection of P. vivax to reduce disease burden. In this study, a rapid and efficient loop-mediated isothermal amplification (LAMP)-based method was developed and validated using blood samples from malaria-suspected patients. A LAMP assay targeting the α-tubulin gene for the detection of P. vivax was developed with six primers that recognize different regions of the target gene. The diagnostic performance of the α-tubulin LAMP assay was compared to three other tests: microscopic examinations, rapid diagnostic tests (RDTs), and nested polymerase chain reactions (PCRs) using 177 whole blood specimens obtained from ROK military personnel from May to December 2011. The α-tubulin LAMP assay was highly sensitive with a detection limit of 100 copies of P. vivax α-tubulin gene per reaction within 50 min. It specifically amplified the target gene only from P. vivax. Validation of the α-tubulin LAMP assay showed that the assay had the highest sensitivity (P < 0.001 versus microscopy; P = 0.0023 versus RDT) when nested PCR was used as the gold standard and better agreement (concordance: 94.9%, kappa value: 0.865) with nested PCR than RDT and microscopy. A Receiver Operation Characteristics analysis showed that the diagnostic accuracy of the α-tubulin LAMP assay for vivax malaria was higher (Area Under Curve = 0.908) than RDT and microscopy. This study showed that the P. vivax α-tubulin LAMP assay, which can be used to diagnose early infections of vivax malaria, is an alternative molecular diagnostic tool and a point-of-care test that may help to prevent transmission in endemic areas.
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2018-04-23
Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke impairment, has been shown to affect the recovery of locomotor and navigation skills needed for community mobility. We recently found that USN alters goal-directed locomotion in conditions of different cognitive/perceptual demands. However, sensorimotor post-stroke dysfunction (e.g. decreased walking speed) could have influenced the results. Analogous to a previously used goal-directed locomotor paradigm, a seated, joystick-driven navigation experiment, minimizing locomotor demands, was employed in individuals with and without post-stroke USN (USN+ and USN-, respectively) and healthy controls (HC). Participants (n = 15 per group) performed a seated, joystick-driven navigation and detection time task to targets 7 m away at 0°, ±15°/30° in actual (visually-guided), remembered (memory-guided) and shifting (visually-guided with representational updating component) conditions while immersed in a 3D virtual reality environment. Greater end-point mediolateral errors to left-sided targets (remembered and shifting conditions) and overall lengthier onsets in reorientation strategy (shifting condition) were found for USN+ vs. USN- and vs. HC (p < 0.05). USN+ individuals mostly overshot left targets (- 15°/- 30°). Greater delays in detection time for target locations across the visual spectrum (left, middle and right) were found in USN+ vs. USN- and HC groups (p < 0.05). USN-related attentional-perceptual deficits alter navigation abilities in memory-guided and shifting conditions, independently of post-stroke locomotor deficits. Lateralized and non-lateralized deficits in object detection are found. The employed paradigm could be considered in the design and development of sensitive and functional assessment methods for neglect; thereby addressing the drawbacks of currently used traditional paper-and-pencil tools.
Zentner, Isaac; Schlecht, Hans P; Khensouvann, Lorna; Tamuhla, Neo; Kutzler, Michele; Ivaturi, Vijay; Pasipanodya, Jotam G; Gumbo, Tawanda; Peloquin, Charles A; Bisson, Gregory P; Vinnard, Christopher
2016-06-01
The cost and complexity of current approaches to therapeutic drug monitoring during tuberculosis (TB) therapy limits widespread use in areas of greatest need. We sought to determine whether urine colorimetry could have a novel application as a form of therapeutic drug monitoring during anti-TB therapy. Among healthy volunteers, we evaluated 3 dose sizes of rifampin (150 mg, 300 mg, and 600 mg), performed intensive pharmacokinetic sampling, and collected a timed urine void at 4 h post-dosing. The absorbance peak at 475 nm was measured after rifamycin extraction. The optimal cutoff was evaluated in a study of 39 HIV/TB patients undergoing TB treatment in Botswana. In the derivation study, a urine colorimetric assay value of 4.0 × 10(-2) Abs, using a timed void 4 h after dosing, demonstrated a sensitivity of 92 % and specificity of 60 % to detect a peak rifampin concentration (Cmax) under 8 mg/L, with an area under the ROC curve of 0.92. In the validation study, this cutoff was specific (100 %) but insensitive (28 %). We observed similar test characteristics for a target Cmax target of 6.6 mg/L, and a target area under the drug concentration-versus-time curve (AUC0-8) target of 24.1 mg•hour/L. The urine colorimetric assay was specific but insensitive to detect low rifampin serum concentrations among HIV/TB patients. In future work we will attempt to optimize sampling times and assay performance, with the goal of delivering a method that can translate into a point-of-care assessment of rifampin exposure during anti-TB therapy.
A practical approach to determination of laboratory GC-MS limits of detection.
Underwood, P J; Kananen, G E; Armitage, E K
1997-01-01
Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.
Contrast based band selection for optimized weathered oil detection in hyperspectral images
NASA Astrophysics Data System (ADS)
Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier
2012-09-01
Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore necessary to apply a motion correction to the imagery. In this paper, imagery is corrected for the pitching motion of a vessel, which causes most of the deformation when the vessel is anchored at 2 points (bow and stern) during the acquisition of the hyperspectral imagry.
Synthetic aperture radar target detection, feature extraction, and image formation techniques
NASA Technical Reports Server (NTRS)
Li, Jian
1994-01-01
This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.
Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging
NASA Astrophysics Data System (ADS)
Marinelli, William J.; Miyashiro, Rex; Gittins, Christopher M.; Konno, Daisei; Chang, Shing; Farr, Matt; Perkins, Brad
2013-05-01
Two AIRIS sensors were tested at Dugway Proving Grounds against chemical agent vapor simulants. The primary objectives of the test were to: 1) assess performance of algorithm improvements designed to reduce false alarm rates with a special emphasis on solar effects, and 3) evaluate performance in target detection at 5 km. The tests included 66 total releases comprising alternating 120 kg glacial acetic acid (GAA) and 60 kg triethyl phosphate (TEP) events. The AIRIS sensors had common algorithms, detection thresholds, and sensor parameters. The sensors used the target set defined for the Joint Service Lightweight Chemical Agent Detector (JSLSCAD) with TEP substituted for GA and GAA substituted for VX. They were exercised at two sites located at either 3 km or 5 km from the release point. Data from the tests will be presented showing that: 1) excellent detection capability was obtained at both ranges with significantly shorter alarm times at 5 km, 2) inter-sensor comparison revealed very comparable performance, 3) false alarm rates < 1 incident per 10 hours running time over 143 hours of sensor operations were achieved, 4) algorithm improvements eliminated both solar and cloud false alarms. The algorithms enabling the improved false alarm rejection will be discussed. The sensor technology has recently been extended to address the problem of detection of liquid and solid chemical agents and toxic industrial chemical on surfaces. The phenomenology and applicability of passive infrared hyperspectral imaging to this problem will be discussed and demonstrated.
Comparison of human and algorithmic target detection in passive infrared imagery
NASA Astrophysics Data System (ADS)
Weber, Bruce A.; Hutchinson, Meredith
2003-09-01
We have designed an experiment that compares the performance of human observers and a scale-insensitive target detection algorithm that uses pixel level information for the detection of ground targets in passive infrared imagery. The test database contains targets near clutter whose detectability ranged from easy to very difficult. Results indicate that human observers detect more "easy-to-detect" targets, and with far fewer false alarms, than the algorithm. For "difficult-to-detect" targets, human and algorithm detection rates are considerably degraded, and algorithm false alarms excessive. Analysis of detections as a function of observer confidence shows that algorithm confidence attribution does not correspond to human attribution, and does not adequately correlate with correct detections. The best target detection score for any human observer was 84%, as compared to 55% for the algorithm for the same false alarm rate. At 81%, the maximum detection score for the algorithm, the same human observer had 6 false alarms per frame as compared to 29 for the algorithm. Detector ROC curves and observer-confidence analysis benchmarks the algorithm and provides insights into algorithm deficiencies and possible paths to improvement.
Heinze, Brian C; Gamboa, Jessica R; Kim, Keesung; Song, Jae-Young; Yoon, Jeong-Yeol
2010-11-01
This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL(-1) in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.
Dziedzinska, Radka
2017-01-01
The main reasons to improve the detection of Mycobacterium avium subsp. paratuberculosis (MAP) are animal health and monitoring of MAP entering the food chain via meat, milk, and/or dairy products. Different approaches can be used for the detection of MAP, but the use of magnetic separation especially in conjunction with PCR as an end-point detection method has risen in past years. However, the extraction of DNA which is a crucial step prior to PCR detection can be complicated due to the presence of inhibitory substances. Magnetic separation methods involving either antibodies or peptides represent a powerful tool for selective separation of target bacteria from other nontarget microorganisms and inhibitory sample components. These methods enable the concentration of pathogens present in the initial matrix into smaller volume and facilitate the isolation of sufficient quantities of pure DNA. The purpose of this review was to summarize the methods based on the magnetic separation approach that are currently available for the detection of MAP in a broad range of matrices. PMID:28642876
Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis
NASA Astrophysics Data System (ADS)
Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun
2015-05-01
Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.
Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed
2005-01-01
The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.
Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki
2015-01-01
Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948
Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki
2015-01-01
Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.
Point-of-Care Assay of Telomerase Activity at Single-Cell Level via Gas Pressure Readout.
Wang, Yanjun; Yang, Luzhu; Li, Baoxin; Yang, Chaoyong James; Jin, Yan
2017-08-15
Detection of telomerase activity at the single-cell level is one of the central challenges in cancer diagnostics and therapy. Herein, we describe a facile and reliable point-of-care testing (POCT) strategy for detection of telomerase activity via a portable pressure meter. Telomerase primer (TS) was immobilized onto the surface of magnetic beads (MBs), and then was elongated to a long single-stranded DNA by telomerase. The elongated (TTAGGG) n repeat unit hybridized with several short PtNP-functionalized complementary DNA (PtNPs-cDNA), which specifically enriched PtNPs onto the surfaces of magnetic beads (MBs), which were separated using a magnet. Then, nanoparticle-catalyzed gas-generation reaction converted telomerase activity into significant change in gas pressure. Because of the self-amplification of telomerase and enrichment by magnetic separation, the diluted telomerase equivalent to a single HeLa cell was facilely detected. More importantly, the telomerase in the lysate of 1 HeLa cell can be reliably detected by monitoring change in gas pressure, indicating that it is feasible and possible to study differences between individual cells. The difference in relative activity between different kinds of cancer cells was easily and sensitively studied. Study of inhibition of telomerase activity demonstrated that our method has great potential in screening of telomerase-targeted antitumor drugs as well as in clinical diagnosis.
High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors
Kim, Sungho
2015-01-01
This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448
Multivariate optical element platform for compressed detection of fluorescence markers
NASA Astrophysics Data System (ADS)
Priore, Ryan J.; Swanstrom, Joseph A.
2014-05-01
The success of a commercial fluorescent diagnostic assay is dependent on the selection of a fluorescent biomarker; due to the broad nature of fluorescence biomarker emission profiles, only a small number of fluorescence biomarkers may be discriminated from each other as a function of excitation source. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broad band, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs have historically been matched 1:1 to a discrete analyte or class prediction; however, MOE filter sets are capable of sensing projections of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This optical regression can offer real-time measurements with relatively high signal-to-noise ratios that realize the advantages of multiplexed detection and pattern recognition in a simple optical instrument. The specificity advantage of MOE-based sensors allows fluorescent biomarkers that were once incapable of discrimination from one another via optical band pass filters to be employed in a common assay panel. A simplified MOE-based sensor may ultimately reduce the requirement for highly trained operators as well as move certain life science applications like disease prognostication from the laboratory to the point of care. This presentation will summarize the design and fabrication of compressed detection MOE filter sets for detecting multiple fluorescent biomarkers simultaneously with strong spectroscopic interference as well as comparing the detection performance of the MOE sensor with traditional optical band pass filter methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S; Charpentier, P; Sayler, E
2015-06-15
Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable targets. NIH grant for the first author as cionsultant and the last author as the PI.« less
Polarimetric phenomenology in the reflective regime: a case study using polarized hyperspectral data
NASA Astrophysics Data System (ADS)
Gibney, Mark
2016-05-01
Understanding the phenomenology of polarimetric data is necessary if we want to obtain the maximum benefit when we exploit that data. To first order, polarimetric phenomenology is driven by two things; the target material type (specular or diffuse) and the illuminating source (point (sun) or extended (body emission)). Polarimetric phenomenology can then be broken into three basic categories; ([specular material/sun source], [diffuse/sun], [specular/body]) where we have assigned body emission to the IR passband where materials are generally specular. The task of interest determines the category of interest since the task determines the dominant target material and the illuminating source (eg detecting diffuse targets under trees in VNIR = [diffuse/sun] category). In this paper, a specific case study for the important [diffuse/sun] category will be presented. For the reflective regime (0.3 - 3.0um), the largest polarimetric signal is obtained when the sun illuminates a significant portion of the material BRDF lobe. This naturally points us to problems whose primary target materials are diffuse since the BRDF lobe for specular materials is tiny (low probability of acquiring on the BRDF lobe) and glinty (high probability of saturating the sensor when on lobe). In this case study, we investigated signatures of solar illuminated diffuse paints acquired by a polarimetric hyperspectral sensor. We will discuss the acquisition, reduction and exploitation of that data, and use it to illustrate the primary characteristics of reflective polarimetric phenomenology.
Selvarajah, Sharmini; Haniff, Jamaiyah; Kaur, Gurpreet; Guat Hiong, Tee; Bujang, Adam; Chee Cheong, Kee; Bots, Michiel L
2013-02-25
Recent increases in cardiovascular risk-factor prevalences have led to new national policy recommendations of universal screening for primary prevention of cardiovascular disease in Malaysia. This study assessed whether the current national policy recommendation of universal screening was optimal, by comparing the effectiveness and impact of various cardiovascular screening strategies. Data from a national population based survey of 24 270 participants aged 30 to 74 was used. Five screening strategies were modelled for the overall population and by gender; universal and targeted screening (four age cut-off points). Screening strategies were assessed based on the ability to detect high cardiovascular risk populations (effectiveness), incremental effectiveness, impact on cardiovascular event prevention and cost of screening. 26.7% (95% confidence limits 25.7, 27.7) were at high cardiovascular risk, men 34.7% (33.6, 35.8) and women 18.9% (17.8, 20). Universal screening identified all those at high-risk and resulted in one high-risk individual detected for every 3.7 people screened, with an estimated cost of USD60. However, universal screening resulted in screening an additional 7169 persons, with an incremental cost of USD115,033 for detection of one additional high-risk individual in comparison to targeted screening of those aged ≥35 years. The cost, incremental cost and impact of detection of high-risk individuals were more for women than men for all screening strategies. The impact of screening women aged ≥45 years was similar to universal screening in men. Targeted gender- and age-specific screening strategies would ensure more optimal utilisation of scarce resources compared to the current policy recommendations of universal screening.
NASA Astrophysics Data System (ADS)
Drozd, Marcin; Pietrzak, Mariusz D.; Malinowska, Elżbieta
2018-05-01
The framework of presented study covers the development and examination of the analytical performance of surface plasmon resonance-based (SPR) DNA biosensors dedicated for a detection of model target oligonucleotide sequence. For this aim, various strategies of immobilization of DNA probes on gold transducers were tested. Besides the typical approaches: chemisorption of thiolated ssDNA (DNA-thiol) and physisorption of non-functionalized oligonucleotides, relatively new method based on chemisorption of dithiocarbamate-functionalized ssDNA (DNA-DTC) was applied for the first time for preparation of DNA-based SPR biosensor. The special emphasis was put on the correlation between the method of DNA immobilization and the composition of obtained receptor layer. The carried out studies focused on the examination of the capability of developed receptors layers to interact with both target DNA and DNA-functionalized AuNPs. It was found, that the detection limit of target DNA sequence (27 nb length) depends on the strategy of probe immobilization and backfilling method, and in the best case it amounted to 0,66 nM. Moreover, the application of ssDNA-functionalized gold nanoparticles (AuNPs) as plasmonic labels for secondary enhancement of SPR response is presented. The influence of spatial organization and surface density of a receptor layer on the ability to interact with DNA-functionalized AuNPs is discussed. Due to the best compatibility of receptors immobilized via DTC chemisorption: 1.47 ± 0.4 ·1012 molecules • cm-2 (with the calculated area occupied by single nanoparticle label of 132.7 nm2), DNA chemisorption based on DTCs is pointed as especially promising for DNA biosensors utilizing indirect detection in competitive assays.
Targeted next generation sequencing for molecular diagnosis of Usher syndrome.
Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M
2014-11-18
Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.
Boyd, Glen R; Palmeri, Jordan M; Zhang, Shaoyuan; Grimm, Deborah A
2004-10-15
Samples were collected from two stormwater canals and a recreational urban waterway known as Bayou St. John in New Orleans, Louisiana, USA and analyzed for a range of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). Concentrations of 7 PPCPs and EDCs were measured by a method that provides for simultaneous extraction and quantification of the following compounds: clofibric acid, naproxen, ibuprofen, fluoxetine, clorophene, triclosan, bisphenol A. The method also was used as an indicator of the occurrence of estrogenic compounds by targeting estrone and 17beta-estradiol. The two canals (Orleans and London) are used to drain a portion of the city's stormwater directly into the Mississippi River or Lake Pontchartrain. Bayou St. John is located between the two canals and supplied with water from Lake Pontchartrain. Results from the 6-month sampling period indicated the following concentration ranges for the two stormwater canals: naproxen (ND - 145 ng/l), ibuprofen (ND - 674 ng/l), triclosan (ND - 29 ng/l) and bisphenol A (1.9-158 ng/l). Concentrations of these target analytes increased with cumulative rainfall. For bayou waters, only naproxen (2.1-4.8 ng/l) and bisphenol A (0.9-44 ng/l) were detected. Estrone was detected but determined non-quantifiable for multiple sampling events at the 3 sites. None of the other target analytes (clofibric acid, fluoxetine, clorophene, and 17beta-estradiol) were detected above their method detection levels. Results of this study demonstrate the occurrence of PPCPs and EDCs in New Orleans stormwater canals and Bayou St. John. Results also demonstrate the use of this analytical technique as an indicator of non-point source sewage contamination in New Orleans stormwater canals.
2013-01-01
Background Recent increases in cardiovascular risk-factor prevalences have led to new national policy recommendations of universal screening for primary prevention of cardiovascular disease in Malaysia. This study assessed whether the current national policy recommendation of universal screening was optimal, by comparing the effectiveness and impact of various cardiovascular screening strategies. Methods Data from a national population based survey of 24 270 participants aged 30 to 74 was used. Five screening strategies were modelled for the overall population and by gender; universal and targeted screening (four age cut-off points). Screening strategies were assessed based on the ability to detect high cardiovascular risk populations (effectiveness), incremental effectiveness, impact on cardiovascular event prevention and cost of screening. Results 26.7% (95% confidence limits 25.7, 27.7) were at high cardiovascular risk, men 34.7% (33.6, 35.8) and women 18.9% (17.8, 20). Universal screening identified all those at high-risk and resulted in one high-risk individual detected for every 3.7 people screened, with an estimated cost of USD60. However, universal screening resulted in screening an additional 7169 persons, with an incremental cost of USD115,033 for detection of one additional high-risk individual in comparison to targeted screening of those aged ≥35 years. The cost, incremental cost and impact of detection of high-risk individuals were more for women than men for all screening strategies. The impact of screening women aged ≥45 years was similar to universal screening in men. Conclusions Targeted gender- and age-specific screening strategies would ensure more optimal utilisation of scarce resources compared to the current policy recommendations of universal screening. PMID:23442728
Drozd, Marcin; Pietrzak, Mariusz D; Malinowska, Elżbieta
2018-01-01
The framework of presented study covers the development and examination of the analytical performance of surface plasmon resonance-based (SPR) DNA biosensors dedicated for a detection of model target oligonucleotide sequence. For this aim, various strategies of immobilization of DNA probes on gold transducers were tested. Besides the typical approaches: chemisorption of thiolated ssDNA (DNA-thiol) and physisorption of non-functionalized oligonucleotides, relatively new method based on chemisorption of dithiocarbamate-functionalized ssDNA (DNA-DTC) was applied for the first time for preparation of DNA-based SPR biosensor. The special emphasis was put on the correlation between the method of DNA immobilization and the composition of obtained receptor layer. The carried out studies focused on the examination of the capability of developed receptors layers to interact with both target DNA and DNA-functionalized AuNPs. It was found, that the detection limit of target DNA sequence (27 nb length) depends on the strategy of probe immobilization and backfilling method, and in the best case it amounted to 0.66 nM. Moreover, the application of ssDNA-functionalized gold nanoparticles (AuNPs) as plasmonic labels for secondary enhancement of SPR response is presented. The influence of spatial organization and surface density of a receptor layer on the ability to interact with DNA-functionalized AuNPs is discussed. Due to the best compatibility of receptors immobilized via DTC chemisorption: 1.47 ± 0.4 · 10 12 molecules · cm -2 (with the calculated area occupied by single nanoparticle label of ~132.7 nm 2 ), DNA chemisorption based on DTCs is pointed as especially promising for DNA biosensors utilizing indirect detection in competitive assays.
Vann, Charles S.
2003-09-09
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
2011-01-01
Background Since its inception, proteomics has essentially operated in a discovery mode with the goal of identifying and quantifying the maximal number of proteins in a sample. Increasingly, proteomic measurements are also supporting hypothesis-driven studies, in which a predetermined set of proteins is consistently detected and quantified in multiple samples. Selected reaction monitoring (SRM) is a targeted mass spectrometric technique that supports the detection and quantification of specific proteins in complex samples at high sensitivity and reproducibility. Here, we describe ATAQS, an integrated software platform that supports all stages of targeted, SRM-based proteomics experiments including target selection, transition optimization and post acquisition data analysis. This software will significantly facilitate the use of targeted proteomic techniques and contribute to the generation of highly sensitive, reproducible and complete datasets that are particularly critical for the discovery and validation of targets in hypothesis-driven studies in systems biology. Result We introduce a new open source software pipeline, ATAQS (Automated and Targeted Analysis with Quantitative SRM), which consists of a number of modules that collectively support the SRM assay development workflow for targeted proteomic experiments (project management and generation of protein, peptide and transitions and the validation of peptide detection by SRM). ATAQS provides a flexible pipeline for end-users by allowing the workflow to start or end at any point of the pipeline, and for computational biologists, by enabling the easy extension of java algorithm classes for their own algorithm plug-in or connection via an external web site. This integrated system supports all steps in a SRM-based experiment and provides a user-friendly GUI that can be run by any operating system that allows the installation of the Mozilla Firefox web browser. Conclusions Targeted proteomics via SRM is a powerful new technique that enables the reproducible and accurate identification and quantification of sets of proteins of interest. ATAQS is the first open-source software that supports all steps of the targeted proteomics workflow. ATAQS also provides software API (Application Program Interface) documentation that enables the addition of new algorithms to each of the workflow steps. The software, installation guide and sample dataset can be found in http://tools.proteomecenter.org/ATAQS/ATAQS.html PMID:21414234
Simulator for Microlens Planet Surveys
NASA Astrophysics Data System (ADS)
Ipatov, Sergei I.; Horne, Keith; Alsubai, Khalid A.; Bramich, Daniel M.; Dominik, Martin; Hundertmark, Markus P. G.; Liebig, Christine; Snodgrass, Colin D. B.; Street, Rachel A.; Tsapras, Yiannis
2014-04-01
We summarize the status of a computer simulator for microlens planet surveys. The simulator generates synthetic light curves of microlensing events observed with specified networks of telescopes over specified periods of time. Particular attention is paid to models for sky brightness and seeing, calibrated by fitting to data from the OGLE survey and RoboNet observations in 2011. Time intervals during which events are observable are identified by accounting for positions of the Sun and the Moon, and other restrictions on telescope pointing. Simulated observations are then generated for an algorithm that adjusts target priorities in real time with the aim of maximizing planet detection zone area summed over all the available events. The exoplanet detection capability of observations was compared for several telescopes.
NASA Astrophysics Data System (ADS)
Kwon, Seong Kyung; Hyun, Eugin; Lee, Jin-Hee; Lee, Jonghun; Son, Sang Hyuk
2017-11-01
Object detections are critical technologies for the safety of pedestrians and drivers in autonomous vehicles. Above all, occluded pedestrian detection is still a challenging topic. We propose a new detection scheme for occluded pedestrian detection by means of lidar-radar sensor fusion. In the proposed method, the lidar and radar regions of interest (RoIs) have been selected based on the respective sensor measurement. Occluded depth is a new means to determine whether an occluded target exists or not. The occluded depth is a region projected out by expanding the longitudinal distance with maintaining the angle formed by the outermost two end points of the lidar RoI. The occlusion RoI is the overlapped region made by superimposing the radar RoI and the occluded depth. The object within the occlusion RoI is detected by the radar measurement information and the occluded object is estimated as a pedestrian based on human Doppler distribution. Additionally, various experiments are performed in detecting a partially occluded pedestrian in outdoor as well as indoor environments. According to experimental results, the proposed sensor fusion scheme has much better detection performance compared to the case without our proposed method.
Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah
2016-05-01
A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.
Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets
NASA Astrophysics Data System (ADS)
Gold, P. O.; Cowgill, E.; Kreylos, O.
2009-12-01
Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point cloud, we scan from multiple locations an object of known geometry (a cylinder mounted above a square box). Preliminary results show that even in a controlled experimental scan of an object of known dimensions, there is significant variability in the precision of the registered point cloud. For example, when 3 scans of the central object are registered using 4 known points (maximum time, maximum equipment), the point clouds align to within ~1 cm (normal to the object surface). However, when the same point clouds are registered with only 1 known point (minimum time, minimum equipment), misalignment of the point clouds can range from 2.5 to 5 cm, depending on target type. The greater misalignment of the 3 point clouds when registered with fewer known points stems from the field method employed in acquiring the dataset and demonstrates the impact of field workflow on LiDAR dataset precision. By quantifying the degree of scan mismatch in results such as this, we can provide users with the information needed to maximize efficiency in remote field surveys.
Observing the high redshift Universe with Euclid
NASA Astrophysics Data System (ADS)
Laureijs, René; Euclid Collaboration
2018-05-01
Euclid enables the exploration of large sky areas with diffraction limited resolution in the optical and near-infrared, and is sensitive enough to detect targets at cosmological distances. This combination of capabilities gives Euclid a clear advantage over telescope facilities with larger apertures, both on ground and in space. The decision to mount in the NISP instrument one extra grism for the wavelength range 0.92-1.3 μm with a spectral resolution of R ~260 makes possible a rest-frame UV survey of the early Universe in the redshift range 6.5 < z < 9.7. Euclid's standard imaging with VIS in the 0.55-0.9 μm band and with NISP in the Y, J, H bands provide complementary photometry for further target identification and characterization. Euclid is a suitable facility to discover and map the spatial distribution of rare high-redshift targets and to collect statistically relevant samples, in particular of high redshift Lyα emitters and QSOs, which can be used as signposts of the cosmic structures. The Euclid surveys are also a starting point for deeper follow up observations of the individual high-z objects. We present the Euclid mission and discuss the detectability of high-z objects to probe the epoch of ionization.
NASA Astrophysics Data System (ADS)
de Jong, Arie N.; van Eijk, Alexander M. J.; Cohen, Leo H.; Fritz, Peter J.; Gunter, Willem H.; Vrahimis, George; October, Faith J.
2011-09-01
The FATMOSE trial (False Bay Atmospheric Experiment) is a continuation of the cooperative work between TNO and IMT on atmospheric propagation and point target detection and identification in a maritime environment, South Africa). The atmospheric transmission, being of major importance for target detection, was measured with the MSRT multiband optical/IR transmissometer over a path of 15.7 km over sea. Simultaneously a set of instruments was installed on a midpath lighthouse for collection of local meteorological data, including turbulence, scintillation, sea surface temperature and visibility. The multiband transmission data allow the retrieval of the size distribution (PSD) of the particles (aerosols) in the transmission path. The retrieved PSD's can be correlated with the weather data such as windspeed, wind direction, relative humidity and visibility. This knowledge will lead to better atmospheric propagation models. The measurement period covered nearly a full year, starting in November 2009 and ending in October 2010. The False Bay site is ideal for studies on propagation effects over sea because of the large variety of weather conditions, including high windspeed, expected from the South East with maritime air masses, as well as Northerly winds, expected to bring warm and dry air from the continent. From an operational point of view the False Bay area is interesting, being representative for the scenery around the African coast with warships in an active protecting role in the battle against piracy. The yearround transmission data are an important input for range performance calculations of electro-optical sensors against maritime targets. The data support the choice of the proper spectral band and contain statistical information about the detection ranges to be expected. In this paper details on the instrumentation will be explained as well as the methods of calibration and PSD retrieval. Data are presented for various weather conditions, showing correlations between different parameters and including statistical behaviour over the year. Examples will be shown of special conditions such as refractive gain, gravity waves and showers.
Spatial attention is attracted in a sustained fashion toward singular points in the optic flow.
Wang, Shuo; Fukuchi, Masaki; Koch, Christof; Tsuchiya, Naotsugu
2012-01-01
While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots), the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion.
Spatial Attention Is Attracted in a Sustained Fashion toward Singular Points in the Optic Flow
Wang, Shuo; Fukuchi, Masaki; Koch, Christof; Tsuchiya, Naotsugu
2012-01-01
While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots), the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion. PMID:22905096
Taiwan's Travel and Border Health Measures in Response to Zika
Ho, Li-Li; Tsai, Yu-Hui; Lee, Wang-Ping; Liao, Szu-Tsai; Wu, Li-Gin
2017-01-01
Zika virus has recently emerged as a worldwide public health concern. Travel and border health measures stand as one of the main strategies and frontline defenses in responding to international epidemics. As of October 31, 2016, Taiwan has reported 13 imported cases, 5 of which were detected through routine entry screening and active monitoring at international airports. This article shares Taiwan's disease surveillance activities at designated points of entry and travel and border health measures in response to Zika. The Taiwan government collaborates with its tourism industry to disseminate information about precautionary measures and encourages tour guides to report suspected individuals or events to activate early response measures. Taiwan also engages in vector control activities at points of entry, including targeting aircraft from countries where vector-borne diseases are endemic, implementing mosquito sweep measures, and collecting vector surveillance data. In future emerging and reemerging disease events, entry surveillance at designated points of entry may enable early detection of diseases of international origin and more rapid activation of public health preparedness activities and international collaboration. Taiwan will continue to maximize border and travel health measures in compliance with IHR (2005) requirements, which rely on continued risk assessment, practical implementation activities, and engagement with all stakeholders. PMID:28418744
Thierry, Alain R
2016-01-01
Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex(®) and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex(®) has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex(®) test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex(®) is limited to the mutational status of known hotspot mutation; it is a "targeted approach." However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.
Reducing the overlay metrology sensitivity to perturbations of the measurement stack
NASA Astrophysics Data System (ADS)
Zhou, Yue; Park, DeNeil; Gutjahr, Karsten; Gottipati, Abhishek; Vuong, Tam; Bae, Sung Yong; Stokes, Nicholas; Jiang, Aiqin; Hsu, Po Ya; O'Mahony, Mark; Donini, Andrea; Visser, Bart; de Ruiter, Chris; Grzela, Grzegorz; van der Laan, Hans; Jak, Martin; Izikson, Pavel; Morgan, Stephen
2017-03-01
Overlay metrology setup today faces a continuously changing landscape of process steps. During Diffraction Based Overlay (DBO) metrology setup, many different metrology target designs are evaluated in order to cover the full process window. The standard method for overlay metrology setup consists of single-wafer optimization in which the performance of all available metrology targets is evaluated. Without the availability of external reference data or multiwafer measurements it is hard to predict the metrology accuracy and robustness against process variations which naturally occur from wafer-to-wafer and lot-to-lot. In this paper, the capabilities of the Holistic Metrology Qualification (HMQ) setup flow are outlined, in particular with respect to overlay metrology accuracy and process robustness. The significance of robustness and its impact on overlay measurements is discussed using multiple examples. Measurement differences caused by slight stack variations across the target area, called grating imbalance, are shown to cause significant errors in the overlay calculation in case the recipe and target have not been selected properly. To this point, an overlay sensitivity check on perturbations of the measurement stack is presented for improvement of the overlay metrology setup flow. An extensive analysis on Key Performance Indicators (KPIs) from HMQ recipe optimization is performed on µDBO measurements of product wafers. The key parameters describing the sensitivity to perturbations of the measurement stack are based on an intra-target analysis. Using advanced image analysis, which is only possible for image plane detection of μDBO instead of pupil plane detection of DBO, the process robustness performance of a recipe can be determined. Intra-target analysis can be applied for a wide range of applications, independent of layers and devices.
Odongo, Steven; Sterckx, Yann G J; Stijlemans, Benoît; Pillay, Davita; Baltz, Théo; Muyldermans, Serge; Magez, Stefan
2016-02-01
Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb)-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system. An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B) was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA) was shown to detect experimental infections with high Positive Predictive Value (98%), Sensitivity (87%) and Specificity (94%). Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i) T. congolense soluble proteome, (ii) T. congolense secretome preparation and (iii) sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase. The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious diseases.
Detection technique of targets for missile defense system
NASA Astrophysics Data System (ADS)
Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong
2009-11-01
Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.
Prospective memory in an air traffic control simulation: External aids that signal when to act
Loft, Shayne; Smith, Rebekah E.; Bhaskara, Adella
2011-01-01
At work and in our personal life we often need to remember to perform intended actions at some point in the future, referred to as Prospective Memory. Individuals sometimes forget to perform intentions in safety-critical work contexts. Holding intentions can also interfere with ongoing tasks. We applied theories and methods from the experimental literature to test the effectiveness of external aids in reducing prospective memory error and costs to ongoing tasks in an air traffic control simulation. Participants were trained to accept and hand-off aircraft, and to detect aircraft conflicts. For the prospective memory task participants were required to substitute alternative actions for routine actions when accepting target aircraft. Across two experiments, external display aids were provided that presented the details of target aircraft and associated intended actions. We predicted that aids would only be effective if they provided information that was diagnostic of target occurrence and in this study we examined the utility of aids that directly cued participants when to allocate attention to the prospective memory task. When aids were set to flash when the prospective memory target aircraft needed to be accepted, prospective memory error and costs to ongoing tasks of aircraft acceptance and conflict detection were reduced. In contrast, aids that did not alert participants specifically when the target aircraft were present provided no advantage compared to when no aids we used. These findings have practical implications for the potential relative utility of automated external aids for occupations where individuals monitor multi-item dynamic displays. PMID:21443381
Prospective memory in an air traffic control simulation: external aids that signal when to act.
Loft, Shayne; Smith, Rebekah E; Bhaskara, Adella
2011-03-01
At work and in our personal life we often need to remember to perform intended actions at some point in the future, referred to as Prospective Memory. Individuals sometimes forget to perform intentions in safety-critical work contexts. Holding intentions can also interfere with ongoing tasks. We applied theories and methods from the experimental literature to test the effectiveness of external aids in reducing prospective memory error and costs to ongoing tasks in an air traffic control simulation. Participants were trained to accept and hand-off aircraft and to detect aircraft conflicts. For the prospective memory task, participants were required to substitute alternative actions for routine actions when accepting target aircraft. Across two experiments, external display aids were provided that presented the details of target aircraft and associated intended actions. We predicted that aids would only be effective if they provided information that was diagnostic of target occurrence, and in this study, we examined the utility of aids that directly cued participants when to allocate attention to the prospective memory task. When aids were set to flash when the prospective memory target aircraft needed to be accepted, prospective memory error and costs to ongoing tasks of aircraft acceptance and conflict detection were reduced. In contrast, aids that did not alert participants specifically when the target aircraft were present provided no advantage compared to when no aids were used. These findings have practical implications for the potential relative utility of automated external aids for occupations where individuals monitor multi-item dynamic displays.
Yeh, Chia-Hsien; Zhao, Zi-Qi; Shen, Pi-Lan; Lin, Yu-Cheng
2014-01-01
This study presents an optical inspection system for detecting a commercial point-of-care testing product and a new detection model covering from qualitative to quantitative analysis. Human chorionic gonadotropin (hCG) strips (cut-off value of the hCG commercial product is 25 mIU/mL) were the detection target in our study. We used a complementary metal-oxide semiconductor (CMOS) sensor to detect the colors of the test line and control line in the specific strips and to reduce the observation errors by the naked eye. To achieve better linearity between the grayscale and the concentration, and to decrease the standard deviation (increase the signal to noise ratio, S/N), the Taguchi method was used to find the optimal parameters for the optical inspection system. The pregnancy test used the principles of the lateral flow immunoassay, and the colors of the test and control line were caused by the gold nanoparticles. Because of the sandwich immunoassay model, the color of the gold nanoparticles in the test line was darkened by increasing the hCG concentration. As the results reveal, the S/N increased from 43.48 dB to 53.38 dB, and the hCG concentration detection increased from 6.25 to 50 mIU/mL with a standard deviation of less than 10%. With the optimal parameters to decrease the detection limit and to increase the linearity determined by the Taguchi method, the optical inspection system can be applied to various commercial rapid tests for the detection of ketamine, troponin I, and fatty acid binding protein (FABP). PMID:25256108
Visual performance on detection tasks with double-targets of the same and different difficulty.
Chan, Alan H S; Courtney, Alan J; Ma, C W
2002-10-20
This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.
Kondrashova, Olga; Love, Clare J.; Lunke, Sebastian; Hsu, Arthur L.; Waring, Paul M.; Taylor, Graham R.
2015-01-01
Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395
NASA Astrophysics Data System (ADS)
Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan
2018-03-01
Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.
Integrated Spintronic Platforms for Biomolecular Recognition Detection
NASA Astrophysics Data System (ADS)
Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.
2008-06-01
This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.
Detection of Kaposi's Sarcoma Associated Herpesvirus Nucleic Acids Using a Smartphone Accessory
Mancuso, Matthew; Cesarman, Ethel; Erickson, David
2014-01-01
Kaposi's sarcoma (KS) is an infectious cancer occurring in immune-compromised patients, caused by Kaposi's sarcoma associated herpesvirus (KSHV). Our vision is to simplify the process of KS diagnosis through the creation of a smartphone based point-of-care system capable of yielding an actionable diagnostic readout starting from a raw biopsy sample. In this work we develop the sensing mechanism for the overall system, a smartphone accessory capable of detecting KSHV nucleic acids. The accessory reads out microfluidic chips filled with a colorimetric nanoparticle assay targeted at KSHV. We calculate that our final device can read out gold nanoparticle solutions with an accuracy of .05 OD, and we demonstrate that it can detect DNA sequences from KSHV down to 1 nM. We believe that through integration with our previously developed components, a smartphone based system like the one studied here can provide accurate detection information, as well as a simple platform for field based clinical diagnosis and research. PMID:25117534
Zimmer, Ulrike; Höfler, Margit; Koschutnig, Karl; Ischebeck, Anja
2016-07-01
For survival, it is necessary to attend quickly towards dangerous objects, but to turn away from something that is disgusting. We tested whether fear and disgust sounds direct spatial attention differently. Using fMRI, a sound cue (disgust, fear or neutral) was presented to the left or right ear. The cue was followed by a visual target (a small arrow) which was located on the same (valid) or opposite (invalid) side as the cue. Participants were required to decide whether the arrow pointed up- or downwards while ignoring the sound cue. Behaviorally, responses were faster for invalid compared to valid targets when cued by disgust, whereas the opposite pattern was observed for targets after fearful and neutral sound cues. During target presentation, activity in the visual cortex and IPL increased for targets invalidly cued with disgust, but for targets validly cued with fear which indicated a general modulation of activation due to attention. For the TPJ, an interaction in the opposite direction was observed, consistent with its role in detecting targets at unattended positions and in relocating attention. As a whole our results indicate that a disgusting sound directs spatial attention away from its location, in contrast to fearful and neutral sounds. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
DNA origami nanorobot fiber optic genosensor to TMV.
Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S
2018-01-15
In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Demirel, Gokhan; Babur, Esra
2014-05-21
Given their simplicity and functionality, paper-based microfluidic systems are considered to be ideal and promising bioassay platforms for use in less developed countries or in point-of-care services. Although a series of innovative techniques have recently been demonstrated for the fabrication of such platforms, development of simple, inexpensive and versatile new strategies are still needed in order to reach their full potential. In this communication, we describe a simple yet facile approach to fabricate paper-based sensor platforms with a desired design through a vapor-phase polymer deposition technique. We also show that the fabricated platforms could be readily employed for the detection of various biological target molecules including glucose, protein, ALP, ALT, and uric acid. The limit of detection for each target molecule was calculated to be 25 mg dL(-1) for glucose, 1.04 g L(-1) for protein, 7.81 unit per L for ALP, 1.6 nmol L(-1) for ALT, and 0.13 mmol L(-1) for uric acid.
NASA Astrophysics Data System (ADS)
Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai
2018-03-01
The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.
Design of 2*6 optical hybrid in inter-satellite coherent laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Wan, Lingyu; Zhou, Yu
2008-08-01
Compared with direct detection, homodyne binary phase shift keying receivers can achieve the best sensitivity theoretically, and became the trend of the research and application in inter-satellite coherent laser communications. In coherent optical communication systems an optical hybrid is an essential component of the receiver. It demodulates the incoming signal by mixing it with the local oscillator. We present a design of a 2*6 optical hybrid. 4 output ports of the hybrid give the narrow mixed beams of the incoming signal and the local oscillator shifted by 90°for communication, and the others give the wide mixed beams with a shifted degree of 180°for position errors detection. CCD captures the interference pattern from the wide beams, and then the pattern is processed and analyzed by the computer. Target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signals of PAT (pointing, acquisition and tracking) subsystem drive the receiver telescope to keep tracking to the target. The application extends to coherent laser rang finder.